content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from collections import defaultdict if __name__ == '__main__': main()
[ 6738, 17268, 1330, 4277, 11600, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.166667
24
import json import torch import argparse import numpy as np from transformers.modeling_outputs import SequenceClassifierOutput from transformers import Trainer, TrainingArguments, RobertaTokenizer, RobertaModel, RobertaConfig, RobertaForSequenceClassification if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', '-c', required=True, help='path to Pegasus model checkpoint') args = parser.parse_args() main(args)
[ 11748, 33918, 198, 11748, 28034, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 6121, 364, 13, 4666, 10809, 62, 22915, 82, 1330, 45835, 9487, 7483, 26410, 198, 6738, 6121, 364, 1330, 31924, 11, 13614, 28100, 2886, 11, 5199, 64, 30642, 7509, 11, 5199, 64, 17633, 11, 5199, 64, 16934, 11, 5199, 64, 1890, 44015, 594, 9487, 2649, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 9122, 4122, 3256, 705, 12, 66, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 6978, 284, 48188, 2746, 26954, 11537, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 8 ]
3.11875
160
# -*- coding: utf-8 -*- # @Time : 2017/12/18 # @Author : Shu # @Email : [email protected] from PyQt4.QtCore import * from PyQt4.QtGui import * from FormUI.ui_getseed import Ui_getseedWD
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 1058, 2177, 14, 1065, 14, 1507, 198, 2, 2488, 13838, 220, 1058, 32344, 198, 2, 2488, 15333, 220, 220, 1058, 3740, 712, 1616, 31, 43669, 13, 3262, 198, 198, 6738, 9485, 48, 83, 19, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 19, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 5178, 10080, 13, 9019, 62, 1136, 28826, 1330, 471, 72, 62, 1136, 28826, 22332, 628, 198 ]
2.175824
91
"""Tests two schematic json files to ensure they're equal """ import json import sys INPUT_A: str = sys.argv[1] INPUT_B: str = sys.argv[2] with open(INPUT_A, 'r') as infile_a: with open(INPUT_B, 'r') as infile_b: if json.load(infile_a)['nbt'] != json.load(infile_b)['nbt']: sys.exit(1) sys.exit(0)
[ 37811, 51, 3558, 734, 44566, 33918, 3696, 284, 4155, 484, 821, 4961, 198, 37811, 198, 198, 11748, 33918, 198, 11748, 25064, 198, 198, 1268, 30076, 62, 32, 25, 965, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 1268, 30076, 62, 33, 25, 965, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 198, 4480, 1280, 7, 1268, 30076, 62, 32, 11, 705, 81, 11537, 355, 1167, 576, 62, 64, 25, 198, 220, 220, 220, 351, 1280, 7, 1268, 30076, 62, 33, 11, 705, 81, 11537, 355, 1167, 576, 62, 65, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 33918, 13, 2220, 7, 259, 7753, 62, 64, 8, 17816, 77, 18347, 20520, 14512, 33918, 13, 2220, 7, 259, 7753, 62, 65, 8, 17816, 77, 18347, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 17597, 13, 37023, 7, 15, 8, 198 ]
2.096774
155
""" Contains the templates for benchmark reports. """
[ 37811, 198, 4264, 1299, 262, 24019, 329, 18335, 3136, 13, 198, 37811, 198 ]
4.153846
13
import pytest from timeit import default_timer from stockfish import Stockfish
[ 11748, 12972, 9288, 198, 6738, 640, 270, 1330, 4277, 62, 45016, 198, 198, 6738, 4283, 11084, 1330, 10500, 11084, 628 ]
4.05
20
# -*- coding: utf-8 -*- import os import click from fstmt import TableAdaptorFactory, DashboardFactory, table @click.group() @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year', type=int) @click.option('--quarter', type=int, default=4) @click.option('--col', type=(str, str), multiple=True) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--year') @click.option('--quarter', type=int, default=4) @cli.command() @click.argument('target') @click.argument('market') @click.argument('symbol') @click.option('--arg', type=(str, str), multiple=True) @cli.command() @click.argument('target') if __name__ == '__main__': cli()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 3904, 198, 6738, 277, 301, 16762, 1330, 8655, 48003, 273, 22810, 11, 16189, 3526, 22810, 11, 3084, 198, 198, 31, 12976, 13, 8094, 3419, 198, 198, 31, 44506, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 10786, 16793, 11537, 198, 31, 12976, 13, 49140, 10786, 10728, 11537, 198, 31, 12976, 13, 49140, 10786, 1837, 23650, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1941, 3256, 2099, 28, 600, 8, 198, 31, 12976, 13, 18076, 10786, 438, 24385, 3256, 2099, 28, 600, 11, 4277, 28, 19, 8, 198, 31, 12976, 13, 18076, 10786, 438, 4033, 3256, 2099, 16193, 2536, 11, 965, 828, 3294, 28, 17821, 8, 198, 198, 31, 44506, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 10786, 16793, 11537, 198, 31, 12976, 13, 49140, 10786, 10728, 11537, 198, 31, 12976, 13, 49140, 10786, 1837, 23650, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1941, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 24385, 3256, 2099, 28, 600, 11, 4277, 28, 19, 8, 198, 198, 31, 44506, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 10786, 16793, 11537, 198, 31, 12976, 13, 49140, 10786, 10728, 11537, 198, 31, 12976, 13, 49140, 10786, 1837, 23650, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 853, 3256, 2099, 16193, 2536, 11, 965, 828, 3294, 28, 17821, 8, 220, 198, 198, 31, 44506, 13, 21812, 3419, 198, 31, 12976, 13, 49140, 10786, 16793, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 537, 72, 3419, 198 ]
2.802974
269
from datetime import date from whoare.zone_parsers.ar.news_from_blockchain import NewDomains
[ 6738, 4818, 8079, 1330, 3128, 198, 6738, 508, 533, 13, 11340, 62, 79, 945, 364, 13, 283, 13, 10827, 62, 6738, 62, 9967, 7983, 1330, 968, 24510, 1299, 628, 628, 628, 198 ]
3.09375
32
"""Unit tests for client scanning.""" from __future__ import unicode_literals import os from rbtools.clients import scan_usable_client from rbtools.clients.git import GitClient from rbtools.clients.svn import SVNClient from rbtools.clients.tests import SCMClientTests from rbtools.utils.process import execute class ScanningTests(SCMClientTests): """Unit tests for client scanning.""" def test_scanning_nested_repos_1(self): """Testing scan_for_usable_client with nested repositories (git inside svn) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out SVN first. clone_dir = self.chdir_tmp() execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) svn_clone_dir = os.path.join(clone_dir, 'svn-repo') # Now check out git. git_clone_dir = os.path.join(svn_clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(git_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(git_clone_dir)) self.assertEqual(type(tool), GitClient) def test_scanning_nested_repos_2(self): """Testing scan_for_usable_client with nested repositories (svn inside git) """ git_dir = os.path.join(self.testdata_dir, 'git-repo') svn_dir = os.path.join(self.testdata_dir, 'svn-repo') # Check out git first clone_dir = self.chdir_tmp() git_clone_dir = os.path.join(clone_dir, 'git-repo') os.mkdir(git_clone_dir) execute(['git', 'clone', git_dir, git_clone_dir], env=None, ignore_errors=False, extra_ignore_errors=()) # Now check out svn. svn_clone_dir = os.path.join(git_clone_dir, 'svn-repo') os.chdir(git_clone_dir) execute(['svn', 'co', 'file://%s' % svn_dir, 'svn-repo'], env=None, ignore_errors=False, extra_ignore_errors=()) os.chdir(svn_clone_dir) repository_info, tool = scan_usable_client({}, self.options) self.assertEqual(repository_info.local_path, os.path.realpath(svn_clone_dir)) self.assertEqual(type(tool), SVNClient)
[ 37811, 26453, 5254, 329, 5456, 21976, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 28686, 198, 198, 6738, 374, 18347, 10141, 13, 565, 2334, 1330, 9367, 62, 31979, 62, 16366, 198, 6738, 374, 18347, 10141, 13, 565, 2334, 13, 18300, 1330, 15151, 11792, 198, 6738, 374, 18347, 10141, 13, 565, 2334, 13, 21370, 77, 1330, 20546, 45, 11792, 198, 6738, 374, 18347, 10141, 13, 565, 2334, 13, 41989, 1330, 6374, 44, 11792, 51, 3558, 198, 6738, 374, 18347, 10141, 13, 26791, 13, 14681, 1330, 12260, 628, 198, 4871, 20937, 768, 51, 3558, 7, 6173, 44, 11792, 51, 3558, 2599, 198, 220, 220, 220, 37227, 26453, 5254, 329, 5456, 21976, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 35836, 768, 62, 77, 7287, 62, 260, 1930, 62, 16, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44154, 9367, 62, 1640, 62, 31979, 62, 16366, 351, 28376, 38072, 357, 18300, 2641, 198, 220, 220, 220, 220, 220, 220, 220, 38487, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17606, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 9288, 7890, 62, 15908, 11, 705, 18300, 12, 260, 7501, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 38487, 77, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 9288, 7890, 62, 15908, 11, 705, 21370, 77, 12, 260, 7501, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 503, 20546, 45, 717, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17271, 62, 15908, 796, 2116, 13, 354, 15908, 62, 22065, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 12260, 7, 17816, 21370, 77, 3256, 705, 1073, 3256, 705, 7753, 1378, 4, 82, 6, 4064, 38487, 77, 62, 15908, 11, 705, 21370, 77, 12, 260, 7501, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17365, 28, 14202, 11, 8856, 62, 48277, 28, 25101, 11, 3131, 62, 46430, 62, 48277, 28, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 38487, 77, 62, 21018, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 21018, 62, 15908, 11, 705, 21370, 77, 12, 260, 7501, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 2198, 503, 17606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17606, 62, 21018, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 21370, 77, 62, 21018, 62, 15908, 11, 705, 18300, 12, 260, 7501, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 18300, 62, 21018, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12260, 7, 17816, 18300, 3256, 705, 21018, 3256, 17606, 62, 15908, 11, 17606, 62, 21018, 62, 15908, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17365, 28, 14202, 11, 8856, 62, 48277, 28, 25101, 11, 3131, 62, 46430, 62, 48277, 28, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 18300, 62, 21018, 62, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 16099, 62, 10951, 11, 2891, 796, 9367, 62, 31979, 62, 16366, 15090, 5512, 2116, 13, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 260, 1930, 37765, 62, 10951, 13, 12001, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 5305, 6978, 7, 18300, 62, 21018, 62, 15908, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 4906, 7, 25981, 828, 15151, 11792, 8, 628, 220, 220, 220, 825, 1332, 62, 35836, 768, 62, 77, 7287, 62, 260, 1930, 62, 17, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44154, 9367, 62, 1640, 62, 31979, 62, 16366, 351, 28376, 38072, 357, 21370, 77, 2641, 198, 220, 220, 220, 220, 220, 220, 220, 17606, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17606, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 9288, 7890, 62, 15908, 11, 705, 18300, 12, 260, 7501, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 38487, 77, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 9288, 7890, 62, 15908, 11, 705, 21370, 77, 12, 260, 7501, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 503, 17606, 717, 198, 220, 220, 220, 220, 220, 220, 220, 17271, 62, 15908, 796, 2116, 13, 354, 15908, 62, 22065, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 17606, 62, 21018, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 21018, 62, 15908, 11, 705, 18300, 12, 260, 7501, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 18300, 62, 21018, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12260, 7, 17816, 18300, 3256, 705, 21018, 3256, 17606, 62, 15908, 11, 17606, 62, 21018, 62, 15908, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17365, 28, 14202, 11, 8856, 62, 48277, 28, 25101, 11, 3131, 62, 46430, 62, 48277, 28, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 2198, 503, 38487, 77, 13, 198, 220, 220, 220, 220, 220, 220, 220, 38487, 77, 62, 21018, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 18300, 62, 21018, 62, 15908, 11, 705, 21370, 77, 12, 260, 7501, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 18300, 62, 21018, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12260, 7, 17816, 21370, 77, 3256, 705, 1073, 3256, 705, 7753, 1378, 4, 82, 6, 4064, 38487, 77, 62, 15908, 11, 705, 21370, 77, 12, 260, 7501, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17365, 28, 14202, 11, 8856, 62, 48277, 28, 25101, 11, 3131, 62, 46430, 62, 48277, 28, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 21370, 77, 62, 21018, 62, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 16099, 62, 10951, 11, 2891, 796, 9367, 62, 31979, 62, 16366, 15090, 5512, 2116, 13, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 260, 1930, 37765, 62, 10951, 13, 12001, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 5305, 6978, 7, 21370, 77, 62, 21018, 62, 15908, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 4906, 7, 25981, 828, 20546, 45, 11792, 8, 198 ]
2.168232
1,171
from isign_base_test import IsignBaseTest from isign.archive import archive_factory, Archive, AppArchive, AppZipArchive, IpaArchive from isign.utils import PY3 import logging log = logging.getLogger(__name__)
[ 6738, 318, 570, 62, 8692, 62, 9288, 1330, 1148, 570, 14881, 14402, 198, 6738, 318, 570, 13, 17474, 1330, 15424, 62, 69, 9548, 11, 20816, 11, 2034, 19895, 425, 11, 2034, 41729, 19895, 425, 11, 314, 8957, 19895, 425, 198, 6738, 318, 570, 13, 26791, 1330, 350, 56, 18, 198, 11748, 18931, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628 ]
3.132353
68
""" Light curves components for Cotrendy """ import sys import logging import numpy as np from scipy.stats import median_absolute_deviation import cotrendy.utils as cuts def load_photometry(config, apply_object_mask=True): """ Read in a photometry file Parameters ---------- config : dict Configuration file loaded via TOML apply_object_mask : boolean Mask our a subset of stars? Returns ------- times : array Array of times of observation lightcurves : list List of Lightcurve objects, one per star Raises ------ None """ root = config['global']['root'] time_file = config['data']['time_file'] flux_file = config['data']['flux_file'] error_file = config['data']['error_file'] times = cuts.depicklify(f"{root}/{time_file}") if times is None: logging.critical(f"Could not load {root}/{time_file}...") sys.exit(1) fluxes = cuts.depicklify(f"{root}/{flux_file}") if fluxes is None: logging.critical(f"Could not load {root}/{flux_file}...") sys.exit(1) errors = cuts.depicklify(f"{root}/{error_file}") if errors is None: logging.critical(f"Could not load {root}/{error_file}...") sys.exit(1) if fluxes.shape != errors.shape or len(times) != len(fluxes[0]): logging.critical("Data arrays have mismatched shapes...") sys.exit(1) # now apply the mask if needed if apply_object_mask: objects_mask_file = config['data']['objects_mask_file'] mask = cuts.depicklify(f"{root}/{objects_mask_file}") fluxes = fluxes[mask] errors = errors[mask] # now make list of Lightcurves objects lightcurves = [] n_stars = len(fluxes) i = 0 for star, star_err in zip(fluxes, errors): logging.info(f"{i+1}/{n_stars}") lightcurves.append(Lightcurve(star, star_err, config['data']['reject_outliers'])) i += 1 return times, lightcurves class Lightcurve(): """ Lightcurve object of real object """ def __init__(self, flux, flux_err, filter_outliers=False): """ Initialise the class Parameters ---------- flux : array-like list of flux values flux_err : array-like list of flux error values filter_outliers : boolean turn on PLATO outlier rejection? default = False Returns ------- None Raises ------ None """ # Initialise variables to hold data when trend is applied self.flux_wtrend = flux self.fluxerr_wtrend = flux_err self.median_flux = np.median(flux) self.outlier_indices = None # store the lightcurve after removing outliers if filter_outliers: self.filter_outliers() def filter_outliers(self, alpha=5, beta=12): """ Filter out data points that are > alpha*local MAD within a window ±beta around a given data point. Replace the data point with the local median as to not introduce gaps Parameters ---------- alpha : int Scaling factor for number of MADs to reject outside beta : int Half width of sliding window for MAD rejection Returns ------- None Outliers indices are included in self.outlier_indices Raises ------ None """ # could imaging this having a voting system where each beta*2+1 slice # votes on an outlier and if >N votes it gets nuked outlier_indices = [] for i in np.arange(beta, len(self.flux_wtrend)-beta-1): window = self.flux_wtrend[i-beta: i+beta+1] med = np.median(window) mad = median_absolute_deviation(window) outlier_positions = np.where(((window >= med+alpha*mad) | (window <= med-alpha*mad)))[0] + i - beta # gather them up and then correct them with a median # window centered on them for outlier_position in outlier_positions: if outlier_position not in outlier_indices: outlier_indices.append(outlier_position) # now go back and fix the outliers for outlier in outlier_indices: lower = outlier-beta upper = outlier+beta+1 if lower < 0: lower = 0 if upper > len(self.flux_wtrend): upper = len(self.flux_wtrend) med = np.median(self.flux_wtrend[lower:upper]) self.flux_wtrend[outlier] = med self.outlier_indices = outlier_indices
[ 37811, 198, 15047, 23759, 6805, 329, 42266, 10920, 88, 198, 37811, 198, 11748, 25064, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 34242, 1330, 14288, 62, 48546, 62, 7959, 3920, 198, 11748, 269, 313, 10920, 88, 13, 26791, 355, 6630, 198, 198, 4299, 3440, 62, 38611, 15748, 7, 11250, 11, 4174, 62, 15252, 62, 27932, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 287, 257, 2825, 15748, 2393, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4566, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 28373, 2393, 9639, 2884, 41526, 43, 198, 220, 220, 220, 4174, 62, 15252, 62, 27932, 1058, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 18007, 674, 257, 24637, 286, 5788, 30, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1661, 1058, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 1661, 286, 13432, 198, 220, 220, 220, 1657, 22019, 1158, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 4401, 22019, 303, 5563, 11, 530, 583, 3491, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6808, 796, 4566, 17816, 20541, 6, 7131, 6, 15763, 20520, 198, 220, 220, 220, 640, 62, 7753, 796, 4566, 17816, 7890, 6, 7131, 6, 2435, 62, 7753, 20520, 198, 220, 220, 220, 28462, 62, 7753, 796, 4566, 17816, 7890, 6, 7131, 6, 69, 22564, 62, 7753, 20520, 198, 220, 220, 220, 4049, 62, 7753, 796, 4566, 17816, 7890, 6, 7131, 6, 18224, 62, 7753, 20520, 628, 220, 220, 220, 1661, 796, 6630, 13, 10378, 624, 75, 1958, 7, 69, 1, 90, 15763, 92, 14, 90, 2435, 62, 7753, 92, 4943, 198, 220, 220, 220, 611, 1661, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 34666, 7, 69, 1, 23722, 407, 3440, 1391, 15763, 92, 14, 90, 2435, 62, 7753, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 28462, 274, 796, 6630, 13, 10378, 624, 75, 1958, 7, 69, 1, 90, 15763, 92, 14, 90, 69, 22564, 62, 7753, 92, 4943, 198, 220, 220, 220, 611, 28462, 274, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 34666, 7, 69, 1, 23722, 407, 3440, 1391, 15763, 92, 14, 90, 69, 22564, 62, 7753, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 8563, 796, 6630, 13, 10378, 624, 75, 1958, 7, 69, 1, 90, 15763, 92, 14, 90, 18224, 62, 7753, 92, 4943, 198, 220, 220, 220, 611, 8563, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 34666, 7, 69, 1, 23722, 407, 3440, 1391, 15763, 92, 14, 90, 18224, 62, 7753, 92, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 611, 28462, 274, 13, 43358, 14512, 8563, 13, 43358, 393, 18896, 7, 22355, 8, 14512, 18896, 7, 69, 22564, 274, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 34666, 7203, 6601, 26515, 423, 32691, 14265, 15268, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 1303, 783, 4174, 262, 9335, 611, 2622, 198, 220, 220, 220, 611, 4174, 62, 15252, 62, 27932, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5563, 62, 27932, 62, 7753, 796, 4566, 17816, 7890, 6, 7131, 6, 48205, 62, 27932, 62, 7753, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 6630, 13, 10378, 624, 75, 1958, 7, 69, 1, 90, 15763, 92, 14, 90, 48205, 62, 27932, 62, 7753, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 274, 796, 28462, 274, 58, 27932, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8563, 796, 8563, 58, 27932, 60, 628, 220, 220, 220, 1303, 783, 787, 1351, 286, 4401, 22019, 1158, 5563, 198, 220, 220, 220, 1657, 22019, 1158, 796, 17635, 198, 220, 220, 220, 299, 62, 30783, 796, 18896, 7, 69, 22564, 274, 8, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 329, 3491, 11, 3491, 62, 8056, 287, 19974, 7, 69, 22564, 274, 11, 8563, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 69, 1, 90, 72, 10, 16, 92, 14, 90, 77, 62, 30783, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1657, 22019, 1158, 13, 33295, 7, 15047, 22019, 303, 7, 7364, 11, 3491, 62, 8056, 11, 4566, 17816, 7890, 6, 7131, 6, 260, 752, 62, 448, 75, 3183, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 628, 220, 220, 220, 1441, 1661, 11, 1657, 22019, 1158, 198, 198, 4871, 4401, 22019, 303, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4401, 22019, 303, 2134, 286, 1103, 2134, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 28462, 11, 28462, 62, 8056, 11, 8106, 62, 448, 75, 3183, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 786, 262, 1398, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 1058, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 28462, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 62, 8056, 1058, 7177, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 28462, 4049, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 448, 75, 3183, 1058, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1210, 319, 9297, 1404, 46, 503, 2505, 17927, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 786, 9633, 284, 1745, 1366, 618, 5182, 318, 5625, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 22564, 62, 46569, 10920, 796, 28462, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 22564, 8056, 62, 46569, 10920, 796, 28462, 62, 8056, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1150, 666, 62, 69, 22564, 796, 45941, 13, 1150, 666, 7, 69, 22564, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 448, 2505, 62, 521, 1063, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3650, 262, 1657, 22019, 303, 706, 10829, 41528, 3183, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8106, 62, 448, 75, 3183, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24455, 62, 448, 75, 3183, 3419, 628, 220, 220, 220, 825, 8106, 62, 448, 75, 3183, 7, 944, 11, 17130, 28, 20, 11, 12159, 28, 1065, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25853, 503, 1366, 2173, 326, 389, 1875, 17130, 9, 12001, 45878, 198, 220, 220, 220, 220, 220, 220, 220, 1626, 257, 4324, 6354, 31361, 1088, 257, 1813, 1366, 966, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40177, 262, 1366, 966, 351, 262, 1957, 14288, 198, 220, 220, 220, 220, 220, 220, 220, 355, 284, 407, 10400, 17332, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1446, 4272, 5766, 329, 1271, 286, 45878, 82, 284, 4968, 2354, 198, 220, 220, 220, 220, 220, 220, 220, 12159, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13139, 9647, 286, 22292, 4324, 329, 45878, 17927, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 3806, 75, 3183, 36525, 389, 3017, 287, 2116, 13, 448, 2505, 62, 521, 1063, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 714, 19560, 428, 1719, 257, 6709, 1080, 810, 1123, 12159, 9, 17, 10, 16, 16416, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5690, 319, 281, 503, 2505, 290, 611, 1875, 45, 5690, 340, 3011, 299, 48809, 198, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 521, 1063, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 45941, 13, 283, 858, 7, 31361, 11, 18896, 7, 944, 13, 69, 22564, 62, 46569, 10920, 13219, 31361, 12, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 796, 2116, 13, 69, 22564, 62, 46569, 10920, 58, 72, 12, 31361, 25, 1312, 10, 31361, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1117, 796, 45941, 13, 1150, 666, 7, 17497, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8805, 796, 14288, 62, 48546, 62, 7959, 3920, 7, 17497, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 1930, 1756, 796, 45941, 13, 3003, 19510, 7, 17497, 18189, 1117, 10, 26591, 9, 9937, 8, 930, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17497, 19841, 1117, 12, 26591, 9, 9937, 22305, 58, 15, 60, 1343, 1312, 532, 12159, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6431, 606, 510, 290, 788, 3376, 606, 351, 257, 14288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4324, 19254, 319, 606, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 503, 2505, 62, 9150, 287, 503, 2505, 62, 1930, 1756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 503, 2505, 62, 9150, 407, 287, 503, 2505, 62, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 2505, 62, 521, 1063, 13, 33295, 7, 448, 2505, 62, 9150, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 783, 467, 736, 290, 4259, 262, 41528, 3183, 198, 220, 220, 220, 220, 220, 220, 220, 329, 503, 2505, 287, 503, 2505, 62, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 796, 503, 2505, 12, 31361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6727, 796, 503, 2505, 10, 31361, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2793, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6727, 1875, 18896, 7, 944, 13, 69, 22564, 62, 46569, 10920, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6727, 796, 18896, 7, 944, 13, 69, 22564, 62, 46569, 10920, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1117, 796, 45941, 13, 1150, 666, 7, 944, 13, 69, 22564, 62, 46569, 10920, 58, 21037, 25, 45828, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 22564, 62, 46569, 10920, 58, 448, 2505, 60, 796, 1117, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 448, 2505, 62, 521, 1063, 796, 503, 2505, 62, 521, 1063, 198 ]
2.221239
2,147
# Script for creating and loading PatStat2018b dataset into Big Query tables # coding: utf-8 ############################################### ###### Importing Libraries and functions ###### from google.cloud import bigquery from open_patstat.utils.gcp import create_table, load_gcs_file, delete_table from open_patstat.utils.schema import Schema #################################################### ###### Initializing the Client anf Job Config ###### # Before running this line, make sure that you have defined the environment variable... # ..."GOOGLE_APPLICATION_CREDENTIALS" which points to the JSON file containing authentication key client = bigquery.Client() # Initializing the Job_config job_config = bigquery.LoadJobConfig() job_config.skip_leading_rows = 1 job_config.max_bad_records = 10 job_config.source_format = bigquery.SourceFormat.CSV dataset_ref = client.dataset('patstat') ########################################### ####### Creating and Adding Tables ######## # Tables list to be loaded tables_list = ['tls201', 'tls209', 'tls204', 'tls207', 'tls206', 'tls211', 'tls212'] # Google Bucket directory address, which contains all data files gs_add = 'gs://patstat_2018g/data_PATSTAT_Global_2018_Autumn/' # Loading the tables in the list for table in tables_list: # Creating the table create_table(client, dataset_id='patstat', table_id=table, schema=getattr(Schema(),table)) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) # Adding files to the table from GCP bucket table_ref = dataset_ref.table(table) job_config.schema = getattr(Schema(),table) load_job = client.load_table_from_uri( source_uris=gs_add+table+'_*.gz', destination=table_ref, # job_id=job_id, job_id_prefix='lgs-', job_config=job_config, ) load_job.result()
[ 2, 12327, 329, 4441, 290, 11046, 3208, 17126, 7908, 65, 27039, 656, 4403, 43301, 8893, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 29113, 7804, 4242, 21017, 198, 4242, 2235, 17267, 278, 46267, 290, 5499, 46424, 2, 198, 198, 6738, 23645, 13, 17721, 1330, 1263, 22766, 198, 6738, 1280, 62, 8071, 14269, 13, 26791, 13, 70, 13155, 1330, 2251, 62, 11487, 11, 3440, 62, 70, 6359, 62, 7753, 11, 12233, 62, 11487, 198, 6738, 1280, 62, 8071, 14269, 13, 26791, 13, 15952, 2611, 1330, 10011, 2611, 198, 198, 29113, 14468, 4242, 198, 4242, 2235, 20768, 2890, 262, 20985, 281, 69, 15768, 17056, 46424, 2, 198, 198, 2, 7413, 2491, 428, 1627, 11, 787, 1654, 326, 345, 423, 5447, 262, 2858, 7885, 986, 198, 2, 35713, 38, 6684, 38, 2538, 62, 2969, 31484, 6234, 62, 9419, 1961, 3525, 12576, 50, 1, 543, 2173, 284, 262, 19449, 2393, 7268, 18239, 1994, 198, 16366, 796, 1263, 22766, 13, 11792, 3419, 198, 198, 2, 20768, 2890, 262, 15768, 62, 11250, 198, 21858, 62, 11250, 796, 1263, 22766, 13, 8912, 33308, 16934, 3419, 198, 21858, 62, 11250, 13, 48267, 62, 12294, 62, 8516, 796, 352, 198, 21858, 62, 11250, 13, 9806, 62, 14774, 62, 8344, 3669, 796, 838, 198, 21858, 62, 11250, 13, 10459, 62, 18982, 796, 1263, 22766, 13, 7416, 26227, 13, 7902, 53, 198, 19608, 292, 316, 62, 5420, 796, 5456, 13, 19608, 292, 316, 10786, 8071, 14269, 11537, 198, 198, 29113, 7804, 21017, 198, 4242, 21017, 30481, 290, 18247, 33220, 46424, 21017, 198, 198, 2, 33220, 1351, 284, 307, 9639, 198, 83, 2977, 62, 4868, 796, 37250, 83, 7278, 1264, 3256, 705, 83, 7278, 22567, 3256, 705, 83, 7278, 18638, 3256, 705, 83, 7278, 22745, 3256, 705, 83, 7278, 22136, 3256, 705, 83, 7278, 21895, 3256, 705, 83, 7278, 21777, 20520, 198, 198, 2, 3012, 48353, 8619, 2209, 11, 543, 4909, 477, 1366, 3696, 198, 14542, 62, 2860, 796, 705, 14542, 1378, 8071, 14269, 62, 7908, 70, 14, 7890, 62, 47, 1404, 35744, 62, 22289, 62, 7908, 62, 16541, 4182, 14, 6, 198, 198, 2, 12320, 262, 8893, 287, 262, 1351, 198, 1640, 3084, 287, 8893, 62, 4868, 25, 198, 220, 220, 220, 1303, 30481, 262, 3084, 198, 220, 220, 220, 2251, 62, 11487, 7, 16366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 312, 11639, 8071, 14269, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 312, 28, 11487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32815, 28, 1136, 35226, 7, 27054, 2611, 22784, 11487, 4008, 198, 220, 220, 220, 1303, 18247, 3696, 284, 262, 3084, 422, 402, 8697, 19236, 198, 220, 220, 220, 3084, 62, 5420, 796, 27039, 62, 5420, 13, 11487, 7, 11487, 8, 198, 220, 220, 220, 1693, 62, 11250, 13, 15952, 2611, 796, 651, 35226, 7, 27054, 2611, 22784, 11487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18247, 3696, 284, 262, 3084, 422, 402, 8697, 19236, 198, 220, 220, 220, 3084, 62, 5420, 796, 27039, 62, 5420, 13, 11487, 7, 11487, 8, 198, 220, 220, 220, 1693, 62, 11250, 13, 15952, 2611, 796, 651, 35226, 7, 27054, 2611, 22784, 11487, 8, 198, 220, 220, 220, 3440, 62, 21858, 796, 5456, 13, 2220, 62, 11487, 62, 6738, 62, 9900, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 333, 271, 28, 14542, 62, 2860, 10, 11487, 10, 6, 62, 24620, 34586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 10965, 28, 11487, 62, 5420, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1693, 62, 312, 28, 21858, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 312, 62, 40290, 11639, 75, 14542, 12, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 11250, 28, 21858, 62, 11250, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3440, 62, 21858, 13, 20274, 3419, 628 ]
2.942771
664
""" cclib (http://cclib.sf.net) is (c) 2006, the cclib development team and licensed under the LGPL (http://www.gnu.org/copyleft/lgpl.html). """ __revision__ = "$Revision: 737 $" from PyQuante.Molecule import Molecule def makepyquante(atomcoords, atomnos, charge=0, mult=1): """Create a PyQuante Molecule. >>> import numpy >>> from PyQuante.hartree_fock import hf >>> atomnos = numpy.array([1,8,1],"i") >>> a = numpy.array([[-1,1,0],[0,0,0],[1,1,0]],"f") >>> pyqmol = makepyquante(a,atomnos) >>> en,orbe,orbs = hf(pyqmol) >>> print int(en * 10) / 10. # Should be around -73.8 -73.8 """ return Molecule("notitle", zip(atomnos, atomcoords), units="Angstrom", charge=charge, multiplicity=mult) if __name__ == "__main__": import doctest doctest.testmod()
[ 37811, 198, 535, 8019, 357, 4023, 1378, 535, 8019, 13, 28202, 13, 3262, 8, 318, 357, 66, 8, 4793, 11, 262, 269, 565, 571, 2478, 1074, 198, 392, 11971, 739, 262, 17370, 6489, 357, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 22163, 2349, 701, 14, 75, 70, 489, 13, 6494, 737, 198, 37811, 198, 198, 834, 260, 10178, 834, 796, 17971, 18009, 1166, 25, 37517, 720, 1, 198, 198, 6738, 9485, 4507, 12427, 13, 44, 2305, 23172, 1330, 25726, 23172, 198, 198, 4299, 787, 9078, 421, 12427, 7, 37696, 1073, 3669, 11, 22037, 39369, 11, 3877, 28, 15, 11, 1963, 28, 16, 2599, 198, 220, 220, 220, 37227, 16447, 257, 9485, 4507, 12427, 25726, 23172, 13, 628, 220, 220, 220, 13163, 1330, 299, 32152, 198, 220, 220, 220, 13163, 422, 9485, 4507, 12427, 13, 18647, 631, 62, 69, 735, 1330, 289, 69, 198, 220, 220, 220, 13163, 22037, 39369, 796, 299, 32152, 13, 18747, 26933, 16, 11, 23, 11, 16, 17241, 72, 4943, 198, 220, 220, 220, 13163, 257, 796, 299, 32152, 13, 18747, 26933, 58, 12, 16, 11, 16, 11, 15, 38430, 15, 11, 15, 11, 15, 38430, 16, 11, 16, 11, 15, 11907, 553, 69, 4943, 198, 220, 220, 220, 13163, 12972, 80, 43132, 796, 787, 9078, 421, 12427, 7, 64, 11, 37696, 39369, 8, 198, 220, 220, 220, 13163, 551, 11, 273, 1350, 11, 273, 1443, 796, 289, 69, 7, 9078, 80, 43132, 8, 198, 220, 220, 220, 13163, 3601, 493, 7, 268, 1635, 838, 8, 1220, 838, 13, 1303, 10358, 307, 1088, 532, 4790, 13, 23, 198, 220, 220, 220, 532, 4790, 13, 23, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 25726, 23172, 7203, 1662, 2578, 1600, 19974, 7, 37696, 39369, 11, 22037, 1073, 3669, 828, 4991, 2625, 13450, 20282, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3877, 28, 10136, 11, 15082, 8467, 28, 16680, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 10412, 395, 198, 220, 220, 220, 10412, 395, 13, 9288, 4666, 3419, 198 ]
2.312849
358
""" https://www.twilio.com/ This link is the basis for the text messaging, make sure to sign up! After registering, press the home buton and click "Dashboard", both in the top left You will see the following lines "cellphone" -> Paste verified Twilio number as string "ACCOUNT SID" -> Paste that number into account as string "AUTH TOKEN" -> click show and paste that into token as string "PHONE NUMBER" -> Paste that into token as string Remember to verify your phone number """ from twilio.rest import Client cellphone = "" #Input the phone number you want to send texts too (the phone number verified by twilio) twilio_number = ""#Twilio provides a PHONE NUMBER, input it here account = ""#Input ACCOUNT SID token = ""#AUTH TOKEN, press show #Test message if calling alerts. Run Alerts.py to test the system is working if __name__ == "__main__": send_message("Test message. Did you receive it?")
[ 37811, 198, 5450, 1378, 2503, 13, 4246, 346, 952, 13, 785, 14, 198, 1212, 2792, 318, 262, 4308, 329, 262, 2420, 19925, 11, 787, 1654, 284, 1051, 510, 0, 198, 198, 3260, 28336, 11, 1803, 262, 1363, 475, 261, 290, 3904, 366, 43041, 3526, 1600, 1111, 287, 262, 1353, 1364, 198, 198, 1639, 481, 766, 262, 1708, 3951, 198, 1, 3846, 4862, 1, 4613, 23517, 19000, 1815, 346, 952, 1271, 355, 4731, 198, 1, 26861, 28270, 311, 2389, 1, 4613, 23517, 326, 1271, 656, 1848, 355, 4731, 198, 1, 32, 24318, 5390, 43959, 1, 4613, 3904, 905, 290, 17008, 326, 656, 11241, 355, 4731, 198, 1, 11909, 11651, 36871, 13246, 1, 4613, 23517, 326, 656, 11241, 355, 4731, 198, 198, 16676, 284, 11767, 534, 3072, 1271, 198, 37811, 198, 198, 6738, 665, 346, 952, 13, 2118, 1330, 20985, 198, 198, 3846, 4862, 796, 13538, 1303, 20560, 262, 3072, 1271, 345, 765, 284, 3758, 13399, 1165, 357, 1169, 3072, 1271, 19000, 416, 665, 346, 952, 8, 198, 198, 4246, 346, 952, 62, 17618, 796, 13538, 2, 5080, 346, 952, 3769, 257, 9370, 11651, 36871, 13246, 11, 5128, 340, 994, 198, 23317, 796, 13538, 2, 20560, 15859, 28270, 311, 2389, 198, 30001, 796, 13538, 2, 32, 24318, 5390, 43959, 11, 1803, 905, 628, 198, 2, 14402, 3275, 611, 4585, 21675, 13, 5660, 23276, 82, 13, 9078, 284, 1332, 262, 1080, 318, 1762, 198, 361, 11593, 3672, 834, 220, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3758, 62, 20500, 7203, 14402, 3275, 13, 7731, 345, 3328, 340, 1701, 8, 628 ]
3.511538
260
import time import inspect import numpy as np if __name__ == '__main__': test_timer()
[ 11748, 640, 198, 11748, 10104, 198, 11748, 299, 32152, 355, 45941, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 62, 45016, 3419 ]
2.935484
31
# pylint: skip-file import os import importlib.util got_cpu_lgb = False got_gpu_lgb = False from h2o4gpu.util.gpu import device_count _, ngpus_vis_global = device_count() enable_lightgbm_import = True if enable_lightgbm_import: lgb_loader = importlib.util.find_spec('lightgbm') lgb_found = lgb_loader is not None always_do_dynamic_lgb_selection = True # False will take existing lightgbm package if exists, True will always overwrite existing do_dynamic_lgb_selection = True link_method = False # False (default now) is to directly load from path if not lgb_found and do_dynamic_lgb_selection or always_do_dynamic_lgb_selection: numpy_loader = importlib.util.find_spec('numpy') found = numpy_loader is not None if found: numpy_path = os.path.dirname(numpy_loader.origin) dirname = "/".join(numpy_path.split("/")[:-1]) lgb_path_gpu = os.path.join(dirname, "lightgbm_gpu") lgb_path_cpu = os.path.join(dirname, "lightgbm_cpu") lgb_path_new = os.path.join(dirname, "lightgbm") got_lgb = False expt_gpu = "" expt_cpu = "" expt_other = "" # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. try: if ngpus_vis_global > 0: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_gpu, '__init__.py')) lgb = loader.load_module() print("Selected GPU version of lightgbm to import\n") got_lgb = True # This locally leads to lgb as if did import lightgbm as lgb, but also any other file that imports lgb will immediately return with lgb even though no module name "lightgbm" has a path in site-packages. got_gpu_lgb = True except Exception as e: expt_gpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_cpu, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_gpu) else: print("Selected CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_cpu = str(e) pass if not got_lgb: try: loader = importlib.machinery.SourceFileLoader('lightgbm', os.path.join(lgb_path_new, '__init__.py')) lgb = loader.load_module() if ngpus_vis_global > 0: print( "Selected non-dynamic CPU version of lightgbm to import (GPU selection failed due to %s)\n" % expt_other) else: print("Selected non-dynamic CPU version of lightgbm to import\n") got_lgb = True got_cpu_lgb = True except Exception as e: expt_other = str(e) pass if not got_lgb: print( "Unable to dynamically or non-dynamically import either GPU or CPU version of lightgbm: expt_gpu=%s expt_cpu=%s expt_other=%s\n" % ( expt_gpu, expt_cpu, expt_other)) else: print("Did not find lightgbm or numpy\n")
[ 2, 279, 2645, 600, 25, 14267, 12, 7753, 198, 198, 11748, 28686, 198, 11748, 1330, 8019, 13, 22602, 198, 198, 23442, 62, 36166, 62, 75, 22296, 796, 10352, 198, 23442, 62, 46999, 62, 75, 22296, 796, 10352, 198, 198, 6738, 289, 17, 78, 19, 46999, 13, 22602, 13, 46999, 1330, 3335, 62, 9127, 198, 198, 62, 11, 23370, 79, 385, 62, 4703, 62, 20541, 796, 3335, 62, 9127, 3419, 198, 21633, 62, 2971, 70, 20475, 62, 11748, 796, 6407, 198, 198, 361, 7139, 62, 2971, 70, 20475, 62, 11748, 25, 198, 220, 220, 220, 300, 22296, 62, 29356, 796, 1330, 8019, 13, 22602, 13, 19796, 62, 16684, 10786, 2971, 70, 20475, 11537, 198, 220, 220, 220, 300, 22296, 62, 9275, 796, 300, 22296, 62, 29356, 318, 407, 6045, 628, 220, 220, 220, 1464, 62, 4598, 62, 67, 28995, 62, 75, 22296, 62, 49283, 796, 6407, 220, 1303, 10352, 481, 1011, 4683, 1657, 70, 20475, 5301, 611, 7160, 11, 6407, 481, 1464, 49312, 4683, 198, 220, 220, 220, 466, 62, 67, 28995, 62, 75, 22296, 62, 49283, 796, 6407, 198, 220, 220, 220, 2792, 62, 24396, 796, 10352, 220, 1303, 10352, 357, 12286, 783, 8, 318, 284, 3264, 3440, 422, 3108, 628, 220, 220, 220, 611, 407, 300, 22296, 62, 9275, 290, 466, 62, 67, 28995, 62, 75, 22296, 62, 49283, 393, 1464, 62, 4598, 62, 67, 28995, 62, 75, 22296, 62, 49283, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 62, 29356, 796, 1330, 8019, 13, 22602, 13, 19796, 62, 16684, 10786, 77, 32152, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 299, 32152, 62, 29356, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 77, 32152, 62, 29356, 13, 47103, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 796, 12813, 1911, 22179, 7, 77, 32152, 62, 6978, 13, 35312, 7203, 14, 4943, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 22296, 62, 6978, 62, 46999, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 366, 2971, 70, 20475, 62, 46999, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 22296, 62, 6978, 62, 36166, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 366, 2971, 70, 20475, 62, 36166, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 22296, 62, 6978, 62, 3605, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 366, 2971, 70, 20475, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 75, 22296, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 46999, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 36166, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 847, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 15726, 5983, 284, 300, 22296, 355, 611, 750, 1330, 1657, 70, 20475, 355, 300, 22296, 11, 475, 635, 597, 584, 2393, 326, 17944, 300, 22296, 481, 3393, 1441, 351, 300, 22296, 772, 996, 645, 8265, 1438, 366, 2971, 70, 20475, 1, 468, 257, 3108, 287, 2524, 12, 43789, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23370, 79, 385, 62, 4703, 62, 20541, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40213, 796, 1330, 8019, 13, 76, 620, 15451, 13, 37226, 17401, 10786, 2971, 70, 20475, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 75, 22296, 62, 6978, 62, 46999, 11, 705, 834, 15003, 834, 13, 9078, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 22296, 796, 40213, 13, 2220, 62, 21412, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4653, 12609, 11362, 2196, 286, 1657, 70, 20475, 284, 1330, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 75, 22296, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 15726, 5983, 284, 300, 22296, 355, 611, 750, 1330, 1657, 70, 20475, 355, 300, 22296, 11, 475, 635, 597, 584, 2393, 326, 17944, 300, 22296, 481, 3393, 1441, 351, 300, 22296, 772, 996, 645, 8265, 1438, 366, 2971, 70, 20475, 1, 468, 257, 3108, 287, 2524, 12, 43789, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 46999, 62, 75, 22296, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 46999, 796, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1392, 62, 75, 22296, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40213, 796, 1330, 8019, 13, 76, 620, 15451, 13, 37226, 17401, 10786, 2971, 70, 20475, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 75, 22296, 62, 6978, 62, 36166, 11, 705, 834, 15003, 834, 13, 9078, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 22296, 796, 40213, 13, 2220, 62, 21412, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23370, 79, 385, 62, 4703, 62, 20541, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4653, 12609, 9135, 2196, 286, 1657, 70, 20475, 284, 1330, 357, 33346, 6356, 4054, 2233, 284, 4064, 82, 19415, 77, 1, 4064, 409, 457, 62, 46999, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4653, 12609, 9135, 2196, 286, 1657, 70, 20475, 284, 1330, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 75, 22296, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 36166, 62, 75, 22296, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 36166, 796, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1392, 62, 75, 22296, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40213, 796, 1330, 8019, 13, 76, 620, 15451, 13, 37226, 17401, 10786, 2971, 70, 20475, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 75, 22296, 62, 6978, 62, 3605, 11, 705, 834, 15003, 834, 13, 9078, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 22296, 796, 40213, 13, 2220, 62, 21412, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23370, 79, 385, 62, 4703, 62, 20541, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4653, 12609, 1729, 12, 67, 28995, 9135, 2196, 286, 1657, 70, 20475, 284, 1330, 357, 33346, 6356, 4054, 2233, 284, 4064, 82, 19415, 77, 1, 4064, 409, 457, 62, 847, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4653, 12609, 1729, 12, 67, 28995, 9135, 2196, 286, 1657, 70, 20475, 284, 1330, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 75, 22296, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1392, 62, 36166, 62, 75, 22296, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 847, 796, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1392, 62, 75, 22296, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3118, 540, 284, 32366, 393, 1729, 12, 67, 4989, 1146, 1330, 2035, 11362, 393, 9135, 2196, 286, 1657, 70, 20475, 25, 409, 457, 62, 46999, 28, 4, 82, 409, 457, 62, 36166, 28, 4, 82, 409, 457, 62, 847, 28, 4, 82, 59, 77, 1, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 457, 62, 46999, 11, 409, 457, 62, 36166, 11, 409, 457, 62, 847, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11633, 407, 1064, 1657, 70, 20475, 393, 299, 32152, 59, 77, 4943, 198 ]
1.867837
2,164
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to undelete a folder.""" import textwrap from googlecloudsdk.api_lib.resource_manager import folders from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.resource_manager import flags from googlecloudsdk.command_lib.resource_manager import folders_base from googlecloudsdk.core import log @base.Hidden @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Undelete(folders_base.FolderCommand): """Undelete a folder. Undeletes the folder with the given folder ID. This command can fail for the following reasons: * There is no folder with the given ID. * The active account does not have Owner or Editor permissions for the given folder. * When the folder to be undeleted has the same display name as an active folder under this folder's parent. """ detailed_help = { 'EXAMPLES': textwrap.dedent("""\ The following command undeletes the folder with the ID `3589215982`: $ {command} 3589215982 """), } @staticmethod
[ 2, 15069, 1584, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 21575, 284, 44192, 5807, 257, 9483, 526, 15931, 198, 198, 11748, 2420, 37150, 198, 198, 6738, 23645, 17721, 21282, 74, 13, 15042, 62, 8019, 13, 31092, 62, 37153, 1330, 24512, 198, 6738, 23645, 17721, 21282, 74, 13, 13345, 72, 3008, 1330, 2779, 198, 6738, 23645, 17721, 21282, 74, 13, 21812, 62, 8019, 13, 31092, 62, 37153, 1330, 9701, 198, 6738, 23645, 17721, 21282, 74, 13, 21812, 62, 8019, 13, 31092, 62, 37153, 1330, 24512, 62, 8692, 198, 6738, 23645, 17721, 21282, 74, 13, 7295, 1330, 2604, 628, 198, 31, 8692, 13, 41691, 198, 31, 8692, 13, 26362, 2898, 4595, 7, 8692, 13, 26362, 24802, 13, 1847, 47, 7801, 8, 198, 4871, 13794, 68, 5807, 7, 11379, 364, 62, 8692, 13, 41092, 21575, 2599, 198, 220, 37227, 31319, 68, 5807, 257, 9483, 13, 628, 220, 13794, 68, 40676, 262, 9483, 351, 262, 1813, 9483, 4522, 13, 628, 220, 770, 3141, 460, 2038, 329, 262, 1708, 3840, 25, 198, 220, 1635, 1318, 318, 645, 9483, 351, 262, 1813, 4522, 13, 198, 220, 1635, 383, 4075, 1848, 857, 407, 423, 23853, 393, 12058, 21627, 329, 262, 198, 220, 220, 220, 1813, 9483, 13, 198, 220, 1635, 1649, 262, 9483, 284, 307, 3318, 11129, 1513, 468, 262, 976, 3359, 1438, 355, 281, 4075, 198, 220, 220, 220, 9483, 739, 428, 9483, 338, 2560, 13, 198, 220, 37227, 198, 220, 6496, 62, 16794, 796, 1391, 198, 220, 220, 220, 220, 220, 705, 6369, 2390, 6489, 1546, 10354, 2420, 37150, 13, 9395, 298, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1708, 3141, 44192, 40676, 262, 9483, 351, 262, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 2327, 4531, 23349, 4089, 17, 63, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 1391, 21812, 92, 41761, 5892, 1314, 4089, 17, 198, 220, 220, 220, 13538, 12340, 198, 220, 1782, 628, 220, 2488, 12708, 24396, 198 ]
3.385744
477
#!/usr/bin/python3 import pytest from utils import ZERO_ADDRESS from brownie import accounts def test_ownership(Ebb): """Get Owner""" assert Ebb.getOwner() == accounts[0] with pytest.reverts(): # transferOwnership should revert Ebb.transferOwnership(ZERO_ADDRESS, {"from": accounts[0]}) Ebb.transferOwnership(accounts[1], {"from": accounts[0]}) assert Ebb.getOwner() == accounts[1]
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 12972, 9288, 198, 6738, 3384, 4487, 1330, 1168, 34812, 62, 2885, 7707, 7597, 198, 198, 6738, 7586, 494, 1330, 5504, 628, 198, 4299, 1332, 62, 15605, 1056, 7, 36, 11848, 2599, 198, 220, 220, 220, 37227, 3855, 23853, 37811, 198, 220, 220, 220, 6818, 412, 11848, 13, 1136, 42419, 3419, 6624, 5504, 58, 15, 60, 628, 220, 220, 220, 351, 12972, 9288, 13, 260, 24040, 33529, 220, 1303, 4351, 23858, 49437, 815, 34052, 198, 220, 220, 220, 220, 220, 220, 220, 412, 11848, 13, 39437, 23858, 49437, 7, 57, 34812, 62, 2885, 7707, 7597, 11, 19779, 6738, 1298, 5504, 58, 15, 60, 30072, 628, 220, 220, 220, 412, 11848, 13, 39437, 23858, 49437, 7, 23317, 82, 58, 16, 4357, 19779, 6738, 1298, 5504, 58, 15, 60, 30072, 198, 220, 220, 220, 6818, 412, 11848, 13, 1136, 42419, 3419, 6624, 5504, 58, 16, 60, 198 ]
2.690323
155
"""Automatic object property code generator.""" from gd.typing import Enum, Union from gd.api.enums import ( ColorChannelProperties, LevelDataEnum, LevelHeaderEnum, ObjectDataEnum, PlayerColor, ) from gd.api.parser import ( # type: ignore _INT, _BOOL, _FLOAT, _HSV, _ENUMS, _TEXT, _GROUPS, _COLOR_INT, _COLOR_BOOL, _COLOR_PLAYER, _COLOR_FLOAT, _COLOR_HSV, _HEADER_INT, _HEADER_BOOL, _HEADER_FLOAT, _HEADER_COLORS, _COLORS, _GUIDELINES, _HEADER_ENUMS, ) from gd.api.hsv import HSV __all__ = ("_template", "_create", "_object_code", "_color_code", "_header_code", "_level_code") _template = """ @property def {name}(self): \"\"\":class:`{cls}`: Property ({desc}).\"\"\" return self.data.get({enum!r}) @{name}.setter def {name}(self, value): self.data[{enum!r}] = value @{name}.deleter def {name}(self): try: del self.data[{enum!r}] except KeyError: pass """.strip() _container = "_container = {}" _object_code = _create(ObjectDataEnum, "object") _color_code = _create(ColorChannelProperties, "color") _header_code = _create(LevelHeaderEnum, "header") _level_code = _create(LevelDataEnum, "level")
[ 37811, 16541, 13730, 2134, 3119, 2438, 17301, 526, 15931, 198, 198, 6738, 308, 67, 13, 774, 13886, 1330, 2039, 388, 11, 4479, 198, 198, 6738, 308, 67, 13, 15042, 13, 268, 5700, 1330, 357, 198, 220, 220, 220, 5315, 29239, 2964, 18200, 11, 198, 220, 220, 220, 5684, 6601, 4834, 388, 11, 198, 220, 220, 220, 5684, 39681, 4834, 388, 11, 198, 220, 220, 220, 9515, 6601, 4834, 388, 11, 198, 220, 220, 220, 7853, 10258, 11, 198, 8, 198, 6738, 308, 67, 13, 15042, 13, 48610, 1330, 357, 220, 1303, 2099, 25, 8856, 198, 220, 220, 220, 4808, 12394, 11, 198, 220, 220, 220, 4808, 8202, 3535, 11, 198, 220, 220, 220, 4808, 3697, 46, 1404, 11, 198, 220, 220, 220, 4808, 7998, 53, 11, 198, 220, 220, 220, 4808, 1677, 52, 5653, 11, 198, 220, 220, 220, 4808, 32541, 11, 198, 220, 220, 220, 4808, 10761, 2606, 3705, 11, 198, 220, 220, 220, 4808, 46786, 62, 12394, 11, 198, 220, 220, 220, 4808, 46786, 62, 8202, 3535, 11, 198, 220, 220, 220, 4808, 46786, 62, 31519, 1137, 11, 198, 220, 220, 220, 4808, 46786, 62, 3697, 46, 1404, 11, 198, 220, 220, 220, 4808, 46786, 62, 7998, 53, 11, 198, 220, 220, 220, 4808, 37682, 1137, 62, 12394, 11, 198, 220, 220, 220, 4808, 37682, 1137, 62, 8202, 3535, 11, 198, 220, 220, 220, 4808, 37682, 1137, 62, 3697, 46, 1404, 11, 198, 220, 220, 220, 4808, 37682, 1137, 62, 25154, 20673, 11, 198, 220, 220, 220, 4808, 25154, 20673, 11, 198, 220, 220, 220, 4808, 38, 27586, 3698, 1268, 1546, 11, 198, 220, 220, 220, 4808, 37682, 1137, 62, 1677, 52, 5653, 11, 198, 8, 198, 6738, 308, 67, 13, 15042, 13, 11994, 85, 1330, 18070, 53, 198, 198, 834, 439, 834, 796, 5855, 62, 28243, 1600, 45434, 17953, 1600, 45434, 15252, 62, 8189, 1600, 45434, 8043, 62, 8189, 1600, 45434, 25677, 62, 8189, 1600, 45434, 5715, 62, 8189, 4943, 198, 198, 62, 28243, 796, 37227, 198, 31, 26745, 198, 4299, 1391, 3672, 92, 7, 944, 2599, 198, 220, 220, 220, 19990, 7879, 30478, 4871, 25, 63, 90, 565, 82, 92, 63, 25, 14161, 37913, 20147, 92, 737, 7879, 7879, 7879, 198, 220, 220, 220, 1441, 2116, 13, 7890, 13, 1136, 15090, 44709, 0, 81, 30072, 198, 31, 90, 3672, 27422, 2617, 353, 198, 4299, 1391, 3672, 92, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 2116, 13, 7890, 58, 90, 44709, 0, 81, 92, 60, 796, 1988, 198, 31, 90, 3672, 27422, 2934, 293, 353, 198, 4299, 1391, 3672, 92, 7, 944, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13, 7890, 58, 90, 44709, 0, 81, 92, 60, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 15931, 1911, 36311, 3419, 198, 198, 62, 34924, 796, 45434, 34924, 796, 23884, 1, 628, 628, 198, 62, 15252, 62, 8189, 796, 4808, 17953, 7, 10267, 6601, 4834, 388, 11, 366, 15252, 4943, 198, 62, 8043, 62, 8189, 796, 4808, 17953, 7, 10258, 29239, 2964, 18200, 11, 366, 8043, 4943, 198, 62, 25677, 62, 8189, 796, 4808, 17953, 7, 4971, 39681, 4834, 388, 11, 366, 25677, 4943, 198, 62, 5715, 62, 8189, 796, 4808, 17953, 7, 4971, 6601, 4834, 388, 11, 366, 5715, 4943, 198 ]
