content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django.db import models from datetime import datetime from publish.models import Publishable # publishable model with a reverse relation to # page (as a child) # non-publishable reverse relation to page (as a child) update_pub_date.pub_date = datetime.now()
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 7715, 13, 27530, 1330, 8525, 1836, 540, 628, 628, 628, 628, 198, 2, 7715, 540, 2746, 351, 257, 9575, 8695, 284, 198, 2, 2443, 357, 292, 257, 1200, 8, 628, 198, 2, 1729, 12, 12984, 1836, 540, 9575, 8695, 284, 2443, 357, 292, 257, 1200, 8, 198, 198, 19119, 62, 12984, 62, 4475, 13, 12984, 62, 4475, 796, 4818, 8079, 13, 2197, 3419, 628, 198 ]
3.407407
81
import sqlite3 import glob import os import click from flask import current_app, g from flask.cli import with_appcontext @click.command('init-db') @with_appcontext
[ 11748, 44161, 578, 18, 198, 11748, 15095, 198, 11748, 28686, 198, 11748, 3904, 198, 6738, 42903, 1330, 1459, 62, 1324, 11, 308, 198, 6738, 42903, 13, 44506, 1330, 351, 62, 1324, 22866, 628, 628, 198, 198, 31, 12976, 13, 21812, 10786, 15003, 12, 9945, 11537, 198, 31, 4480, 62, 1324, 22866, 628 ]
3.269231
52
import os import angr import nose test_location = str(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../binaries/tests')) arches = {'x86_64'} if __name__ == "__main__": main()
[ 11748, 28686, 198, 11748, 281, 2164, 198, 11748, 9686, 628, 198, 9288, 62, 24886, 796, 965, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 705, 40720, 40720, 8800, 3166, 14, 41989, 6, 4008, 198, 283, 2052, 796, 1391, 6, 87, 4521, 62, 2414, 6, 92, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.45122
82
from datetime import datetime import logging # LOGGING SETTINGS # Save detailed information to log file handler_file = logging.FileHandler("jarvis.log") handler_file.setFormatter(logging.Formatter( "%(asctime)s %(levelname)s %(filename)s:%(lineno)d - %(message)s", "%Y-%m-%d %H:%M:%S" )) # Output simple information to stderr handler_stderr = logging.StreamHandler() handler_stderr.setFormatter(logging.Formatter("%(levelname)s: %(message)s")) # Log everything of level INFO or higher (everything apart from DEBUG) logging.basicConfig( level=logging.INFO, handlers=[ handler_file, handler_stderr ] ) # END LOGGING SETTINGS def stdin() -> str: """ Use this to input commands for Jarvis if the desired way fails """ return input("Command: ") def stdout(response: str): """ Use this to output Jarvis's response if the desired way fails """ print(response)
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 18931, 198, 198, 2, 41605, 38, 2751, 25823, 51, 20754, 198, 198, 2, 12793, 6496, 1321, 284, 2604, 2393, 198, 30281, 62, 7753, 796, 18931, 13, 8979, 25060, 7203, 9491, 4703, 13, 6404, 4943, 198, 30281, 62, 7753, 13, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 7, 198, 220, 220, 220, 36521, 7, 292, 310, 524, 8, 82, 4064, 7, 5715, 3672, 8, 82, 4064, 7, 34345, 8, 82, 25, 4, 7, 2815, 23397, 8, 67, 532, 4064, 7, 20500, 8, 82, 1600, 198, 220, 220, 220, 36521, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 1, 198, 4008, 198, 198, 2, 25235, 2829, 1321, 284, 336, 1082, 81, 198, 30281, 62, 301, 1082, 81, 796, 18931, 13, 12124, 25060, 3419, 198, 30281, 62, 301, 1082, 81, 13, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 7203, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 48774, 198, 198, 2, 5972, 2279, 286, 1241, 24890, 393, 2440, 357, 37814, 5475, 422, 16959, 8, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 1241, 28, 6404, 2667, 13, 10778, 11, 198, 220, 220, 220, 32847, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 62, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 62, 301, 1082, 81, 198, 220, 220, 220, 2361, 198, 8, 198, 198, 2, 23578, 41605, 38, 2751, 25823, 51, 20754, 198, 198, 4299, 14367, 259, 3419, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5765, 428, 284, 5128, 9729, 329, 46595, 611, 262, 10348, 835, 10143, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 5128, 7203, 21575, 25, 366, 8, 198, 198, 4299, 14367, 448, 7, 26209, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5765, 428, 284, 5072, 46595, 338, 2882, 611, 262, 10348, 835, 10143, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3601, 7, 26209, 8, 198 ]
2.727273
341
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 - cologler <[email protected]> # ---------- # # ---------- import io __all__ = [ 'FormatError', 'SfoFile', 'PSVGameSfo', 'PSPGameSfo', ] _BYTE_ORDER = 'little' if __name__ == '__main__': for i in range(0, 1): test(r'test_res\param_%s.sfo' % str(i).rjust(2, '0'))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 2, 201, 198, 2, 15069, 357, 66, 8, 1584, 532, 269, 928, 1754, 1279, 15688, 1659, 75, 86, 31, 14816, 13, 785, 29, 201, 198, 2, 24200, 438, 201, 198, 2, 220, 201, 198, 2, 24200, 438, 201, 198, 201, 198, 11748, 33245, 201, 198, 201, 198, 834, 439, 834, 796, 685, 201, 198, 220, 220, 220, 705, 26227, 12331, 3256, 201, 198, 220, 220, 220, 705, 50, 6513, 8979, 3256, 201, 198, 220, 220, 220, 705, 3705, 53, 8777, 50, 6513, 3256, 201, 198, 220, 220, 220, 705, 3705, 6968, 480, 50, 6513, 3256, 201, 198, 60, 201, 198, 201, 198, 62, 17513, 9328, 62, 12532, 1137, 796, 705, 31629, 6, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 352, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 7, 81, 470, 395, 62, 411, 59, 17143, 62, 4, 82, 13, 82, 6513, 6, 4064, 965, 7, 72, 737, 81, 3137, 7, 17, 11, 705, 15, 6, 4008 ]
1.853774
212
import factory from bluebottle.payments.models import Payment, OrderPayment from bluebottle.payments_logger.models import PaymentLogEntry from .orders import OrderFactory
[ 11748, 8860, 198, 198, 6738, 4171, 10985, 293, 13, 15577, 902, 13, 27530, 1330, 28784, 11, 8284, 19197, 434, 198, 6738, 4171, 10985, 293, 13, 15577, 902, 62, 6404, 1362, 13, 27530, 1330, 28784, 11187, 30150, 198, 6738, 764, 6361, 1330, 8284, 22810, 628, 198 ]
3.866667
45
import pytest from telliot_feed_examples.feeds.matic_usd_feed import matic_usd_median_feed @pytest.mark.asyncio
[ 11748, 12972, 9288, 198, 198, 6738, 1560, 5151, 62, 12363, 62, 1069, 12629, 13, 12363, 82, 13, 13849, 62, 385, 67, 62, 12363, 1330, 285, 1512, 62, 385, 67, 62, 1150, 666, 62, 12363, 628, 198, 31, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 628 ]
2.521739
46
from .base import * DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'motels_db', } } ALLOWED_HOSTS = [] CORS_ORIGIN_ALLOW_ALL = True DEBUG = True SECRET_KEY = 'test' INSTALLED_APPS += ( 'autofixture', 'debug_toolbar', 'django_extensions', ) MIDDLEWARE_CLASSES += ( 'debug_toolbar.middleware.DebugToolbarMiddleware', ) REST_FRAMEWORK = { 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',), 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.AllowAny', ), 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework.renderers.JSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 10, }
[ 6738, 764, 8692, 1330, 1635, 201, 198, 201, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 201, 198, 220, 220, 220, 705, 12286, 10354, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 3642, 822, 13, 70, 271, 13, 9945, 13, 1891, 2412, 13, 7353, 70, 271, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 705, 27926, 1424, 62, 9945, 3256, 201, 198, 220, 220, 220, 1782, 201, 198, 92, 201, 198, 201, 198, 7036, 3913, 1961, 62, 39, 10892, 50, 796, 17635, 201, 198, 201, 198, 34, 20673, 62, 1581, 3528, 1268, 62, 7036, 3913, 62, 7036, 796, 6407, 201, 198, 201, 198, 30531, 796, 6407, 201, 198, 201, 198, 23683, 26087, 62, 20373, 796, 705, 9288, 6, 201, 198, 201, 198, 38604, 7036, 1961, 62, 2969, 3705, 15853, 357, 201, 198, 220, 220, 220, 705, 2306, 1659, 9602, 3256, 201, 198, 220, 220, 220, 705, 24442, 62, 25981, 5657, 3256, 201, 198, 220, 220, 220, 705, 28241, 14208, 62, 2302, 5736, 3256, 201, 198, 8, 201, 198, 201, 198, 44, 2389, 35, 2538, 33746, 62, 31631, 1546, 15853, 357, 201, 198, 220, 220, 220, 705, 24442, 62, 25981, 5657, 13, 27171, 1574, 13, 27509, 25391, 5657, 34621, 1574, 3256, 201, 198, 8, 201, 198, 201, 198, 49, 6465, 62, 10913, 2390, 6217, 14670, 796, 1391, 201, 198, 220, 220, 220, 705, 7206, 38865, 62, 46700, 5781, 62, 31098, 1677, 5258, 10354, 19203, 2118, 62, 30604, 13, 10379, 1010, 13, 35, 73, 14208, 22417, 7282, 437, 3256, 828, 201, 198, 220, 220, 220, 705, 7206, 38865, 62, 18973, 44, 40373, 62, 31631, 1546, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2118, 62, 30604, 13, 525, 8481, 13, 35265, 7149, 3256, 201, 198, 220, 220, 220, 10612, 201, 198, 220, 220, 220, 705, 7206, 38865, 62, 49, 10619, 1137, 1137, 62, 31631, 1546, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2118, 62, 30604, 13, 10920, 19288, 13, 40386, 49, 437, 11882, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2118, 62, 30604, 13, 10920, 19288, 13, 33, 8516, 540, 2969, 4663, 437, 11882, 3256, 201, 198, 220, 220, 220, 10612, 201, 198, 220, 220, 220, 705, 7206, 38865, 62, 32, 24318, 3525, 2149, 6234, 62, 31631, 1546, 10354, 357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2118, 62, 30604, 13, 41299, 3299, 13, 36044, 47649, 3299, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2118, 62, 30604, 13, 41299, 3299, 13, 30642, 47649, 3299, 3256, 201, 198, 220, 220, 220, 10612, 201, 198, 220, 220, 220, 705, 7206, 38865, 62, 4537, 38, 1268, 6234, 62, 31631, 10354, 201, 198, 220, 220, 220, 705, 2118, 62, 30604, 13, 79, 363, 1883, 13, 39184, 34519, 47, 363, 1883, 3256, 201, 198, 220, 220, 220, 705, 4537, 8264, 62, 33489, 10354, 838, 11, 201, 198, 92, 201, 198 ]
2.140562
498
import sys import cubey if __name__ == "__main__": if len(sys.argv) != 2: print "Gimme a serial port!" sys.exit(1) serialPort = sys.argv[1] main(serialPort)
[ 11748, 25064, 198, 11748, 13617, 2959, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 38, 320, 1326, 257, 11389, 2493, 2474, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 11389, 13924, 796, 25064, 13, 853, 85, 58, 16, 60, 628, 220, 220, 220, 1388, 7, 46911, 13924, 8, 198 ]
2.136364
88
import PySimpleGUI as sg from .base import GeneratorBase
[ 11748, 9485, 26437, 40156, 355, 264, 70, 198, 6738, 764, 8692, 1330, 35986, 14881, 628 ]
3.866667
15
import requests from flask import Flask, render_template, request, redirect base_url = "http://hn.algolia.com/api/v1" # This URL gets the newest stories. new = f"{base_url}/search_by_date?tags=story" # This URL gets the most popular stories popular = f"{base_url}/search?tags=story" # This function makes the URL to get the detail of a storie by id. # Heres the documentation: https://hn.algolia.com/api db = {} app = Flask("DayNine") @app.route("/") @app.route("/<id>") app.run(host="0.0.0.0")
[ 11748, 7007, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 2581, 11, 18941, 198, 198, 8692, 62, 6371, 796, 366, 4023, 1378, 21116, 13, 14016, 22703, 13, 785, 14, 15042, 14, 85, 16, 1, 198, 198, 2, 770, 10289, 3011, 262, 15530, 3923, 13, 198, 3605, 796, 277, 1, 90, 8692, 62, 6371, 92, 14, 12947, 62, 1525, 62, 4475, 30, 31499, 28, 13571, 1, 198, 198, 2, 770, 10289, 3011, 262, 749, 2968, 3923, 198, 47568, 796, 277, 1, 90, 8692, 62, 6371, 92, 14, 12947, 30, 31499, 28, 13571, 1, 628, 198, 2, 770, 2163, 1838, 262, 10289, 284, 651, 262, 3703, 286, 257, 336, 19257, 416, 4686, 13, 198, 2, 679, 411, 262, 10314, 25, 3740, 1378, 21116, 13, 14016, 22703, 13, 785, 14, 15042, 198, 198, 9945, 796, 23884, 198, 1324, 796, 46947, 7203, 12393, 37603, 4943, 198, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 198, 198, 31, 1324, 13, 38629, 7203, 14, 27, 312, 29, 4943, 198, 198, 1324, 13, 5143, 7, 4774, 2625, 15, 13, 15, 13, 15, 13, 15, 4943 ]
2.794444
180
from django.conf import settings from django.contrib import admin from django.conf.urls import url, include from django.conf.urls.static import static from rest_framework import routers #from feewaiver import views, users_api, api from feewaiver import views, api from ledger.urls import urlpatterns as ledger_patterns from feewaiver.utils import are_migrations_running # API patterns router = routers.DefaultRouter() router.register(r'feewaivers',api.FeeWaiverViewSet) router.register(r'feewaivers_paginated',api.FeeWaiverPaginatedViewSet) router.register(r'participants',api.ParticipantsViewSet) router.register(r'parks',api.ParkViewSet) router.register(r'campgrounds',api.CampGroundViewSet) router.register(r'temporary_document', api.TemporaryDocumentCollectionViewSet) api_patterns = [ #url(r'^api/profile$', users_api.GetProfile.as_view(), name='get-profile'), #url(r'^api/department_users$', users_api.DepartmentUserList.as_view(), name='department-users-list'), #url(r'^api/filtered_users$', users_api.UserListFilterView.as_view(), name='filtered_users'), url(r'^api/',include(router.urls)), ] # URL Patterns urlpatterns = [ url(r'^ledger/admin/', admin.site.urls, name='ledger_admin'), url(r'', include(api_patterns)), url(r'^$', views.FeeWaiverRoutingView.as_view(), name='ds_home'), url(r'^contact/', views.FeeWaiverContactView.as_view(), name='ds_contact'), url(r'^admin_data/', views.FeeWaiverAdminDataView.as_view(), name='admin_data'), url(r'^further_info/', views.FeeWaiverFurtherInformationView.as_view(), name='ds_further_info'), url(r'^internal/', views.InternalView.as_view(), name='internal'), url(r'^external/', views.ExternalView.as_view(), name='external'), url(r'^account/$', views.ExternalView.as_view(), name='manage-account'), url(r'^profiles/', views.ExternalView.as_view(), name='manage-profiles'), url(r'^help/(?P<application_type>[^/]+)/(?P<help_type>[^/]+)/$', views.HelpView.as_view(), name='help'), url(r'^mgt-commands/$', views.ManagementCommandsView.as_view(), name='mgt-commands'), url(r'^internal/fee_waiver/(?P<feewaiver_pk>\d+)/$', views.InternalFeeWaiverView.as_view(), name='internal-feewaiver-detail'), url(r'^history/fee_waiver/(?P<pk>\d+)/$', views.FeeWaiverHistoryCompareView.as_view(), name='feewaiver_history'), ] + ledger_patterns if settings.DEBUG: # Serve media locally in development. urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) if settings.SHOW_DEBUG_TOOLBAR: import debug_toolbar urlpatterns = [ url('__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 11, 2291, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12708, 1330, 9037, 198, 6738, 1334, 62, 30604, 1330, 41144, 198, 2, 6738, 730, 413, 64, 1428, 1330, 5009, 11, 2985, 62, 15042, 11, 40391, 198, 6738, 730, 413, 64, 1428, 1330, 5009, 11, 40391, 198, 198, 6738, 37208, 13, 6371, 82, 1330, 19016, 33279, 82, 355, 37208, 62, 33279, 82, 198, 6738, 730, 413, 64, 1428, 13, 26791, 1330, 389, 62, 76, 3692, 602, 62, 20270, 198, 198, 2, 7824, 7572, 198, 472, 353, 796, 41144, 13, 19463, 49, 39605, 3419, 198, 472, 353, 13, 30238, 7, 81, 6, 5036, 413, 64, 1191, 3256, 15042, 13, 37, 1453, 33484, 1428, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 5036, 413, 64, 1191, 62, 79, 363, 3898, 3256, 15042, 13, 37, 1453, 33484, 1428, 47, 363, 3898, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 48013, 1187, 3256, 15042, 13, 34363, 1187, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 1845, 591, 3256, 15042, 13, 25478, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 6, 16544, 40520, 3256, 15042, 13, 21111, 35539, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 470, 33080, 62, 22897, 3256, 40391, 13, 12966, 5551, 24941, 36307, 7680, 7248, 8, 198, 198, 15042, 62, 33279, 82, 796, 685, 198, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 15042, 14, 13317, 3, 3256, 2985, 62, 15042, 13, 3855, 37046, 13, 292, 62, 1177, 22784, 1438, 11639, 1136, 12, 13317, 33809, 198, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 15042, 14, 10378, 1823, 62, 18417, 3, 3256, 2985, 62, 15042, 13, 36261, 12982, 8053, 13, 292, 62, 1177, 22784, 1438, 11639, 10378, 1823, 12, 18417, 12, 4868, 33809, 198, 220, 220, 220, 1303, 6371, 7, 81, 6, 61, 15042, 14, 10379, 4400, 62, 18417, 3, 3256, 2985, 62, 15042, 13, 12982, 8053, 22417, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 10379, 4400, 62, 18417, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15042, 14, 3256, 17256, 7, 472, 353, 13, 6371, 82, 36911, 198, 60, 198, 198, 2, 10289, 47020, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 992, 1362, 14, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 11, 1438, 11639, 992, 1362, 62, 28482, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 3256, 2291, 7, 15042, 62, 33279, 82, 36911, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 37, 1453, 33484, 1428, 49, 13660, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 9310, 62, 11195, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 32057, 14, 3256, 5009, 13, 37, 1453, 33484, 1428, 17829, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 9310, 62, 32057, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 62, 7890, 14, 3256, 5009, 13, 37, 1453, 33484, 1428, 46787, 6601, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 28482, 62, 7890, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 69, 1914, 62, 10951, 14, 3256, 5009, 13, 37, 1453, 33484, 1428, 13518, 21918, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 9310, 62, 69, 1914, 62, 10951, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 32538, 14, 3256, 5009, 13, 37693, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 32538, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 22615, 14, 3256, 5009, 13, 41506, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 22615, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 23317, 32624, 3256, 5009, 13, 41506, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 805, 496, 12, 23317, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 5577, 2915, 14, 3256, 5009, 13, 41506, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 805, 496, 12, 5577, 2915, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16794, 29006, 30, 47, 27, 31438, 62, 4906, 36937, 61, 14, 48688, 20679, 7, 30, 47, 27, 16794, 62, 4906, 36937, 61, 14, 48688, 20679, 3, 3256, 5009, 13, 22087, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 16794, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 11296, 83, 12, 9503, 1746, 32624, 3256, 5009, 13, 48032, 6935, 1746, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 11296, 83, 12, 9503, 1746, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 32538, 14, 39071, 62, 10247, 1428, 29006, 30, 47, 27, 5036, 413, 64, 1428, 62, 79, 74, 29, 59, 67, 10, 20679, 3, 3256, 5009, 13, 37693, 37, 1453, 33484, 1428, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 32538, 12, 5036, 413, 64, 1428, 12, 49170, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 23569, 14, 39071, 62, 10247, 1428, 29006, 30, 47, 27, 79, 74, 29, 59, 67, 10, 20679, 3, 3256, 5009, 13, 37, 1453, 33484, 1428, 18122, 41488, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 5036, 413, 64, 1428, 62, 23569, 33809, 198, 60, 1343, 37208, 62, 33279, 82, 198, 198, 361, 6460, 13, 30531, 25, 220, 1303, 35557, 2056, 15726, 287, 2478, 13, 198, 220, 220, 220, 19016, 33279, 82, 15853, 9037, 7, 33692, 13, 30733, 3539, 62, 21886, 11, 3188, 62, 15763, 28, 33692, 13, 30733, 3539, 62, 13252, 2394, 8, 198, 198, 361, 6460, 13, 9693, 3913, 62, 30531, 62, 10468, 3535, 33, 1503, 25, 198, 220, 220, 220, 1330, 14257, 62, 25981, 5657, 198, 220, 220, 220, 19016, 33279, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 10786, 834, 24442, 834, 14, 3256, 2291, 7, 24442, 62, 25981, 5657, 13, 6371, 82, 36911, 198, 220, 220, 220, 2361, 1343, 19016, 33279, 82, 628 ]
2.667002
994
from pid import PID from lowpass import LowPassFilter from yaw_controller import YawController import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704
[ 6738, 46514, 1330, 37022, 198, 6738, 1877, 6603, 1330, 7754, 14478, 22417, 198, 6738, 331, 707, 62, 36500, 1330, 575, 707, 22130, 198, 11748, 686, 2777, 88, 198, 198, 38, 1921, 62, 35, 16938, 9050, 796, 362, 13, 23, 3365, 198, 11651, 62, 7378, 39, 796, 657, 13, 2598, 32869, 628, 197, 197, 198 ]
2.796296
54
import torch import torch.nn as nn from torch.utils import data from datetime import datetime import collections import os import random as rnd import copy from Modeling.Pytorch.utilis_rnn_specific import * from SI_Toolkit.load_and_normalize import load_normalization_info, load_data, normalize_df, denormalize_df def get_device(): """ Small function to correctly send data to GPU or CPU depending what is available """ if torch.cuda.is_available(): device = torch.device('cuda:0') else: device = torch.device('cpu') return device # Set seeds everywhere required to make results reproducible # Print parameter count # https://stackoverflow.com/questions/49201236/check-the-total-number-of-parameters-in-a-pytorch-model def load_pretrained_rnn(net, pt_path, device): """ A function loading parameters (weights and biases) from a previous training to a net RNN instance :param net: An instance of RNN :param pt_path: path to .pt file storing weights and biases :return: No return. Modifies net in place. """ pre_trained_model = torch.load(pt_path, map_location=device) print("Loading Model: ", pt_path) print('') pre_trained_model = list(pre_trained_model.items()) new_state_dict = collections.OrderedDict() count = 0 num_param_key = len(pre_trained_model) for key, value in net.state_dict().items(): if count >= num_param_key: break layer_name, weights = pre_trained_model[count] new_state_dict[key] = weights # print("Pre-trained Layer: %s - Loaded into new layer: %s" % (layer_name, key)) count += 1 print('') net.load_state_dict(new_state_dict) # Initialize weights and biases - should be only applied if no pretrained net loaded # FIXME: To tailor this sequence class according to the commands and state_variables of cartpole class Sequence(nn.Module): """" Our RNN class. """ def reset(self): """ Reset the network (not the weights!) """ self.sample_counter = 0 self.h = [None] * len(self.h_size) self.c = [None] * len(self.h_size) self.output = None self.outputs = [] def forward(self, rnn_input): """ Predicts future CartPole states IN "OPEN LOOP" (at every time step prediction for the next time step is done based on the true CartPole state) """ # Initialize hidden layers - this change at every call as the batch size may vary for i in range(len(self.h_size)): self.h[i] = torch.zeros(rnn_input.size(1), self.h_size[i], dtype=torch.float).to(self.device) self.c[i] = torch.zeros(rnn_input.size(1), self.h_size[i], dtype=torch.float).to(self.device) # The for loop takes the consecutive time steps from input plugs them into RNN and save the outputs into a list # THE NETWORK GETS ALWAYS THE GROUND TRUTH, THE REAL STATE OF THE CARTPOLE, AS ITS INPUT # IT PREDICTS THE STATE OF THE CARTPOLE ONE TIME STEP AHEAD BASED ON TRUE STATE NOW for iteration, input_t in enumerate(rnn_input.chunk(rnn_input.size(0), dim=0)): # Propagate input through RNN layers if self.rnn_type == 'LSTM': self.h[0], self.c[0] = self.layers[0](input_t.squeeze(0), (self.h[0], self.c[0])) for i in range(len(self.h_size) - 1): self.h[i + 1], self.c[i + 1] = self.layers[i + 1](self.h[i], (self.h[i + 1], self.c[i + 1])) else: self.h[0] = self.layers[0](input_t.squeeze(0), self.h[0]) for i in range(len(self.h_size) - 1): self.h[i + 1] = self.layers[i + 1](self.h[i], self.h[i + 1]) self.output = self.layers[-1](self.h[-1]) self.outputs += [self.output] self.sample_counter = self.sample_counter + 1 # In the train mode we want to continue appending the outputs by calling forward function # The outputs will be saved internally in the network instance as a list # Otherwise we want to transform outputs list to a tensor and return it return self.output import pandas as pd # # def load_data(a, filepath=None, columns_list=None, norm_inf=False, rnn_full_name=None, downsample=1): # if filepath is None: # filepath = a.val_file_name # # if columns_list is None: # columns_list = list(set(a.inputs_list).union(set(a.outputs_list))) # # if type(filepath) == list: # filepaths = filepath # else: # filepaths = [filepath] # # all_dfs = [] # saved separately to get normalization # all_time_axes = [] # # for one_filepath in filepaths: # # Load dataframe # print('loading data from ' + str(one_filepath)) # print('') # df = pd.read_csv(one_filepath, comment='#') # df=df.iloc[::downsample].reset_index() # # # You