2.22482
556
from picturate.config import CAttnGANConfig from picturate.nets import CAttnGAN config = CAttnGANConfig('bird') gan = CAttnGAN(config, pretrained=True) caption = "This little bird is blue with short beak and white underbelly" filename = 'bird' gan.generate_image(caption, filename)
[ 6738, 2862, 15537, 13, 11250, 1330, 7257, 926, 77, 45028, 16934, 198, 6738, 2862, 15537, 13, 45938, 1330, 7257, 926, 77, 45028, 198, 198, 11250, 796, 7257, 926, 77, 45028, 16934, 10786, 16944, 11537, 198, 198, 1030, 796, 7257, 926, 77, 45028, 7, 11250, 11, 2181, 13363, 28, 17821, 8, 198, 198, 6888, 1159, 796, 366, 1212, 1310, 6512, 318, 4171, 351, 1790, 307, 461, 290, 2330, 739, 65, 6148, 1, 198, 34345, 796, 705, 16944, 6, 198, 1030, 13, 8612, 378, 62, 9060, 7, 6888, 1159, 11, 29472, 8, 628 ]
3.142857
91
import pytest import numpy as np from syndata.core import ClusterData from syndata.maxmin import MaxMinClusters, MaxMinCov, MaxMinBal, maxmin_sampler # Test Cases for maxmin_sampler def test_maxmin_sampler(): """ Make sure the sampling mechanism doesn't break when wrong inputs are supplied. """ # Test cases throwing exceptions args_causing_exception = [ # negative vals {'n_samples': 10, 'ref': -2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': -1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': -1.5}, # zeros vals {'n_samples': 0, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 0, 'min_val': 1, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 0, 'maxmin_ratio': 1.5}, {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0}, # ref < min {'n_samples': 10, 'ref': 1, 'min_val': 2, 'maxmin_ratio': 1.5}, # ref > max {'n_samples': 10, 'ref': 10, 'min_val': 1, 'maxmin_ratio': 1.5}, # maxmin_ratio < 1 {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 0.7}, # maxmin_ratio = 1, ref != min_val {'n_samples': 10, 'ref': 2, 'min_val': 1, 'maxmin_ratio': 1}, ] with pytest.raises(ValueError): for args in args_causing_exception: args['f_constrain'] = lambda x: 2*args['ref'] - x maxmin_sampler(**args) # Test cases with appropriate inputs (randomized) args_appropriate_input = [] max_ref_val = 10; max_min_val = 10 for i in range(100): min_val = np.random.default_rng(seed=i).uniform(0,max_min_val) ref = np.random.uniform(min_val, max_ref_val) maxmin_ratio = np.random.uniform(ref/min_val, 10*(ref/min_val)) args_appropriate_input.append( { # Do the first 10 tests on the edge case n_samples=1 'n_samples': np.random.choice(np.arange(2,15)) if i>10 else 1, 'min_val': min_val, 'ref': ref, 'maxmin_ratio': maxmin_ratio, } ) print('making the args', 'ref', ref, 'min_val', min_val, 'max_val', min_val*maxmin_ratio) # Add test case with large sample size args_appropriate_input.append({'n_samples': 10000, 'ref': 2, \ 'min_val': 1, 'maxmin_ratio': 3}) for args in args_appropriate_input: args['f_constrain'] = lambda x: 2*args['ref'] - x out = maxmin_sampler(**args) print(out) assert check_maxmin_sampler_output(out, args['f_constrain']) def check_maxmin_sampler_output(sampled_vals, f_constrain): """ Check that output satisfies lower and upper bounds. Check min, max values are related through the constraint. Check that output is sorted. """ return is_sorted(sampled_vals, order='ascending') \ and (f_constrain(np.max(sampled_vals) == np.min(sampled_vals))) \ and (f_constrain(np.min(sampled_vals) == np.max(sampled_vals))) def is_sorted(vals, order='ascending'): """ Check if values are sorted. """ if order=='ascending': return np.all(vals[1:] - vals[:-1] >= 0) elif order=='descending': return np.all(vals[1:] - vals[:-1] <= 0) # Test Cases for MaxMinCov def test_init_maxmincov(): """ Make sure that no illicit values can be used to construct MaxMinCov. """ # appropriate values of attributes interior_cases = np.random.uniform(1,10,size=(100,3)) # random appropriate values edge_cases = np.concatenate([2-np.eye(3),np.ones(3)[np.newaxis,:]],axis=0) # edge and corner cases Z_appropriate = np.concatenate([interior_cases,edge_cases],axis=0) args_appropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_appropriate] for args in args_appropriate: my_maxmincov = MaxMinCov(**args) for attr in ['ref_aspect','aspect_maxmin','radius_maxmin']: assert hasattr(my_maxmincov, attr) # inappropriate values of attributes Z_inappropriate = np.concatenate([np.ones(3) - 0.5*np.eye(3), (1-0.01)*np.ones(3)[np.newaxis,:]]) args_inappropriate = [{'ref_aspect': z[0], 'aspect_maxmin': z[1], 'radius_maxmin': z[2]} for z in Z_inappropriate] with pytest.raises(ValueError): for args in args_inappropriate: MaxMinCov(**args) @pytest.fixture() def setup_maxmincov(): """ Initialize a valid MaxMinCov instance to test its methods. """ maxmincov = MaxMinCov(ref_aspect=1.5, aspect_maxmin=1.5, radius_maxmin=1.5) yield maxmincov def test_make_cluster_aspects(setup_maxmincov): """ Make sure that valid cluster aspect ratios are sampled. Test the range of acceptable numbers of clusters, and make sure setting a seed works. """ maxmincov = setup_maxmincov with pytest.raises(ValueError): maxmincov.make_cluster_aspects(0,seed=None) maxmincov.make_cluster_aspects(0.99,seed=None) # test different numbers of clusters for n_clusters in range(1,100): cluster_aspects = maxmincov.make_cluster_aspects(n_clusters,seed=None) assert np.all(cluster_aspects >= 1) assert np.max(cluster_aspects) >= maxmincov.ref_aspect assert np.min(cluster_aspects) <= maxmincov.ref_aspect # test seed seed = 23 for i in range(10): cluster_aspects_new = maxmincov.make_cluster_aspects(2,seed=23) # make sure that each successive output is the same as the previous output if i >= 1: assert np.all(cluster_aspects_new == cluster_aspects_prev) cluster_aspects_prev = cluster_aspects_new def test_make_cluster_radii(setup_maxmincov): """ Make sure valid cluster radii are sampled. Test the range of acceptable inputs, and make sure setting a seed works. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(1,20+1)[:,np.newaxis], np.random.uniform(0,10,size=20)[:,np.newaxis], np.random.choice(np.arange(2,100),size=20)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,1e-3,2], [1,1e-3,1],[2,100,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_clusters': z[0], 'ref_radius': z[1], 'n_dim': z[2]} for z in Z_appropriate] for args in args_appropriate: tol = 1e-12 print(args) cluster_radii = maxmincov.make_cluster_radii(**args) print(cluster_radii) assert np.all(cluster_radii > 0) assert (np.min(cluster_radii) <= args['ref_radius'] + tol) and \ (np.max(cluster_radii) >= args['ref_radius'] - tol) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_cluster_radii(n_clusters=0, ref_radius=1, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=0, n_dim=10) maxmincov.make_cluster_radii(n_clusters=1, ref_radius=1, n_dim=0) # test seeds seed = 717 for i in range(10): cluster_radii_new = maxmincov.make_cluster_radii(n_clusters=5,ref_radius=4,n_dim=25, seed=seed) if (i >= 1): assert np.all(cluster_radii_new == cluster_radii_prev) cluster_radii_prev = cluster_radii_new def test_make_axis_sd(setup_maxmincov): """ Make sure valid standard deviations are sampled (>0). Ensure sure ref_sd is between min and max, and that the maxmin ratio equals the desired aspect ratio. """ maxmincov = setup_maxmincov # test appropriate inputs interior_cases = np.concatenate([np.arange(2,50+2)[:,np.newaxis], np.random.uniform(0,10,size=50)[:,np.newaxis], np.random.uniform(1,10,size=50)[:,np.newaxis]], axis=1) edge_cases = np.array([[1,0.5,1.5], [1,0.5,1], [2,0.1,1]]) Z_appropriate = np.concatenate([interior_cases, edge_cases],axis=0) args_appropriate = [{'n_axes': z[0], 'sd': z[1], 'aspect': z[2]} for z in Z_appropriate] for args in args_appropriate: out = maxmincov.make_axis_sd(**args) assert (np.min(out) <= args['sd']) and (np.max(out) >= args['sd']) # test inappropriate inputs with pytest.raises(ValueError): maxmincov.make_axis_sd(n_axes=0, sd=1, aspect=2) maxmincov.make_axis_sd(n_axes=0.5, sd=0, aspect=2) maxmincov.make_axis_sd(n_axes=1, sd=1, aspect=0.5) maxmincov.make_axis_sd(n_axes=2, sd=1, aspect=-2) maxmincov.make_axis_sd(n_axes=2, sd=-1, aspect=2) # test seed seed = 123 for i in range(10): axis_sd_new = maxmincov.make_axis_sd(n_axes=5,sd=4,aspect=25, seed=seed) if (i >= 1): assert np.all(axis_sd_new == axis_sd_prev) axis_sd_prev = axis_sd_new def test_make_cov(setup_maxmincov, setup_clusterdata): """ Make sure axes are orthogonal Make sure cov = axis * sd**2 * axis', similar for cov_inv """ clusterdata = setup_clusterdata maxmincov = setup_maxmincov # ensure output makes mathematical sense for i in range(10): (axis, sd, cov, cov_inv) = maxmincov.make_cov(clusterdata) for cluster_idx in range(clusterdata.n_clusters): # test orthogonality of cluster axes assert np.all(np.allclose(axis[cluster_idx] @ np.transpose(axis[cluster_idx]), np.eye(axis[cluster_idx].shape[0]))) # test covariance matrix is correct assert np.all(np.allclose(cov[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**2) \ @ axis[cluster_idx])) # test inverse covariance matrix is correct assert np.all(np.allclose(cov_inv[cluster_idx], np.transpose(axis[cluster_idx]) @ np.diag(sd[cluster_idx]**(-2)) \ @ axis[cluster_idx])) # test seed seed = 123 for i in range(10): cov_structure_new = maxmincov.make_cov(clusterdata, seed=seed) if (i >= 1): for cluster_idx in range(clusterdata.n_clusters): for j in range(4): # iterate through axis, sd, cov, cov_inv assert np.all(np.allclose(cov_structure_prev[j][cluster_idx], cov_structure_new[j][cluster_idx])) # set previous covariance structure for next iteration: cov_structure_prev = cov_structure_new # Test Cases for MaxMinBal @pytest.fixture(params = np.linspace(1,10,10)) def test_init_maxminbal(setup_maxminbal): """ Ensure imbalance ratio is properly specified. """ maxminbal = setup_maxminbal assert maxminbal.imbal_ratio >= 1 # test input check for inappropriate arguments with pytest.raises(ValueError): MaxMinBal(imbal_ratio = 0.5) MaxMinBal(imbal_ratio = -2) def test_make_class_sizes(setup_maxminbal,setup_clusterdata): """ """ maxminbal = setup_maxminbal clusterdata = setup_clusterdata # test with appropriate input Z_appropriate = [[500,5],[200,1],[100,2],[1000,10],[1500,3], [100,100]] args_appropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_appropriate] for args in args_appropriate: clusterdata.n_samples = args['n_samples'] clusterdata.n_clusters = args['n_clusters'] out = maxminbal.make_class_sizes(clusterdata) assert np.issubdtype(out.dtype, np.integer) and np.all(out >= 1) and \ (np.sum(out) == args['n_samples']) # test with inappropriate input Z_inappropriate = [[500,0],[0,10],[100,-1],[-0.5,5],[10,11]] args_inappropriate = [{'n_samples': z[0], 'n_clusters': z[1]} for z in Z_inappropriate] for args in args_inappropriate: with pytest.raises(ValueError): clusterdata.n_clusters = args['n_clusters'] clusterdata.n_samples = args['n_samples'] maxminbal.make_class_sizes(clusterdata) def test_float_to_int(setup_maxminbal): """ float_class_sz, n_samples """ maxminbal = setup_maxminbal # test appropriate inputs for float_class_sz, n_samples in [(np.array([23.2, 254.7, 0.1, 35.6]), 100), \ (np.array([0.2, 0.7, 0.1, 0.5]), 10), (np.array([2.5,1.5,5.2]), 3), (np.array([0.5]), 1)]: out = maxminbal.float_to_int(float_class_sz,n_samples) print(len(float_class_sz), float_class_sz, n_samples) assert (np.sum(out) == n_samples) and (np.all(out >= 1)) \ and np.issubdtype(out.dtype,np.integer) # test inputs that should be left unchanged assert np.all(maxminbal.float_to_int(np.array([5,10,25,7]), 5+10+25+7) \ == np.sort(np.array([5,10,25,7]))) # test inappropriate inputs for float_class_sz, n_samples in [(np.array([0.5,1.5]), 1), (np.array([0.5,1.5]), 0), (np.array([2.5,1.5,5.2]), 2)]: with pytest.raises(ValueError): maxminbal.float_to_int(float_class_sz,n_samples) # Test Cases for MaxMinClusters def test_init_maxminclusters(): """ Make sure to throw an error when inappropriate arguments are given. """ # edge and interior test cases for n_clusters, n_samples, n_dim MaxMinClusters(n_clusters=1,n_samples=1,n_dim=1) MaxMinClusters(n_clusters=1,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=100,n_dim=2) MaxMinClusters(n_clusters=10,n_samples=200,n_dim=5) # edge and interior test cases for testing maxmin ratios MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1,radius_maxmin=1, aspect_ref=1) MaxMinClusters(imbal_maxmin=1,aspect_maxmin=1.1,radius_maxmin=1.1,aspect_ref=1.5) MaxMinClusters(imbal_maxmin=1.2,aspect_maxmin=1,radius_maxmin=1.5,aspect_ref=7) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=1,aspect_ref=5) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=1) MaxMinClusters(imbal_maxmin=3,aspect_maxmin=2,radius_maxmin=5,aspect_ref=4) # edge and interior test cases for overlap MaxMinClusters(alpha_max=0.5, alpha_min=0.01) MaxMinClusters(alpha_max=0.05, alpha_min=0) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) # testing the distributions MaxMinClusters(dist='exp') MaxMinClusters(dist='gaussian') MaxMinClusters(dist='t') # testing packing and scale MaxMinClusters(packing=0.5) MaxMinClusters(packing=0.01) MaxMinClusters(packing=0.99) MaxMinClusters(scale=0.01) MaxMinClusters(scale=0.05) MaxMinClusters(scale=5) MaxMinClusters(scale=10) with pytest.raises(ValueError): # must have n_dim, n_clusters, n_samples >= 1 # and n_clusters <= n_samples MaxMinClusters(n_clusters=10,n_samples=100,n_dim=0) MaxMinClusters(n_clusters=10,n_samples=9,n_dim=10) MaxMinClusters(n_clusters=0,n_samples=100,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) MaxMinClusters(n_clusters=2,n_samples=1,n_dim=10) # maxmin_ratios must be >= 1 MaxMinClusters(imbal_maxmin=0.98) MaxMinClusters(imbal_maxmin=-1.1) MaxMinClusters(aspect_maxmin=0.35) MaxMinClusters(aspect_maxmin=-1.5) MaxMinClusters(radius_maxmin=0.21) MaxMinClusters(radius_maxmin=-1) MaxMinClusters(aspect_ref=0.99) MaxMinClusters(aspect_ref=-2) # must have alpha_max > 0, alpha_min >= 0, alpha_max > alpha_min MaxMinClusters(alpha_max=0, alpha_min=0) MaxMinClusters(alpha_max=0.05, alpha_min=0.1) MaxMinClusters(alpha_max=0.1, alpha_min=0.0001) MaxMinClusters(alpha_max=0.025, alpha_min=-1.0) MaxMinClusters(alpha_max=-0.5, alpha_min=0.05) # packing must be strictly between 0 and 1, scale must be >0 MaxMinClusters(packing=0) MaxMinClusters(packing=1) MaxMinClusters(scale=0) MaxMinClusters(scale=-0.5) # currently only support dist in {'gaussian','exp','t'} MaxMinClusters(dist='foo') MaxMinClusters(dist='bar')
[ 11748, 12972, 9288, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11150, 1045, 13, 7295, 1330, 38279, 6601, 198, 6738, 11150, 1045, 13, 9806, 1084, 1330, 5436, 9452, 2601, 13654, 11, 5436, 9452, 34, 709, 11, 5436, 9452, 24597, 11, 3509, 1084, 62, 37687, 20053, 198, 198, 2, 6208, 35536, 329, 3509, 1084, 62, 37687, 20053, 198, 198, 4299, 1332, 62, 9806, 1084, 62, 37687, 20053, 33529, 198, 197, 37811, 198, 197, 12050, 1654, 262, 19232, 9030, 1595, 470, 2270, 618, 2642, 17311, 198, 197, 533, 14275, 13, 198, 197, 37811, 628, 197, 2, 6208, 2663, 9644, 13269, 198, 197, 22046, 62, 6888, 3500, 62, 1069, 4516, 796, 685, 1303, 4633, 410, 874, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 532, 17, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 532, 16, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 532, 16, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 220, 1303, 1976, 27498, 410, 874, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 657, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 657, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 657, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 657, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 220, 1303, 1006, 1279, 949, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 352, 11, 705, 1084, 62, 2100, 10354, 362, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 220, 1303, 1006, 1875, 3509, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 838, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 13, 20, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 220, 1303, 3509, 1084, 62, 10366, 952, 1279, 352, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 657, 13, 22, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 220, 220, 1303, 3509, 1084, 62, 10366, 952, 796, 352, 11, 1006, 14512, 949, 62, 2100, 198, 197, 197, 197, 197, 197, 197, 197, 220, 1391, 6, 77, 62, 82, 12629, 10354, 838, 11, 705, 5420, 10354, 362, 11, 705, 1084, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 352, 5512, 198, 197, 197, 197, 197, 197, 197, 197, 2361, 628, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 1640, 26498, 287, 26498, 62, 6888, 3500, 62, 1069, 4516, 25, 198, 197, 197, 197, 22046, 17816, 69, 62, 1102, 2536, 391, 20520, 796, 37456, 2124, 25, 362, 9, 22046, 17816, 5420, 20520, 532, 2124, 198, 197, 197, 197, 9806, 1084, 62, 37687, 20053, 7, 1174, 22046, 8, 628, 198, 197, 2, 6208, 2663, 351, 5035, 17311, 357, 25120, 1143, 8, 198, 197, 22046, 62, 13335, 62, 15414, 796, 17635, 198, 197, 9806, 62, 5420, 62, 2100, 796, 838, 26, 3509, 62, 1084, 62, 2100, 796, 838, 628, 197, 1640, 1312, 287, 2837, 7, 3064, 2599, 198, 197, 197, 1084, 62, 2100, 796, 45941, 13, 25120, 13, 12286, 62, 81, 782, 7, 28826, 28, 72, 737, 403, 6933, 7, 15, 11, 9806, 62, 1084, 62, 2100, 8, 198, 197, 197, 5420, 796, 45941, 13, 25120, 13, 403, 6933, 7, 1084, 62, 2100, 11, 3509, 62, 5420, 62, 2100, 8, 198, 197, 197, 9806, 1084, 62, 10366, 952, 796, 45941, 13, 25120, 13, 403, 6933, 7, 5420, 14, 1084, 62, 2100, 11, 838, 9, 7, 5420, 14, 1084, 62, 2100, 4008, 198, 197, 197, 22046, 62, 13335, 62, 15414, 13, 33295, 7, 198, 197, 197, 197, 90, 198, 197, 197, 197, 2, 2141, 262, 717, 838, 5254, 319, 262, 5743, 1339, 299, 62, 82, 12629, 28, 16, 198, 197, 197, 197, 6, 77, 62, 82, 12629, 10354, 45941, 13, 25120, 13, 25541, 7, 37659, 13, 283, 858, 7, 17, 11, 1314, 4008, 611, 1312, 29, 940, 2073, 352, 11, 198, 197, 197, 197, 1101, 259, 62, 2100, 10354, 949, 62, 2100, 11, 198, 197, 197, 197, 821, 69, 10354, 1006, 11, 198, 197, 197, 197, 1101, 897, 1084, 62, 10366, 952, 10354, 3509, 1084, 62, 10366, 952, 11, 198, 197, 197, 197, 92, 198, 197, 197, 197, 8, 628, 197, 197, 4798, 10786, 8601, 262, 26498, 3256, 705, 5420, 3256, 1006, 11, 705, 1084, 62, 2100, 3256, 949, 62, 2100, 11, 705, 9806, 62, 2100, 3256, 949, 62, 2100, 9, 9806, 1084, 62, 10366, 952, 8, 628, 197, 2, 3060, 1332, 1339, 351, 1588, 6291, 2546, 198, 197, 22046, 62, 13335, 62, 15414, 13, 33295, 15090, 6, 77, 62, 82, 12629, 10354, 33028, 11, 705, 5420, 10354, 362, 11, 3467, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 1101, 259, 62, 2100, 10354, 352, 11, 705, 9806, 1084, 62, 10366, 952, 10354, 513, 30072, 628, 197, 1640, 26498, 287, 26498, 62, 13335, 62, 15414, 25, 198, 197, 197, 22046, 17816, 69, 62, 1102, 2536, 391, 20520, 796, 37456, 2124, 25, 362, 9, 22046, 17816, 5420, 20520, 532, 2124, 198, 197, 197, 448, 796, 3509, 1084, 62, 37687, 20053, 7, 1174, 22046, 8, 198, 197, 197, 4798, 7, 448, 8, 198, 197, 197, 30493, 2198, 62, 9806, 1084, 62, 37687, 20053, 62, 22915, 7, 448, 11, 220, 198, 197, 197, 197, 197, 22046, 17816, 69, 62, 1102, 2536, 391, 6, 12962, 628, 198, 4299, 2198, 62, 9806, 1084, 62, 37687, 20053, 62, 22915, 7, 37687, 10137, 62, 12786, 11, 277, 62, 1102, 2536, 391, 2599, 198, 197, 37811, 198, 197, 9787, 326, 5072, 45104, 2793, 290, 6727, 22303, 13, 198, 197, 9787, 949, 11, 3509, 3815, 389, 3519, 832, 262, 32315, 13, 198, 197, 9787, 326, 5072, 318, 23243, 13, 198, 197, 37811, 628, 197, 7783, 318, 62, 82, 9741, 7, 37687, 10137, 62, 12786, 11, 1502, 11639, 3372, 1571, 11537, 3467, 198, 197, 197, 392, 357, 69, 62, 1102, 2536, 391, 7, 37659, 13, 9806, 7, 37687, 10137, 62, 12786, 8, 6624, 45941, 13, 1084, 7, 37687, 10137, 62, 12786, 22305, 3467, 198, 197, 197, 392, 357, 69, 62, 1102, 2536, 391, 7, 37659, 13, 1084, 7, 37687, 10137, 62, 12786, 8, 6624, 45941, 13, 9806, 7, 37687, 10137, 62, 12786, 22305, 628, 198, 4299, 318, 62, 82, 9741, 7, 12786, 11, 1502, 11639, 3372, 1571, 6, 2599, 198, 197, 37811, 198, 197, 9787, 611, 3815, 389, 23243, 13, 198, 197, 37811, 198, 197, 361, 1502, 855, 6, 3372, 1571, 10354, 198, 197, 197, 7783, 45941, 13, 439, 7, 12786, 58, 16, 47715, 532, 410, 874, 58, 21912, 16, 60, 18189, 657, 8, 198, 197, 417, 361, 1502, 855, 6, 20147, 1571, 10354, 198, 197, 197, 7783, 45941, 13, 439, 7, 12786, 58, 16, 47715, 532, 410, 874, 58, 21912, 16, 60, 19841, 657, 8, 628, 198, 2, 6208, 35536, 329, 5436, 9452, 34, 709, 198, 198, 4299, 1332, 62, 15003, 62, 9806, 1084, 66, 709, 33529, 198, 197, 37811, 198, 197, 12050, 1654, 326, 645, 24271, 3815, 460, 307, 973, 284, 5678, 5436, 9452, 34, 709, 13, 198, 197, 37811, 628, 197, 2, 5035, 3815, 286, 12608, 198, 197, 3849, 1504, 62, 33964, 796, 45941, 13, 25120, 13, 403, 6933, 7, 16, 11, 940, 11, 7857, 16193, 3064, 11, 18, 4008, 1303, 4738, 5035, 3815, 198, 197, 14907, 62, 33964, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 17, 12, 37659, 13, 25379, 7, 18, 828, 37659, 13, 1952, 7, 18, 38381, 37659, 13, 3605, 22704, 11, 47715, 4357, 22704, 28, 15, 8, 1303, 5743, 290, 5228, 2663, 198, 197, 57, 62, 13335, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 3849, 1504, 62, 33964, 11, 14907, 62, 33964, 4357, 22704, 28, 15, 8, 198, 197, 22046, 62, 13335, 796, 685, 90, 6, 5420, 62, 292, 806, 10354, 1976, 58, 15, 4357, 705, 292, 806, 62, 9806, 1084, 10354, 1976, 58, 16, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 6, 42172, 62, 9806, 1084, 10354, 1976, 58, 17, 48999, 329, 1976, 287, 1168, 62, 13335, 60, 198, 197, 1640, 26498, 287, 26498, 62, 13335, 25, 198, 197, 197, 1820, 62, 9806, 1084, 66, 709, 796, 5436, 9452, 34, 709, 7, 1174, 22046, 8, 198, 197, 197, 1640, 708, 81, 287, 37250, 5420, 62, 292, 806, 41707, 292, 806, 62, 9806, 1084, 41707, 42172, 62, 9806, 1084, 6, 5974, 198, 197, 197, 197, 30493, 468, 35226, 7, 1820, 62, 9806, 1084, 66, 709, 11, 708, 81, 8, 628, 197, 2, 15679, 3815, 286, 12608, 198, 197, 57, 62, 259, 13335, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 37659, 13, 1952, 7, 18, 8, 532, 657, 13, 20, 9, 37659, 13, 25379, 7, 18, 828, 357, 16, 12, 15, 13, 486, 27493, 37659, 13, 1952, 7, 18, 38381, 37659, 13, 3605, 22704, 11, 25, 11907, 8, 198, 197, 22046, 62, 259, 13335, 796, 685, 90, 6, 5420, 62, 292, 806, 10354, 1976, 58, 15, 4357, 705, 292, 806, 62, 9806, 1084, 10354, 1976, 58, 16, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 6, 42172, 62, 9806, 1084, 10354, 1976, 58, 17, 48999, 329, 1976, 287, 1168, 62, 259, 13335, 60, 198, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 1640, 26498, 287, 26498, 62, 259, 13335, 25, 198, 197, 197, 197, 11518, 9452, 34, 709, 7, 1174, 22046, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 198, 4299, 9058, 62, 9806, 1084, 66, 709, 33529, 198, 197, 37811, 198, 197, 24243, 1096, 257, 4938, 5436, 9452, 34, 709, 4554, 284, 1332, 663, 5050, 13, 198, 197, 37811, 198, 197, 9806, 1084, 66, 709, 796, 5436, 9452, 34, 709, 7, 5420, 62, 292, 806, 28, 16, 13, 20, 11, 198, 197, 197, 197, 197, 197, 197, 220, 4843, 62, 9806, 1084, 28, 16, 13, 20, 11, 198, 197, 197, 197, 197, 197, 197, 220, 16874, 62, 9806, 1084, 28, 16, 13, 20, 8, 198, 197, 88, 1164, 3509, 1084, 66, 709, 628, 198, 4299, 1332, 62, 15883, 62, 565, 5819, 62, 292, 38046, 7, 40406, 62, 9806, 1084, 66, 709, 2599, 198, 197, 37811, 198, 197, 12050, 1654, 326, 4938, 13946, 4843, 22423, 389, 35846, 13, 628, 197, 14402, 262, 2837, 286, 10909, 3146, 286, 23163, 11, 290, 198, 197, 15883, 1654, 4634, 257, 9403, 2499, 13, 198, 197, 37811, 198, 197, 9806, 1084, 66, 709, 796, 9058, 62, 9806, 1084, 66, 709, 628, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 292, 38046, 7, 15, 11, 28826, 28, 14202, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 292, 38046, 7, 15, 13, 2079, 11, 28826, 28, 14202, 8, 628, 197, 2, 1332, 1180, 3146, 286, 23163, 198, 197, 1640, 299, 62, 565, 13654, 287, 2837, 7, 16, 11, 3064, 2599, 198, 197, 197, 565, 5819, 62, 292, 38046, 796, 3509, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 292, 38046, 7, 77, 62, 565, 13654, 11, 28826, 28, 14202, 8, 198, 197, 197, 30493, 45941, 13, 439, 7, 565, 5819, 62, 292, 38046, 18189, 352, 8, 198, 197, 197, 30493, 45941, 13, 9806, 7, 565, 5819, 62, 292, 38046, 8, 18189, 3509, 1084, 66, 709, 13, 5420, 62, 292, 806, 198, 197, 197, 30493, 45941, 13, 1084, 7, 565, 5819, 62, 292, 38046, 8, 19841, 3509, 1084, 66, 709, 13, 5420, 62, 292, 806, 628, 197, 2, 1332, 9403, 198, 197, 28826, 796, 2242, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 197, 197, 565, 5819, 62, 292, 38046, 62, 3605, 796, 3509, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 292, 38046, 7, 17, 11, 28826, 28, 1954, 8, 198, 197, 197, 2, 787, 1654, 326, 1123, 25175, 5072, 318, 262, 976, 355, 262, 2180, 5072, 198, 197, 197, 361, 1312, 18189, 352, 25, 198, 197, 197, 197, 30493, 45941, 13, 439, 7, 565, 5819, 62, 292, 38046, 62, 3605, 6624, 13946, 62, 292, 38046, 62, 47050, 8, 198, 197, 197, 565, 5819, 62, 292, 38046, 62, 47050, 796, 13946, 62, 292, 38046, 62, 3605, 628, 198, 4299, 1332, 62, 15883, 62, 565, 5819, 62, 6335, 4178, 7, 40406, 62, 9806, 1084, 66, 709, 2599, 198, 197, 37811, 198, 197, 12050, 1654, 4938, 13946, 2511, 4178, 389, 35846, 13, 628, 197, 14402, 262, 2837, 286, 10909, 17311, 11, 290, 787, 1654, 4634, 257, 9403, 2499, 13, 198, 197, 37811, 198, 197, 9806, 1084, 66, 709, 796, 9058, 62, 9806, 1084, 66, 709, 628, 197, 2, 1332, 5035, 17311, 198, 197, 3849, 1504, 62, 33964, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 37659, 13, 283, 858, 7, 16, 11, 1238, 10, 16, 38381, 45299, 37659, 13, 3605, 22704, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 45941, 13, 25120, 13, 403, 6933, 7, 15, 11, 940, 11, 7857, 28, 1238, 38381, 45299, 37659, 13, 3605, 22704, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 45941, 13, 25120, 13, 25541, 7, 37659, 13, 283, 858, 7, 17, 11, 3064, 828, 7857, 28, 1238, 38381, 45299, 37659, 13, 3605, 22704, 60, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 16488, 28, 16, 8, 198, 197, 14907, 62, 33964, 796, 45941, 13, 18747, 26933, 58, 16, 11, 16, 68, 12, 18, 11, 17, 4357, 685, 16, 11, 16, 68, 12, 18, 11, 16, 38430, 17, 11, 3064, 11, 16, 11907, 8, 198, 197, 57, 62, 13335, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 3849, 1504, 62, 33964, 11, 5743, 62, 33964, 4357, 22704, 28, 15, 8, 198, 197, 22046, 62, 13335, 796, 685, 90, 6, 77, 62, 565, 13654, 10354, 1976, 58, 15, 4357, 705, 5420, 62, 42172, 10354, 1976, 58, 16, 4357, 705, 77, 62, 27740, 10354, 1976, 58, 17, 48999, 329, 1976, 287, 1168, 62, 13335, 60, 628, 197, 1640, 26498, 287, 26498, 62, 13335, 25, 198, 197, 197, 83, 349, 796, 352, 68, 12, 1065, 198, 197, 197, 4798, 7, 22046, 8, 198, 197, 197, 565, 5819, 62, 6335, 4178, 796, 3509, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 6335, 4178, 7, 1174, 22046, 8, 198, 197, 197, 4798, 7, 565, 5819, 62, 6335, 4178, 8, 198, 197, 197, 30493, 45941, 13, 439, 7, 565, 5819, 62, 6335, 4178, 1875, 657, 8, 198, 197, 197, 30493, 357, 37659, 13, 1084, 7, 565, 5819, 62, 6335, 4178, 8, 19841, 26498, 17816, 5420, 62, 42172, 20520, 1343, 284, 75, 8, 290, 3467, 198, 197, 197, 197, 197, 7, 37659, 13, 9806, 7, 565, 5819, 62, 6335, 4178, 8, 18189, 26498, 17816, 5420, 62, 42172, 20520, 532, 284, 75, 8, 628, 197, 2, 1332, 15679, 17311, 198, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 6335, 4178, 7, 77, 62, 565, 13654, 28, 15, 11, 1006, 62, 42172, 28, 16, 11, 299, 62, 27740, 28, 940, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 6335, 4178, 7, 77, 62, 565, 13654, 28, 16, 11, 1006, 62, 42172, 28, 15, 11, 299, 62, 27740, 28, 940, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 6335, 4178, 7, 77, 62, 565, 13654, 28, 16, 11, 1006, 62, 42172, 28, 16, 11, 299, 62, 27740, 28, 15, 8, 628, 197, 2, 1332, 11904, 198, 197, 28826, 796, 767, 1558, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 197, 197, 565, 5819, 62, 6335, 4178, 62, 3605, 796, 3509, 1084, 66, 709, 13, 15883, 62, 565, 5819, 62, 6335, 4178, 7, 77, 62, 565, 13654, 28, 20, 11, 5420, 62, 42172, 28, 19, 11, 77, 62, 27740, 28, 1495, 11, 9403, 28, 28826, 8, 198, 197, 197, 361, 357, 72, 18189, 352, 2599, 198, 197, 197, 197, 30493, 45941, 13, 439, 7, 565, 5819, 62, 6335, 4178, 62, 3605, 6624, 13946, 62, 6335, 4178, 62, 47050, 8, 198, 197, 197, 565, 5819, 62, 6335, 4178, 62, 47050, 796, 13946, 62, 6335, 4178, 62, 3605, 628, 198, 4299, 1332, 62, 15883, 62, 22704, 62, 21282, 7, 40406, 62, 9806, 1084, 66, 709, 2599, 198, 197, 37811, 198, 197, 12050, 1654, 4938, 3210, 47060, 389, 35846, 45160, 15, 737, 628, 197, 4834, 19532, 1654, 1006, 62, 21282, 318, 1022, 949, 290, 3509, 11, 290, 326, 262, 3509, 1084, 8064, 198, 197, 4853, 874, 262, 10348, 4843, 8064, 13, 198, 197, 37811, 198, 197, 9806, 1084, 66, 709, 796, 9058, 62, 9806, 1084, 66, 709, 628, 197, 2, 1332, 5035, 17311, 198, 197, 3849, 1504, 62, 33964, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 37659, 13, 283, 858, 7, 17, 11, 1120, 10, 17, 38381, 45299, 37659, 13, 3605, 22704, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 197, 197, 220, 197, 45941, 13, 25120, 13, 403, 6933, 7, 15, 11, 940, 11, 7857, 28, 1120, 38381, 45299, 37659, 13, 3605, 22704, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 197, 197, 220, 197, 45941, 13, 25120, 13, 403, 6933, 7, 16, 11, 940, 11, 7857, 28, 1120, 38381, 45299, 37659, 13, 3605, 22704, 60, 4357, 220, 198, 197, 197, 197, 197, 197, 197, 197, 197, 220, 197, 22704, 28, 16, 8, 198, 197, 14907, 62, 33964, 796, 45941, 13, 18747, 26933, 58, 16, 11, 15, 13, 20, 11, 16, 13, 20, 4357, 685, 16, 11, 15, 13, 20, 11, 16, 4357, 685, 17, 11, 15, 13, 16, 11, 16, 11907, 8, 198, 197, 57, 62, 13335, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 3849, 1504, 62, 33964, 11, 5743, 62, 33964, 4357, 22704, 28, 15, 8, 198, 197, 22046, 62, 13335, 796, 685, 90, 6, 77, 62, 897, 274, 10354, 1976, 58, 15, 4357, 705, 21282, 10354, 1976, 58, 16, 4357, 705, 292, 806, 10354, 1976, 58, 17, 48999, 329, 1976, 287, 1168, 62, 13335, 60, 628, 197, 1640, 26498, 287, 26498, 62, 13335, 25, 198, 197, 197, 448, 796, 3509, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 1174, 22046, 8, 198, 197, 197, 30493, 357, 37659, 13, 1084, 7, 448, 8, 19841, 26498, 17816, 21282, 6, 12962, 290, 357, 37659, 13, 9806, 7, 448, 8, 18189, 26498, 17816, 21282, 6, 12962, 220, 628, 197, 2, 1332, 15679, 17311, 198, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 77, 62, 897, 274, 28, 15, 11, 45647, 28, 16, 11, 4843, 28, 17, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 77, 62, 897, 274, 28, 15, 13, 20, 11, 45647, 28, 15, 11, 4843, 28, 17, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 77, 62, 897, 274, 28, 16, 11, 45647, 28, 16, 11, 4843, 28, 15, 13, 20, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 77, 62, 897, 274, 28, 17, 11, 45647, 28, 16, 11, 4843, 10779, 17, 8, 198, 197, 197, 9806, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 77, 62, 897, 274, 28, 17, 11, 45647, 10779, 16, 11, 4843, 28, 17, 8, 628, 197, 2, 1332, 9403, 198, 197, 28826, 796, 17031, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 197, 197, 22704, 62, 21282, 62, 3605, 796, 3509, 1084, 66, 709, 13, 15883, 62, 22704, 62, 21282, 7, 77, 62, 897, 274, 28, 20, 11, 21282, 28, 19, 11, 292, 806, 28, 1495, 11, 9403, 28, 28826, 8, 198, 197, 197, 361, 357, 72, 18189, 352, 2599, 198, 197, 197, 197, 30493, 45941, 13, 439, 7, 22704, 62, 21282, 62, 3605, 6624, 16488, 62, 21282, 62, 47050, 8, 198, 197, 197, 22704, 62, 21282, 62, 47050, 796, 16488, 62, 21282, 62, 3605, 628, 198, 4299, 1332, 62, 15883, 62, 66, 709, 7, 40406, 62, 9806, 1084, 66, 709, 11, 9058, 62, 565, 5819, 7890, 2599, 198, 197, 37811, 198, 197, 12050, 1654, 34197, 389, 29617, 519, 20996, 198, 197, 12050, 1654, 39849, 796, 16488, 1635, 45647, 1174, 17, 1635, 16488, 3256, 2092, 329, 39849, 62, 16340, 198, 197, 37811, 198, 197, 565, 5819, 7890, 796, 9058, 62, 565, 5819, 7890, 198, 197, 9806, 1084, 66, 709, 796, 9058, 62, 9806, 1084, 66, 709, 628, 197, 2, 4155, 5072, 1838, 18069, 2565, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 197, 197, 7, 22704, 11, 45647, 11, 39849, 11, 39849, 62, 16340, 8, 796, 3509, 1084, 66, 709, 13, 15883, 62, 66, 709, 7, 565, 5819, 7890, 8, 628, 197, 197, 1640, 13946, 62, 312, 87, 287, 2837, 7, 565, 5819, 7890, 13, 77, 62, 565, 13654, 2599, 198, 197, 197, 197, 2, 1332, 29617, 519, 261, 1483, 286, 13946, 34197, 198, 197, 197, 197, 30493, 45941, 13, 439, 7, 37659, 13, 439, 19836, 7, 22704, 58, 565, 5819, 62, 312, 87, 60, 2488, 45941, 13, 7645, 3455, 7, 22704, 58, 565, 5819, 62, 312, 87, 46570, 198, 197, 197, 197, 197, 197, 37659, 13, 25379, 7, 22704, 58, 565, 5819, 62, 312, 87, 4083, 43358, 58, 15, 60, 22305, 628, 197, 197, 197, 2, 1332, 44829, 590, 17593, 318, 3376, 198, 197, 197, 197, 30493, 45941, 13, 439, 7, 37659, 13, 439, 19836, 7, 66, 709, 58, 565, 5819, 62, 312, 87, 4357, 198, 197, 197, 197, 197, 197, 37659, 13, 7645, 3455, 7, 22704, 58, 565, 5819, 62, 312, 87, 12962, 2488, 45941, 13, 10989, 363, 7, 21282, 58, 565, 5819, 62, 312, 87, 60, 1174, 17, 8, 3467, 198, 197, 197, 197, 197, 197, 197, 31, 16488, 58, 565, 5819, 62, 312, 87, 60, 4008, 628, 197, 197, 197, 2, 1332, 34062, 44829, 590, 17593, 318, 3376, 198, 197, 197, 197, 30493, 45941, 13, 439, 7, 37659, 13, 439, 19836, 7, 66, 709, 62, 16340, 58, 565, 5819, 62, 312, 87, 4357, 220, 198, 197, 197, 197, 197, 197, 37659, 13, 7645, 3455, 7, 22704, 58, 565, 5819, 62, 312, 87, 12962, 2488, 45941, 13, 10989, 363, 7, 21282, 58, 565, 5819, 62, 312, 87, 60, 1174, 32590, 17, 4008, 3467, 198, 197, 197, 197, 197, 197, 197, 31, 16488, 58, 565, 5819, 62, 312, 87, 60, 4008, 628, 198, 197, 2, 1332, 9403, 198, 197, 28826, 796, 17031, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 197, 197, 66, 709, 62, 301, 5620, 62, 3605, 796, 3509, 1084, 66, 709, 13, 15883, 62, 66, 709, 7, 565, 5819, 7890, 11, 9403, 28, 28826, 8, 198, 197, 197, 361, 357, 72, 18189, 352, 2599, 198, 197, 197, 197, 1640, 13946, 62, 312, 87, 287, 2837, 7, 565, 5819, 7890, 13, 77, 62, 565, 13654, 2599, 198, 197, 197, 197, 197, 1640, 474, 287, 2837, 7, 19, 2599, 1303, 11629, 378, 832, 16488, 11, 45647, 11, 39849, 11, 39849, 62, 16340, 198, 197, 197, 197, 197, 197, 30493, 45941, 13, 439, 7, 37659, 13, 439, 19836, 7, 66, 709, 62, 301, 5620, 62, 47050, 58, 73, 7131, 565, 5819, 62, 312, 87, 4357, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 220, 197, 220, 39849, 62, 301, 5620, 62, 3605, 58, 73, 7131, 565, 5819, 62, 312, 87, 60, 4008, 198, 197, 197, 2, 900, 2180, 44829, 590, 4645, 329, 1306, 24415, 25, 198, 197, 197, 66, 709, 62, 301, 5620, 62, 47050, 796, 39849, 62, 301, 5620, 62, 3605, 628, 198, 2, 6208, 35536, 329, 5436, 9452, 24597, 198, 198, 31, 9078, 9288, 13, 69, 9602, 7, 37266, 796, 45941, 13, 21602, 10223, 7, 16, 11, 940, 11, 940, 4008, 628, 198, 4299, 1332, 62, 15003, 62, 9806, 1084, 6893, 7, 40406, 62, 9806, 1084, 6893, 2599, 198, 197, 37811, 198, 197, 4834, 19532, 32556, 8064, 318, 6105, 7368, 13, 198, 197, 37811, 198, 197, 9806, 1084, 6893, 796, 9058, 62, 9806, 1084, 6893, 198, 197, 30493, 3509, 1084, 6893, 13, 320, 6893, 62, 10366, 952, 18189, 352, 628, 197, 2, 1332, 5128, 2198, 329, 15679, 7159, 198, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 11518, 9452, 24597, 7, 320, 6893, 62, 10366, 952, 796, 657, 13, 20, 8, 198, 197, 197, 11518, 9452, 24597, 7, 320, 6893, 62, 10366, 952, 796, 532, 17, 8, 628, 198, 4299, 1332, 62, 15883, 62, 4871, 62, 82, 4340, 7, 40406, 62, 9806, 1084, 6893, 11, 40406, 62, 565, 5819, 7890, 2599, 198, 197, 37811, 198, 197, 37811, 198, 197, 9806, 1084, 6893, 796, 9058, 62, 9806, 1084, 6893, 198, 197, 565, 5819, 7890, 796, 9058, 62, 565, 5819, 7890, 628, 197, 2, 1332, 351, 5035, 5128, 198, 197, 57, 62, 13335, 796, 16410, 4059, 11, 20, 38430, 2167, 11, 16, 38430, 3064, 11, 17, 38430, 12825, 11, 940, 38430, 33698, 11, 18, 4357, 685, 3064, 11, 3064, 11907, 198, 197, 22046, 62, 13335, 796, 685, 90, 6, 77, 62, 82, 12629, 10354, 1976, 58, 15, 4357, 705, 77, 62, 565, 13654, 10354, 1976, 58, 16, 48999, 329, 1976, 287, 1168, 62, 13335, 60, 198, 197, 1640, 26498, 287, 26498, 62, 13335, 25, 198, 197, 197, 565, 5819, 7890, 13, 77, 62, 82, 12629, 796, 26498, 17816, 77, 62, 82, 12629, 20520, 198, 197, 197, 565, 5819, 7890, 13, 77, 62, 565, 13654, 796, 26498, 17816, 77, 62, 565, 13654, 20520, 198, 197, 197, 448, 796, 3509, 1084, 6893, 13, 15883, 62, 4871, 62, 82, 4340, 7, 565, 5819, 7890, 8, 198, 197, 197, 30493, 45941, 13, 747, 549, 67, 4906, 7, 448, 13, 67, 4906, 11, 45941, 13, 41433, 8, 290, 45941, 13, 439, 7, 448, 18189, 352, 8, 290, 3467, 198, 197, 197, 197, 197, 7, 37659, 13, 16345, 7, 448, 8, 6624, 26498, 17816, 77, 62, 82, 12629, 6, 12962, 628, 197, 2, 1332, 351, 15679, 5128, 198, 197, 57, 62, 259, 13335, 796, 16410, 4059, 11, 15, 38430, 15, 11, 940, 38430, 3064, 12095, 16, 38430, 12, 15, 13, 20, 11, 20, 38430, 940, 11, 1157, 11907, 198, 197, 22046, 62, 259, 13335, 796, 685, 90, 6, 77, 62, 82, 12629, 10354, 1976, 58, 15, 4357, 705, 77, 62, 565, 13654, 10354, 1976, 58, 16, 48999, 329, 1976, 287, 1168, 62, 259, 13335, 60, 198, 197, 1640, 26498, 287, 26498, 62, 259, 13335, 25, 198, 197, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 197, 565, 5819, 7890, 13, 77, 62, 565, 13654, 796, 26498, 17816, 77, 62, 565, 13654, 20520, 198, 197, 197, 197, 565, 5819, 7890, 13, 77, 62, 82, 12629, 796, 26498, 17816, 77, 62, 82, 12629, 20520, 198, 197, 197, 197, 9806, 1084, 6893, 13, 15883, 62, 4871, 62, 82, 4340, 7, 565, 5819, 7890, 8, 628, 198, 4299, 1332, 62, 22468, 62, 1462, 62, 600, 7, 40406, 62, 9806, 1084, 6893, 2599, 198, 197, 37811, 198, 197, 22468, 62, 4871, 62, 82, 89, 11, 299, 62, 82, 12629, 198, 197, 37811, 198, 197, 9806, 1084, 6893, 796, 9058, 62, 9806, 1084, 6893, 628, 197, 2, 1332, 5035, 17311, 198, 197, 1640, 12178, 62, 4871, 62, 82, 89, 11, 299, 62, 82, 12629, 287, 47527, 37659, 13, 18747, 26933, 1954, 13, 17, 11, 35360, 13, 22, 11, 657, 13, 16, 11, 3439, 13, 21, 46570, 1802, 828, 3467, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 357, 37659, 13, 18747, 26933, 15, 13, 17, 11, 657, 13, 22, 11, 657, 13, 16, 11, 657, 13, 20, 46570, 838, 828, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 357, 37659, 13, 18747, 26933, 17, 13, 20, 11, 16, 13, 20, 11, 20, 13, 17, 46570, 513, 828, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 357, 37659, 13, 18747, 26933, 15, 13, 20, 46570, 352, 8, 5974, 198, 197, 197, 448, 796, 3509, 1084, 6893, 13, 22468, 62, 1462, 62, 600, 7, 22468, 62, 4871, 62, 82, 89, 11, 77, 62, 82, 12629, 8, 198, 197, 197, 4798, 7, 11925, 7, 22468, 62, 4871, 62, 82, 89, 828, 12178, 62, 4871, 62, 82, 89, 11, 299, 62, 82, 12629, 8, 198, 197, 197, 30493, 357, 37659, 13, 16345, 7, 448, 8, 6624, 299, 62, 82, 12629, 8, 290, 357, 37659, 13, 439, 7, 448, 18189, 352, 4008, 3467, 198, 197, 197, 197, 197, 392, 45941, 13, 747, 549, 67, 4906, 7, 448, 13, 67, 4906, 11, 37659, 13, 41433, 8, 628, 197, 2, 1332, 17311, 326, 815, 307, 1364, 21588, 198, 197, 30493, 45941, 13, 439, 7, 9806, 1084, 6893, 13, 22468, 62, 1462, 62, 600, 7, 37659, 13, 18747, 26933, 20, 11, 940, 11, 1495, 11, 22, 46570, 642, 10, 940, 10, 1495, 10, 22, 8, 3467, 198, 197, 197, 197, 197, 197, 855, 45941, 13, 30619, 7, 37659, 13, 18747, 26933, 20, 11, 940, 11, 1495, 11, 22, 60, 22305, 628, 197, 2, 1332, 15679, 17311, 198, 197, 1640, 12178, 62, 4871, 62, 82, 89, 11, 299, 62, 82, 12629, 287, 47527, 37659, 13, 18747, 26933, 15, 13, 20, 11, 16, 13, 20, 46570, 352, 828, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 357, 37659, 13, 18747, 26933, 15, 13, 20, 11, 16, 13, 20, 46570, 657, 828, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 357, 37659, 13, 18747, 26933, 17, 13, 20, 11, 16, 13, 20, 11, 20, 13, 17, 46570, 362, 8, 5974, 198, 197, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 197, 9806, 1084, 6893, 13, 22468, 62, 1462, 62, 600, 7, 22468, 62, 4871, 62, 82, 89, 11, 77, 62, 82, 12629, 8, 628, 198, 198, 2, 6208, 35536, 329, 5436, 9452, 2601, 13654, 198, 198, 4299, 1332, 62, 15003, 62, 9806, 1084, 565, 13654, 33529, 198, 197, 37811, 198, 197, 12050, 1654, 284, 3714, 281, 4049, 618, 15679, 7159, 389, 1813, 13, 198, 197, 37811, 628, 197, 2, 5743, 290, 11087, 1332, 2663, 329, 299, 62, 565, 13654, 11, 299, 62, 82, 12629, 11, 299, 62, 27740, 198, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 16, 11, 77, 62, 82, 12629, 28, 16, 11, 77, 62, 27740, 28, 16, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 16, 11, 77, 62, 82, 12629, 28, 16, 11, 77, 62, 27740, 28, 940, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 17, 11, 77, 62, 82, 12629, 28, 3064, 11, 77, 62, 27740, 28, 17, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 940, 11, 77, 62, 82, 12629, 28, 2167, 11, 77, 62, 27740, 28, 20, 8, 628, 197, 2, 5743, 290, 11087, 1332, 2663, 329, 4856, 3509, 1084, 22423, 198, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 16, 11, 292, 806, 62, 9806, 1084, 28, 16, 11, 42172, 62, 9806, 1084, 28, 16, 11, 4843, 62, 5420, 28, 16, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 16, 11, 292, 806, 62, 9806, 1084, 28, 16, 13, 16, 11, 42172, 62, 9806, 1084, 28, 16, 13, 16, 11, 292, 806, 62, 5420, 28, 16, 13, 20, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 16, 13, 17, 11, 292, 806, 62, 9806, 1084, 28, 16, 11, 42172, 62, 9806, 1084, 28, 16, 13, 20, 11, 292, 806, 62, 5420, 28, 22, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 18, 11, 292, 806, 62, 9806, 1084, 28, 17, 11, 42172, 62, 9806, 1084, 28, 16, 11, 292, 806, 62, 5420, 28, 20, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 18, 11, 292, 806, 62, 9806, 1084, 28, 17, 11, 42172, 62, 9806, 1084, 28, 20, 11, 292, 806, 62, 5420, 28, 16, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 18, 11, 292, 806, 62, 9806, 1084, 28, 17, 11, 42172, 62, 9806, 1084, 28, 20, 11, 292, 806, 62, 5420, 28, 19, 8, 628, 197, 2, 5743, 290, 11087, 1332, 2663, 329, 21721, 198, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 13, 20, 11, 17130, 62, 1084, 28, 15, 13, 486, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 13, 2713, 11, 17130, 62, 1084, 28, 15, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 13, 16, 11, 17130, 62, 1084, 28, 15, 13, 18005, 8, 628, 197, 2, 4856, 262, 24570, 198, 197, 11518, 9452, 2601, 13654, 7, 17080, 11639, 11201, 11537, 198, 197, 11518, 9452, 2601, 13654, 7, 17080, 11639, 4908, 31562, 11537, 198, 197, 11518, 9452, 2601, 13654, 7, 17080, 11639, 83, 11537, 628, 197, 2, 4856, 24157, 290, 5046, 198, 197, 11518, 9452, 2601, 13654, 7, 41291, 28, 15, 13, 20, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 41291, 28, 15, 13, 486, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 41291, 28, 15, 13, 2079, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 9888, 28, 15, 13, 486, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 9888, 28, 15, 13, 2713, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 9888, 28, 20, 8, 198, 197, 11518, 9452, 2601, 13654, 7, 9888, 28, 940, 8, 628, 198, 197, 4480, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 197, 197, 2, 1276, 423, 299, 62, 27740, 11, 299, 62, 565, 13654, 11, 299, 62, 82, 12629, 18189, 352, 198, 197, 197, 2, 290, 299, 62, 565, 13654, 19841, 299, 62, 82, 12629, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 940, 11, 77, 62, 82, 12629, 28, 3064, 11, 77, 62, 27740, 28, 15, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 940, 11, 77, 62, 82, 12629, 28, 24, 11, 77, 62, 27740, 28, 940, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 15, 11, 77, 62, 82, 12629, 28, 3064, 11, 77, 62, 27740, 28, 940, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 17, 11, 77, 62, 82, 12629, 28, 16, 11, 77, 62, 27740, 28, 940, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 77, 62, 565, 13654, 28, 17, 11, 77, 62, 82, 12629, 28, 16, 11, 77, 62, 27740, 28, 940, 8, 628, 197, 197, 2, 3509, 1084, 62, 10366, 4267, 1276, 307, 18189, 352, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 28, 15, 13, 4089, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 320, 6893, 62, 9806, 1084, 10779, 16, 13, 16, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 292, 806, 62, 9806, 1084, 28, 15, 13, 2327, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 292, 806, 62, 9806, 1084, 10779, 16, 13, 20, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 42172, 62, 9806, 1084, 28, 15, 13, 2481, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 42172, 62, 9806, 1084, 10779, 16, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 292, 806, 62, 5420, 28, 15, 13, 2079, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 292, 806, 62, 5420, 10779, 17, 8, 628, 197, 197, 2, 1276, 423, 17130, 62, 9806, 1875, 657, 11, 17130, 62, 1084, 18189, 657, 11, 17130, 62, 9806, 1875, 17130, 62, 1084, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 11, 17130, 62, 1084, 28, 15, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 13, 2713, 11, 17130, 62, 1084, 28, 15, 13, 16, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 13, 16, 11, 17130, 62, 1084, 28, 15, 13, 18005, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 28, 15, 13, 36629, 11, 17130, 62, 1084, 10779, 16, 13, 15, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 26591, 62, 9806, 10779, 15, 13, 20, 11, 17130, 62, 1084, 28, 15, 13, 2713, 8, 628, 197, 197, 2, 24157, 1276, 307, 14084, 1022, 657, 290, 352, 11, 5046, 1276, 307, 1875, 15, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 41291, 28, 15, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 41291, 28, 16, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 9888, 28, 15, 8, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 9888, 10779, 15, 13, 20, 8, 628, 197, 197, 2, 3058, 691, 1104, 1233, 287, 1391, 6, 4908, 31562, 41707, 11201, 41707, 83, 6, 92, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 17080, 11639, 21943, 11537, 198, 197, 197, 11518, 9452, 2601, 13654, 7, 17080, 11639, 5657, 11537, 628, 628, 628 ]
2.298895
6,427
scheduler_type = 'MultiStepLR' scheduler_cfg = dict( gamma=0.5, milestones=(50, 100, 150, 200) ) end_epoch = 250
[ 1416, 704, 18173, 62, 4906, 796, 705, 29800, 8600, 35972, 6, 198, 1416, 704, 18173, 62, 37581, 796, 8633, 7, 198, 220, 220, 220, 34236, 28, 15, 13, 20, 11, 198, 220, 220, 220, 41926, 16193, 1120, 11, 1802, 11, 6640, 11, 939, 8, 198, 8, 198, 198, 437, 62, 538, 5374, 796, 8646, 198 ]
2.218182
55
from time import strftime from rest_framework.permissions import AllowAny from rest_framework.views import APIView from rest_framework.response import Response
[ 6738, 640, 1330, 965, 31387, 198, 198, 6738, 1334, 62, 30604, 13, 525, 8481, 1330, 22507, 7149, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 3486, 3824, 769, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 628 ]
4.263158
38
# -*- coding: utf-8 -*- """ Created on Tue Sep 1 14:54:14 2020 @author: Mei """ @memoize
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 30030, 8621, 220, 352, 1478, 25, 4051, 25, 1415, 12131, 198, 198, 31, 9800, 25, 42244, 198, 37811, 628, 198, 198, 31, 11883, 78, 1096, 198 ]
2.136364
44
from .modeling_repconc import RepCONC
[ 6738, 764, 4666, 10809, 62, 7856, 1102, 66, 1330, 1432, 10943, 34 ]
3.083333
12
import KratosMultiphysics import KratosMultiphysics.FluidDynamicsApplication as KratosFluid import KratosMultiphysics.kratos_utilities as KratosUtilities have_external_solvers = KratosUtilities.IsApplicationAvailable("ExternalSolversApplication") import KratosMultiphysics.KratosUnittest as UnitTest @UnitTest.skipUnless(have_external_solvers,"Missing required application: ExternalSolversApplication") if __name__ == '__main__': test = EmbeddedReservoirTest() test.setUp() test.distance = 0.5 test.slip_level_set = False test.print_output = False test.print_reference_values = False test.work_folder = "EmbeddedReservoirTest" test.reference_file = "reference_slip_reservoir_2D" test.settings = "EmbeddedReservoir2DTest_parameters.json" test.setUpProblem() test.setUpDistanceField() test.runTest() test.tearDown() test.checkResults()
[ 11748, 509, 10366, 418, 15205, 13323, 23154, 198, 11748, 509, 10366, 418, 15205, 13323, 23154, 13, 37, 2290, 312, 35, 4989, 873, 23416, 355, 509, 10366, 418, 37, 2290, 312, 198, 11748, 509, 10366, 418, 15205, 13323, 23154, 13, 74, 10366, 418, 62, 315, 2410, 355, 509, 10366, 418, 18274, 2410, 198, 14150, 62, 22615, 62, 34453, 690, 796, 509, 10366, 418, 18274, 2410, 13, 3792, 23416, 10493, 7203, 41506, 36949, 690, 23416, 4943, 198, 198, 11748, 509, 10366, 418, 15205, 13323, 23154, 13, 42, 10366, 418, 3118, 715, 395, 355, 11801, 14402, 198, 198, 31, 26453, 14402, 13, 48267, 28042, 7, 14150, 62, 22615, 62, 34453, 690, 553, 43730, 2672, 3586, 25, 34579, 36949, 690, 23416, 4943, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 796, 13302, 47238, 4965, 712, 10840, 14402, 3419, 198, 220, 220, 220, 1332, 13, 2617, 4933, 3419, 198, 220, 220, 220, 1332, 13, 30246, 796, 657, 13, 20, 198, 220, 220, 220, 1332, 13, 6649, 541, 62, 5715, 62, 2617, 796, 10352, 198, 220, 220, 220, 1332, 13, 4798, 62, 22915, 796, 10352, 198, 220, 220, 220, 1332, 13, 4798, 62, 35790, 62, 27160, 796, 10352, 198, 220, 220, 220, 1332, 13, 1818, 62, 43551, 796, 366, 31567, 47238, 4965, 712, 10840, 14402, 1, 198, 220, 220, 220, 1332, 13, 35790, 62, 7753, 796, 366, 35790, 62, 6649, 541, 62, 411, 712, 10840, 62, 17, 35, 1, 198, 220, 220, 220, 1332, 13, 33692, 796, 366, 31567, 47238, 4965, 712, 10840, 17, 35, 14402, 62, 17143, 7307, 13, 17752, 1, 198, 220, 220, 220, 1332, 13, 2617, 4933, 40781, 3419, 198, 220, 220, 220, 1332, 13, 2617, 4933, 45767, 15878, 3419, 198, 220, 220, 220, 1332, 13, 5143, 14402, 3419, 198, 220, 220, 220, 1332, 13, 83, 451, 8048, 3419, 198, 220, 220, 220, 1332, 13, 9122, 25468, 3419, 198 ]
2.834921
315
import pytest def pytest_collection_modifyitems(config, items): """If async dependencies is not available skip async tests.""" try: import treq # noqa skip_async = False except ImportError: skip_async = True skip_slow = pytest.mark.skip(reason="need --runslow option to run") for item in items: if "requires_async" in item.keywords and skip_async is True: item.add_marker(skip_slow)
[ 11748, 12972, 9288, 628, 198, 4299, 12972, 9288, 62, 43681, 62, 4666, 1958, 23814, 7, 11250, 11, 3709, 2599, 198, 220, 220, 220, 37227, 1532, 30351, 20086, 318, 407, 1695, 14267, 30351, 5254, 526, 15931, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 2054, 80, 220, 1303, 645, 20402, 628, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 292, 13361, 796, 10352, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 292, 13361, 796, 6407, 628, 220, 220, 220, 14267, 62, 38246, 796, 12972, 9288, 13, 4102, 13, 48267, 7, 41181, 2625, 31227, 1377, 5143, 38246, 3038, 284, 1057, 4943, 628, 220, 220, 220, 329, 2378, 287, 3709, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 47911, 62, 292, 13361, 1, 287, 2378, 13, 2539, 10879, 290, 14267, 62, 292, 13361, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 13, 2860, 62, 4102, 263, 7, 48267, 62, 38246, 8, 198 ]
2.550562
178
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import argparse import random import numpy as np import deepmind_lab import tensorflow as tf import sys print('PYTHON VERSION - ', sys.version) # For the DML random agent dataset import random_dataset # For the model that we will train import model # For debugging import os for i in range(10): print(os.getcwd()) ds = random_dataset.dml_dataset() model = model.Model(ds.shape) for i in range(1000000): batch = ds.get_batch() model.train_step(batch, i)
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 1822, 29572, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2769, 10155, 62, 23912, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 11748, 25064, 198, 4798, 10786, 47, 56, 4221, 1340, 44156, 2849, 532, 46083, 25064, 13, 9641, 8, 198, 198, 2, 1114, 262, 360, 5805, 4738, 5797, 27039, 198, 11748, 4738, 62, 19608, 292, 316, 198, 2, 1114, 262, 2746, 326, 356, 481, 4512, 198, 11748, 2746, 198, 198, 2, 1114, 28769, 198, 11748, 28686, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 3601, 7, 418, 13, 1136, 66, 16993, 28955, 198, 198, 9310, 796, 4738, 62, 19608, 292, 316, 13, 67, 4029, 62, 19608, 292, 316, 3419, 198, 19849, 796, 2746, 13, 17633, 7, 9310, 13, 43358, 8, 198, 198, 1640, 1312, 287, 2837, 7, 16, 10535, 2599, 198, 220, 220, 220, 15458, 796, 288, 82, 13, 1136, 62, 43501, 3419, 198, 220, 220, 220, 2746, 13, 27432, 62, 9662, 7, 43501, 11, 1312, 8, 198 ]
3.00995
201