can shift dt by one time step to know "now" the timestep till the next row # if a.cheat_dt: # if 'dt' in df: # df['dt'] = df['dt'].shift(-1) # df = df[:-1] # # # FIXME: Make calculation of dt compatible with downsampling # # Get time axis as separate Dataframe # if 'time' in df.columns: # t = df['time'] # elif 'dt' in df.columns: # dt = df['dt'] # t = dt.cumsum() # t.rename('time', inplace=True) # else: # t = pd.Series([]) # t.rename('time', inplace=True) # # time_axis = t # all_time_axes.append(time_axis) # # # Get only relevant subset of columns # if columns_list == 'all': # pass # else: # df = df[columns_list] # # all_dfs.append(df) # # # return all_dfs, all_time_axes # # # This way of doing normalization is fine for long data sets and (relatively) short sequence lengths # # The points from the edges of the datasets count too little # def calculate_normalization_info(df, PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name): # if type(df) is list: # df_total = pd.concat(df) # else: # df_total = df # # if 'time' in df_total.columns: # df_total.drop('time', # axis='columns', inplace=True) # # df_mean = df_total.mean(axis=0) # df_std = df_total.std(axis=0) # df_max = df_total.max(axis=0) # df_min = df_total.min(axis=0) # frame = {'mean': df_mean, 'std': df_std, 'max': df_max, 'min': df_min} # df_norm_info = pd.DataFrame(frame).transpose() # # df_norm_info.to_csv(PATH_TO_EXPERIMENT_RECORDINGS + rnn_full_name + '-norm' + '.csv') # # # Plot historgrams to make the firs check about gaussian assumption # # for feature in df_total.columns: # # plt.hist(df_total[feature].to_numpy(), 50, density=True, facecolor='g', alpha=0.75) # # plt.title(feature) # # plt.show() # # return df_norm_info # # # def load_normalization_info(PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name): # return pd.read_csv(PATH_TO_EXPERIMENT_RECORDINGS + rnn_full_name + '-norm' + '.csv', index_col=0) # # # def normalize_df(dfs, normalization_info, normalization_type='minmax_sym'): # if normalization_type == 'gaussian': # def normalize_feature(col): # col_mean = normalization_info.loc['mean', col.name] # col_std = normalization_info.loc['std', col.name] # return (col - col_mean) / col_std # elif normalization_type == 'minmax_pos': # def normalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return (col - col_min) / (col_max - col_min) # elif normalization_type == 'minmax_sym': # def normalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return -1.0 + 2.0 * (col - col_min) / (col_max - col_min) # # if type(dfs) is list: # for i in range(len(dfs)): # dfs[i] = dfs[i].apply(normalize_feature, axis=0) # else: # dfs = dfs.apply(normalize_feature, axis=0) # # return dfs # # # def denormalize_df(dfs, normalization_info, normalization_type='minmax_sym'): # if normalization_type == 'gaussian': # def denormalize_feature(col): # col_mean = normalization_info.loc['mean', col.name] # col_std = normalization_info.loc['std', col.name] # return col * col_std + col_mean # elif normalization_type == 'minmax_pos': # def denormalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return col * (col_max - col_min) + col_min # elif normalization_type == 'minmax_sym': # def denormalize_feature(col): # col_min = normalization_info.loc['min', col.name] # col_max = normalization_info.loc['max', col.name] # return ((col + 1.0) / 2.0) * (col_max - col_min) + col_min # # if type(dfs) is list: # for i in range(len(dfs)): # dfs[i] = dfs[i].apply(denormalize_feature, axis=0) # else: # dfs = dfs.apply(denormalize_feature, axis=0) # # return dfs def plot_results(net, args, dataset=None, normalization_info = None, time_axes=None, filepath=None, inputs_list=None, outputs_list=None, closed_loop_list=None, seq_len=None, warm_up_len=None, closed_loop_enabled=False, comment='', rnn_full_name=None, save=False, close_loop_idx=512): """ This function accepts RNN instance, arguments and CartPole instance. It runs one random experiment with CartPole, inputs the data into RNN and check how well RNN predicts CartPole state one time step ahead of time """ rnn_full_name = net.rnn_full_name if filepath is None: filepath = args.val_file_name if type(filepath) == list: filepath = filepath[0] if warm_up_len is None: warm_up_len = args.warm_up_len if seq_len is None: seq_len = args.seq_len if inputs_list is None: inputs_list = args.inputs_list if inputs_list is None: raise ValueError('RNN inputs not provided!') if outputs_list is None: outputs_list = args.outputs_list if outputs_list is None: raise ValueError('RNN outputs not provided!') if closed_loop_enabled and (closed_loop_list is None): closed_loop_list = args.close_loop_for if closed_loop_list is None: raise ValueError('RNN closed-loop-inputs not provided!') net.reset() net.eval() device = get_device() if normalization_info is None: normalization_info = load_normalization_info(args.PATH_TO_EXPERIMENT_RECORDINGS, rnn_full_name) if dataset is None or time_axes is None: test_dfs, time_axes = load_data(args, filepath) test_dfs_norm = normalize_df(test_dfs, normalization_info) test_set = Dataset(test_dfs_norm, args, time_axes=time_axes, seq_len=seq_len) del test_dfs else: test_set = copy.deepcopy(dataset) test_set.reset_seq_len(seq_len=seq_len) # Format the experiment data features, targets, time_axis = test_set.get_experiment(1) # Put number in brackets to get the same idx at every run features_pd = pd.DataFrame(data=features, columns=inputs_list) targets_pd = pd.DataFrame(data=targets, columns=outputs_list) rnn_outputs = pd.DataFrame(columns=outputs_list) warm_up_idx = 0 rnn_input_0 = copy.deepcopy(features_pd.iloc[0]) # Does not bring anything. Why? 0-state shouldn't have zero internal state due to biases... while warm_up_idx < warm_up_len: rnn_input = rnn_input_0 rnn_input = np.squeeze(rnn_input.to_numpy()) rnn_input = torch.from_numpy(rnn_input).float().unsqueeze(0).unsqueeze(0).to(device) net(rnn_input=rnn_input) warm_up_idx += 1 net.outputs = [] net.sample_counter = 0 idx_cl = 0 close_the_loop = False for index, row in features_pd.iterrows(): rnn_input = pd.DataFrame(copy.deepcopy(row)).transpose().reset_index(drop=True) if idx_cl == close_loop_idx: close_the_loop = True if closed_loop_enabled and close_the_loop and (normalized_rnn_output is not None): rnn_input[closed_loop_list] = normalized_rnn_output[closed_loop_list] rnn_input = np.squeeze(rnn_input.to_numpy()) rnn_input = torch.from_numpy(rnn_input).float().unsqueeze(0).unsqueeze(0).to(device) normalized_rnn_output = net(rnn_input=rnn_input) normalized_rnn_output = np.squeeze(normalized_rnn_output.detach().cpu().numpy()).tolist() normalized_rnn_output = copy.deepcopy(pd.DataFrame(data=[normalized_rnn_output], columns=outputs_list)) rnn_outputs = rnn_outputs.append(copy.deepcopy(normalized_rnn_output), ignore_index=True) idx_cl += 1 targets_pd_denorm = denormalize_df(targets_pd, normalization_info) rnn_outputs_denorm = denormalize_df(rnn_outputs, normalization_info) fig, axs = plot_results_specific(targets_pd_denorm, rnn_outputs_denorm, time_axis, comment, closed_loop_enabled, close_loop_idx) plt.show() if save: # Make folders if not yet exist try: os.makedirs('save_plots') except FileExistsError: pass dateTimeObj = datetime.now() timestampStr = dateTimeObj.strftime("-%d%b%Y_%H%M%S") if rnn_full_name is not None: fig.savefig('./save_plots/' + rnn_full_name + timestampStr + '.png') else: fig.savefig('./save_plots/' + timestampStr + '.png')
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 6738, 28034, 13, 26791, 1330, 1366, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 17268, 198, 11748, 28686, 198, 198, 11748, 4738, 355, 374, 358, 198, 198, 11748, 4866, 198, 198, 6738, 9104, 278, 13, 20519, 13165, 354, 13, 22602, 271, 62, 81, 20471, 62, 11423, 1330, 1635, 198, 6738, 25861, 62, 25391, 15813, 13, 2220, 62, 392, 62, 11265, 1096, 1330, 3440, 62, 11265, 1634, 62, 10951, 11, 3440, 62, 7890, 11, 3487, 1096, 62, 7568, 11, 2853, 6636, 1096, 62, 7568, 628, 198, 4299, 651, 62, 25202, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10452, 2163, 284, 9380, 3758, 1366, 284, 11362, 393, 9135, 6906, 644, 318, 1695, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 25, 15, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 36166, 11537, 198, 220, 220, 220, 1441, 3335, 628, 198, 2, 5345, 11904, 8347, 2672, 284, 787, 2482, 8186, 37369, 628, 198, 198, 2, 12578, 11507, 954, 198, 2, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 2920, 1264, 24940, 14, 9122, 12, 1169, 12, 23350, 12, 17618, 12, 1659, 12, 17143, 7307, 12, 259, 12, 64, 12, 9078, 13165, 354, 12, 19849, 628, 198, 4299, 3440, 62, 5310, 13363, 62, 81, 20471, 7, 3262, 11, 42975, 62, 6978, 11, 3335, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2163, 11046, 10007, 357, 43775, 290, 29275, 8, 422, 257, 2180, 3047, 284, 257, 2010, 371, 6144, 4554, 198, 220, 220, 220, 1058, 17143, 2010, 25, 1052, 4554, 286, 371, 6144, 198, 220, 220, 220, 1058, 17143, 42975, 62, 6978, 25, 3108, 284, 764, 457, 2393, 23069, 19590, 290, 29275, 198, 220, 220, 220, 1058, 7783, 25, 1400, 1441, 13, 3401, 6945, 2010, 287, 1295, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 662, 62, 35311, 62, 19849, 796, 28034, 13, 2220, 7, 457, 62, 6978, 11, 3975, 62, 24886, 28, 25202, 8, 198, 220, 220, 220, 3601, 7203, 19031, 9104, 25, 33172, 42975, 62, 6978, 8, 198, 220, 220, 220, 3601, 7, 7061, 8, 628, 220, 220, 220, 662, 62, 35311, 62, 19849, 796, 1351, 7, 3866, 62, 35311, 62, 19849, 13, 23814, 28955, 198, 220, 220, 220, 649, 62, 5219, 62, 11600, 796, 17268, 13, 35422, 1068, 35, 713, 3419, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 997, 62, 17143, 62, 2539, 796, 18896, 7, 3866, 62, 35311, 62, 19849, 8, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 2010, 13, 5219, 62, 11600, 22446, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 18189, 997, 62, 17143, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 62, 3672, 11, 19590, 796, 662, 62, 35311, 62, 19849, 58, 9127, 60, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 5219, 62, 11600, 58, 2539, 60, 796, 19590, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 6719, 12, 35311, 34398, 25, 4064, 82, 532, 42485, 656, 649, 7679, 25, 4064, 82, 1, 4064, 357, 29289, 62, 3672, 11, 1994, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 3601, 7, 7061, 8, 198, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 3605, 62, 5219, 62, 11600, 8, 628, 198, 2, 20768, 1096, 19590, 290, 29275, 532, 815, 307, 691, 5625, 611, 645, 2181, 13363, 2010, 9639, 628, 628, 198, 2, 44855, 11682, 25, 1675, 35280, 428, 8379, 1398, 1864, 284, 262, 9729, 290, 1181, 62, 25641, 2977, 286, 6383, 36869, 198, 4871, 45835, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 13538, 15931, 198, 220, 220, 220, 3954, 371, 6144, 1398, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 13259, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30027, 262, 3127, 357, 1662, 262, 19590, 8133, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39873, 62, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 796, 685, 14202, 60, 1635, 18896, 7, 944, 13, 71, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 796, 685, 14202, 60, 1635, 18896, 7, 944, 13, 71, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 82, 796, 17635, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 374, 20471, 62, 15414, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14322, 14137, 2003, 13690, 47, 2305, 2585, 3268, 366, 3185, 1677, 17579, 3185, 1, 198, 220, 220, 220, 220, 220, 220, 220, 357, 265, 790, 640, 2239, 17724, 329, 262, 1306, 640, 2239, 318, 1760, 1912, 319, 262, 2081, 13690, 47, 2305, 1181, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 7104, 11685, 532, 428, 1487, 379, 790, 869, 355, 262, 15458, 2546, 743, 7565, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 71, 62, 7857, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 58, 72, 60, 796, 28034, 13, 9107, 418, 7, 81, 20471, 62, 15414, 13, 7857, 7, 16, 828, 2116, 13, 71, 62, 7857, 58, 72, 4357, 288, 4906, 28, 13165, 354, 13, 22468, 737, 1462, 7, 944, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 58, 72, 60, 796, 28034, 13, 9107, 418, 7, 81, 20471, 62, 15414, 13, 7857, 7, 16, 828, 2116, 13, 71, 62, 7857, 58, 72, 4357, 288, 4906, 28, 13165, 354, 13, 22468, 737, 1462, 7, 944, 13, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 329, 9052, 2753, 262, 12785, 640, 4831, 422, 5128, 37008, 606, 656, 371, 6144, 290, 3613, 262, 23862, 656, 257, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3336, 49791, 17151, 50, 49576, 3336, 10863, 15919, 7579, 24318, 11, 3336, 32744, 35454, 3963, 3336, 327, 7227, 16402, 2538, 11, 7054, 42437, 3268, 30076, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7283, 4810, 1961, 2149, 4694, 3336, 35454, 3963, 3336, 327, 7227, 16402, 2538, 16329, 20460, 49154, 317, 37682, 29809, 1961, 6177, 26751, 35454, 20229, 198, 220, 220, 220, 220, 220, 220, 220, 329, 24415, 11, 5128, 62, 83, 287, 27056, 378, 7, 81, 20471, 62, 15414, 13, 354, 2954, 7, 81, 20471, 62, 15414, 13, 7857, 7, 15, 828, 5391, 28, 15, 8, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8772, 37861, 5128, 832, 371, 6144, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 81, 20471, 62, 4906, 6624, 705, 43, 2257, 44, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 58, 15, 4357, 2116, 13, 66, 58, 15, 60, 796, 2116, 13, 75, 6962, 58, 15, 16151, 15414, 62, 83, 13, 16485, 1453, 2736, 7, 15, 828, 357, 944, 13, 71, 58, 15, 4357, 2116, 13, 66, 58, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 71, 62, 7857, 8, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 58, 72, 1343, 352, 4357, 2116, 13, 66, 58, 72, 1343, 352, 60, 796, 2116, 13, 75, 6962, 58, 72, 1343, 352, 16151, 944, 13, 71, 58, 72, 4357, 357, 944, 13, 71, 58, 72, 1343, 352, 4357, 2116, 13, 66, 58, 72, 1343, 352, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 58, 15, 60, 796, 2116, 13, 75, 6962, 58, 15, 16151, 15414, 62, 83, 13, 16485, 1453, 2736, 7, 15, 828, 2116, 13, 71, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 71, 62, 7857, 8, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 71, 58, 72, 1343, 352, 60, 796, 2116, 13, 75, 6962, 58, 72, 1343, 352, 16151, 944, 13, 71, 58, 72, 4357, 2116, 13, 71, 58, 72, 1343, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 796, 2116, 13, 75, 6962, 58, 12, 16, 16151, 944, 13, 71, 58, 12, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 82, 15853, 685, 944, 13, 22915, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39873, 62, 24588, 796, 2116, 13, 39873, 62, 24588, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 262, 4512, 4235, 356, 765, 284, 2555, 598, 1571, 262, 23862, 416, 4585, 2651, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 23862, 481, 307, 7448, 20947, 287, 262, 3127, 4554, 355, 257, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 356, 765, 284, 6121, 23862, 1351, 284, 257, 11192, 273, 290, 1441, 340, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22915, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 198, 2, 825, 3440, 62, 7890, 7, 64, 11, 2393, 6978, 28, 14202, 11, 15180, 62, 4868, 28, 14202, 11, 2593, 62, 10745, 28, 25101, 11, 374, 20471, 62, 12853, 62, 3672, 28, 14202, 11, 21838, 1403, 28, 16, 2599, 198, 2, 220, 220, 220, 220, 611, 2393, 6978, 318, 6045, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 257, 13, 2100, 62, 7753, 62, 3672, 198, 2, 198, 2, 220, 220, 220, 220, 611, 15180, 62, 4868, 318, 6045, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 62, 4868, 796, 1351, 7, 2617, 7, 64, 13, 15414, 82, 62, 4868, 737, 24592, 7, 2617, 7, 64, 13, 22915, 82, 62, 4868, 22305, 198, 2, 198, 2, 220, 220, 220, 220, 611, 2099, 7, 7753, 6978, 8, 6624, 1351, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 82, 796, 2393, 6978, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 82, 796, 685, 7753, 6978, 60, 198, 2, 198, 2, 220, 220, 220, 220, 477, 62, 7568, 82, 796, 17635, 220, 1303, 7448, 13869, 284, 651, 3487, 1634, 198, 2, 220, 220, 220, 220, 477, 62, 2435, 62, 897, 274, 796, 17635, 198, 2, 198, 2, 220, 220, 220, 220, 329, 530, 62, 7753, 6978, 287, 2393, 6978, 82, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 1366, 14535, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 25138, 1366, 422, 705, 1343, 965, 7, 505, 62, 7753, 6978, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7061, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 505, 62, 7753, 6978, 11, 2912, 11639, 2, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 7568, 13, 346, 420, 58, 3712, 30371, 1403, 4083, 42503, 62, 9630, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 921, 460, 6482, 288, 83, 416, 530, 640, 2239, 284, 760, 366, 2197, 1, 262, 4628, 395, 538, 10597, 262, 1306, 5752, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 257, 13, 46799, 62, 28664, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 28664, 6, 287, 47764, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 17816, 28664, 20520, 796, 47764, 17816, 28664, 6, 4083, 30846, 32590, 16, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 58, 21912, 16, 60, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 6889, 17952, 286, 288, 83, 11670, 351, 21838, 321, 11347, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 640, 16488, 355, 4553, 6060, 14535, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2435, 6, 287, 47764, 13, 28665, 82, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 47764, 17816, 2435, 20520, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 28664, 6, 287, 47764, 13, 28665, 82, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 47764, 17816, 28664, 20520, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 288, 83, 13, 66, 5700, 388, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 918, 480, 10786, 2435, 3256, 287, 5372, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 279, 67, 13, 27996, 26933, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 918, 480, 10786, 2435, 3256, 287, 5372, 28, 17821, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 22704, 796, 256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 2435, 62, 897, 274, 13, 33295, 7, 2435, 62, 22704, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 691, 5981, 24637, 286, 15180, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15180, 62, 4868, 6624, 705, 439, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 58, 28665, 82, 62, 4868, 60, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 7568, 82, 13, 33295, 7, 7568, 8, 198, 2, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 477, 62, 7568, 82, 11, 477, 62, 2435, 62, 897, 274, 628, 198, 2, 198, 2, 1303, 770, 835, 286, 1804, 3487, 1634, 318, 3734, 329, 890, 1366, 5621, 290, 357, 2411, 9404, 8, 1790, 8379, 20428, 198, 2, 1303, 383, 2173, 422, 262, 13015, 286, 262, 40522, 954, 1165, 1310, 198, 2, 825, 15284, 62, 11265, 1634, 62, 10951, 7, 7568, 11, 46490, 62, 10468, 62, 6369, 18973, 3955, 3525, 62, 38827, 12532, 20754, 11, 374, 20471, 62, 12853, 62, 3672, 2599, 198, 2, 220, 220, 220, 220, 611, 2099, 7, 7568, 8, 318, 1351, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 23350, 796, 279, 67, 13, 1102, 9246, 7, 7568, 8, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 23350, 796, 47764, 198, 2, 198, 2, 220, 220, 220, 220, 611, 705, 2435, 6, 287, 47764, 62, 23350, 13, 28665, 82, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 23350, 13, 14781, 10786, 2435, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 11639, 28665, 82, 3256, 287, 5372, 28, 17821, 8, 198, 2, 198, 2, 220, 220, 220, 220, 47764, 62, 32604, 796, 47764, 62, 23350, 13, 32604, 7, 22704, 28, 15, 8, 198, 2, 220, 220, 220, 220, 47764, 62, 19282, 796, 47764, 62, 23350, 13, 19282, 7, 22704, 28, 15, 8, 198, 2, 220, 220, 220, 220, 47764, 62, 9806, 796, 47764, 62, 23350, 13, 9806, 7, 22704, 28, 15, 8, 198, 2, 220, 220, 220, 220, 47764, 62, 1084, 796, 47764, 62, 23350, 13, 1084, 7, 22704, 28, 15, 8, 198, 2, 220, 220, 220, 220, 5739, 796, 1391, 6, 32604, 10354, 47764, 62, 32604, 11, 705, 19282, 10354, 47764, 62, 19282, 11, 705, 9806, 10354, 47764, 62, 9806, 11, 705, 1084, 10354, 47764, 62, 1084, 92, 198, 2, 220, 220, 220, 220, 47764, 62, 27237, 62, 10951, 796, 279, 67, 13, 6601, 19778, 7, 14535, 737, 7645, 3455, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 47764, 62, 27237, 62, 10951, 13, 1462, 62, 40664, 7, 34219, 62, 10468, 62, 6369, 18973, 3955, 3525, 62, 38827, 12532, 20754, 1343, 374, 20471, 62, 12853, 62, 3672, 1343, 705, 12, 27237, 6, 1343, 45302, 40664, 11537, 198, 2, 198, 2, 220, 220, 220, 220, 1303, 28114, 1554, 2398, 9474, 284, 787, 262, 277, 17062, 2198, 546, 31986, 31562, 13196, 198, 2, 220, 220, 220, 220, 1303, 329, 3895, 287, 47764, 62, 23350, 13, 28665, 82, 25, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 458, 83, 13, 10034, 7, 7568, 62, 23350, 58, 30053, 4083, 1462, 62, 77, 32152, 22784, 2026, 11, 12109, 28, 17821, 11, 1986, 8043, 11639, 70, 3256, 17130, 28, 15, 13, 2425, 8, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 458, 83, 13, 7839, 7, 30053, 8, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 47764, 62, 27237, 62, 10951, 198, 2, 198, 2, 198, 2, 825, 3440, 62, 11265, 1634, 62, 10951, 7, 34219, 62, 10468, 62, 6369, 18973, 3955, 3525, 62, 38827, 12532, 20754, 11, 374, 20471, 62, 12853, 62, 3672, 2599, 198, 2, 220, 220, 220, 220, 1441, 279, 67, 13, 961, 62, 40664, 7, 34219, 62, 10468, 62, 6369, 18973, 3955, 3525, 62, 38827, 12532, 20754, 1343, 374, 20471, 62, 12853, 62, 3672, 1343, 705, 12, 27237, 6, 1343, 45302, 40664, 3256, 6376, 62, 4033, 28, 15, 8, 198, 2, 198, 2, 198, 2, 825, 3487, 1096, 62, 7568, 7, 7568, 82, 11, 3487, 1634, 62, 10951, 11, 3487, 1634, 62, 4906, 11639, 1084, 9806, 62, 37047, 6, 2599, 198, 2, 220, 220, 220, 220, 611, 3487, 1634, 62, 4906, 6624, 705, 4908, 31562, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 3487, 1096, 62, 30053, 7, 4033, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 32604, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 32604, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 19282, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 19282, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 4033, 532, 951, 62, 32604, 8, 1220, 951, 62, 19282, 198, 2, 220, 220, 220, 220, 1288, 361, 3487, 1634, 62, 4906, 6624, 705, 1084, 9806, 62, 1930, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 3487, 1096, 62, 30053, 7, 4033, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 1084, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 1084, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 9806, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 9806, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 4033, 532, 951, 62, 1084, 8, 1220, 357, 4033, 62, 9806, 532, 951, 62, 1084, 8, 198, 2, 220, 220, 220, 220, 1288, 361, 3487, 1634, 62, 4906, 6624, 705, 1084, 9806, 62, 37047, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 3487, 1096, 62, 30053, 7, 4033, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 1084, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 1084, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 9806, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 9806, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 13, 15, 1343, 362, 13, 15, 1635, 357, 4033, 532, 951, 62, 1084, 8, 1220, 357, 4033, 62, 9806, 532, 951, 62, 1084, 8, 198, 2, 198, 2, 220, 220, 220, 220, 611, 2099, 7, 7568, 82, 8, 318, 1351, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7568, 82, 8, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 9501, 58, 72, 60, 796, 288, 9501, 58, 72, 4083, 39014, 7, 11265, 1096, 62, 30053, 11, 16488, 28, 15, 8, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 288, 9501, 796, 288, 9501, 13, 39014, 7, 11265, 1096, 62, 30053, 11, 16488, 28, 15, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 288, 9501, 198, 2, 198, 2, 198, 2, 825, 2853, 6636, 1096, 62, 7568, 7, 7568, 82, 11, 3487, 1634, 62, 10951, 11, 3487, 1634, 62, 4906, 11639, 1084, 9806, 62, 37047, 6, 2599, 198, 2, 220, 220, 220, 220, 611, 3487, 1634, 62, 4906, 6624, 705, 4908, 31562, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 2853, 6636, 1096, 62, 30053, 7, 