GET = 100 POST = 200 PUT = 300 DELETE = 400 METHOD_TYPES = ( (GET, 'GET'), (POST, 'POST'), (PUT, 'PUT'), (DELETE, 'DELETE'), ) METHOD_TYPES_DICT = { 'GET': GET, 'POST': POST, 'PUT': PUT, 'DELETE': DELETE, } JSON = 500 HTML = 600 TEXT = 700 RESP_TYPES = ( (JSON, 'JSON'), (HTML, 'HTML'), (TEXT, 'TEXT'), ) RESP_TYPES_DICT = { 'JSON': 'application/json; charset=utf-8', 'HTML': 'text/html; charset=utf-8', 'TEXT': 'text/plain; charset=utf-8', }
[ 18851, 796, 1802, 198, 32782, 796, 939, 198, 30076, 796, 5867, 198, 7206, 2538, 9328, 796, 7337, 198, 198, 49273, 62, 9936, 47, 1546, 796, 357, 198, 220, 220, 220, 357, 18851, 11, 705, 18851, 33809, 198, 220, 220, 220, 357, 32782, 11, 705, 32782, 33809, 198, 220, 220, 220, 357, 30076, 11, 705, 30076, 33809, 198, 220, 220, 220, 357, 7206, 2538, 9328, 11, 705, 7206, 2538, 9328, 33809, 198, 8, 198, 198, 49273, 62, 9936, 47, 1546, 62, 35, 18379, 796, 1391, 198, 220, 220, 220, 705, 18851, 10354, 17151, 11, 198, 220, 220, 220, 705, 32782, 10354, 24582, 11, 198, 220, 220, 220, 705, 30076, 10354, 350, 3843, 11, 198, 220, 220, 220, 705, 7206, 2538, 9328, 10354, 5550, 2538, 9328, 11, 198, 92, 198, 198, 40386, 796, 5323, 198, 28656, 796, 10053, 198, 32541, 796, 13037, 198, 198, 19535, 47, 62, 9936, 47, 1546, 796, 357, 198, 220, 220, 220, 357, 40386, 11, 705, 40386, 33809, 198, 220, 220, 220, 357, 28656, 11, 705, 28656, 33809, 198, 220, 220, 220, 357, 32541, 11, 705, 32541, 33809, 198, 8, 198, 198, 19535, 47, 62, 9936, 47, 1546, 62, 35, 18379, 796, 1391, 198, 220, 220, 220, 705, 40386, 10354, 705, 31438, 14, 17752, 26, 34534, 316, 28, 40477, 12, 23, 3256, 198, 220, 220, 220, 705, 28656, 10354, 705, 5239, 14, 6494, 26, 34534, 316, 28, 40477, 12, 23, 3256, 198, 220, 220, 220, 705, 32541, 10354, 705, 5239, 14, 25638, 26, 34534, 316, 28, 40477, 12, 23, 3256, 198, 92 ]
1.980315
254
from pydantic import BaseModel
[ 6738, 279, 5173, 5109, 1330, 7308, 17633, 628 ]
4
8
"""Alignment pipeline integration tests. """ import os import time from django.conf import settings from djcelery_testworker.testcase import CeleryWorkerTestCase from main.models import AlignmentGroup from main.models import Dataset from main.models import ExperimentSample from main.testing_util import create_common_entities from pipeline.pipeline_runner import run_pipeline from utils.import_util import copy_and_add_dataset_source from utils.import_util import import_reference_genome_from_local_file from utils.import_util import import_reference_genome_from_ncbi from utils import internet_on TEST_FASTA = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', 'test_genome.fa') TEST_FASTQ1 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.1.fq') TEST_FASTQ2 = os.path.join(settings.PWD, 'test_data', 'fake_genome_and_reads', '38d786f2', 'test_genome_1.snps.simLibrary.2.fq')
[ 37811, 2348, 16747, 11523, 11812, 5254, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 640, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 7015, 88, 62, 9288, 28816, 13, 9288, 7442, 1330, 15248, 1924, 12468, 263, 14402, 20448, 198, 198, 6738, 1388, 13, 27530, 1330, 978, 16747, 13247, 198, 6738, 1388, 13, 27530, 1330, 16092, 292, 316, 198, 6738, 1388, 13, 27530, 1330, 29544, 36674, 198, 6738, 1388, 13, 33407, 62, 22602, 1330, 2251, 62, 11321, 62, 298, 871, 198, 6738, 11523, 13, 79, 541, 4470, 62, 16737, 1330, 1057, 62, 79, 541, 4470, 198, 6738, 3384, 4487, 13, 11748, 62, 22602, 1330, 4866, 62, 392, 62, 2860, 62, 19608, 292, 316, 62, 10459, 198, 6738, 3384, 4487, 13, 11748, 62, 22602, 1330, 1330, 62, 35790, 62, 5235, 462, 62, 6738, 62, 12001, 62, 7753, 198, 6738, 3384, 4487, 13, 11748, 62, 22602, 1330, 1330, 62, 35790, 62, 5235, 462, 62, 6738, 62, 10782, 8482, 198, 6738, 3384, 4487, 1330, 5230, 62, 261, 628, 198, 51, 6465, 62, 37, 1921, 5603, 796, 28686, 13, 6978, 13, 22179, 7, 33692, 13, 47, 22332, 11, 705, 9288, 62, 7890, 3256, 705, 30706, 62, 5235, 462, 62, 392, 62, 40779, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 62, 5235, 462, 13, 13331, 11537, 198, 198, 51, 6465, 62, 37, 11262, 48, 16, 796, 28686, 13, 6978, 13, 22179, 7, 33692, 13, 47, 22332, 11, 705, 9288, 62, 7890, 3256, 705, 30706, 62, 5235, 462, 62, 392, 62, 40779, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2548, 67, 46302, 69, 17, 3256, 705, 9288, 62, 5235, 462, 62, 16, 13, 16184, 862, 13, 14323, 23377, 13, 16, 13, 69, 80, 11537, 198, 198, 51, 6465, 62, 37, 11262, 48, 17, 796, 28686, 13, 6978, 13, 22179, 7, 33692, 13, 47, 22332, 11, 705, 9288, 62, 7890, 3256, 705, 30706, 62, 5235, 462, 62, 392, 62, 40779, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2548, 67, 46302, 69, 17, 3256, 705, 9288, 62, 5235, 462, 62, 16, 13, 16184, 862, 13, 14323, 23377, 13, 17, 13, 69, 80, 11537, 628 ]
2.736111
360
# https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ # --------------------------------------------------- from typing import List # Runtime Complexity: O(N) # Space Complexity: O(1) # --------------------------------------------------- # Test Cases # --------------------------------------------------- solution = Solution() # 5 print(solution.maxProfit([7, 1, 5, 3, 6, 4])) # 0 print(solution.maxProfit([7, 6, 4, 3, 1]))
[ 2, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 13466, 12, 2435, 12, 1462, 12, 17846, 12, 392, 12, 7255, 12, 13578, 14, 198, 2, 20368, 1783, 6329, 198, 6738, 19720, 1330, 7343, 198, 198, 2, 43160, 19157, 414, 25, 440, 7, 45, 8, 198, 2, 4687, 19157, 414, 25, 440, 7, 16, 8, 628, 198, 2, 20368, 1783, 6329, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6208, 35536, 198, 2, 20368, 1783, 6329, 198, 82, 2122, 796, 28186, 3419, 198, 2, 642, 198, 4798, 7, 82, 2122, 13, 9806, 2964, 11147, 26933, 22, 11, 352, 11, 642, 11, 513, 11, 718, 11, 604, 60, 4008, 198, 2, 657, 198, 4798, 7, 82, 2122, 13, 9806, 2964, 11147, 26933, 22, 11, 718, 11, 604, 11, 513, 11, 352, 60, 4008, 198 ]
3.087838
148
""" GUI Application to control the PiWall from """ #!/usr/bin/python3 # Author: Gunnar Holwerda # GUI to control a PiWall from tkinter import Frame, StringVar, OptionMenu, Listbox, Button, Label, Tk, END from piwallcontroller.piwallcontroller import PiWallController from piwallcontroller.playlist import Playlist from threading import Thread class SelectorWindow(Frame): """ GUI Class extending the tkinter.Frame class """ TIMEOUTS = { '1 hour ': 3600, '2 hours': 7200, '3 hours': 10800, 'Infinite': -1, } def create_video_file_dropdown(self): """ Creates the dropdown to display the video files from """ videos = self.__controller.get_video_file_list() if videos: self.__dropdown_selection.set(videos[0]) else: videos.append(None) self.video_dropdown = OptionMenu( None, self.__dropdown_selection, *videos) self.video_dropdown.config(width=10) self.video_dropdown.grid(row=0, column=0) def create_timeout_dropdown(self): """ Creates the dropdown that displays the timeouts """ timeouts = list(self.TIMEOUTS.keys()) timeouts.sort() self.__timeout_selection.set(timeouts[0]) self.timeout_dropdown = OptionMenu( None, self.__timeout_selection, *timeouts) self.timeout_dropdown.config(width=5) self.timeout_dropdown.grid(row=0, column=1) def create_display_box(self): """ Creates display box that displays all current items in the playlist """ self.display_box = Listbox(width=30, height=10) self.display_box.grid(row=0, column=2, columnspan=2) def create_play_button(self): """ Creates the play button """ self.submit_button = Button(text="Play", width=10) self.submit_button['command'] = self.play_wall self.submit_button.grid(row=1, column=2, pady=5) def create_add_button(self): """ Creates the button to add the current values in the video and timeout dropdown into the playlist """ self.add_button = Button(text='Add', fg='green', width=10) self.add_button['command'] = self.update_display_box self.add_button.grid(row=1, column=0, pady=5) def create_delete_button(self): """ Creates delete button to delete items from display blox """ self.delete_button = Button(text='Delete', fg='red', width=10) self.delete_button['command'] = self.delete_selected_item self.delete_button.grid(row=1, column=1, pady=5) def create_reboot_button(self): """ Creates button that reboots the pi's """ self.reboot_button = Button(text='Reboot Tiles', fg='red', width=10) self.reboot_button['command'] = self.reboot_pressed self.reboot_button.grid(row=1, column=3, pady=5) def create_status_label(self): """ Creates label to display current status of the wall """ self.status_label = Label(relief="ridge", width=11) self.set_status_label(0) self.status_label.grid(row=2, column=3, pady=5) def create_stop_button(self): """ Creates stop button to stop PiWall """ self.stop_button = Button(text='Stop Playing') self.set_status_label(0) self.stop_button['command'] = self.stop_pressed self.stop_button.grid(row=2, column=2, pady=5) def delete_selected_item(self): """ Deletes the currently selected item from the displaybox """ self.__playlist.remove_playlist_item(self.display_box.curselection()) self.display_box.delete(self.display_box.curselection()) def play_wall(self): """ Submits ths form to be played on the pi's """ if self.__playlist.is_empty(): return self.set_status_label(1) self.display_box.delete(0, END) # If there is a thread running, we need to stop the wall, which will # end the thread if self.__command_thread.isAlive(): print("Stopping Wall") self.__controller.stop_wall() self.__command_thread.join() self.__command_thread = Thread( target=self.__controller.run_commands, args=(self.__playlist,)) self.__command_thread.start() def update_display_box(self): """ Button listener for the Add Button (create_add_button) """ video_file = self.__dropdown_selection.get() timeout = self.__timeout_selection.get() self.__playlist.add_playlist_item(video_file, self.TIMEOUTS[timeout]) self.display_box.insert(END, "{0} {1}".format(timeout, video_file)) def stop_pressed(self): """ Button listener for the Stop Button (create_stop_button) """ self.__controller.stop_wall() self.set_status_label(0) def reboot_pressed(self): """ Button listener for the Reboot Button (create_reboot_button) """ self.set_status_label(0) self.__controller.reboot_pis() return True def set_status_label(self, state): """ Updates the status label to the current status of the PiWall """ if state == 1: self.status_label.config(text='Playing', fg='green') return True elif state == 0: self.status_label.config(text='Not Playing', fg='red') return True else: Exception( 'Status label state {0} not supported. Try 1 or 2'.format(state)) def get_controller(self): """ Returns the piwallcontrollers """ return self.__controller # Run the GUI if __name__ == "__main__": tk_window = Tk(className="PiWall") frame = SelectorWindow(master=tk_window) tk_window.mainloop() frame.get_controller().stop_wall()
[ 37811, 198, 220, 220, 220, 25757, 15678, 284, 1630, 262, 13993, 22401, 422, 198, 37811, 198, 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 2, 6434, 25, 6748, 23955, 6479, 15448, 6814, 198, 2, 25757, 284, 1630, 257, 13993, 22401, 198, 198, 6738, 256, 74, 3849, 1330, 25184, 11, 10903, 19852, 11, 16018, 23381, 11, 7343, 3524, 11, 20969, 11, 36052, 11, 309, 74, 11, 23578, 198, 6738, 31028, 11930, 36500, 13, 14415, 11930, 36500, 1330, 13993, 22401, 22130, 198, 6738, 31028, 11930, 36500, 13, 1759, 4868, 1330, 3811, 4868, 198, 6738, 4704, 278, 1330, 14122, 628, 198, 4871, 9683, 273, 27703, 7, 19778, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25757, 5016, 16610, 262, 256, 74, 3849, 13, 19778, 1398, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20460, 2606, 4694, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16, 1711, 705, 25, 4570, 405, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17, 2250, 10354, 767, 2167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18, 2250, 10354, 838, 7410, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18943, 9504, 10354, 532, 16, 11, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 2251, 62, 15588, 62, 7753, 62, 14781, 2902, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 262, 4268, 2902, 284, 3359, 262, 2008, 3696, 422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5861, 796, 2116, 13, 834, 36500, 13, 1136, 62, 15588, 62, 7753, 62, 4868, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5861, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 14781, 2902, 62, 49283, 13, 2617, 7, 32861, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5861, 13, 33295, 7, 14202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15588, 62, 14781, 2902, 796, 16018, 23381, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 2116, 13, 834, 14781, 2902, 62, 49283, 11, 1635, 32861, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15588, 62, 14781, 2902, 13, 11250, 7, 10394, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15588, 62, 14781, 2902, 13, 25928, 7, 808, 28, 15, 11, 5721, 28, 15, 8, 628, 220, 220, 220, 825, 2251, 62, 48678, 62, 14781, 2902, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 262, 4268, 2902, 326, 11298, 262, 640, 5269, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 640, 5269, 796, 1351, 7, 944, 13, 34694, 2606, 4694, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 640, 5269, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 48678, 62, 49283, 13, 2617, 7, 2435, 5269, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48678, 62, 14781, 2902, 796, 16018, 23381, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 2116, 13, 834, 48678, 62, 49283, 11, 1635, 2435, 5269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48678, 62, 14781, 2902, 13, 11250, 7, 10394, 28, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48678, 62, 14781, 2902, 13, 25928, 7, 808, 28, 15, 11, 5721, 28, 16, 8, 628, 220, 220, 220, 825, 2251, 62, 13812, 62, 3524, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 3359, 3091, 326, 11298, 477, 1459, 3709, 287, 262, 33178, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13812, 62, 3524, 796, 7343, 3524, 7, 10394, 28, 1270, 11, 6001, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13812, 62, 3524, 13, 25928, 7, 808, 28, 15, 11, 5721, 28, 17, 11, 5721, 12626, 28, 17, 8, 628, 220, 220, 220, 825, 2251, 62, 1759, 62, 16539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 262, 711, 4936, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 16539, 796, 20969, 7, 5239, 2625, 11002, 1600, 9647, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 16539, 17816, 21812, 20520, 796, 2116, 13, 1759, 62, 11930, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46002, 62, 16539, 13, 25928, 7, 808, 28, 16, 11, 5721, 28, 17, 11, 279, 4597, 28, 20, 8, 628, 220, 220, 220, 825, 2251, 62, 2860, 62, 16539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 262, 4936, 284, 751, 262, 1459, 3815, 287, 262, 2008, 290, 26827, 4268, 2902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 656, 262, 33178, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 16539, 796, 20969, 7, 5239, 11639, 4550, 3256, 277, 70, 11639, 14809, 3256, 9647, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 16539, 17816, 21812, 20520, 796, 2116, 13, 19119, 62, 13812, 62, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 16539, 13, 25928, 7, 808, 28, 16, 11, 5721, 28, 15, 11, 279, 4597, 28, 20, 8, 628, 220, 220, 220, 825, 2251, 62, 33678, 62, 16539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 12233, 4936, 284, 12233, 3709, 422, 3359, 698, 1140, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33678, 62, 16539, 796, 20969, 7, 5239, 11639, 38727, 3256, 277, 70, 11639, 445, 3256, 9647, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33678, 62, 16539, 17816, 21812, 20520, 796, 2116, 13, 33678, 62, 34213, 62, 9186, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33678, 62, 16539, 13, 25928, 7, 808, 28, 16, 11, 5721, 28, 16, 11, 279, 4597, 28, 20, 8, 628, 220, 220, 220, 825, 2251, 62, 260, 18769, 62, 16539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 4936, 326, 3405, 13880, 262, 31028, 338, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 18769, 62, 16539, 796, 20969, 7, 5239, 11639, 28951, 1025, 309, 2915, 3256, 277, 70, 11639, 445, 3256, 9647, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 18769, 62, 16539, 17816, 21812, 20520, 796, 2116, 13, 260, 18769, 62, 45477, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 260, 18769, 62, 16539, 13, 25928, 7, 808, 28, 16, 11, 5721, 28, 18, 11, 279, 4597, 28, 20, 8, 628, 220, 220, 220, 825, 2251, 62, 13376, 62, 18242, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 6167, 284, 3359, 1459, 3722, 286, 262, 3355, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 62, 18242, 796, 36052, 7, 2411, 2086, 2625, 12818, 1600, 9647, 28, 1157, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 13376, 62, 18242, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 62, 18242, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 18, 11, 279, 4597, 28, 20, 8, 628, 220, 220, 220, 825, 2251, 62, 11338, 62, 16539, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 2245, 4936, 284, 2245, 13993, 22401, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 16539, 796, 20969, 7, 5239, 11639, 19485, 23911, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 13376, 62, 18242, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 16539, 17816, 21812, 20520, 796, 2116, 13, 11338, 62, 45477, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 16539, 13, 25928, 7, 808, 28, 17, 11, 5721, 28, 17, 11, 279, 4597, 28, 20, 8, 628, 220, 220, 220, 825, 12233, 62, 34213, 62, 9186, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1024, 40676, 262, 3058, 6163, 2378, 422, 262, 3359, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 1759, 4868, 13, 28956, 62, 1759, 4868, 62, 9186, 7, 944, 13, 13812, 62, 3524, 13, 66, 12321, 1564, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13812, 62, 3524, 13, 33678, 7, 944, 13, 13812, 62, 3524, 13, 66, 12321, 1564, 28955, 628, 220, 220, 220, 825, 711, 62, 11930, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3834, 24883, 294, 82, 1296, 284, 307, 2826, 319, 262, 31028, 338, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 834, 1759, 4868, 13, 271, 62, 28920, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 13376, 62, 18242, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13812, 62, 3524, 13, 33678, 7, 15, 11, 23578, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 612, 318, 257, 4704, 2491, 11, 356, 761, 284, 2245, 262, 3355, 11, 543, 481, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 886, 262, 4704, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 834, 21812, 62, 16663, 13, 271, 2348, 425, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1273, 33307, 5007, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 36500, 13, 11338, 62, 11930, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 21812, 62, 16663, 13, 22179, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 21812, 62, 16663, 796, 14122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 28, 944, 13, 834, 36500, 13, 5143, 62, 9503, 1746, 11, 26498, 16193, 944, 13, 834, 1759, 4868, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 21812, 62, 16663, 13, 9688, 3419, 628, 220, 220, 220, 825, 4296, 62, 13812, 62, 3524, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20969, 24783, 329, 262, 3060, 20969, 357, 17953, 62, 2860, 62, 16539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2008, 62, 7753, 796, 2116, 13, 834, 14781, 2902, 62, 49283, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 796, 2116, 13, 834, 48678, 62, 49283, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 1759, 4868, 13, 2860, 62, 1759, 4868, 62, 9186, 7, 15588, 62, 7753, 11, 2116, 13, 34694, 2606, 4694, 58, 48678, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13812, 62, 3524, 13, 28463, 7, 10619, 11, 45144, 15, 92, 220, 220, 1391, 16, 92, 1911, 18982, 7, 48678, 11, 2008, 62, 7753, 4008, 628, 220, 220, 220, 825, 2245, 62, 45477, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20969, 24783, 329, 262, 13707, 20969, 357, 17953, 62, 11338, 62, 16539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 36500, 13, 11338, 62, 11930, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 13376, 62, 18242, 7, 15, 8, 628, 220, 220, 220, 825, 20149, 62, 45477, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20969, 24783, 329, 262, 50204, 20969, 357, 17953, 62, 260, 18769, 62, 16539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 13376, 62, 18242, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 36500, 13, 260, 18769, 62, 79, 271, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 900, 62, 13376, 62, 18242, 7, 944, 11, 1181, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28090, 262, 3722, 6167, 284, 262, 1459, 3722, 286, 262, 13993, 22401, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1181, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 62, 18242, 13, 11250, 7, 5239, 11639, 36530, 3256, 277, 70, 11639, 14809, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1181, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 62, 18242, 13, 11250, 7, 5239, 11639, 3673, 23911, 3256, 277, 70, 11639, 445, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19580, 6167, 1181, 1391, 15, 92, 407, 4855, 13, 9993, 352, 393, 362, 4458, 18982, 7, 5219, 4008, 628, 220, 220, 220, 825, 651, 62, 36500, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 31028, 11930, 3642, 36667, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 36500, 628, 198, 2, 5660, 262, 25757, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 256, 74, 62, 17497, 796, 309, 74, 7, 4871, 5376, 2625, 38729, 22401, 4943, 198, 220, 220, 220, 5739, 796, 9683, 273, 27703, 7, 9866, 28, 30488, 62, 17497, 8, 198, 220, 220, 220, 256, 74, 62, 17497, 13, 12417, 26268, 3419, 198, 220, 220, 220, 5739, 13, 1136, 62, 36500, 22446, 11338, 62, 11930, 3419, 198 ]
2.258017
2,713
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from enum import Enum
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 16529, 35937, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 16529, 35937, 198, 198, 6738, 33829, 1330, 2039, 388, 628 ]
6.140351
57
from datetime import datetime # def days (d): # now = datetime.now if __name__ == "__main__": # u = int(input("What is your age?")) # d = int(input("What month were you born in?"") print (datetime.now)
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 2, 825, 1528, 357, 67, 2599, 198, 2, 220, 220, 220, 220, 783, 796, 4818, 8079, 13, 2197, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 334, 796, 493, 7, 15414, 7203, 2061, 318, 534, 2479, 1701, 4008, 198, 220, 220, 220, 1303, 288, 796, 493, 7, 15414, 7203, 2061, 1227, 547, 345, 4642, 287, 1701, 4943, 198, 220, 220, 220, 3601, 357, 19608, 8079, 13, 2197, 8, 198 ]
2.588235
85
import os, mock from pyfakefs import fake_filesystem_unittest from observer import FakeObserver from qtcwatchdog.qtcwatchdog import QtcWatchdog from qtcwatchdog.watcher import ProjectWatcher
[ 11748, 28686, 11, 15290, 198, 6738, 12972, 30706, 9501, 1330, 8390, 62, 16624, 6781, 62, 403, 715, 395, 198, 6738, 22890, 1330, 33482, 31310, 18497, 198, 198, 6738, 10662, 23047, 8340, 9703, 13, 80, 23047, 8340, 9703, 1330, 1195, 23047, 10723, 9703, 198, 6738, 10662, 23047, 8340, 9703, 13, 86, 34734, 1330, 4935, 54, 34734, 628, 198 ]
3.403509
57
# Copyright 2020 Jamie Thompson. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import numpy as np from tabulate import tabulate from matplotlib import pyplot as plt if __name__ == "__main__": main()
[ 2, 15069, 12131, 17826, 11654, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.682051
195
import pybedtools import sys import argparse # Function which takes in a sites file and produces a query file. # Sites file looks like (these are 1-based coords): # 22:50988105:G:A # # Query file looks like: # #Index Reference Alternate Chrom Pos Ref Alt Identifier DataType #0 TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACATTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT TTTCTCCAAATACAGATCCAATGTCTTCACTTGTCTATTAAATGCCTCCCATTCCAAATATGATTACCTCTCCCCAGCTCCAATTAAGTCCCTTCTTTCCCCTCTTACTACCGCTTTCTTCCATGTGCCTCTTACAACACCATGGAGACACTTTTCATTTGTGCTTCTTTCATGCAGTTAGCCAAGCTTGTCAAGTTTTTTTTTTTTTGAAAAAAAAAAAAAATACATACATATATATATATATAATTTTTTTTCCCCTCACTATGTTGCCCAGATTGGTCTTGAACTACCGGGCTCAAGT 16 27557749 T C rs7198785_S-3AAAA cytoscan # given 1-based pos coordinate, extract seqs and return the 2 seqs for query, one with the ref and one with the alt alleles # reftest,alttest = Site2Seqs(22,50988105,'G','A',ARGS.Fasta) # print(reftest) # print(alttest) if __name__=="__main__": Main()
[ 11748, 12972, 3077, 31391, 198, 11748, 25064, 198, 11748, 1822, 29572, 628, 628, 198, 2, 15553, 543, 2753, 287, 257, 5043, 2393, 290, 11073, 257, 12405, 2393, 13, 198, 2, 37034, 2393, 3073, 588, 357, 27218, 389, 352, 12, 3106, 763, 3669, 2599, 198, 2, 2534, 25, 29022, 3459, 13348, 25, 38, 25, 32, 198, 2, 220, 198, 2, 43301, 2393, 3073, 588, 25, 198, 2, 1303, 15732, 197, 26687, 197, 23081, 378, 197, 1925, 398, 197, 21604, 197, 8134, 197, 29161, 197, 33234, 7483, 197, 6601, 6030, 198, 2, 15, 197, 15751, 51, 4177, 4093, 3838, 1404, 2246, 4760, 1404, 4093, 32, 1404, 19555, 4177, 4825, 10659, 51, 19555, 4177, 17139, 3838, 1404, 38, 4093, 51, 46361, 17139, 4093, 3838, 1404, 1404, 38, 17139, 2246, 4177, 4177, 4093, 4093, 4760, 4177, 4093, 32, 17139, 3838, 19555, 4093, 4177, 51, 4177, 15751, 4093, 4093, 51, 4177, 51, 10659, 26861, 38, 4177, 15751, 4177, 51, 4093, 1404, 19555, 38, 4093, 51, 4177, 51, 26576, 2246, 26861, 1404, 11190, 4760, 2246, 1404, 15751, 51, 4825, 1404, 15751, 19555, 38, 4177, 51, 4177, 51, 4825, 1404, 15916, 4760, 15751, 4760, 4093, 3838, 38, 4177, 35990, 4825, 3838, 38, 15751, 15751, 15751, 15751, 15751, 15751, 35990, 43488, 17922, 32, 1404, 2246, 1404, 2246, 1404, 1404, 1404, 1404, 1404, 1404, 13563, 1404, 15751, 15751, 15751, 51, 4093, 4093, 4825, 10659, 1404, 38, 15751, 38, 46361, 4760, 17139, 11190, 51, 4177, 51, 9273, 10659, 26861, 11190, 38, 4177, 34, 3838, 19555, 197, 15751, 51, 4177, 4093, 3838, 1404, 2246, 4760, 1404, 4093, 32, 1404, 19555, 4177, 4825, 10659, 51, 19555, 4177, 17139, 3838, 1404, 38, 4093, 51, 46361, 17139, 4093, 3838, 1404, 1404, 38, 17139, 2246, 4177, 4177, 4093, 4093, 4760, 4177, 4093, 32, 17139, 3838, 19555, 4093, 4177, 51, 4177, 15751, 4093, 4093, 51, 4177, 51, 10659, 26861, 38, 4177, 15751, 4177, 51, 4093, 1404, 19555, 38, 4093, 51, 4177, 51, 26576, 2246, 26861, 1404, 11190, 4760, 2246, 10659, 15751, 4825, 1404, 15751, 19555, 38, 4177, 51, 4177, 51, 4825, 1404, 15916, 4760, 15751, 4760, 4093, 3838, 38, 4177, 35990, 4825, 3838, 38, 15751, 15751, 15751, 15751, 15751, 15751, 35990, 43488, 17922, 32, 1404, 2246, 1404, 2246, 1404, 1404, 1404, 1404, 1404, 1404, 13563, 1404, 15751, 15751, 15751, 51, 4093, 4093, 4825, 10659, 1404, 38, 15751, 38, 46361, 4760, 17139, 11190, 51, 4177, 51, 9273, 10659, 26861, 11190, 38, 4177, 34, 3838, 19555, 197, 1433, 197, 1983, 2816, 3324, 2920, 197, 51, 197, 34, 197, 3808, 22, 22337, 41172, 62, 50, 12, 18, 17922, 197, 948, 83, 418, 5171, 198, 198, 2, 1813, 352, 12, 3106, 1426, 20435, 11, 7925, 33756, 82, 290, 1441, 262, 362, 33756, 82, 329, 12405, 11, 530, 351, 262, 1006, 290, 530, 351, 262, 5988, 28654, 829, 628, 198, 2, 197, 260, 701, 395, 11, 282, 926, 395, 796, 14413, 17, 4653, 48382, 7, 1828, 11, 29022, 3459, 13348, 4032, 38, 41707, 32, 3256, 1503, 14313, 13, 22968, 64, 8, 198, 2, 197, 4798, 7, 260, 701, 395, 8, 198, 2, 197, 4798, 7, 282, 926, 395, 8, 628, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 197, 13383, 3419, 628 ]
2.262357
526
from .node import KpiNode __all__ = ["KpiNode"]
[ 6738, 764, 17440, 1330, 509, 14415, 19667, 198, 198, 834, 439, 834, 796, 14631, 42, 14415, 19667, 8973, 198 ]
2.578947
19
import unittest import numpy as np from Solvers.Frank_Wolfe_Solver_Static import Frank_Wolfe_Solver from Solvers.Path_Based_Frank_Wolfe_Solver import Path_Based_Frank_Wolfe_Solver #from Solvers.Decomposition_Solver import Decomposition_Solver from Model_Manager.Link_Model_Manager import Link_Model_Manager_class from Java_Connection import Java_Connection from Data_Types.Demand_Assignment_Class import Demand_Assignment_class import os import inspect class TestStatic(unittest.TestCase): @classmethod ''' def test_decomposition_solver(self): number_of_subproblems = 1 start_time1 = timeit.default_timer() assignment_dec, error = Decomposition_Solver(self.traffic_scenario, self.Cost_Function, number_of_subproblems) print "Decomposition finished with error ", error elapsed1 = timeit.default_timer() - start_time1 print ("Decomposition Path-based took %s seconds" % elapsed1) '''
[ 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4294, 690, 13, 17439, 62, 32069, 68, 62, 50, 14375, 62, 45442, 1330, 5278, 62, 32069, 68, 62, 50, 14375, 198, 6738, 4294, 690, 13, 15235, 62, 15001, 62, 17439, 62, 32069, 68, 62, 50, 14375, 1330, 10644, 62, 15001, 62, 17439, 62, 32069, 68, 62, 50, 14375, 198, 2, 6738, 4294, 690, 13, 10707, 296, 9150, 62, 50, 14375, 1330, 4280, 296, 9150, 62, 50, 14375, 198, 6738, 9104, 62, 13511, 13, 11280, 62, 17633, 62, 13511, 1330, 7502, 62, 17633, 62, 13511, 62, 4871, 198, 6738, 7349, 62, 32048, 1330, 7349, 62, 32048, 198, 6738, 6060, 62, 31431, 13, 42782, 62, 8021, 16747, 62, 9487, 1330, 34479, 62, 8021, 16747, 62, 4871, 198, 198, 11748, 28686, 198, 11748, 10104, 628, 198, 4871, 6208, 45442, 7, 403, 715, 395, 13, 14402, 20448, 2599, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 825, 1332, 62, 12501, 296, 9150, 62, 82, 14375, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 7266, 1676, 22143, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 16, 796, 640, 270, 13, 12286, 62, 45016, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16237, 62, 12501, 11, 4049, 796, 4280, 296, 9150, 62, 50, 14375, 7, 944, 13, 9535, 2108, 62, 1416, 39055, 11, 2116, 13, 13729, 62, 22203, 11, 1271, 62, 1659, 62, 7266, 1676, 22143, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 10707, 296, 9150, 5201, 351, 4049, 33172, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 42118, 16, 796, 640, 270, 13, 12286, 62, 45016, 3419, 532, 923, 62, 2435, 16, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 5855, 10707, 296, 9150, 10644, 12, 3106, 1718, 220, 4064, 82, 4201, 1, 4064, 42118, 16, 8, 198, 220, 220, 220, 705, 7061 ]
2.882175
331
from unittest import TestCase from network_filters import LatencyFilter, HostLatencyService
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 3127, 62, 10379, 1010, 1330, 5476, 1387, 22417, 11, 14504, 24220, 1387, 16177, 628, 628, 198 ]
3.730769
26
#!/usr/bin/env python import os import platform from setuptools import setup from pip.req import parse_requirements req_file = 'requirements.txt' install_reqs = parse_requirements(req_file, session=False) reqs = [str(ir.req) for ir in install_reqs] del os.link setup( author='Jim Kennedy', author_email='[email protected]', description='Api for kilnshare.co.uk', install_requires=reqs, name='kiln_share', packages=['kiln_share'], version='0.0.1', )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 28686, 198, 11748, 3859, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 6738, 7347, 13, 42180, 1330, 21136, 62, 8897, 18883, 198, 198, 42180, 62, 7753, 796, 705, 8897, 18883, 13, 14116, 6, 198, 17350, 62, 42180, 82, 796, 21136, 62, 8897, 18883, 7, 42180, 62, 7753, 11, 6246, 28, 25101, 8, 198, 42180, 82, 796, 685, 2536, 7, 343, 13, 42180, 8, 329, 4173, 287, 2721, 62, 42180, 82, 60, 198, 12381, 28686, 13, 8726, 198, 198, 40406, 7, 198, 220, 220, 220, 1772, 11639, 18050, 10401, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 73, 320, 31, 74, 48988, 19149, 4267, 13, 1073, 13, 2724, 3256, 198, 220, 220, 220, 6764, 11639, 32, 14415, 329, 8769, 77, 20077, 13, 1073, 13, 2724, 3256, 198, 220, 220, 220, 2721, 62, 47911, 28, 42180, 82, 11, 198, 220, 220, 220, 1438, 11639, 34553, 77, 62, 20077, 3256, 198, 220, 220, 220, 10392, 28, 17816, 34553, 77, 62, 20077, 6, 4357, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 16, 3256, 198, 8, 198 ]
2.588235
187
from api.filters import IngredientFilter, TagOrAuthorFilter from api.pagination import CustomPagination from api.serializers import (CustomRecipeSerializer, IngredientSerializer, RecipeSerializer, TagSerializer) from django.db.models import Sum from django.http import HttpResponse from django.shortcuts import get_object_or_404 from django_filters.rest_framework import DjangoFilterBackend from recipes.models import (Favorite, Ingredient, IngredientRecipe, Recipe, Shopping_Cart, Tag) from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfgen import canvas from rest_framework import status, viewsets from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.viewsets import ReadOnlyModelViewSet
[ 6738, 40391, 13, 10379, 1010, 1330, 17589, 445, 1153, 22417, 11, 17467, 5574, 13838, 22417, 198, 6738, 40391, 13, 79, 363, 1883, 1330, 8562, 47, 363, 1883, 198, 6738, 40391, 13, 46911, 11341, 1330, 357, 15022, 37523, 32634, 7509, 11, 17589, 445, 1153, 32634, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26694, 32634, 7509, 11, 17467, 32634, 7509, 8, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 5060, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 62, 10379, 1010, 13, 2118, 62, 30604, 1330, 37770, 22417, 7282, 437, 198, 6738, 14296, 13, 27530, 1330, 357, 49434, 11, 17589, 445, 1153, 11, 17589, 445, 1153, 37523, 11, 26694, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39109, 62, 43476, 11, 17467, 8, 198, 6738, 989, 23912, 13, 12315, 8692, 1330, 37124, 4164, 10466, 198, 6738, 989, 23912, 13, 12315, 8692, 13, 926, 10331, 82, 1330, 309, 10234, 756, 198, 6738, 989, 23912, 13, 12315, 5235, 1330, 21978, 198, 6738, 1334, 62, 30604, 1330, 3722, 11, 5009, 1039, 198, 6738, 1334, 62, 30604, 13, 12501, 273, 2024, 1330, 2223, 198, 6738, 1334, 62, 30604, 13, 525, 8481, 1330, 1148, 47649, 3474, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 3486, 3824, 769, 198, 6738, 1334, 62, 30604, 13, 1177, 28709, 1330, 4149, 10049, 17633, 7680, 7248, 628, 628, 628 ]
3.269625
293
"""fix affaire abandon default value Revision ID: 5a8069c68433 Revises: ee79f1259c77 Create Date: 2021-09-06 16:28:58.437853 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '5a8069c68433' down_revision = 'ee79f1259c77' branch_labels = None depends_on = None
[ 37811, 13049, 1527, 7626, 6871, 4277, 1988, 198, 198, 18009, 1166, 4522, 25, 642, 64, 1795, 3388, 66, 41580, 2091, 198, 18009, 2696, 25, 304, 68, 3720, 69, 1065, 3270, 66, 3324, 198, 16447, 7536, 25, 33448, 12, 2931, 12, 3312, 1467, 25, 2078, 25, 3365, 13, 19, 30695, 4310, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 20, 64, 1795, 3388, 66, 41580, 2091, 6, 198, 2902, 62, 260, 10178, 796, 705, 1453, 3720, 69, 1065, 3270, 66, 3324, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 198 ]
2.577236
123
from config import db from models.Pilot import Pilot from models.HelicopteroDeCombate import HelicopteroDeCombate
[ 6738, 4566, 1330, 20613, 198, 6738, 4981, 13, 47, 23439, 1330, 21697, 198, 6738, 4981, 13, 12621, 291, 32563, 78, 5005, 20575, 378, 1330, 48574, 32563, 78, 5005, 20575, 378, 198 ]
3.677419
31
#questão 4 num1 = float(input("Digite o primeiro valor: \n")) num2 = float(input("Digite o segundo valor: \n")) num3 = float(input("Digite o terceiro valor: \n")) if(num1 > num2 > num3 or num1 == num2 > num3 or num1 > num2 == num3): maior = num1 segundo = num2 menor = num3 elif num1 > num2 < num3 or num1 == num2 < num3 or num1 > num2 == num3: maior = num1 segundo = num3 menor = num2 if(num2 > num1 > num3 or num2 == num1 > num3 or num2 > num1 == num3): maior = num2 segundo = num1 menor = num3 elif (num2 > num1 < num3 or num2 == num1 < num3 or num2 > num1 == num3): maior = num2 segundo = num3 menor = num1 if(num3 > num1 > num2 or num3 == num1 > num2 or num3 > num1 == num2): maior = num3 segundo = num1 menor = num2 elif (num3 > num1 < num2 or num3 == num1 < num2 or num3 > num1 == num2): maior = num3 segundo = num2 menor = num1 if num1 == num2 == num3: maior = num1 iguais = maior print("Iguais: [", iguais,"]") exit() print("Maior: [", maior, "] | Segundo: [", segundo, "] | Menor: ", [menor])
[ 2, 6138, 28749, 604, 198, 198, 22510, 16, 796, 12178, 7, 15414, 7203, 19511, 578, 267, 6994, 7058, 1188, 273, 25, 3467, 77, 48774, 198, 22510, 17, 796, 12178, 7, 15414, 7203, 19511, 578, 267, 384, 70, 41204, 1188, 273, 25, 3467, 77, 48774, 198, 22510, 18, 796, 12178, 7, 15414, 7203, 19511, 578, 267, 1059, 344, 7058, 1188, 273, 25, 3467, 77, 48774, 198, 361, 7, 22510, 16, 1875, 997, 17, 1875, 997, 18, 393, 997, 16, 6624, 997, 17, 1875, 997, 18, 393, 997, 16, 1875, 997, 17, 6624, 997, 18, 2599, 198, 220, 220, 220, 17266, 1504, 796, 997, 16, 198, 220, 220, 220, 384, 70, 41204, 796, 997, 17, 198, 220, 220, 220, 1450, 273, 796, 997, 18, 198, 417, 361, 997, 16, 1875, 997, 17, 1279, 997, 18, 393, 997, 16, 6624, 997, 17, 1279, 997, 18, 393, 997, 16, 1875, 997, 17, 6624, 997, 18, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 997, 16, 198, 220, 220, 220, 220, 220, 220, 220, 384, 70, 41204, 796, 997, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 796, 997, 17, 198, 361, 7, 22510, 17, 1875, 997, 16, 1875, 997, 18, 393, 997, 17, 6624, 997, 16, 1875, 997, 18, 393, 997, 17, 1875, 997, 16, 6624, 997, 18, 2599, 198, 220, 220, 220, 17266, 1504, 796, 997, 17, 198, 220, 220, 220, 384, 70, 41204, 796, 997, 16, 198, 220, 220, 220, 1450, 273, 796, 997, 18, 198, 417, 361, 357, 22510, 17, 1875, 997, 16, 1279, 997, 18, 393, 997, 17, 6624, 997, 16, 1279, 997, 18, 393, 997, 17, 1875, 997, 16, 6624, 997, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 997, 17, 198, 220, 220, 220, 220, 220, 220, 220, 384, 70, 41204, 796, 997, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 796, 997, 16, 198, 361, 7, 22510, 18, 1875, 997, 16, 1875, 997, 17, 393, 997, 18, 6624, 997, 16, 1875, 997, 17, 393, 997, 18, 1875, 997, 16, 6624, 997, 17, 2599, 198, 220, 220, 220, 17266, 1504, 796, 997, 18, 198, 220, 220, 220, 384, 70, 41204, 796, 997, 16, 198, 220, 220, 220, 1450, 273, 796, 997, 17, 198, 417, 361, 357, 22510, 18, 1875, 997, 16, 1279, 997, 17, 393, 997, 18, 6624, 997, 16, 1279, 997, 17, 393, 997, 18, 1875, 997, 16, 6624, 997, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 796, 997, 18, 198, 220, 220, 220, 220, 220, 220, 220, 384, 70, 41204, 796, 997, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 796, 997, 16, 198, 361, 997, 16, 6624, 997, 17, 6624, 997, 18, 25, 198, 220, 220, 220, 17266, 1504, 796, 997, 16, 198, 220, 220, 220, 45329, 6413, 271, 796, 17266, 1504, 198, 220, 220, 220, 3601, 7203, 40, 5162, 15152, 25, 685, 1600, 45329, 6413, 271, 553, 60, 4943, 198, 220, 220, 220, 8420, 3419, 198, 198, 4798, 7203, 21467, 1504, 25, 685, 1600, 17266, 1504, 11, 366, 60, 930, 31220, 41204, 25, 685, 1600, 384, 70, 41204, 11, 366, 60, 930, 6065, 273, 25, 33172, 685, 3653, 273, 12962 ]
2.092764
539
# -*- coding: utf-8 -*- """ Created on Wed Apr 10 15:53:54 2019 @author: Asun """ import matplotlib.pyplot as plt import numpy as np
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 2758, 838, 1315, 25, 4310, 25, 4051, 13130, 198, 198, 31, 9800, 25, 1081, 403, 198, 37811, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941 ]
2.481481
54
import time import requests from utils import save_results if __name__ == '__main__': main()
[ 11748, 640, 198, 198, 11748, 7007, 198, 198, 6738, 3384, 4487, 1330, 3613, 62, 43420, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.891892
37
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function # Python 3 behaviour in Py2 import numpy as np from finitediff import derivatives_at_point_by_finite_diff, interpolate_by_finite_diff def demo_usage(n_data=50, n_fit=537, nhead=5, ntail=5, plot=False, alt=0): """ Plots a noisy sine curve and the fitting to it. Also presents the error and the error in the approximation of its first derivative (cosine curve) Usage example for benchmarking: $ time python sine.py --nhead 3 --ntail 3 --n-fit 500000 --n-data 50000 Usage example for plotting: $ python sine.py --nhead 1 --ntail 1 --plot """ x0, xend = 0, 5 # shaky linspace -5% to +5% noise x_data = ( np.linspace(x0, xend, n_data) + np.random.rand(n_data) * (xend - x0) / n_data / 1.5 ) y_data = np.sin(x_data) * (1.0 + 0.1 * (np.random.rand(n_data) - 0.5)) x_fit = np.linspace(x0, xend, n_fit) # Edges behave badly, work around: x_fit[0] = x_fit[0] + (x_fit[1] - x_fit[0]) / 2 x_fit[-1] = x_fit[-2] + (x_fit[-1] - x_fit[-2]) / 2 if alt: y_fit = np.empty(n_fit) dydx_fit = np.empty(n_fit) for i, xf in enumerate(x_fit): # get index j of first data point beyond xf j = np.where(x_data > xf)[0][0] lower_bound = max(0, j - alt) upper_bound = min(n_data - 1, j + alt) y_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 0 ) dydx_fit[i] = derivatives_at_point_by_finite_diff( x_data[lower_bound:upper_bound], y_data[lower_bound:upper_bound], xf, 1 )[1] else: interp = interpolate_by_finite_diff(x_data, y_data, x_fit, 1, nhead, ntail) y_fit = interp[:, 0] dydx_fit = interp[:, 1] if plot: import matplotlib.pyplot as plt plt.subplot(221) plt.plot(x_data, y_data, "x", label="Data points (sin)") plt.plot(x_fit, y_fit, "-", label="Fitted curve (order=0)") plt.plot(x_data, np.sin(x_data), "-", label="Analytic sin(x)") plt.legend() plt.subplot(222) plt.plot(x_fit, y_fit - np.sin(x_fit), label="Error in order=0") plt.legend() plt.subplot(223) plt.plot(x_fit, dydx_fit, "-", label="Fitted derivative (order=1)") plt.plot(x_data, np.cos(x_data), "-", label="Analytic cos(x)") plt.legend() plt.subplot(224) plt.plot(x_fit, dydx_fit - np.cos(x_fit), label="Error in order=1") plt.legend() plt.show() if __name__ == "__main__": try: from argh import dispatch_command except ImportError: dispatch_command(demo_usage)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 220, 1303, 11361, 513, 9172, 287, 9485, 17, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 957, 863, 733, 1330, 28486, 62, 265, 62, 4122, 62, 1525, 62, 69, 9504, 62, 26069, 11, 39555, 378, 62, 1525, 62, 69, 9504, 62, 26069, 628, 198, 4299, 13605, 62, 26060, 7, 77, 62, 7890, 28, 1120, 11, 299, 62, 11147, 28, 46096, 11, 299, 2256, 28, 20, 11, 299, 13199, 28, 20, 11, 7110, 28, 25101, 11, 5988, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1345, 1747, 257, 31210, 264, 500, 12133, 290, 262, 15830, 284, 340, 13, 198, 220, 220, 220, 4418, 10969, 262, 4049, 290, 262, 4049, 287, 262, 198, 220, 220, 220, 40874, 286, 663, 717, 27255, 357, 6966, 500, 12133, 8, 628, 220, 220, 220, 29566, 1672, 329, 18335, 278, 25, 628, 220, 220, 220, 720, 640, 21015, 264, 500, 13, 9078, 1377, 77, 2256, 513, 1377, 429, 603, 513, 1377, 77, 12, 11147, 5323, 830, 1377, 77, 12, 7890, 642, 2388, 628, 220, 220, 220, 29566, 1672, 329, 29353, 25, 628, 220, 220, 220, 720, 21015, 264, 500, 13, 9078, 1377, 77, 2256, 352, 1377, 429, 603, 352, 1377, 29487, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2124, 15, 11, 2124, 437, 796, 657, 11, 642, 198, 220, 220, 220, 1303, 35335, 300, 1040, 10223, 532, 20, 4, 284, 1343, 20, 4, 7838, 198, 220, 220, 220, 2124, 62, 7890, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 87, 15, 11, 2124, 437, 11, 299, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 45941, 13, 25120, 13, 25192, 7, 77, 62, 7890, 8, 1635, 357, 87, 437, 532, 2124, 15, 8, 1220, 299, 62, 7890, 1220, 352, 13, 20, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 331, 62, 7890, 796, 45941, 13, 31369, 7, 87, 62, 7890, 8, 1635, 357, 16, 13, 15, 1343, 657, 13, 16, 1635, 357, 37659, 13, 25120, 13, 25192, 7, 77, 62, 7890, 8, 532, 657, 13, 20, 4008, 628, 220, 220, 220, 2124, 62, 11147, 796, 45941, 13, 21602, 10223, 7, 87, 15, 11, 2124, 437, 11, 299, 62, 11147, 8, 628, 220, 220, 220, 1303, 1717, 3212, 17438, 11234, 11, 670, 1088, 25, 198, 220, 220, 220, 2124, 62, 11147, 58, 15, 60, 796, 2124, 62, 11147, 58, 15, 60, 1343, 357, 87, 62, 11147, 58, 16, 60, 532, 2124, 62, 11147, 58, 15, 12962, 1220, 362, 198, 220, 220, 220, 2124, 62, 11147, 58, 12, 16, 60, 796, 2124, 62, 11147, 58, 12, 17, 60, 1343, 357, 87, 62, 11147, 58, 12, 16, 60, 532, 2124, 62, 11147, 58, 12, 17, 12962, 1220, 362, 628, 220, 220, 220, 611, 5988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 11147, 796, 45941, 13, 28920, 7, 77, 62, 11147, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 5173, 87, 62, 11147, 796, 45941, 13, 28920, 7, 77, 62, 11147, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2124, 69, 287, 27056, 378, 7, 87, 62, 11147, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 6376, 474, 286, 717, 1366, 966, 3675, 2124, 69, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 45941, 13, 3003, 7, 87, 62, 7890, 1875, 2124, 69, 38381, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 62, 7784, 796, 3509, 7, 15, 11, 474, 532, 5988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6727, 62, 7784, 796, 949, 7, 77, 62, 7890, 532, 352, 11, 474, 1343, 5988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 11147, 58, 72, 60, 796, 28486, 62, 265, 62, 4122, 62, 1525, 62, 69, 9504, 62, 26069, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 7890, 58, 21037, 62, 7784, 25, 45828, 62, 7784, 4357, 331, 62, 7890, 58, 21037, 62, 7784, 25, 45828, 62, 7784, 4357, 2124, 69, 11, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 5173, 87, 62, 11147, 58, 72, 60, 796, 28486, 62, 265, 62, 4122, 62, 1525, 62, 69, 9504, 62, 26069, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 7890, 58, 21037, 62, 7784, 25, 45828, 62, 7784, 4357, 331, 62, 7890, 58, 21037, 62, 7784, 25, 45828, 62, 7784, 4357, 2124, 69, 11, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 987, 79, 796, 39555, 378, 62, 1525, 62, 69, 9504, 62, 26069, 7, 87, 62, 7890, 11, 331, 62, 7890, 11, 2124, 62, 11147, 11, 352, 11, 299, 2256, 11, 299, 13199, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 11147, 796, 987, 79, 58, 45299, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 288, 5173, 87, 62, 11147, 796, 987, 79, 58, 45299, 352, 60, 628, 220, 220, 220, 611, 7110, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 26115, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 7890, 11, 331, 62, 7890, 11, 366, 87, 1600, 6167, 2625, 6601, 2173, 357, 31369, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 11147, 11, 331, 62, 11147, 11, 27444, 1600, 6167, 2625, 37, 2175, 12133, 357, 2875, 28, 15, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 7890, 11, 45941, 13, 31369, 7, 87, 62, 7890, 828, 27444, 1600, 6167, 2625, 37702, 13370, 7813, 7, 87, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 23148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 11147, 11, 331, 62, 11147, 532, 45941, 13, 31369, 7, 87, 62, 11147, 828, 6167, 2625, 12331, 287, 1502, 28, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 22047, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 11147, 11, 288, 5173, 87, 62, 11147, 11, 27444, 1600, 6167, 2625, 37, 2175, 27255, 357, 2875, 28, 16, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 7890, 11, 45941, 13, 6966, 7, 87, 62, 7890, 828, 27444, 1600, 6167, 2625, 37702, 13370, 8615, 7, 87, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 24137, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 62, 11147, 11, 288, 5173, 87, 62, 11147, 532, 45941, 13, 6966, 7, 87, 62, 11147, 828, 6167, 2625, 12331, 287, 1502, 28, 16, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 610, 456, 1330, 27965, 62, 21812, 198, 220, 220, 220, 2845, 17267, 12331, 25, 628, 220, 220, 220, 27965, 62, 21812, 7, 9536, 78, 62, 26060, 8, 198 ]
2.02149
1,396
# Copyright (C) 2020 Commissariat a l'energie atomique et aux energies alternatives (CEA) # and others. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Mdspan(CMakePackage): """Reference implementation of mdspan targeting C++23.""" homepage = "https://github.com/Kokkos/mdspan" git = "https://github.com/Kokkos/mdspan.git" url = "https://github.com/kokkos/mdspan/archive/refs/tags/mdspan-0.2.0.tar.gz" maintainers = ['crtrott'] version('stable', branch='stable', preferred=True) version('0.2.0', sha256='1ce8e2be0588aa6f2ba34c930b06b892182634d93034071c0157cb78fa294212', extension='tar.gz') version('0.1.0', sha256='24c1e4be4870436c6c5e80d38870721b0b6252185b8288d00d8f3491dfba754b', extension='tar.gz') depends_on("[email protected]:", type='build') variant('cxx_standard', default='DETECT', description="Override the default CXX_STANDARD to compile with.", values=('DETECT', '14', '17', '20'))
[ 2, 15069, 357, 34, 8, 12131, 1520, 747, 21621, 257, 300, 6, 877, 22699, 22037, 2350, 2123, 27506, 27598, 14693, 357, 5222, 32, 8, 198, 2, 290, 1854, 13, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 357, 25189, 4891, 12, 17, 13, 15, 6375, 17168, 8, 198, 198, 6738, 599, 441, 1330, 1635, 628, 198, 4871, 39762, 12626, 7, 34, 12050, 27813, 2599, 198, 220, 220, 220, 37227, 26687, 7822, 286, 45243, 12626, 10822, 327, 4880, 1954, 526, 15931, 628, 220, 220, 220, 34940, 796, 366, 5450, 1378, 12567, 13, 785, 14, 42, 482, 46150, 14, 9132, 12626, 1, 198, 220, 220, 220, 17606, 796, 366, 5450, 1378, 12567, 13, 785, 14, 42, 482, 46150, 14, 9132, 12626, 13, 18300, 1, 198, 220, 220, 220, 19016, 796, 366, 5450, 1378, 12567, 13, 785, 14, 32004, 46150, 14, 9132, 12626, 14, 17474, 14, 5420, 82, 14, 31499, 14, 9132, 12626, 12, 15, 13, 17, 13, 15, 13, 18870, 13, 34586, 1, 628, 220, 220, 220, 5529, 364, 796, 37250, 6098, 23528, 926, 20520, 628, 220, 220, 220, 2196, 10786, 31284, 3256, 220, 8478, 11639, 31284, 3256, 9871, 28, 17821, 8, 198, 220, 220, 220, 2196, 10786, 15, 13, 17, 13, 15, 3256, 427, 64, 11645, 11639, 16, 344, 23, 68, 17, 1350, 2713, 3459, 7252, 21, 69, 17, 7012, 2682, 66, 45418, 65, 3312, 65, 4531, 28727, 2075, 2682, 67, 24, 22572, 1821, 4869, 66, 486, 3553, 21101, 3695, 13331, 1959, 3682, 1065, 3256, 7552, 11639, 18870, 13, 34586, 11537, 198, 220, 220, 220, 2196, 10786, 15, 13, 16, 13, 15, 3256, 427, 64, 11645, 11639, 1731, 66, 16, 68, 19, 1350, 2780, 32869, 2623, 66, 21, 66, 20, 68, 1795, 67, 30460, 24038, 2481, 65, 15, 65, 21, 22800, 21652, 65, 23, 25270, 67, 405, 67, 23, 69, 2682, 6420, 7568, 7012, 41874, 65, 3256, 7552, 11639, 18870, 13, 34586, 11537, 628, 220, 220, 220, 8338, 62, 261, 7203, 11215, 539, 31, 18, 13, 1065, 25, 1600, 2099, 11639, 11249, 11537, 628, 220, 220, 220, 15304, 10786, 66, 5324, 62, 20307, 3256, 4277, 11639, 35, 2767, 9782, 3256, 6764, 2625, 37961, 262, 4277, 327, 8051, 62, 2257, 6981, 9795, 284, 17632, 351, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 28, 10786, 35, 2767, 9782, 3256, 705, 1415, 3256, 705, 1558, 3256, 705, 1238, 6, 4008, 198 ]
2.492683
410
# pylint: disable=unused-argument # start_marker from dagster import pipeline, solid @solid @solid @pipeline # end_marker
[ 2, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 198, 198, 2, 923, 62, 4102, 263, 198, 6738, 48924, 1706, 1330, 11523, 11, 4735, 628, 198, 31, 39390, 628, 198, 31, 39390, 628, 198, 31, 79, 541, 4470, 628, 198, 2, 886, 62, 4102, 263, 198 ]
2.729167
48
import ephem as eph import numpy as np from snakeskin.constants import SEC_TO_SIDRAD
[ 11748, 2462, 4411, 355, 304, 746, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 26042, 5116, 13, 9979, 1187, 1330, 10729, 62, 10468, 62, 50, 2389, 49, 2885, 198 ]
2.931034
29
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ astropy.cosmology contains classes and functions for cosmological distance measures and other cosmology-related calculations. See the `Astropy documentation <http://docs.astropy.org/en/latest/cosmology/index.html>`_ for more detailed usage examples and references. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from .velocities import *
[ 2, 49962, 739, 257, 513, 12, 565, 682, 347, 10305, 3918, 5964, 532, 766, 38559, 24290, 13, 81, 301, 198, 37811, 6468, 28338, 13, 6966, 29126, 4909, 6097, 290, 5499, 329, 8615, 76, 2770, 198, 30246, 5260, 290, 584, 8615, 29126, 12, 5363, 16765, 13, 198, 198, 6214, 262, 4600, 33751, 28338, 10314, 198, 27, 4023, 1378, 31628, 13, 459, 28338, 13, 2398, 14, 268, 14, 42861, 14, 6966, 29126, 14, 9630, 13, 6494, 29, 63, 62, 329, 517, 198, 15255, 6255, 8748, 6096, 290, 10288, 13, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28000, 1098, 62, 17201, 874, 8, 198, 198, 6738, 764, 626, 420, 871, 1330, 1635, 198 ]
3.246575
146
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-22 13:01 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 319, 2864, 12, 940, 12, 1828, 1511, 25, 486, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.8
55
# test module default_engine.py import pytest import logging import os import inspect import sys current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) from laylib import default_engine logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') """ @pytest.fixture def surface_env(scope="function"): pg.init() if not pg.display.get_init(): logging.info('unable to init display pygame') set_env = pg.display.set_mode((200, 200)) yield set_env # pg.quit() """ @pytest.fixture @pytest.mark.skip(reason="unskip this test if you're not using travis CI.") @pytest.mark.skip(reason="We can't exit the main_loop this way") @pytest.mark.skip(reason="will not be tested. User interaction") @pytest.mark.skip(reason="will be tested with resources module.")
[ 2, 1332, 8265, 4277, 62, 18392, 13, 9078, 198, 11748, 12972, 9288, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 10104, 198, 11748, 25064, 198, 198, 14421, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 1040, 806, 13, 1136, 7753, 7, 1040, 806, 13, 14421, 14535, 3419, 22305, 198, 8000, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 14421, 62, 15908, 8, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 2560, 62, 15908, 8, 198, 198, 6738, 3830, 8019, 1330, 4277, 62, 18392, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 11639, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 11537, 198, 198, 37811, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 4417, 62, 24330, 7, 29982, 2625, 8818, 1, 2599, 198, 220, 220, 220, 23241, 13, 15003, 3419, 198, 220, 220, 220, 611, 407, 23241, 13, 13812, 13, 1136, 62, 15003, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 403, 540, 284, 2315, 3359, 12972, 6057, 11537, 198, 220, 220, 220, 900, 62, 24330, 796, 23241, 13, 13812, 13, 2617, 62, 14171, 19510, 2167, 11, 939, 4008, 198, 220, 220, 220, 7800, 900, 62, 24330, 198, 220, 220, 220, 1303, 23241, 13, 47391, 3419, 198, 37811, 628, 198, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 7, 41181, 2625, 403, 48267, 428, 1332, 611, 345, 821, 407, 1262, 1291, 4703, 14514, 19570, 628, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 7, 41181, 2625, 1135, 460, 470, 8420, 262, 1388, 62, 26268, 428, 835, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 7, 41181, 2625, 10594, 407, 307, 6789, 13, 11787, 10375, 4943, 628, 198, 31, 9078, 9288, 13, 4102, 13, 48267, 7, 41181, 2625, 10594, 307, 6789, 351, 4133, 8265, 19570, 628 ]
2.705202
346
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common decoder interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo.core import base_layer from lingvo.core import beam_search_helper from lingvo.core import target_sequence_sampler class BaseDecoder(base_layer.BaseLayer): """Base class for all decoders.""" @classmethod def FProp(self, theta, encoder_outputs, targets): """Decodes `targets` given encoded source. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. encoder_outputs: a NestedMap computed by encoder. targets: A dict of string to tensors representing the targets one try to predict. Returns: A map from metric name (a python string) to a tuple (value, weight). Both value and weight are scalar Tensors. """ predictions = self.ComputePredictions(theta, encoder_outputs, targets) return self.ComputeLoss(theta, predictions, targets)[0] class BaseBeamSearchDecoder(BaseDecoder): """Decoder that does beam search.""" @classmethod @base_layer.initializer def BeamSearchDecode(self, encoder_outputs): # pylint: disable=line-too-long """Performs beam search based decoding. Args: encoder_outputs: the outputs of the encoder. returns: `.BeamSearchDecodeOutput`, A namedtuple whose elements are tensors. """ # pylint: enable=line-too-long raise NotImplementedError('Abstract method')
[ 2, 15069, 2864, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 17227, 875, 12342, 7071, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 6738, 18459, 13038, 13, 7295, 1330, 2779, 62, 29289, 198, 6738, 18459, 13038, 13, 7295, 1330, 15584, 62, 12947, 62, 2978, 525, 198, 6738, 18459, 13038, 13, 7295, 1330, 2496, 62, 43167, 62, 37687, 20053, 628, 198, 4871, 7308, 10707, 12342, 7, 8692, 62, 29289, 13, 14881, 49925, 2599, 198, 220, 37227, 14881, 1398, 329, 477, 875, 375, 364, 526, 15931, 628, 220, 2488, 4871, 24396, 628, 220, 825, 376, 24331, 7, 944, 11, 262, 8326, 11, 2207, 12342, 62, 22915, 82, 11, 6670, 2599, 198, 220, 220, 220, 37227, 10707, 4147, 4600, 83, 853, 1039, 63, 1813, 30240, 2723, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 262, 8326, 25, 317, 4600, 13, 45, 7287, 13912, 63, 2134, 7268, 19590, 6, 3815, 286, 428, 7679, 290, 198, 220, 220, 220, 220, 220, 220, 220, 663, 1751, 11685, 13, 198, 220, 220, 220, 220, 220, 2207, 12342, 62, 22915, 82, 25, 257, 399, 7287, 13912, 29231, 416, 2207, 12342, 13, 198, 220, 220, 220, 220, 220, 6670, 25, 317, 8633, 286, 4731, 284, 11192, 669, 10200, 262, 6670, 530, 1949, 284, 198, 220, 220, 220, 220, 220, 220, 220, 4331, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 3975, 422, 18663, 1438, 357, 64, 21015, 4731, 8, 284, 257, 46545, 357, 8367, 11, 3463, 737, 198, 220, 220, 220, 220, 220, 5747, 1988, 290, 3463, 389, 16578, 283, 40280, 669, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16277, 796, 2116, 13, 7293, 1133, 39156, 9278, 7, 1169, 8326, 11, 2207, 12342, 62, 22915, 82, 11, 6670, 8, 198, 220, 220, 220, 1441, 2116, 13, 7293, 1133, 43, 793, 7, 1169, 8326, 11, 16277, 11, 6670, 38381, 15, 60, 628, 198, 4871, 7308, 3856, 321, 18243, 10707, 12342, 7, 14881, 10707, 12342, 2599, 198, 220, 37227, 10707, 12342, 326, 857, 15584, 2989, 526, 15931, 628, 220, 2488, 4871, 24396, 628, 220, 2488, 8692, 62, 29289, 13, 36733, 7509, 628, 220, 825, 25855, 18243, 10707, 1098, 7, 944, 11, 2207, 12342, 62, 22915, 82, 2599, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 220, 220, 220, 37227, 5990, 23914, 15584, 2989, 1912, 39938, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 2207, 12342, 62, 22915, 82, 25, 262, 23862, 286, 262, 2207, 12342, 13, 198, 220, 220, 220, 5860, 25, 198, 220, 220, 220, 220, 220, 4600, 13, 3856, 321, 18243, 10707, 1098, 26410, 47671, 317, 3706, 83, 29291, 3025, 4847, 389, 11192, 669, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 7139, 28, 1370, 12, 18820, 12, 6511, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 23839, 2446, 11537, 198 ]
3.309774
665
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ ForML persistent unit tests. """ # pylint: disable=no-self-use from forml.runtime import asset class TestRegistry: """Registry unit tests.""" def test_get(self, registry: asset.Registry, project_name: asset.Project.Key, populated_lineage: asset.Lineage.Key): """Test lineage get.""" lineage = asset.Directory(registry).get(project_name).get(populated_lineage) assert lineage.key == populated_lineage
[ 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 37811, 198, 1890, 5805, 16218, 4326, 5254, 13, 198, 37811, 198, 2, 279, 2645, 600, 25, 15560, 28, 3919, 12, 944, 12, 1904, 198, 6738, 1296, 75, 13, 43282, 1330, 11171, 628, 198, 4871, 6208, 8081, 4592, 25, 198, 220, 220, 220, 37227, 8081, 4592, 4326, 5254, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 1136, 7, 944, 11, 20478, 25, 11171, 13, 8081, 4592, 11, 1628, 62, 3672, 25, 11171, 13, 16775, 13, 9218, 11, 22331, 62, 1370, 496, 25, 11171, 13, 13949, 496, 13, 9218, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 31144, 651, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 31144, 796, 11171, 13, 43055, 7, 2301, 4592, 737, 1136, 7, 16302, 62, 3672, 737, 1136, 7, 12924, 4817, 62, 1370, 496, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 31144, 13, 2539, 6624, 22331, 62, 1370, 496, 198 ]
3.550725
345
import requests BASE_URL = 'http://localhost:8000/api/v2/' # GET Avaliacoes """ response = requests.get(f'{BASE_URL}avaliacoes') print(response) print(response.status_code) avaliacoes = response.json() print(avaliacoes) print(avaliacoes.get('count')) print(avaliacoes.get('results')) """ # GET Cursos headers = { 'Authorization': 'Token 6e6ab3885e67fcc06fabc926a277b07c3bd86be8' } response = requests.get(f'{BASE_URL}cursos', headers=headers) print(response.json().get('results'))
[ 11748, 7007, 198, 198, 33, 11159, 62, 21886, 796, 705, 4023, 1378, 36750, 25, 33942, 14, 15042, 14, 85, 17, 14, 6, 198, 198, 2, 17151, 23587, 9607, 3028, 198, 37811, 198, 26209, 796, 7007, 13, 1136, 7, 69, 6, 90, 33, 11159, 62, 21886, 92, 615, 7344, 330, 3028, 11537, 198, 198, 4798, 7, 26209, 8, 198, 4798, 7, 26209, 13, 13376, 62, 8189, 8, 198, 198, 615, 7344, 330, 3028, 796, 2882, 13, 17752, 3419, 198, 198, 4798, 7, 615, 7344, 330, 3028, 8, 198, 4798, 7, 615, 7344, 330, 3028, 13, 1136, 10786, 9127, 6, 4008, 198, 4798, 7, 615, 7344, 330, 3028, 13, 1136, 10786, 43420, 6, 4008, 198, 37811, 198, 198, 2, 17151, 327, 1834, 418, 198, 50145, 796, 1391, 198, 220, 220, 220, 705, 13838, 1634, 10354, 705, 30642, 718, 68, 21, 397, 2548, 5332, 68, 3134, 69, 535, 3312, 36434, 66, 24, 2075, 64, 27019, 65, 2998, 66, 18, 17457, 4521, 1350, 23, 6, 198, 92, 198, 26209, 796, 7007, 13, 1136, 7, 69, 6, 90, 33, 11159, 62, 21886, 92, 66, 1834, 418, 3256, 24697, 28, 50145, 8, 198, 4798, 7, 26209, 13, 17752, 22446, 1136, 10786, 43420, 6, 4008, 198 ]
2.467337
199
from sklearn.cluster import KMeans import traceback from submissions.aartiste import election from submissions.aartiste import county_demographics trumpECHP = DataFrame() ''' Extract data from the CORGIS elections, and merge it with the CORGIS demographics. Both data sets are organized by county and state. ''' joint = {} elections = election.get_results() for county in elections: try: st = county['Location']['State Abbreviation'] countyST = county['Location']['County'] + st trump = county['Vote Data']['Donald Trump']['Percent of Votes'] joint[countyST] = {} joint[countyST]['ST']= st joint[countyST]['Trump'] = trump except: traceback.print_exc() demographics = county_demographics.get_all_counties() for county in demographics: try: countyNames = county['County'].split() cName = ' '.join(countyNames[:-1]) st = county['State'] countyST = cName + st # elderly = # college = # home = # poverty = if countyST in joint: joint[countyST]['Elderly'] = county['Age']["Percent 65 and Older"] joint[countyST]['HighSchool'] = county['Education']["High School or Higher"] joint[countyST]['College'] = county['Education']["Bachelor's Degree or Higher"] joint[countyST]['White'] = county['Ethnicities']["White Alone, not Hispanic or Latino"] joint[countyST]['Persons'] = county['Housing']["Persons per Household"] joint[countyST]['Home'] = county['Housing']["Homeownership Rate"] joint[countyST]['Income'] = county['Income']["Median Houseold Income"] joint[countyST]['Poverty'] = county['Income']["Persons Below Poverty Level"] joint[countyST]['Sales'] = county['Sales']["Retail Sales per Capita"] except: traceback.print_exc() ''' Remove the counties that did not appear in both samples. ''' intersection = {} for countyST in joint: if 'College' in joint[countyST]: intersection[countyST] = joint[countyST] trumpECHP.data = [] ''' Build the input frame, row by row. ''' for countyST in intersection: # choose the input values row = [] for key in intersection[countyST]: if key in ['ST', 'Trump']: continue row.append(intersection[countyST][key]) trumpECHP.data.append(row) firstCounty = next(iter(intersection.keys())) firstRow = intersection[firstCounty] trumpECHP.feature_names = list(firstRow.keys()) trumpECHP.feature_names.remove('ST') trumpECHP.feature_names.remove('Trump') ''' Build the target list, one entry for each row in the input frame. The Naive Bayesian network is a classifier, i.e. it sorts data points into bins. The best it can do to estimate a continuous variable is to break the domain into segments, and predict the segment into which the variable's value will fall. In this example, I'm breaking Trump's % into two arbitrary segments. ''' trumpECHP.target = [] for countyST in intersection: # choose the target tt = trumpTarget(intersection[countyST]['Trump']) trumpECHP.target.append(tt) trumpECHP.target_names = [ 'Trump <= 45%', 'Trump > 45%', ] ''' Try scaling the data. ''' trumpScaled = DataFrame() setupScales(trumpECHP.data) trumpScaled.data = scaleGrid(trumpECHP.data) trumpScaled.feature_names = trumpECHP.feature_names trumpScaled.target = trumpECHP.target trumpScaled.target_names = trumpECHP.target_names ''' Make a customn classifier, ''' km = KMeans( n_clusters=2, # max_iter=300, # n_init=10, # init='k-means++', # algorithm='auto', # precompute_distances='auto', # tol=1e-4, # n_jobs=-1, # random_state=numpy.RandomState, # verbose=0, # copy_x=True, ) Examples = { 'Trump': { 'frame': trumpScaled, }, 'TrumpCustom': { 'frame': trumpScaled, 'kmeans': km }, }
[ 6738, 1341, 35720, 13, 565, 5819, 1330, 509, 5308, 504, 198, 11748, 12854, 1891, 198, 6738, 22129, 13, 64, 433, 40833, 1330, 3071, 198, 6738, 22129, 13, 64, 433, 40833, 1330, 7968, 62, 9536, 24188, 198, 198, 40954, 2943, 14082, 796, 6060, 19778, 3419, 198, 198, 7061, 6, 198, 11627, 974, 1366, 422, 262, 23929, 38, 1797, 7024, 11, 290, 20121, 340, 351, 262, 198, 44879, 38, 1797, 30084, 13, 220, 5747, 1366, 5621, 389, 8389, 416, 7968, 290, 1181, 13, 198, 7061, 6, 198, 73, 1563, 796, 23884, 198, 198, 9509, 507, 796, 3071, 13, 1136, 62, 43420, 3419, 198, 1640, 7968, 287, 7024, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 336, 796, 7968, 17816, 14749, 6, 7131, 6, 9012, 2275, 4679, 47625, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 7968, 2257, 796, 7968, 17816, 14749, 6, 7131, 6, 12332, 88, 20520, 1343, 336, 198, 220, 220, 220, 220, 220, 220, 220, 19997, 796, 7968, 17816, 37394, 6060, 6, 7131, 6, 7371, 1301, 6, 7131, 6, 31905, 286, 39584, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 60, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 2257, 20520, 28, 336, 198, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 6170, 20520, 796, 19997, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12854, 1891, 13, 4798, 62, 41194, 3419, 198, 198, 9536, 24188, 796, 7968, 62, 9536, 24188, 13, 1136, 62, 439, 62, 9127, 444, 3419, 198, 1640, 7968, 287, 30084, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7968, 36690, 796, 7968, 17816, 12332, 88, 6, 4083, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 5376, 796, 705, 45302, 22179, 7, 9127, 88, 36690, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 336, 796, 7968, 17816, 9012, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 7968, 2257, 796, 269, 5376, 1343, 336, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13830, 796, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4152, 796, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1363, 796, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8098, 796, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7968, 2257, 287, 6466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 36, 6499, 306, 20520, 796, 7968, 17816, 23396, 6, 7131, 1, 31905, 6135, 290, 35527, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 11922, 26130, 20520, 796, 7968, 17816, 41183, 6, 7131, 1, 11922, 3961, 393, 16038, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 38951, 20520, 796, 7968, 17816, 41183, 6, 7131, 1, 33, 19335, 338, 34486, 393, 16038, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 12256, 20520, 796, 7968, 17816, 40226, 6988, 871, 6, 7131, 1, 12256, 28043, 11, 407, 16949, 393, 20496, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 30946, 684, 20520, 796, 7968, 17816, 39, 12752, 6, 7131, 1, 30946, 684, 583, 37306, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 16060, 20520, 796, 7968, 17816, 39, 12752, 6, 7131, 1, 16060, 15605, 1056, 14806, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 818, 2958, 20520, 796, 7968, 17816, 818, 2958, 6, 7131, 1, 9921, 666, 2097, 727, 19003, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 47, 24085, 20520, 796, 7968, 17816, 818, 2958, 6, 7131, 1, 30946, 684, 10383, 30627, 5684, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6466, 58, 9127, 88, 2257, 7131, 6, 44490, 20520, 796, 7968, 17816, 44490, 6, 7131, 1, 9781, 603, 17329, 583, 4476, 5350, 8973, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12854, 1891, 13, 4798, 62, 41194, 3419, 198, 198, 7061, 6, 198, 27914, 262, 14683, 326, 750, 407, 1656, 287, 1111, 8405, 13, 198, 7061, 6, 198, 3849, 5458, 796, 23884, 198, 1640, 7968, 2257, 287, 6466, 25, 198, 220, 220, 220, 611, 705, 38951, 6, 287, 6466, 58, 9127, 88, 2257, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 16246, 58, 9127, 88, 2257, 60, 796, 6466, 58, 9127, 88, 2257, 60, 198, 198, 40954, 2943, 14082, 13, 7890, 796, 17635, 198, 198, 7061, 6, 198, 15580, 262, 5128, 5739, 11, 5752, 416, 5752, 13, 198, 7061, 6, 198, 1640, 7968, 2257, 287, 16246, 25, 198, 220, 220, 220, 1303, 3853, 262, 5128, 3815, 198, 220, 220, 220, 5752, 796, 17635, 198, 220, 220, 220, 329, 1994, 287, 16246, 58, 9127, 88, 2257, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 37250, 2257, 3256, 705, 6170, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 13, 33295, 7, 3849, 5458, 58, 9127, 88, 2257, 7131, 2539, 12962, 198, 220, 220, 220, 19997, 2943, 14082, 13, 7890, 13, 33295, 7, 808, 8, 198, 198, 11085, 12332, 88, 796, 1306, 7, 2676, 7, 3849, 5458, 13, 13083, 3419, 4008, 198, 11085, 25166, 796, 16246, 58, 11085, 12332, 88, 60, 198, 40954, 2943, 14082, 13, 30053, 62, 14933, 796, 1351, 7, 11085, 25166, 13, 13083, 28955, 198, 40954, 2943, 14082, 13, 30053, 62, 14933, 13, 28956, 10786, 2257, 11537, 198, 40954, 2943, 14082, 13, 30053, 62, 14933, 13, 28956, 10786, 6170, 11537, 198, 198, 7061, 6, 198, 15580, 262, 2496, 1351, 11, 198, 505, 5726, 329, 1123, 5752, 287, 262, 5128, 5739, 13, 198, 198, 464, 11013, 425, 4696, 35610, 3127, 318, 257, 1398, 7483, 11, 198, 72, 13, 68, 13, 340, 10524, 1366, 2173, 656, 41701, 13, 198, 464, 1266, 340, 460, 466, 284, 8636, 257, 12948, 7885, 198, 271, 284, 2270, 262, 7386, 656, 17894, 11, 290, 4331, 198, 1169, 10618, 656, 543, 262, 7885, 338, 1988, 481, 2121, 13, 198, 818, 428, 1672, 11, 314, 1101, 7163, 1301, 338, 4064, 656, 734, 198, 283, 2545, 11619, 17894, 13, 198, 7061, 6, 198, 40954, 2943, 14082, 13, 16793, 796, 17635, 198, 198, 1640, 7968, 2257, 287, 16246, 25, 198, 220, 220, 220, 1303, 3853, 262, 2496, 198, 220, 220, 220, 256, 83, 796, 19997, 21745, 7, 3849, 5458, 58, 9127, 88, 2257, 7131, 6, 6170, 6, 12962, 198, 220, 220, 220, 19997, 2943, 14082, 13, 16793, 13, 33295, 7, 926, 8, 198, 198, 40954, 2943, 14082, 13, 16793, 62, 14933, 796, 685, 198, 220, 220, 220, 705, 6170, 19841, 4153, 4, 3256, 198, 220, 220, 220, 705, 6170, 1875, 220, 4153, 4, 3256, 198, 60, 198, 198, 7061, 6, 198, 23433, 20796, 262, 1366, 13, 198, 7061, 6, 198, 40954, 3351, 3021, 796, 6060, 19778, 3419, 198, 198, 40406, 3351, 2040, 7, 40954, 2943, 14082, 13, 7890, 8, 198, 40954, 3351, 3021, 13, 7890, 796, 5046, 41339, 7, 40954, 2943, 14082, 13, 7890, 8, 198, 40954, 3351, 3021, 13, 30053, 62, 14933, 796, 19997, 2943, 14082, 13, 30053, 62, 14933, 198, 40954, 3351, 3021, 13, 16793, 796, 19997, 2943, 14082, 13, 16793, 198, 40954, 3351, 3021, 13, 16793, 62, 14933, 796, 19997, 2943, 14082, 13, 16793, 62, 14933, 198, 198, 7061, 6, 198, 12050, 257, 2183, 77, 1398, 7483, 11, 198, 7061, 6, 198, 13276, 796, 509, 5308, 504, 7, 198, 220, 220, 220, 299, 62, 565, 13654, 28, 17, 11, 198, 220, 220, 220, 1303, 3509, 62, 2676, 28, 6200, 11, 198, 220, 220, 220, 1303, 299, 62, 15003, 28, 940, 11, 198, 220, 220, 220, 1303, 2315, 11639, 74, 12, 1326, 504, 4880, 3256, 198, 220, 220, 220, 1303, 11862, 11639, 23736, 3256, 198, 220, 220, 220, 1303, 662, 5589, 1133, 62, 17080, 1817, 11639, 23736, 3256, 198, 220, 220, 220, 1303, 284, 75, 28, 16, 68, 12, 19, 11, 198, 220, 220, 220, 1303, 299, 62, 43863, 10779, 16, 11, 198, 220, 220, 220, 1303, 4738, 62, 5219, 28, 77, 32152, 13, 29531, 9012, 11, 198, 220, 220, 220, 1303, 15942, 577, 28, 15, 11, 198, 220, 220, 220, 1303, 4866, 62, 87, 28, 17821, 11, 198, 8, 198, 198, 27730, 796, 1391, 198, 220, 220, 220, 705, 6170, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14535, 10354, 19997, 3351, 3021, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 6170, 15022, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14535, 10354, 19997, 3351, 3021, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 74, 1326, 504, 10354, 10571, 198, 220, 220, 220, 8964, 198, 92 ]
2.562581
1,534
from shapely import geometry # import random # import numpy as np # numParticles = 120 # point_list = [[0,0],[0,1],[1,1],[1,0]] # poly = geometry.Polygon(point_list) # print generate_random_points(numParticles, poly)
[ 6738, 5485, 306, 1330, 22939, 198, 2, 1330, 4738, 198, 2, 1330, 299, 32152, 355, 45941, 198, 198, 2, 997, 7841, 2983, 796, 7982, 198, 198, 2, 966, 62, 4868, 796, 16410, 15, 11, 15, 38430, 15, 11, 16, 38430, 16, 11, 16, 38430, 16, 11, 15, 11907, 198, 2, 7514, 796, 22939, 13, 34220, 14520, 7, 4122, 62, 4868, 8, 198, 198, 2, 3601, 7716, 62, 25120, 62, 13033, 7, 22510, 7841, 2983, 11, 7514, 8, 198 ]
2.820513
78
# this file is needed for python2, delete for python3
[ 2, 428, 2393, 318, 2622, 329, 21015, 17, 11, 12233, 329, 21015, 18 ]
4.076923
13
# Copyright 2017-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. import sys import unittest try: from unittest.mock import MagicMock except ImportError: from mock import MagicMock ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::::Account' ############# # Main Code # ############# CONFIG_CLIENT_MOCK = MagicMock() STS_CLIENT_MOCK = MagicMock() SAGEMAKER_CLIENT_MOCK = MagicMock() sys.modules['boto3'] = Boto3Mock() RULE = __import__('SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS') #################### # Helper Functions # ####################
[ 2, 15069, 2177, 12, 23344, 6186, 13, 785, 11, 3457, 13, 393, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 11074, 921, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 317, 4866, 286, 262, 13789, 318, 5140, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 8356, 13, 33103, 13, 785, 14, 43073, 17, 13, 15, 14, 198, 2, 198, 2, 393, 287, 262, 366, 43085, 1, 2393, 19249, 428, 2393, 13, 770, 2393, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 198, 2, 262, 2176, 3303, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 28311, 25, 198, 220, 220, 220, 422, 555, 715, 395, 13, 76, 735, 1330, 6139, 44, 735, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 15290, 1330, 6139, 44, 735, 198, 198, 7804, 4242, 2235, 198, 2, 40117, 1303, 198, 7804, 4242, 2235, 198, 198, 2, 2896, 500, 262, 4277, 8271, 284, 989, 284, 17056, 14252, 198, 7206, 38865, 62, 19535, 31033, 62, 25216, 796, 705, 12298, 50, 24022, 30116, 6, 198, 198, 7804, 4242, 2, 198, 2, 8774, 6127, 1303, 198, 7804, 4242, 2, 198, 198, 10943, 16254, 62, 5097, 28495, 62, 44, 11290, 796, 6139, 44, 735, 3419, 198, 2257, 50, 62, 5097, 28495, 62, 44, 11290, 796, 6139, 44, 735, 3419, 198, 4090, 38, 3620, 10206, 1137, 62, 5097, 28495, 62, 44, 11290, 796, 6139, 44, 735, 3419, 198, 198, 17597, 13, 18170, 17816, 65, 2069, 18, 20520, 796, 347, 2069, 18, 44, 735, 3419, 198, 198, 49, 24212, 796, 11593, 11748, 834, 10786, 4090, 38, 3620, 10206, 1137, 62, 16580, 39453, 62, 15285, 62, 17931, 23988, 62, 41358, 12884, 62, 26861, 7597, 11537, 628, 198, 14468, 4242, 198, 2, 5053, 525, 40480, 1303, 198, 14468, 4242, 198 ]
3.261364
352
""" This package contains the modules related to simulation topologies """
[ 37811, 198, 1212, 5301, 4909, 262, 13103, 3519, 284, 18640, 1353, 5823, 198, 37811, 198 ]
5
15
# Copyright (c) 2017 SK Telecom Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from networking_onos.extensions import constant as onos_const _OPERATION_MAPPING = { events.PRECOMMIT_CREATE: onos_const.ONOS_CREATE, events.PRECOMMIT_UPDATE: onos_const.ONOS_UPDATE, events.PRECOMMIT_DELETE: onos_const.ONOS_DELETE, events.AFTER_CREATE: onos_const.ONOS_CREATE, events.AFTER_UPDATE: onos_const.ONOS_UPDATE, events.AFTER_DELETE: onos_const.ONOS_DELETE, } _RESOURCE_MAPPING = { resources.SECURITY_GROUP: onos_const.ONOS_SG, resources.SECURITY_GROUP_RULE: onos_const.ONOS_SG_RULE, }
[ 2, 15069, 357, 66, 8, 2177, 14277, 44021, 12052, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 6738, 49810, 62, 8019, 13, 13345, 10146, 1330, 2995, 198, 6738, 49810, 62, 8019, 13, 13345, 10146, 1330, 20478, 198, 6738, 49810, 62, 8019, 13, 13345, 10146, 1330, 4133, 198, 198, 6738, 19140, 62, 261, 418, 13, 2302, 5736, 1330, 6937, 355, 319, 418, 62, 9979, 628, 198, 62, 31054, 6234, 62, 44, 24805, 2751, 796, 1391, 198, 220, 220, 220, 2995, 13, 46437, 9858, 36393, 62, 43387, 6158, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 43387, 6158, 11, 198, 220, 220, 220, 2995, 13, 46437, 9858, 36393, 62, 16977, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 16977, 11, 198, 220, 220, 220, 2995, 13, 46437, 9858, 36393, 62, 7206, 2538, 9328, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 7206, 2538, 9328, 11, 198, 220, 220, 220, 2995, 13, 8579, 5781, 62, 43387, 6158, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 43387, 6158, 11, 198, 220, 220, 220, 2995, 13, 8579, 5781, 62, 16977, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 16977, 11, 198, 220, 220, 220, 2995, 13, 8579, 5781, 62, 7206, 2538, 9328, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 7206, 2538, 9328, 11, 198, 92, 198, 198, 62, 19535, 31033, 62, 44, 24805, 2751, 796, 1391, 198, 220, 220, 220, 4133, 13, 23683, 4261, 9050, 62, 46846, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 38475, 11, 198, 220, 220, 220, 4133, 13, 23683, 4261, 9050, 62, 46846, 62, 49, 24212, 25, 319, 418, 62, 9979, 13, 1340, 2640, 62, 38475, 62, 49, 24212, 11, 198, 92, 628 ]
2.873333
450
import game.main as game import time import sys if __name__ == "__main__": try: main() except (KeyboardInterrupt, SystemExit): print "\n Recieved Interrupt Signal. Bye...." import sys sys.exit()
[ 11748, 983, 13, 12417, 355, 983, 198, 11748, 640, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 2845, 357, 9218, 3526, 9492, 3622, 11, 4482, 30337, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 37082, 77, 3311, 39591, 4225, 3622, 26484, 13, 47843, 1106, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198 ]
2.43299
97
from django.db import models from django.contrib.auth.models import User from django.contrib.auth.models import AbstractUser from django.http import HttpResponse import uuid from django import forms from django.forms.widgets import Textarea import datetime from posts.models import Post, Like, CommentLike#, InboxLike from django.urls import reverse SITE_URL = "https://cmput404-socialdist-project.herokuapp.com" ''' #TODO: MERGE USER_PROFILE INTO USER class User(AbstractUser): pass ''' # Create your models here.