4033, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 32604, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 32604, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 19282, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 19282, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 951, 1635, 951, 62, 19282, 1343, 951, 62, 32604, 198, 2, 220, 220, 220, 220, 1288, 361, 3487, 1634, 62, 4906, 6624, 705, 1084, 9806, 62, 1930, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 2853, 6636, 1096, 62, 30053, 7, 4033, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 1084, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 1084, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 9806, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 9806, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 951, 1635, 357, 4033, 62, 9806, 532, 951, 62, 1084, 8, 1343, 951, 62, 1084, 198, 2, 220, 220, 220, 220, 1288, 361, 3487, 1634, 62, 4906, 6624, 705, 1084, 9806, 62, 37047, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 2853, 6636, 1096, 62, 30053, 7, 4033, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 1084, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 1084, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 9806, 796, 3487, 1634, 62, 10951, 13, 17946, 17816, 9806, 3256, 951, 13, 3672, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 14808, 4033, 1343, 352, 13, 15, 8, 1220, 362, 13, 15, 8, 1635, 357, 4033, 62, 9806, 532, 951, 62, 1084, 8, 1343, 951, 62, 1084, 198, 2, 198, 2, 220, 220, 220, 220, 611, 2099, 7, 7568, 82, 8, 318, 1351, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7568, 82, 8, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 9501, 58, 72, 60, 796, 288, 9501, 58, 72, 4083, 39014, 7, 6559, 6636, 1096, 62, 30053, 11, 16488, 28, 15, 8, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 288, 9501, 796, 288, 9501, 13, 39014, 7, 6559, 6636, 1096, 62, 30053, 11, 16488, 28, 15, 8, 198, 2, 198, 2, 220, 220, 220, 220, 1441, 288, 9501, 628, 198, 198, 4299, 7110, 62, 43420, 7, 3262, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1634, 62, 10951, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 62, 897, 274, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23862, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4838, 62, 26268, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11925, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5814, 62, 929, 62, 11925, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4838, 62, 26268, 62, 25616, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2912, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 12853, 62, 3672, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1969, 62, 26268, 62, 312, 87, 28, 25836, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 18178, 371, 6144, 4554, 11, 7159, 290, 13690, 47, 2305, 4554, 13, 198, 220, 220, 220, 632, 4539, 530, 4738, 6306, 351, 13690, 47, 2305, 11, 198, 220, 220, 220, 17311, 262, 1366, 656, 371, 6144, 290, 2198, 703, 880, 371, 6144, 26334, 13690, 47, 2305, 1181, 530, 640, 2239, 4058, 286, 640, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 374, 20471, 62, 12853, 62, 3672, 796, 2010, 13, 81, 20471, 62, 12853, 62, 3672, 628, 220, 220, 220, 611, 2393, 6978, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 26498, 13, 2100, 62, 7753, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 7753, 6978, 8, 6624, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 2393, 6978, 58, 15, 60, 628, 220, 220, 220, 611, 5814, 62, 929, 62, 11925, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5814, 62, 929, 62, 11925, 796, 26498, 13, 31975, 62, 929, 62, 11925, 628, 220, 220, 220, 611, 33756, 62, 11925, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 11925, 796, 26498, 13, 41068, 62, 11925, 628, 220, 220, 220, 611, 17311, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 62, 4868, 796, 26498, 13, 15414, 82, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17311, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 49, 6144, 17311, 407, 2810, 0, 11537, 628, 220, 220, 220, 611, 23862, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23862, 62, 4868, 796, 26498, 13, 22915, 82, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 611, 23862, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 49, 6144, 23862, 407, 2810, 0, 11537, 628, 220, 220, 220, 611, 4838, 62, 26268, 62, 25616, 290, 357, 20225, 62, 26268, 62, 4868, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4838, 62, 26268, 62, 4868, 796, 26498, 13, 19836, 62, 26268, 62, 1640, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4838, 62, 26268, 62, 4868, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 49, 6144, 4838, 12, 26268, 12, 15414, 82, 407, 2810, 0, 11537, 628, 220, 220, 220, 2010, 13, 42503, 3419, 198, 220, 220, 220, 2010, 13, 18206, 3419, 198, 220, 220, 220, 3335, 796, 651, 62, 25202, 3419, 628, 220, 220, 220, 611, 3487, 1634, 62, 10951, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3487, 1634, 62, 10951, 796, 3440, 62, 11265, 1634, 62, 10951, 7, 22046, 13, 34219, 62, 10468, 62, 6369, 18973, 3955, 3525, 62, 38827, 12532, 20754, 11, 374, 20471, 62, 12853, 62, 3672, 8, 628, 220, 220, 220, 611, 27039, 318, 6045, 393, 640, 62, 897, 274, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 82, 11, 640, 62, 897, 274, 796, 3440, 62, 7890, 7, 22046, 11, 2393, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7568, 82, 62, 27237, 796, 3487, 1096, 62, 7568, 7, 9288, 62, 7568, 82, 11, 3487, 1634, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2617, 796, 16092, 292, 316, 7, 9288, 62, 7568, 82, 62, 27237, 11, 26498, 11, 640, 62, 897, 274, 28, 2435, 62, 897, 274, 11, 33756, 62, 11925, 28, 41068, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 1332, 62, 7568, 82, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2617, 796, 4866, 13, 22089, 30073, 7, 19608, 292, 316, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 2617, 13, 42503, 62, 41068, 62, 11925, 7, 41068, 62, 11925, 28, 41068, 62, 11925, 8, 628, 220, 220, 220, 1303, 18980, 262, 6306, 1366, 198, 220, 220, 220, 3033, 11, 6670, 11, 640, 62, 22704, 796, 1332, 62, 2617, 13, 1136, 62, 23100, 3681, 7, 16, 8, 220, 1303, 5930, 1271, 287, 28103, 284, 651, 262, 976, 4686, 87, 379, 790, 1057, 628, 220, 220, 220, 3033, 62, 30094, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 40890, 11, 15180, 28, 15414, 82, 62, 4868, 8, 198, 220, 220, 220, 6670, 62, 30094, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 83, 853, 1039, 11, 15180, 28, 22915, 82, 62, 4868, 8, 628, 220, 220, 220, 374, 20471, 62, 22915, 82, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 28, 22915, 82, 62, 4868, 8, 628, 220, 220, 220, 5814, 62, 929, 62, 312, 87, 796, 657, 198, 220, 220, 220, 374, 20471, 62, 15414, 62, 15, 796, 4866, 13, 22089, 30073, 7, 40890, 62, 30094, 13, 346, 420, 58, 15, 12962, 198, 220, 220, 220, 1303, 8314, 407, 2222, 1997, 13, 4162, 30, 657, 12, 5219, 6584, 470, 423, 6632, 5387, 1181, 2233, 284, 29275, 986, 198, 220, 220, 220, 981, 5814, 62, 929, 62, 312, 87, 1279, 5814, 62, 929, 62, 11925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 796, 374, 20471, 62, 15414, 62, 15, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 796, 45941, 13, 16485, 1453, 2736, 7, 81, 20471, 62, 15414, 13, 1462, 62, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 796, 28034, 13, 6738, 62, 77, 32152, 7, 81, 20471, 62, 15414, 737, 22468, 22446, 13271, 421, 1453, 2736, 7, 15, 737, 13271, 421, 1453, 2736, 7, 15, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 7, 81, 20471, 62, 15414, 28, 81, 20471, 62, 15414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5814, 62, 929, 62, 312, 87, 15853, 352, 198, 220, 220, 220, 2010, 13, 22915, 82, 796, 17635, 198, 220, 220, 220, 2010, 13, 39873, 62, 24588, 796, 657, 628, 220, 220, 220, 4686, 87, 62, 565, 796, 657, 198, 220, 220, 220, 1969, 62, 1169, 62, 26268, 796, 10352, 628, 220, 220, 220, 329, 6376, 11, 5752, 287, 3033, 62, 30094, 13, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 796, 279, 67, 13, 6601, 19778, 7, 30073, 13, 22089, 30073, 7, 808, 29720, 7645, 3455, 22446, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 87, 62, 565, 6624, 1969, 62, 26268, 62, 312, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1969, 62, 1169, 62, 26268, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4838, 62, 26268, 62, 25616, 290, 1969, 62, 1169, 62, 26268, 290, 357, 11265, 1143, 62, 81, 20471, 62, 22915, 318, 407, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 58, 20225, 62, 26268, 62, 4868, 60, 796, 39279, 62, 81, 20471, 62, 22915, 58, 20225, 62, 26268, 62, 4868, 60, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 796, 45941, 13, 16485, 1453, 2736, 7, 81, 20471, 62, 15414, 13, 1462, 62, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 15414, 796, 28034, 13, 6738, 62, 77, 32152, 7, 81, 20471, 62, 15414, 737, 22468, 22446, 13271, 421, 1453, 2736, 7, 15, 737, 13271, 421, 1453, 2736, 7, 15, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 39279, 62, 81, 20471, 62, 22915, 796, 2010, 7, 81, 20471, 62, 15414, 28, 81, 20471, 62, 15414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 39279, 62, 81, 20471, 62, 22915, 796, 45941, 13, 16485, 1453, 2736, 7, 11265, 1143, 62, 81, 20471, 62, 22915, 13, 15255, 620, 22446, 36166, 22446, 77, 32152, 3419, 737, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 39279, 62, 81, 20471, 62, 22915, 796, 4866, 13, 22089, 30073, 7, 30094, 13, 6601, 19778, 7, 7890, 41888, 11265, 1143, 62, 81, 20471, 62, 22915, 4357, 15180, 28, 22915, 82, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 374, 20471, 62, 22915, 82, 796, 374, 20471, 62, 22915, 82, 13, 33295, 7, 30073, 13, 22089, 30073, 7, 11265, 1143, 62, 81, 20471, 62, 22915, 828, 8856, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 62, 565, 15853, 352, 628, 220, 220, 220, 6670, 62, 30094, 62, 6559, 579, 796, 2853, 6636, 1096, 62, 7568, 7, 83, 853, 1039, 62, 30094, 11, 3487, 1634, 62, 10951, 8, 198, 220, 220, 220, 374, 20471, 62, 22915, 82, 62, 6559, 579, 796, 2853, 6636, 1096, 62, 7568, 7, 81, 20471, 62, 22915, 82, 11, 3487, 1634, 62, 10951, 8, 198, 220, 220, 220, 2336, 11, 7877, 82, 796, 7110, 62, 43420, 62, 11423, 7, 83, 853, 1039, 62, 30094, 62, 6559, 579, 11, 374, 20471, 62, 22915, 82, 62, 6559, 579, 11, 640, 62, 22704, 11, 2912, 11, 4838, 62, 26268, 62, 25616, 11, 1969, 62, 26268, 62, 312, 87, 8, 628, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 611, 3613, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 24512, 611, 407, 1865, 2152, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 10786, 21928, 62, 489, 1747, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 9220, 3109, 1023, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 7575, 49201, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 41033, 13290, 796, 3128, 7575, 49201, 13, 2536, 31387, 7203, 12, 4, 67, 4, 65, 4, 56, 62, 4, 39, 4, 44, 4, 50, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 374, 20471, 62, 12853, 62, 3672, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 4458, 14, 21928, 62, 489, 1747, 14, 6, 1343, 374, 20471, 62, 12853, 62, 3672, 1343, 41033, 13290, 1343, 45302, 11134, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 4458, 14, 21928, 62, 489, 1747, 14, 6, 1343, 41033, 13290, 1343, 45302, 11134, 11537, 198 ]
2.189903
6,477
# -*- coding: utf-8 -*- """ .. admonition:: License Copyright 2019 CNES Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse from resto_client.base_exceptions import RestoClientDesignError from resto_client.services.service_access import (AuthenticationServiceAccess, RestoServiceAccess) from resto_client.settings.resto_client_config import resto_client_print from resto_client.settings.servers_database import DB_SERVERS from .parser_common import CliFunctionReturnType from .parser_settings import (SERVER_ARGNAME, RESTO_URL_ARGNAME, RESTO_PROTOCOL_ARGNAME, AUTH_URL_ARGNAME, AUTH_PROTOCOL_ARGNAME) def cli_create_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to create a server definition :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ # TODO: Modify ServiceAcces such that lower is implemented in them resto_access = RestoServiceAccess(getattr(args, RESTO_URL_ARGNAME), getattr(args, RESTO_PROTOCOL_ARGNAME).lower()) auth_access = AuthenticationServiceAccess(getattr(args, AUTH_URL_ARGNAME), getattr(args, AUTH_PROTOCOL_ARGNAME).lower()) DB_SERVERS.create_server(getattr(args, SERVER_ARGNAME), resto_access, auth_access) return None, None def cli_delete_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to delete a server definition :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ DB_SERVERS.delete(getattr(args, SERVER_ARGNAME)) return None, None def cli_edit_server(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to edit the server characteristics :param args: arguments parsed by the CLI parser :raises RestoClientDesignError: unconditionally, as this function is not implemented yet """ raise RestoClientDesignError('Edit server unimplemented') def cli_show_servers(args: argparse.Namespace) -> CliFunctionReturnType: """ CLI adapter to show the servers database :param args: arguments parsed by the CLI parser :returns: the resto client parameters and the resto server possibly built by this command. """ _ = args # to avoid pylint warning resto_client_print(DB_SERVERS) return None, None # We need to specify argparse._SubParsersAction for mypy to run. Thus pylint squeals. # pylint: disable=protected-access def add_configure_server_subparser(sub_parsers: argparse._SubParsersAction) -> None: """ Add the 'configure_server' subparser :param sub_parsers: argparse object used to add a parser for that subcommand. """ parser_configure_server = sub_parsers.add_parser( 'configure_server', help='configure servers known by resto_client.', description='Allows to create, modify or delete servers characteristics: url, type, etc.', epilog='Servers definition is stored in a configuration file and can be edited using this' ' command.') help_msg = 'For more help: {} <parameter> -h'.format(parser_configure_server.prog) sub_parsers_configure_server = parser_configure_server.add_subparsers(description=help_msg) add_config_server_create_parser(sub_parsers_configure_server) add_config_server_delete_parser(sub_parsers_configure_server) add_config_server_edit_parser(sub_parsers_configure_server) add_config_server_show_parser(sub_parsers_configure_server) def add_config_server_create_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server create' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'create', help='create a new server', description='Create a new server in the servers configuration database.') _add_positional_args_parser(subparser) subparser.set_defaults(func=cli_create_server) def add_config_server_delete_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server delete' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'delete', help='delete an existing server', description='Delete a server from the configuration database.') subparser.add_argument(SERVER_ARGNAME, help='name of the server to delete') subparser.set_defaults(func=cli_delete_server) def add_config_server_edit_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server edit' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'edit', help='edit server characteristics', description='Edit the characteristics of a server existing in the configuration database.') _add_positional_args_parser(subparser) subparser.set_defaults(func=cli_edit_server) def add_config_server_show_parser( sub_parsers_configure_server: argparse._SubParsersAction) -> None: """ Update the 'configure_server' command subparser with options for 'configure_server show' :param sub_parsers_configure_server: argparse object used to add a parser for that subcommand. """ subparser = sub_parsers_configure_server.add_parser( 'show', help='show servers database', description='Show all the servers defined in the database with their configuration.') subparser.set_defaults(func=cli_show_servers) def _add_positional_args_parser(subparser: argparse.ArgumentParser) -> None: """ Add the positional arguments parsing rules for configure_server subcommands :param subparser: parser to be supplemented with positional arguments. """ subparser.add_argument(SERVER_ARGNAME, help='name of the server') group_resto = subparser.add_argument_group('resto service') group_resto.add_argument(RESTO_URL_ARGNAME, help='URL of the resto server') group_resto.add_argument(RESTO_PROTOCOL_ARGNAME, choices=RestoServiceAccess.supported_protocols(), help='Protocol of the resto server') group_auth = subparser.add_argument_group('authentication service') group_auth.add_argument(AUTH_URL_ARGNAME, nargs='?', help='URL of the authentication server') group_auth.add_argument(AUTH_PROTOCOL_ARGNAME, choices=AuthenticationServiceAccess.supported_protocols(), help='Protocol of the authentication server')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 492, 37202, 653, 3712, 13789, 628, 220, 220, 15069, 13130, 31171, 1546, 628, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 198, 220, 220, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 628, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 9387, 739, 262, 13789, 198, 220, 220, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 198, 220, 220, 393, 17142, 13, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 220, 220, 11247, 739, 262, 13789, 13, 198, 37811, 198, 11748, 1822, 29572, 198, 198, 6738, 1334, 78, 62, 16366, 13, 8692, 62, 1069, 11755, 1330, 8324, 78, 11792, 23067, 12331, 198, 6738, 1334, 78, 62, 16366, 13, 30416, 13, 15271, 62, 15526, 1330, 357, 47649, 3299, 16177, 15457, 11, 8324, 78, 16177, 15457, 8, 198, 6738, 1334, 78, 62, 16366, 13, 33692, 13, 2118, 78, 62, 16366, 62, 11250, 1330, 1334, 78, 62, 16366, 62, 4798, 198, 6738, 1334, 78, 62, 16366, 13, 33692, 13, 2655, 690, 62, 48806, 1330, 20137, 62, 35009, 28884, 198, 198, 6738, 764, 48610, 62, 11321, 1330, 1012, 72, 22203, 13615, 6030, 198, 6738, 764, 48610, 62, 33692, 1330, 357, 35009, 5959, 62, 1503, 16630, 10067, 11, 30617, 46, 62, 21886, 62, 1503, 16630, 10067, 11, 30617, 46, 62, 4805, 2394, 4503, 3535, 62, 1503, 16630, 10067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37195, 62, 21886, 62, 1503, 16630, 10067, 11, 37195, 62, 4805, 2394, 4503, 3535, 62, 1503, 16630, 10067, 8, 628, 198, 4299, 537, 72, 62, 17953, 62, 15388, 7, 22046, 25, 1822, 29572, 13, 36690, 10223, 8, 4613, 1012, 72, 22203, 13615, 6030, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43749, 21302, 284, 2251, 257, 4382, 6770, 628, 220, 220, 220, 1058, 17143, 26498, 25, 7159, 44267, 416, 262, 43749, 30751, 198, 220, 220, 220, 1058, 7783, 82, 25, 262, 1334, 78, 5456, 10007, 290, 262, 1334, 78, 4382, 5457, 3170, 416, 428, 3141, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 25, 3401, 1958, 4809, 17320, 274, 884, 326, 2793, 318, 9177, 287, 606, 198, 220, 220, 220, 1334, 78, 62, 15526, 796, 8324, 78, 16177, 15457, 7, 1136, 35226, 7, 22046, 11, 30617, 46, 62, 21886, 62, 1503, 16630, 10067, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 22046, 11, 30617, 46, 62, 4805, 2394, 4503, 3535, 62, 1503, 16630, 10067, 737, 21037, 28955, 198, 220, 220, 220, 6284, 62, 15526, 796, 48191, 16177, 15457, 7, 1136, 35226, 7, 22046, 11, 37195, 62, 21886, 62, 1503, 16630, 10067, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 35226, 7, 22046, 11, 37195, 62, 4805, 2394, 4503, 3535, 62, 1503, 16630, 10067, 737, 21037, 28955, 198, 220, 220, 220, 20137, 62, 35009, 28884, 13, 17953, 62, 15388, 7, 1136, 35226, 7, 22046, 11, 18871, 5959, 62, 1503, 16630, 10067, 828, 1334, 78, 62, 15526, 11, 6284, 62, 15526, 8, 198, 220, 220, 220, 1441, 6045, 11, 6045, 628, 198, 4299, 537, 72, 62, 33678, 62, 15388, 7, 22046, 25, 1822, 29572, 13, 36690, 10223, 8, 4613, 1012, 72, 22203, 13615, 6030, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43749, 21302, 284, 12233, 257, 4382, 6770, 628, 220, 220, 220, 1058, 17143, 26498, 25, 7159, 44267, 416, 262, 43749, 30751, 198, 220, 220, 220, 1058, 7783, 82, 25, 262, 1334, 78, 5456, 10007, 290, 262, 1334, 78, 4382, 5457, 3170, 416, 428, 3141, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20137, 62, 35009, 28884, 13, 33678, 7, 1136, 35226, 7, 22046, 11, 18871, 5959, 62, 1503, 16630, 10067, 4008, 198, 220, 220, 220, 1441, 6045, 11, 6045, 628, 198, 4299, 537, 72, 62, 19312, 62, 15388, 7, 22046, 25, 1822, 29572, 13, 36690, 10223, 8, 4613, 1012, 72, 22203, 13615, 6030, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43749, 21302, 284, 4370, 262, 4382, 9695, 628, 220, 220, 220, 1058, 17143, 26498, 25, 7159, 44267, 416, 262, 43749, 30751, 198, 220, 220, 220, 1058, 430, 2696, 8324, 78, 11792, 23067, 12331, 25, 31776, 8736, 11, 355, 428, 2163, 318, 407, 9177, 1865, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 8324, 78, 11792, 23067, 12331, 10786, 18378, 4382, 28418, 1154, 12061, 11537, 628, 198, 4299, 537, 72, 62, 12860, 62, 2655, 690, 7, 22046, 25, 1822, 29572, 13, 36690, 10223, 8, 4613, 1012, 72, 22203, 13615, 6030, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43749, 21302, 284, 905, 262, 9597, 6831, 628, 220, 220, 220, 1058, 17143, 26498, 25, 7159, 44267, 416, 262, 43749, 30751, 198, 220, 220, 220, 1058, 7783, 82, 25, 262, 1334, 78, 5456, 10007, 290, 262, 1334, 78, 4382, 5457, 3170, 416, 428, 3141, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 796, 26498, 220, 1303, 284, 3368, 279, 2645, 600, 6509, 198, 220, 220, 220, 1334, 78, 62, 16366, 62, 4798, 7, 11012, 62, 35009, 28884, 8, 198, 220, 220, 220, 1441, 6045, 11, 6045, 628, 198, 2, 775, 761, 284, 11986, 1822, 29572, 13557, 7004, 47, 945, 364, 12502, 329, 616, 9078, 284, 1057, 13, 6660, 279, 2645, 600, 2809, 10621, 13, 198, 2, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 198, 4299, 751, 62, 11250, 495, 62, 15388, 62, 7266, 48610, 7, 7266, 62, 79, 945, 364, 25, 1822, 29572, 13557, 7004, 47, 945, 364, 12502, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 262, 705, 11250, 495, 62, 15388, 6, 22718, 28198, 628, 220, 220, 220, 1058, 17143, 850, 62, 79, 945, 364, 25, 1822, 29572, 2134, 973, 284, 751, 257, 30751, 329, 326, 850, 21812, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30751, 62, 11250, 495, 62, 15388, 796, 850, 62, 79, 945, 364, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11250, 495, 62, 15388, 3256, 1037, 11639, 11250, 495, 9597, 1900, 416, 1334, 78, 62, 16366, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 34934, 284, 2251, 11, 13096, 393, 12233, 9597, 9695, 25, 19016, 11, 2099, 11, 3503, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2462, 346, 519, 11639, 7089, 690, 6770, 318, 8574, 287, 257, 8398, 2393, 290, 460, 307, 13012, 1262, 428, 6, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3141, 2637, 8, 198, 220, 220, 220, 1037, 62, 19662, 796, 705, 1890, 517, 1037, 25, 23884, 1279, 17143, 2357, 29, 532, 71, 4458, 18982, 7, 48610, 62, 11250, 495, 62, 15388, 13, 1676, 70, 8, 198, 220, 220, 220, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 796, 30751, 62, 11250, 495, 62, 15388, 13, 2860, 62, 7266, 79, 945, 364, 7, 11213, 28, 16794, 62, 19662, 8, 628, 220, 220, 220, 751, 62, 11250, 62, 15388, 62, 17953, 62, 48610, 7, 7266, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 8, 198, 220, 220, 220, 751, 62, 11250, 62, 15388, 62, 33678, 62, 48610, 7, 7266, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 8, 198, 220, 220, 220, 751, 62, 11250, 62, 15388, 62, 19312, 62, 48610, 7, 7266, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 8, 198, 220, 220, 220, 751, 62, 11250, 62, 15388, 62, 12860, 62, 48610, 7, 7266, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 8, 628, 198, 4299, 751, 62, 11250, 62, 15388, 62, 17953, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 13557, 7004, 47, 945, 364, 12502, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10133, 262, 705, 11250, 495, 62, 15388, 6, 3141, 22718, 28198, 351, 3689, 329, 705, 11250, 495, 62, 15388, 2251, 6, 628, 220, 220, 220, 1058, 17143, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 2134, 973, 284, 751, 257, 30751, 329, 326, 850, 21812, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22718, 28198, 796, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17953, 3256, 1037, 11639, 17953, 257, 649, 4382, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 16447, 257, 649, 4382, 287, 262, 9597, 8398, 6831, 2637, 8, 198, 220, 220, 220, 4808, 2860, 62, 1930, 1859, 62, 22046, 62, 48610, 7, 7266, 48610, 8, 198, 220, 220, 220, 22718, 28198, 13, 2617, 62, 12286, 82, 7, 20786, 28, 44506, 62, 17953, 62, 15388, 8, 628, 198, 4299, 751, 62, 11250, 62, 15388, 62, 33678, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 13557, 7004, 47, 945, 364, 12502, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10133, 262, 705, 11250, 495, 62, 15388, 6, 3141, 22718, 28198, 351, 3689, 329, 705, 11250, 495, 62, 15388, 12233, 6, 628, 220, 220, 220, 1058, 17143, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 2134, 973, 284, 751, 257, 30751, 329, 326, 850, 21812, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22718, 28198, 796, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33678, 3256, 1037, 11639, 33678, 281, 4683, 4382, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 38727, 257, 4382, 422, 262, 8398, 6831, 2637, 8, 198, 220, 220, 220, 22718, 28198, 13, 2860, 62, 49140, 7, 35009, 5959, 62, 1503, 16630, 10067, 11, 1037, 11639, 3672, 286, 262, 4382, 284, 12233, 11537, 198, 220, 220, 220, 22718, 28198, 13, 2617, 62, 12286, 82, 7, 20786, 28, 44506, 62, 33678, 62, 15388, 8, 628, 198, 4299, 751, 62, 11250, 62, 15388, 62, 19312, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 13557, 7004, 47, 945, 364, 12502, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10133, 262, 705, 11250, 495, 62, 15388, 6, 3141, 22718, 28198, 351, 3689, 329, 705, 11250, 495, 62, 15388, 4370, 6, 628, 220, 220, 220, 1058, 17143, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 2134, 973, 284, 751, 257, 30751, 329, 326, 850, 21812, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22718, 28198, 796, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19312, 3256, 1037, 11639, 19312, 4382, 9695, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 18378, 262, 9695, 286, 257, 4382, 4683, 287, 262, 8398, 6831, 2637, 8, 198, 220, 220, 220, 4808, 2860, 62, 1930, 1859, 62, 22046, 62, 48610, 7, 7266, 48610, 8, 198, 220, 220, 220, 22718, 28198, 13, 2617, 62, 12286, 82, 7, 20786, 28, 44506, 62, 19312, 62, 15388, 8, 628, 198, 4299, 751, 62, 11250, 62, 15388, 62, 12860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 13557, 7004, 47, 945, 364, 12502, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10133, 262, 705, 11250, 495, 62, 15388, 6, 3141, 22718, 28198, 351, 3689, 329, 705, 11250, 495, 62, 15388, 905, 6, 628, 220, 220, 220, 1058, 17143, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 25, 1822, 29572, 2134, 973, 284, 751, 257, 30751, 329, 326, 850, 21812, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22718, 28198, 796, 850, 62, 79, 945, 364, 62, 11250, 495, 62, 15388, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12860, 3256, 1037, 11639, 12860, 9597, 6831, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 15307, 477, 262, 9597, 5447, 287, 262, 6831, 351, 511, 8398, 2637, 8, 198, 220, 220, 220, 22718, 28198, 13, 2617, 62, 12286, 82, 7, 20786, 28, 44506, 62, 12860, 62, 2655, 690, 8, 628, 198, 4299, 4808, 2860, 62, 1930, 1859, 62, 22046, 62, 48610, 7, 7266, 48610, 25, 1822, 29572, 13, 28100, 1713, 46677, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 262, 45203, 7159, 32096, 3173, 329, 17425, 62, 15388, 850, 9503, 1746, 628, 220, 220, 220, 1058, 17143, 22718, 28198, 25, 30751, 284, 307, 41610, 351, 45203, 7159, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22718, 28198, 13, 2860, 62, 49140, 7, 35009, 5959, 62, 1503, 16630, 10067, 11, 1037, 11639, 3672, 286, 262, 4382, 11537, 198, 220, 220, 220, 1448, 62, 2118, 78, 796, 22718, 28198, 13, 2860, 62, 49140, 62, 8094, 10786, 2118, 78, 2139, 11537, 198, 220, 220, 220, 1448, 62, 2118, 78, 13, 2860, 62, 49140, 7, 49, 6465, 46, 62, 21886, 62, 1503, 16630, 10067, 11, 1037, 11639, 21886, 286, 262, 1334, 78, 4382, 11537, 198, 220, 220, 220, 1448, 62, 2118, 78, 13, 2860, 62, 49140, 7, 49, 6465, 46, 62, 4805, 2394, 4503, 3535, 62, 1503, 16630, 10067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 19452, 78, 16177, 15457, 13, 15999, 62, 11235, 4668, 82, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 19703, 4668, 286, 262, 1334, 78, 4382, 11537, 198, 220, 220, 220, 1448, 62, 18439, 796, 22718, 28198, 13, 2860, 62, 49140, 62, 8094, 10786, 41299, 3299, 2139, 11537, 198, 220, 220, 220, 1448, 62, 18439, 13, 2860, 62, 49140, 7, 32, 24318, 62, 21886, 62, 1503, 16630, 10067, 11, 299, 22046, 11639, 30, 3256, 1037, 11639, 21886, 286, 262, 18239, 4382, 11537, 198, 220, 220, 220, 1448, 62, 18439, 13, 2860, 62, 49140, 7, 32, 24318, 62, 4805, 2394, 4503, 3535, 62, 1503, 16630, 10067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 47649, 3299, 16177, 15457, 13, 15999, 62, 11235, 4668, 82, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 19703, 4668, 286, 262, 18239, 4382, 11537, 198 ]
2.889392
2,649
import torch from os.path import join, isdir, isfile from os import listdir import re from src.wlstm.models import ReBiL
[ 11748, 28034, 198, 6738, 28686, 13, 6978, 1330, 4654, 11, 318, 15908, 11, 318, 7753, 198, 6738, 28686, 1330, 1351, 15908, 198, 11748, 302, 198, 198, 6738, 12351, 13, 40989, 301, 76, 13, 27530, 1330, 797, 23286, 43, 198 ]
3.128205
39
#!/usr/bin/env python3 import RPi.GPIO as GPIO # Import Raspberry Pi GPIO library import os, time os.system('mpg123 -g100 /home/pi/paw_patrol_courte.mp3 &') GPIO.setwarnings(False) # Ignore warning for now GPIO.setmode(GPIO.BOARD) # Use physical pin numbering GPIO.setup(10, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off) GPIO.add_event_detect(10,GPIO.RISING,callback=button_callback,bouncetime=4000) # Setup event on pin 10 rising edge GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # Set pin 10 to be an input pin and set initial value to be pulled low (off) GPIO.add_event_detect(13,GPIO.RISING,callback=button_callback2,bouncetime=4000) # Setup event on pin 10 rising edge while True: time.sleep(100000) GPIO.cleanup() # Clean up
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 1303, 17267, 24244, 13993, 50143, 5888, 198, 11748, 28686, 11, 640, 628, 198, 418, 13, 10057, 10786, 3149, 70, 10163, 220, 532, 70, 3064, 1220, 11195, 14, 14415, 14, 79, 707, 62, 8071, 3225, 62, 43220, 660, 13, 3149, 18, 1222, 11537, 198, 16960, 9399, 13, 2617, 40539, 654, 7, 25101, 8, 1303, 41032, 6509, 329, 783, 198, 16960, 9399, 13, 2617, 14171, 7, 16960, 9399, 13, 8202, 9795, 8, 1303, 5765, 3518, 6757, 47622, 198, 16960, 9399, 13, 40406, 7, 940, 11, 50143, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 16960, 9399, 13, 5105, 35, 62, 41925, 8, 1303, 5345, 6757, 838, 284, 307, 281, 5128, 6757, 290, 900, 4238, 1988, 284, 307, 5954, 1877, 357, 2364, 8, 198, 16960, 9399, 13, 2860, 62, 15596, 62, 15255, 478, 7, 940, 11, 16960, 9399, 13, 49, 1797, 2751, 11, 47423, 28, 16539, 62, 47423, 11, 65, 977, 66, 8079, 28, 27559, 8, 1303, 31122, 1785, 319, 6757, 838, 7396, 5743, 628, 198, 16960, 9399, 13, 40406, 7, 1485, 11, 50143, 13, 1268, 11, 2834, 62, 929, 62, 2902, 28, 16960, 9399, 13, 5105, 35, 62, 41925, 8, 1303, 5345, 6757, 838, 284, 307, 281, 5128, 6757, 290, 900, 4238, 1988, 284, 307, 5954, 1877, 357, 2364, 8, 198, 16960, 9399, 13, 2860, 62, 15596, 62, 15255, 478, 7, 1485, 11, 16960, 9399, 13, 49, 1797, 2751, 11, 47423, 28, 16539, 62, 47423, 17, 11, 65, 977, 66, 8079, 28, 27559, 8, 1303, 31122, 1785, 319, 6757, 838, 7396, 5743, 198, 4514, 6407, 25, 198, 220, 220, 220, 640, 13, 42832, 7, 3064, 830, 8, 198, 16960, 9399, 13, 27773, 929, 3419, 1303, 5985, 510, 198 ]
2.762712
295
import time import sys if __name__ == '__main__': ''' @log_called_times_decorator def ff(): print 'f' while True: ff() time.sleep(1) ''' print_progress(45) print '' print_progress(x=20,max=200)
[ 11748, 640, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2488, 6404, 62, 7174, 62, 22355, 62, 12501, 273, 1352, 198, 220, 220, 220, 825, 31246, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 69, 6, 198, 220, 220, 220, 220, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31246, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 62, 33723, 7, 2231, 8, 198, 220, 220, 220, 3601, 10148, 198, 220, 220, 220, 3601, 62, 33723, 7, 87, 28, 1238, 11, 9806, 28, 2167, 8 ]
1.925926
135
from typing import List from os import getcwd from os.path import basename from pkg_resources import resource_filename from logging import Logger from logging import getLogger from pygame import event as Event from pygame import Surface from pygame.font import Font from albow.References import AttrRef from albow.References import ItemRef from albow.themes.Theme import Theme from albow.core.ui.Widget import Widget from albow.core.ui.Screen import Screen from albow.dialog.FileDialogUtilities import request_old_filename from albow.dialog.TitledDialog import TitledDialog from albow.core.ui.Shell import Shell from albow.core.ui.AlbowEventLoop import AlbowEventLoop from albow.menu.Menu import Menu from albow.menu.MenuBar import MenuBar from albow.menu.MenuItem import MenuItem from albow.layout.Column import Column from albow.layout.Row import Row from albow.layout.Frame import Frame from albow.widgets.Label import Label from albow.widgets.ValueDisplay import ValueDisplay from org.hasii.chip8.Version import Version from org.hasii.chip8.Chip8 import Chip8 from org.hasii.chip8.keyboard.Chip8KeyPadKeys import Chip8KeyPadKeys from org.hasii.chip8.Chip8RegisterName import Chip8RegisterName from org.hasii.chip8.ui.Chip8Screen import Chip8Screen from org.hasii.chip8.errors.InvalidIndexRegisterValue import InvalidIndexRegisterValue from org.hasii.chip8.errors.UnknownInstructionError import UnknownInstructionError from org.hasii.chip8.errors.UnKnownSpecialRegistersSubOpCode import UnKnownSpecialRegistersSubOpCode from org.hasii.chip8.ui.Chip8UIStack import Chip8UIStack from org.hasii.chip8.ui.Chip8UIInstructionList import Chip8UIInstructionList from org.hasii.chip8.ui.Chip8Beep import Chip8Beep
[ 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 28686, 1330, 651, 66, 16993, 198, 6738, 28686, 13, 6978, 1330, 1615, 12453, 198, 198, 6738, 279, 10025, 62, 37540, 1330, 8271, 62, 34345, 198, 198, 6738, 18931, 1330, 5972, 1362, 198, 6738, 18931, 1330, 651, 11187, 1362, 198, 198, 6738, 12972, 6057, 1330, 1785, 355, 8558, 198, 6738, 12972, 6057, 1330, 20321, 198, 6738, 12972, 6057, 13, 10331, 1330, 24060, 198, 198, 6738, 435, 8176, 13, 19927, 1330, 3460, 81, 8134, 198, 6738, 435, 8176, 13, 19927, 1330, 9097, 8134, 198, 198, 6738, 435, 8176, 13, 1169, 6880, 13, 47863, 1330, 26729, 198, 198, 6738, 435, 8176, 13, 7295, 13, 9019, 13, 38300, 1330, 370, 17484, 198, 6738, 435, 8176, 13, 7295, 13, 9019, 13, 23901, 1330, 15216, 198, 198, 6738, 435, 8176, 13, 38969, 519, 13, 8979, 44204, 18274, 2410, 1330, 2581, 62, 727, 62, 34345, 198, 6738, 435, 8176, 13, 38969, 519, 13, 51, 7803, 44204, 1330, 7659, 992, 44204, 198, 198, 6738, 435, 8176, 13, 7295, 13, 9019, 13, 23248, 1330, 17537, 198, 6738, 435, 8176, 13, 7295, 13, 9019, 13, 2348, 8176, 9237, 39516, 1330, 978, 8176, 9237, 39516, 198, 198, 6738, 435, 8176, 13, 26272, 13, 23381, 1330, 21860, 198, 6738, 435, 8176, 13, 26272, 13, 23381, 10374, 1330, 21860, 10374, 198, 6738, 435, 8176, 13, 26272, 13, 23381, 7449, 1330, 21860, 7449, 198, 198, 6738, 435, 8176, 13, 39786, 13, 39470, 1330, 29201, 198, 6738, 435, 8176, 13, 39786, 13, 25166, 1330, 11314, 198, 198, 6738, 435, 8176, 13, 39786, 13, 19778, 1330, 25184, 198, 198, 6738, 435, 8176, 13, 28029, 11407, 13, 33986, 1330, 36052, 198, 6738, 435, 8176, 13, 28029, 11407, 13, 11395, 23114, 1330, 11052, 23114, 198, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 14815, 1330, 10628, 198, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 49985, 23, 1330, 17869, 23, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 2539, 3526, 13, 49985, 23, 9218, 26114, 40729, 1330, 17869, 23, 9218, 26114, 40729, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 49985, 23, 38804, 5376, 1330, 17869, 23, 38804, 5376, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 9019, 13, 49985, 23, 23901, 1330, 17869, 23, 23901, 198, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 48277, 13, 44651, 15732, 38804, 11395, 1330, 17665, 15732, 38804, 11395, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 48277, 13, 20035, 6310, 2762, 12331, 1330, 16185, 6310, 2762, 12331, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 48277, 13, 3118, 29870, 13409, 8081, 6223, 7004, 18257, 10669, 1330, 791, 29870, 13409, 8081, 6223, 7004, 18257, 10669, 198, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 9019, 13, 49985, 23, 10080, 25896, 1330, 17869, 23, 10080, 25896, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 9019, 13, 49985, 23, 10080, 6310, 2762, 8053, 1330, 17869, 23, 10080, 6310, 2762, 8053, 198, 6738, 8745, 13, 10134, 4178, 13, 35902, 23, 13, 9019, 13, 49985, 23, 3856, 538, 1330, 17869, 23, 3856, 538, 628 ]
3.340426
517
from pyretina.mc import monte_carlo import numpy as np import json import os import os.path as osp import shutil number_of_events = 10 if __name__ == "__main__": main("config/mc.json")
[ 6738, 12972, 1186, 1437, 13, 23209, 1330, 937, 660, 62, 7718, 5439, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 4423, 346, 198, 198, 17618, 62, 1659, 62, 31534, 796, 838, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1388, 7203, 11250, 14, 23209, 13, 17752, 4943 ]
2.753623
69
import logging import os import time from math import inf from os import environ from threading import Thread import requests from redis import Redis from block import Block from blockchain import Blockchain from peer2peer import PeerToPeerMessage from transaction import Transaction logging.basicConfig(level=logging.DEBUG) if __name__ == "__main__": miner = Miner() miner.routine()
[ 11748, 18931, 198, 11748, 28686, 198, 11748, 640, 198, 6738, 10688, 1330, 1167, 198, 6738, 28686, 1330, 551, 2268, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 11748, 7007, 198, 6738, 2266, 271, 1330, 2297, 271, 198, 198, 6738, 2512, 1330, 9726, 198, 6738, 11779, 1330, 29724, 198, 6738, 12720, 17, 33350, 1330, 41139, 2514, 6435, 263, 12837, 198, 6738, 8611, 1330, 45389, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 30531, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 16285, 796, 29295, 3419, 198, 220, 220, 220, 16285, 13, 81, 28399, 3419, 198 ]
3.651376
109
from ._timeit import timeit from ._progressbar import pbar_sql_query from ._retry import retry
[ 6738, 47540, 2435, 270, 1330, 640, 270, 198, 6738, 47540, 33723, 5657, 1330, 279, 5657, 62, 25410, 62, 22766, 198, 6738, 47540, 1186, 563, 1330, 1005, 563, 198 ]
3.392857
28
# -*- coding: utf-8 -*- DEBUG = True db = DAL('sqlite://storage.sqlite',pool_size=1,check_reserved=['all']) response.generic_patterns = ['*'] if request.is_local else [] from gluon.tools import Auth, Service, prettydate auth = Auth(db) auth.define_tables(username=False, signature=False) service = Service() ## configure email mail = auth.settings.mailer mail.settings.server = 'logging' or 'smtp.gmail.com:587' mail.settings.sender = '[email protected]' mail.settings.login = 'username:password' ## configure auth policy auth.settings.registration_requires_verification = False auth.settings.registration_requires_approval = False auth.settings.reset_password_requires_verification = True ## if you need to use OpenID, Facebook, MySpace, Twitter, Linkedin, etc. ## register with janrain.com, write your domain:api_key in private/janrain.key from gluon.contrib.login_methods.rpx_account import use_janrain use_janrain(auth, filename='private/janrain.key')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 30531, 796, 6407, 198, 198, 9945, 796, 360, 1847, 10786, 25410, 578, 1378, 35350, 13, 25410, 578, 3256, 7742, 62, 7857, 28, 16, 11, 9122, 62, 411, 8520, 28, 17816, 439, 6, 12962, 198, 198, 26209, 13, 41357, 62, 33279, 82, 796, 37250, 9, 20520, 611, 2581, 13, 271, 62, 12001, 2073, 17635, 198, 6738, 1278, 84, 261, 13, 31391, 1330, 26828, 11, 4809, 11, 2495, 4475, 198, 18439, 796, 26828, 7, 9945, 8, 198, 18439, 13, 13086, 62, 83, 2977, 7, 29460, 28, 25101, 11, 9877, 28, 25101, 8, 198, 15271, 796, 4809, 3419, 198, 198, 2235, 17425, 3053, 198, 4529, 796, 6284, 13, 33692, 13, 4529, 263, 198, 4529, 13, 33692, 13, 15388, 796, 705, 6404, 2667, 6, 393, 705, 5796, 34788, 13, 14816, 13, 785, 25, 44617, 6, 198, 4529, 13, 33692, 13, 82, 2194, 796, 705, 5832, 31, 14816, 13, 785, 6, 198, 4529, 13, 33692, 13, 38235, 796, 705, 29460, 25, 28712, 6, 198, 198, 2235, 17425, 6284, 2450, 198, 18439, 13, 33692, 13, 2301, 33397, 62, 47911, 62, 332, 2649, 796, 10352, 198, 18439, 13, 33692, 13, 2301, 33397, 62, 47911, 62, 21064, 2100, 796, 10352, 198, 18439, 13, 33692, 13, 42503, 62, 28712, 62, 47911, 62, 332, 2649, 796, 6407, 198, 198, 2235, 611, 345, 761, 284, 779, 4946, 2389, 11, 3203, 11, 2011, 14106, 11, 3009, 11, 7502, 27152, 11, 3503, 13, 198, 2235, 7881, 351, 42897, 3201, 13, 785, 11, 3551, 534, 7386, 25, 15042, 62, 2539, 287, 2839, 14, 13881, 3201, 13, 2539, 198, 6738, 1278, 84, 261, 13, 3642, 822, 13, 38235, 62, 24396, 82, 13, 81, 8416, 62, 23317, 1330, 779, 62, 13881, 3201, 198, 1904, 62, 13881, 3201, 7, 18439, 11, 29472, 11639, 19734, 14, 13881, 3201, 13, 2539, 11537, 628 ]
3.10356
309
from .report_api import ReportAPI
[ 6738, 764, 13116, 62, 15042, 1330, 6358, 17614, 198 ]
3.777778
9
import pandas as pd import numpy as np from sklearn.preprocessing import normalize from .sparse_matrix_builder import build_from_conceptnet_table from .formats import load_hdf, save_hdf def retrofit(row_labels, dense_frame, sparse_csr, iterations=5, verbosity=0, max_cleanup_iters=20, orig_vec_weight=0.15): """ Retrofitting is a process of combining information from a machine-learned space of term vectors with further structured information about those terms. It was originally presented in this 2015 NAACL paper by Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, and Noah Smith, "Retrofitting Word Vectors to Semantic Lexicons": https://www.cs.cmu.edu/~hovy/papers/15HLT-retrofitting-word-vectors.pdf This function implements a variant that I've been calling "wide retrofitting", which extends the process to learn vectors for terms that were outside the original space. `row_labels` is the list of terms that we want to have vectors for. `dense_frame` is a DataFrame assigning vectors to some of these terms. `sparse_csr` is a SciPy sparse square matrix, whose rows and columns are implicitly labeled with `row_labels`. The entries of this matrix are positive for terms that we know are related from our structured data. (This is an awkward form of input, but unfortunately there is no good way to represent sparse labeled data in Pandas.) `sharded_retrofit` is responsible for building `row_labels` and `sparse_csr` appropriately. """ # Initialize a DataFrame with rows that we know retroframe = pd.DataFrame( index=row_labels, columns=dense_frame.columns, dtype='f' ) retroframe.update(dense_frame) # orig_weights = 1 for known vectors, 0 for unknown vectors orig_weights = 1 - retroframe.iloc[:, 0].isnull() orig_vec_indicators = (orig_weights.values != 0) orig_vecs = retroframe.fillna(0).values # Subtract the mean so that vectors don't just clump around common # hypernyms orig_vecs[orig_vec_indicators] -= orig_vecs[orig_vec_indicators].mean(0) # Delete the frame we built, we won't need its indices again until the end del retroframe vecs = orig_vecs for iteration in range(iterations): if verbosity >= 1: print('Retrofitting: Iteration %s of %s' % (iteration+1, iterations)) # Since the sparse weight matrix is row-stochastic and has self-loops, # pre-multiplication by it replaces each vector by a weighted average # of itself and its neighbors. We really want to take the average # of (itself and) the nonzero neighbors, which we can do by dividing # the average with all the neighbors by the total of the weights of the # nonzero neighbors. This avoids unduly shrinking vectors assigned to # terms with lots of zero neighbors. # Find, for every term, the total weight of its nonzero neighbors. nonzero_indicators = (np.abs(vecs).sum(1) != 0) total_neighbor_weights = sparse_csr.dot(nonzero_indicators) # Now average with all the neighbors. vecs = sparse_csr.dot(vecs) # Now divide each vector (row) by the associated total weight. # Some of the total weights could be zero, but only for rows that, # before averaging, were zero and had all neighbors zero, whence # after averaging will be zero. So only do the division for rows # that are nonzero now, after averaging. Also, we reshape the total # weights into a column vector so that numpy will broadcast the # division by weights across the columns of the embedding matrix. nonzero_indicators = (np.abs(vecs).sum(1) != 0) total_neighbor_weights = total_neighbor_weights[nonzero_indicators] total_neighbor_weights = total_neighbor_weights.reshape((len(total_neighbor_weights), 1)) vecs[nonzero_indicators] /= total_neighbor_weights # Re-center the (new) non-zero vectors. vecs[nonzero_indicators] -= vecs[nonzero_indicators].mean(0) # Average known rows with original vectors vecs[orig_vec_indicators, :] = \ (1.0 - orig_vec_weight) * vecs[orig_vec_indicators, :] + orig_vec_weight * orig_vecs[orig_vec_indicators, :] # Clean up as many all-zero vectors as possible. Zero vectors # can either come from components of the conceptnet graph that # don't contain any terms from the embedding we are currently # retrofitting (and there is nothing we can do about those here, # but when retrofitting is done on that embedding they should be # taken care of then) or from terms whose distance in the graph is # larger than the number of retrofitting iterations used above; we # propagate non-zero values to those terms by averaging over their # non-zero neighbors. Note that this propagation can never reach # the first class of terms, so we can't necessarily expect the # number of zero vectors to go to zero at any one invocation of # this code. n_zero_indicators_old = -1 for iteration in range(max_cleanup_iters): zero_indicators = (np.abs(vecs).sum(1) == 0) n_zero_indicators = np.sum(zero_indicators) if n_zero_indicators == 0 or n_zero_indicators == n_zero_indicators_old: break n_zero_indicators_old = n_zero_indicators # First replace each zero vector (row) by the weighted average of all its # neighbors. vecs[zero_indicators, :] = sparse_csr[zero_indicators, :].dot(vecs) # Now divide each newly nonzero vector (row) by the total weight of its # old nonzero neighbors. new_nonzero_indicators = np.logical_and(zero_indicators, np.abs(vecs).sum(1) != 0) total_neighbor_weights = sparse_csr[new_nonzero_indicators, :].dot(np.logical_not(zero_indicators)) total_neighbor_weights = total_neighbor_weights.reshape((len(total_neighbor_weights), 1)) vecs[new_nonzero_indicators, :] /= total_neighbor_weights else: print('Warning: cleanup iteration limit exceeded.') retroframe = pd.DataFrame(data=vecs, index=row_labels, columns=dense_frame.columns) return retroframe