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 201, 198, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 27741, 12982, 201, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 201, 198, 11748, 334, 27112, 201, 198, 6738, 42625, 14208, 1330, 5107, 201, 198, 6738, 42625, 14208, 13, 23914, 13, 28029, 11407, 1330, 8255, 20337, 201, 198, 11748, 4818, 8079, 201, 198, 6738, 6851, 13, 27530, 1330, 2947, 11, 4525, 11, 18957, 7594, 2, 11, 554, 3524, 7594, 201, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 201, 198, 201, 198, 50, 12709, 62, 21886, 796, 366, 5450, 1378, 11215, 1996, 26429, 12, 14557, 17080, 12, 16302, 13, 11718, 23063, 1324, 13, 785, 1, 201, 198, 201, 198, 7061, 6, 201, 198, 2, 51, 3727, 46, 25, 34482, 8264, 1294, 1137, 62, 31190, 25664, 39319, 1294, 1137, 201, 198, 4871, 11787, 7, 23839, 12982, 2599, 201, 198, 220, 220, 220, 1208, 201, 198, 7061, 6, 201, 198, 201, 198, 201, 198, 201, 198, 2, 13610, 534, 4981, 994, 13, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.776119
201
import requests from collections import defaultdict import datetime
[ 11748, 7007, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 4818, 8079, 628 ]
5.307692
13
# -*- coding: utf-8 -*- from skimage.viewer import utils from skimage.viewer.utils import dialogs from skimage.viewer.qt import QtCore, QtWidgets, has_qt from skimage._shared import testing @testing.skipif(not has_qt, reason="Qt not installed") @testing.skipif(not has_qt, reason="Qt not installed") @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed") @testing.skipif(True, reason="Can't automatically close window. See #3081.") @testing.skipif(not has_qt, reason="Qt not installed")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 1341, 9060, 13, 1177, 263, 1330, 3384, 4487, 198, 6738, 1341, 9060, 13, 1177, 263, 13, 26791, 1330, 17310, 82, 198, 6738, 1341, 9060, 13, 1177, 263, 13, 39568, 1330, 33734, 14055, 11, 33734, 54, 312, 11407, 11, 468, 62, 39568, 198, 6738, 1341, 9060, 13557, 28710, 1330, 4856, 628, 198, 31, 33407, 13, 48267, 361, 7, 1662, 468, 62, 39568, 11, 1738, 2625, 48, 83, 407, 6589, 4943, 628, 198, 31, 33407, 13, 48267, 361, 7, 1662, 468, 62, 39568, 11, 1738, 2625, 48, 83, 407, 6589, 4943, 628, 198, 31, 33407, 13, 48267, 361, 7, 17821, 11, 1738, 2625, 6090, 470, 6338, 1969, 4324, 13, 4091, 1303, 1270, 6659, 19570, 198, 31, 33407, 13, 48267, 361, 7, 1662, 468, 62, 39568, 11, 1738, 2625, 48, 83, 407, 6589, 4943, 628, 198, 31, 33407, 13, 48267, 361, 7, 17821, 11, 1738, 2625, 6090, 470, 6338, 1969, 4324, 13, 4091, 1303, 1270, 6659, 19570, 198, 31, 33407, 13, 48267, 361, 7, 1662, 468, 62, 39568, 11, 1738, 2625, 48, 83, 407, 6589, 4943, 198 ]
3.026455
189
# Pending actions # we can improve user experience of our bot by asking the user simple yes or no followup questions # one easy way to handle these followup is to define pending actions which gets executed as soon as user says "yes" # and wiped if the user says "no"
[ 2, 350, 1571, 4028, 220, 198, 2, 356, 460, 2987, 2836, 1998, 286, 674, 10214, 416, 4737, 262, 2836, 2829, 3763, 393, 645, 1061, 929, 2683, 198, 2, 530, 2562, 835, 284, 5412, 777, 1061, 929, 318, 284, 8160, 13310, 4028, 543, 3011, 10945, 355, 2582, 355, 2836, 1139, 366, 8505, 1, 198, 2, 290, 21122, 611, 262, 2836, 1139, 366, 3919, 1, 628 ]
4.203125
64
# coding=utf-8 import sys import pymysql import requests import datetime from lxml import etree reload(sys) sys.setdefaultencoding('utf8') now_str = datetime.datetime.now().strftime('%Y-%m-%d') headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 OPR/57.0.3098.116", } if __name__ == '__main__': init_ip_pool()
[ 2, 19617, 28, 40477, 12, 23, 198, 11748, 25064, 198, 198, 11748, 279, 4948, 893, 13976, 198, 11748, 7007, 198, 11748, 4818, 8079, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 198, 260, 2220, 7, 17597, 8, 198, 17597, 13, 2617, 12286, 12685, 7656, 10786, 40477, 23, 11537, 198, 2197, 62, 2536, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 11537, 198, 50145, 796, 1391, 198, 220, 220, 220, 366, 12982, 12, 36772, 1298, 366, 44, 8590, 5049, 14, 20, 13, 15, 357, 11209, 24563, 838, 13, 15, 26, 7178, 2414, 26, 2124, 2414, 8, 4196, 13908, 20827, 14, 46096, 13, 2623, 357, 42, 28656, 11, 588, 2269, 37549, 8, 13282, 14, 2154, 13, 15, 13, 2327, 2548, 13, 15377, 23298, 14, 46096, 13, 2623, 440, 4805, 14, 3553, 13, 15, 13, 1270, 4089, 13, 18298, 1600, 1782, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2315, 62, 541, 62, 7742, 3419, 198 ]
2.385057
174
from java.lang import System as javasystem javasystem.out.println("Hello") from java.util import Random r = rand(100, 23) for i in range(10): print r.nextDouble()
[ 6738, 20129, 13, 17204, 1330, 4482, 355, 474, 615, 4107, 927, 198, 73, 615, 4107, 927, 13, 448, 13, 35235, 7203, 15496, 4943, 198, 198, 6738, 20129, 13, 22602, 1330, 14534, 198, 198, 81, 796, 43720, 7, 3064, 11, 2242, 8, 198, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 3601, 374, 13, 19545, 25628, 3419 ]
2.816667
60
""" File: exercise_3.1.py Author: William Gatharia This code demonstrates using a for loop. """ #loop and print numbers from 1 to 10 using a for loop and range # range creates a list of numbers # starting from 1 to 10. # Note the 11 = 10 + 1 is the upper limit form range for i in range(1, 11): print(i)
[ 37811, 198, 220, 220, 220, 9220, 25, 5517, 62, 18, 13, 16, 13, 9078, 198, 220, 220, 220, 6434, 25, 3977, 402, 776, 10312, 198, 220, 220, 220, 770, 2438, 15687, 1262, 257, 329, 9052, 13, 198, 37811, 198, 2, 26268, 290, 3601, 3146, 422, 352, 284, 838, 1262, 257, 329, 9052, 290, 2837, 198, 2, 2837, 8075, 257, 1351, 286, 3146, 198, 2, 3599, 422, 352, 284, 838, 13, 198, 2, 5740, 262, 1367, 796, 838, 1343, 352, 318, 262, 6727, 4179, 1296, 2837, 198, 1640, 1312, 287, 2837, 7, 16, 11, 1367, 2599, 198, 220, 220, 220, 3601, 7, 72, 8, 628 ]
3.086538
104
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 27 21:19:37 2020 @author: miyazakishinichi """ import pandas as pd from tkinter import messagebox from tkinter import filedialog import tkinter import numpy as np from scipy import stats import matplotlib.pyplot as plt import os, sys, cv2 from tqdm import tqdm ####Tk root generate#### root = tkinter.Tk() root.withdraw() ####ROI setting#### messagebox.showinfo('selectfiles', 'select csvfile for ROI setting') ROI_file_path = tkinter.filedialog.askopenfilename(initialdir = dir) if ROI_file_path == "": messagebox.showinfo('cancel', 'stop before ROI setting') sys.exit() roi_data = csv_file_read(ROI_file_path) roi_data['left'] = roi_data['BX'] roi_data['right'] = roi_data['BX'] + roi_data['Width'] roi_data['low'] = roi_data['BY'] roi_data['high'] = roi_data['BY'] + roi_data['Height'] roi = roi_data.loc[3]['left':'high'] ####file select & directory setting#### messagebox.showinfo('selectfiles', 'select image files') path = filedialog.askopenfilename() if path != False: pass else: messagebox.showinfo('quit', 'stop the script') sys.exit() folderpath = os.path.dirname(path) os.chdir(folderpath) imlist = os.listdir("./") os.makedirs("../chamber3", exist_ok = True) for i in tqdm(range(len(imlist))): tempimage = cv2.imread(imlist[i]) left, right, low, high = int(roi['left']),\ int(roi['right']),int(roi['low']),int(roi['high']) subimage = tempimage[low:high,left:right] cv2.imwrite("../chamber3/{}.jpg".format(str(i).zfill(5)), subimage)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 2447, 2681, 2310, 25, 1129, 25, 2718, 12131, 198, 198, 31, 9800, 25, 285, 7745, 1031, 461, 680, 259, 16590, 198, 37811, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 256, 74, 3849, 1330, 3275, 3524, 198, 6738, 256, 74, 3849, 1330, 5717, 498, 519, 198, 11748, 256, 74, 3849, 220, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 9756, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 28686, 11, 25064, 11, 269, 85, 17, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 220, 220, 220, 220, 628, 198, 4242, 51, 74, 6808, 7716, 4242, 198, 15763, 796, 256, 74, 3849, 13, 51, 74, 3419, 198, 15763, 13, 4480, 19334, 3419, 198, 198, 4242, 13252, 40, 4634, 4242, 198, 20500, 3524, 13, 12860, 10951, 10786, 19738, 16624, 3256, 705, 19738, 269, 21370, 7753, 329, 15107, 40, 4634, 11537, 198, 13252, 40, 62, 7753, 62, 6978, 796, 256, 74, 3849, 13, 69, 3902, 498, 519, 13, 2093, 9654, 34345, 7, 36733, 15908, 796, 26672, 8, 198, 361, 15107, 40, 62, 7753, 62, 6978, 6624, 366, 1298, 198, 220, 220, 220, 3275, 3524, 13, 12860, 10951, 10786, 66, 21130, 3256, 705, 11338, 878, 15107, 40, 4634, 11537, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 198, 305, 72, 62, 7890, 796, 269, 21370, 62, 7753, 62, 961, 7, 13252, 40, 62, 7753, 62, 6978, 8, 198, 305, 72, 62, 7890, 17816, 9464, 20520, 796, 686, 72, 62, 7890, 17816, 33, 55, 20520, 198, 305, 72, 62, 7890, 17816, 3506, 20520, 796, 686, 72, 62, 7890, 17816, 33, 55, 20520, 1343, 686, 72, 62, 7890, 17816, 30916, 20520, 198, 305, 72, 62, 7890, 17816, 9319, 20520, 796, 686, 72, 62, 7890, 17816, 17513, 20520, 220, 198, 305, 72, 62, 7890, 17816, 8929, 20520, 796, 686, 72, 62, 7890, 17816, 17513, 20520, 1343, 686, 72, 62, 7890, 17816, 23106, 20520, 198, 198, 305, 72, 796, 686, 72, 62, 7890, 13, 17946, 58, 18, 7131, 6, 9464, 10354, 6, 8929, 20520, 198, 198, 4242, 7753, 2922, 1222, 8619, 4634, 4242, 198, 20500, 3524, 13, 12860, 10951, 10786, 19738, 16624, 3256, 705, 19738, 2939, 3696, 11537, 198, 6978, 796, 5717, 498, 519, 13, 2093, 9654, 34345, 3419, 198, 361, 3108, 14512, 10352, 25, 198, 220, 220, 220, 1208, 198, 17772, 25, 198, 220, 220, 220, 3275, 3524, 13, 12860, 10951, 10786, 47391, 3256, 705, 11338, 262, 4226, 11537, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 43551, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 6978, 8, 198, 418, 13, 354, 15908, 7, 43551, 6978, 8, 198, 198, 320, 4868, 796, 28686, 13, 4868, 15908, 7, 1911, 14, 4943, 198, 418, 13, 76, 4335, 17062, 7203, 40720, 354, 7789, 18, 1600, 2152, 62, 482, 796, 6407, 8, 198, 198, 1640, 1312, 287, 256, 80, 36020, 7, 9521, 7, 11925, 7, 320, 4868, 4008, 2599, 198, 220, 220, 220, 20218, 9060, 796, 269, 85, 17, 13, 320, 961, 7, 320, 4868, 58, 72, 12962, 198, 220, 220, 220, 1364, 11, 826, 11, 1877, 11, 1029, 796, 493, 7, 305, 72, 17816, 9464, 20520, 828, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 305, 72, 17816, 3506, 20520, 828, 600, 7, 305, 72, 17816, 9319, 20520, 828, 600, 7, 305, 72, 17816, 8929, 6, 12962, 198, 220, 220, 220, 850, 9060, 796, 20218, 9060, 58, 9319, 25, 8929, 11, 9464, 25, 3506, 60, 198, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7203, 40720, 354, 7789, 18, 14, 90, 27422, 9479, 1911, 18982, 7, 2536, 7, 72, 737, 89, 20797, 7, 20, 36911, 850, 9060, 8, 198, 220, 220, 220, 220 ]
2.455108
646
import cv2 INPUT_FILE='input_encode.avi' FRAME_NUMBER=70 cap=cv2.VideoCapture(INPUT_FILE) cap.set(cv2.CAP_PROP_POS_FRAMES, FRAME_NUMBER) ret,frame=cap.read() cv2.imwrite("frame_"+INPUT_FILE+".png",frame)
[ 198, 11748, 269, 85, 17, 198, 198, 1268, 30076, 62, 25664, 11639, 15414, 62, 268, 8189, 13, 15820, 6, 198, 10913, 10067, 62, 41359, 13246, 28, 2154, 198, 198, 11128, 28, 33967, 17, 13, 10798, 49630, 7, 1268, 30076, 62, 25664, 8, 198, 11128, 13, 2617, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 37997, 62, 10913, 29559, 11, 8782, 10067, 62, 41359, 13246, 8, 198, 1186, 11, 14535, 28, 11128, 13, 961, 3419, 198, 33967, 17, 13, 320, 13564, 7203, 14535, 62, 1, 10, 1268, 30076, 62, 25664, 10, 1911, 11134, 1600, 14535, 8, 198 ]
2.134021
97
# -*- coding: utf-8 -*- # # Authors: Swolf <[email protected]> # Date: 2021/1/07 # License: MIT License """ Common Spatial Patterns and his happy little buddies! """ from copy import deepcopy from typing import Union, Optional, List, Dict, Tuple from functools import partial import numpy as np from numpy import ndarray from scipy.linalg import eigh, pinv, solve from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import GridSearchCV, StratifiedKFold, ShuffleSplit from sklearn.feature_selection import SelectKBest, mutual_info_classif from sklearn.svm import SVC from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from sklearn.pipeline import make_pipeline from .base import robust_pattern, FilterBank from ..utils.covariance import nearestPD, covariances def csp_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """The kernel in CSP algorithm based on paper [1]_. Parameters ---------- X: ndarray eeg data, shape (n_trials, n_channels, n_samples). y: ndarray labels of X, shape (n_trials,). Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) if len(labels) != 2: raise ValueError("the current kernel is for 2-class problem.") C1 = covariances(X[y==labels[0]]) C2 = covariances(X[y==labels[1]]) # # trace normalization # # this operation equals to trial normalization # C1 = C1 / np.trace(C1, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] # C2 = C2 / np.trace(C2, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C1 = np.mean(C1, axis=0) C2 = np.mean(C2, axis=0) Cc = C1 + C2 # check positive-definiteness Cc = nearestPD(Cc) # generalized eigenvalue problem D, W = eigh(C1, Cc) ix = np.argsort(D)[::-1] W = W[:, ix] D = D[ix] A = robust_pattern(W, C1, W.T@C1@W) return W, D, A def csp_feature(W: ndarray, X: ndarray, n_components: int = 2) -> ndarray: """Return CSP features in paper [1]_. Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 2 Returns ------- ndarray features of shape (n_trials, n_features) Raises ------ ValueError n_components should less than the number of channels References ---------- .. [1] Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) # normalized variance features = np.mean(np.square(np.matmul(W[:, :n_components].T, X)), axis=-1) features = features / (np.sum(features, axis=-1, keepdims=True) + eps) # log-transformation features = np.log(np.clip(features, eps, None)) return features def _rjd(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on jacobi angle. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stopping criterion (default 1e-8). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the Cardoso AJD algorithm [1]_ used in JADE. The code is a translation of the matlab code provided in the author website. References ---------- .. [1] Cardoso, Jean-Francois, and Antoine Souloumiac. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix analysis and applications 17.1 (1996): 161-164. """ # reshape input matrix A = np.concatenate(X, 0).T # init variables m, nm = A.shape V = np.eye(m) encore = True k = 0 while encore: encore = False k += 1 if k > n_iter_max: break for p in range(m - 1): for q in range(p + 1, m): Ip = np.arange(p, nm, m) Iq = np.arange(q, nm, m) # computation of Givens angle g = np.array([A[p, Ip] - A[q, Iq], A[p, Iq] + A[q, Ip]]) gg = np.dot(g, g.T) ton = gg[0, 0] - gg[1, 1] toff = gg[0, 1] + gg[1, 0] theta = 0.5 * np.arctan2(toff, ton + np.sqrt(ton * ton + toff * toff)) c = np.cos(theta) s = np.sin(theta) encore = encore | (np.abs(s) > eps) if (np.abs(s) > eps): tmp = A[:, Ip].copy() A[:, Ip] = c * A[:, Ip] + s * A[:, Iq] A[:, Iq] = c * A[:, Iq] - s * tmp tmp = A[p, :].copy() A[p, :] = c * A[p, :] + s * A[q, :] A[q, :] = c * A[q, :] - s * tmp tmp = V[:, p].copy() V[:, p] = c * V[:, p] + s * V[:, q] V[:, q] = c * V[:, q] - s * tmp D = np.reshape(A, (m, int(nm / m), m)).transpose(1, 0, 2) return V, D def _ajd_pham(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on pham's algorithm. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-6). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the PHAM's AJD algorithm [1]_. References ---------- .. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive definite Hermitian matrices." SIAM Journal on Matrix Analysis and Applications 22, no. 4 (2001): 1136-1152. """ # Adapted from http://github.com/alexandrebarachant/pyRiemann n_epochs = X.shape[0] # Reshape input matrix A = np.concatenate(X, axis=0).T # Init variables n_times, n_m = A.shape V = np.eye(n_times) epsilon = n_times * (n_times - 1) * eps for it in range(n_iter_max): decr = 0 for ii in range(1, n_times): for jj in range(ii): Ii = np.arange(ii, n_m, n_times) Ij = np.arange(jj, n_m, n_times) c1 = A[ii, Ii] c2 = A[jj, Ij] g12 = np.mean(A[ii, Ij] / c1) g21 = np.mean(A[ii, Ij] / c2) omega21 = np.mean(c1 / c2) omega12 = np.mean(c2 / c1) omega = np.sqrt(omega12 * omega21) tmp = np.sqrt(omega21 / omega12) tmp1 = (tmp * g12 + g21) / (omega + 1) tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9) h12 = tmp1 + tmp2 h21 = np.conj((tmp1 - tmp2) / tmp) decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0 tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21) tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21)) tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]]) A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :]) tmp = np.c_[A[:, Ii], A[:, Ij]] tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F') tmp = np.dot(tmp, tau.T) tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F') A[:, Ii] = tmp[:, :n_epochs] A[:, Ij] = tmp[:, n_epochs:] V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :]) if decr < epsilon: break D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2) return V.T, D def _uwedge(X, init=None, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization algorithm UWEDGE. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). init : None | ndarray, optional Initialization for the diagonalizer, shape (n_channels, n_channels). eps : float, optional Tolerance for stoping criterion (default 1e-7). n_iter_max : int The maximum number of iteration to reach convergence (default 1000). Returns ------- W_est : ndarray The diagonalizer, shape (n_filters, n_channels), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- Uniformly Weighted Exhaustive Diagonalization using Gauss iteration (U-WEDGE). Implementation of the AJD algorithm by Tichavsky and Yeredor [1]_ [2]_. This is a translation from the matlab code provided by the authors. References ---------- .. [1] P. Tichavsky, A. Yeredor and J. Nielsen, "A Fast Approximate Joint Diagonalization Algorithm Using a Criterion with a Block Diagonal Weight Matrix", ICASSP 2008, Las Vegas. .. [2] P. Tichavsky and A. Yeredor, "Fast Approximate Joint Diagonalization Incorporating Weight Matrices" IEEE Transactions of Signal Processing, 2009. """ L, d, _ = X.shape # reshape input matrix M = np.concatenate(X, 0).T # init variables d, Md = M.shape iteration = 0 improve = 10 if init is None: E, H = np.linalg.eig(M[:, 0:d]) W_est = np.dot(np.diag(1. / np.sqrt(np.abs(E))), H.T) else: W_est = init Ms = np.array(M) Rs = np.zeros((d, L)) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) M[:, Il] = 0.5*(M[:, Il] + M[:, Il].T) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit = np.sum(Ms**2) - np.sum(Rs**2) while (improve > eps) & (iteration < n_iter_max): B = np.dot(Rs, Rs.T) C1 = np.zeros((d, d)) for i in range(d): C1[:, i] = np.sum(Ms[:, i:Md:d]*Rs, axis=1) D0 = B*B.T - np.outer(np.diag(B), np.diag(B)) A0 = (C1 * B - np.dot(np.diag(np.diag(B)), C1.T)) / (D0 + np.eye(d)) A0 += np.eye(d) W_est = np.linalg.solve(A0, W_est) Raux = np.dot(np.dot(W_est, M[:, 0:d]), W_est.T) aux = 1./np.sqrt(np.abs(np.diag(Raux))) W_est = np.dot(np.diag(aux), W_est) for k in range(L): ini = k*d Il = np.arange(ini, ini + d) Ms[:, Il] = np.dot(np.dot(W_est, M[:, Il]), W_est.T) Rs[:, k] = np.diag(Ms[:, Il]) crit_new = np.sum(Ms**2) - np.sum(Rs**2) improve = np.abs(crit_new - crit) crit = crit_new iteration += 1 D = np.reshape(Ms, (d, L, d)).transpose(1, 0, 2) return W_est.T, D ajd_methods = { 'rjd': _rjd, 'ajd_pham': _ajd_pham, 'uwedge': _uwedge } def _check_ajd_method(method): """Check if a given method is valid. Parameters ---------- method : callable object or str Could be the name of ajd_method or a callable method itself. Returns ------- method: callable object A callable ajd method. """ if callable(method): pass elif method in ajd_methods.keys(): method = ajd_methods[method] else: raise ValueError( """%s is not an valid method ! Valid methods are : %s or a callable function""" % (method, (' , ').join(ajd_methods.keys()))) return method def ajd(X: ndarray, method: str ='uwedge') -> Tuple[ndarray, ndarray]: """Wrapper of AJD methods. Parameters ---------- X : ndarray Input covariance matrices, shape (n_trials, n_channels, n_channels) method : str, optional AJD method (default uwedge). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The mean of quasi diagonal matrices, shape (n_channels,). """ method = _check_ajd_method(method) V, D = method(X) D = np.diag(np.mean(D, axis=0)) ind = np.argsort(D)[::-1] D = D[ind] V = V[:, ind] return V, D def gw_csp_kernel(X: ndarray, y: ndarray, ajd_method: str = 'uwedge') -> Tuple[ndarray, ndarray, ndarray, ndarray]: """Grosse-Wentrup AJD method based on paper [1]_. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples). y : ndarray labels, shape (n_trials). ajd_method : str, optional ajd methods, 'uwedge' 'rjd' and 'ajd_pham', by default 'uwedge'. Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). mutual_info: ndarray Mutual informaiton values, shape (n_filters). References ---------- .. [1] Grosse-Wentrup, Moritz, and Martin Buss. "Multiclass common spatial patterns and information theoretic feature extraction." Biomedical Engineering, IEEE Transactions on 55, no. 8 (2008): 1991-2000. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) Cx = [] for label in labels: C = covariances(X[y==label]) # trace normalization C = C / np.trace(C, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] Cx.append(np.mean(C, axis=0)) Cx = np.stack(Cx) W, D = ajd(Cx, method=ajd_method) # Ctot = np.mean(Cx, axis=0) # W = W / np.sqrt(np.diag(W.T@Ctot@W)) W = W / np.sqrt(D) # compute mutual information values Pc = [np.mean(y == label) for label in labels] mutual_info = [] for j in range(W.shape[-1]): a = 0 b = 0 for i in range(len(labels)): # tmp = np.dot(np.dot(W[j], self.C_[i]), W[j].T) tmp = W[:, j].T@Cx[i]@W[:, j] a += Pc[i] * np.log(np.sqrt(tmp)) b += Pc[i] * (tmp ** 2 - 1) mi = - (a + (3.0 / 16) * (b ** 2)) mutual_info.append(mi) mutual_info = np.array(mutual_info) ix = np.argsort(mutual_info)[::-1] W = W[:, ix] mutual_info = mutual_info[ix] D = D[ix] A = robust_pattern(W, Cx[0], W.T@Cx[0]@W) return W, D, A, mutual_info class CSP(BaseEstimator, TransformerMixin): """Common Spatial Pattern. if n_components is None, auto finding the best number of components with gridsearch. The upper searching limit is determined by max_components, default is half of the number of channels. """ def spoc_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """Source Power Comodulation (SPoC) based on paper [1]_. It is a continous CSP-like method. Parameters ---------- X : ndarray eeg data, shape (n_trials, n_channels, n_samples) y : ndarray labels, shape (n_trials) Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] Sven Dähne, Frank C. Meinecke, Stefan Haufe, Johannes Höhne, Michael Tangermann, Klaus-Robert Müller, and Vadim V. Nikulin. SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. NeuroImage, 86:111–122, 2014. doi:10.1016/j.neuroimage.2013.07.079. """ X, weights = np.copy(X), np.copy(y) eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) weights = weights - np.mean(weights) weights = weights / np.std(weights) Cx = covariances(X) # trace normalization Cx = Cx / np.trace(Cx, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C = np.mean(Cx, axis=0) Cz = np.mean(weights[:, np.newaxis, np.newaxis]*Cx, axis=0) # check positive-definiteness C = nearestPD(C) Cz = nearestPD(Cz) # TODO: direct copy from pyriemann, need verify D, W = eigh(Cz, C) ind = np.argsort(D)[::-1] D = D[ind] W = W[:, ind] A = robust_pattern(W, Cz, W.T@Cz@W) return W, D, A class SPoC(BaseEstimator, TransformerMixin): """Source Power Comodulation (SPoC). For continuous data, not verified. """ class FBCSP(FilterBank): """FBCSP. FilterBank CSP based on paper [1]_. References ---------- .. [1] Ang K K, Chin Z Y, Zhang H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 2008: 2390-2397. """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 46665, 25, 2451, 4024, 1279, 2032, 349, 487, 382, 332, 31, 14816, 13, 785, 29, 198, 2, 7536, 25, 33448, 14, 16, 14, 2998, 198, 2, 13789, 25, 17168, 13789, 198, 37811, 198, 17227, 1338, 34961, 47020, 290, 465, 3772, 1310, 35548, 0, 198, 198, 37811, 198, 6738, 4866, 1330, 2769, 30073, 198, 6738, 19720, 1330, 4479, 11, 32233, 11, 7343, 11, 360, 713, 11, 309, 29291, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 1330, 299, 67, 18747, 198, 6738, 629, 541, 88, 13, 75, 1292, 70, 1330, 304, 394, 11, 6757, 85, 11, 8494, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 11, 3602, 16354, 35608, 259, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 24846, 18243, 33538, 11, 29186, 1431, 42, 37, 727, 11, 911, 18137, 41205, 198, 6738, 1341, 35720, 13, 30053, 62, 49283, 1330, 9683, 42, 13014, 11, 13584, 62, 10951, 62, 4871, 361, 198, 6738, 1341, 35720, 13, 82, 14761, 1330, 311, 15922, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 20614, 198, 6738, 1341, 35720, 13, 16680, 291, 31172, 1330, 1881, 23266, 19452, 9487, 7483, 11, 1881, 23266, 3198, 9487, 7483, 198, 6738, 1341, 35720, 13, 79, 541, 4470, 1330, 787, 62, 79, 541, 4470, 198, 198, 6738, 764, 8692, 1330, 12373, 62, 33279, 11, 25853, 28650, 198, 6738, 11485, 26791, 13, 66, 709, 2743, 590, 1330, 16936, 5760, 11, 39849, 3699, 728, 198, 198, 4299, 269, 2777, 62, 33885, 7, 55, 25, 299, 67, 18747, 11, 331, 25, 299, 67, 18747, 8, 4613, 309, 29291, 58, 358, 18747, 11, 299, 67, 18747, 11, 299, 67, 18747, 5974, 198, 220, 220, 220, 37227, 464, 9720, 287, 327, 4303, 11862, 1912, 319, 3348, 685, 16, 60, 44807, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 304, 1533, 1366, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 82, 12629, 737, 198, 220, 220, 220, 331, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 286, 1395, 11, 5485, 357, 77, 62, 28461, 874, 11, 737, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 370, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1338, 34961, 16628, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 737, 198, 220, 220, 220, 360, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 412, 9324, 27160, 286, 21739, 16628, 11, 5485, 357, 77, 62, 10379, 1010, 11, 737, 198, 220, 220, 220, 317, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1338, 34961, 7572, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 33279, 82, 737, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 7431, 13416, 367, 11, 47508, 12, 38069, 3364, 449, 11, 38477, 333, 912, 2395, 6051, 402, 13, 13123, 4402, 21739, 25431, 286, 2060, 4473, 48749, 1141, 15758, 1021, 3356, 58, 41, 4083, 40552, 8945, 319, 23668, 8705, 11, 4751, 11, 807, 7, 19, 2599, 604, 3901, 12, 27260, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 11, 331, 796, 45941, 13, 30073, 7, 55, 828, 45941, 13, 30073, 7, 88, 8, 198, 220, 220, 220, 14722, 796, 45941, 13, 34642, 7, 88, 8, 198, 220, 220, 220, 1395, 796, 1395, 532, 45941, 13, 32604, 7, 55, 11, 16488, 10779, 16, 11, 1394, 67, 12078, 28, 17821, 8, 198, 220, 220, 220, 611, 18896, 7, 23912, 1424, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 1169, 1459, 9720, 318, 329, 362, 12, 4871, 1917, 19570, 198, 220, 220, 220, 220, 198, 220, 220, 220, 327, 16, 796, 39849, 3699, 728, 7, 55, 58, 88, 855, 23912, 1424, 58, 15, 11907, 8, 198, 220, 220, 220, 327, 17, 796, 39849, 3699, 728, 7, 55, 58, 88, 855, 23912, 1424, 58, 16, 11907, 8, 628, 220, 220, 220, 1303, 1303, 12854, 3487, 1634, 198, 220, 220, 220, 1303, 1303, 428, 4905, 21767, 284, 4473, 3487, 1634, 198, 220, 220, 220, 1303, 327, 16, 796, 327, 16, 1220, 45941, 13, 40546, 7, 34, 16, 11, 16488, 16, 10779, 16, 11, 16488, 17, 10779, 17, 38381, 45299, 45941, 13, 3605, 22704, 11, 45941, 13, 3605, 22704, 60, 198, 220, 220, 220, 1303, 327, 17, 796, 327, 17, 1220, 45941, 13, 40546, 7, 34, 17, 11, 16488, 16, 10779, 16, 11, 16488, 17, 10779, 17, 38381, 45299, 45941, 13, 3605, 22704, 11, 45941, 13, 3605, 22704, 60, 628, 220, 220, 220, 327, 16, 796, 45941, 13, 32604, 7, 34, 16, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 327, 17, 796, 45941, 13, 32604, 7, 34, 17, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 327, 66, 796, 327, 16, 1343, 327, 17, 198, 220, 220, 220, 1303, 2198, 3967, 12, 4299, 15003, 9449, 198, 220, 220, 220, 327, 66, 796, 16936, 5760, 7, 34, 66, 8, 198, 220, 220, 220, 1303, 38284, 304, 9324, 8367, 1917, 198, 220, 220, 220, 360, 11, 370, 796, 304, 394, 7, 34, 16, 11, 327, 66, 8, 198, 220, 220, 220, 220, 844, 796, 45941, 13, 22046, 419, 7, 35, 38381, 3712, 12, 16, 60, 198, 220, 220, 220, 370, 796, 370, 58, 45299, 220, 844, 60, 198, 220, 220, 220, 360, 796, 360, 58, 844, 60, 628, 220, 220, 220, 317, 796, 12373, 62, 33279, 7, 54, 11, 327, 16, 11, 370, 13, 51, 31, 34, 16, 31, 54, 8, 628, 220, 220, 220, 1441, 370, 11, 360, 11, 317, 198, 198, 4299, 269, 2777, 62, 30053, 7, 54, 25, 299, 67, 18747, 11, 1395, 25, 299, 67, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 25, 493, 796, 362, 8, 4613, 299, 67, 18747, 25, 198, 220, 220, 220, 37227, 13615, 327, 4303, 3033, 287, 3348, 685, 16, 60, 44807, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 370, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 21739, 16628, 422, 269, 2777, 62, 33885, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 8, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 304, 1533, 1366, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 82, 12629, 8, 198, 220, 220, 220, 299, 62, 5589, 3906, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 262, 717, 479, 6805, 284, 779, 11, 3221, 772, 1271, 11, 416, 4277, 362, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 286, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 40890, 8, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 5589, 3906, 815, 1342, 621, 262, 1271, 286, 9619, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 7431, 13416, 367, 11, 47508, 12, 38069, 3364, 449, 11, 38477, 333, 912, 2395, 6051, 402, 13, 13123, 4402, 21739, 25431, 286, 2060, 4473, 48749, 1141, 15758, 1021, 3356, 58, 41, 4083, 40552, 8945, 319, 23668, 8705, 11, 4751, 11, 807, 7, 19, 2599, 604, 3901, 12, 27260, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 370, 11, 1395, 796, 45941, 13, 30073, 7, 54, 828, 45941, 13, 30073, 7, 55, 8, 198, 220, 220, 220, 3509, 62, 5589, 3906, 796, 370, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 611, 299, 62, 5589, 3906, 1875, 3509, 62, 5589, 3906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 77, 62, 5589, 3906, 815, 1342, 621, 262, 1271, 286, 9619, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 304, 862, 796, 45941, 13, 69, 10951, 7, 55, 13, 67, 4906, 737, 25386, 198, 220, 220, 220, 1395, 796, 1395, 532, 45941, 13, 32604, 7, 55, 11, 16488, 10779, 16, 11, 1394, 67, 12078, 28, 17821, 8, 198, 220, 220, 220, 1303, 39279, 24198, 198, 220, 220, 220, 3033, 796, 45941, 13, 32604, 7, 37659, 13, 23415, 7, 37659, 13, 6759, 76, 377, 7, 54, 58, 45299, 1058, 77, 62, 5589, 3906, 4083, 51, 11, 1395, 36911, 16488, 10779, 16, 8, 198, 220, 220, 220, 3033, 796, 3033, 1220, 357, 37659, 13, 16345, 7, 40890, 11, 16488, 10779, 16, 11, 1394, 67, 12078, 28, 17821, 8, 1343, 304, 862, 8, 198, 220, 220, 220, 1303, 2604, 12, 7645, 1161, 198, 220, 220, 220, 3033, 796, 45941, 13, 6404, 7, 37659, 13, 15036, 7, 40890, 11, 304, 862, 11, 6045, 4008, 198, 220, 220, 220, 1441, 3033, 198, 198, 4299, 4808, 81, 73, 67, 7, 55, 11, 304, 862, 28, 16, 68, 12, 24, 11, 299, 62, 2676, 62, 9806, 28, 12825, 2599, 198, 220, 220, 220, 37227, 4677, 13907, 1920, 6466, 40039, 1634, 1912, 319, 474, 330, 13411, 9848, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 317, 900, 286, 44829, 590, 2603, 45977, 284, 40039, 1096, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 198, 220, 220, 220, 304, 862, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 309, 37668, 329, 12225, 34054, 357, 12286, 352, 68, 12, 23, 737, 198, 220, 220, 220, 299, 62, 2676, 62, 9806, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 24415, 284, 3151, 40826, 357, 12286, 8576, 737, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 569, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40039, 7509, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 828, 3221, 299, 62, 10379, 1010, 6624, 299, 62, 354, 8961, 13, 198, 220, 220, 220, 360, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 900, 286, 32551, 40039, 2603, 45977, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 770, 318, 257, 1277, 7822, 286, 262, 5172, 28213, 25347, 35, 11862, 685, 16, 60, 62, 973, 287, 198, 220, 220, 220, 449, 19266, 13, 383, 2438, 318, 257, 11059, 286, 262, 2603, 23912, 2438, 2810, 287, 262, 1772, 198, 220, 220, 220, 3052, 13, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 5172, 28213, 11, 11320, 12, 38848, 1073, 271, 11, 290, 3738, 42722, 8653, 280, 76, 9607, 13, 12806, 72, 18333, 329, 29526, 40039, 1634, 13, 25861, 2390, 3989, 319, 17593, 3781, 290, 5479, 1596, 13, 16, 357, 22288, 2599, 27829, 12, 23237, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 27179, 1758, 5128, 17593, 198, 220, 220, 220, 317, 796, 45941, 13, 1102, 9246, 268, 378, 7, 55, 11, 657, 737, 51, 628, 220, 220, 220, 1303, 2315, 9633, 198, 220, 220, 220, 285, 11, 28642, 796, 317, 13, 43358, 198, 220, 220, 220, 569, 796, 45941, 13, 25379, 7, 76, 8, 198, 220, 220, 220, 2207, 382, 796, 6407, 198, 220, 220, 220, 479, 796, 657, 628, 220, 220, 220, 981, 2207, 382, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 382, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 479, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 1875, 299, 62, 2676, 62, 9806, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 76, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10662, 287, 2837, 7, 79, 1343, 352, 11, 285, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 79, 796, 45941, 13, 283, 858, 7, 79, 11, 28642, 11, 285, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 80, 796, 45941, 13, 283, 858, 7, 80, 11, 28642, 11, 285, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29964, 286, 402, 452, 641, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 796, 45941, 13, 18747, 26933, 32, 58, 79, 11, 314, 79, 60, 532, 317, 58, 80, 11, 314, 80, 4357, 317, 58, 79, 11, 314, 80, 60, 1343, 317, 58, 80, 11, 314, 79, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 70, 796, 45941, 13, 26518, 7, 70, 11, 308, 13, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5680, 796, 308, 70, 58, 15, 11, 657, 60, 532, 308, 70, 58, 16, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 487, 796, 308, 70, 58, 15, 11, 352, 60, 1343, 308, 70, 58, 16, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 657, 13, 20, 1635, 45941, 13, 283, 310, 272, 17, 7, 1462, 487, 11, 5680, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 31166, 17034, 7, 1122, 1635, 5680, 1343, 284, 487, 1635, 284, 487, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 45941, 13, 6966, 7, 1169, 8326, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 45941, 13, 31369, 7, 1169, 8326, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2207, 382, 796, 2207, 382, 930, 357, 37659, 13, 8937, 7, 82, 8, 1875, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 37659, 13, 8937, 7, 82, 8, 1875, 304, 862, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 317, 58, 45299, 314, 79, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 58, 45299, 314, 79, 60, 796, 269, 1635, 317, 58, 45299, 314, 79, 60, 1343, 264, 1635, 317, 58, 45299, 314, 80, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 58, 45299, 314, 80, 60, 796, 269, 1635, 317, 58, 45299, 314, 80, 60, 532, 264, 1635, 45218, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 317, 58, 79, 11, 1058, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 58, 79, 11, 1058, 60, 796, 269, 1635, 317, 58, 79, 11, 1058, 60, 1343, 264, 1635, 317, 58, 80, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 58, 80, 11, 1058, 60, 796, 269, 1635, 317, 58, 80, 11, 1058, 60, 532, 264, 1635, 45218, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 569, 58, 45299, 279, 4083, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 58, 45299, 279, 60, 796, 269, 1635, 569, 58, 45299, 279, 60, 1343, 264, 1635, 569, 58, 45299, 10662, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 58, 45299, 10662, 60, 796, 269, 1635, 569, 58, 45299, 10662, 60, 532, 264, 1635, 45218, 628, 220, 220, 220, 360, 796, 45941, 13, 3447, 1758, 7, 32, 11, 357, 76, 11, 493, 7, 21533, 1220, 285, 828, 285, 29720, 7645, 3455, 7, 16, 11, 657, 11, 362, 8, 198, 220, 220, 220, 1441, 569, 11, 360, 198, 198, 4299, 4808, 1228, 67, 62, 746, 321, 7, 55, 11, 304, 862, 28, 16, 68, 12, 24, 11, 299, 62, 2676, 62, 9806, 28, 12825, 2599, 198, 220, 220, 220, 37227, 4677, 13907, 1920, 6466, 40039, 1634, 1912, 319, 872, 321, 338, 11862, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 317, 900, 286, 44829, 590, 2603, 45977, 284, 40039, 1096, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 198, 220, 220, 220, 304, 862, 1058, 12178, 11, 11902, 220, 198, 220, 220, 220, 220, 220, 220, 220, 309, 37668, 329, 2245, 278, 34054, 357, 12286, 352, 68, 12, 21, 737, 198, 220, 220, 220, 299, 62, 2676, 62, 9806, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 24415, 284, 3151, 40826, 357, 12286, 8576, 737, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 569, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40039, 7509, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 828, 3221, 299, 62, 10379, 1010, 6624, 299, 62, 354, 8961, 13, 198, 220, 220, 220, 360, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 900, 286, 32551, 40039, 2603, 45977, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 770, 318, 257, 1277, 7822, 286, 262, 9370, 2390, 338, 25347, 35, 11862, 685, 16, 60, 44807, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 1380, 321, 11, 23448, 71, 309, 7258, 13, 366, 41, 1563, 27665, 40039, 1634, 286, 3967, 21892, 2332, 2781, 666, 2603, 45977, 526, 25861, 2390, 4913, 319, 24936, 14691, 290, 26622, 2534, 11, 645, 13, 604, 357, 14585, 2599, 1367, 2623, 12, 1157, 4309, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 1303, 30019, 276, 422, 2638, 1378, 12567, 13, 785, 14, 1000, 87, 49078, 5657, 620, 415, 14, 9078, 49, 26597, 1236, 198, 220, 220, 220, 299, 62, 538, 5374, 82, 796, 1395, 13, 43358, 58, 15, 60, 628, 220, 220, 220, 1303, 1874, 71, 1758, 5128, 17593, 198, 220, 220, 220, 317, 796, 45941, 13, 1102, 9246, 268, 378, 7, 55, 11, 16488, 28, 15, 737, 51, 628, 220, 220, 220, 1303, 44707, 9633, 198, 220, 220, 220, 299, 62, 22355, 11, 299, 62, 76, 796, 317, 13, 43358, 198, 220, 220, 220, 569, 796, 45941, 13, 25379, 7, 77, 62, 22355, 8, 198, 220, 220, 220, 304, 862, 33576, 796, 299, 62, 22355, 1635, 357, 77, 62, 22355, 532, 352, 8, 1635, 304, 862, 628, 220, 220, 220, 329, 340, 287, 2837, 7, 77, 62, 2676, 62, 9806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 875, 81, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 21065, 287, 2837, 7, 16, 11, 299, 62, 22355, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 73, 287, 2837, 7, 4178, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 72, 796, 45941, 13, 283, 858, 7, 4178, 11, 299, 62, 76, 11, 299, 62, 22355, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 73, 796, 45941, 13, 283, 858, 7, 41098, 11, 299, 62, 76, 11, 299, 62, 22355, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 16, 796, 317, 58, 4178, 11, 314, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17, 796, 317, 58, 41098, 11, 314, 73, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 1065, 796, 45941, 13, 32604, 7, 32, 58, 4178, 11, 314, 73, 60, 1220, 269, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 2481, 796, 45941, 13, 32604, 7, 32, 58, 4178, 11, 314, 73, 60, 1220, 269, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37615, 2481, 796, 45941, 13, 32604, 7, 66, 16, 1220, 269, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37615, 1065, 796, 45941, 13, 32604, 7, 66, 17, 1220, 269, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37615, 796, 45941, 13, 31166, 17034, 7, 462, 4908, 1065, 1635, 37615, 2481, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 31166, 17034, 7, 462, 4908, 2481, 1220, 37615, 1065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 16, 796, 357, 22065, 1635, 308, 1065, 1343, 308, 2481, 8, 1220, 357, 462, 4908, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 17, 796, 357, 22065, 1635, 308, 1065, 532, 308, 2481, 8, 1220, 3509, 7, 462, 4908, 532, 352, 11, 352, 68, 12, 24, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 1065, 796, 45218, 16, 1343, 45218, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 2481, 796, 45941, 13, 1102, 73, 19510, 22065, 16, 532, 45218, 17, 8, 1220, 45218, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 875, 81, 15853, 299, 62, 538, 5374, 82, 1635, 357, 70, 1065, 1635, 45941, 13, 1102, 73, 7, 71, 1065, 8, 1343, 308, 2481, 1635, 289, 2481, 8, 1220, 362, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 352, 1343, 352, 13, 73, 1635, 657, 13, 20, 1635, 45941, 13, 48466, 7, 71, 1065, 1635, 289, 2481, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 5305, 7, 22065, 1343, 45941, 13, 31166, 17034, 7, 22065, 12429, 362, 532, 289, 1065, 1635, 289, 2481, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 559, 796, 45941, 13, 18747, 26933, 58, 16, 11, 532, 71, 1065, 1220, 45218, 4357, 25915, 71, 2481, 1220, 45218, 11, 352, 11907, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 30109, 4178, 11, 474, 73, 4357, 1058, 60, 796, 45941, 13, 26518, 7, 83, 559, 11, 317, 30109, 4178, 11, 474, 73, 4357, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 66, 62, 58, 32, 58, 45299, 314, 72, 4357, 317, 58, 45299, 314, 73, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 3447, 1758, 7, 22065, 11, 357, 77, 62, 22355, 1635, 299, 62, 538, 5374, 82, 11, 362, 828, 1502, 11639, 37, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 26518, 7, 22065, 11, 256, 559, 13, 51, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 45941, 13, 3447, 1758, 7, 22065, 11, 357, 77, 62, 22355, 11, 299, 62, 538, 5374, 82, 1635, 362, 828, 1502, 11639, 37, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 58, 45299, 314, 72, 60, 796, 45218, 58, 45299, 1058, 77, 62, 538, 5374, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 58, 45299, 314, 73, 60, 796, 45218, 58, 45299, 299, 62, 538, 5374, 82, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 569, 30109, 4178, 11, 474, 73, 4357, 1058, 60, 796, 45941, 13, 26518, 7, 83, 559, 11, 569, 30109, 4178, 11, 474, 73, 4357, 1058, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 875, 81, 1279, 304, 862, 33576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 360, 796, 45941, 13, 3447, 1758, 7, 32, 11, 357, 77, 62, 22355, 11, 532, 16, 11, 299, 62, 22355, 29720, 7645, 3455, 7, 16, 11, 657, 11, 362, 8, 198, 220, 220, 220, 1441, 569, 13, 51, 11, 360, 198, 198, 4299, 4808, 84, 86, 14907, 7, 55, 11, 2315, 28, 14202, 11, 304, 862, 28, 16, 68, 12, 24, 11, 299, 62, 2676, 62, 9806, 28, 12825, 2599, 198, 220, 220, 220, 37227, 4677, 13907, 1920, 6466, 40039, 1634, 11862, 33436, 1961, 8264, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 317, 900, 286, 44829, 590, 2603, 45977, 284, 40039, 1096, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 198, 220, 220, 220, 2315, 1058, 6045, 930, 299, 67, 18747, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1634, 329, 262, 40039, 7509, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 198, 220, 220, 220, 304, 862, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 309, 37668, 329, 2245, 278, 34054, 357, 12286, 352, 68, 12, 22, 737, 198, 220, 220, 220, 299, 62, 2676, 62, 9806, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5415, 1271, 286, 24415, 284, 3151, 40826, 357, 12286, 8576, 737, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 370, 62, 395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40039, 7509, 11, 5485, 357, 77, 62, 10379, 1010, 11, 299, 62, 354, 8961, 828, 3221, 299, 62, 10379, 1010, 6624, 299, 62, 354, 8961, 13, 198, 220, 220, 220, 360, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 900, 286, 32551, 40039, 2603, 45977, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 737, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 35712, 306, 14331, 276, 1475, 42456, 425, 6031, 27923, 1634, 1262, 12822, 1046, 24415, 198, 220, 220, 220, 357, 52, 12, 54, 1961, 8264, 737, 46333, 286, 262, 25347, 35, 11862, 416, 309, 488, 615, 15688, 290, 575, 1068, 273, 685, 16, 60, 62, 685, 17, 60, 44807, 198, 220, 220, 220, 770, 318, 257, 11059, 422, 262, 2603, 23912, 2438, 2810, 416, 262, 7035, 13, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 350, 13, 309, 488, 615, 15688, 11, 317, 13, 575, 1068, 273, 290, 449, 13, 31154, 11, 366, 32, 12549, 2034, 13907, 1920, 16798, 6031, 27923, 1634, 978, 42289, 8554, 257, 10056, 28019, 351, 257, 9726, 6031, 27923, 14331, 24936, 1600, 12460, 1921, 4303, 3648, 11, 10123, 9621, 13, 198, 220, 220, 220, 11485, 685, 17, 60, 350, 13, 309, 488, 615, 15688, 290, 317, 13, 575, 1068, 273, 11, 366, 22968, 2034, 13907, 1920, 16798, 6031, 27923, 1634, 3457, 31150, 803, 14331, 6550, 45977, 1, 40552, 46192, 286, 26484, 28403, 11, 3717, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 406, 11, 288, 11, 4808, 796, 1395, 13, 43358, 628, 220, 220, 220, 1303, 27179, 1758, 5128, 17593, 198, 220, 220, 220, 337, 796, 45941, 13, 1102, 9246, 268, 378, 7, 55, 11, 657, 737, 51, 628, 220, 220, 220, 1303, 2315, 9633, 198, 220, 220, 220, 288, 11, 39762, 796, 337, 13, 43358, 198, 220, 220, 220, 24415, 796, 657, 198, 220, 220, 220, 2987, 796, 838, 628, 220, 220, 220, 611, 2315, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 412, 11, 367, 796, 45941, 13, 75, 1292, 70, 13, 68, 328, 7, 44, 58, 45299, 657, 25, 67, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 395, 796, 45941, 13, 26518, 7, 37659, 13, 10989, 363, 7, 16, 13, 1220, 45941, 13, 31166, 17034, 7, 37659, 13, 8937, 7, 36, 4008, 828, 367, 13, 51, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 395, 796, 2315, 628, 220, 220, 220, 6997, 796, 45941, 13, 18747, 7, 44, 8, 198, 220, 220, 220, 12820, 796, 45941, 13, 9107, 418, 19510, 67, 11, 406, 4008, 628, 220, 220, 220, 329, 479, 287, 2837, 7, 43, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 287, 72, 796, 479, 9, 67, 198, 220, 220, 220, 220, 220, 220, 220, 13778, 796, 45941, 13, 283, 858, 7, 5362, 11, 287, 72, 1343, 288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 337, 58, 45299, 13778, 60, 796, 657, 13, 20, 9, 7, 44, 58, 45299, 13778, 60, 1343, 337, 58, 45299, 13778, 4083, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6997, 58, 45299, 13778, 60, 796, 45941, 13, 26518, 7, 37659, 13, 26518, 7, 54, 62, 395, 11, 337, 58, 45299, 13778, 46570, 370, 62, 395, 13, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12820, 58, 45299, 479, 60, 796, 45941, 13, 10989, 363, 7, 10128, 58, 45299, 13778, 12962, 628, 220, 220, 220, 1955, 796, 45941, 13, 16345, 7, 10128, 1174, 17, 8, 532, 45941, 13, 16345, 7, 31273, 1174, 17, 8, 198, 220, 220, 220, 981, 357, 49453, 1875, 304, 862, 8, 1222, 357, 2676, 341, 1279, 299, 62, 2676, 62, 9806, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 347, 796, 45941, 13, 26518, 7, 31273, 11, 12820, 13, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 327, 16, 796, 45941, 13, 9107, 418, 19510, 67, 11, 288, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 67, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 16, 58, 45299, 1312, 60, 796, 45941, 13, 16345, 7, 10128, 58, 45299, 1312, 25, 44, 67, 25, 67, 60, 9, 31273, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 360, 15, 796, 347, 9, 33, 13, 51, 532, 45941, 13, 39605, 7, 37659, 13, 10989, 363, 7, 33, 828, 45941, 13, 10989, 363, 7, 33, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 317, 15, 796, 357, 34, 16, 1635, 347, 532, 45941, 13, 26518, 7, 37659, 13, 10989, 363, 7, 37659, 13, 10989, 363, 7, 33, 36911, 327, 16, 13, 51, 4008, 1220, 357, 35, 15, 1343, 45941, 13, 25379, 7, 67, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 317, 15, 15853, 45941, 13, 25379, 7, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 395, 796, 45941, 13, 75, 1292, 70, 13, 82, 6442, 7, 32, 15, 11, 370, 62, 395, 8, 628, 220, 220, 220, 220, 220, 220, 220, 371, 14644, 796, 45941, 13, 26518, 7, 37659, 13, 26518, 7, 54, 62, 395, 11, 337, 58, 45299, 657, 25, 67, 46570, 370, 62, 395, 13, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27506, 796, 352, 19571, 37659, 13, 31166, 17034, 7, 37659, 13, 8937, 7, 37659, 13, 10989, 363, 7, 49, 14644, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 370, 62, 395, 796, 45941, 13, 26518, 7, 37659, 13, 10989, 363, 7, 14644, 828, 370, 62, 395, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 43, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 72, 796, 479, 9, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13778, 796, 45941, 13, 283, 858, 7, 5362, 11, 287, 72, 1343, 288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6997, 58, 45299, 13778, 60, 796, 45941, 13, 26518, 7, 37659, 13, 26518, 7, 54, 62, 395, 11, 337, 58, 45299, 13778, 46570, 370, 62, 395, 13, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12820, 58, 45299, 479, 60, 796, 45941, 13, 10989, 363, 7, 10128, 58, 45299, 13778, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1955, 62, 3605, 796, 45941, 13, 16345, 7, 10128, 1174, 17, 8, 532, 45941, 13, 16345, 7, 31273, 1174, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2987, 796, 45941, 13, 8937, 7, 22213, 62, 3605, 532, 1955, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1955, 796, 1955, 62, 3605, 198, 220, 220, 220, 220, 220, 220, 220, 24415, 15853, 352, 628, 220, 220, 220, 360, 796, 45941, 13, 3447, 1758, 7, 10128, 11, 357, 67, 11, 406, 11, 288, 29720, 7645, 3455, 7, 16, 11, 657, 11, 362, 8, 198, 220, 220, 220, 1441, 370, 62, 395, 13, 51, 11, 360, 198, 198, 1228, 67, 62, 24396, 82, 796, 1391, 198, 220, 220, 220, 705, 81, 73, 67, 10354, 4808, 81, 73, 67, 11, 220, 198, 220, 220, 220, 705, 1228, 67, 62, 746, 321, 10354, 4808, 1228, 67, 62, 746, 321, 11, 220, 198, 220, 220, 220, 705, 84, 86, 14907, 10354, 4808, 84, 86, 14907, 198, 92, 198, 198, 4299, 4808, 9122, 62, 1228, 67, 62, 24396, 7, 24396, 2599, 198, 220, 220, 220, 37227, 9787, 611, 257, 1813, 2446, 318, 4938, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2446, 1058, 869, 540, 2134, 393, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10347, 307, 262, 1438, 286, 257, 73, 67, 62, 24396, 393, 257, 869, 540, 2446, 2346, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2446, 25, 869, 540, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 317, 869, 540, 257, 73, 67, 2446, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 869, 540, 7, 24396, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1288, 361, 2446, 287, 257, 73, 67, 62, 24396, 82, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 796, 257, 73, 67, 62, 24396, 82, 58, 24396, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 4, 82, 318, 407, 281, 4938, 2446, 5145, 48951, 5050, 389, 1058, 4064, 82, 393, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 869, 540, 2163, 37811, 4064, 357, 24396, 11, 19203, 837, 705, 737, 22179, 7, 1228, 67, 62, 24396, 82, 13, 13083, 3419, 22305, 198, 220, 220, 220, 1441, 2446, 198, 198, 4299, 257, 73, 67, 7, 55, 25, 299, 67, 18747, 11, 2446, 25, 965, 796, 6, 84, 86, 14907, 11537, 4613, 309, 29291, 58, 358, 18747, 11, 299, 67, 18747, 5974, 198, 220, 220, 220, 37227, 36918, 2848, 286, 25347, 35, 5050, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 44829, 590, 2603, 45977, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 354, 8961, 8, 198, 220, 220, 220, 2446, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 25347, 35, 2446, 357, 12286, 334, 86, 14907, 737, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 569, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 40039, 7509, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 828, 3221, 299, 62, 10379, 1010, 6624, 299, 62, 354, 8961, 13, 198, 220, 220, 220, 360, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1612, 286, 32551, 40039, 2603, 45977, 11, 5485, 357, 77, 62, 354, 8961, 11, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2446, 796, 4808, 9122, 62, 1228, 67, 62, 24396, 7, 24396, 8, 198, 220, 220, 220, 569, 11, 360, 796, 2446, 7, 55, 8, 198, 220, 220, 220, 360, 796, 45941, 13, 10989, 363, 7, 37659, 13, 32604, 7, 35, 11, 16488, 28, 15, 4008, 198, 220, 220, 220, 773, 796, 45941, 13, 22046, 419, 7, 35, 38381, 3712, 12, 16, 60, 198, 220, 220, 220, 360, 796, 360, 58, 521, 60, 198, 220, 220, 220, 569, 796, 569, 58, 45299, 773, 60, 198, 220, 220, 220, 1441, 569, 11, 360, 198, 198, 4299, 308, 86, 62, 66, 2777, 62, 33885, 7, 55, 25, 299, 67, 18747, 11, 331, 25, 299, 67, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 257, 73, 67, 62, 24396, 25, 965, 796, 705, 84, 86, 14907, 11537, 4613, 309, 29291, 58, 358, 18747, 11, 299, 67, 18747, 11, 299, 67, 18747, 11, 299, 67, 18747, 5974, 198, 220, 220, 220, 37227, 38, 39314, 12, 54, 298, 12618, 25347, 35, 2446, 1912, 319, 3348, 685, 16, 60, 44807, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 304, 1533, 1366, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 82, 12629, 737, 198, 220, 220, 220, 331, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 11, 5485, 357, 77, 62, 28461, 874, 737, 198, 220, 220, 220, 257, 73, 67, 62, 24396, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 257, 73, 67, 5050, 11, 705, 84, 86, 14907, 6, 705, 81, 73, 67, 6, 290, 705, 1228, 67, 62, 746, 321, 3256, 416, 4277, 705, 84, 86, 14907, 4458, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 370, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1338, 34961, 16628, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 737, 198, 220, 220, 220, 360, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 412, 9324, 27160, 286, 21739, 16628, 11, 5485, 357, 77, 62, 10379, 1010, 11, 737, 198, 220, 220, 220, 317, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1338, 34961, 7572, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 33279, 82, 737, 198, 220, 220, 220, 13584, 62, 10951, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 48807, 4175, 4548, 261, 3815, 11, 5485, 357, 77, 62, 10379, 1010, 737, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 402, 39314, 12, 54, 298, 12618, 11, 3461, 4224, 11, 290, 5780, 347, 1046, 13, 366, 15205, 291, 31172, 2219, 21739, 7572, 290, 1321, 12376, 291, 3895, 22236, 526, 8436, 35914, 14044, 11, 40552, 46192, 319, 5996, 11, 645, 13, 807, 357, 11528, 2599, 10249, 12, 11024, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 11, 331, 796, 45941, 13, 30073, 7, 55, 828, 45941, 13, 30073, 7, 88, 8, 198, 220, 220, 220, 14722, 796, 45941, 13, 34642, 7, 88, 8, 198, 220, 220, 220, 1395, 796, 1395, 532, 45941, 13, 32604, 7, 55, 11, 16488, 10779, 16, 11, 1394, 67, 12078, 28, 17821, 8, 628, 220, 220, 220, 327, 87, 796, 17635, 198, 220, 220, 220, 329, 6167, 287, 14722, 25, 198, 220, 220, 220, 220, 220, 220, 220, 327, 796, 39849, 3699, 728, 7, 55, 58, 88, 855, 18242, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12854, 3487, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 327, 796, 327, 1220, 45941, 13, 40546, 7, 34, 11, 16488, 16, 10779, 16, 11, 16488, 17, 10779, 17, 38381, 45299, 45941, 13, 3605, 22704, 11, 45941, 13, 3605, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 327, 87, 13, 33295, 7, 37659, 13, 32604, 7, 34, 11, 16488, 28, 15, 4008, 198, 220, 220, 220, 327, 87, 796, 45941, 13, 25558, 7, 34, 87, 8, 198, 220, 220, 220, 370, 11, 360, 796, 257, 73, 67, 7, 34, 87, 11, 2446, 28, 1228, 67, 62, 24396, 8, 198, 220, 220, 220, 1303, 43166, 313, 796, 45941, 13, 32604, 7, 34, 87, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 1303, 370, 796, 370, 1220, 45941, 13, 31166, 17034, 7, 37659, 13, 10989, 363, 7, 54, 13, 51, 31, 33707, 313, 31, 54, 4008, 198, 220, 220, 220, 370, 796, 370, 1220, 45941, 13, 31166, 17034, 7, 35, 8, 628, 220, 220, 220, 1303, 24061, 13584, 1321, 3815, 198, 220, 220, 220, 350, 66, 796, 685, 37659, 13, 32604, 7, 88, 6624, 6167, 8, 329, 6167, 287, 14722, 60, 198, 220, 220, 220, 13584, 62, 10951, 796, 17635, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 54, 13, 43358, 58, 12, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 23912, 1424, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45218, 796, 45941, 13, 26518, 7, 37659, 13, 26518, 7, 54, 58, 73, 4357, 2116, 13, 34, 62, 58, 72, 46570, 370, 58, 73, 4083, 51, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 370, 58, 45299, 474, 4083, 51, 31, 34, 87, 58, 72, 60, 31, 54, 58, 45299, 474, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 15853, 350, 66, 58, 72, 60, 1635, 45941, 13, 6404, 7, 37659, 13, 31166, 17034, 7, 22065, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 15853, 350, 66, 58, 72, 60, 1635, 357, 22065, 12429, 362, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 21504, 796, 532, 357, 64, 1343, 357, 18, 13, 15, 1220, 1467, 8, 1635, 357, 65, 12429, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 13584, 62, 10951, 13, 33295, 7, 11632, 8, 198, 220, 220, 220, 13584, 62, 10951, 796, 45941, 13, 18747, 7, 21973, 723, 62, 10951, 8, 198, 220, 220, 220, 220, 844, 796, 45941, 13, 22046, 419, 7, 21973, 723, 62, 10951, 38381, 3712, 12, 16, 60, 198, 220, 220, 220, 370, 796, 370, 58, 45299, 220, 844, 60, 198, 220, 220, 220, 13584, 62, 10951, 796, 13584, 62, 10951, 58, 844, 60, 198, 220, 220, 220, 360, 796, 360, 58, 844, 60, 198, 220, 220, 220, 317, 796, 12373, 62, 33279, 7, 54, 11, 327, 87, 58, 15, 4357, 370, 13, 51, 31, 34, 87, 58, 15, 60, 31, 54, 8, 198, 220, 220, 220, 1441, 370, 11, 360, 11, 317, 11, 13584, 62, 10951, 198, 198, 4871, 327, 4303, 7, 14881, 22362, 320, 1352, 11, 3602, 16354, 35608, 259, 2599, 198, 220, 220, 220, 37227, 17227, 1338, 34961, 23939, 13, 628, 220, 220, 220, 611, 299, 62, 5589, 3906, 318, 6045, 11, 8295, 4917, 262, 1266, 1271, 286, 6805, 351, 10706, 12947, 13, 383, 6727, 10342, 4179, 318, 5295, 416, 3509, 62, 5589, 3906, 11, 4277, 318, 2063, 286, 262, 1271, 286, 9619, 13, 198, 220, 220, 220, 37227, 198, 198, 4299, 599, 420, 62, 33885, 7, 55, 25, 299, 67, 18747, 11, 331, 25, 299, 67, 18747, 8, 4613, 309, 29291, 58, 358, 18747, 11, 299, 67, 18747, 11, 299, 67, 18747, 5974, 198, 220, 220, 220, 37227, 7416, 4333, 955, 375, 1741, 357, 4303, 78, 34, 8, 1912, 319, 3348, 685, 16, 60, 44807, 628, 220, 220, 220, 632, 318, 257, 1261, 516, 327, 4303, 12, 2339, 2446, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1395, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 304, 1533, 1366, 11, 5485, 357, 77, 62, 28461, 874, 11, 299, 62, 354, 8961, 11, 299, 62, 82, 12629, 8, 198, 220, 220, 220, 331, 1058, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 11, 5485, 357, 77, 62, 28461, 874, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 370, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1338, 34961, 16628, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 10379, 1010, 737, 198, 220, 220, 220, 360, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 412, 9324, 27160, 286, 21739, 16628, 11, 5485, 357, 77, 62, 10379, 1010, 11, 737, 198, 220, 220, 220, 317, 25, 299, 67, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1338, 34961, 7572, 11, 5485, 357, 77, 62, 354, 8961, 11, 299, 62, 33279, 82, 737, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 44611, 360, 11033, 71, 710, 11, 5278, 327, 13, 2185, 500, 66, 365, 11, 28842, 49696, 5036, 11, 38579, 367, 9101, 71, 710, 11, 3899, 18816, 2224, 77, 11, 49739, 12, 19156, 40790, 6051, 11, 290, 569, 324, 320, 569, 13, 11271, 11599, 13, 6226, 78, 34, 25, 257, 5337, 9355, 329, 11270, 262, 37188, 286, 36347, 24969, 602, 284, 4069, 453, 5981, 10007, 13, 13782, 5159, 11, 9849, 25, 16243, 1906, 18376, 11, 1946, 13, 23899, 25, 940, 13, 27956, 14, 73, 13, 710, 1434, 9060, 13, 6390, 13, 2998, 13, 2998, 24, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1395, 11, 19590, 796, 45941, 13, 30073, 7, 55, 828, 45941, 13, 30073, 7, 88, 8, 198, 220, 220, 220, 304, 862, 796, 45941, 13, 69, 10951, 7, 55, 13, 67, 4906, 737, 25386, 198, 220, 220, 220, 1395, 796, 1395, 532, 45941, 13, 32604, 7, 55, 11, 16488, 10779, 16, 11, 1394, 67, 12078, 28, 17821, 8, 198, 220, 220, 220, 19590, 796, 19590, 532, 45941, 13, 32604, 7, 43775, 8, 198, 220, 220, 220, 19590, 796, 19590, 1220, 45941, 13, 19282, 7, 43775, 8, 198, 220, 220, 220, 327, 87, 796, 39849, 3699, 728, 7, 55, 8, 198, 220, 220, 220, 1303, 12854, 3487, 1634, 198, 220, 220, 220, 327, 87, 796, 327, 87, 1220, 45941, 13, 40546, 7, 34, 87, 11, 16488, 16, 10779, 16, 11, 16488, 17, 10779, 17, 38381, 45299, 45941, 13, 3605, 22704, 11, 45941, 13, 3605, 22704, 60, 198, 220, 220, 220, 327, 796, 45941, 13, 32604, 7, 34, 87, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 327, 89, 796, 45941, 13, 32604, 7, 43775, 58, 45299, 45941, 13, 3605, 22704, 11, 45941, 13, 3605, 22704, 60, 9, 34, 87, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2198, 3967, 12, 4299, 15003, 9449, 198, 220, 220, 220, 327, 796, 16936, 5760, 7, 34, 8, 198, 220, 220, 220, 327, 89, 796, 16936, 5760, 7, 34, 89, 8, 628, 220, 220, 220, 1303, 16926, 46, 25, 1277, 4866, 422, 12972, 380, 368, 1236, 11, 761, 11767, 198, 220, 220, 220, 360, 11, 370, 796, 304, 394, 7, 34, 89, 11, 327, 8, 198, 220, 220, 220, 773, 796, 45941, 13, 22046, 419, 7, 35, 38381, 3712, 12, 16, 60, 198, 220, 220, 220, 360, 796, 360, 58, 521, 60, 198, 220, 220, 220, 370, 796, 370, 58, 45299, 773, 60, 628, 220, 220, 220, 317, 796, 12373, 62, 33279, 7, 54, 11, 327, 89, 11, 370, 13, 51, 31, 34, 89, 31, 54, 8, 198, 220, 220, 220, 1441, 370, 11, 360, 11, 317, 198, 198, 4871, 6226, 78, 34, 7, 14881, 22362, 320, 1352, 11, 3602, 16354, 35608, 259, 2599, 198, 220, 220, 220, 37227, 7416, 4333, 955, 375, 1741, 357, 4303, 78, 34, 737, 628, 220, 220, 220, 1114, 12948, 1366, 11, 407, 19000, 13, 628, 220, 220, 220, 37227, 198, 198, 4871, 376, 2749, 4303, 7, 22417, 28650, 2599, 198, 220, 220, 220, 37227, 37, 2749, 4303, 13, 628, 220, 220, 220, 25853, 28650, 327, 4303, 1912, 319, 3348, 685, 16, 60, 44807, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 2895, 509, 509, 11, 22604, 1168, 575, 11, 19439, 367, 11, 2123, 435, 13, 25853, 3331, 2219, 21739, 3912, 357, 37, 2749, 4303, 8, 287, 3632, 12, 33215, 7071, 58, 34, 60, 1003, 11528, 40552, 4037, 16798, 8785, 319, 47986, 27862, 357, 40, 31909, 2159, 3162, 319, 22476, 864, 9345, 737, 40552, 11, 3648, 25, 2242, 3829, 12, 1954, 5607, 13, 198, 220, 220, 220, 37227, 628 ]
2.142556