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 3487, 1096, 198, 6738, 764, 82, 29572, 62, 6759, 8609, 62, 38272, 1330, 1382, 62, 6738, 62, 43169, 3262, 62, 11487, 198, 6738, 764, 687, 1381, 1330, 3440, 62, 71, 7568, 11, 3613, 62, 71, 7568, 628, 628, 198, 4299, 12175, 11147, 7, 808, 62, 23912, 1424, 11, 15715, 62, 14535, 11, 29877, 62, 6359, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34820, 28, 20, 11, 15942, 16579, 28, 15, 11, 3509, 62, 27773, 929, 62, 270, 364, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 35138, 62, 6551, 28, 15, 13, 1314, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29884, 32232, 318, 257, 1429, 286, 19771, 1321, 422, 257, 4572, 12, 35720, 276, 198, 220, 220, 220, 2272, 286, 3381, 30104, 351, 2252, 20793, 1321, 546, 883, 198, 220, 220, 220, 2846, 13, 632, 373, 6198, 5545, 287, 428, 1853, 11746, 2246, 43, 3348, 416, 17493, 282, 198, 220, 220, 220, 6755, 84, 421, 72, 11, 18033, 26048, 11, 1778, 33708, 449, 559, 9869, 11, 5180, 360, 9860, 11, 40766, 446, 367, 27796, 11, 290, 18394, 198, 220, 220, 220, 4176, 11, 366, 9781, 305, 32232, 9678, 569, 478, 669, 284, 12449, 5109, 17210, 34280, 1298, 628, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 2503, 13, 6359, 13, 11215, 84, 13, 15532, 14, 93, 71, 27796, 14, 40491, 14, 1314, 6581, 51, 12, 1186, 305, 32232, 12, 4775, 12, 303, 5217, 13, 12315, 628, 220, 220, 220, 770, 2163, 23986, 257, 15304, 326, 314, 1053, 587, 4585, 366, 4421, 198, 220, 220, 220, 12175, 32232, 1600, 543, 14582, 262, 1429, 284, 2193, 30104, 329, 2846, 326, 198, 220, 220, 220, 547, 2354, 262, 2656, 2272, 13, 628, 220, 220, 220, 4600, 808, 62, 23912, 1424, 63, 318, 262, 1351, 286, 2846, 326, 356, 765, 284, 423, 30104, 329, 13, 628, 220, 220, 220, 4600, 67, 1072, 62, 14535, 63, 318, 257, 6060, 19778, 38875, 30104, 284, 617, 286, 777, 2846, 13, 628, 220, 220, 220, 4600, 82, 29572, 62, 6359, 81, 63, 318, 257, 10286, 20519, 29877, 6616, 17593, 11, 3025, 15274, 290, 15180, 389, 198, 220, 220, 220, 31821, 15494, 351, 4600, 808, 62, 23912, 1424, 44646, 383, 12784, 286, 428, 17593, 389, 198, 220, 220, 220, 3967, 329, 2846, 326, 356, 760, 389, 3519, 422, 674, 20793, 1366, 13, 198, 220, 220, 220, 357, 1212, 318, 281, 13006, 1296, 286, 5128, 11, 475, 12716, 612, 318, 645, 922, 198, 220, 220, 220, 835, 284, 2380, 29877, 15494, 1366, 287, 16492, 292, 2014, 628, 220, 220, 220, 4600, 1477, 10676, 62, 1186, 305, 11147, 63, 318, 4497, 329, 2615, 4600, 808, 62, 23912, 1424, 63, 290, 4600, 82, 29572, 62, 6359, 81, 63, 198, 220, 220, 220, 20431, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 20768, 1096, 257, 6060, 19778, 351, 15274, 326, 356, 760, 198, 220, 220, 220, 12175, 14535, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 808, 62, 23912, 1424, 11, 15180, 28, 67, 1072, 62, 14535, 13, 28665, 82, 11, 288, 4906, 11639, 69, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 12175, 14535, 13, 19119, 7, 67, 1072, 62, 14535, 8, 628, 220, 220, 220, 1303, 1796, 62, 43775, 796, 352, 329, 1900, 30104, 11, 657, 329, 6439, 30104, 198, 220, 220, 220, 1796, 62, 43775, 796, 352, 532, 12175, 14535, 13, 346, 420, 58, 45299, 657, 4083, 271, 8423, 3419, 198, 220, 220, 220, 1796, 62, 35138, 62, 521, 44549, 796, 357, 11612, 62, 43775, 13, 27160, 14512, 657, 8, 198, 220, 220, 220, 1796, 62, 303, 6359, 796, 12175, 14535, 13, 20797, 2616, 7, 15, 737, 27160, 628, 220, 220, 220, 1303, 3834, 83, 974, 262, 1612, 523, 326, 30104, 836, 470, 655, 537, 931, 1088, 2219, 198, 220, 220, 220, 1303, 8718, 3281, 907, 198, 220, 220, 220, 1796, 62, 303, 6359, 58, 11612, 62, 35138, 62, 521, 44549, 60, 48185, 1796, 62, 303, 6359, 58, 11612, 62, 35138, 62, 521, 44549, 4083, 32604, 7, 15, 8, 628, 220, 220, 220, 1303, 23520, 262, 5739, 356, 3170, 11, 356, 1839, 470, 761, 663, 36525, 757, 1566, 262, 886, 198, 220, 220, 220, 1619, 12175, 14535, 628, 220, 220, 220, 1569, 6359, 796, 1796, 62, 303, 6359, 198, 220, 220, 220, 329, 24415, 287, 2837, 7, 2676, 602, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 16579, 18189, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9781, 305, 32232, 25, 40806, 341, 4064, 82, 286, 4064, 82, 6, 4064, 357, 2676, 341, 10, 16, 11, 34820, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4619, 262, 29877, 3463, 17593, 318, 5752, 12, 301, 5374, 3477, 290, 468, 2116, 12, 5439, 2840, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 662, 12, 47945, 3299, 416, 340, 24020, 1123, 15879, 416, 257, 26356, 2811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 2346, 290, 663, 12020, 13, 220, 775, 1107, 765, 284, 1011, 262, 2811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 357, 270, 944, 290, 8, 262, 1729, 22570, 12020, 11, 543, 356, 460, 466, 416, 27241, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 2811, 351, 477, 262, 12020, 416, 262, 2472, 286, 262, 19590, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1729, 22570, 12020, 13, 220, 770, 30940, 3318, 2062, 27382, 30104, 8686, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2846, 351, 6041, 286, 6632, 12020, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 11, 329, 790, 3381, 11, 262, 2472, 3463, 286, 663, 1729, 22570, 12020, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1729, 22570, 62, 521, 44549, 796, 357, 37659, 13, 8937, 7, 303, 6359, 737, 16345, 7, 16, 8, 14512, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 710, 394, 2865, 62, 43775, 796, 29877, 62, 6359, 81, 13, 26518, 7, 13159, 22570, 62, 521, 44549, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 2811, 351, 477, 262, 12020, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 6359, 796, 29877, 62, 6359, 81, 13, 26518, 7, 303, 6359, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 14083, 1123, 15879, 357, 808, 8, 416, 262, 3917, 2472, 3463, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2773, 286, 262, 2472, 19590, 714, 307, 6632, 11, 475, 691, 329, 15274, 326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 878, 20430, 11, 547, 6632, 290, 550, 477, 12020, 6632, 11, 44012, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 20430, 481, 307, 6632, 13, 220, 1406, 691, 466, 262, 7297, 329, 15274, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 326, 389, 1729, 22570, 783, 11, 706, 20430, 13, 220, 4418, 11, 356, 27179, 1758, 262, 2472, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19590, 656, 257, 5721, 15879, 523, 326, 299, 32152, 481, 7025, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7297, 416, 19590, 1973, 262, 15180, 286, 262, 11525, 12083, 17593, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1729, 22570, 62, 521, 44549, 796, 357, 37659, 13, 8937, 7, 303, 6359, 737, 16345, 7, 16, 8, 14512, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 710, 394, 2865, 62, 43775, 796, 2472, 62, 710, 394, 2865, 62, 43775, 58, 13159, 22570, 62, 521, 44549, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 710, 394, 2865, 62, 43775, 796, 2472, 62, 710, 394, 2865, 62, 43775, 13, 3447, 1758, 19510, 11925, 7, 23350, 62, 710, 394, 2865, 62, 43775, 828, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 6359, 58, 13159, 22570, 62, 521, 44549, 60, 1220, 28, 2472, 62, 710, 394, 2865, 62, 43775, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 797, 12, 16159, 262, 357, 3605, 8, 1729, 12, 22570, 30104, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 6359, 58, 13159, 22570, 62, 521, 44549, 60, 48185, 1569, 6359, 58, 13159, 22570, 62, 521, 44549, 4083, 32604, 7, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13475, 1900, 15274, 351, 2656, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 6359, 58, 11612, 62, 35138, 62, 521, 44549, 11, 1058, 60, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 16, 13, 15, 532, 1796, 62, 35138, 62, 6551, 8, 1635, 1569, 6359, 58, 11612, 62, 35138, 62, 521, 44549, 11, 1058, 60, 1343, 1796, 62, 35138, 62, 6551, 1635, 1796, 62, 303, 6359, 58, 11612, 62, 35138, 62, 521, 44549, 11, 1058, 60, 628, 220, 220, 220, 1303, 5985, 510, 355, 867, 477, 12, 22570, 30104, 355, 1744, 13, 220, 12169, 30104, 198, 220, 220, 220, 1303, 460, 2035, 1282, 422, 6805, 286, 262, 3721, 3262, 4823, 326, 198, 220, 220, 220, 1303, 836, 470, 3994, 597, 2846, 422, 262, 11525, 12083, 356, 389, 3058, 198, 220, 220, 220, 1303, 12175, 32232, 357, 392, 612, 318, 2147, 356, 460, 466, 546, 883, 994, 11, 198, 220, 220, 220, 1303, 475, 618, 12175, 32232, 318, 1760, 319, 326, 11525, 12083, 484, 815, 307, 198, 220, 220, 220, 1303, 2077, 1337, 286, 788, 8, 393, 422, 2846, 3025, 5253, 287, 262, 4823, 318, 198, 220, 220, 220, 1303, 4025, 621, 262, 1271, 286, 12175, 32232, 34820, 973, 2029, 26, 356, 198, 220, 220, 220, 1303, 47933, 1729, 12, 22570, 3815, 284, 883, 2846, 416, 20430, 625, 511, 198, 220, 220, 220, 1303, 1729, 12, 22570, 12020, 13, 220, 5740, 326, 428, 43594, 460, 1239, 3151, 198, 220, 220, 220, 1303, 262, 717, 1398, 286, 2846, 11, 523, 356, 460, 470, 6646, 1607, 262, 198, 220, 220, 220, 1303, 1271, 286, 6632, 30104, 284, 467, 284, 6632, 379, 597, 530, 43219, 286, 198, 220, 220, 220, 1303, 428, 2438, 13, 198, 220, 220, 220, 299, 62, 22570, 62, 521, 44549, 62, 727, 796, 532, 16, 198, 220, 220, 220, 329, 24415, 287, 2837, 7, 9806, 62, 27773, 929, 62, 270, 364, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6632, 62, 521, 44549, 796, 357, 37659, 13, 8937, 7, 303, 6359, 737, 16345, 7, 16, 8, 6624, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 22570, 62, 521, 44549, 796, 45941, 13, 16345, 7, 22570, 62, 521, 44549, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 62, 22570, 62, 521, 44549, 6624, 657, 393, 299, 62, 22570, 62, 521, 44549, 6624, 299, 62, 22570, 62, 521, 44549, 62, 727, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 22570, 62, 521, 44549, 62, 727, 796, 299, 62, 22570, 62, 521, 44549, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 6330, 1123, 6632, 15879, 357, 808, 8, 416, 262, 26356, 2811, 286, 477, 663, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12020, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 6359, 58, 22570, 62, 521, 44549, 11, 1058, 60, 796, 29877, 62, 6359, 81, 58, 22570, 62, 521, 44549, 11, 1058, 4083, 26518, 7, 303, 6359, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 14083, 1123, 8308, 1729, 22570, 15879, 357, 808, 8, 416, 262, 2472, 3463, 286, 663, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1468, 1729, 22570, 12020, 13, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 13159, 22570, 62, 521, 44549, 796, 45941, 13, 6404, 605, 62, 392, 7, 22570, 62, 521, 44549, 11, 45941, 13, 8937, 7, 303, 6359, 737, 16345, 7, 16, 8, 14512, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 710, 394, 2865, 62, 43775, 796, 29877, 62, 6359, 81, 58, 3605, 62, 13159, 22570, 62, 521, 44549, 11, 1058, 4083, 26518, 7, 37659, 13, 6404, 605, 62, 1662, 7, 22570, 62, 521, 44549, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 710, 394, 2865, 62, 43775, 796, 2472, 62, 710, 394, 2865, 62, 43775, 13, 3447, 1758, 19510, 11925, 7, 23350, 62, 710, 394, 2865, 62, 43775, 828, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1569, 6359, 58, 3605, 62, 13159, 22570, 62, 521, 44549, 11, 1058, 60, 1220, 28, 2472, 62, 710, 394, 2865, 62, 43775, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 20361, 25, 27425, 24415, 4179, 20672, 2637, 8, 628, 220, 220, 220, 12175, 14535, 796, 279, 67, 13, 6601, 19778, 7, 7890, 28, 303, 6359, 11, 6376, 28, 808, 62, 23912, 1424, 11, 15180, 28, 67, 1072, 62, 14535, 13, 28665, 82, 8, 198, 220, 220, 220, 1441, 12175, 14535, 198 ]
2.847197
2,212
# Code from https://medium.com/datadriveninvestor/use-python-to-value-a-stock-automatically-3b520422ab6 by Bohmian # Importing required modules import pandas as pd import numpy as np import matplotlib.pyplot as plt import numpy as np import time from config import financial_model_prep pd.set_option('display.max_columns', None) # Settings to produce nice plots in a Jupyter notebook plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = [15, 10] import seaborn as sns # To extract and parse fundamental data from finviz website import requests from bs4 import BeautifulSoup as bs import warnings warnings.filterwarnings('ignore') # For parsing financial statements data from financialmodelingprep api from urllib.request import urlopen import json # inputs base_url = "https://financialmodelingprep.com/api/v3/" tickers = ['AAL'] apiKey = financial_model_prep() cash_flows = [] total_debts = [] cash_and_ST_investments_list = [] betas = [] discount_rates = [] EPS_growth_5Ys = [] EPS_growth_6Y_to_10Ys = [] EPS_growth_11Y_to_20Ys = [] shares_outstandings = [] intrinsic_values = [] current_prices = [] margins_safety = [] valid_tickers = [] for ticker in tickers: try: q_cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey)) q_cash_flow_statement = q_cash_flow_statement.set_index('date').iloc[:4] # extract for last 4 quarters q_cash_flow_statement = q_cash_flow_statement.apply(pd.to_numeric, errors='coerce') cash_flow_statement = pd.DataFrame(get_jsonparsed_data(base_url+'cash-flow-statement/' + ticker + '?apikey=' + apiKey)) cash_flow_statement = cash_flow_statement.set_index('date') cash_flow_statement = cash_flow_statement.apply(pd.to_numeric, errors='coerce') ttm_cash_flow_statement = q_cash_flow_statement.sum() # sum up last 4 quarters to get TTM cash flow cash_flow_statement = cash_flow_statement[::-1].append(ttm_cash_flow_statement.rename('TTM')).drop(['netIncome'], axis=1) final_cash_flow_statement = cash_flow_statement[::-1] # reverse list to show most recent ones first # final_cash_flow_statement[['freeCashFlow']].iloc[::-1].iloc[-15:].plot(kind='bar', title=ticker + ' Cash Flows') # plt.show() q_balance_statement = pd.DataFrame(get_jsonparsed_data(base_url+'balance-sheet-statement/' + ticker + '?period=quarter' + '&apikey=' + apiKey)) q_balance_statement = q_balance_statement.set_index('date') q_balance_statement = q_balance_statement.apply(pd.to_numeric, errors='coerce') cash_flow = final_cash_flow_statement.iloc[0]['freeCashFlow'] total_debt = q_balance_statement.iloc[0]['totalDebt'] cash_and_ST_investments = q_balance_statement.iloc[0]['cashAndShortTermInvestments'] # print("Free Cash Flow: ", cash_flow) # print("Total Debt: ", total_debt) # print("Cash and ST Investments: ", cash_and_ST_investments) # List of data we want to extract from Finviz Table metric = ['Price', 'EPS next 5Y', 'Beta', 'Shs Outstand'] finviz_data = get_finviz_data(ticker) # print('\nFinViz Data:\n' + str(finviz_data)) Beta = finviz_data['Beta'] discount_rate = 7 if(Beta<0.80): discount_rate = 5 elif(Beta>=0.80 and Beta<1): discount_rate = 6 elif(Beta>=1 and Beta<1.1): discount_rate = 6.5 elif(Beta>=1.1 and Beta<1.2): discount_rate = 7 elif(Beta>=1.2 and Beta<1.3): discount_rate =7.5 elif(Beta>=1.3 and Beta<1.4): discount_rate = 8 elif(Beta>=1.4 and Beta<1.6): discount_rate = 8.5 elif(Beta>=1.61): discount_rate = 9 # print("\nDiscount Rate: ", discount_rate) EPS_growth_5Y = finviz_data['EPS next 5Y'] EPS_growth_6Y_to_10Y = EPS_growth_5Y/2 # Half the previous growth rate, conservative estimate EPS_growth_11Y_to_20Y = np.minimum(EPS_growth_6Y_to_10Y, 4) # Slightly higher than long term inflation rate, conservative estimate shares_outstanding = round(finviz_data['Shs Outstand']) # print("Free Cash Flow: ", cash_flow) # print("Total Debt: ", total_debt) # print("Cash and ST Investments: ", cash_and_ST_investments) # print("EPS Growth 5Y: ", EPS_growth_5Y) # print("EPS Growth 6Y to 10Y: ", EPS_growth_6Y_to_10Y) # print("EPS Growth 11Y to 20Y: ", EPS_growth_11Y_to_20Y) # print("Discount Rate: ", discount_rate) # print("Shares Outstanding: ", shares_outstanding) intrinsic_value = round(calculate_intrinsic_value(cash_flow, total_debt, cash_and_ST_investments, EPS_growth_5Y, EPS_growth_6Y_to_10Y, EPS_growth_11Y_to_20Y, shares_outstanding, discount_rate), 2) # print("\nIntrinsic Value: ", intrinsic_value) current_price = finviz_data['Price'] # print("Current Price: ", current_price) change = round(((intrinsic_value-current_price)/current_price)*100, 2) # print("Margin of Safety: ", margin_safety) cash_flows.append(cash_flow) total_debts.append(total_debt) cash_and_ST_investments_list.append(cash_and_ST_investments) betas.append(Beta) discount_rates.append(discount_rate) EPS_growth_5Ys.append(EPS_growth_5Y) EPS_growth_6Y_to_10Ys.append(EPS_growth_6Y_to_10Y) EPS_growth_11Y_to_20Ys.append(EPS_growth_11Y_to_20Y) shares_outstandings.append(shares_outstanding) intrinsic_values.append(intrinsic_value) current_prices.append(current_price) margins_safety.append(change) valid_tickers.append(ticker) except: pass df = pd.DataFrame(np.column_stack([valid_tickers, cash_flows, total_debts, cash_and_ST_investments_list, betas, discount_rates, EPS_growth_5Ys, EPS_growth_6Y_to_10Ys, EPS_growth_11Y_to_20Ys, shares_outstandings, intrinsic_values, current_prices, margins_safety]), columns=['Ticker', 'Cash Flow', 'Total Debt', 'Cash and ST investment', 'Beta', 'Discount Rate', 'EPS Growth 5 Y', 'EPS Growth 6-10 Y', 'EPS Growth 11-20 Y', 'Shares Outstanding', 'Intrinsic Value', 'Current Price', 'Margin Safety']).set_index('Ticker') df = df.sort_values(['Margin Safety'], ascending=True) df.to_csv(f'{time.time()}.csv') print (df)
[ 2, 6127, 422, 3740, 1378, 24132, 13, 785, 14, 19608, 324, 380, 574, 24859, 273, 14, 1904, 12, 29412, 12, 1462, 12, 8367, 12, 64, 12, 13578, 12, 2306, 296, 4142, 12, 18, 65, 20, 18638, 1828, 397, 21, 416, 347, 34028, 666, 198, 198, 2, 17267, 278, 2672, 13103, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 6738, 4566, 1330, 3176, 62, 19849, 62, 46012, 198, 30094, 13, 2617, 62, 18076, 10786, 13812, 13, 9806, 62, 28665, 82, 3256, 6045, 8, 198, 198, 2, 16163, 284, 4439, 3621, 21528, 287, 257, 449, 929, 88, 353, 20922, 198, 489, 83, 13, 7635, 13, 1904, 10786, 13261, 400, 5893, 26022, 11537, 198, 489, 83, 13, 6015, 10044, 4105, 17816, 26875, 13, 5647, 7857, 20520, 796, 685, 1314, 11, 838, 60, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 198, 2, 1675, 7925, 290, 21136, 7531, 1366, 422, 957, 85, 528, 3052, 198, 11748, 7007, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 355, 275, 82, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 198, 198, 2, 1114, 32096, 3176, 6299, 1366, 422, 3176, 4666, 10809, 46012, 40391, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19016, 9654, 198, 11748, 33918, 198, 198, 2, 17311, 198, 8692, 62, 6371, 796, 366, 5450, 1378, 46921, 4666, 10809, 46012, 13, 785, 14, 15042, 14, 85, 18, 30487, 198, 83, 21630, 796, 37250, 32, 1847, 20520, 198, 15042, 9218, 796, 3176, 62, 19849, 62, 46012, 3419, 198, 198, 30350, 62, 44041, 796, 17635, 198, 23350, 62, 11275, 912, 796, 17635, 198, 30350, 62, 392, 62, 2257, 62, 24859, 902, 62, 4868, 796, 17635, 198, 11181, 292, 796, 17635, 198, 15410, 608, 62, 9700, 796, 17635, 198, 36, 3705, 62, 27922, 62, 20, 56, 82, 796, 17635, 198, 36, 3705, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 82, 796, 17635, 198, 36, 3705, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 82, 796, 17635, 198, 1477, 3565, 62, 448, 1481, 654, 796, 17635, 198, 600, 81, 1040, 291, 62, 27160, 796, 17635, 198, 14421, 62, 1050, 1063, 796, 17635, 198, 30887, 1040, 62, 44708, 796, 17635, 198, 12102, 62, 83, 21630, 796, 17635, 198, 198, 1640, 4378, 263, 287, 4378, 364, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 30350, 62, 11125, 62, 26090, 796, 279, 67, 13, 6601, 19778, 7, 1136, 62, 17752, 79, 945, 276, 62, 7890, 7, 8692, 62, 6371, 10, 6, 30350, 12, 11125, 12, 26090, 14, 6, 1343, 4378, 263, 1343, 705, 30, 41007, 28, 24385, 6, 1343, 705, 5, 499, 522, 88, 11639, 1343, 40391, 9218, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 30350, 62, 11125, 62, 26090, 796, 10662, 62, 30350, 62, 11125, 62, 26090, 13, 2617, 62, 9630, 10786, 4475, 27691, 346, 420, 58, 25, 19, 60, 1303, 7925, 329, 938, 604, 13620, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 30350, 62, 11125, 62, 26090, 796, 10662, 62, 30350, 62, 11125, 62, 26090, 13, 39014, 7, 30094, 13, 1462, 62, 77, 39223, 11, 8563, 11639, 1073, 263, 344, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 11125, 62, 26090, 796, 279, 67, 13, 6601, 19778, 7, 1136, 62, 17752, 79, 945, 276, 62, 7890, 7, 8692, 62, 6371, 10, 6, 30350, 12, 11125, 12, 26090, 14, 6, 1343, 4378, 263, 1343, 705, 30, 499, 522, 88, 11639, 1343, 40391, 9218, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 11125, 62, 26090, 796, 5003, 62, 11125, 62, 26090, 13, 2617, 62, 9630, 10786, 4475, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 11125, 62, 26090, 796, 5003, 62, 11125, 62, 26090, 13, 39014, 7, 30094, 13, 1462, 62, 77, 39223, 11, 8563, 11639, 1073, 263, 344, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 256, 17209, 62, 30350, 62, 11125, 62, 26090, 796, 10662, 62, 30350, 62, 11125, 62, 26090, 13, 16345, 3419, 1303, 2160, 510, 938, 604, 13620, 284, 651, 309, 15972, 5003, 5202, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 11125, 62, 26090, 796, 5003, 62, 11125, 62, 26090, 58, 3712, 12, 16, 4083, 33295, 7, 926, 76, 62, 30350, 62, 11125, 62, 26090, 13, 918, 480, 10786, 15751, 44, 11537, 737, 14781, 7, 17816, 3262, 818, 2958, 6, 4357, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 30350, 62, 11125, 62, 26090, 796, 5003, 62, 11125, 62, 26090, 58, 3712, 12, 16, 60, 1303, 9575, 1351, 284, 905, 749, 2274, 3392, 717, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2457, 62, 30350, 62, 11125, 62, 26090, 58, 17816, 5787, 35361, 37535, 20520, 4083, 346, 420, 58, 3712, 12, 16, 4083, 346, 420, 58, 12, 1314, 25, 4083, 29487, 7, 11031, 11639, 5657, 3256, 3670, 28, 83, 15799, 1343, 705, 16210, 1610, 1666, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 20427, 62, 26090, 796, 279, 67, 13, 6601, 19778, 7, 1136, 62, 17752, 79, 945, 276, 62, 7890, 7, 8692, 62, 6371, 10, 6, 20427, 12, 21760, 12, 26090, 14, 6, 1343, 4378, 263, 1343, 705, 30, 41007, 28, 24385, 6, 1343, 705, 5, 499, 522, 88, 11639, 1343, 40391, 9218, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 20427, 62, 26090, 796, 10662, 62, 20427, 62, 26090, 13, 2617, 62, 9630, 10786, 4475, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 20427, 62, 26090, 796, 10662, 62, 20427, 62, 26090, 13, 39014, 7, 30094, 13, 1462, 62, 77, 39223, 11, 8563, 11639, 1073, 263, 344, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 11125, 796, 2457, 62, 30350, 62, 11125, 62, 26090, 13, 346, 420, 58, 15, 7131, 6, 5787, 35361, 37535, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 11275, 83, 796, 10662, 62, 20427, 62, 26090, 13, 346, 420, 58, 15, 7131, 6, 23350, 16587, 83, 20520, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 392, 62, 2257, 62, 24859, 902, 796, 10662, 62, 20427, 62, 26090, 13, 346, 420, 58, 15, 7131, 6, 30350, 1870, 16438, 40596, 19070, 902, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 11146, 16210, 27782, 25, 33172, 5003, 62, 11125, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 14957, 30319, 25, 33172, 2472, 62, 11275, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 35361, 290, 3563, 46568, 25, 33172, 5003, 62, 392, 62, 2257, 62, 24859, 902, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7343, 286, 1366, 356, 765, 284, 7925, 422, 4463, 85, 528, 8655, 198, 220, 220, 220, 220, 220, 220, 220, 18663, 796, 37250, 18124, 3256, 705, 36, 3705, 1306, 642, 56, 3256, 705, 43303, 3256, 705, 2484, 82, 3806, 1481, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 957, 85, 528, 62, 7890, 796, 651, 62, 15643, 85, 528, 62, 7890, 7, 83, 15799, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 59, 77, 18467, 53, 528, 6060, 7479, 77, 6, 1343, 965, 7, 15643, 85, 528, 62, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 17993, 796, 957, 85, 528, 62, 7890, 17816, 43303, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 767, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 43303, 27, 15, 13, 1795, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 642, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 15, 13, 1795, 290, 17993, 27, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 718, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 16, 290, 17993, 27, 16, 13, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 718, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 16, 13, 16, 290, 17993, 27, 16, 13, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 767, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 16, 13, 17, 290, 17993, 27, 16, 13, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 22, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 16, 13, 18, 290, 17993, 27, 16, 13, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 807, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 16, 13, 19, 290, 17993, 27, 16, 13, 21, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 807, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 43303, 29, 28, 16, 13, 5333, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 4873, 796, 860, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 59, 77, 15642, 608, 14806, 25, 33172, 9780, 62, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 20, 56, 796, 957, 85, 528, 62, 7890, 17816, 36, 3705, 1306, 642, 56, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 796, 47013, 62, 27922, 62, 20, 56, 14, 17, 220, 1303, 13139, 262, 2180, 3349, 2494, 11, 5940, 8636, 198, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 220, 796, 45941, 13, 39504, 7, 36, 3705, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 11, 604, 8, 220, 1303, 49365, 2440, 621, 890, 3381, 10610, 2494, 11, 5940, 8636, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7303, 62, 448, 5646, 796, 2835, 7, 15643, 85, 528, 62, 7890, 17816, 2484, 82, 3806, 1481, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 11146, 16210, 27782, 25, 33172, 5003, 62, 11125, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 14957, 30319, 25, 33172, 2472, 62, 11275, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 35361, 290, 3563, 46568, 25, 33172, 5003, 62, 392, 62, 2257, 62, 24859, 902, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 36, 3705, 19045, 642, 56, 25, 33172, 47013, 62, 27922, 62, 20, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 36, 3705, 19045, 718, 56, 284, 838, 56, 25, 33172, 47013, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 36, 3705, 19045, 1367, 56, 284, 1160, 56, 25, 33172, 47013, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 15642, 608, 14806, 25, 33172, 9780, 62, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 43566, 3806, 5646, 25, 33172, 7303, 62, 448, 5646, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 28327, 62, 8367, 796, 2835, 7, 9948, 3129, 378, 62, 600, 81, 1040, 291, 62, 8367, 7, 30350, 62, 11125, 11, 2472, 62, 11275, 83, 11, 5003, 62, 392, 62, 2257, 62, 24859, 902, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 20, 56, 11, 47013, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 11, 47013, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7303, 62, 448, 5646, 11, 9780, 62, 4873, 828, 362, 8, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 59, 77, 5317, 81, 1040, 291, 11052, 25, 33172, 28327, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 20888, 796, 957, 85, 528, 62, 7890, 17816, 18124, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 11297, 7886, 25, 33172, 1459, 62, 20888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1487, 796, 2835, 19510, 7, 600, 81, 1040, 291, 62, 8367, 12, 14421, 62, 20888, 20679, 14421, 62, 20888, 27493, 3064, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 24428, 259, 286, 11233, 25, 33172, 10330, 62, 44708, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 44041, 13, 33295, 7, 30350, 62, 11125, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 11275, 912, 13, 33295, 7, 23350, 62, 11275, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 62, 392, 62, 2257, 62, 24859, 902, 62, 4868, 13, 33295, 7, 30350, 62, 392, 62, 2257, 62, 24859, 902, 8, 198, 220, 220, 220, 220, 220, 220, 220, 731, 292, 13, 33295, 7, 43303, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9780, 62, 9700, 13, 33295, 7, 15410, 608, 62, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 20, 56, 82, 13, 33295, 7, 36, 3705, 62, 27922, 62, 20, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 82, 13, 33295, 7, 36, 3705, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47013, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 82, 13, 33295, 7, 36, 3705, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7303, 62, 448, 1481, 654, 13, 33295, 7, 1477, 3565, 62, 448, 5646, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28327, 62, 27160, 13, 33295, 7, 600, 81, 1040, 291, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 1050, 1063, 13, 33295, 7, 14421, 62, 20888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20241, 62, 44708, 13, 33295, 7, 3803, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 83, 21630, 13, 33295, 7, 83, 15799, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 198, 7568, 796, 279, 67, 13, 6601, 19778, 7, 37659, 13, 28665, 62, 25558, 26933, 12102, 62, 83, 21630, 11, 5003, 62, 44041, 11, 2472, 62, 11275, 912, 11, 5003, 62, 392, 62, 2257, 62, 24859, 902, 62, 4868, 11, 731, 292, 11, 9780, 62, 9700, 11, 47013, 62, 27922, 62, 20, 56, 82, 11, 47013, 62, 27922, 62, 21, 56, 62, 1462, 62, 940, 56, 82, 11, 47013, 62, 27922, 62, 1157, 56, 62, 1462, 62, 1238, 56, 82, 11, 7303, 62, 448, 1481, 654, 11, 28327, 62, 27160, 11, 1459, 62, 1050, 1063, 11, 20241, 62, 44708, 46570, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 17816, 51, 15799, 3256, 705, 35361, 27782, 3256, 705, 14957, 30319, 3256, 705, 35361, 290, 3563, 4896, 3256, 705, 43303, 3256, 705, 15642, 608, 14806, 3256, 705, 36, 3705, 19045, 642, 575, 3256, 705, 36, 3705, 19045, 718, 12, 940, 575, 3256, 705, 36, 3705, 19045, 1367, 12, 1238, 575, 3256, 705, 43566, 3806, 5646, 3256, 705, 5317, 81, 1040, 291, 11052, 3256, 705, 11297, 7886, 3256, 705, 24428, 259, 11233, 20520, 737, 2617, 62, 9630, 10786, 51, 15799, 11537, 198, 7568, 796, 47764, 13, 30619, 62, 27160, 7, 17816, 24428, 259, 11233, 6, 4357, 41988, 28, 17821, 8, 198, 7568, 13, 1462, 62, 40664, 7, 69, 6, 90, 2435, 13, 2435, 3419, 27422, 40664, 11537, 198, 4798, 357, 7568, 8 ]
2.231202
3,019
"""Extract simple aggregation features Reference: https://www.kaggle.com/gpreda/lanl-earthquake-eda-and-prediction """ import sys import numpy as np import pandas as pd from pathlib import Path from tqdm import tqdm import competition as cc from common import stop_watch TRAIN_CSV_DIRECTORY_PATH = cc.INPUT_PATH / sys.argv[1] TRAIN_CSV_LIST = list(TRAIN_CSV_DIRECTORY_PATH.glob('**/*.csv')) @stop_watch if __name__ == "__main__": train_csv_path = cc.FEATURE_PATH / "{}".format(sys.argv[1]) train_csv_l = [str(item) for item in TRAIN_CSV_LIST] extract_features(train_csv_l, train_csv_path) test_csv_path = cc.FEATURE_PATH / "test" test_csv_l = [str(item) for item in cc.TEST_CSV_LIST] extract_features(test_csv_l, test_csv_path)
[ 37811, 11627, 974, 2829, 46500, 3033, 628, 220, 220, 220, 20984, 25, 3740, 1378, 2503, 13, 74, 9460, 293, 13, 785, 14, 70, 28764, 64, 14, 9620, 75, 12, 16442, 421, 539, 12, 18082, 12, 392, 12, 28764, 2867, 198, 37811, 198, 198, 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 5449, 355, 36624, 198, 6738, 2219, 1330, 2245, 62, 8340, 198, 198, 51, 3861, 1268, 62, 7902, 53, 62, 17931, 23988, 15513, 62, 34219, 796, 36624, 13, 1268, 30076, 62, 34219, 1220, 25064, 13, 853, 85, 58, 16, 60, 198, 51, 3861, 1268, 62, 7902, 53, 62, 45849, 796, 1351, 7, 51, 3861, 1268, 62, 7902, 53, 62, 17931, 23988, 15513, 62, 34219, 13, 4743, 672, 10786, 1174, 15211, 13, 40664, 6, 4008, 628, 198, 31, 11338, 62, 8340, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4512, 62, 40664, 62, 6978, 796, 36624, 13, 15112, 40086, 62, 34219, 1220, 45144, 92, 1911, 18982, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 4512, 62, 40664, 62, 75, 796, 685, 2536, 7, 9186, 8, 329, 2378, 287, 29125, 1268, 62, 7902, 53, 62, 45849, 60, 198, 220, 220, 220, 7925, 62, 40890, 7, 27432, 62, 40664, 62, 75, 11, 4512, 62, 40664, 62, 6978, 8, 198, 220, 220, 220, 1332, 62, 40664, 62, 6978, 796, 36624, 13, 15112, 40086, 62, 34219, 1220, 366, 9288, 1, 198, 220, 220, 220, 1332, 62, 40664, 62, 75, 796, 685, 2536, 7, 9186, 8, 329, 2378, 287, 36624, 13, 51, 6465, 62, 7902, 53, 62, 45849, 60, 198, 220, 220, 220, 7925, 62, 40890, 7, 9288, 62, 40664, 62, 75, 11, 1332, 62, 40664, 62, 6978, 8, 198 ]
2.46129
310
import os from datetime import datetime import json import matplotlib.pyplot as plt from tqdm import tqdm import torch import numpy as np from skimage import measure from shapely.geometry import Polygon, MultiPolygon from PIL import Image import cv2 #model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True) model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet101', pretrained=True) # model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_mobilenet_v3_large', pretrained=True) model.eval() from torchvision import transforms COCO_INFO = { "description": "", "url": "", "version": "1", "year": 2022, "contributor": "MSR CV Group", "date_created": datetime.now().strftime("%m/%d/%Y") } COCO_LICENSES = [{ "url": "", "id": 0, "name": "License" }] if __name__ == "__main__": data_dir = "E:/Research/Images/FineGrained/StanfordCars/train_bing/"
[ 198, 11748, 28686, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 33918, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 9060, 1330, 3953, 220, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 12280, 14520, 11, 15237, 34220, 14520, 198, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 269, 85, 17, 198, 198, 2, 19849, 796, 28034, 13, 40140, 13, 2220, 10786, 9078, 13165, 354, 14, 10178, 25, 85, 15, 13, 940, 13, 15, 3256, 705, 67, 1453, 489, 397, 85, 18, 62, 411, 3262, 1120, 3256, 2181, 13363, 28, 17821, 8, 198, 19849, 796, 28034, 13, 40140, 13, 2220, 10786, 9078, 13165, 354, 14, 10178, 25, 85, 15, 13, 940, 13, 15, 3256, 705, 67, 1453, 489, 397, 85, 18, 62, 411, 3262, 8784, 3256, 2181, 13363, 28, 17821, 8, 198, 2, 2746, 796, 28034, 13, 40140, 13, 2220, 10786, 9078, 13165, 354, 14, 10178, 25, 85, 15, 13, 940, 13, 15, 3256, 705, 67, 1453, 489, 397, 85, 18, 62, 76, 25898, 268, 316, 62, 85, 18, 62, 11664, 3256, 2181, 13363, 28, 17821, 8, 198, 19849, 13, 18206, 3419, 198, 198, 6738, 28034, 10178, 1330, 31408, 198, 198, 34, 4503, 46, 62, 10778, 796, 1391, 198, 220, 220, 220, 366, 11213, 1298, 366, 1600, 198, 220, 220, 220, 366, 6371, 1298, 366, 1600, 198, 220, 220, 220, 366, 9641, 1298, 366, 16, 1600, 198, 220, 220, 220, 366, 1941, 1298, 33160, 11, 198, 220, 220, 220, 366, 3642, 2455, 273, 1298, 366, 5653, 49, 26196, 4912, 1600, 198, 220, 220, 220, 366, 4475, 62, 25598, 1298, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 76, 14, 4, 67, 14, 4, 56, 4943, 198, 92, 198, 198, 34, 4503, 46, 62, 43, 2149, 16938, 1546, 796, 685, 90, 198, 220, 220, 220, 366, 6371, 1298, 366, 1600, 198, 220, 220, 220, 366, 312, 1298, 657, 11, 198, 220, 220, 220, 366, 3672, 1298, 366, 34156, 1, 198, 92, 60, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1366, 62, 15908, 796, 366, 36, 14079, 25104, 14, 29398, 14, 34389, 8642, 1328, 14, 32140, 3841, 34, 945, 14, 27432, 62, 4623, 30487 ]
2.428941
387
import mock import unittest from matrix.common.query.expression_query_results_reader import ExpressionQueryResultsReader
[ 11748, 15290, 198, 11748, 555, 715, 395, 198, 198, 6738, 17593, 13, 11321, 13, 22766, 13, 38011, 62, 22766, 62, 43420, 62, 46862, 1330, 41986, 20746, 25468, 33634, 628 ]
4.241379
29
################################################################################ # # Description: This script provides the formal specification of the study data # that will be extracted from the OpenSAFELY database. # # Output: output/data/input_*.csv.gz # # Author(s): M Green (edited by H Curtis) # Date last updated: 03/02/2022 # ################################################################################ # IMPORT STATEMENTS ---- ## Import code building blocks from cohort extractor package from cohortextractor import ( StudyDefinition, patients, codelist_from_csv, codelist, filter_codes_by_category, combine_codelists, Measure ) ## Import codelists from codelist.py (which pulls them from the codelist folder) from codelists import * # DEFINE STUDY POPULATION ---- ## Define study time variables from datetime import date campaign_start = "2021-12-16" end_date = date.today().isoformat() ## Define study population and variables study = StudyDefinition( # PRELIMINARIES ---- ## Configure the expectations framework default_expectations = { "date": {"earliest": "2021-11-01", "latest": "today"}, "rate": "uniform", "incidence": 0.4, }, ## Define index date index_date = campaign_start, # POPULATION ---- population = patients.satisfying( """ (registered_eligible OR registered_treated) AND NOT has_died AND (sotrovimab_covid_therapeutics OR molnupiravir_covid_therapeutics OR casirivimab_covid_therapeutics OR covid_test_positive ) """, has_died = patients.died_from_any_cause( on_or_before = "index_date - 1 day", returning = "binary_flag", ), ), # TREATMENT - NEUTRALISING MONOCLONAL ANTIBODIES OR ANTIVIRALS ---- ## Sotrovimab sotrovimab_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Sotrovimab", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), ### Molnupiravir molnupiravir_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Molnupiravir", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), ### Casirivimab and imdevimab casirivimab_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = "Casirivimab and imdevimab", with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20"}, "incidence": 0.4 }, ), date_treated = patients.minimum_of( "sotrovimab_covid_therapeutics", "molnupiravir_covid_therapeutics", "casirivimab_covid_therapeutics", ), # ELIGIBILITY CRITERIA VARIABLES ---- ## Inclusion criteria variables ### SARS-CoV-2 test # Note patients are eligible for treatment if diagnosed <=5d ago # in the latest 5 days there may be patients identified as eligible who have not yet been treated covid_test_positive = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "binary_flag", on_or_after = "index_date - 5 days", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations = { "incidence": 0.2 }, ), covid_test_date = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, returning = "date", date_format = "YYYY-MM-DD", on_or_after = "index_date - 5 days", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.9 }, ), covid_positive_test_type = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "case_category", on_or_after = "index_date - 5 days", restrict_to_earliest_specimen_date = True, return_expectations = { "category": {"ratios": {"LFT_Only": 0.4, "PCR_Only": 0.4, "LFT_WithPCR": 0.2}}, "incidence": 0.2, }, ), covid_positive_previous_30_days = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "positive", returning = "binary_flag", between = ["covid_test_date - 31 days", "covid_test_date - 1 day"], find_last_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations = { "incidence": 0.05 }, ), ### Onset of symptoms of COVID-19 symptomatic_covid_test = patients.with_test_result_in_sgss( pathogen = "SARS-CoV-2", test_result = "any", returning = "symptomatic", on_or_after = "index_date - 5 days", find_first_match_in_period = True, restrict_to_earliest_specimen_date = False, return_expectations={ "incidence": 0.1, "category": { "ratios": { "": 0.2, "N": 0.2, "Y": 0.6, } }, }, ), covid_symptoms_snomed = patients.with_these_clinical_events( covid_symptoms_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, on_or_after = "index_date - 5 days", ), # CENSORING ---- registered_eligible = patients.registered_as_of("covid_test_date"), registered_treated = patients.registered_as_of("date_treated"), ## Death of any cause death_date = patients.died_from_any_cause( returning = "date_of_death", date_format = "YYYY-MM-DD", on_or_after = "covid_test_date", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.1 }, ), ## De-registration dereg_date = patients.date_deregistered_from_all_supported_practices( on_or_after = "covid_test_date", date_format = "YYYY-MM-DD", return_expectations = { "date": {"earliest": "2021-12-20", "latest": "index_date"}, "incidence": 0.1 }, ), ### Blueteq ‘high risk’ cohort high_risk_cohort_covid_therapeutics = patients.with_covid_therapeutics( with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = ["Sotrovimab", "Molnupiravir","Casirivimab and imdevimab"], with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "risk_group", date_format = "YYYY-MM-DD", return_expectations = { "rate": "universal", "category": { "ratios": { "Down's syndrome": 0.1, "Sickle cell disease": 0.1, "solid cancer": 0.1, "haematological diseases, stem cell transplant recipients": 0.1, "renal disease": 0.1, "liver disease": 0.1, "immune-mediated inflammatory disorders (IMID)": 0.2, "Primary immune deficiencies": 0.1, "HIV/AIDS": 0.1,},}, }, ), ### NHSD ‘high risk’ cohort (codelist to be defined if/when data avaliable) # high_risk_cohort_nhsd = patients.with_these_clinical_events( # high_risk_cohort_nhsd_codes, # between = [campaign_start, index_date], # returning = "date", # date_format = "YYYY-MM-DD", # find_first_match_in_period = True, # ), ## Exclusion criteria ### Pattern of clinical presentation indicates that there is recovery rather than risk of deterioration from infection # (not currently possible to define/code) ### Require hospitalisation for COVID-19 ## NB this data lags behind the therapeutics/testing data so may be missing covid_hospital_admission_date = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = covid_icd10_codes, on_or_after = "index_date - 5 days", date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "index_date - 5 days", "latest": "index_date"}, "rate": "uniform", "incidence": 0.05 }, ), ### New supplemental oxygen requirement specifically for the management of COVID-19 symptoms # (not currently possible to define/code) ### Children weighing less than 40kg # (not currently possible to define/code) ### Children aged under 12 years age = patients.age_as_of( "index_date", return_expectations = { "rate": "universal", "int": {"distribution": "population_ages"}, "incidence" : 0.9 }, ), ### Known hypersensitivity reaction to the active substances or to any of the excipients of sotrovimab # (not currently possible to define/code) # HIGH RISK GROUPS ---- ## Down's syndrome downs_syndrome_nhsd_snomed = patients.with_these_clinical_events( downs_syndrome_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), downs_syndrome_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = downs_syndrome_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), downs_syndrome_nhsd = patients.minimum_of("downs_syndrome_nhsd_snomed", "downs_syndrome_nhsd_icd10"), ## Sickle cell disease sickle_cell_disease_nhsd_snomed = patients.with_these_clinical_events( sickle_cell_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), sickle_cell_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = sickle_cell_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), sickle_cell_disease_nhsd = patients.minimum_of("sickle_cell_disease_nhsd_snomed", "sickle_cell_disease_nhsd_icd10"), ## Solid cancer cancer_opensafely_snomed = patients.with_these_clinical_events( combine_codelists( non_haematological_cancer_opensafely_snomed_codes, lung_cancer_opensafely_snomed_codes, chemotherapy_radiotherapy_opensafely_snomed_codes ), returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), ## Haematological diseases haematopoietic_stem_cell_transplant_nhsd_snomed = patients.with_these_clinical_events( haematopoietic_stem_cell_transplant_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), haematopoietic_stem_cell_transplant_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = haematopoietic_stem_cell_transplant_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), haematopoietic_stem_cell_transplant_nhsd_opcs4 = patients.admitted_to_hospital( returning = "date_admitted", with_these_procedures = haematopoietic_stem_cell_transplant_nhsd_opcs4_codes, date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "2020-02-01"}, "rate": "exponential_increase", "incidence": 0.01, }, ), # haematological_malignancies_nhsd_snomed = patients.with_these_clinical_events( # haematological_malignancies_nhsd_snomed_codes, # returning = "date", # date_format = "YYYY-MM-DD", # find_first_match_in_period = True, # #on_or_before = "end_date", # ), haematological_malignancies_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = haematological_malignancies_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), haematological_disease_nhsd = patients.minimum_of("haematopoietic_stem_cell_transplant_nhsd_snomed", "haematopoietic_stem_cell_transplant_nhsd_icd10", "haematopoietic_stem_cell_transplant_nhsd_opcs4", #"haematological_malignancies_nhsd_snomed", "haematological_malignancies_nhsd_icd10"), ## Renal disease ckd_stage_5_nhsd_snomed = patients.with_these_clinical_events( ckd_stage_5_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), ckd_stage_5_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = ckd_stage_5_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), ckd_stage_5_nhsd = patients.minimum_of("ckd_stage_5_nhsd_snomed", "ckd_stage_5_nhsd_icd10"), ## Liver disease liver_disease_nhsd_snomed = patients.with_these_clinical_events( ckd_stage_5_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), liver_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = ckd_stage_5_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), liver_disease_nhsd = patients.minimum_of("liver_disease_nhsd_snomed", "liver_disease_nhsd_icd10"), ## Immune-mediated inflammatory disorders (IMID) imid_nhsd = patients.with_these_clinical_events( codelist = combine_codelists(immunosuppresant_drugs_dmd_codes, immunosuppresant_drugs_snomed_codes, oral_steroid_drugs_dmd_codes, oral_steroid_drugs_snomed_codes), returning = "date", find_last_match_in_period = True, date_format = "YYYY-MM-DD", ), ## Primary immune deficiencies immunosupression_nhsd = patients.with_these_clinical_events( immunosupression_nhsd_codes, returning = "date", find_last_match_in_period = True, date_format = "YYYY-MM-DD", ), ## HIV/AIDs hiv_aids_nhsd_snomed = patients.with_these_clinical_events( hiv_aids_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), hiv_aids_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = hiv_aids_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), hiv_aids_nhsd = patients.minimum_of("hiv_aids_nhsd_snomed", "hiv_aids_nhsd_icd10"), ## Solid organ transplant solid_organ_transplant_nhsd_snomed = patients.with_these_clinical_events( solid_organ_transplant_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), solid_organ_transplant_nhsd_opcs4 = patients.admitted_to_hospital( returning = "date_admitted", with_these_procedures = solid_organ_transplant_nhsd_opcs4_codes, date_format = "YYYY-MM-DD", find_first_match_in_period = True, return_expectations = { "date": {"earliest": "2020-02-01"}, "rate": "exponential_increase", "incidence": 0.01, }, ), solid_organ_transplant_nhsd = patients.minimum_of("solid_organ_transplant_nhsd_snomed", "solid_organ_transplant_nhsd_opcs4"), ## Rare neurological conditions ### Multiple sclerosis multiple_sclerosis_nhsd_snomed = patients.with_these_clinical_events( multiple_sclerosis_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), multiple_sclerosis_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = multiple_sclerosis_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), multiple_sclerosis_nhsd = patients.minimum_of("multiple_sclerosis_nhsd_snomed", "multiple_sclerosis_nhsd_icd10"), ### Motor neurone disease motor_neurone_disease_nhsd_snomed = patients.with_these_clinical_events( motor_neurone_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), motor_neurone_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = motor_neurone_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), motor_neurone_disease_nhsd = patients.minimum_of("motor_neurone_disease_nhsd_snomed", "motor_neurone_disease_nhsd_icd10"), ### Myasthenia gravis myasthenia_gravis_nhsd_snomed = patients.with_these_clinical_events( myasthenia_gravis_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), myasthenia_gravis_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = myasthenia_gravis_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), myasthenia_gravis_nhsd = patients.minimum_of("myasthenia_gravis_nhsd_snomed", "myasthenia_gravis_nhsd_icd10"), ### Huntington’s disease huntingtons_disease_nhsd_snomed = patients.with_these_clinical_events( huntingtons_disease_nhsd_snomed_codes, returning = "date", date_format = "YYYY-MM-DD", find_first_match_in_period = True, ), huntingtons_disease_nhsd_icd10 = patients.admitted_to_hospital( returning = "date_admitted", with_these_diagnoses = huntingtons_disease_nhsd_icd10_codes, find_first_match_in_period = True, date_format = "YYYY-MM-DD", ), huntingtons_disease_nhsd = patients.minimum_of("huntingtons_disease_nhsd_snomed", "huntingtons_disease_nhsd_icd10"), # CLINICAL/DEMOGRAPHIC COVARIATES ---- ## Sex sex = patients.sex( return_expectations = { "rate": "universal", "category": {"ratios": {"M": 0.49, "F": 0.51}}, } ), ## Ethnicity ethnicity_primis = patients.with_these_clinical_events( ethnicity_primis_codes, returning = "category", find_last_match_in_period = True, include_date_of_match = False, return_expectations = { "category": {"ratios": {"1": 0.2, "2": 0.2, "3": 0.2, "4": 0.2, "5": 0.2}}, "incidence": 0.75, }, ), ethnicity_sus = patients.with_ethnicity_from_sus( returning = "group_6", use_most_frequent_code = True, return_expectations = { "category": {"ratios": {"1": 0.2, "2": 0.2, "3": 0.2, "4": 0.2, "5": 0.2}}, "incidence": 0.8, }, ), ## Index of multiple deprivation imd = patients.categorised_as( {"0": "DEFAULT", "1": """index_of_multiple_deprivation >=1 AND index_of_multiple_deprivation < 32844*1/5""", "2": """index_of_multiple_deprivation >= 32844*1/5 AND index_of_multiple_deprivation < 32844*2/5""", "3": """index_of_multiple_deprivation >= 32844*2/5 AND index_of_multiple_deprivation < 32844*3/5""", "4": """index_of_multiple_deprivation >= 32844*3/5 AND index_of_multiple_deprivation < 32844*4/5""", "5": """index_of_multiple_deprivation >= 32844*4/5 """, }, index_of_multiple_deprivation = patients.address_as_of( "index_date", returning = "index_of_multiple_deprivation", round_to_nearest = 100, ), return_expectations = { "rate": "universal", "category": { "ratios": { "0": 0.01, "1": 0.20, "2": 0.20, "3": 0.20, "4": 0.20, "5": 0.19, }}, }, ), ## Region - NHS England 9 regions region_nhs = patients.registered_practice_as_of( "index_date", returning = "nuts1_region_name", return_expectations = { "rate": "universal", "category": { "ratios": { "North East": 0.1, "North West": 0.1, "Yorkshire and The Humber": 0.1, "East Midlands": 0.1, "West Midlands": 0.1, "East": 0.1, "London": 0.2, "South West": 0.1, "South East": 0.1,},}, }, ), region_covid_therapeutics = patients.with_covid_therapeutics( #with_these_statuses = ["Approved", "Treatment Complete"], with_these_therapeutics = ["Sotrovimab", "Molnupiravir", "Casirivimab and imdevimab"], with_these_indications = "non_hospitalised", on_or_after = "index_date", find_first_match_in_period = True, returning = "region", return_expectations = { "rate": "universal", "category": { "ratios": { "North East": 0.1, "North West": 0.1, "Yorkshire and The Humber": 0.1, "East Midlands": 0.1, "West Midlands": 0.1, "East": 0.1, "London": 0.2, "South West": 0.1, "South East": 0.1,},}, }, ), ## CMDUs/ICS )