8,551
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib.style as style from sklearn.base import BaseEstimator from ..utils import ( is_factor, numerical_gradient, numerical_gradient_jackknife, numerical_gradient_gaussian, numerical_interactions, numerical_interactions_jackknife, numerical_interactions_gaussian, Progbar, score_regression, score_classification, ) class Explainer(BaseEstimator): """Class Explainer: effects of features on the response. Attributes: obj: an object; fitted object containing methods `fit` and `predict` n_jobs: an integer; number of jobs for parallel computing y_class: an integer; class whose probability has to be explained (for classification only) normalize: a boolean; whether the features must be normalized or not (changes the effects) """ def fit( self, X, y, X_names, method="avg", type_ci="jackknife", scoring=None, level=95, col_inters=None, ): """Fit the explainer's attribute `obj` to training data (X, y). Args: X: array-like, shape = [n_samples, n_features]; Training vectors, where n_samples is the number of samples and n_features is the number of features. y: array-like, shape = [n_samples, ]; Target values. X_names: {array-like}, shape = [n_features, ]; Column names (strings) for training vectors. method: str; Type of summary requested for effects. Either `avg` (for average effects), `inters` (for interactions) or `ci` (for effects including confidence intervals around them). type_ci: str; Type of resampling for `method == 'ci'` (confidence intervals around effects). Either `jackknife` bootsrapping or `gaussian` (gaussian white noise with standard deviation equal to `0.01` applied to the features). scoring: str; measure of errors must be in ("explained_variance", "neg_mean_absolute_error", "neg_mean_squared_error", "neg_mean_squared_log_error", "neg_median_absolute_error", "r2", "rmse") (default: "rmse"). level: int; Level of confidence required for `method == 'ci'` (in %). col_inters: str; Name of column for computing interactions. """ assert method in ( "avg", "ci", "inters", ), "must have: `method` in ('avg', 'ci', 'inters')" n, p = X.shape self.X_names = X_names self.level = level self.method = method self.type_ci = type_ci if is_factor(y): # classification --- self.n_classes = len(np.unique(y)) assert ( self.y_class <= self.n_classes ), "self.y_class must be <= number of classes" assert hasattr( self.obj, "predict_proba" ), "`self.obj` must be a classifier and have a method `predict_proba`" self.type_fit = "classification" if scoring is None: self.scoring = "accuracy" self.score_ = score_classification(self.obj, X, y, scoring=self.scoring) y_hat = predict_proba(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( predict_proba, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=predict_proba, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") else: # is_factor(y) == False # regression --- self.type_fit = "regression" if scoring is None: self.scoring = "rmse" self.score_ = score_regression(self.obj, X, y, scoring=self.scoring) y_hat = self.obj.predict(X) # heterogeneity of effects if method == "avg": self.grad_ = numerical_gradient( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, ) # confidence intervals if method == "ci": if type_ci=="jackknife": self.ci_ = numerical_gradient_jackknife( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) if type_ci=="gaussian": self.ci_ = numerical_gradient_gaussian( self.obj.predict, X, normalize=self.normalize, n_jobs=self.n_jobs, level=level, ) # interactions if method == "inters": assert col_inters is not None, "`col_inters` must be provided" self.col_inters = col_inters ix1 = np.where(X_names == col_inters)[0][0] pbar = Progbar(p) if type_ci=="jackknife": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_jackknife( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) if type_ci=="gaussian": for ix2 in range(p): self.ci_inters_.update( { X_names[ix2]: numerical_interactions_gaussian( f=self.obj.predict, X=X, ix1=ix1, ix2=ix2, verbose=0, ) } ) pbar.update(ix2) pbar.update(p) print("\n") self.y_mean_ = np.mean(y) ss_tot = np.sum((y - self.y_mean_) ** 2) ss_reg = np.sum((y_hat - self.y_mean_) ** 2) ss_res = np.sum((y - y_hat) ** 2) self.residuals_ = y - y_hat self.r_squared_ = 1 - ss_res / ss_tot self.adj_r_squared_ = 1 - (1 - self.r_squared_) * (n - 1) / ( n - p - 1 ) # classification and regression --- if method == "avg": res_df = pd.DataFrame(data=self.grad_, columns=X_names) res_df_mean = res_df.mean() res_df_std = res_df.std() res_df_median = res_df.median() res_df_min = res_df.min() res_df_max = res_df.max() data = pd.concat( [res_df_mean, res_df_std, res_df_median, res_df_min, res_df_max], axis=1 ) df_effects = pd.DataFrame( data=data.values, columns=["mean", "std", "median", "min", "max"], index=X_names, ) # heterogeneity of effects self.effects_ = df_effects.sort_values(by=["mean"], ascending=False) return self def summary(self): """Summarise results a method in class Explainer Args: None """ assert ( (self.ci_ is not None) | (self.effects_ is not None) | (self.ci_inters_ is not None) ), "object not fitted, fit the object first" if (self.ci_ is not None) & (self.method == "ci"): # (mean_est, se_est, # mean_est + qt*se_est, mean_est - qt*se_est, # p_values, signif_codes) df_mean = pd.Series(data=self.ci_[0], index=self.X_names) df_se = pd.Series(data=self.ci_[1], index=self.X_names) df_ubound = pd.Series(data=self.ci_[2], index=self.X_names) df_lbound = pd.Series(data=self.ci_[3], index=self.X_names) df_pvalue = pd.Series(data=self.ci_[4], index=self.X_names) df_signif = pd.Series(data=self.ci_[5], index=self.X_names) data = pd.concat( [df_mean, df_se, df_lbound, df_ubound, df_pvalue, df_signif], axis=1, ) self.ci_summary_ = pd.DataFrame( data=data.values, columns=[ "Estimate", "Std. Error", str(self.level) + "% lbound", str(self.level) + "% ubound", "Pr(>|t|)", "", ], index=self.X_names, ).sort_values(by=["Estimate"], ascending=False) print("\n") print(f"Score ({self.scoring}): \n {np.round(self.score_, 3)}") if self.type_fit == "regression": print("\n") print("Residuals: ") self.residuals_dist_ = pd.DataFrame( pd.Series( data=np.quantile( self.residuals_, q=[0, 0.25, 0.5, 0.75, 1] ), index=["Min", "1Q", "Median", "3Q", "Max"], ) ).transpose() print(self.residuals_dist_.to_string(index=False)) print("\n") if self.type_ci=="jackknife": print("Tests on marginal effects (Jackknife): ") if self.type_ci=="gaussian": print("Tests on marginal effects (Gaussian noise): ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.ci_summary_) print("\n") print( "Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘-’ 1" ) if self.type_fit == "regression": print("\n") print( f"Multiple R-squared: {np.round(self.r_squared_, 3)}, Adjusted R-squared: {np.round(self.adj_r_squared_, 3)}" ) if (self.effects_ is not None) & (self.method == "avg"): print("\n") print("Heterogeneity of marginal effects: ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print(self.effects_) print("\n") if (self.ci_inters_ is not None) & (self.method == "inters"): print("\n") print("Interactions with " + self.col_inters + ": ") with pd.option_context( "display.max_rows", None, "display.max_columns", None ): print( pd.DataFrame( self.ci_inters_, index=[ "Estimate", "Std. Error", str(95) + "% lbound", str(95) + "% ubound", "Pr(>|t|)", "", ], ).transpose() ) def plot(self, what): """Plot average effects, heterogeneity of effects, ... Args: what: a string; if . """ assert self.effects_ is not None, "Call method 'fit' before plotting" assert self.grad_ is not None, "Call method 'fit' before plotting" # For method == "avg" if (self.method == "avg"): if(what == "average_effects"): sns.set(style="darkgrid") fi = pd.DataFrame() fi['features'] = self.effects_.index.values fi['effect'] = self.effects_['mean'].values sns.barplot(x='effect', y='features', data=fi.sort_values(by='effect', ascending=False)) if(what == "hetero_effects"): grads_df = pd.DataFrame(data=self.grad_, columns=self.X_names) sorted_columns = list(self.effects_.index.values) # by mean sorted_columns.reverse() grads_df = grads_df.reindex(sorted_columns, axis=1) sns.set(style="darkgrid") grads_df.boxplot(vert=False) # For method == "ci" if (self.method == "ci"): assert self.ci_ is not None, "Call method 'fit' before plotting" raise NotImplementedError("No plot for method == 'ci' yet")
[ 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 13, 7635, 355, 3918, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 198, 6738, 11485, 26791, 1330, 357, 198, 220, 220, 220, 318, 62, 31412, 11, 198, 220, 220, 220, 29052, 62, 49607, 11, 198, 220, 220, 220, 29052, 62, 49607, 62, 19650, 48810, 11, 198, 220, 220, 220, 29052, 62, 49607, 62, 4908, 31562, 11, 198, 220, 220, 220, 29052, 62, 3849, 4658, 11, 198, 220, 220, 220, 29052, 62, 3849, 4658, 62, 19650, 48810, 11, 198, 220, 220, 220, 29052, 62, 3849, 4658, 62, 4908, 31562, 11, 198, 220, 220, 220, 1041, 70, 5657, 11, 198, 220, 220, 220, 4776, 62, 2301, 2234, 11, 198, 220, 220, 220, 4776, 62, 4871, 2649, 11, 198, 8, 628, 198, 4871, 5905, 10613, 7, 14881, 22362, 320, 1352, 2599, 198, 220, 220, 220, 37227, 9487, 5905, 10613, 25, 3048, 286, 3033, 319, 262, 2882, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 25, 281, 2134, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18235, 2134, 7268, 5050, 4600, 11147, 63, 290, 4600, 79, 17407, 63, 628, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 25, 281, 18253, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 3946, 329, 10730, 14492, 628, 220, 220, 220, 220, 220, 220, 220, 331, 62, 4871, 25, 281, 18253, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 3025, 12867, 468, 284, 307, 4893, 357, 1640, 17923, 691, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 25, 257, 25131, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1771, 262, 3033, 1276, 307, 39279, 393, 407, 357, 36653, 262, 3048, 8, 628, 220, 220, 220, 37227, 628, 628, 220, 220, 220, 825, 4197, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 2625, 615, 70, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 979, 2625, 19650, 48810, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9689, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 3865, 11, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 20193, 28, 14202, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 31805, 262, 4727, 263, 338, 11688, 4600, 26801, 63, 284, 3047, 1366, 357, 55, 11, 331, 737, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 299, 62, 40890, 11208, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13614, 30104, 11, 810, 299, 62, 82, 12629, 318, 262, 1271, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 8405, 290, 299, 62, 40890, 318, 262, 1271, 286, 3033, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 25, 7177, 12, 2339, 11, 5485, 796, 685, 77, 62, 82, 12629, 11, 28013, 12744, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 14933, 25, 1391, 18747, 12, 2339, 5512, 5485, 796, 685, 77, 62, 40890, 11, 28013, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29201, 3891, 357, 37336, 8, 329, 3047, 30104, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 25, 965, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 286, 10638, 9167, 329, 3048, 13, 15467, 4600, 615, 70, 63, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1640, 2811, 3048, 828, 4600, 20193, 63, 357, 1640, 12213, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 4600, 979, 63, 357, 1640, 3048, 1390, 6628, 20016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1088, 606, 737, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 979, 25, 965, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 286, 581, 321, 11347, 329, 4600, 24396, 6624, 705, 979, 6, 63, 357, 39745, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20016, 1088, 3048, 737, 15467, 4600, 19650, 48810, 63, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14412, 430, 2105, 393, 4600, 4908, 31562, 63, 357, 4908, 31562, 2330, 7838, 351, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3210, 28833, 4961, 284, 4600, 15, 13, 486, 63, 5625, 284, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9689, 25, 965, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3953, 286, 8563, 1276, 307, 287, 5855, 20676, 1328, 62, 25641, 590, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12480, 62, 32604, 62, 48546, 62, 18224, 1600, 366, 12480, 62, 32604, 62, 16485, 1144, 62, 18224, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12480, 62, 32604, 62, 16485, 1144, 62, 6404, 62, 18224, 1600, 366, 12480, 62, 1150, 666, 62, 48546, 62, 18224, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 81, 17, 1600, 366, 26224, 325, 4943, 357, 12286, 25, 366, 26224, 325, 11074, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 25, 493, 26, 5684, 286, 6628, 2672, 329, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 24396, 6624, 705, 979, 6, 63, 357, 259, 4064, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 20193, 25, 965, 26, 6530, 286, 5721, 329, 14492, 12213, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2446, 287, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 615, 70, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 979, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20193, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 366, 27238, 423, 25, 4600, 24396, 63, 287, 19203, 615, 70, 3256, 705, 979, 3256, 705, 20193, 11537, 1, 628, 220, 220, 220, 220, 220, 220, 220, 299, 11, 279, 796, 1395, 13, 43358, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 62, 14933, 796, 1395, 62, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5715, 796, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24396, 796, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4906, 62, 979, 796, 2099, 62, 979, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 31412, 7, 88, 2599, 220, 1303, 17923, 11420, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 37724, 796, 18896, 7, 37659, 13, 34642, 7, 88, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 62, 4871, 19841, 2116, 13, 77, 62, 37724, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 366, 944, 13, 88, 62, 4871, 1276, 307, 19841, 1271, 286, 6097, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26801, 11, 366, 79, 17407, 62, 1676, 7012, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 366, 63, 944, 13, 26801, 63, 1276, 307, 257, 1398, 7483, 290, 423, 257, 2446, 4600, 79, 17407, 62, 1676, 7012, 63, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4906, 62, 11147, 796, 366, 4871, 2649, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9689, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46536, 796, 366, 4134, 23843, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26675, 62, 796, 4776, 62, 4871, 2649, 7, 944, 13, 26801, 11, 1395, 11, 331, 11, 9689, 28, 944, 13, 46536, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 5183, 796, 4331, 62, 1676, 7012, 7, 55, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49763, 286, 3048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 615, 70, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 62, 796, 29052, 62, 49607, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4331, 62, 1676, 7012, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 944, 13, 11265, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6628, 20016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 979, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 19650, 48810, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 796, 29052, 62, 49607, 62, 19650, 48810, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4331, 62, 1676, 7012, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 944, 13, 11265, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 5715, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 4908, 31562, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 796, 29052, 62, 49607, 62, 4908, 31562, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4331, 62, 1676, 7012, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 944, 13, 11265, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 5715, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12213, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 20193, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 951, 62, 20193, 318, 407, 6045, 11, 366, 63, 4033, 62, 20193, 63, 1276, 307, 2810, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4033, 62, 20193, 796, 951, 62, 20193, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 16, 796, 45941, 13, 3003, 7, 55, 62, 14933, 6624, 951, 62, 20193, 38381, 15, 7131, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 796, 1041, 70, 5657, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 19650, 48810, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 220, 844, 17, 287, 2837, 7, 79, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 20193, 44807, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 14933, 58, 844, 17, 5974, 29052, 62, 3849, 4658, 62, 19650, 48810, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 28, 79, 17407, 62, 1676, 7012, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 28, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 16, 28, 844, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 17, 28, 844, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 844, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 4908, 31562, 1298, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 220, 844, 17, 287, 2837, 7, 79, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 20193, 44807, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 14933, 58, 844, 17, 5974, 29052, 62, 3849, 4658, 62, 4908, 31562, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 28, 79, 17407, 62, 1676, 7012, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 28, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 16, 28, 844, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 17, 28, 844, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 844, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 318, 62, 31412, 7, 88, 8, 6624, 10352, 1303, 20683, 11420, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4906, 62, 11147, 796, 366, 2301, 2234, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9689, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46536, 796, 366, 26224, 325, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26675, 62, 796, 4776, 62, 2301, 2234, 7, 944, 13, 26801, 11, 1395, 11, 331, 11, 9689, 28, 944, 13, 46536, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 5183, 796, 2116, 13, 26801, 13, 79, 17407, 7, 55, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49763, 286, 3048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 615, 70, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9744, 62, 796, 29052, 62, 49607, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26801, 13, 79, 17407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 944, 13, 11265, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6628, 20016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 979, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 19650, 48810, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 796, 29052, 62, 49607, 62, 19650, 48810, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26801, 13, 79, 17407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 944, 13, 11265, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 5715, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 4908, 31562, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 796, 29052, 62, 49607, 62, 4908, 31562, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26801, 13, 79, 17407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 944, 13, 11265, 1096, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 944, 13, 77, 62, 43863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 5715, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12213, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 20193, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 951, 62, 20193, 318, 407, 6045, 11, 366, 63, 4033, 62, 20193, 63, 1276, 307, 2810, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4033, 62, 20193, 796, 951, 62, 20193, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 16, 796, 45941, 13, 3003, 7, 55, 62, 14933, 6624, 951, 62, 20193, 38381, 15, 7131, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 796, 1041, 70, 5657, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 19650, 48810, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 220, 844, 17, 287, 2837, 7, 79, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 20193, 44807, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 14933, 58, 844, 17, 5974, 29052, 62, 3849, 4658, 62, 19650, 48810, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 28, 944, 13, 26801, 13, 79, 17407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 28, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 16, 28, 844, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 17, 28, 844, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 62, 979, 855, 1, 4908, 31562, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 220, 844, 17, 287, 2837, 7, 79, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 20193, 44807, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 14933, 58, 844, 17, 5974, 29052, 62, 3849, 4658, 62, 4908, 31562, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 28, 944, 13, 26801, 13, 79, 17407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 28, 55, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 16, 28, 844, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 844, 17, 28, 844, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 844, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5657, 13, 19119, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 62, 32604, 62, 796, 45941, 13, 32604, 7, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37786, 62, 83, 313, 796, 45941, 13, 16345, 19510, 88, 532, 2116, 13, 88, 62, 32604, 62, 8, 12429, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37786, 62, 2301, 796, 45941, 13, 16345, 19510, 88, 62, 5183, 532, 2116, 13, 88, 62, 32604, 62, 8, 12429, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37786, 62, 411, 796, 45941, 13, 16345, 19510, 88, 532, 331, 62, 5183, 8, 12429, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 312, 723, 82, 62, 796, 331, 532, 331, 62, 5183, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 81, 62, 16485, 1144, 62, 796, 352, 532, 37786, 62, 411, 1220, 37786, 62, 83, 313, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41255, 62, 81, 62, 16485, 1144, 62, 796, 352, 532, 357, 16, 532, 2116, 13, 81, 62, 16485, 1144, 62, 8, 1635, 357, 77, 532, 352, 8, 1220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 532, 279, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17923, 290, 20683, 11420, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2446, 6624, 366, 615, 70, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 944, 13, 9744, 62, 11, 15180, 28, 55, 62, 14933, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 62, 32604, 796, 581, 62, 7568, 13, 32604, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 62, 19282, 796, 581, 62, 7568, 13, 19282, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 62, 1150, 666, 796, 581, 62, 7568, 13, 1150, 666, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 62, 1084, 796, 581, 62, 7568, 13, 1084, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 62, 9806, 796, 581, 62, 7568, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 279, 67, 13, 1102, 9246, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 411, 62, 7568, 62, 32604, 11, 581, 62, 7568, 62, 19282, 11, 581, 62, 7568, 62, 1150, 666, 11, 581, 62, 7568, 62, 1084, 11, 581, 62, 7568, 62, 9806, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 34435, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 13, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 14692, 32604, 1600, 366, 19282, 1600, 366, 1150, 666, 1600, 366, 1084, 1600, 366, 9806, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 55, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49763, 286, 3048, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34435, 62, 796, 47764, 62, 34435, 13, 30619, 62, 27160, 7, 1525, 28, 14692, 32604, 33116, 41988, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 198, 220, 220, 220, 825, 10638, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13065, 3876, 786, 2482, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 2446, 287, 1398, 5905, 10613, 220, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 979, 62, 318, 407, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 357, 944, 13, 34435, 62, 318, 407, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 357, 944, 13, 979, 62, 20193, 62, 318, 407, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 366, 15252, 407, 18235, 11, 4197, 262, 2134, 717, 1, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 979, 62, 318, 407, 6045, 8, 1222, 357, 944, 13, 24396, 6624, 366, 979, 1, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 32604, 62, 395, 11, 384, 62, 395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1612, 62, 395, 1343, 10662, 83, 9, 325, 62, 395, 11, 1612, 62, 395, 532, 10662, 83, 9, 325, 62, 395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 62, 27160, 11, 1051, 361, 62, 40148, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 32604, 796, 279, 67, 13, 27996, 7, 7890, 28, 944, 13, 979, 62, 58, 15, 4357, 6376, 28, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 796, 279, 67, 13, 27996, 7, 7890, 28, 944, 13, 979, 62, 58, 16, 4357, 6376, 28, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 549, 633, 796, 279, 67, 13, 27996, 7, 7890, 28, 944, 13, 979, 62, 58, 17, 4357, 6376, 28, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 75, 7784, 796, 279, 67, 13, 27996, 7, 7890, 28, 944, 13, 979, 62, 58, 18, 4357, 6376, 28, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 79, 8367, 796, 279, 67, 13, 27996, 7, 7890, 28, 944, 13, 979, 62, 58, 19, 4357, 6376, 28, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 12683, 361, 796, 279, 67, 13, 27996, 7, 7890, 28, 944, 13, 979, 62, 58, 20, 4357, 6376, 28, 944, 13, 55, 62, 14933, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 279, 67, 13, 1102, 9246, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7568, 62, 32604, 11, 47764, 62, 325, 11, 47764, 62, 75, 7784, 11, 47764, 62, 549, 633, 11, 47764, 62, 79, 8367, 11, 47764, 62, 12683, 361, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 49736, 62, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 7890, 13, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22362, 1920, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1273, 67, 13, 13047, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 944, 13, 5715, 8, 1343, 36521, 300, 7784, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 944, 13, 5715, 8, 1343, 36521, 334, 7784, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6836, 7, 29, 91, 83, 91, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 944, 13, 55, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 30619, 62, 27160, 7, 1525, 28, 14692, 22362, 1920, 33116, 41988, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 26595, 37913, 944, 13, 46536, 92, 2599, 3467, 77, 1391, 37659, 13, 744, 7, 944, 13, 26675, 62, 11, 513, 38165, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4906, 62, 11147, 6624, 366, 2301, 2234, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4965, 312, 723, 82, 25, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 312, 723, 82, 62, 17080, 62, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 27996, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 37659, 13, 40972, 576, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 312, 723, 82, 62, 11, 10662, 41888, 15, 11, 657, 13, 1495, 11, 657, 13, 20, 11, 657, 13, 2425, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 14692, 9452, 1600, 366, 16, 48, 1600, 366, 9921, 666, 1600, 366, 18, 48, 1600, 366, 11518, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 7645, 3455, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13, 411, 312, 723, 82, 62, 17080, 44807, 1462, 62, 8841, 7, 9630, 28, 25101, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4906, 62, 979, 855, 1, 19650, 48810, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 51, 3558, 319, 14461, 3048, 357, 14295, 48810, 2599, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4906, 62, 979, 855, 1, 4908, 31562, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 51, 3558, 319, 14461, 3048, 357, 35389, 31562, 7838, 2599, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 279, 67, 13, 18076, 62, 22866, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 13, 9806, 62, 8516, 1600, 6045, 11, 366, 13812, 13, 9806, 62, 28665, 82, 1600, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13, 979, 62, 49736, 62, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11712, 361, 13, 12416, 25, 220, 657, 564, 246, 8162, 447, 247, 657, 13, 8298, 564, 246, 1174, 447, 247, 657, 13, 486, 564, 246, 9, 447, 247, 657, 13, 2713, 564, 246, 13, 447, 247, 657, 13, 16, 564, 246, 12, 447, 247, 352, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 4906, 62, 11147, 6624, 366, 2301, 2234, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 31217, 371, 12, 16485, 1144, 25, 220, 1391, 37659, 13, 744, 7, 944, 13, 81, 62, 16485, 1144, 62, 11, 513, 8, 5512, 197, 39668, 276, 371, 12, 16485, 1144, 25, 220, 1391, 37659, 13, 744, 7, 944, 13, 41255, 62, 81, 62, 16485, 1144, 62, 11, 513, 8, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 34435, 62, 318, 407, 6045, 8, 1222, 357, 944, 13, 24396, 6624, 366, 615, 70, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 39, 2357, 37477, 286, 14461, 3048, 25, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 279, 67, 13, 18076, 62, 22866, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 13, 9806, 62, 8516, 1600, 6045, 11, 366, 13812, 13, 9806, 62, 28665, 82, 1600, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 944, 13, 34435, 62, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 979, 62, 20193, 62, 318, 407, 6045, 8, 1222, 357, 944, 13, 24396, 6624, 366, 20193, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9492, 4658, 351, 366, 1343, 2116, 13, 4033, 62, 20193, 1343, 366, 25, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 279, 67, 13, 18076, 62, 22866, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 13, 9806, 62, 8516, 1600, 6045, 11, 366, 13812, 13, 9806, 62, 28665, 82, 1600, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 979, 62, 20193, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22362, 1920, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1273, 67, 13, 13047, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 3865, 8, 1343, 36521, 300, 7784, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 3865, 8, 1343, 36521, 334, 7784, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6836, 7, 29, 91, 83, 91, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 7645, 3455, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 220, 220, 220, 825, 7110, 7, 944, 11, 644, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 2811, 3048, 11, 49763, 286, 3048, 11, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 644, 25, 257, 4731, 26, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 764, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 34435, 62, 318, 407, 6045, 11, 366, 14134, 2446, 705, 11147, 6, 878, 29353, 1, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 9744, 62, 318, 407, 6045, 11, 366, 14134, 2446, 705, 11147, 6, 878, 29353, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 2446, 6624, 366, 615, 70, 1, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 24396, 6624, 366, 615, 70, 1, 2599, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 10919, 6624, 366, 23913, 62, 34435, 1, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3013, 82, 13, 2617, 7, 7635, 2625, 21953, 25928, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25912, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25912, 17816, 40890, 20520, 796, 2116, 13, 34435, 44807, 9630, 13, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25912, 17816, 10760, 20520, 796, 2116, 13, 34435, 62, 17816, 32604, 6, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3013, 82, 13, 5657, 29487, 7, 87, 11639, 10760, 3256, 331, 11639, 40890, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 12463, 13, 30619, 62, 27160, 7, 1525, 11639, 10760, 3256, 41988, 28, 25101, 4008, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 10919, 6624, 366, 43332, 78, 62, 34435, 1, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3915, 82, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 944, 13, 9744, 62, 11, 15180, 28, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 28665, 82, 796, 1351, 7, 944, 13, 34435, 44807, 9630, 13, 27160, 8, 1303, 416, 1612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 28665, 82, 13, 50188, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3915, 82, 62, 7568, 796, 3915, 82, 62, 7568, 13, 260, 9630, 7, 82, 9741, 62, 28665, 82, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3013, 82, 13, 2617, 7, 7635, 2625, 21953, 25928, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3915, 82, 62, 7568, 13, 3524, 29487, 7, 1851, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 2446, 6624, 366, 979, 1, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 24396, 6624, 366, 979, 1, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 979, 62, 318, 407, 6045, 11, 366, 14134, 2446, 705, 11147, 6, 878, 29353, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 2949, 7110, 329, 2446, 6624, 705, 979, 6, 1865, 4943, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628 ]
1.632081
9,850
import numpy as np import sys import wavedata import random import os if __name__=="__main__": if len(sys.argv) < 7: print("USAGE: python %s result_dir keywordlist testlist testscp textfile ourdir"%sys.argv[0]) exit(1) result_dir = sys.argv[1] keywordlist = open(sys.argv[2]).readlines() testlist = open(sys.argv[3]).readlines() doc_scp_file = sys.argv[4] relevant_dict = build_relevant_dict(sys.argv[5]) out_dir = sys.argv[6] scorelist_all = [] arealist_all = [] for keyword in keywordlist: result_fid = open(result_dir + keyword.strip() + ".RESULT") resultlist = result_fid.readlines() result_fid.close() scorelist = [] arealist = [] for res in resultlist: fields =res.strip().split() score = float(fields[0]) start_point = int(fields[1]) end_point = int(fields[2]) scorelist.append(score) arealist.append((start_point, end_point)) scorelist_all.append(scorelist) arealist_all.append(arealist) extract_list_all = extract_spotting_area(scorelist_all, arealist_all, keywordlist, testlist, relevant_dict) write_spot_wave(extract_list_all, doc_scp_file, out_dir)
[ 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 11748, 26834, 1045, 198, 11748, 4738, 198, 11748, 28686, 628, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1279, 767, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2937, 11879, 25, 21015, 4064, 82, 1255, 62, 15908, 21179, 4868, 1332, 4868, 1332, 1416, 79, 2420, 7753, 674, 15908, 1, 4, 17597, 13, 853, 85, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1255, 62, 15908, 796, 220, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 21179, 4868, 796, 1280, 7, 17597, 13, 853, 85, 58, 17, 35944, 961, 6615, 3419, 198, 220, 220, 220, 1332, 4868, 796, 1280, 7, 17597, 13, 853, 85, 58, 18, 35944, 961, 6615, 3419, 198, 220, 220, 220, 2205, 62, 1416, 79, 62, 7753, 796, 25064, 13, 853, 85, 58, 19, 60, 198, 220, 220, 220, 5981, 62, 11600, 796, 1382, 62, 49659, 62, 11600, 7, 17597, 13, 853, 85, 58, 20, 12962, 198, 220, 220, 220, 503, 62, 15908, 796, 25064, 13, 853, 85, 58, 21, 60, 628, 220, 220, 220, 4776, 4868, 62, 439, 796, 17635, 198, 220, 220, 220, 389, 49845, 62, 439, 796, 17635, 198, 220, 220, 220, 329, 21179, 287, 21179, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 69, 312, 796, 1280, 7, 20274, 62, 15908, 1343, 21179, 13, 36311, 3419, 1343, 27071, 19535, 16724, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 4868, 796, 1255, 62, 69, 312, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 69, 312, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 389, 49845, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 581, 287, 1255, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 411, 13, 36311, 22446, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 796, 12178, 7, 25747, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4122, 796, 493, 7, 25747, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 4122, 796, 493, 7, 25747, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 4868, 13, 33295, 7, 26675, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 389, 49845, 13, 33295, 19510, 9688, 62, 4122, 11, 886, 62, 4122, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 4776, 4868, 62, 439, 13, 33295, 7, 26675, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 389, 49845, 62, 439, 13, 33295, 7, 533, 49845, 8, 628, 220, 220, 220, 7925, 62, 4868, 62, 439, 796, 7925, 62, 20485, 889, 62, 20337, 7, 26675, 4868, 62, 439, 11, 389, 49845, 62, 439, 11, 21179, 4868, 11, 1332, 4868, 11, 5981, 62, 11600, 8, 198, 220, 220, 220, 3551, 62, 20485, 62, 19204, 7, 2302, 974, 62, 4868, 62, 439, 11, 2205, 62, 1416, 79, 62, 7753, 11, 503, 62, 15908, 8, 628 ]
2.217993
578
"""Find the smallest integer in the array, Kata in Codewars.""" def smallest(alist): """Return the smallest integer in the list. input: a list of integers output: a single integer ex: [34, 15, 88, 2] should return 34 ex: [34, -345, -1, 100] should return -345 """ res = [alist[0]] for num in alist: if res[0] > num: res.pop() res.append(num) return res[0]
[ 37811, 16742, 262, 18197, 18253, 287, 262, 7177, 11, 509, 1045, 287, 18720, 413, 945, 526, 15931, 628, 198, 4299, 18197, 7, 49845, 2599, 198, 220, 220, 220, 37227, 13615, 262, 18197, 18253, 287, 262, 1351, 13, 628, 220, 220, 220, 5128, 25, 257, 1351, 286, 37014, 198, 220, 220, 220, 5072, 25, 257, 2060, 18253, 198, 220, 220, 220, 409, 25, 685, 2682, 11, 1315, 11, 9193, 11, 362, 60, 815, 1441, 4974, 198, 220, 220, 220, 409, 25, 685, 2682, 11, 532, 27712, 11, 532, 16, 11, 1802, 60, 815, 1441, 532, 27712, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 581, 796, 685, 49845, 58, 15, 11907, 198, 220, 220, 220, 329, 997, 287, 435, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 581, 58, 15, 60, 1875, 997, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 13, 33295, 7, 22510, 8, 198, 220, 220, 220, 1441, 581, 58, 15, 60, 198 ]
2.359116
181
#!/usr/bin/python3 # Extracts a commafree code from a CNF file created by commafree.py and # the output of a SAT solver on that CNF file. Only works on satisfiable # instances. # # Usage: extract-code.py <cnf-file> <sat-solver-output-file> import re import sys if __name__ == '__main__': if len(sys.argv) < 3: print('Usage: %s <cnf-file> <sat-solver-output-file>' % sys.argv[0]) sys.exit(1) mapping = strip_cnf_mapping(sys.argv[1]) solution = strip_sat_solution(sys.argv[2]) code = [mapping[code_id] for code_id in solution if mapping.get(code_id) is not None] assert verify_commafree(code) print('{' + ', '.join(sorted(code)) + '}') print('') print('size: %s' % len(code))
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 2, 29677, 82, 257, 725, 1878, 631, 2438, 422, 257, 327, 21870, 2393, 2727, 416, 725, 1878, 631, 13, 9078, 290, 198, 2, 262, 5072, 286, 257, 29020, 1540, 332, 319, 326, 327, 21870, 2393, 13, 5514, 2499, 319, 5244, 3379, 198, 2, 10245, 13, 198, 2, 198, 2, 29566, 25, 7925, 12, 8189, 13, 9078, 1279, 31522, 69, 12, 7753, 29, 1279, 49720, 12, 82, 14375, 12, 22915, 12, 7753, 29, 198, 198, 11748, 302, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1279, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 28350, 25, 4064, 82, 1279, 31522, 69, 12, 7753, 29, 1279, 49720, 12, 82, 14375, 12, 22915, 12, 7753, 29, 6, 4064, 25064, 13, 853, 85, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 16855, 796, 10283, 62, 31522, 69, 62, 76, 5912, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 4610, 796, 10283, 62, 49720, 62, 82, 2122, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 220, 220, 220, 2438, 796, 685, 76, 5912, 58, 8189, 62, 312, 60, 329, 2438, 62, 312, 287, 4610, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16855, 13, 1136, 7, 8189, 62, 312, 8, 318, 407, 6045, 60, 198, 220, 220, 220, 6818, 11767, 62, 9503, 1878, 631, 7, 8189, 8, 198, 220, 220, 220, 3601, 10786, 90, 6, 1343, 46083, 45302, 22179, 7, 82, 9741, 7, 8189, 4008, 1343, 705, 92, 11537, 198, 220, 220, 220, 3601, 7, 7061, 8, 198, 220, 220, 220, 3601, 10786, 7857, 25, 4064, 82, 6, 4064, 18896, 7, 8189, 4008, 198 ]
2.339683
315
import iota_wallet as iw
[ 11748, 1312, 4265, 62, 44623, 355, 1312, 86, 628, 628, 628, 628, 628 ]
2.615385
13
#!/usr/bin/python # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import pickle import re import autofill_dataset_converter import autofill_dataset_generator import pyauto_functional # Must be imported before pyauto import pyauto class AutofillTest(pyauto.PyUITest): """Tests that autofill works correctly""" def Debug(self): """Test method for experimentation. This method will not run automatically. """ import pprint pp = pprint.PrettyPrinter(indent=2) while True: raw_input('Hit <enter> to dump info.. ') info = self.GetAutofillProfile() pp.pprint(info) def testFillProfile(self): """Test filling profiles and overwriting with new profiles.""" profiles = [{'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'ADDRESS_HOME_ZIP': '94043',}, {'EMAIL_ADDRESS': '[email protected]', 'COMPANY_NAME': 'Company X',}] credit_cards = [{'CREDIT_CARD_NUMBER': '6011111111111117', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2011'}, {'CREDIT_CARD_NAME': 'Bob C. Smith'}] self.FillAutofillProfile(profiles=profiles, credit_cards=credit_cards) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) profiles = [ {'NAME_FIRST': 'Larry'}] self.FillAutofillProfile(profiles=profiles) profile = self.GetAutofillProfile() self.assertEqual(profiles, profile['profiles']) self.assertEqual(credit_cards, profile['credit_cards']) def testFillProfileCrazyCharacters(self): """Test filling profiles with unicode strings and crazy characters.""" # Adding autofill profiles. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) self.assertEqual(profiles, self.GetAutofillProfile()['profiles']) # Adding credit cards. file_path = os.path.join(self.DataDir(), 'autofill', 'crazy_creditcards.txt') test_data = self.EvalDataFrom(file_path) credit_cards_input = test_data['input'] self.FillAutofillProfile(credit_cards=credit_cards_input) self.assertEqual(test_data['expected'], self.GetAutofillProfile()['credit_cards']) def testGetProfilesEmpty(self): """Test getting profiles when none have been filled.""" profile = self.GetAutofillProfile() self.assertEqual([], profile['profiles']) self.assertEqual([], profile['credit_cards']) def testAutofillInvalid(self): """Test filling in invalid values for profiles.""" # First try profiles with invalid input. without_invalid = {'NAME_FIRST': u'Will', 'ADDRESS_HOME_CITY': 'Sunnyvale', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': 'my_zip', 'ADDRESS_HOME_COUNTRY': 'United States'} # Add some invalid fields. with_invalid = without_invalid.copy() with_invalid['PHONE_HOME_WHOLE_NUMBER'] = 'Invalid_Phone_Number' with_invalid['PHONE_FAX_WHOLE_NUMBER'] = 'Invalid_Fax_Number' self.FillAutofillProfile(profiles=[with_invalid]) self.assertEqual([without_invalid], self.GetAutofillProfile()['profiles']) def testAutofillPrefsStringSavedAsIs(self): """Test invalid credit card numbers typed in prefs should be saved as-is.""" credit_card = {'CREDIT_CARD_NUMBER': 'Not_0123-5Checked'} self.FillAutofillProfile(credit_cards=[credit_card]) self.assertEqual([credit_card], self.GetAutofillProfile()['credit_cards'], msg='Credit card number in prefs not saved as-is.') def _LuhnCreditCardNumberValidator(self, number): """Validates whether a number is valid or invalid using the Luhn test. Validation example: 1. Example number: 49927398716 2. Reverse the digits: 61789372994 3. Sum the digits in the odd-numbered position for s1: 6 + 7 + 9 + 7 + 9 + 4 = 42 4. Take the digits in the even-numbered position: 1, 8, 3, 2, 9 4.1. Two times each digit in the even-numbered position: 2, 16, 6, 4, 18 4.2. For each resulting value that is now 2 digits, add the digits together: 2, 7, 6, 4, 9 (0 + 2 = 2, 1 + 6 = 7, 0 + 6 = 6, 0 + 4 = 4, 1 + 8 = 9) 4.3. Sum together the digits for s2: 2 + 7 + 6 + 4 + 9 = 28 5. Sum together s1 + s2 and if the sum ends in zero, the number passes the Luhn test: 42 + 28 = 70 which is a valid credit card number. Args: number: the credit card number being validated, as a string. Return: boolean whether the credit card number is valid or not. """ # Filters out non-digit characters. number = re.sub('[^0-9]', '', number) reverse = [int(ch) for ch in str(number)][::-1] # The divmod of the function splits a number into two digits, ready for # summing. return ((sum(reverse[0::2]) + sum(sum(divmod(d*2, 10)) for d in reverse[1::2])) % 10 == 0) def testInvalidCreditCardNumberIsNotAggregated(self): """Test credit card info with an invalid number is not aggregated. When filling out a form with an invalid credit card number (one that does not pass the Luhn test) the credit card info should not be saved into Autofill preferences. """ invalid_cc_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7890', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} cc_number = invalid_cc_info['CREDIT_CARD_NUMBER'] self.assertFalse(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires an invalid credit card number.') url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) self.NavigateToURL(url) for key, value in invalid_cc_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until the form is submitted and the page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse( cc_infobar, msg='Save credit card infobar offered to save CC info.') def testWhitespacesAndSeparatorCharsStrippedForValidCCNums(self): """Test whitespaces and separator chars are stripped for valid CC numbers. The credit card numbers used in this test pass the Luhn test. For reference: http://www.merriampark.com/anatomycc.htm """ credit_card_info = [{'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408 0412 3456 7893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'}, {'CREDIT_CARD_NAME': 'Jane Doe', 'CREDIT_CARD_NUMBER': '4417-1234-5678-9113', 'CREDIT_CARD_EXP_MONTH': '10', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2013'}] url = self.GetHttpURLForDataPath( os.path.join('autofill', 'autofill_creditcard_form.html')) for cc_info in credit_card_info: self.NavigateToURL(url) for key, value in cc_info.iteritems(): cc_number = cc_info['CREDIT_CARD_NUMBER'] self.assertTrue(self._LuhnCreditCardNumberValidator(cc_number), msg='This test requires a valid credit card number.') script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') self.PerformActionOnInfobar('accept', infobar_index=0) # Verify the filled-in credit card number against the aggregated number. aggregated_cc_1 = ( self.GetAutofillProfile()['credit_cards'][0]['CREDIT_CARD_NUMBER']) aggregated_cc_2 = ( self.GetAutofillProfile()['credit_cards'][1]['CREDIT_CARD_NUMBER']) self.assertFalse((' ' in aggregated_cc_1 or ' ' in aggregated_cc_2 or '-' in aggregated_cc_1 or '-' in aggregated_cc_2), msg='Whitespaces or separator chars not stripped.') def testProfilesNotAggregatedWithNoAddress(self): """Test Autofill does not aggregate profiles with no address info.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': '[email protected]', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '650-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with no address info was aggregated.') def testProfilesNotAggregatedWithInvalidEmail(self): """Test Autofill does not aggregate profiles with an invalid email.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': 'garbage', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("merge_dup").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) self.assertFalse(self.GetAutofillProfile()['profiles'], msg='Profile with invalid email was aggregated.') def _SendKeyEventsToPopulateForm(self, tab_index=0, windex=0): """Send key events to populate a web form with Autofill profile data. Args: tab_index: The tab index, default is 0. windex: The window index, default is 0. """ TAB_KEYPRESS = 0x09 # Tab keyboard key press. DOWN_KEYPRESS = 0x28 # Down arrow keyboard key press. RETURN_KEYPRESS = 0x0D # Return keyboard key press. self.SendWebkitKeypressEvent(TAB_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(DOWN_KEYPRESS, tab_index, windex) self.SendWebkitKeypressEvent(RETURN_KEYPRESS, tab_index, windex) def testComparePhoneNumbers(self): """Test phone fields parse correctly from a given profile. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. """ profile_path = os.path.join(self.DataDir(), 'autofill', 'phone_pinput_autofill.txt') profile_expected_path = os.path.join(self.DataDir(), 'autofill', 'phone_pexpected_autofill.txt') profiles = self.EvalDataFrom(profile_path) profiles_expected = self.EvalDataFrom(profile_expected_path) self.FillAutofillProfile(profiles=profiles) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'form_phones.html')) for profile_expected in profiles_expected: self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() form_values = {} for key, value in profile_expected.iteritems(): js_returning_field_value = ( 'var field_value = document.getElementById("%s").value;' 'window.domAutomationController.send(field_value);' ) % key form_values[key] = self.ExecuteJavascript( js_returning_field_value, 0, 0) self.assertEqual( form_values[key], value, msg=('Original profile not equal to expected profile at key: "%s"\n' 'Expected: "%s"\nReturned: "%s"' % ( key, value, form_values[key]))) def testCCInfoNotStoredWhenAutocompleteOff(self): """Test CC info not offered to be saved when autocomplete=off for CC field. If the credit card number field has autocomplete turned off, then the credit card infobar should not offer to save the credit card info. The credit card number must be a valid Luhn number. """ credit_card_info = {'CREDIT_CARD_NAME': 'Bob Smith', 'CREDIT_CARD_NUMBER': '4408041234567893', 'CREDIT_CARD_EXP_MONTH': '12', 'CREDIT_CARD_EXP_4_DIGIT_YEAR': '2014'} url = self.GetHttpURLForDataPath( os.path.join('autofill', 'cc_autocomplete_off_test.html')) self.NavigateToURL(url) for key, value in credit_card_info.