[ 29113, 29113, 14468, 198, 2, 198, 2, 12489, 25, 770, 4226, 3769, 262, 8766, 20855, 286, 262, 2050, 1366, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 481, 307, 21242, 422, 262, 4946, 4090, 37, 30943, 6831, 13, 198, 2, 198, 2, 25235, 25, 5072, 14, 7890, 14, 15414, 62, 24620, 40664, 13, 34586, 198, 2, 198, 2, 6434, 7, 82, 2599, 337, 3469, 357, 42131, 416, 367, 25157, 8, 198, 2, 7536, 938, 6153, 25, 7643, 14, 2999, 14, 1238, 1828, 198, 2, 198, 29113, 29113, 14468, 628, 198, 2, 30023, 9863, 15486, 12529, 50, 13498, 198, 198, 2235, 17267, 2438, 2615, 7021, 422, 20812, 7925, 273, 5301, 198, 6738, 20812, 2302, 40450, 1330, 357, 198, 220, 12481, 36621, 11, 198, 220, 3871, 11, 198, 220, 14873, 46331, 62, 6738, 62, 40664, 11, 198, 220, 14873, 46331, 11, 198, 220, 8106, 62, 40148, 62, 1525, 62, 22872, 11, 198, 220, 12082, 62, 19815, 417, 1023, 11, 198, 220, 24291, 198, 8, 198, 198, 2235, 17267, 14873, 417, 1023, 422, 14873, 46331, 13, 9078, 357, 4758, 16194, 606, 422, 262, 14873, 46331, 9483, 8, 198, 6738, 14873, 417, 1023, 1330, 1635, 198, 220, 220, 198, 220, 220, 198, 2, 23449, 8881, 49348, 56, 37586, 6239, 6234, 13498, 198, 198, 2235, 2896, 500, 2050, 640, 9633, 198, 6738, 4818, 8079, 1330, 3128, 198, 198, 35012, 62, 9688, 796, 366, 1238, 2481, 12, 1065, 12, 1433, 1, 198, 437, 62, 4475, 796, 3128, 13, 40838, 22446, 26786, 18982, 3419, 628, 198, 2235, 2896, 500, 2050, 3265, 290, 9633, 198, 44517, 796, 12481, 36621, 7, 198, 220, 220, 198, 220, 1303, 350, 16448, 3955, 1268, 1503, 11015, 13498, 198, 220, 220, 198, 220, 22492, 17056, 495, 262, 9027, 9355, 198, 220, 4277, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1157, 12, 486, 1600, 366, 42861, 1298, 366, 40838, 25719, 198, 220, 220, 220, 366, 4873, 1298, 366, 403, 6933, 1600, 198, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 19, 11, 198, 220, 8964, 198, 220, 220, 198, 220, 22492, 2896, 500, 6376, 3128, 198, 220, 6376, 62, 4475, 796, 1923, 62, 9688, 11, 198, 220, 220, 198, 220, 1303, 37586, 6239, 6234, 13498, 198, 220, 3265, 796, 3871, 13, 82, 17403, 1112, 7, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 357, 33736, 62, 31595, 6375, 6823, 62, 37182, 8, 198, 220, 220, 220, 5357, 198, 220, 220, 220, 5626, 468, 62, 67, 798, 198, 220, 220, 220, 5357, 198, 220, 220, 220, 357, 82, 313, 18657, 320, 397, 62, 66, 709, 312, 62, 490, 1758, 48063, 220, 198, 220, 220, 220, 220, 220, 6375, 285, 10875, 929, 343, 615, 343, 62, 66, 709, 312, 62, 490, 1758, 48063, 220, 198, 220, 220, 220, 220, 220, 6375, 6124, 343, 452, 320, 397, 62, 66, 709, 312, 62, 490, 1758, 48063, 198, 220, 220, 220, 220, 220, 6375, 39849, 312, 62, 9288, 62, 24561, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 220, 198, 220, 220, 220, 468, 62, 67, 798, 796, 3871, 13, 67, 798, 62, 6738, 62, 1092, 62, 25587, 7, 198, 220, 220, 220, 220, 220, 319, 62, 273, 62, 19052, 796, 366, 9630, 62, 4475, 532, 352, 1110, 1600, 198, 220, 220, 220, 220, 220, 8024, 796, 366, 39491, 62, 32109, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 198, 220, 10612, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 220, 1303, 43236, 1404, 10979, 532, 10635, 3843, 35296, 1797, 2751, 25000, 4503, 43, 1340, 1847, 3537, 51, 9865, 3727, 11015, 6375, 3537, 51, 3824, 4663, 23333, 13498, 628, 220, 22492, 311, 313, 18657, 320, 397, 198, 220, 264, 313, 18657, 320, 397, 62, 66, 709, 312, 62, 490, 1758, 48063, 796, 3871, 13, 4480, 62, 66, 709, 312, 62, 490, 1758, 48063, 7, 198, 220, 220, 220, 1303, 4480, 62, 27218, 62, 14269, 2664, 796, 14631, 4677, 305, 1079, 1600, 366, 51, 21731, 13248, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 490, 1758, 48063, 796, 366, 50, 313, 18657, 320, 397, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 521, 3736, 796, 366, 13159, 62, 49257, 1417, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1065, 12, 1238, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 19, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 44386, 337, 10875, 929, 343, 615, 343, 198, 220, 285, 10875, 929, 343, 615, 343, 62, 66, 709, 312, 62, 490, 1758, 48063, 796, 3871, 13, 4480, 62, 66, 709, 312, 62, 490, 1758, 48063, 7, 198, 220, 220, 220, 1303, 4480, 62, 27218, 62, 14269, 2664, 796, 14631, 4677, 305, 1079, 1600, 366, 51, 21731, 13248, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 490, 1758, 48063, 796, 366, 44, 10875, 929, 343, 615, 343, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 521, 3736, 796, 366, 13159, 62, 49257, 1417, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1065, 12, 1238, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 19, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 10612, 628, 220, 44386, 11294, 343, 452, 320, 397, 290, 545, 7959, 320, 397, 198, 220, 6124, 343, 452, 320, 397, 62, 66, 709, 312, 62, 490, 1758, 48063, 796, 3871, 13, 4480, 62, 66, 709, 312, 62, 490, 1758, 48063, 7, 198, 220, 220, 220, 1303, 4480, 62, 27218, 62, 14269, 2664, 796, 14631, 4677, 305, 1079, 1600, 366, 51, 21731, 13248, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 490, 1758, 48063, 796, 366, 35155, 343, 452, 320, 397, 290, 545, 7959, 320, 397, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 521, 3736, 796, 366, 13159, 62, 49257, 1417, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1065, 12, 1238, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 19, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 10612, 220, 198, 220, 220, 198, 220, 3128, 62, 37182, 796, 3871, 13, 39504, 62, 1659, 7, 198, 220, 220, 220, 366, 82, 313, 18657, 320, 397, 62, 66, 709, 312, 62, 490, 1758, 48063, 1600, 198, 220, 220, 220, 366, 76, 10875, 929, 343, 615, 343, 62, 66, 709, 312, 62, 490, 1758, 48063, 1600, 198, 220, 220, 220, 366, 34004, 343, 452, 320, 397, 62, 66, 709, 312, 62, 490, 1758, 48063, 1600, 198, 220, 10612, 628, 220, 1303, 17852, 3528, 40, 25382, 8740, 2043, 1137, 3539, 569, 1503, 3539, 9148, 1546, 13498, 198, 220, 220, 198, 220, 22492, 554, 4717, 9987, 9633, 198, 220, 220, 198, 220, 44386, 311, 27415, 12, 7222, 53, 12, 17, 1332, 198, 220, 1303, 5740, 3871, 389, 8867, 329, 3513, 611, 14641, 19841, 20, 67, 2084, 198, 220, 1303, 287, 262, 3452, 642, 1528, 612, 743, 307, 3871, 5174, 355, 8867, 508, 423, 407, 1865, 587, 5716, 198, 220, 39849, 312, 62, 9288, 62, 24561, 796, 3871, 13, 4480, 62, 9288, 62, 20274, 62, 259, 62, 45213, 824, 7, 198, 220, 220, 220, 3108, 6644, 796, 366, 50, 27415, 12, 7222, 53, 12, 17, 1600, 198, 220, 220, 220, 1332, 62, 20274, 796, 366, 24561, 1600, 198, 220, 220, 220, 8024, 796, 366, 39491, 62, 32109, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 4239, 62, 1462, 62, 451, 11318, 62, 16684, 19027, 62, 4475, 796, 10352, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 17, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 39849, 312, 62, 9288, 62, 4475, 796, 3871, 13, 4480, 62, 9288, 62, 20274, 62, 259, 62, 45213, 824, 7, 198, 220, 220, 220, 3108, 6644, 796, 366, 50, 27415, 12, 7222, 53, 12, 17, 1600, 198, 220, 220, 220, 1332, 62, 20274, 796, 366, 24561, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 4239, 62, 1462, 62, 451, 11318, 62, 16684, 19027, 62, 4475, 796, 10352, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1065, 12, 1238, 1600, 366, 42861, 1298, 366, 9630, 62, 4475, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 24, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 39849, 312, 62, 24561, 62, 9288, 62, 4906, 796, 3871, 13, 4480, 62, 9288, 62, 20274, 62, 259, 62, 45213, 824, 7, 198, 220, 220, 220, 3108, 6644, 796, 366, 50, 27415, 12, 7222, 53, 12, 17, 1600, 198, 220, 220, 220, 1332, 62, 20274, 796, 366, 24561, 1600, 198, 220, 220, 220, 8024, 796, 366, 7442, 62, 22872, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 198, 220, 220, 220, 4239, 62, 1462, 62, 451, 11318, 62, 16684, 19027, 62, 4475, 796, 6407, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 19779, 10366, 4267, 1298, 19779, 43, 9792, 62, 10049, 1298, 657, 13, 19, 11, 366, 5662, 49, 62, 10049, 1298, 657, 13, 19, 11, 366, 43, 9792, 62, 3152, 5662, 49, 1298, 657, 13, 17, 92, 5512, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 17, 11, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 39849, 312, 62, 24561, 62, 3866, 1442, 62, 1270, 62, 12545, 796, 3871, 13, 4480, 62, 9288, 62, 20274, 62, 259, 62, 45213, 824, 7, 198, 220, 220, 220, 3108, 6644, 796, 366, 50, 27415, 12, 7222, 53, 12, 17, 1600, 198, 220, 220, 220, 1332, 62, 20274, 796, 366, 24561, 1600, 198, 220, 220, 220, 8024, 796, 366, 39491, 62, 32109, 1600, 198, 220, 220, 220, 1022, 796, 14631, 66, 709, 312, 62, 9288, 62, 4475, 532, 3261, 1528, 1600, 366, 66, 709, 312, 62, 9288, 62, 4475, 532, 352, 1110, 33116, 198, 220, 220, 220, 1064, 62, 12957, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 4239, 62, 1462, 62, 451, 11318, 62, 16684, 19027, 62, 4475, 796, 10352, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 2713, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 44386, 1550, 2617, 286, 7460, 286, 7375, 11008, 12, 1129, 198, 220, 6585, 13730, 62, 66, 709, 312, 62, 9288, 796, 3871, 13, 4480, 62, 9288, 62, 20274, 62, 259, 62, 45213, 824, 7, 198, 220, 220, 220, 3108, 6644, 796, 366, 50, 27415, 12, 7222, 53, 12, 17, 1600, 198, 220, 220, 220, 1332, 62, 20274, 796, 366, 1092, 1600, 198, 220, 220, 220, 8024, 796, 366, 37047, 457, 13730, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 4239, 62, 1462, 62, 451, 11318, 62, 16684, 19027, 62, 4475, 796, 10352, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 34758, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10366, 4267, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1298, 657, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45, 1298, 657, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 56, 1298, 657, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 39849, 312, 62, 37047, 35533, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 39849, 312, 62, 37047, 35533, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 220, 1303, 327, 16938, 1581, 2751, 13498, 198, 220, 220, 198, 220, 6823, 62, 31595, 796, 3871, 13, 33736, 62, 292, 62, 1659, 7203, 66, 709, 312, 62, 9288, 62, 4475, 12340, 628, 220, 6823, 62, 37182, 796, 3871, 13, 33736, 62, 292, 62, 1659, 7203, 4475, 62, 37182, 12340, 628, 198, 220, 22492, 5830, 286, 597, 2728, 198, 220, 1918, 62, 4475, 796, 3871, 13, 67, 798, 62, 6738, 62, 1092, 62, 25587, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 1659, 62, 22595, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 66, 709, 312, 62, 9288, 62, 4475, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1065, 12, 1238, 1600, 366, 42861, 1298, 366, 9630, 62, 4475, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 16, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 1024, 12, 2301, 33397, 198, 220, 390, 2301, 62, 4475, 796, 3871, 13, 4475, 62, 67, 567, 70, 23187, 62, 6738, 62, 439, 62, 15999, 62, 29152, 1063, 7, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 66, 709, 312, 62, 9288, 62, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 1238, 2481, 12, 1065, 12, 1238, 1600, 366, 42861, 1298, 366, 9630, 62, 4475, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 16, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 10612, 628, 198, 220, 44386, 12391, 14471, 80, 564, 246, 8929, 2526, 447, 247, 20812, 198, 220, 1029, 62, 19121, 62, 1073, 71, 419, 62, 66, 709, 312, 62, 490, 1758, 48063, 796, 3871, 13, 4480, 62, 66, 709, 312, 62, 490, 1758, 48063, 7, 198, 220, 220, 220, 351, 62, 27218, 62, 14269, 2664, 796, 14631, 4677, 305, 1079, 1600, 366, 51, 21731, 13248, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 490, 1758, 48063, 796, 14631, 50, 313, 18657, 320, 397, 1600, 366, 44, 10875, 929, 343, 615, 343, 2430, 35155, 343, 452, 320, 397, 290, 545, 7959, 320, 397, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 521, 3736, 796, 366, 13159, 62, 49257, 1417, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 8024, 796, 366, 19121, 62, 8094, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 40082, 1600, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10366, 4267, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8048, 338, 14027, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 39423, 2685, 4369, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39390, 4890, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3099, 368, 265, 2770, 10040, 11, 10717, 2685, 23319, 20352, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 918, 282, 4369, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 1428, 4369, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38345, 12, 38363, 23760, 11916, 357, 3955, 2389, 8, 1298, 657, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35170, 10900, 33589, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39, 3824, 14, 39338, 1298, 657, 13, 16, 11, 5512, 5512, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 44386, 18183, 35, 564, 246, 8929, 2526, 447, 247, 20812, 357, 19815, 46331, 284, 307, 5447, 611, 14, 12518, 1366, 37441, 3379, 8, 198, 220, 1303, 1029, 62, 19121, 62, 1073, 71, 419, 62, 77, 11994, 67, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 1303, 220, 220, 1029, 62, 19121, 62, 1073, 71, 419, 62, 77, 11994, 67, 62, 40148, 11, 198, 220, 1303, 220, 220, 1022, 796, 685, 35012, 62, 9688, 11, 6376, 62, 4475, 4357, 198, 220, 1303, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 1303, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 1303, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 1303, 10612, 198, 220, 220, 198, 220, 22492, 1475, 4717, 9987, 198, 220, 220, 198, 220, 44386, 23939, 286, 8668, 10470, 9217, 326, 612, 318, 7628, 2138, 621, 2526, 286, 38495, 422, 10280, 198, 220, 1303, 220, 220, 357, 1662, 3058, 1744, 284, 8160, 14, 8189, 8, 198, 220, 220, 198, 220, 44386, 9394, 557, 4436, 5612, 329, 7375, 11008, 12, 1129, 198, 220, 22492, 41354, 428, 1366, 300, 3775, 2157, 262, 20094, 48063, 14, 33407, 1366, 523, 743, 307, 4814, 198, 220, 39849, 312, 62, 49257, 62, 324, 3411, 62, 4475, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 39849, 312, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 9630, 62, 4475, 532, 642, 1528, 1600, 366, 42861, 1298, 366, 9630, 62, 4475, 25719, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 403, 6933, 1600, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 2713, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 44386, 968, 34885, 11863, 9079, 5734, 329, 262, 4542, 286, 7375, 11008, 12, 1129, 7460, 198, 220, 1303, 220, 220, 357, 1662, 3058, 1744, 284, 8160, 14, 8189, 8, 198, 220, 220, 198, 220, 44386, 8990, 21990, 1342, 621, 2319, 10025, 198, 220, 1303, 220, 220, 357, 1662, 3058, 1744, 284, 8160, 14, 8189, 8, 198, 220, 220, 198, 220, 44386, 8990, 9722, 739, 1105, 812, 198, 220, 2479, 796, 3871, 13, 496, 62, 292, 62, 1659, 7, 198, 220, 220, 220, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 40082, 1600, 198, 220, 220, 220, 220, 220, 366, 600, 1298, 19779, 17080, 3890, 1298, 366, 39748, 62, 1095, 25719, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1, 1058, 657, 13, 24, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 44386, 29454, 45086, 40545, 6317, 284, 262, 4075, 15938, 393, 284, 597, 286, 262, 2859, 541, 2334, 286, 264, 313, 18657, 320, 397, 198, 220, 1303, 220, 220, 357, 1662, 3058, 1744, 284, 8160, 14, 8189, 8, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 220, 1303, 34677, 45698, 42, 10863, 2606, 3705, 13498, 198, 220, 220, 198, 220, 22492, 5588, 338, 14027, 198, 220, 21838, 62, 1837, 358, 5998, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 21838, 62, 1837, 358, 5998, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 21838, 62, 1837, 358, 5998, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 21838, 62, 1837, 358, 5998, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 21838, 62, 1837, 358, 5998, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 30371, 62, 1837, 358, 5998, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 30371, 62, 1837, 358, 5998, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 220, 198, 220, 220, 198, 220, 22492, 32181, 293, 2685, 4369, 198, 220, 6639, 293, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 6639, 293, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 6639, 293, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 6639, 293, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 6639, 293, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 82, 39423, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 82, 39423, 62, 3846, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 220, 198, 220, 220, 198, 220, 22492, 15831, 4890, 198, 220, 4890, 62, 44813, 8635, 306, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 12082, 62, 19815, 417, 1023, 7, 198, 220, 220, 220, 220, 220, 1729, 62, 3099, 368, 265, 2770, 62, 48870, 62, 44813, 8635, 306, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 220, 220, 12317, 62, 48870, 62, 44813, 8635, 306, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 220, 220, 34696, 62, 6335, 72, 18952, 62, 44813, 8635, 306, 62, 16184, 12657, 62, 40148, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 9398, 368, 265, 2770, 10040, 198, 220, 387, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 387, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 387, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 387, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 387, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 404, 6359, 19, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 1676, 771, 942, 796, 387, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 404, 6359, 19, 62, 40148, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 42334, 12, 2999, 12, 486, 25719, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 11201, 35470, 62, 24988, 589, 1600, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 486, 11, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 1303, 387, 368, 265, 2770, 62, 7617, 570, 16183, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 1303, 220, 220, 387, 368, 265, 2770, 62, 7617, 570, 16183, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 1303, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 1303, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 1303, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 1303, 220, 220, 1303, 261, 62, 273, 62, 19052, 796, 366, 437, 62, 4475, 1600, 198, 220, 1303, 10612, 198, 220, 220, 198, 220, 387, 368, 265, 2770, 62, 7617, 570, 16183, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 387, 368, 265, 2770, 62, 7617, 570, 16183, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 387, 368, 265, 2770, 62, 67, 786, 589, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 3099, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3099, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 291, 67, 940, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3099, 368, 265, 404, 78, 1155, 291, 62, 927, 62, 3846, 62, 7645, 15060, 62, 77, 11994, 67, 62, 404, 6359, 19, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 3099, 368, 265, 2770, 62, 7617, 570, 16183, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3099, 368, 265, 2770, 62, 7617, 570, 16183, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 220, 198, 220, 220, 198, 220, 220, 198, 220, 22492, 7152, 282, 4369, 198, 220, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 694, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 694, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 220, 198, 220, 220, 198, 220, 22492, 45036, 4369, 198, 220, 14383, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 14383, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 269, 74, 67, 62, 14247, 62, 20, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 14383, 62, 67, 786, 589, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 75, 1428, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 75, 1428, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 220, 198, 220, 220, 198, 220, 22492, 9543, 1726, 12, 38363, 23760, 11916, 357, 3955, 2389, 8, 198, 220, 545, 312, 62, 77, 11994, 67, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 14873, 46331, 796, 12082, 62, 19815, 417, 1023, 7, 320, 6199, 418, 7211, 411, 415, 62, 30349, 82, 62, 67, 9132, 62, 40148, 11, 16217, 418, 7211, 411, 415, 62, 30349, 82, 62, 16184, 12657, 62, 40148, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12886, 62, 1706, 1868, 62, 30349, 82, 62, 67, 9132, 62, 40148, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12886, 62, 1706, 1868, 62, 30349, 82, 62, 16184, 12657, 62, 40148, 828, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 1064, 62, 12957, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 21087, 10900, 33589, 198, 220, 16217, 418, 929, 2234, 62, 77, 11994, 67, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 16217, 418, 929, 2234, 62, 77, 11994, 67, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 1064, 62, 12957, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 10498, 14, 32, 47954, 198, 220, 289, 452, 62, 1698, 82, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 289, 452, 62, 1698, 82, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 289, 452, 62, 1698, 82, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 289, 452, 62, 1698, 82, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 289, 452, 62, 1698, 82, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 71, 452, 62, 1698, 82, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 71, 452, 62, 1698, 82, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 198, 220, 220, 198, 220, 22492, 15831, 1618, 23319, 198, 220, 4735, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 4735, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 4735, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 62, 404, 6359, 19, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 1676, 771, 942, 796, 4735, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 62, 404, 6359, 19, 62, 40148, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4475, 