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) js_code = """ document.getElementById("cc_submit").submit(); window.addEventListener("unload", function() { window.domAutomationController.send("done"); }); """ self.ExecuteJavascript(js_code, 0, 0) # Wait until form is submitted and page completes loading. self.WaitUntil( lambda: self.GetDOMValue('document.readyState'), expect_retval='complete') cc_infobar = self.GetBrowserInfo()['windows'][0]['tabs'][0]['infobars'] self.assertFalse(cc_infobar, msg='Save credit card infobar offered to save CC info.') def testNoAutofillForReadOnlyFields(self): """Test that Autofill does not fill in read-only fields.""" profile = {'NAME_FIRST': 'Bob', 'NAME_LAST': 'Smith', 'EMAIL_ADDRESS': '[email protected]', 'ADDRESS_HOME_LINE1': '1234 H St.', 'ADDRESS_HOME_CITY': 'San Jose', 'ADDRESS_HOME_STATE': 'CA', 'ADDRESS_HOME_ZIP': '95110', 'COMPANY_NAME': 'Company X', 'PHONE_HOME_WHOLE_NUMBER': '408-123-4567',} self.FillAutofillProfile(profiles=[profile]) url = self.GetHttpURLForDataPath( os.path.join('autofill', 'read_only_field_test.html')) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() js_return_readonly_field = ( 'var field_value = document.getElementById("email").value;' 'window.domAutomationController.send(field_value);') readonly_field_value = self.ExecuteJavascript( js_return_readonly_field, 0, 0) js_return_addrline1_field = ( 'var field_value = document.getElementById("address").value;' 'window.domAutomationController.send(field_value);') addrline1_field_value = self.ExecuteJavascript( js_return_addrline1_field, 0, 0) self.assertNotEqual( readonly_field_value, profile['EMAIL_ADDRESS'], 'Autofill filled in value "%s" for a read-only field.' % readonly_field_value) self.assertEqual( addrline1_field_value, profile['ADDRESS_HOME_LINE1'], 'Unexpected value "%s" in the Address field.' % addrline1_field_value) def FormFillLatencyAfterSubmit(self): """Test latency time on form submit with lots of stored Autofill profiles. This test verifies when a profile is selected from the Autofill dictionary that consists of thousands of profiles, the form does not hang after being submitted. The high level key presses execute the following: Select the first text field, invoke the autofill popup list, select the first profile within the list, and commit to the profile to populate the form. This test is partially automated. The bulk of the work is done, such as generating 1500 plus profiles, inserting those profiles into Autofill, selecting a profile from the list. The tester will need to click on the submit button and check if the browser hangs. """ # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'latency_after_submit_test.html')) # Run the generator script to generate the dictionary list needed for the # profiles. gen = autofill_dataset_generator.DatasetGenerator( logging_level=logging.ERROR) list_of_dict = gen.GenerateDataset(num_of_dict_to_generate=1501) self.FillAutofillProfile(profiles=list_of_dict) self.NavigateToURL(url) self._SendKeyEventsToPopulateForm() # TODO(dyu): add automated form hang or crash verification. raw_input( 'Verify the test manually. Test hang time after submitting the form.') def AutofillCrowdsourcing(self): """Test able to send POST request of web form to Autofill server. The Autofill server processes the data offline, so it can take a few days for the result to be detectable. Manual verification is required. """ # HTML file needs to be run from a specific http:// url to be able to verify # the results a few days later by visiting the same url. url = 'http://www.corp.google.com/~dyu/autofill/crowdsourcing-test.html' # Adding crowdsourcing Autofill profile. file_path = os.path.join(self.DataDir(), 'autofill', 'crowdsource_autofill.txt') profiles = self.EvalDataFrom(file_path) self.FillAutofillProfile(profiles=profiles) # Autofill server captures 2.5% of the data posted. # Looping 1000 times is a safe minimum to exceed the server's threshold or # noise. for i in range(1000): fname = self.GetAutofillProfile()['profiles'][0]['NAME_FIRST'] lname = self.GetAutofillProfile()['profiles'][0]['NAME_LAST'] email = self.GetAutofillProfile()['profiles'][0]['EMAIL_ADDRESS'] # Submit form to collect crowdsourcing data for Autofill. self.NavigateToURL(url, 0, 0) fname_field = ('document.getElementById("fn").value = "%s"; ' 'window.domAutomationController.send("done");') % fname lname_field = ('document.getElementById("ln").value = "%s"; ' 'window.domAutomationController.send("done");') % lname email_field = ('document.getElementById("em").value = "%s"; ' 'window.domAutomationController.send("done");') % email self.ExecuteJavascript(fname_field, 0, 0); self.ExecuteJavascript(lname_field, 0, 0); self.ExecuteJavascript(email_field, 0, 0); self.ExecuteJavascript('document.getElementById("frmsubmit").submit();' 'window.domAutomationController.send("done");', 0, 0) def MergeDuplicateProfilesInAutofill(self): """Test Autofill ability to merge duplicate profiles and throw away junk.""" # HTML file needs to be run from a http:// url. url = self.GetHttpURLForDataPath( os.path.join('autofill', 'duplicate_profiles_test.html')) # Run the parser script to generate the dictionary list needed for the # profiles. c = autofill_dataset_converter.DatasetConverter( os.path.join(self.DataDir(), 'autofill', 'dataset.txt'), logging_level=logging.INFO) # Set verbosity to INFO, WARNING, ERROR. list_of_dict = c.Convert() for profile in list_of_dict: self.NavigateToURL(url) for key, value in profile.iteritems(): script = ('document.getElementById("%s").value = "%s"; ' 'window.domAutomationController.send("done");') % (key, value) self.ExecuteJavascript(script, 0, 0) self.ExecuteJavascript('document.getElementById("merge_dup").submit();' 'window.domAutomationController.send("done");', 0, 0) # Verify total number of inputted profiles is greater than the final number # of profiles after merging. self.assertTrue( len(list_of_dict) > len(self.GetAutofillProfile()['profiles'])) # Write profile dictionary to a file. merged_profile = os.path.join(self.DataDir(), 'autofill', 'merged-profiles.txt') profile_dict = self.GetAutofillProfile()['profiles'] output = open(merged_profile, 'wb') pickle.dump(profile_dict, output) output.close() if __name__ == '__main__': pyauto_functional.Main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 15069, 357, 66, 8, 2813, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 302, 198, 198, 11748, 1960, 1659, 359, 62, 19608, 292, 316, 62, 1102, 332, 353, 198, 11748, 1960, 1659, 359, 62, 19608, 292, 316, 62, 8612, 1352, 198, 11748, 12972, 23736, 62, 45124, 220, 1303, 12039, 307, 17392, 878, 12972, 23736, 198, 11748, 12972, 23736, 628, 198, 4871, 5231, 1659, 359, 14402, 7, 9078, 23736, 13, 20519, 52, 2043, 395, 2599, 198, 220, 37227, 51, 3558, 326, 1960, 1659, 359, 2499, 9380, 37811, 628, 220, 825, 31687, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 2446, 329, 29315, 13, 628, 220, 220, 220, 770, 2446, 481, 407, 1057, 6338, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 279, 4798, 198, 220, 220, 220, 9788, 796, 279, 4798, 13, 35700, 6836, 3849, 7, 521, 298, 28, 17, 8, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 8246, 62, 15414, 10786, 17889, 1279, 9255, 29, 284, 10285, 7508, 492, 705, 8, 198, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 198, 220, 220, 220, 220, 220, 9788, 13, 381, 22272, 7, 10951, 8, 628, 220, 825, 1332, 33762, 37046, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 12591, 16545, 290, 6993, 799, 278, 351, 649, 16545, 526, 15931, 198, 220, 220, 220, 16545, 796, 685, 90, 6, 20608, 62, 39776, 2257, 10354, 705, 18861, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 62, 43, 11262, 10354, 705, 17919, 3256, 705, 2885, 7707, 7597, 62, 39069, 62, 57, 4061, 10354, 705, 46899, 3559, 3256, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 27630, 4146, 62, 2885, 7707, 7597, 10354, 705, 82, 518, 31, 20688, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9858, 47, 31827, 62, 20608, 10354, 705, 39154, 1395, 3256, 92, 60, 198, 220, 220, 220, 3884, 62, 27761, 796, 685, 90, 6, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 10354, 705, 41706, 26259, 26259, 1157, 17657, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 27857, 4221, 10354, 705, 1065, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 19, 62, 35, 3528, 2043, 62, 56, 17133, 10354, 705, 9804, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 9419, 24706, 62, 34, 9795, 62, 20608, 10354, 705, 18861, 327, 13, 4176, 6, 92, 60, 628, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 28, 5577, 2915, 11, 3884, 62, 27761, 28, 43082, 62, 27761, 8, 198, 220, 220, 220, 7034, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 5577, 2915, 11, 7034, 17816, 5577, 2915, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 43082, 62, 27761, 11, 7034, 17816, 43082, 62, 27761, 6, 12962, 628, 220, 220, 220, 16545, 796, 685, 1391, 6, 20608, 62, 39776, 2257, 10354, 705, 42918, 6, 92, 60, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 28, 5577, 2915, 8, 198, 220, 220, 220, 7034, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 5577, 2915, 11, 7034, 17816, 5577, 2915, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 43082, 62, 27761, 11, 7034, 17816, 43082, 62, 27761, 6, 12962, 628, 220, 825, 1332, 33762, 37046, 34, 5918, 48393, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 12591, 16545, 351, 28000, 1098, 13042, 290, 7165, 3435, 526, 15931, 198, 220, 220, 220, 1303, 18247, 1960, 1659, 359, 16545, 13, 198, 220, 220, 220, 2393, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 705, 50112, 62, 2306, 1659, 359, 13, 14116, 11537, 198, 220, 220, 220, 16545, 796, 2116, 13, 36, 2100, 6601, 4863, 7, 7753, 62, 6978, 8, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 28, 5577, 2915, 8, 628, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 5577, 2915, 11, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 12962, 628, 220, 220, 220, 1303, 18247, 3884, 4116, 13, 198, 220, 220, 220, 2393, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50112, 62, 43082, 27761, 13, 14116, 11537, 198, 220, 220, 220, 1332, 62, 7890, 796, 2116, 13, 36, 2100, 6601, 4863, 7, 7753, 62, 6978, 8, 198, 220, 220, 220, 3884, 62, 27761, 62, 15414, 796, 1332, 62, 7890, 17816, 15414, 20520, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 43082, 62, 27761, 28, 43082, 62, 27761, 62, 15414, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 9288, 62, 7890, 17816, 40319, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 43082, 62, 27761, 6, 12962, 628, 220, 825, 1332, 3855, 15404, 2915, 40613, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 1972, 16545, 618, 4844, 423, 587, 5901, 526, 15931, 198, 220, 220, 220, 7034, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 26933, 4357, 7034, 17816, 5577, 2915, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 26933, 4357, 7034, 17816, 43082, 62, 27761, 6, 12962, 628, 220, 825, 1332, 16541, 1659, 359, 44651, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 12591, 287, 12515, 3815, 329, 16545, 526, 15931, 198, 220, 220, 220, 1303, 3274, 1949, 16545, 351, 12515, 5128, 13, 198, 220, 220, 220, 1231, 62, 259, 12102, 796, 1391, 6, 20608, 62, 39776, 2257, 10354, 334, 6, 8743, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 34, 9050, 10354, 705, 16012, 3281, 41161, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 44724, 10354, 705, 8141, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 57, 4061, 10354, 705, 1820, 62, 13344, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 34, 19385, 40405, 10354, 705, 17013, 1829, 6, 92, 198, 220, 220, 220, 1303, 3060, 617, 12515, 7032, 13, 198, 220, 220, 220, 351, 62, 259, 12102, 796, 1231, 62, 259, 12102, 13, 30073, 3419, 198, 220, 220, 220, 351, 62, 259, 12102, 17816, 11909, 11651, 62, 39069, 62, 41856, 2538, 62, 41359, 13246, 20520, 796, 705, 44651, 62, 6132, 62, 15057, 6, 198, 220, 220, 220, 351, 62, 259, 12102, 17816, 11909, 11651, 62, 7708, 55, 62, 41856, 2538, 62, 41359, 13246, 20520, 796, 705, 44651, 62, 46512, 62, 15057, 6, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 41888, 4480, 62, 259, 12102, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 26933, 19419, 62, 259, 12102, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 12962, 628, 220, 825, 1332, 16541, 1659, 359, 36698, 82, 10100, 50, 9586, 1722, 3792, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 12515, 3884, 2657, 3146, 25683, 287, 7694, 82, 815, 307, 7448, 355, 12, 271, 526, 15931, 198, 220, 220, 220, 3884, 62, 9517, 796, 1391, 6, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 10354, 705, 3673, 62, 486, 1954, 12, 20, 9787, 276, 6, 92, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 43082, 62, 27761, 41888, 43082, 62, 9517, 12962, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 26933, 43082, 62, 9517, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 43082, 62, 27761, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 23690, 2657, 1271, 287, 7694, 82, 407, 7448, 355, 12, 271, 2637, 8, 628, 220, 825, 4808, 43, 7456, 77, 23690, 16962, 15057, 47139, 1352, 7, 944, 11, 1271, 2599, 198, 220, 220, 220, 37227, 7762, 37051, 1771, 257, 1271, 318, 4938, 393, 12515, 1262, 262, 6026, 21116, 1332, 13, 628, 220, 220, 220, 3254, 24765, 1672, 25, 198, 220, 220, 220, 220, 220, 352, 13, 17934, 1271, 25, 48391, 1983, 2670, 5774, 1433, 198, 220, 220, 220, 220, 220, 362, 13, 31849, 262, 19561, 25, 718, 1558, 4531, 2718, 1959, 5824, 198, 220, 220, 220, 220, 220, 513, 13, 5060, 262, 19561, 287, 262, 5629, 12, 35565, 2292, 329, 264, 16, 25, 198, 220, 220, 220, 220, 220, 718, 1343, 767, 1343, 860, 1343, 767, 1343, 860, 1343, 604, 796, 5433, 198, 220, 220, 220, 220, 220, 604, 13, 7214, 262, 19561, 287, 262, 772, 12, 35565, 2292, 25, 352, 11, 807, 11, 513, 11, 362, 11, 860, 198, 220, 220, 220, 220, 220, 220, 220, 604, 13, 16, 13, 4930, 1661, 1123, 16839, 287, 262, 772, 12, 35565, 2292, 25, 362, 11, 1467, 11, 718, 11, 604, 11, 1248, 198, 220, 220, 220, 220, 220, 220, 220, 604, 13, 17, 13, 1114, 1123, 7186, 1988, 326, 318, 783, 362, 19561, 11, 751, 262, 19561, 198, 220, 220, 220, 220, 220, 220, 220, 1978, 25, 362, 11, 767, 11, 718, 11, 604, 11, 860, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 1343, 362, 796, 362, 11, 352, 1343, 718, 796, 767, 11, 657, 1343, 718, 796, 718, 11, 657, 1343, 604, 796, 604, 11, 352, 1343, 807, 796, 860, 8, 198, 220, 220, 220, 220, 220, 220, 220, 604, 13, 18, 13, 5060, 1978, 262, 19561, 329, 264, 17, 25, 362, 1343, 767, 1343, 718, 1343, 604, 1343, 860, 796, 2579, 198, 220, 220, 220, 220, 220, 642, 13, 5060, 1978, 264, 16, 1343, 264, 17, 290, 611, 262, 2160, 5645, 287, 6632, 11, 262, 1271, 8318, 262, 198, 220, 220, 220, 220, 220, 6026, 21116, 1332, 25, 5433, 1343, 2579, 796, 4317, 543, 318, 257, 4938, 3884, 2657, 1271, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1271, 25, 262, 3884, 2657, 1271, 852, 31031, 11, 355, 257, 4731, 13, 628, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 25131, 1771, 262, 3884, 2657, 1271, 318, 4938, 393, 407, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 7066, 1010, 503, 1729, 12, 27003, 3435, 13, 198, 220, 220, 220, 1271, 796, 302, 13, 7266, 10786, 58, 61, 15, 12, 24, 60, 3256, 705, 3256, 1271, 8, 198, 220, 220, 220, 9575, 796, 685, 600, 7, 354, 8, 329, 442, 287, 965, 7, 17618, 8, 7131, 3712, 12, 16, 60, 198, 220, 220, 220, 1303, 383, 2659, 4666, 286, 262, 2163, 30778, 257, 1271, 656, 734, 19561, 11, 3492, 329, 198, 220, 220, 220, 1303, 2160, 2229, 13, 198, 220, 220, 220, 1441, 14808, 16345, 7, 50188, 58, 15, 3712, 17, 12962, 1343, 2160, 7, 16345, 7, 7146, 4666, 7, 67, 9, 17, 11, 838, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 9575, 58, 16, 3712, 17, 60, 4008, 4064, 838, 6624, 657, 8, 628, 220, 825, 1332, 44651, 23690, 16962, 15057, 3792, 3673, 46384, 2301, 515, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 3884, 2657, 7508, 351, 281, 12515, 1271, 318, 407, 13262, 515, 13, 628, 220, 220, 220, 1649, 12591, 503, 257, 1296, 351, 281, 12515, 3884, 2657, 1271, 357, 505, 326, 198, 220, 220, 220, 857, 407, 1208, 262, 6026, 21116, 1332, 8, 262, 3884, 2657, 7508, 815, 407, 307, 7448, 656, 198, 220, 220, 220, 5231, 1659, 359, 15387, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12515, 62, 535, 62, 10951, 796, 1391, 6, 9419, 24706, 62, 34, 9795, 62, 20608, 10354, 705, 18861, 4176, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 10354, 705, 25644, 23, 8702, 1065, 513, 29228, 8699, 3829, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 27857, 4221, 10354, 705, 1065, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 19, 62, 35, 3528, 2043, 62, 56, 17133, 10354, 705, 4967, 6, 92, 628, 220, 220, 220, 36624, 62, 17618, 796, 12515, 62, 535, 62, 10951, 17816, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 20520, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 944, 13557, 43, 7456, 77, 23690, 16962, 15057, 47139, 1352, 7, 535, 62, 17618, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 1212, 1332, 4433, 281, 12515, 3884, 2657, 1271, 2637, 8, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 2306, 1659, 359, 62, 43082, 9517, 62, 687, 13, 6494, 6, 4008, 198, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 12515, 62, 535, 62, 10951, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 4226, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12048, 11, 657, 11, 657, 8, 198, 220, 220, 220, 44804, 62, 8189, 796, 37227, 198, 220, 220, 220, 220, 220, 3188, 13, 1136, 20180, 48364, 7203, 535, 62, 46002, 11074, 46002, 9783, 198, 220, 220, 220, 220, 220, 4324, 13, 2860, 9237, 33252, 7203, 403, 2220, 1600, 2163, 3419, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 198, 220, 220, 220, 220, 220, 14980, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 8457, 62, 8189, 11, 657, 11, 657, 8, 198, 220, 220, 220, 1303, 16314, 1566, 262, 1296, 318, 8948, 290, 262, 2443, 32543, 11046, 13, 198, 220, 220, 220, 2116, 13, 21321, 18273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 2116, 13, 3855, 39170, 11395, 10786, 22897, 13, 1493, 9012, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1607, 62, 1186, 2100, 11639, 20751, 11537, 198, 220, 220, 220, 36624, 62, 10745, 30973, 796, 2116, 13, 3855, 46532, 12360, 3419, 17816, 28457, 6, 7131, 15, 7131, 6, 8658, 82, 6, 7131, 15, 7131, 6, 10745, 672, 945, 20520, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 198, 220, 220, 220, 220, 220, 220, 220, 36624, 62, 10745, 30973, 11, 31456, 11639, 16928, 3884, 2657, 1167, 30973, 4438, 284, 3613, 12624, 7508, 2637, 8, 628, 220, 825, 1332, 1199, 2737, 43076, 1870, 19117, 283, 1352, 1925, 945, 1273, 380, 1496, 1890, 47139, 4093, 45, 5700, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 13216, 43076, 290, 2880, 1352, 34534, 389, 18818, 329, 4938, 12624, 3146, 13, 628, 220, 220, 220, 383, 3884, 2657, 3146, 973, 287, 428, 1332, 1208, 262, 6026, 21116, 1332, 13, 198, 220, 220, 220, 1114, 4941, 25, 2638, 1378, 2503, 13, 647, 380, 696, 668, 13, 785, 14, 272, 265, 9145, 535, 13, 19211, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3884, 62, 9517, 62, 10951, 796, 685, 90, 6, 9419, 24706, 62, 34, 9795, 62, 20608, 10354, 705, 18861, 4176, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 10354, 705, 25644, 23, 8702, 1065, 513, 29228, 767, 49682, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 27857, 4221, 10354, 705, 1065, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 19, 62, 35, 3528, 2043, 62, 56, 17133, 10354, 705, 4967, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 9419, 24706, 62, 34, 9795, 62, 20608, 10354, 705, 41083, 31780, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 10354, 705, 2598, 1558, 12, 1065, 2682, 12, 20, 30924, 12, 24, 16616, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 27857, 4221, 10354, 705, 940, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 19, 62, 35, 3528, 2043, 62, 56, 17133, 10354, 705, 6390, 6, 92, 60, 628, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 2306, 1659, 359, 62, 43082, 9517, 62, 687, 13, 6494, 6, 4008, 198, 220, 220, 220, 329, 36624, 62, 10951, 287, 3884, 62, 9517, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 36624, 62, 10951, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 36624, 62, 17618, 796, 36624, 62, 10951, 17816, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13557, 43, 7456, 77, 23690, 16962, 15057, 47139, 1352, 7, 535, 62, 17618, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 1212, 1332, 4433, 257, 4938, 3884, 2657, 1271, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4226, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12048, 11, 657, 11, 657, 8, 198, 220, 220, 220, 220, 220, 44804, 62, 8189, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 1136, 20180, 48364, 7203, 535, 62, 46002, 11074, 46002, 9783, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 2860, 9237, 33252, 7203, 403, 2220, 1600, 2163, 3419, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 198, 220, 220, 220, 220, 220, 220, 220, 14980, 198, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 8457, 62, 8189, 11, 657, 11, 657, 8, 198, 220, 220, 220, 220, 220, 1303, 16314, 1566, 1296, 318, 8948, 290, 2443, 32543, 11046, 13, 198, 220, 220, 220, 220, 220, 2116, 13, 21321, 18273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 2116, 13, 3855, 39170, 11395, 10786, 22897, 13, 1493, 9012, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1607, 62, 1186, 2100, 11639, 20751, 11537, 198, 220, 220, 220, 220, 220, 2116, 13, 5990, 687, 12502, 2202, 18943, 30973, 10786, 13635, 3256, 1167, 30973, 62, 9630, 28, 15, 8, 628, 220, 220, 220, 1303, 49899, 262, 5901, 12, 259, 3884, 2657, 1271, 1028, 262, 13262, 515, 1271, 13, 198, 220, 220, 220, 13262, 515, 62, 535, 62, 16, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 43082, 62, 27761, 6, 7131, 15, 7131, 6, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 6, 12962, 198, 220, 220, 220, 13262, 515, 62, 535, 62, 17, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 43082, 62, 27761, 6, 7131, 16, 7131, 6, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 6, 12962, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 10786, 705, 287, 13262, 515, 62, 535, 62, 16, 393, 705, 705, 287, 13262, 515, 62, 535, 62, 17, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19355, 287, 13262, 515, 62, 535, 62, 16, 393, 705, 19355, 287, 13262, 515, 62, 535, 62, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 1199, 2737, 43076, 393, 2880, 1352, 34534, 407, 18818, 2637, 8, 628, 220, 825, 1332, 15404, 2915, 3673, 46384, 2301, 515, 35992, 20231, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 5231, 1659, 359, 857, 407, 19406, 16545, 351, 645, 2209, 7508, 526, 15931, 198, 220, 220, 220, 7034, 796, 1391, 6, 20608, 62, 39776, 2257, 10354, 705, 18861, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 62, 43, 11262, 10354, 705, 17919, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27630, 4146, 62, 2885, 7707, 7597, 10354, 705, 1443, 22947, 31, 20688, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9858, 47, 31827, 62, 20608, 10354, 705, 39154, 1395, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11909, 11651, 62, 39069, 62, 41856, 2538, 62, 41359, 13246, 10354, 705, 17544, 12, 10163, 12, 2231, 3134, 3256, 92, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 646, 489, 5344, 62, 5577, 2915, 62, 9288, 13, 6494, 6, 4008, 198, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 7034, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 4226, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12048, 11, 657, 11, 657, 8, 198, 220, 220, 220, 44804, 62, 8189, 796, 37227, 198, 220, 220, 220, 220, 220, 3188, 13, 1136, 20180, 48364, 7203, 647, 469, 62, 646, 79, 11074, 46002, 9783, 198, 220, 220, 220, 220, 220, 4324, 13, 2860, 9237, 33252, 7203, 403, 2220, 1600, 2163, 3419, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 198, 220, 220, 220, 220, 220, 14980, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 8457, 62, 8189, 11, 657, 11, 657, 8, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 944, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 37046, 351, 645, 2209, 7508, 373, 13262, 515, 2637, 8, 628, 220, 825, 1332, 15404, 2915, 3673, 46384, 2301, 515, 3152, 44651, 15333, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 5231, 1659, 359, 857, 407, 19406, 16545, 351, 281, 12515, 3053, 526, 15931, 198, 220, 220, 220, 7034, 796, 1391, 6, 20608, 62, 39776, 2257, 10354, 705, 18861, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 62, 43, 11262, 10354, 705, 17919, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27630, 4146, 62, 2885, 7707, 7597, 10354, 705, 4563, 13866, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 24027, 16, 10354, 705, 1065, 2682, 367, 520, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 34, 9050, 10354, 705, 15017, 5264, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 44724, 10354, 705, 8141, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 57, 4061, 10354, 705, 3865, 11442, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9858, 47, 31827, 62, 20608, 10354, 705, 39154, 1395, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11909, 11651, 62, 39069, 62, 41856, 2538, 62, 41359, 13246, 10354, 705, 26200, 12, 10163, 12, 2231, 3134, 3256, 92, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 646, 489, 5344, 62, 5577, 2915, 62, 9288, 13, 6494, 6, 4008, 198, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 7034, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 4226, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12048, 11, 657, 11, 657, 8, 198, 220, 220, 220, 44804, 62, 8189, 796, 37227, 198, 220, 220, 220, 220, 220, 3188, 13, 1136, 20180, 48364, 7203, 647, 469, 62, 646, 79, 11074, 46002, 9783, 198, 220, 220, 220, 220, 220, 4324, 13, 2860, 9237, 33252, 7203, 403, 2220, 1600, 2163, 3419, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 198, 220, 220, 220, 220, 220, 14980, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 8457, 62, 8189, 11, 657, 11, 657, 8, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 944, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 37046, 351, 12515, 3053, 373, 13262, 515, 2637, 8, 628, 220, 825, 4808, 25206, 9218, 37103, 2514, 16979, 5039, 8479, 7, 944, 11, 7400, 62, 9630, 28, 15, 11, 2344, 1069, 28, 15, 2599, 198, 220, 220, 220, 37227, 25206, 1994, 2995, 284, 48040, 257, 3992, 1296, 351, 5231, 1659, 359, 7034, 1366, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 7400, 62, 9630, 25, 383, 7400, 6376, 11, 4277, 318, 657, 13, 198, 220, 220, 220, 220, 220, 2344, 1069, 25, 383, 4324, 6376, 11, 4277, 318, 657, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 309, 6242, 62, 20373, 32761, 796, 657, 87, 2931, 220, 1303, 16904, 10586, 1994, 1803, 13, 198, 220, 220, 220, 30320, 62, 20373, 32761, 796, 657, 87, 2078, 220, 1303, 5588, 15452, 10586, 1994, 1803, 13, 198, 220, 220, 220, 30826, 27064, 62, 20373, 32761, 796, 657, 87, 15, 35, 220, 1303, 8229, 10586, 1994, 1803, 13, 628, 220, 220, 220, 2116, 13, 25206, 13908, 15813, 9218, 8439, 9237, 7, 5603, 33, 62, 20373, 32761, 11, 7400, 62, 9630, 11, 2344, 1069, 8, 198, 220, 220, 220, 2116, 13, 25206, 13908, 15813, 9218, 8439, 9237, 7, 41925, 62, 20373, 32761, 11, 7400, 62, 9630, 11, 2344, 1069, 8, 198, 220, 220, 220, 2116, 13, 25206, 13908, 15813, 9218, 8439, 9237, 7, 41925, 62, 20373, 32761, 11, 7400, 62, 9630, 11, 2344, 1069, 8, 198, 220, 220, 220, 2116, 13, 25206, 13908, 15813, 9218, 8439, 9237, 7, 26087, 27064, 62, 20373, 32761, 11, 7400, 62, 9630, 11, 2344, 1069, 8, 628, 220, 825, 1332, 41488, 6132, 49601, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 3072, 7032, 21136, 9380, 422, 257, 1813, 7034, 13, 628, 220, 220, 220, 383, 1029, 1241, 1994, 31048, 12260, 262, 1708, 25, 9683, 262, 717, 2420, 198, 220, 220, 220, 2214, 11, 26342, 262, 1960, 1659, 359, 46207, 1351, 11, 2922, 262, 717, 7034, 1626, 262, 198, 220, 220, 220, 1351, 11, 290, 4589, 284, 262, 7034, 284, 48040, 262, 1296, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7034, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4862, 62, 11635, 1996, 62, 2306, 1659, 359, 13, 14116, 11537, 198, 220, 220, 220, 7034, 62, 40319, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4862, 62, 24900, 7254, 62, 2306, 1659, 359, 13, 14116, 11537, 198, 220, 220, 220, 16545, 796, 2116, 13, 36, 2100, 6601, 4863, 7, 13317, 62, 6978, 8, 198, 220, 220, 220, 16545, 62, 40319, 796, 2116, 13, 36, 2100, 6601, 4863, 7, 13317, 62, 40319, 62, 6978, 8, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 28, 5577, 2915, 8, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 687, 62, 9708, 13, 6494, 6, 4008, 198, 220, 220, 220, 329, 7034, 62, 40319, 287, 16545, 62, 40319, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 2116, 13557, 25206, 9218, 37103, 2514, 16979, 5039, 8479, 3419, 198, 220, 220, 220, 220, 220, 1296, 62, 27160, 796, 23884, 198, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 7034, 62, 40319, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 44804, 62, 7783, 278, 62, 3245, 62, 8367, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7785, 2214, 62, 8367, 796, 3188, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 26, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7, 3245, 62, 8367, 1776, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 27160, 58, 2539, 60, 796, 2116, 13, 23002, 1133, 41, 16098, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44804, 62, 7783, 278, 62, 3245, 62, 8367, 11, 657, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 27160, 58, 2539, 4357, 1988, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 10786, 20556, 7034, 407, 4961, 284, 2938, 7034, 379, 1994, 25, 36521, 82, 1, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3109, 7254, 25, 36521, 82, 1, 59, 77, 13615, 276, 25, 36521, 82, 30543, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 11, 1988, 11, 1296, 62, 27160, 58, 2539, 60, 22305, 628, 220, 825, 1332, 4093, 12360, 3673, 1273, 1850, 2215, 16541, 42829, 6677, 9362, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 12624, 7508, 407, 4438, 284, 307, 7448, 618, 1960, 42829, 6677, 28, 2364, 329, 12624, 2214, 13, 628, 220, 220, 220, 1002, 262, 3884, 2657, 1271, 2214, 468, 1960, 42829, 6677, 2900, 572, 11, 788, 262, 3884, 198, 220, 220, 220, 2657, 1167, 30973, 815, 407, 2897, 284, 3613, 262, 3884, 2657, 7508, 13, 383, 3884, 2657, 198, 220, 220, 220, 1271, 1276, 307, 257, 4938, 6026, 21116, 1271, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3884, 62, 9517, 62, 10951, 796, 1391, 6, 9419, 24706, 62, 34, 9795, 62, 20608, 10354, 705, 18861, 4176, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 41359, 13246, 10354, 705, 25644, 36088, 10163, 2231, 3134, 49682, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 27857, 4221, 10354, 705, 1065, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9419, 24706, 62, 34, 9795, 62, 49864, 62, 19, 62, 35, 3528, 2043, 62, 56, 17133, 10354, 705, 4967, 6, 92, 628, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 535, 62, 2306, 42829, 6677, 62, 2364, 62, 9288, 13, 6494, 6, 4008, 198, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 3884, 62, 9517, 62, 10951, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 4226, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12048, 11, 657, 11, 657, 8, 198, 220, 220, 220, 44804, 62, 8189, 796, 37227, 198, 220, 220, 220, 220, 220, 3188, 13, 1136, 20180, 48364, 7203, 535, 62, 46002, 11074, 46002, 9783, 198, 220, 220, 220, 220, 220, 4324, 13, 2860, 9237, 33252, 7203, 403, 2220, 1600, 2163, 3419, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 198, 220, 220, 220, 220, 220, 14980, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 8457, 62, 8189, 11, 657, 11, 657, 8, 198, 220, 220, 220, 1303, 16314, 1566, 1296, 318, 8948, 290, 2443, 32543, 11046, 13, 198, 220, 220, 220, 2116, 13, 21321, 18273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 2116, 13, 3855, 39170, 11395, 10786, 22897, 13, 1493, 9012, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1607, 62, 1186, 2100, 11639, 20751, 11537, 198, 220, 220, 220, 36624, 62, 10745, 30973, 796, 2116, 13, 3855, 46532, 12360, 3419, 17816, 28457, 6, 7131, 15, 7131, 6, 8658, 82, 6, 7131, 15, 7131, 6, 10745, 672, 945, 20520, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 535, 62, 10745, 30973, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 16928, 3884, 2657, 1167, 30973, 4438, 284, 3613, 12624, 7508, 2637, 8, 628, 220, 825, 1332, 2949, 16541, 1659, 359, 1890, 5569, 10049, 15878, 82, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 326, 5231, 1659, 359, 857, 407, 6070, 287, 1100, 12, 8807, 7032, 526, 15931, 198, 220, 220, 220, 7034, 796, 1391, 6, 20608, 62, 39776, 2257, 10354, 705, 18861, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 62, 43, 11262, 10354, 705, 17919, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27630, 4146, 62, 2885, 7707, 7597, 10354, 705, 1443, 22947, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 24027, 16, 10354, 705, 1065, 2682, 367, 520, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 34, 9050, 10354, 705, 15017, 5264, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 44724, 10354, 705, 8141, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2885, 7707, 7597, 62, 39069, 62, 57, 4061, 10354, 705, 3865, 11442, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9858, 47, 31827, 62, 20608, 10354, 705, 39154, 1395, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11909, 11651, 62, 39069, 62, 41856, 2538, 62, 41359, 13246, 10354, 705, 26200, 12, 10163, 12, 2231, 3134, 3256, 92, 628, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 41888, 13317, 12962, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 961, 62, 8807, 62, 3245, 62, 9288, 13, 6494, 6, 4008, 198, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 2116, 13557, 25206, 9218, 37103, 2514, 16979, 5039, 8479, 3419, 198, 220, 220, 220, 44804, 62, 7783, 62, 961, 8807, 62, 3245, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7785, 2214, 62, 8367, 796, 3188, 13, 1136, 20180, 48364, 7203, 12888, 11074, 8367, 26, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7, 3245, 62, 8367, 1776, 11537, 198, 220, 220, 220, 1100, 8807, 62, 3245, 62, 8367, 796, 2116, 13, 23002, 1133, 41, 16098, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44804, 62, 7783, 62, 961, 8807, 62, 3245, 11, 657, 11, 657, 8, 198, 220, 220, 220, 44804, 62, 7783, 62, 29851, 1370, 16, 62, 3245, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7785, 2214, 62, 8367, 796, 3188, 13, 1136, 20180, 48364, 7203, 21975, 11074, 8367, 26, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7, 3245, 62, 8367, 1776, 11537, 198, 220, 220, 220, 37817, 1370, 16, 62, 3245, 62, 8367, 796, 2116, 13, 23002, 1133, 41, 16098, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44804, 62, 7783, 62, 29851, 1370, 16, 62, 3245, 11, 657, 11, 657, 8, 198, 220, 220, 220, 2116, 13, 30493, 3673, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1100, 8807, 62, 3245, 62, 8367, 11, 7034, 17816, 27630, 4146, 62, 2885, 7707, 7597, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16541, 1659, 359, 5901, 287, 1988, 36521, 82, 1, 329, 257, 1100, 12, 8807, 2214, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 1100, 8807, 62, 3245, 62, 8367, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37817, 1370, 16, 62, 3245, 62, 8367, 11, 7034, 17816, 2885, 7707, 7597, 62, 39069, 62, 24027, 16, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 52, 42072, 1988, 36521, 82, 1, 287, 262, 17917, 2214, 2637, 4064, 37817, 1370, 16, 62, 3245, 62, 8367, 8, 628, 220, 825, 5178, 33762, 24220, 1387, 3260, 45135, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 24812, 640, 319, 1296, 9199, 351, 6041, 286, 8574, 5231, 1659, 359, 16545, 13, 628, 220, 220, 220, 770, 1332, 3326, 6945, 618, 257, 7034, 318, 6163, 422, 262, 5231, 1659, 359, 22155, 198, 220, 220, 220, 326, 10874, 286, 4138, 286, 16545, 11, 262, 1296, 857, 407, 8181, 706, 852, 198, 220, 220, 220, 8948, 13, 628, 220, 220, 220, 383, 1029, 1241, 1994, 31048, 12260, 262, 1708, 25, 9683, 262, 717, 2420, 198, 220, 220, 220, 2214, 11, 26342, 262, 1960, 1659, 359, 46207, 1351, 11, 2922, 262, 717, 7034, 1626, 262, 198, 220, 220, 220, 1351, 11, 290, 4589, 284, 262, 7034, 284, 48040, 262, 1296, 13, 628, 220, 220, 220, 770, 1332, 318, 12387, 16359, 13, 383, 11963, 286, 262, 670, 318, 1760, 11, 884, 355, 198, 220, 220, 220, 15453, 20007, 5556, 16545, 11, 19319, 883, 16545, 656, 5231, 1659, 359, 11, 198, 220, 220, 220, 17246, 257, 7034, 422, 262, 1351, 13, 383, 256, 7834, 481, 761, 284, 3904, 319, 262, 198, 220, 220, 220, 9199, 4936, 290, 2198, 611, 262, 6444, 28087, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 11532, 2393, 2476, 284, 307, 1057, 422, 257, 2638, 1378, 19016, 13, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 15460, 1387, 62, 8499, 62, 46002, 62, 9288, 13, 6494, 6, 4008, 198, 220, 220, 220, 1303, 5660, 262, 17301, 4226, 284, 7716, 262, 22155, 1351, 2622, 329, 262, 198, 220, 220, 220, 1303, 16545, 13, 198, 220, 220, 220, 2429, 796, 1960, 1659, 359, 62, 19608, 292, 316, 62, 8612, 1352, 13, 27354, 292, 316, 8645, 1352, 7, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 62, 5715, 28, 6404, 2667, 13, 24908, 8, 198, 220, 220, 220, 1351, 62, 1659, 62, 11600, 796, 2429, 13, 8645, 378, 27354, 292, 316, 7, 22510, 62, 1659, 62, 11600, 62, 1462, 62, 8612, 378, 28, 1314, 486, 8, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 28, 4868, 62, 1659, 62, 11600, 8, 198, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 2116, 13557, 25206, 9218, 37103, 2514, 16979, 5039, 8479, 3419, 198, 220, 220, 220, 1303, 16926, 46, 7, 9892, 84, 2599, 751, 16359, 1296, 8181, 393, 7014, 19637, 13, 198, 220, 220, 220, 8246, 62, 15414, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13414, 1958, 262, 1332, 14500, 13, 6208, 8181, 640, 706, 24353, 262, 1296, 2637, 8, 628, 198, 220, 825, 5231, 1659, 359, 34, 3986, 82, 29985, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 1498, 284, 3758, 24582, 2581, 286, 3992, 1296, 284, 5231, 1659, 359, 4382, 13, 628, 220, 220, 220, 383, 5231, 1659, 359, 4382, 7767, 262, 1366, 18043, 11, 523, 340, 460, 1011, 257, 1178, 1528, 198, 220, 220, 220, 329, 262, 1255, 284, 307, 44187, 13, 17969, 19637, 318, 2672, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 11532, 2393, 2476, 284, 307, 1057, 422, 257, 2176, 2638, 1378, 19016, 284, 307, 1498, 284, 11767, 198, 220, 220, 220, 1303, 262, 2482, 257, 1178, 1528, 1568, 416, 10013, 262, 976, 19016, 13, 198, 220, 220, 220, 19016, 796, 705, 4023, 1378, 2503, 13, 10215, 79, 13, 13297, 13, 785, 14, 93, 9892, 84, 14, 2306, 1659, 359, 14, 66, 3986, 82, 29985, 12, 9288, 13, 6494, 6, 198, 220, 220, 220, 1303, 18247, 15779, 29985, 5231, 1659, 359, 7034, 13, 198, 220, 220, 220, 2393, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 3986, 10459, 62, 2306, 1659, 359, 13, 14116, 11537, 198, 220, 220, 220, 16545, 796, 2116, 13, 36, 2100, 6601, 4863, 7, 7753, 62, 6978, 8, 198, 220, 220, 220, 2116, 13, 33762, 16541, 1659, 359, 37046, 7, 5577, 2915, 28, 5577, 2915, 8, 198, 220, 220, 220, 1303, 5231, 1659, 359, 4382, 23007, 362, 13, 20, 4, 286, 262, 1366, 4481, 13, 198, 220, 220, 220, 1303, 6706, 15816, 8576, 1661, 318, 257, 3338, 5288, 284, 7074, 262, 4382, 338, 11387, 393, 198, 220, 220, 220, 1303, 7838, 13, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 220, 220, 277, 3672, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 7131, 15, 7131, 6, 20608, 62, 39776, 2257, 20520, 198, 220, 220, 220, 220, 220, 300, 3672, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 7131, 15, 7131, 6, 20608, 62, 43, 11262, 20520, 198, 220, 220, 220, 220, 220, 3053, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 6, 7131, 15, 7131, 6, 27630, 4146, 62, 2885, 7707, 7597, 20520, 198, 220, 220, 220, 220, 220, 1303, 39900, 1296, 284, 2824, 15779, 29985, 1366, 329, 5231, 1659, 359, 13, 198, 220, 220, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 11, 657, 11, 657, 8, 198, 220, 220, 220, 220, 220, 277, 3672, 62, 3245, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 22184, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 277, 3672, 198, 220, 220, 220, 220, 220, 300, 3672, 62, 3245, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 18755, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 300, 3672, 198, 220, 220, 220, 220, 220, 3053, 62, 3245, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 368, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 3053, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 69, 3672, 62, 3245, 11, 657, 11, 657, 1776, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 75, 3672, 62, 3245, 11, 657, 11, 657, 1776, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12888, 62, 3245, 11, 657, 11, 657, 1776, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 10786, 22897, 13, 1136, 20180, 48364, 7203, 8310, 907, 549, 2781, 11074, 46002, 9783, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 657, 8, 628, 220, 825, 39407, 35660, 489, 5344, 15404, 2915, 818, 16541, 1659, 359, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 5231, 1659, 359, 2694, 284, 20121, 23418, 16545, 290, 3714, 1497, 18556, 526, 15931, 198, 220, 220, 220, 1303, 11532, 2393, 2476, 284, 307, 1057, 422, 257, 2638, 1378, 19016, 13, 198, 220, 220, 220, 19016, 796, 2116, 13, 3855, 43481, 21886, 1890, 6601, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 10786, 2306, 1659, 359, 3256, 705, 646, 489, 5344, 62, 5577, 2915, 62, 9288, 13, 6494, 6, 4008, 198, 220, 220, 220, 1303, 5660, 262, 30751, 4226, 284, 7716, 262, 22155, 1351, 2622, 329, 262, 198, 220, 220, 220, 1303, 16545, 13, 198, 220, 220, 220, 269, 796, 1960, 1659, 359, 62, 19608, 292, 316, 62, 1102, 332, 353, 13, 27354, 292, 316, 3103, 332, 353, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 705, 19608, 292, 316, 13, 14116, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 62, 5715, 28, 6404, 2667, 13, 10778, 8, 220, 1303, 5345, 15942, 16579, 284, 24890, 11, 39410, 11, 33854, 13, 198, 220, 220, 220, 1351, 62, 1659, 62, 11600, 796, 269, 13, 3103, 1851, 3419, 628, 220, 220, 220, 329, 7034, 287, 1351, 62, 1659, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 30575, 10055, 2514, 21886, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 7034, 13, 2676, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 4226, 796, 19203, 22897, 13, 1136, 20180, 48364, 7203, 4, 82, 11074, 8367, 796, 36521, 82, 8172, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 11537, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 7, 12048, 11, 657, 11, 657, 8, 198, 220, 220, 220, 220, 220, 2116, 13, 23002, 1133, 41, 16098, 10786, 22897, 13, 1136, 20180, 48364, 7203, 647, 469, 62, 646, 79, 11074, 46002, 9783, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17497, 13, 3438, 38062, 341, 22130, 13, 21280, 7203, 28060, 15341, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 657, 8, 198, 220, 220, 220, 1303, 49899, 2472, 1271, 286, 5128, 1513, 16545, 318, 3744, 621, 262, 2457, 1271, 198, 220, 220, 220, 1303, 286, 16545, 706, 35981, 13, 198, 220, 220, 220, 2116, 13, 30493, 17821, 7, 198, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 4868, 62, 1659, 62, 11600, 8, 1875, 18896, 7, 944, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 20520, 4008, 198, 220, 220, 220, 1303, 19430, 7034, 22155, 284, 257, 2393, 13, 198, 220, 220, 220, 23791, 62, 13317, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6601, 35277, 22784, 705, 2306, 1659, 359, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 647, 2004, 12, 5577, 2915, 13, 14116, 11537, 198, 220, 220, 220, 7034, 62, 11600, 796, 2116, 13, 3855, 16541, 1659, 359, 37046, 3419, 17816, 5577, 2915, 20520, 198, 220, 220, 220, 5072, 796, 1280, 7, 647, 2004, 62, 13317, 11, 705, 39346, 11537, 198, 220, 220, 220, 2298, 293, 13, 39455, 7, 13317, 62, 11600, 11, 5072, 8, 198, 220, 220, 220, 5072, 13, 19836, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 12972, 23736, 62, 45124, 13, 13383, 3419, 198 ]
2.407256
9,289
import pytest from test.utils.helpers import get_header_value, get_json_from_response
[ 11748, 12972, 9288, 198, 198, 6738, 1332, 13, 26791, 13, 16794, 364, 1330, 651, 62, 25677, 62, 8367, 11, 651, 62, 17752, 62, 6738, 62, 26209, 628, 198 ]
3.178571
28
from .__init__ import * from .color import ERR
[ 6738, 764, 834, 15003, 834, 1330, 1635, 198, 6738, 764, 8043, 1330, 13793, 49 ]
3.285714
14
from fred.utils import NamespacedClient, query_params from fred.helpers import _get_request class ESeriesClient(NamespacedClient): """ Class for working with FRED series """ @query_params('realtime_start','realtime_end') def details(self,series_id=None,response_type=None,params=None): """ Function to request a series of economic data. `<https://research.stlouisfed.org/docs/api/fred/release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end') def categories(self,series_id=None,response_type=None,params=None): """ Function to request the categories for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series/categories?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end') def release(self,series_id=None,response_type=None,params=None): """ Function to request the release for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/series_release.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg bool ssl_verify: To verify HTTPs. """ path='/series/release?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'order_by','sort_order') def tags(self,series_id=None,response_type=None,params=None): """ Function to request FRED tags for a particular series. FRED tags are attributes assigned to series. `<https://research.stlouisfed.org/docs/api/fred/series_tags.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/tags?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','filter_value') def updates(self,series_id=None,response_type=None,params=None): """ Function to request economic data series sorted by when observations were updated on the FRED server (attribute last_updated). Results are limited to series updated within the last two weeks. `<https://research.stlouisfed.org/docs/api/fred/series_updates.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str filter_value: Limit results by geographic type of economic data series. Options are 'macro', 'regional', and 'all' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/updates?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','sort_order') def vintage_dates(self,series_id=None,response_type=None,params=None): """ Function to request the dates in history when a series' data values were revised or new data values were released. Vintage dates are the release dates for a series excluding release dates when the data for the series did not change. `<https://research.stlouisfed.org/docs/api/fred/series_vintagedates.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str sort_order: Sort results by vintage_date. Options are 'asc','desc' :arg bool ssl_verify: To verify HTTPs. """ path = '/series/vintagedates?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end','limit', 'offset','sort_order','observation_start','observation_end', 'units','frequency','aggregation_method','output_type', 'vintage_dates') def observations(self,series_id=None,response_type=None,params=None): """ Function to request the observations or data values for an economic data series. `<https://research.stlouisfed.org/docs/api/fred/series_observations.html>`_ :arg int series_id: The id for a series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 100000 :arg int offset: Data offset. Options >=0 :arg str sort_order: Sort results is ascending or descending observation_date order. Options are 'asc','desc' :arg str observation_start: The start of the observation period. Format "YYYY-MM-DD" :arg str observation_end: The end of the observation period. Format "YYYY-MM-DD" :arg str units: A key that indicates a data value transformation. Options are 'lin', 'chg', 'ch1', 'pch', 'pc1', 'pca', 'cch', 'cca', 'log' :arg str frequency: Indicates a lower frequency to aggregate values. Options are 'd', 'w', 'bw', 'm', 'q', 'sa', 'a', 'wef', 'weth', 'wew', 'wetu', 'wem', 'wesu', 'wesa', 'bwew', 'bwem' :arg str aggregation_method: Indicates the aggregation method used for frequency aggregation. Options are 'avg', 'sum', 'eop' :arg int output_type: Output type. Options are 1, 2, 3, 4 :arg str vintage_dates: Date(s) in history. Format "YYYY-MM-DD". Example for multiple dates "2000-01-01,2005-02-24,..." :arg bool ssl_verify: To verify HTTPs. """ path = '/series/observations?' params['series_id'] = series_id response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('search_type','realtime_start','realtime_end', 'limit','offset','order_by','sort_order','filter_variable', 'filter_value','tag_names','exclude_tag_names') def search(self,search_text=None,response_type=None,params=None): """ Function to request economic data series that match search text. `<https://research.stlouisfed.org/docs/api/fred/series_search.html>`_ :arg str search_text: The words to match against economic data series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str search_type: Determines the type of search to perform. Options are 'full_text','series_id' :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'search_rank', 'series_id', 'title', 'units', 'frequency', 'seasonal_adjustment', 'realtime_start', 'realtime_end', 'last_updated', 'observation_start', 'observation_end', 'popularity' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str filter_variable: The attribute to filter results by. Options are 'frequency', 'units','seasonal_adjustment' :arg str filter_value: The value of the filter_variable attribute to filter results by. :arg str tag_names: Tag names used to match series. Separate with semicolon as in "income;bea" :arg str exclude_tag_names: Tag names used to exclude series. Separate with semicolon as in "income;bea" :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search?' params['search_text'] = search_text response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'limit','offset','order_by','sort_order','tag_names', 'tag_group_id','tag_search_text') def search_tags(self,series_search_text=None,response_type=None,params=None): """ Function to request the FRED tags for a series search. `<https://research.stlouisfed.org/docs/api/fred/series_search_tags.html>`_ :arg str series_search_text: The words to match against economic data series. Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str tag_names: Tag names that series match. Separate with semicolon as in "income;bea" :arg str tag_group_id: Tag ID to filter tags by. Options are 'freq', 'gen', 'geo', 'geot', 'rls', 'seas', 'src' :arg str tag_search_text: The words to find matching tags with. :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search/tags?' params['series_search_text'] = series_search_text response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response @query_params('realtime_start','realtime_end', 'limit','offset','order_by','sort_order', 'tag_group_id','tag_search_text','exclude_tag_names') def search_related_tags(self,series_search_text=None,tag_names=None,response_type=None,params=None): """ Function to request the related FRED tags for one or more FRED tags matching a series search. `<https://research.stlouisfed.org/docs/api/fred/series_search_related_tags.html>`_ :arg str series_search_text: The words to match against economic data series. Required. :arg str tag_names: Tag names that series match. Separate with semicolon as in "income;bea". Required. :arg str response_type: File extension of response. Options are 'xml', 'json', 'dict','df','numpy','csv','tab,'pipe'. Required. :arg str realtime_start: The start of the real-time period. Format "YYYY-MM-DD" :arg str realtime_end: The end of the real-time period. Format "YYYY-MM-DD" :arg int limit: The maximum number of results to return. Options 1 to 1000 :arg int offset: Data offset. Options >=0 :arg str order_by: Order results by values of the specified attribute. Options are 'series_count', 'popularity', 'created', 'name', 'group_id' :arg str sort_order: Sort results for attribute values specified by order_by. Options are 'asc','desc' :arg str tag_group_id: Tag ID to filter tags by. Options are 'freq', 'gen', 'geo', 'geot', 'rls', 'seas', 'src' :arg str tag_search_text: The words to find matching tags with. :arg str exclude_tag_names: Tag names to exclude. Separate with semicolon as in "income;bea" :arg bool ssl_verify: To verify HTTPs. """ path = '/series/search/related_tags?' params['series_search_text'], params['tag_names'] = series_search_text, tag_names response_type = response_type if response_type else self.response_type if response_type != 'xml': params['file_type'] = 'json' response = _get_request(self.url_root,self.api_key,path,response_type,params,self.ssl_verify) return response
[ 198, 6738, 277, 445, 13, 26791, 1330, 28531, 32416, 11792, 11, 12405, 62, 37266, 198, 6738, 277, 445, 13, 16794, 364, 1330, 4808, 1136, 62, 25927, 198, 198, 4871, 412, 27996, 11792, 7, 36690, 32416, 11792, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 329, 1762, 351, 8782, 1961, 2168, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 11537, 198, 220, 220, 220, 825, 3307, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 257, 2168, 286, 3034, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 20979, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 11639, 14, 25076, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 11537, 198, 220, 220, 220, 825, 9376, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 262, 9376, 329, 281, 3034, 1366, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 20979, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 11639, 14, 25076, 14, 66, 26129, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 11537, 198, 220, 220, 220, 825, 2650, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 262, 2650, 329, 281, 3034, 1366, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 20979, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 11639, 14, 25076, 14, 20979, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2875, 62, 1525, 41707, 30619, 62, 2875, 11537, 198, 220, 220, 220, 825, 15940, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 8782, 1961, 15940, 329, 257, 1948, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8782, 1961, 15940, 389, 12608, 8686, 284, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 31499, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1502, 62, 1525, 25, 8284, 2482, 416, 3815, 286, 262, 7368, 11688, 13, 18634, 389, 705, 25076, 62, 9127, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12924, 33737, 3256, 705, 25598, 3256, 705, 3672, 3256, 705, 8094, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 3297, 62, 2875, 25, 33947, 2482, 329, 11688, 3815, 7368, 416, 1502, 62, 1525, 13, 18634, 389, 705, 3372, 41707, 20147, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 31499, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 41707, 32374, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28968, 41707, 24455, 62, 8367, 11537, 198, 220, 220, 220, 825, 5992, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 3034, 1366, 2168, 23243, 416, 618, 13050, 198, 220, 220, 220, 220, 220, 220, 220, 547, 6153, 319, 262, 8782, 1961, 4382, 357, 42348, 938, 62, 43162, 737, 15691, 389, 198, 220, 220, 220, 220, 220, 220, 220, 3614, 284, 2168, 6153, 1626, 262, 938, 734, 2745, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 929, 19581, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 4179, 25, 383, 5415, 1271, 286, 2482, 284, 1441, 13, 18634, 352, 284, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 11677, 25, 6060, 11677, 13, 18634, 18189, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 8106, 62, 8367, 25, 27272, 2482, 416, 22987, 2099, 286, 3034, 1366, 2168, 13, 18634, 389, 705, 20285, 305, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2301, 1538, 3256, 290, 705, 439, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 929, 19581, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 41707, 32374, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28968, 41707, 30619, 62, 2875, 11537, 198, 220, 220, 220, 825, 20276, 62, 19581, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 262, 9667, 287, 2106, 618, 257, 2168, 6, 1366, 3815, 547, 198, 220, 220, 220, 220, 220, 220, 220, 15556, 393, 649, 1366, 3815, 547, 2716, 13, 34057, 9667, 389, 262, 2650, 9667, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2168, 23494, 2650, 9667, 618, 262, 1366, 329, 262, 2168, 750, 407, 1487, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 85, 600, 1886, 689, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 4179, 25, 383, 5415, 1271, 286, 2482, 284, 1441, 13, 18634, 352, 284, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 11677, 25, 6060, 11677, 13, 18634, 18189, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 3297, 62, 2875, 25, 33947, 2482, 416, 20276, 62, 4475, 13, 18634, 389, 705, 3372, 41707, 20147, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 85, 600, 1886, 689, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 41707, 32374, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28968, 41707, 30619, 62, 2875, 41707, 672, 3168, 341, 62, 9688, 41707, 672, 3168, 341, 62, 437, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41667, 41707, 35324, 41707, 9460, 43068, 62, 24396, 41707, 22915, 62, 4906, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 85, 14630, 62, 19581, 11537, 198, 220, 220, 220, 825, 13050, 7, 944, 11, 25076, 62, 312, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 262, 13050, 393, 1366, 3815, 329, 281, 3034, 1366, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 672, 3168, 602, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 2168, 62, 312, 25, 383, 4686, 329, 257, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 4179, 25, 383, 5415, 1271, 286, 2482, 284, 1441, 13, 18634, 352, 284, 1802, 830, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 11677, 25, 6060, 11677, 13, 18634, 18189, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 3297, 62, 2875, 25, 33947, 2482, 318, 41988, 393, 31491, 13432, 62, 4475, 1502, 13, 18634, 389, 705, 3372, 41707, 20147, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 13432, 62, 9688, 25, 383, 923, 286, 262, 13432, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 13432, 62, 437, 25, 383, 886, 286, 262, 13432, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 4991, 25, 317, 1994, 326, 9217, 257, 1366, 1988, 13389, 13, 18634, 389, 705, 2815, 3256, 705, 354, 70, 3256, 705, 354, 16, 3256, 705, 79, 354, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14751, 16, 3256, 705, 79, 6888, 3256, 705, 66, 354, 3256, 705, 13227, 3256, 705, 6404, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 8373, 25, 1423, 16856, 257, 2793, 8373, 284, 19406, 3815, 13, 18634, 389, 705, 67, 3256, 705, 86, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 86, 3256, 705, 76, 3256, 705, 80, 3256, 705, 11400, 3256, 705, 64, 3256, 705, 732, 69, 3256, 705, 86, 2788, 3256, 705, 86, 413, 3256, 705, 86, 316, 84, 3256, 705, 86, 368, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 86, 274, 84, 3256, 705, 86, 49183, 3256, 705, 65, 86, 413, 3256, 705, 65, 86, 368, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 46500, 62, 24396, 25, 1423, 16856, 262, 46500, 2446, 973, 329, 8373, 46500, 13, 18634, 389, 220, 705, 615, 70, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16345, 3256, 705, 68, 404, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 5072, 62, 4906, 25, 25235, 2099, 13, 18634, 389, 352, 11, 362, 11, 513, 11, 604, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 20276, 62, 19581, 25, 7536, 7, 82, 8, 287, 2106, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1911, 17934, 329, 3294, 9667, 366, 11024, 12, 486, 12, 486, 11, 14315, 12, 2999, 12, 1731, 11, 9313, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 672, 3168, 602, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 312, 20520, 796, 2168, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 12947, 62, 4906, 41707, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 41707, 28968, 41707, 2875, 62, 1525, 41707, 30619, 62, 2875, 41707, 24455, 62, 45286, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24455, 62, 8367, 41707, 12985, 62, 14933, 41707, 1069, 9152, 62, 12985, 62, 14933, 11537, 198, 220, 220, 220, 825, 2989, 7, 944, 11, 12947, 62, 5239, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 3034, 1366, 2168, 326, 2872, 2989, 2420, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 12947, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2989, 62, 5239, 25, 383, 2456, 284, 2872, 1028, 3034, 1366, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2989, 62, 4906, 25, 360, 13221, 274, 262, 2099, 286, 2989, 284, 1620, 13, 18634, 389, 705, 12853, 62, 5239, 41707, 25076, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 4179, 25, 383, 5415, 1271, 286, 2482, 284, 1441, 13, 18634, 352, 284, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 11677, 25, 6060, 11677, 13, 18634, 18189, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1502, 62, 1525, 25, 8284, 2482, 416, 3815, 286, 262, 7368, 11688, 13, 18634, 389, 705, 12947, 62, 43027, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 62, 312, 3256, 705, 7839, 3256, 705, 41667, 3256, 705, 35324, 3256, 705, 6230, 282, 62, 23032, 434, 3256, 705, 5305, 2435, 62, 9688, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5305, 2435, 62, 437, 3256, 705, 12957, 62, 43162, 3256, 705, 672, 3168, 341, 62, 9688, 3256, 705, 672, 3168, 341, 62, 437, 3256, 705, 12924, 33737, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 3297, 62, 2875, 25, 33947, 2482, 329, 11688, 3815, 7368, 416, 1502, 62, 1525, 13, 18634, 389, 705, 3372, 41707, 20147, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 8106, 62, 45286, 25, 383, 11688, 284, 8106, 2482, 416, 13, 18634, 389, 220, 705, 35324, 3256, 705, 41667, 41707, 6230, 282, 62, 23032, 434, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 8106, 62, 8367, 25, 383, 1988, 286, 262, 8106, 62, 45286, 11688, 284, 8106, 2482, 416, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 14933, 25, 17467, 3891, 973, 284, 2872, 2168, 13, 8621, 30748, 351, 5026, 27045, 261, 355, 287, 366, 12519, 26, 1350, 64, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 19607, 62, 12985, 62, 14933, 25, 17467, 3891, 973, 284, 19607, 2168, 13, 8621, 30748, 351, 5026, 27045, 261, 355, 287, 366, 12519, 26, 1350, 64, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 12947, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 12947, 62, 5239, 20520, 796, 2989, 62, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 41707, 28968, 41707, 2875, 62, 1525, 41707, 30619, 62, 2875, 41707, 12985, 62, 14933, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12985, 62, 8094, 62, 312, 41707, 12985, 62, 12947, 62, 5239, 11537, 198, 220, 220, 220, 825, 2989, 62, 31499, 7, 944, 11, 25076, 62, 12947, 62, 5239, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 262, 8782, 1961, 15940, 329, 257, 2168, 2989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 12947, 62, 31499, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2168, 62, 12947, 62, 5239, 25, 383, 2456, 284, 2872, 1028, 3034, 1366, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 4179, 25, 383, 5415, 1271, 286, 2482, 284, 1441, 13, 18634, 352, 284, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 11677, 25, 6060, 11677, 13, 18634, 18189, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1502, 62, 1525, 25, 8284, 2482, 416, 3815, 286, 262, 7368, 11688, 13, 18634, 389, 220, 705, 25076, 62, 9127, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12924, 33737, 3256, 705, 25598, 3256, 705, 3672, 3256, 705, 8094, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 3297, 62, 2875, 25, 33947, 2482, 329, 11688, 3815, 7368, 416, 1502, 62, 1525, 13, 18634, 389, 705, 3372, 41707, 20147, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 14933, 25, 17467, 3891, 326, 2168, 2872, 13, 8621, 30748, 351, 5026, 27045, 261, 355, 287, 366, 12519, 26, 1350, 64, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 8094, 62, 312, 25, 17467, 4522, 284, 8106, 15940, 416, 13, 18634, 389, 705, 19503, 80, 3256, 705, 5235, 3256, 705, 469, 78, 3256, 705, 469, 313, 3256, 705, 81, 7278, 3256, 705, 325, 292, 3256, 705, 10677, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 12947, 62, 5239, 25, 383, 2456, 284, 1064, 12336, 15940, 351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 12947, 14, 31499, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 12947, 62, 5239, 20520, 796, 2168, 62, 12947, 62, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 2488, 22766, 62, 37266, 10786, 5305, 2435, 62, 9688, 41707, 5305, 2435, 62, 437, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 41707, 28968, 41707, 2875, 62, 1525, 41707, 30619, 62, 2875, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12985, 62, 8094, 62, 312, 41707, 12985, 62, 12947, 62, 5239, 41707, 1069, 9152, 62, 12985, 62, 14933, 11537, 198, 220, 220, 220, 825, 2989, 62, 5363, 62, 31499, 7, 944, 11, 25076, 62, 12947, 62, 5239, 28, 14202, 11, 12985, 62, 14933, 28, 14202, 11, 26209, 62, 4906, 28, 14202, 11, 37266, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 2581, 262, 3519, 8782, 1961, 15940, 329, 530, 393, 517, 8782, 1961, 15940, 12336, 257, 2168, 2989, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27, 5450, 1378, 34033, 13, 301, 75, 280, 4468, 276, 13, 2398, 14, 31628, 14, 15042, 14, 39193, 14, 25076, 62, 12947, 62, 5363, 62, 31499, 13, 6494, 29, 63, 62, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2168, 62, 12947, 62, 5239, 25, 383, 2456, 284, 2872, 1028, 3034, 1366, 2168, 13, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 14933, 25, 17467, 3891, 326, 2168, 2872, 13, 8621, 30748, 351, 5026, 27045, 261, 355, 287, 366, 12519, 26, 1350, 64, 1911, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 2882, 62, 4906, 25, 9220, 7552, 286, 2882, 13, 18634, 389, 705, 19875, 3256, 705, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 41707, 7568, 41707, 77, 32152, 41707, 40664, 41707, 8658, 4032, 34360, 4458, 20906, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 9688, 25, 383, 923, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1103, 2435, 62, 437, 25, 383, 886, 286, 262, 1103, 12, 2435, 2278, 13, 18980, 366, 26314, 26314, 12, 12038, 12, 16458, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 4179, 25, 383, 5415, 1271, 286, 2482, 284, 1441, 13, 18634, 352, 284, 8576, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 493, 11677, 25, 6060, 11677, 13, 18634, 18189, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 1502, 62, 1525, 25, 8284, 2482, 416, 3815, 286, 262, 7368, 11688, 13, 18634, 389, 220, 705, 25076, 62, 9127, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12924, 33737, 3256, 705, 25598, 3256, 705, 3672, 3256, 705, 8094, 62, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 3297, 62, 2875, 25, 33947, 2482, 329, 11688, 3815, 7368, 416, 1502, 62, 1525, 13, 18634, 389, 705, 3372, 41707, 20147, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 8094, 62, 312, 25, 17467, 4522, 284, 8106, 15940, 416, 13, 18634, 389, 705, 19503, 80, 3256, 705, 5235, 3256, 705, 469, 78, 3256, 705, 469, 313, 3256, 705, 81, 7278, 3256, 705, 325, 292, 3256, 705, 10677, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 7621, 62, 12947, 62, 5239, 25, 383, 2456, 284, 1064, 12336, 15940, 351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 965, 19607, 62, 12985, 62, 14933, 25, 17467, 3891, 284, 19607, 13, 8621, 30748, 351, 5026, 27045, 261, 355, 287, 366, 12519, 26, 1350, 64, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 853, 20512, 264, 6649, 62, 332, 1958, 25, 1675, 11767, 14626, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 31051, 25076, 14, 12947, 14, 5363, 62, 31499, 8348, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 25076, 62, 12947, 62, 5239, 6, 4357, 42287, 17816, 12985, 62, 14933, 20520, 796, 2168, 62, 12947, 62, 5239, 11, 7621, 62, 14933, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 796, 2882, 62, 4906, 611, 2882, 62, 4906, 2073, 2116, 13, 26209, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 62, 4906, 14512, 705, 19875, 10354, 42287, 17816, 7753, 62, 4906, 20520, 796, 705, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4808, 1136, 62, 25927, 7, 944, 13, 6371, 62, 15763, 11, 944, 13, 15042, 62, 2539, 11, 6978, 11, 26209, 62, 4906, 11, 37266, 11, 944, 13, 45163, 62, 332, 1958, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 198 ]
2.529865
6,747
""" Class Hierarchy G{classtree: BaseTool} Package tree G{packagetree: cluster_tool} Import Graph G{importgraph: cluster_tool} """ #/usr/bin/python # -*- coding:utf-8 -*- import subprocess from json_generator import JsonGenerator from container_client import ContainerClient DOCKER_SERVER_URL = 'tcp://master:2375' class BaseTool: """ base tool """ class KubernetesTool(BaseTool): """ kubernetes tool """ #===================================================================== # create pod/service/replicationController/node/minion/event #===================================================================== #===================================================================== # list pod/service/replicationController/node/minion/event #===================================================================== #===================================================================== # delete pod/service/replicationController/node/minion/event #===================================================================== #===================================================================== # get pod hostname #===================================================================== #===================================================================== # resize replicationController #===================================================================== class IptablesTool(BaseTool): """ iptables tool """ #========================================================== # nat add rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== #========================================================== # nat delete rules to PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== #========================================================== # nat flush PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== #========================================================== # nat list PREROUTING/POSTROUTING/INPUT/OUTPUT chains #========================================================== if __name__=="__main__": main()
[ 37811, 198, 9487, 36496, 9282, 198, 198, 38, 90, 565, 292, 301, 631, 25, 7308, 25391, 92, 220, 198, 198, 27813, 5509, 198, 38, 90, 8002, 363, 316, 631, 25, 13946, 62, 25981, 92, 220, 198, 198, 20939, 29681, 198, 38, 90, 11748, 34960, 25, 13946, 62, 25981, 92, 220, 198, 198, 37811, 198, 198, 2, 14, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 198, 11748, 850, 14681, 198, 6738, 33918, 62, 8612, 1352, 1330, 449, 1559, 8645, 1352, 198, 6738, 9290, 62, 16366, 1330, 43101, 11792, 198, 35, 11290, 1137, 62, 35009, 5959, 62, 21886, 796, 705, 83, 13155, 1378, 9866, 25, 1954, 2425, 6, 198, 198, 4871, 7308, 25391, 25, 198, 197, 37811, 198, 197, 8692, 2891, 198, 197, 37811, 198, 198, 4871, 12554, 527, 3262, 274, 25391, 7, 14881, 25391, 2599, 198, 197, 37811, 198, 197, 74, 18478, 3262, 274, 2891, 198, 197, 37811, 628, 197, 2, 23926, 1421, 28, 198, 197, 2, 2251, 24573, 14, 15271, 14, 35666, 3299, 22130, 14, 17440, 14, 1084, 295, 14, 15596, 198, 197, 2, 23926, 1421, 28, 628, 197, 2, 23926, 1421, 28, 198, 197, 2, 1351, 24573, 14, 15271, 14, 35666, 3299, 22130, 14, 17440, 14, 1084, 295, 14, 15596, 198, 197, 2, 23926, 1421, 28, 628, 197, 2, 23926, 1421, 28, 198, 197, 2, 12233, 24573, 14, 15271, 14, 35666, 3299, 22130, 14, 17440, 14, 1084, 295, 14, 15596, 198, 197, 2, 23926, 1421, 28, 628, 197, 2, 23926, 1421, 28, 198, 197, 2, 651, 24573, 2583, 3672, 198, 197, 2, 23926, 1421, 28, 628, 197, 2, 23926, 1421, 28, 198, 197, 2, 47558, 30330, 22130, 198, 197, 2, 23926, 1421, 28, 198, 198, 4871, 314, 457, 2977, 25391, 7, 14881, 25391, 2599, 198, 197, 37811, 198, 197, 10257, 2977, 2891, 198, 197, 37811, 628, 197, 2, 10052, 4770, 2559, 855, 198, 197, 2, 34664, 751, 3173, 284, 4810, 1137, 12425, 2751, 14, 32782, 49, 12425, 2751, 14, 1268, 30076, 14, 2606, 7250, 3843, 14659, 198, 197, 2, 10052, 4770, 2559, 855, 628, 197, 2, 10052, 4770, 2559, 855, 198, 197, 2, 34664, 12233, 3173, 284, 4810, 1137, 12425, 2751, 14, 32782, 49, 12425, 2751, 14, 1268, 30076, 14, 2606, 7250, 3843, 14659, 198, 197, 2, 10052, 4770, 2559, 855, 628, 197, 2, 10052, 4770, 2559, 855, 198, 197, 2, 34664, 24773, 4810, 1137, 12425, 2751, 14, 32782, 49, 12425, 2751, 14, 1268, 30076, 14, 2606, 7250, 3843, 14659, 198, 197, 2, 10052, 4770, 2559, 855, 628, 197, 2, 10052, 4770, 2559, 855, 198, 197, 2, 34664, 1351, 4810, 1137, 12425, 2751, 14, 32782, 49, 12425, 2751, 14, 1268, 30076, 14, 2606, 7250, 3843, 14659, 198, 197, 2, 10052, 4770, 2559, 855, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 197, 12417, 3419, 198 ]
4.661734
473
import matplotlib.pyplot as plt
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628 ]
3
11
from .recount import recount from .admin import admin from .default import default from .migration import migration from .translations import translations commands = [ migration, recount, admin, default, translations ]
[ 6738, 764, 8344, 608, 1330, 16369, 198, 6738, 764, 28482, 1330, 13169, 198, 6738, 764, 12286, 1330, 4277, 198, 6738, 764, 76, 4254, 1330, 13472, 198, 6738, 764, 7645, 49905, 1330, 25231, 198, 9503, 1746, 796, 685, 198, 220, 220, 220, 13472, 11, 198, 220, 220, 220, 16369, 11, 198, 220, 220, 220, 13169, 11, 198, 220, 220, 220, 4277, 11, 198, 220, 220, 220, 25231, 198, 60, 198 ]
3.463768
69
from elementtree import ElementTree as et import os ROOT_PATH = '' def get_js_files(): """Returns a list of all the javascript files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files def get_js_test_files(): """Returns a list of all the javascript test files listed in media/js_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/js_includes.xml') for f in tree.findall('test'): files.append(ROOT_PATH + f.get('path')) return files def get_css_files(): """Returns a list of all css files listed in media/css_includes.xml""" files = [] path = os.path.dirname(os.path.abspath(__file__)) tree = et.parse(path + '/../media/css_includes.xml') for f in tree.findall('file'): files.append(ROOT_PATH + f.get('path')) return files
[ 6738, 5002, 21048, 1330, 11703, 27660, 355, 2123, 198, 11748, 28686, 198, 198, 13252, 2394, 62, 34219, 796, 10148, 198, 198, 4299, 651, 62, 8457, 62, 16624, 33529, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 477, 262, 44575, 3696, 5610, 287, 220, 198, 220, 220, 220, 2056, 14, 8457, 62, 42813, 13, 19875, 37811, 198, 220, 220, 220, 3696, 796, 17635, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 5509, 796, 2123, 13, 29572, 7, 6978, 1343, 31051, 40720, 11431, 14, 8457, 62, 42813, 13, 19875, 11537, 198, 220, 220, 220, 329, 277, 287, 5509, 13, 19796, 439, 10786, 7753, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 33295, 7, 13252, 2394, 62, 34219, 1343, 277, 13, 1136, 10786, 6978, 6, 4008, 198, 220, 220, 220, 1441, 3696, 198, 198, 4299, 651, 62, 8457, 62, 9288, 62, 16624, 33529, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 477, 262, 44575, 1332, 3696, 5610, 287, 220, 198, 220, 220, 220, 2056, 14, 8457, 62, 42813, 13, 19875, 37811, 198, 220, 220, 220, 3696, 796, 17635, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 5509, 796, 2123, 13, 29572, 7, 6978, 1343, 31051, 40720, 11431, 14, 8457, 62, 42813, 13, 19875, 11537, 198, 220, 220, 220, 329, 277, 287, 5509, 13, 19796, 439, 10786, 9288, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 33295, 7, 13252, 2394, 62, 34219, 1343, 277, 13, 1136, 10786, 6978, 6, 4008, 198, 220, 220, 220, 1441, 3696, 198, 198, 4299, 651, 62, 25471, 62, 16624, 33529, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 477, 269, 824, 3696, 5610, 287, 220, 198, 220, 220, 220, 2056, 14, 25471, 62, 42813, 13, 19875, 37811, 198, 220, 220, 220, 3696, 796, 17635, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 5509, 796, 2123, 13, 29572, 7, 6978, 1343, 31051, 40720, 11431, 14, 25471, 62, 42813, 13, 19875, 11537, 198, 220, 220, 220, 329, 277, 287, 5509, 13, 19796, 439, 10786, 7753, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 13, 33295, 7, 13252, 2394, 62, 34219, 1343, 277, 13, 1136, 10786, 6978, 6, 4008, 198, 220, 220, 220, 1441, 3696, 198 ]
2.50116
431
import os import pathlib ENV_FILE_PATH = pathlib.Path(__file__).parent / "dev.env" assert ENV_FILE_PATH.exists()
[ 11748, 28686, 198, 11748, 3108, 8019, 628, 198, 1677, 53, 62, 25664, 62, 34219, 796, 3108, 8019, 13, 15235, 7, 834, 7753, 834, 737, 8000, 1220, 366, 7959, 13, 24330, 1, 198, 30493, 12964, 53, 62, 25664, 62, 34219, 13, 1069, 1023, 3419, 628 ]
2.636364
44
#!/usr/bin/python import re import os import sys import json import subprocess DEF_FILE = '.2lane.info' DIRECTIVE_TEMPLATE = '<!-- 2L {body} -->' TYPO_WARNING_FINDER = re.compile('\W2L\W', re.IGNORECASE) MESSAGE_TEMPLATE = '** 2lanemdr {kind} on {filename}:{linenumber} "{message}"' def parseDirective(line, wrcs): """ Return (kind, target): ('endif', None) ('if', <fn>) ('elif', <fn>) (None, None) """ if line == DIRECTIVE_TEMPLATE.format(body='ENDIF'): return ('endif', None) else: for fn in wrcs.keys(): if line == DIRECTIVE_TEMPLATE.format(body='IF %s' % fn): return ('if', fn) elif line == DIRECTIVE_TEMPLATE.format(body='ELIF %s' % fn): return ('elif', fn) # return None, None def mkFiles(src, prescr, warner, errorer): """ Return a list with the path to all files created """ inContents = [ li.replace('\n', '') for li in open(src).readlines() ] # open files oFiles = { fn: open(fp, 'w') for fn, fp in prescr.items() } # cursor setting writing = { fn: True for fn in oFiles.keys() } # process lines for lineNumber, line in enumerate(inContents): # directive or content line? directive, dTarget = parseDirective(line, writing) if directive is not None: # validate and process if directive == 'endif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ENDIF', lineNumber) else: for fn in writing.keys(): writing[fn] = True elif directive == 'if': if sum(int(c) for c in writing.values()) != len(writing): errorer('Misplaced IF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget elif directive == 'elif': if sum(int(c) for c in writing.values()) != 1: errorer('Misplaced ELIF', lineNumber) elif writing[dTarget]: errorer('Repeated target in ELIF', lineNumber) else: for fn in writing.keys(): writing[fn] = fn == dTarget else: errorer('Unknown directive', lineNumber) else: # if TYPO_WARNING_FINDER.search(line): warner('check line', lineNumber) # write serially on all active cursors for fn, fh in oFiles.items(): if writing[fn]: fh.write('%s\n' % line) # close files for fn, fh in oFiles.items(): fh.close() return [fp for fp in prescr.values()] if __name__ == '__main__': if os.path.isfile(DEF_FILE): defs = json.load(open(DEF_FILE)) files = defs.get('sources', {}) # allCreatedFiles = [] # for origF, dests in files.items(): createdFiles = mkFiles(origF, dests, warner=warner, errorer=errorer) allCreatedFiles += createdFiles # we git add the created files subprocess.call(['git', 'add'] + allCreatedFiles)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 11748, 302, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 850, 14681, 628, 198, 32988, 62, 25664, 796, 45302, 17, 33533, 13, 10951, 6, 198, 17931, 23988, 9306, 62, 51, 3620, 6489, 6158, 796, 705, 27, 28112, 362, 43, 1391, 2618, 92, 14610, 6, 198, 9936, 16402, 62, 31502, 62, 37, 12115, 1137, 796, 302, 13, 5589, 576, 10786, 59, 54, 17, 43, 59, 54, 3256, 302, 13, 16284, 1581, 2943, 11159, 8, 198, 44, 1546, 4090, 8264, 62, 51, 3620, 6489, 6158, 796, 705, 1174, 362, 9620, 368, 7109, 1391, 11031, 92, 319, 1391, 34345, 92, 29164, 2815, 268, 4494, 92, 45144, 20500, 92, 30543, 198, 198, 4299, 21136, 13470, 425, 7, 1370, 11, 1319, 6359, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 357, 11031, 11, 2496, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 32088, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 361, 3256, 1279, 22184, 43734, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 417, 361, 3256, 1279, 22184, 43734, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 14202, 11, 6045, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1627, 6624, 42242, 9306, 62, 51, 3620, 6489, 6158, 13, 18982, 7, 2618, 11639, 10619, 5064, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19203, 32088, 3256, 6045, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 1319, 6359, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 6624, 42242, 9306, 62, 51, 3620, 6489, 6158, 13, 18982, 7, 2618, 11639, 5064, 4064, 82, 6, 4064, 24714, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 19203, 361, 3256, 24714, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 6624, 42242, 9306, 62, 51, 3620, 6489, 6158, 13, 18982, 7, 2618, 11639, 3698, 5064, 4064, 82, 6, 4064, 24714, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 19203, 417, 361, 3256, 24714, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 11, 6045, 628, 198, 4299, 33480, 25876, 7, 10677, 11, 906, 6098, 11, 1175, 1008, 11, 1931, 305, 11751, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 1351, 351, 262, 3108, 284, 477, 3696, 2727, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 287, 15842, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 7649, 13, 33491, 10786, 59, 77, 3256, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7649, 287, 1280, 7, 10677, 737, 961, 6615, 3419, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 1303, 1280, 3696, 198, 220, 220, 220, 267, 25876, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 25, 1280, 7, 46428, 11, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 11, 277, 79, 287, 906, 6098, 13, 23814, 3419, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 23493, 4634, 198, 220, 220, 220, 3597, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 25, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 267, 25876, 13, 13083, 3419, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1303, 1429, 3951, 198, 220, 220, 220, 329, 1627, 15057, 11, 1627, 287, 27056, 378, 7, 259, 15842, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 22644, 393, 2695, 1627, 30, 198, 220, 220, 220, 220, 220, 220, 220, 22644, 11, 288, 21745, 796, 21136, 13470, 425, 7, 1370, 11, 3597, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 22644, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 26571, 290, 1429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 22644, 6624, 705, 32088, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2160, 7, 600, 7, 66, 8, 329, 269, 287, 3597, 13, 27160, 28955, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1931, 305, 11751, 10786, 31281, 21820, 23578, 5064, 3256, 1627, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 3597, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3597, 58, 22184, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 22644, 6624, 705, 361, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2160, 7, 600, 7, 66, 8, 329, 269, 287, 3597, 13, 27160, 28955, 14512, 18896, 7, 16502, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1931, 305, 11751, 10786, 31281, 21820, 16876, 3256, 1627, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 3597, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3597, 58, 22184, 60, 796, 24714, 6624, 288, 21745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 22644, 6624, 705, 417, 361, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2160, 7, 600, 7, 66, 8, 329, 269, 287, 3597, 13, 27160, 28955, 14512, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1931, 305, 11751, 10786, 31281, 21820, 17852, 5064, 3256, 1627, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3597, 58, 67, 21745, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1931, 305, 11751, 10786, 47541, 515, 2496, 287, 17852, 5064, 3256, 1627, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 287, 3597, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3597, 58, 22184, 60, 796, 24714, 6624, 288, 21745, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1931, 305, 11751, 10786, 20035, 22644, 3256, 1627, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 24412, 16402, 62, 31502, 62, 37, 12115, 1137, 13, 12947, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1175, 1008, 10786, 9122, 1627, 3256, 1627, 15057, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3551, 1055, 1927, 319, 477, 4075, 13882, 669, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24714, 11, 277, 71, 287, 267, 25876, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3597, 58, 22184, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 13564, 10786, 4, 82, 59, 77, 6, 4064, 1627, 8, 628, 220, 220, 220, 1303, 1969, 3696, 198, 220, 220, 220, 329, 24714, 11, 277, 71, 287, 267, 25876, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 277, 71, 13, 19836, 3419, 628, 220, 220, 220, 1441, 685, 46428, 329, 277, 79, 287, 906, 6098, 13, 27160, 3419, 60, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 32988, 62, 25664, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 825, 82, 796, 33918, 13, 2220, 7, 9654, 7, 32988, 62, 25664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 825, 82, 13, 1136, 10786, 82, 2203, 3256, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 477, 41972, 25876, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1796, 37, 11, 2244, 82, 287, 3696, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2727, 25876, 796, 33480, 25876, 7, 11612, 37, 11, 2244, 82, 11, 1175, 1008, 28, 5767, 1008, 11, 1931, 305, 11751, 28, 263, 305, 11751, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 41972, 25876, 15853, 2727, 25876, 628, 220, 220, 220, 1303, 356, 17606, 751, 262, 2727, 3696, 198, 220, 220, 220, 850, 14681, 13, 13345, 7, 17816, 18300, 3256, 705, 2860, 20520, 1343, 477, 41972, 25876, 8, 198 ]
1.964369
1,712
import os import subprocess from subprocess import CalledProcessError from functools import partial from collections import namedtuple Project = namedtuple('Project', ['name', 'versions']) # all projects using condaci along with the Python version they # need. Note that for non-python projects we can choose any single # python version. PROJECTS = [Project(*x) for x in [('menpo', (2, 34, 35)), ('menpodetect', (2, 34, 35)), ('menpofit', (2, 34, 35)), ('menpo3d', (2, 34, 35)), ('menpocli', (2, 34, 35)), ('menpowidgets', (2, 34, 35)), ('landmarkerio-server', (2,)), ('menpobench', (2,)), ('cyassimp', (2, 34, 35)), ('cyrasterize', (2, 34, 35)), ('cyvlfeat', (2, 34, 35)), ('cyffld2', (2, 34, 35)), ('cypico', (2, 34, 35)), ('conda-arrow', (2, 34, 35)), ('conda-boost', (2, 34, 35)), ('conda-cherrypy', (2, 34, 35)), ('conda-dlib', (2, 34, 35)), ('conda-opencv3', (2, 34, 35)), ('conda-ffmpeg', (2, 34, 35)), ('conda-glew', (2, 34, 35)), ('conda-glfw3', (2, 34, 35)), ('conda-freeimage', (2, 34, 35)), ('conda-imageio', (2, 34, 35)), ('conda-joblib', (2, 34, 35)), ('workerbee', (2, 34, 35)), # Python 3 only ('lsfm', (35,)), # Python 2 only ('conda-menpo-pyvrml97', (2,)), ('conda-pathlib', (2,)), # We currenty build mayavi (and all it's deps) # so we can be Python 3 ('conda-vtk', (2, 34, 35)), ('conda-traits', (2, 34, 35)), ('conda-envisage', (2, 34, 35)), ('conda-pyface', (2, 34, 35)), ('conda-apptools', (2, 34, 35)), ('conda-traitsui', (2, 34, 35)), ('conda-mayavi', (2, 34, 35)), # And we also need the latest ipywidgets... ('conda-ipywidgets', (2, 34, 35)), ('conda-widgetsnbextension', (2, 34, 35)), # Non-Python projects ('vrml97', (2,)), ('conda-flann', (2,)), ('conda-eigen', (2,)), ('conda-enum', (2,)), ('conda-vlfeat', (35,)), ('conda-opencv', (35,)) ]] PROJECT_NAMES = [p.name for p in PROJECTS] appveyor_op = partial(perform_operation_on_file, 'appveyor.yml') travis_op = partial(perform_operation_on_file, '.travis.yml') def copy_and_yield(fsrc, fdst, length=1024*1024): """copy data from file-like object fsrc to file-like object fdst""" while 1: buf = fsrc.read(length) if not buf: break fdst.write(buf) yield
[ 11748, 28686, 198, 11748, 850, 14681, 198, 6738, 850, 14681, 1330, 34099, 18709, 12331, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 198, 16775, 796, 3706, 83, 29291, 10786, 16775, 3256, 37250, 3672, 3256, 705, 47178, 6, 12962, 198, 198, 2, 477, 4493, 1262, 1779, 32009, 1863, 351, 262, 11361, 2196, 484, 198, 2, 761, 13, 5740, 326, 329, 1729, 12, 29412, 4493, 356, 460, 3853, 597, 2060, 198, 2, 21015, 2196, 13, 198, 31190, 41, 2943, 4694, 796, 685, 16775, 46491, 87, 8, 329, 2124, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 10786, 3653, 7501, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3653, 33320, 316, 478, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3653, 79, 1659, 270, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3653, 7501, 18, 67, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3653, 79, 420, 4528, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3653, 79, 322, 312, 11407, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 1044, 4102, 263, 952, 12, 15388, 3256, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 3653, 79, 672, 24421, 3256, 357, 17, 35751, 828, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 948, 562, 11011, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 948, 81, 1603, 1096, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 948, 85, 1652, 4098, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 948, 487, 335, 17, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 948, 79, 3713, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 6018, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 39521, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 2044, 563, 9078, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 67, 8019, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 9654, 33967, 18, 3256, 220, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 487, 43913, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 70, 293, 86, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 70, 1652, 86, 18, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 5787, 9060, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 9060, 952, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 21858, 8019, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 28816, 20963, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11361, 513, 691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 7278, 38353, 3256, 357, 2327, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11361, 362, 691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 3653, 7501, 12, 9078, 37020, 4029, 5607, 3256, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 6978, 8019, 3256, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 1459, 88, 1382, 743, 15820, 357, 392, 477, 340, 338, 390, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 356, 460, 307, 11361, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 85, 30488, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 9535, 896, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 268, 4703, 496, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 9078, 2550, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 1324, 31391, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 9535, 896, 9019, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 11261, 15820, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 843, 356, 635, 761, 262, 3452, 20966, 88, 28029, 11407, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 541, 88, 28029, 11407, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 28029, 11407, 77, 1350, 742, 3004, 3256, 357, 17, 11, 4974, 11, 3439, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8504, 12, 37906, 4493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 37020, 4029, 5607, 3256, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 2704, 1236, 3256, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 68, 9324, 3256, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 44709, 3256, 220, 357, 17, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 85, 1652, 4098, 3256, 220, 357, 2327, 35751, 828, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 66, 13533, 12, 9654, 33967, 3256, 220, 357, 2327, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 60, 198, 198, 31190, 23680, 62, 45, 29559, 796, 685, 79, 13, 3672, 329, 279, 287, 21965, 41, 2943, 4694, 60, 628, 628, 628, 628, 628, 198, 1324, 3304, 273, 62, 404, 796, 13027, 7, 525, 687, 62, 27184, 62, 261, 62, 7753, 11, 705, 1324, 3304, 273, 13, 88, 4029, 11537, 198, 83, 16956, 62, 404, 796, 13027, 7, 525, 687, 62, 27184, 62, 261, 62, 7753, 11, 45302, 83, 16956, 13, 88, 4029, 11537, 628, 198, 4299, 4866, 62, 392, 62, 88, 1164, 7, 9501, 6015, 11, 277, 67, 301, 11, 4129, 28, 35500, 9, 35500, 2599, 198, 220, 220, 220, 37227, 30073, 1366, 422, 2393, 12, 2339, 2134, 277, 10677, 284, 2393, 12, 2339, 2134, 277, 67, 301, 37811, 198, 220, 220, 220, 981, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 42684, 796, 277, 10677, 13, 961, 7, 13664, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 42684, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 277, 67, 301, 13, 13564, 7, 29325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 628 ]
1.773944
1,681
#!/usr/bin/python # flow_fairness.py # # Runs a simulation with objects continually messaging each other. # The analysis then generates statistics about the actual rates # achieved and the weights. The output can be used to generate # fairness graphs. import sys import subprocess import os.path # FIXME It would be nice to have a better way of making this script able to find # other modules in sibling packages sys.path.insert(0, sys.path[0]+"/..") import util.stdio from cluster.config import ClusterConfig from cluster.sim import ClusterSimSettings,ClusterSim import flow_fairness if __name__ == "__main__": nss=16 nobjects = 1000#19000#326 packname = '1a_objects.pack' numoh = 1 cc = ClusterConfig() import math; edgex=int(math.sqrt(nss)) edgey=int(nss/int(math.sqrt(nss))) cs = ClusterSimSettings(cc, nss, (edgex,edgey), numoh) cs.region_weight_options = '--flatness=8' cs.debug = True cs.valgrind = False cs.profile = False cs.oprofile = False cs.loglevels["oh"]="insane"; cs.loc = 'standard' cs.blocksize = 256 cs.tx_bandwidth = 50000000 cs.rx_bandwidth = 5000000 cs.oseg_cache_clean_group=25; cs.oseg_cache_entry_lifetime= "10000s" ## Use pack across multiple ohs #cs.num_random_objects = 0 #cs.num_pack_objects = nobjects / cs.num_oh #cs.object_pack = packname #cs.pack_dump = True cs.num_random_objects = 0 cs.object_sl_file='sl.trace.'+str(edgex)+'x'+str(edgey); cs.object_sl_center=(384,384,0); cs.object_connect_phase = '20s' cs.center=[cs.blocksize*edgex/2,cs.blocksize*edgey/2,0] cs.zrange=(-10000,10000) cs.object_static = 'static' cs.object_query_frac = 0.0 cs.duration = '420s' rates = sys.argv[1:] nobjectlist=[250,500,750,1000,1250,1500,1750,2000];#+= nobjectlist+=[2500,3000,3500,4000,4500]+range(5000,20000,1000) nobjectlist.reverse() #nobjectlist = [5000]; #nobjectlist=[19000] caches=[256]*len(nobjectlist) #caches+=[250]*len(nobjectlist) #caches+=[750]*len(nobjectlist) #caches+=[75]*len(nobjectlist)#[10,15,20,25,30,35,40] #nobjectlist=nobjectlist*4#run with 4 caches cs.oseg_cache_size=caches[0]; cs.oseg_cache_selector='cache_communication'; plan = FlowPairFairness(cc, cs, scheme='csfq', payload=1024) oldoptions=plan.cs.scenario_options; done={} adder="" print "SCENARIO OPTIONS ",plan.cs.scenario_options for rate in rates: for nobjectsindex in range(len(nobjectlist)): cs.oseg_cache_size=caches[nobjectsindex]; nobjects=nobjectlist[nobjectsindex] if nobjects in done: adder+='c'; done={} msgfile='messagetrace.'+str(nobjects); global trmsgfile cs.num_sl_objects=nobjects; cs.message_trace_file=msgfile; trace_location=cs.pack_dir+'/'+msgfile trmsgfile=trace_location print 'loading file '+cs.object_sl_file+' with trace '+msgfile plan.run(rate) plan.analysis() nam='endtoend'; if len(rates)>1: nam+='-'+str(rate); nam+=adder nam+='.' nam+=str(nobjects) os.rename(flow_fairness.get_latency_logfile_name(rate),nam); done[nobjects]=True plan.graph()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 5202, 62, 22043, 1108, 13, 9078, 198, 2, 198, 2, 44743, 257, 18640, 351, 5563, 17451, 19925, 1123, 584, 13, 198, 2, 383, 3781, 788, 18616, 7869, 546, 262, 4036, 3965, 198, 2, 8793, 290, 262, 19590, 13, 220, 383, 5072, 460, 307, 973, 284, 7716, 198, 2, 22692, 28770, 13, 198, 198, 11748, 25064, 198, 11748, 850, 14681, 198, 11748, 28686, 13, 6978, 198, 198, 2, 44855, 11682, 632, 561, 307, 3621, 284, 423, 257, 1365, 835, 286, 1642, 428, 4226, 1498, 284, 1064, 198, 2, 584, 13103, 287, 33423, 10392, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 25064, 13, 6978, 58, 15, 48688, 1, 14, 492, 4943, 198, 198, 11748, 7736, 13, 19282, 952, 198, 6738, 13946, 13, 11250, 1330, 38279, 16934, 198, 6738, 13946, 13, 14323, 1330, 38279, 8890, 26232, 11, 2601, 5819, 8890, 198, 11748, 5202, 62, 22043, 1108, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 299, 824, 28, 1433, 198, 220, 220, 220, 220, 198, 220, 220, 220, 31801, 752, 82, 796, 8576, 2, 1129, 830, 2, 39195, 198, 220, 220, 220, 2353, 3672, 796, 705, 16, 64, 62, 48205, 13, 8002, 6, 198, 220, 220, 220, 997, 1219, 796, 352, 628, 220, 220, 220, 36624, 796, 38279, 16934, 3419, 198, 220, 220, 220, 1330, 10688, 26, 198, 220, 220, 220, 5743, 87, 28, 600, 7, 11018, 13, 31166, 17034, 7, 77, 824, 4008, 198, 220, 220, 220, 5743, 88, 28, 600, 7, 77, 824, 14, 600, 7, 11018, 13, 31166, 17034, 7, 77, 824, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 50115, 796, 38279, 8890, 26232, 7, 535, 11, 299, 824, 11, 357, 14907, 87, 11, 14907, 88, 828, 997, 1219, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 50115, 13, 36996, 62, 6551, 62, 25811, 796, 705, 438, 38568, 1108, 28, 23, 6, 198, 220, 220, 220, 50115, 13, 24442, 796, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 50115, 13, 2100, 2164, 521, 796, 10352, 198, 220, 220, 220, 50115, 13, 13317, 796, 10352, 198, 220, 220, 220, 50115, 13, 404, 305, 7753, 796, 10352, 198, 220, 220, 220, 50115, 13, 75, 2467, 626, 82, 14692, 1219, 8973, 2625, 1040, 1531, 8172, 198, 220, 220, 220, 50115, 13, 17946, 796, 705, 20307, 6, 198, 220, 220, 220, 50115, 13, 27372, 1096, 796, 17759, 198, 220, 220, 220, 50115, 13, 17602, 62, 3903, 10394, 796, 642, 24598, 198, 220, 220, 220, 50115, 13, 40914, 62, 3903, 10394, 796, 642, 10535, 198, 220, 220, 220, 50115, 13, 577, 70, 62, 23870, 62, 27773, 62, 8094, 28, 1495, 26, 198, 220, 220, 220, 50115, 13, 577, 70, 62, 23870, 62, 13000, 62, 36195, 8079, 28, 366, 49388, 82, 1, 628, 198, 220, 220, 220, 22492, 5765, 2353, 1973, 3294, 11752, 82, 198, 220, 220, 220, 1303, 6359, 13, 22510, 62, 25120, 62, 48205, 796, 657, 198, 220, 220, 220, 1303, 6359, 13, 22510, 62, 8002, 62, 48205, 796, 31801, 752, 82, 1220, 50115, 13, 22510, 62, 1219, 198, 220, 220, 220, 1303, 6359, 13, 15252, 62, 8002, 796, 2353, 3672, 198, 220, 220, 220, 1303, 6359, 13, 8002, 62, 39455, 796, 6407, 198, 220, 220, 220, 50115, 13, 22510, 62, 25120, 62, 48205, 796, 657, 198, 220, 220, 220, 50115, 13, 15252, 62, 6649, 62, 7753, 11639, 6649, 13, 40546, 2637, 10, 2536, 7, 14907, 87, 47762, 6, 87, 6, 10, 2536, 7, 14907, 88, 1776, 198, 220, 220, 220, 50115, 13, 15252, 62, 6649, 62, 16159, 16193, 22842, 11, 22842, 11, 15, 1776, 198, 220, 220, 220, 50115, 13, 15252, 62, 8443, 62, 40715, 796, 705, 1238, 82, 6, 198, 220, 220, 220, 50115, 13, 16159, 41888, 6359, 13, 27372, 1096, 9, 14907, 87, 14, 17, 11, 6359, 13, 27372, 1096, 9, 14907, 88, 14, 17, 11, 15, 60, 198, 220, 220, 220, 50115, 13, 89, 9521, 16193, 12, 49388, 11, 49388, 8, 198, 220, 220, 220, 50115, 13, 15252, 62, 12708, 796, 705, 12708, 6, 198, 220, 220, 220, 50115, 13, 15252, 62, 22766, 62, 31944, 796, 657, 13, 15, 628, 220, 220, 220, 50115, 13, 32257, 796, 705, 27211, 82, 6, 628, 220, 220, 220, 3965, 796, 25064, 13, 853, 85, 58, 16, 47715, 198, 220, 220, 220, 31801, 752, 4868, 41888, 9031, 11, 4059, 11, 15426, 11, 12825, 11, 1065, 1120, 11, 33698, 11, 1558, 1120, 11, 11024, 11208, 2, 47932, 198, 220, 220, 220, 31801, 752, 4868, 10, 41888, 44688, 11, 23924, 11, 2327, 405, 11, 27559, 11, 2231, 405, 48688, 9521, 7, 27641, 11, 2167, 405, 11, 12825, 8, 198, 220, 220, 220, 31801, 752, 4868, 13, 50188, 3419, 628, 220, 220, 220, 1303, 77, 15252, 4868, 796, 685, 27641, 11208, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 77, 15252, 4868, 41888, 1129, 830, 60, 198, 220, 220, 220, 50177, 41888, 11645, 60, 9, 11925, 7, 77, 15252, 4868, 8, 198, 220, 220, 220, 1303, 66, 3694, 10, 41888, 9031, 60, 9, 11925, 7, 77, 15252, 4868, 8, 198, 220, 220, 220, 1303, 66, 3694, 10, 41888, 15426, 60, 9, 11925, 7, 77, 15252, 4868, 8, 628, 220, 220, 220, 1303, 66, 3694, 10, 41888, 2425, 60, 9, 11925, 7, 77, 15252, 4868, 8, 2, 58, 940, 11, 1314, 11, 1238, 11, 1495, 11, 1270, 11, 2327, 11, 1821, 60, 198, 220, 220, 220, 1303, 77, 15252, 4868, 28, 77, 15252, 4868, 9, 19, 2, 5143, 351, 604, 50177, 198, 220, 220, 220, 50115, 13, 577, 70, 62, 23870, 62, 7857, 28, 66, 3694, 58, 15, 11208, 198, 220, 220, 220, 50115, 13, 577, 70, 62, 23870, 62, 19738, 273, 11639, 23870, 62, 32560, 17020, 198, 220, 220, 220, 1410, 796, 27782, 47, 958, 30099, 1108, 7, 535, 11, 50115, 11, 7791, 11639, 6359, 69, 80, 3256, 21437, 28, 35500, 8, 198, 220, 220, 220, 1468, 25811, 28, 11578, 13, 6359, 13, 1416, 39055, 62, 25811, 26, 198, 220, 220, 220, 1760, 34758, 92, 198, 220, 220, 220, 751, 263, 33151, 198, 220, 220, 220, 3601, 366, 6173, 1677, 1503, 9399, 39852, 11053, 33172, 11578, 13, 6359, 13, 1416, 39055, 62, 25811, 198, 220, 220, 220, 329, 2494, 287, 3965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 31801, 752, 82, 9630, 287, 2837, 7, 11925, 7, 77, 15252, 4868, 8, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 13, 577, 70, 62, 23870, 62, 7857, 28, 66, 3694, 58, 77, 48205, 9630, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31801, 752, 82, 28, 77, 15252, 4868, 58, 77, 48205, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31801, 752, 82, 287, 1760, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 263, 10, 11639, 66, 17020, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 34758, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 7753, 11639, 37348, 363, 316, 16740, 2637, 10, 2536, 7, 77, 48205, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 491, 19662, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 13, 22510, 62, 6649, 62, 48205, 28, 77, 48205, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 13, 20500, 62, 40546, 62, 7753, 28, 19662, 7753, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 62, 24886, 28, 6359, 13, 8002, 62, 15908, 10, 26488, 6, 10, 19662, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 491, 19662, 7753, 28, 40546, 62, 24886, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 25138, 2393, 705, 10, 6359, 13, 15252, 62, 6649, 62, 7753, 10, 6, 351, 12854, 705, 10, 19662, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1410, 13, 5143, 7, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1410, 13, 20930, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 321, 11639, 437, 1462, 437, 17020, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 9700, 8, 29, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 321, 10, 11639, 19355, 10, 2536, 7, 4873, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 321, 47932, 26676, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 321, 10, 11639, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 321, 47932, 2536, 7, 77, 48205, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 918, 480, 7, 11125, 62, 22043, 1108, 13, 1136, 62, 15460, 1387, 62, 6404, 7753, 62, 3672, 7, 4873, 828, 7402, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 58, 77, 48205, 22241, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1410, 13, 34960, 3419, 198, 220, 220, 220, 220, 198 ]
2.159826
1,608
# Copyright 2017 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from abc import ABCMeta, abstractmethod import keras.backend as K from keras.applications import inception_v3, xception import tensorflow as tf from sparkdl.transformers.utils import (imageInputPlaceholder, InceptionV3Constants) """ Essentially a factory function for getting the correct KerasApplicationModel class for the network name. """ KERAS_APPLICATION_MODELS = { "InceptionV3": InceptionV3Model, "Xception": XceptionModel }
[ 2, 15069, 2177, 16092, 397, 23706, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 198, 198, 11748, 41927, 292, 13, 1891, 437, 355, 509, 198, 6738, 41927, 292, 13, 1324, 677, 602, 1330, 30839, 62, 85, 18, 11, 2124, 4516, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 9009, 25404, 13, 35636, 364, 13, 26791, 1330, 357, 9060, 20560, 27271, 13829, 11, 554, 4516, 53, 18, 34184, 1187, 8, 628, 198, 37811, 198, 29508, 3746, 257, 8860, 2163, 329, 1972, 262, 3376, 17337, 292, 23416, 17633, 1398, 198, 1640, 262, 3127, 1438, 13, 198, 37811, 628, 628, 198, 42839, 1921, 62, 2969, 31484, 6234, 62, 33365, 37142, 796, 1391, 198, 220, 220, 220, 366, 818, 4516, 53, 18, 1298, 554, 4516, 53, 18, 17633, 11, 198, 220, 220, 220, 366, 55, 4516, 1298, 1395, 4516, 17633, 198, 92, 628 ]
3.564014
289
from elixir import setup_all, create_all import os, sys # Initialize these before loading plugins import xsbs.db import xsbs.events import xsbs.log import xsbs.ban import xsbs.users import xsbs.server import xsbs.game import xsbs.teamcontrol import xsbs.persistteam import xsbs.demo import xsbs.http import xsbs.http.jsonapi main()
[ 6738, 1288, 32345, 1330, 9058, 62, 439, 11, 2251, 62, 439, 198, 11748, 28686, 11, 25064, 198, 198, 2, 20768, 1096, 777, 878, 11046, 20652, 198, 11748, 2124, 82, 1443, 13, 9945, 198, 11748, 2124, 82, 1443, 13, 31534, 198, 11748, 2124, 82, 1443, 13, 6404, 198, 11748, 2124, 82, 1443, 13, 3820, 198, 11748, 2124, 82, 1443, 13, 18417, 198, 11748, 2124, 82, 1443, 13, 15388, 198, 11748, 2124, 82, 1443, 13, 6057, 198, 11748, 2124, 82, 1443, 13, 15097, 13716, 198, 11748, 2124, 82, 1443, 13, 19276, 396, 15097, 198, 11748, 2124, 82, 1443, 13, 9536, 78, 198, 11748, 2124, 82, 1443, 13, 4023, 198, 11748, 2124, 82, 1443, 13, 4023, 13, 17752, 15042, 198, 198, 12417, 3419, 628 ]
2.768595
121
from __future__ import print_function from __future__ import division from . import _C import os import torch.nn as nn import numpy as np from . import losses as ft_losses from . import metrics as ft_metrics from . import optimizers as ft_optimizers from . import exceptions as ex import fuzzytools.files as files from fuzzytools.counters import Counter from fuzzytools.datascience.xerror import XError import pandas as pd from fuzzytools.dataframes import DFBuilder from copy import copy, deepcopy ################################################################################################################################################### ### repr ### history methods ### along training methods ### get statistics ### file methods
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 764, 1330, 4808, 34, 198, 198, 11748, 28686, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 764, 1330, 9089, 355, 10117, 62, 22462, 274, 198, 6738, 764, 1330, 20731, 355, 10117, 62, 4164, 10466, 198, 6738, 764, 1330, 6436, 11341, 355, 10117, 62, 40085, 11341, 198, 6738, 764, 1330, 13269, 355, 409, 198, 11748, 26080, 20760, 10141, 13, 16624, 355, 3696, 198, 6738, 26080, 20760, 10141, 13, 66, 15044, 1330, 15034, 198, 6738, 26080, 20760, 10141, 13, 19608, 292, 4234, 13, 87, 18224, 1330, 1395, 12331, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 26080, 20760, 10141, 13, 7890, 37805, 1330, 36323, 32875, 198, 6738, 4866, 1330, 4866, 11, 2769, 30073, 198, 198, 29113, 29113, 29113, 29113, 14468, 21017, 628, 197, 21017, 41575, 628, 197, 21017, 2106, 5050, 628, 197, 21017, 1863, 3047, 5050, 628, 197, 21017, 651, 7869, 628, 197, 21017, 2393, 5050 ]
4.411765
170
from _ast import AST, Return, Expr, Str, Call, Attribute, Name, Yield, Raise from abc import ABC from ast import parse, iter_child_nodes from functools import reduce import inspect from textwrap import dedent from typing import Type, List, Tuple, Collection, Optional import re from leyline import Node from leyline.gviz import Digraph, GraphNode, GraphEdge ColorName = Optional[str] StyleName = Optional[str]
[ 6738, 4808, 459, 1330, 29273, 11, 8229, 11, 1475, 1050, 11, 4285, 11, 4889, 11, 3460, 4163, 11, 6530, 11, 575, 1164, 11, 35123, 198, 6738, 450, 66, 1330, 9738, 198, 6738, 6468, 1330, 21136, 11, 11629, 62, 9410, 62, 77, 4147, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 11748, 10104, 198, 6738, 2420, 37150, 1330, 4648, 298, 198, 6738, 19720, 1330, 5994, 11, 7343, 11, 309, 29291, 11, 12251, 11, 32233, 198, 11748, 302, 198, 198, 6738, 443, 88, 1370, 1330, 19081, 198, 6738, 443, 88, 1370, 13, 70, 85, 528, 1330, 7367, 1470, 11, 29681, 19667, 11, 29681, 37021, 628, 628, 198, 10258, 5376, 796, 32233, 58, 2536, 60, 198, 21466, 5376, 796, 32233, 58, 2536, 60, 628, 198 ]
3.418033
122
list1 =[1,2,3] list2 =["one","two","three"] zipped = list(zip(list1,list2)) print(zipped) print("####################") unzipped =list(zip(*zipped)) print(unzipped) print("####################") for (l1, l2) in zip(list1,list2): print(l1) print(l2) print("####################") items = ["apples" ,"banana " , "orange"] counts =[13,12,11] prices =[20,30,40] sentences =[] for (items,counts,prices) in zip (items,counts,prices): items,counts,prices = str(items),str(counts),str(prices) sentence = "i bought "+ counts + " " + items + "at" + prices + "." sentences.append(sentence) print (sentences) print("done")
[ 4868, 16, 796, 58, 16, 11, 17, 11, 18, 60, 201, 198, 4868, 17, 796, 14692, 505, 2430, 11545, 2430, 15542, 8973, 201, 198, 201, 198, 89, 3949, 796, 1351, 7, 13344, 7, 4868, 16, 11, 4868, 17, 4008, 201, 198, 201, 198, 4798, 7, 89, 3949, 8, 201, 198, 4798, 7203, 14468, 4242, 4943, 201, 198, 403, 89, 3949, 796, 4868, 7, 13344, 46491, 89, 3949, 4008, 201, 198, 4798, 7, 403, 89, 3949, 8, 201, 198, 4798, 7203, 14468, 4242, 4943, 201, 198, 201, 198, 201, 198, 201, 198, 1640, 357, 75, 16, 11, 300, 17, 8, 287, 19974, 7, 4868, 16, 11, 4868, 17, 2599, 201, 198, 220, 220, 220, 3601, 7, 75, 16, 8, 201, 198, 220, 220, 220, 3601, 7, 75, 17, 8, 201, 198, 4798, 7203, 14468, 4242, 4943, 201, 198, 201, 198, 23814, 796, 14631, 1324, 829, 1, 42911, 3820, 2271, 366, 837, 366, 43745, 8973, 201, 198, 9127, 82, 796, 58, 1485, 11, 1065, 11, 1157, 60, 201, 198, 1050, 1063, 796, 58, 1238, 11, 1270, 11, 1821, 60, 201, 198, 201, 198, 34086, 3007, 796, 21737, 201, 198, 1640, 357, 23814, 11, 9127, 82, 11, 1050, 1063, 8, 287, 19974, 357, 23814, 11, 9127, 82, 11, 1050, 1063, 2599, 201, 198, 220, 220, 220, 3709, 11, 9127, 82, 11, 1050, 1063, 796, 965, 7, 23814, 828, 2536, 7, 9127, 82, 828, 2536, 7, 1050, 1063, 8, 201, 198, 220, 220, 220, 6827, 796, 366, 72, 5839, 43825, 9853, 1343, 366, 220, 366, 1343, 3709, 1343, 366, 265, 1, 220, 1343, 220, 4536, 1343, 366, 526, 220, 201, 198, 220, 220, 220, 13439, 13, 33295, 7, 34086, 594, 8, 201, 198, 201, 198, 201, 198, 4798, 357, 34086, 3007, 8, 201, 198, 201, 198, 4798, 7203, 28060, 4943 ]
2.280405
296
""" Interactive kinetics app with sliders (with units). Start by runing: $ bokeh serve interactive.py Add --show argument or navigate to: http://localhost:5006/interactive """ from collections import defaultdict import sys from chempy.util.bkh import integration_with_sliders from chempy.units import SI_base_registry, default_units as u from bokeh_interactive import get_rsys if __name__.startswith('bk_'): from bokeh.io import curdoc kf, kb = 3/u.molar/u.s, .3/u.s curdoc().add_root(integration_with_sliders( get_rsys(kf, kb), tend=3*u.s, c0=defaultdict(lambda: 0*u.molar, {'Fe+3': .9*u.molar, 'SCN-': .7*u.molar}), parameters={'kf': kf, 'kb': kb}, get_odesys_kw=dict( unit_registry=SI_base_registry, output_conc_unit=u.molar, output_time_unit=u.second ) )) elif __name__ == '__main__': import warnings warnings.warn("Run using 'bokeh serve %s'" % __file__) sys.exit(1)
[ 37811, 198, 9492, 5275, 18967, 14596, 598, 351, 1017, 4157, 357, 4480, 4991, 737, 198, 10434, 416, 1057, 278, 25, 198, 220, 220, 220, 720, 1489, 365, 71, 4691, 14333, 13, 9078, 198, 4550, 1377, 12860, 4578, 393, 16500, 284, 25, 198, 220, 220, 220, 2638, 1378, 36750, 25, 4059, 21, 14, 3849, 5275, 198, 37811, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 25064, 198, 198, 6738, 1125, 3149, 88, 13, 22602, 13, 65, 14636, 1330, 11812, 62, 4480, 62, 6649, 4157, 198, 6738, 1125, 3149, 88, 13, 41667, 1330, 25861, 62, 8692, 62, 2301, 4592, 11, 4277, 62, 41667, 355, 334, 198, 198, 6738, 1489, 365, 71, 62, 3849, 5275, 1330, 651, 62, 3808, 893, 628, 198, 361, 11593, 3672, 834, 13, 9688, 2032, 342, 10786, 65, 74, 62, 6, 2599, 198, 220, 220, 220, 422, 1489, 365, 71, 13, 952, 1330, 1090, 15390, 198, 220, 220, 220, 479, 69, 11, 47823, 796, 513, 14, 84, 13, 76, 6192, 14, 84, 13, 82, 11, 764, 18, 14, 84, 13, 82, 198, 220, 220, 220, 1090, 15390, 22446, 2860, 62, 15763, 7, 18908, 1358, 62, 4480, 62, 6649, 4157, 7, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 3808, 893, 7, 74, 69, 11, 47823, 828, 4327, 28, 18, 9, 84, 13, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 269, 15, 28, 12286, 11600, 7, 50033, 25, 657, 9, 84, 13, 76, 6192, 11, 1391, 6, 14304, 10, 18, 10354, 764, 24, 9, 84, 13, 76, 6192, 11, 705, 6173, 45, 12, 10354, 764, 22, 9, 84, 13, 76, 6192, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 10007, 34758, 6, 74, 69, 10354, 479, 69, 11, 705, 32812, 10354, 47823, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 4147, 893, 62, 46265, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 62, 2301, 4592, 28, 11584, 62, 8692, 62, 2301, 4592, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 1102, 66, 62, 20850, 28, 84, 13, 76, 6192, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 2435, 62, 20850, 28, 84, 13, 12227, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 15306, 198, 417, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 14601, 198, 220, 220, 220, 14601, 13, 40539, 7203, 10987, 1262, 705, 65, 2088, 71, 4691, 4064, 82, 29653, 4064, 11593, 7753, 834, 8, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198 ]
2.235294
442
# -*- coding: utf-8 -*- # # Copyright 2017 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration utilities.""" import errno import os from functools import update_wrapper import click import yaml from renku._compat import Path from ._options import Endpoint APP_NAME = 'Renku' """Application name for storing configuration.""" RENKU_HOME = '.renku' """Project directory name.""" # Register Endpoint serializer yaml.add_representer( Endpoint, lambda dumper, data: dumper.represent_str(str(data)) ) def default_config_dir(): """Return default config directory.""" return click.get_app_dir(APP_NAME) def config_path(path=None, final=False): """Return config path.""" if final and path: return path if path is None: path = default_config_dir() try: os.makedirs(path) except OSError as e: # pragma: no cover if e.errno != errno.EEXIST: raise return os.path.join(path, 'config.yml') def read_config(path=None, final=False): """Read Renku configuration.""" try: with open(config_path(path, final=final), 'r') as configfile: return yaml.load(configfile) or {} except FileNotFoundError: return {} def write_config(config, path, final=False): """Write Renku configuration.""" with open(config_path(path, final=final), 'w+') as configfile: yaml.dump(config, configfile, default_flow_style=False) def config_load(ctx, param, value): """Print application config path.""" if ctx.obj is None: ctx.obj = {} ctx.obj['config_path'] = value ctx.obj['config'] = read_config(value) return value def with_config(f): """Add config to function.""" # keep it. @click.pass_context return update_wrapper(new_func, f) def print_app_config_path(ctx, param, value): """Print application config path.""" if not value or ctx.resilient_parsing: return click.echo(config_path(os.environ.get('RENKU_CONFIG'))) ctx.exit() def create_project_config_path( path, mode=0o777, parents=False, exist_ok=False ): """Create new project configuration folder.""" # FIXME check default directory mode project_path = Path(path).absolute().joinpath(RENKU_HOME) project_path.mkdir(mode=mode, parents=parents, exist_ok=exist_ok) return str(project_path) def get_project_config_path(path=None): """Return project configuration folder if exist.""" project_path = Path(path or '.').absolute().joinpath(RENKU_HOME) if project_path.exists() and project_path.is_dir(): return str(project_path) def find_project_config_path(path=None): """Find project config path.""" path = Path(path) if path else Path.cwd() abspath = path.absolute() project_path = get_project_config_path(abspath) if project_path: return project_path for parent in abspath.parents: project_path = get_project_config_path(parent) if project_path: return project_path
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 2177, 532, 14780, 6060, 5800, 3337, 357, 50, 5258, 34, 8, 198, 2, 317, 10413, 1022, 43052, 1073, 293, 12280, 23873, 2350, 376, 2634, 67, 42445, 1000, 390, 4689, 385, 21952, 357, 8905, 3697, 8, 290, 198, 2, 31022, 5235, 9101, 824, 46097, 5429, 46097, 367, 5374, 20601, 2261, 1168, 9116, 7527, 357, 20702, 57, 737, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 38149, 20081, 526, 15931, 198, 198, 11748, 11454, 3919, 198, 11748, 28686, 198, 6738, 1257, 310, 10141, 1330, 4296, 62, 48553, 198, 198, 11748, 3904, 198, 11748, 331, 43695, 198, 198, 6738, 8851, 23063, 13557, 5589, 265, 1330, 10644, 198, 198, 6738, 47540, 25811, 1330, 5268, 4122, 198, 198, 24805, 62, 20608, 796, 705, 26764, 23063, 6, 198, 37811, 23416, 1438, 329, 23069, 8398, 526, 15931, 198, 198, 49, 1677, 42, 52, 62, 39069, 796, 45302, 918, 23063, 6, 198, 37811, 16775, 8619, 1438, 526, 15931, 198, 198, 2, 17296, 5268, 4122, 11389, 7509, 198, 88, 43695, 13, 2860, 62, 15603, 263, 7, 198, 220, 220, 220, 5268, 4122, 11, 37456, 288, 15829, 11, 1366, 25, 288, 15829, 13, 15603, 62, 2536, 7, 2536, 7, 7890, 4008, 198, 8, 628, 198, 4299, 4277, 62, 11250, 62, 15908, 33529, 198, 220, 220, 220, 37227, 13615, 4277, 4566, 8619, 526, 15931, 198, 220, 220, 220, 1441, 3904, 13, 1136, 62, 1324, 62, 15908, 7, 24805, 62, 20608, 8, 628, 198, 4299, 4566, 62, 6978, 7, 6978, 28, 14202, 11, 2457, 28, 25101, 2599, 198, 220, 220, 220, 37227, 13615, 4566, 3108, 526, 15931, 198, 220, 220, 220, 611, 2457, 290, 3108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3108, 628, 220, 220, 220, 611, 3108, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 4277, 62, 11250, 62, 15908, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 8, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 304, 25, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 8056, 3919, 14512, 11454, 3919, 13, 36, 6369, 8808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 705, 11250, 13, 88, 4029, 11537, 628, 198, 4299, 1100, 62, 11250, 7, 6978, 28, 14202, 11, 2457, 28, 25101, 2599, 198, 220, 220, 220, 37227, 5569, 7152, 23063, 8398, 526, 15931, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 7, 6978, 11, 2457, 28, 20311, 828, 705, 81, 11537, 355, 4566, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 331, 43695, 13, 2220, 7, 11250, 7753, 8, 393, 23884, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23884, 628, 198, 4299, 3551, 62, 11250, 7, 11250, 11, 3108, 11, 2457, 28, 25101, 2599, 198, 220, 220, 220, 37227, 16594, 7152, 23063, 8398, 526, 15931, 198, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 7, 6978, 11, 2457, 28, 20311, 828, 705, 86, 10, 11537, 355, 4566, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 43695, 13, 39455, 7, 11250, 11, 4566, 7753, 11, 4277, 62, 11125, 62, 7635, 28, 25101, 8, 628, 198, 4299, 4566, 62, 2220, 7, 49464, 11, 5772, 11, 1988, 2599, 198, 220, 220, 220, 37227, 18557, 3586, 4566, 3108, 526, 15931, 198, 220, 220, 220, 611, 269, 17602, 13, 26801, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 26801, 796, 23884, 628, 220, 220, 220, 269, 17602, 13, 26801, 17816, 11250, 62, 6978, 20520, 796, 1988, 198, 220, 220, 220, 269, 17602, 13, 26801, 17816, 11250, 20520, 796, 1100, 62, 11250, 7, 8367, 8, 198, 220, 220, 220, 1441, 1988, 628, 198, 4299, 351, 62, 11250, 7, 69, 2599, 198, 220, 220, 220, 37227, 4550, 4566, 284, 2163, 526, 15931, 198, 220, 220, 220, 1303, 1394, 340, 13, 628, 220, 220, 220, 2488, 12976, 13, 6603, 62, 22866, 628, 220, 220, 220, 1441, 4296, 62, 48553, 7, 3605, 62, 20786, 11, 277, 8, 628, 198, 4299, 3601, 62, 1324, 62, 11250, 62, 6978, 7, 49464, 11, 5772, 11, 1988, 2599, 198, 220, 220, 220, 37227, 18557, 3586, 4566, 3108, 526, 15931, 198, 220, 220, 220, 611, 407, 1988, 393, 269, 17602, 13, 411, 346, 1153, 62, 79, 945, 278, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 3904, 13, 30328, 7, 11250, 62, 6978, 7, 418, 13, 268, 2268, 13, 1136, 10786, 49, 1677, 42, 52, 62, 10943, 16254, 6, 22305, 198, 220, 220, 220, 269, 17602, 13, 37023, 3419, 628, 198, 4299, 2251, 62, 16302, 62, 11250, 62, 6978, 7, 198, 220, 220, 220, 3108, 11, 4235, 28, 15, 78, 29331, 11, 3397, 28, 25101, 11, 2152, 62, 482, 28, 25101, 198, 2599, 198, 220, 220, 220, 37227, 16447, 649, 1628, 8398, 9483, 526, 15931, 198, 220, 220, 220, 1303, 44855, 11682, 2198, 4277, 8619, 4235, 198, 220, 220, 220, 1628, 62, 6978, 796, 10644, 7, 6978, 737, 48546, 22446, 22179, 6978, 7, 49, 1677, 42, 52, 62, 39069, 8, 198, 220, 220, 220, 1628, 62, 6978, 13, 28015, 15908, 7, 14171, 28, 14171, 11, 3397, 28, 23743, 11, 2152, 62, 482, 28, 38476, 62, 482, 8, 198, 220, 220, 220, 1441, 965, 7, 16302, 62, 6978, 8, 628, 198, 4299, 651, 62, 16302, 62, 11250, 62, 6978, 7, 6978, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 1628, 8398, 9483, 611, 2152, 526, 15931, 198, 220, 220, 220, 1628, 62, 6978, 796, 10644, 7, 6978, 393, 705, 2637, 737, 48546, 22446, 22179, 6978, 7, 49, 1677, 42, 52, 62, 39069, 8, 198, 220, 220, 220, 611, 1628, 62, 6978, 13, 1069, 1023, 3419, 290, 1628, 62, 6978, 13, 271, 62, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 16302, 62, 6978, 8, 628, 198, 4299, 1064, 62, 16302, 62, 11250, 62, 6978, 7, 6978, 28, 14202, 2599, 198, 220, 220, 220, 37227, 16742, 1628, 4566, 3108, 526, 15931, 198, 220, 220, 220, 3108, 796, 10644, 7, 6978, 8, 611, 3108, 2073, 10644, 13, 66, 16993, 3419, 198, 220, 220, 220, 2352, 6978, 796, 3108, 13, 48546, 3419, 628, 220, 220, 220, 1628, 62, 6978, 796, 651, 62, 16302, 62, 11250, 62, 6978, 7, 397, 2777, 776, 8, 198, 220, 220, 220, 611, 1628, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1628, 62, 6978, 628, 220, 220, 220, 329, 2560, 287, 2352, 6978, 13, 23743, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1628, 62, 6978, 796, 651, 62, 16302, 62, 11250, 62, 6978, 7, 8000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1628, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1628, 62, 6978, 198 ]
2.772523
1,332
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 30 18:49:11 2018 @author: afar """ import os import sys import hashlib from PyQt5.QtWidgets import QDialog from PyQt5.QtWidgets import QStatusBar # importing data accc lib_path = os.path.abspath(os.path.join(__file__, '..', '..', '..')) sys.path.append(lib_path) from gui.login_ui import Ui_LoginInterfaceDialog #from gui.testpic_ui import Ui_Dialog from gui.resources import icons_wrapper_rc
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 1737, 1542, 1248, 25, 2920, 25, 1157, 2864, 198, 198, 31, 9800, 25, 44246, 198, 37811, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 12234, 8019, 198, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 44204, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 19580, 10374, 628, 198, 2, 33332, 1366, 697, 66, 198, 8019, 62, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 834, 7753, 834, 11, 705, 492, 3256, 705, 492, 3256, 705, 492, 6, 4008, 198, 17597, 13, 6978, 13, 33295, 7, 8019, 62, 6978, 8, 628, 198, 6738, 11774, 13, 38235, 62, 9019, 1330, 471, 72, 62, 47790, 39317, 44204, 198, 2, 6738, 11774, 13, 9288, 16564, 62, 9019, 1330, 471, 72, 62, 44204, 198, 6738, 11774, 13, 37540, 1330, 17149, 62, 48553, 62, 6015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.321267
221