1298, 19779, 451, 11318, 1298, 366, 42334, 12, 2999, 12, 486, 25719, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 11201, 35470, 62, 24988, 589, 1600, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 486, 11, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 4735, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 39390, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 39390, 62, 9971, 62, 7645, 15060, 62, 77, 11994, 67, 62, 404, 6359, 19, 12340, 220, 198, 220, 220, 198, 220, 22492, 14423, 30232, 3403, 198, 220, 220, 198, 220, 44386, 20401, 46225, 198, 220, 3294, 62, 82, 31399, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 3294, 62, 82, 31399, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 3294, 62, 82, 31399, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 3294, 62, 82, 31399, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 3294, 62, 82, 31399, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 48101, 62, 82, 31399, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 48101, 62, 82, 31399, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 220, 198, 220, 220, 198, 220, 44386, 12533, 11943, 505, 4369, 198, 220, 5584, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 5584, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 5584, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 5584, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 5584, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 76, 20965, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 76, 20965, 62, 710, 333, 505, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 198, 220, 220, 198, 220, 44386, 2011, 459, 831, 544, 9067, 271, 198, 220, 616, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 616, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 616, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 616, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 616, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 1820, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 1820, 459, 831, 544, 62, 70, 16956, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 198, 220, 220, 198, 220, 44386, 40644, 447, 247, 82, 4369, 198, 220, 10988, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 10988, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 4475, 1600, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 10612, 198, 220, 220, 198, 220, 10988, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 796, 3871, 13, 324, 3291, 62, 1462, 62, 49257, 7, 198, 220, 220, 220, 8024, 796, 366, 4475, 62, 324, 3291, 1600, 198, 220, 220, 220, 351, 62, 27218, 62, 47356, 4629, 796, 10988, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 62, 40148, 11, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 3128, 62, 18982, 796, 366, 26314, 26314, 12, 12038, 12, 16458, 1600, 198, 220, 10612, 198, 220, 220, 198, 220, 10988, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 796, 3871, 13, 39504, 62, 1659, 7203, 20088, 889, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 16184, 12657, 1600, 366, 20088, 889, 27288, 62, 67, 786, 589, 62, 77, 11994, 67, 62, 291, 67, 940, 12340, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 1303, 7852, 1268, 20151, 14, 39429, 49656, 31300, 2149, 7375, 53, 33604, 29462, 13498, 198, 220, 220, 198, 220, 22492, 14419, 198, 220, 1714, 796, 3871, 13, 8044, 7, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 40082, 1600, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 19779, 10366, 4267, 1298, 19779, 44, 1298, 657, 13, 2920, 11, 366, 37, 1298, 657, 13, 4349, 92, 5512, 198, 220, 220, 220, 1782, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 48021, 414, 198, 220, 26289, 62, 19795, 271, 796, 3871, 13, 4480, 62, 27218, 62, 47367, 62, 31534, 7, 198, 220, 220, 220, 26289, 62, 19795, 271, 62, 40148, 11, 198, 220, 220, 220, 8024, 796, 366, 22872, 1600, 198, 220, 220, 220, 1064, 62, 12957, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 2291, 62, 4475, 62, 1659, 62, 15699, 796, 10352, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 19779, 10366, 4267, 1298, 19779, 16, 1298, 657, 13, 17, 11, 366, 17, 1298, 657, 13, 17, 11, 366, 18, 1298, 657, 13, 17, 11, 366, 19, 1298, 657, 13, 17, 11, 366, 20, 1298, 657, 13, 17, 92, 5512, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 2425, 11, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 26289, 62, 82, 385, 796, 3871, 13, 4480, 62, 38546, 414, 62, 6738, 62, 82, 385, 7, 198, 220, 220, 220, 8024, 796, 366, 8094, 62, 21, 1600, 220, 220, 198, 220, 220, 220, 779, 62, 1712, 62, 69, 46018, 62, 8189, 796, 6407, 11, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 19779, 10366, 4267, 1298, 19779, 16, 1298, 657, 13, 17, 11, 366, 17, 1298, 657, 13, 17, 11, 366, 18, 1298, 657, 13, 17, 11, 366, 19, 1298, 657, 13, 17, 11, 366, 20, 1298, 657, 13, 17, 92, 5512, 198, 220, 220, 220, 220, 220, 366, 1939, 1704, 1298, 657, 13, 23, 11, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 12901, 286, 3294, 28922, 198, 220, 545, 67, 796, 3871, 13, 66, 47467, 1417, 62, 292, 7, 198, 220, 220, 220, 19779, 15, 1298, 366, 7206, 38865, 1600, 198, 220, 220, 220, 220, 220, 366, 16, 1298, 37227, 9630, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 18189, 16, 5357, 6376, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 1279, 39093, 2598, 9, 16, 14, 20, 15931, 1600, 198, 220, 220, 220, 220, 220, 366, 17, 1298, 37227, 9630, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 18189, 39093, 2598, 9, 16, 14, 20, 5357, 6376, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 1279, 39093, 2598, 9, 17, 14, 20, 15931, 1600, 198, 220, 220, 220, 220, 220, 366, 18, 1298, 37227, 9630, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 18189, 39093, 2598, 9, 17, 14, 20, 5357, 6376, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 1279, 39093, 2598, 9, 18, 14, 20, 15931, 1600, 198, 220, 220, 220, 220, 220, 366, 19, 1298, 37227, 9630, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 18189, 39093, 2598, 9, 18, 14, 20, 5357, 6376, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 1279, 39093, 2598, 9, 19, 14, 20, 15931, 1600, 198, 220, 220, 220, 220, 220, 366, 20, 1298, 37227, 9630, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 18189, 39093, 2598, 9, 19, 14, 20, 13538, 1600, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 6376, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 796, 3871, 13, 21975, 62, 292, 62, 1659, 7, 198, 220, 220, 220, 220, 220, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 220, 220, 8024, 796, 366, 9630, 62, 1659, 62, 48101, 62, 10378, 380, 10473, 1600, 198, 220, 220, 220, 220, 220, 2835, 62, 1462, 62, 710, 12423, 796, 1802, 11, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 40082, 1600, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10366, 4267, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15, 1298, 657, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16, 1298, 657, 13, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17, 1298, 657, 13, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18, 1298, 657, 13, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19, 1298, 657, 13, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20, 1298, 657, 13, 1129, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 17718, 532, 18183, 4492, 860, 7652, 198, 220, 3814, 62, 77, 11994, 796, 3871, 13, 33736, 62, 39541, 62, 292, 62, 1659, 7, 198, 220, 220, 220, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 8024, 796, 366, 31381, 16, 62, 36996, 62, 3672, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 40082, 1600, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10366, 4267, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14157, 3687, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14157, 2688, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 56, 29918, 290, 383, 367, 4494, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25234, 47989, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15045, 47989, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25234, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23421, 1298, 657, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14942, 2688, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14942, 3687, 1298, 657, 13, 16, 11, 5512, 5512, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 3814, 62, 66, 709, 312, 62, 490, 1758, 48063, 796, 3871, 13, 4480, 62, 66, 709, 312, 62, 490, 1758, 48063, 7, 198, 220, 220, 220, 1303, 4480, 62, 27218, 62, 14269, 2664, 796, 14631, 4677, 305, 1079, 1600, 366, 51, 21731, 13248, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 490, 1758, 48063, 796, 14631, 50, 313, 18657, 320, 397, 1600, 366, 44, 10875, 929, 343, 615, 343, 1600, 366, 35155, 343, 452, 320, 397, 290, 545, 7959, 320, 397, 33116, 198, 220, 220, 220, 351, 62, 27218, 62, 521, 3736, 796, 366, 13159, 62, 49257, 1417, 1600, 198, 220, 220, 220, 319, 62, 273, 62, 8499, 796, 366, 9630, 62, 4475, 1600, 198, 220, 220, 220, 1064, 62, 11085, 62, 15699, 62, 259, 62, 41007, 796, 6407, 11, 198, 220, 220, 220, 8024, 796, 366, 36996, 1600, 198, 220, 220, 220, 1441, 62, 1069, 806, 602, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 4873, 1298, 366, 40082, 1600, 198, 220, 220, 220, 220, 220, 366, 22872, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10366, 4267, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14157, 3687, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14157, 2688, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 56, 29918, 290, 383, 367, 4494, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25234, 47989, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15045, 47989, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25234, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23421, 1298, 657, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14942, 2688, 1298, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14942, 3687, 1298, 657, 13, 16, 11, 5512, 5512, 198, 220, 220, 220, 8964, 198, 220, 10612, 198, 220, 220, 198, 220, 22492, 327, 12740, 5842, 14, 19505, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 220, 220, 198, 8, 628, 198 ]
2.292791
9,447
import sqlalchemy from contextlib import contextmanager from typing import List, Iterator, Optional, Union, Tuple import logging from google.cloud.bigquery.dbapi.connection import Connection from google.cloud.bigquery.client import Client from google.cloud.bigquery.job import ExtractJobConfig from records_mover.db.unloader import Unloader from records_mover.records.records_format import BaseRecordsFormat, AvroRecordsFormat from records_mover.url.base import BaseDirectoryUrl from records_mover.url.resolver import UrlResolver from records_mover.records.unload_plan import RecordsUnloadPlan from records_mover.records.records_directory import RecordsDirectory from records_mover.db.errors import NoTemporaryBucketConfiguration logger = logging.getLogger(__name__)
[ 11748, 44161, 282, 26599, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 6738, 19720, 1330, 7343, 11, 40806, 1352, 11, 32233, 11, 4479, 11, 309, 29291, 198, 11748, 18931, 198, 6738, 23645, 13, 17721, 13, 14261, 22766, 13, 9945, 15042, 13, 38659, 1330, 26923, 198, 6738, 23645, 13, 17721, 13, 14261, 22766, 13, 16366, 1330, 20985, 198, 6738, 23645, 13, 17721, 13, 14261, 22766, 13, 21858, 1330, 29677, 33308, 16934, 198, 6738, 4406, 62, 76, 2502, 13, 9945, 13, 403, 29356, 1330, 791, 29356, 198, 6738, 4406, 62, 76, 2502, 13, 8344, 3669, 13, 8344, 3669, 62, 18982, 1330, 7308, 6690, 3669, 26227, 11, 5184, 305, 6690, 3669, 26227, 198, 6738, 4406, 62, 76, 2502, 13, 6371, 13, 8692, 1330, 7308, 43055, 28165, 198, 6738, 4406, 62, 76, 2502, 13, 6371, 13, 411, 14375, 1330, 8799, 75, 4965, 14375, 198, 6738, 4406, 62, 76, 2502, 13, 8344, 3669, 13, 403, 2220, 62, 11578, 1330, 13407, 3118, 2220, 20854, 198, 6738, 4406, 62, 76, 2502, 13, 8344, 3669, 13, 8344, 3669, 62, 34945, 1330, 13407, 43055, 198, 6738, 4406, 62, 76, 2502, 13, 9945, 13, 48277, 1330, 1400, 12966, 5551, 33, 38811, 38149, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.697115
208
common_config = { } train_config = { "dataset_name": "matterport", "model_name": "ResNet18SkipConnection", "in_channel": 9, "device_ids": [0], "seed": 7122, "num_workers": 8, "mode": "train", "train_path": "/tmp2/tsunghan/new_matterport/v1", "lr": 1e-4, "batch_size": 8, "loss_func": {('depth(L2)', 'depth_L2_loss', 1.)}, "load_model_path": None, "param_only": False, "validation": True, "valid_path": "/tmp2/tsunghan/new_matterport/v1", "epoches": 100, "save_prefix": "", } test_config = { "dataset_name": "matterport", "model_name": "ResNet18SkipConnection", "in_channel": 9, "device_ids": [0, 1, 2, 3], "seed": 7122, "num_workers": 8, "mode": "test", "test_path": "/tmp2/tsunghan/new_matterport/v1", "lr": 1e-4, "batch_size": 1, "loss_func": {('depth(L2)', 'depth_L2_loss', 1.), ('img_grad', 'img_grad_loss', 1e-3)}, "load_model_path": "/tmp2/tsunghan/twcc_data/twcc_experience_resnet/matterport_ResNet18SkipConnection_b10_lr0.0001_/epoch_13.pt", "param_only": True, "epoches": 100, "save_prefix": "resnet", "output":"/tmp2/tsunghan/experiment_result/mat_npy/r18sc_epo13", }
[ 198, 11321, 62, 11250, 796, 1391, 198, 220, 220, 220, 1782, 198, 198, 27432, 62, 11250, 796, 1391, 198, 220, 220, 220, 366, 19608, 292, 316, 62, 3672, 1298, 366, 47635, 634, 1600, 198, 220, 220, 220, 366, 19849, 62, 3672, 1298, 366, 4965, 7934, 1507, 50232, 32048, 1600, 198, 220, 220, 220, 366, 259, 62, 17620, 1298, 860, 11, 198, 220, 220, 220, 366, 25202, 62, 2340, 1298, 685, 15, 4357, 198, 220, 220, 220, 366, 28826, 1298, 767, 18376, 11, 628, 220, 220, 220, 366, 22510, 62, 22896, 1298, 807, 11, 198, 220, 220, 220, 366, 14171, 1298, 366, 27432, 1600, 198, 220, 220, 220, 366, 27432, 62, 6978, 1298, 12813, 22065, 17, 14, 912, 403, 6064, 14, 3605, 62, 47635, 634, 14, 85, 16, 1600, 198, 220, 220, 220, 366, 14050, 1298, 352, 68, 12, 19, 11, 198, 220, 220, 220, 366, 43501, 62, 7857, 1298, 807, 11, 198, 220, 220, 220, 366, 22462, 62, 20786, 1298, 1391, 10786, 18053, 7, 43, 17, 8, 3256, 705, 18053, 62, 43, 17, 62, 22462, 3256, 352, 2014, 5512, 198, 220, 220, 220, 366, 2220, 62, 19849, 62, 6978, 1298, 6045, 11, 198, 220, 220, 220, 366, 17143, 62, 8807, 1298, 10352, 11, 198, 220, 220, 220, 366, 12102, 341, 1298, 6407, 11, 198, 220, 220, 220, 366, 12102, 62, 6978, 1298, 12813, 22065, 17, 14, 912, 403, 6064, 14, 3605, 62, 47635, 634, 14, 85, 16, 1600, 198, 220, 220, 220, 366, 538, 420, 956, 1298, 1802, 11, 198, 220, 220, 220, 366, 21928, 62, 40290, 1298, 366, 1600, 198, 92, 198, 198, 9288, 62, 11250, 796, 1391, 198, 220, 220, 220, 366, 19608, 292, 316, 62, 3672, 1298, 366, 47635, 634, 1600, 198, 220, 220, 220, 366, 19849, 62, 3672, 1298, 366, 4965, 7934, 1507, 50232, 32048, 1600, 198, 220, 220, 220, 366, 259, 62, 17620, 1298, 860, 11, 198, 220, 220, 220, 366, 25202, 62, 2340, 1298, 685, 15, 11, 352, 11, 362, 11, 513, 4357, 198, 220, 220, 220, 366, 28826, 1298, 767, 18376, 11, 198, 220, 220, 220, 366, 22510, 62, 22896, 1298, 807, 11, 628, 220, 220, 220, 366, 14171, 1298, 366, 9288, 1600, 198, 220, 220, 220, 366, 9288, 62, 6978, 1298, 12813, 22065, 17, 14, 912, 403, 6064, 14, 3605, 62, 47635, 634, 14, 85, 16, 1600, 198, 220, 220, 220, 366, 14050, 1298, 352, 68, 12, 19, 11, 198, 220, 220, 220, 366, 43501, 62, 7857, 1298, 352, 11, 198, 220, 220, 220, 366, 22462, 62, 20786, 1298, 1391, 10786, 18053, 7, 43, 17, 8, 3256, 705, 18053, 62, 43, 17, 62, 22462, 3256, 352, 12179, 19203, 9600, 62, 9744, 3256, 705, 9600, 62, 9744, 62, 22462, 3256, 352, 68, 12, 18, 8, 5512, 198, 220, 220, 220, 366, 2220, 62, 19849, 62, 6978, 1298, 12813, 22065, 17, 14, 912, 403, 6064, 14, 4246, 535, 62, 7890, 14, 4246, 535, 62, 23100, 1240, 62, 411, 3262, 14, 47635, 634, 62, 4965, 7934, 1507, 50232, 32048, 62, 65, 940, 62, 14050, 15, 13, 18005, 62, 14, 538, 5374, 62, 1485, 13, 457, 1600, 198, 220, 220, 220, 366, 17143, 62, 8807, 1298, 6407, 11, 198, 220, 220, 220, 366, 538, 420, 956, 1298, 1802, 11, 198, 220, 220, 220, 366, 21928, 62, 40290, 1298, 366, 411, 3262, 1600, 198, 220, 220, 220, 366, 22915, 15473, 22065, 17, 14, 912, 403, 6064, 14, 23100, 3681, 62, 20274, 14, 6759, 62, 77, 9078, 14, 81, 1507, 1416, 62, 538, 78, 1485, 1600, 198, 92, 198 ]
2.098107
581
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 17-8-13 上午11:33 # @Author : Tom.Lee # @CopyRight : 2016-2017 OpenBridge by yihecloud # @File : demo.py # @Product : PyCharm # @Docs : # @Source : import os from apscheduler.schedulers.blocking import BlockingScheduler if __name__ == '__main__': scheduler = BlockingScheduler() scheduler.add_job('sys:stdout.write', 'interval', seconds=3, args=['tick ...\n']) print('Press Ctrl+{0} to exit'.format('Break' if os.name == 'nt' else 'C')) try: scheduler.start() except (KeyboardInterrupt, SystemExit): pass
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 1596, 12, 23, 12, 1485, 220, 41468, 39355, 230, 1157, 25, 2091, 198, 2, 2488, 13838, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4186, 13, 24338, 198, 2, 2488, 29881, 11028, 220, 220, 220, 220, 220, 1058, 1584, 12, 5539, 4946, 37385, 416, 331, 72, 258, 17721, 198, 2, 2488, 8979, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 13605, 13, 9078, 198, 2, 2488, 15667, 220, 220, 220, 220, 220, 220, 220, 1058, 9485, 1925, 1670, 198, 2, 2488, 23579, 82, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 220, 198, 2, 2488, 7416, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 220, 628, 198, 11748, 28686, 198, 198, 6738, 257, 862, 1740, 18173, 13, 1416, 704, 377, 364, 13, 41938, 1330, 1086, 8629, 50, 1740, 18173, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 6038, 18173, 796, 1086, 8629, 50, 1740, 18173, 3419, 198, 220, 220, 220, 6038, 18173, 13, 2860, 62, 21858, 10786, 17597, 25, 19282, 448, 13, 13564, 3256, 705, 3849, 2100, 3256, 4201, 28, 18, 11, 26498, 28, 17816, 42298, 2644, 59, 77, 6, 12962, 198, 220, 220, 220, 3601, 10786, 13800, 19212, 10, 90, 15, 92, 284, 8420, 4458, 18982, 10786, 31737, 6, 611, 28686, 13, 3672, 6624, 705, 429, 6, 2073, 705, 34, 6, 4008, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 13, 9688, 3419, 198, 220, 220, 220, 2845, 357, 9218, 3526, 9492, 3622, 11, 4482, 30337, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
2.135922
309
from __future__ import absolute_import import atexit from . import Users from . import Devices from . import Collections from . import Messaging from . import Code from .Developers import * # allows you to import Developer from ClearBladeCore from . import cbLogs ############# # USERS # ############# ############### # DEVICES # ############### ############ # DATA # ############ ############ # MQTT # ############ ############ # CODE # ############
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 379, 37023, 198, 6738, 764, 1330, 18987, 198, 6738, 764, 1330, 29362, 198, 6738, 764, 1330, 50004, 198, 6738, 764, 1330, 10626, 3039, 198, 6738, 764, 1330, 6127, 198, 6738, 764, 19246, 364, 1330, 1635, 220, 1303, 3578, 345, 284, 1330, 23836, 422, 11459, 47520, 14055, 198, 6738, 764, 1330, 269, 65, 11187, 82, 628, 198, 220, 220, 220, 1303, 7804, 4242, 198, 220, 220, 220, 1303, 220, 220, 1294, 4877, 220, 220, 1303, 198, 220, 220, 220, 1303, 7804, 4242, 628, 220, 220, 220, 1303, 7804, 4242, 2235, 198, 220, 220, 220, 1303, 220, 220, 5550, 53, 34444, 220, 220, 1303, 198, 220, 220, 220, 1303, 7804, 4242, 2235, 628, 220, 220, 220, 1303, 7804, 21017, 198, 220, 220, 220, 1303, 220, 220, 42865, 220, 220, 1303, 198, 220, 220, 220, 1303, 7804, 21017, 628, 220, 220, 220, 1303, 7804, 21017, 198, 220, 220, 220, 1303, 220, 220, 337, 48, 15751, 220, 220, 1303, 198, 220, 220, 220, 1303, 7804, 21017, 628, 220, 220, 220, 1303, 7804, 21017, 198, 220, 220, 220, 1303, 220, 220, 42714, 220, 220, 1303, 198, 220, 220, 220, 1303, 7804, 21017, 628 ]
2.722222
198
if __name__ == '__main__': __main__()
[ 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 11593, 12417, 834, 3419, 198 ]
2.142857
21
""" CRUD class for Projects app """ from crudbuilder.abstract import BaseCrudBuilder from .models.project import Project from .models.stakeholder import Stakeholder class ProjectCrud(BaseCrudBuilder): """ CRUD class for Project model """ model = Project search_fields = ["id", "name", "description"] tables2_fields = ("name", "description", 'is_closed') tables2_css_class = "table table-bordered table-condensed" login_required = True permission_required = True # tables2_pagination = 20 # default is 10 modelform_excludes = ['created'] # permissions = {} # custom_templates = {} class StakeholderCrud(BaseCrudBuilder): """ CRUD class for Stakeholder model """ model = Stakeholder search_fields = ["full_name", ] tables2_fields = ("full_name", "organization") tables2_css_class = "table table-bordered table-condensed" login_required = True permission_required = True modelform_excludes = ['created']
[ 37811, 8740, 8322, 1398, 329, 29898, 598, 37227, 198, 6738, 1067, 463, 38272, 13, 397, 8709, 1330, 7308, 13916, 463, 32875, 198, 198, 6738, 764, 27530, 13, 16302, 1330, 4935, 198, 6738, 764, 27530, 13, 301, 539, 13829, 1330, 520, 539, 13829, 628, 198, 4871, 4935, 13916, 463, 7, 14881, 13916, 463, 32875, 2599, 198, 220, 220, 220, 37227, 8740, 8322, 1398, 329, 4935, 2746, 37227, 198, 220, 220, 220, 2746, 796, 4935, 198, 220, 220, 220, 2989, 62, 25747, 796, 14631, 312, 1600, 366, 3672, 1600, 366, 11213, 8973, 198, 220, 220, 220, 8893, 17, 62, 25747, 796, 5855, 3672, 1600, 366, 11213, 1600, 705, 271, 62, 20225, 11537, 198, 220, 220, 220, 8893, 17, 62, 25471, 62, 4871, 796, 366, 11487, 3084, 12, 65, 24071, 3084, 12, 17561, 15385, 1, 198, 220, 220, 220, 17594, 62, 35827, 796, 6407, 198, 220, 220, 220, 7170, 62, 35827, 796, 6407, 198, 220, 220, 220, 1303, 8893, 17, 62, 79, 363, 1883, 796, 1160, 220, 1303, 4277, 318, 838, 198, 220, 220, 220, 2746, 687, 62, 1069, 13955, 796, 37250, 25598, 20520, 628, 220, 220, 220, 1303, 21627, 796, 23884, 198, 220, 220, 220, 1303, 2183, 62, 11498, 17041, 796, 23884, 628, 198, 4871, 520, 539, 13829, 13916, 463, 7, 14881, 13916, 463, 32875, 2599, 198, 220, 220, 220, 37227, 8740, 8322, 1398, 329, 520, 539, 13829, 2746, 37227, 198, 220, 220, 220, 2746, 796, 520, 539, 13829, 198, 220, 220, 220, 2989, 62, 25747, 796, 14631, 12853, 62, 3672, 1600, 2361, 198, 220, 220, 220, 8893, 17, 62, 25747, 796, 5855, 12853, 62, 3672, 1600, 366, 9971, 1634, 4943, 198, 220, 220, 220, 8893, 17, 62, 25471, 62, 4871, 796, 366, 11487, 3084, 12, 65, 24071, 3084, 12, 17561, 15385, 1, 628, 220, 220, 220, 17594, 62, 35827, 796, 6407, 198, 220, 220, 220, 7170, 62, 35827, 796, 6407, 198, 220, 220, 220, 2746, 687, 62, 1069, 13955, 796, 37250, 25598, 20520, 628 ]
3.052632
323
import FWCore.ParameterSet.Config as cms omtfFwVersionSource = cms.ESSource( "EmptyESSource", recordName = cms.string('L1TMuonOverlapFwVersionRcd'), iovIsRunNotTime = cms.bool(True), firstValid = cms.vuint32(1) ) ###OMTF FW ESProducer. omtfFwVersion = cms.ESProducer( "L1TMuonOverlapFwVersionESProducer", algoVersion = cms.uint32(0x110), layersVersion = cms.uint32(6), patternsVersion = cms.uint32(3), synthDate = cms.string("2001-01-01 00:00") )
[ 11748, 48849, 14055, 13, 36301, 7248, 13, 16934, 355, 269, 907, 198, 198, 296, 27110, 37, 86, 14815, 7416, 796, 269, 907, 13, 1546, 7416, 7, 198, 220, 220, 220, 366, 40613, 1546, 7416, 1600, 198, 220, 220, 220, 1700, 5376, 796, 269, 907, 13, 8841, 10786, 43, 16, 15972, 84, 261, 5886, 37796, 37, 86, 14815, 49, 10210, 33809, 198, 220, 220, 220, 1312, 709, 3792, 10987, 3673, 7575, 796, 269, 907, 13, 30388, 7, 17821, 828, 198, 220, 220, 220, 717, 47139, 796, 269, 907, 13, 85, 28611, 2624, 7, 16, 8, 198, 8, 198, 198, 21017, 2662, 10234, 48849, 9428, 2076, 2189, 13, 198, 296, 27110, 37, 86, 14815, 796, 269, 907, 13, 1546, 11547, 2189, 7, 198, 220, 220, 220, 366, 43, 16, 15972, 84, 261, 5886, 37796, 37, 86, 14815, 1546, 11547, 2189, 1600, 198, 220, 220, 220, 435, 2188, 14815, 796, 269, 907, 13, 28611, 2624, 7, 15, 87, 11442, 828, 198, 220, 220, 220, 11685, 14815, 796, 269, 907, 13, 28611, 2624, 7, 21, 828, 198, 220, 220, 220, 7572, 14815, 796, 269, 907, 13, 28611, 2624, 7, 18, 828, 198, 220, 220, 220, 33549, 10430, 796, 269, 907, 13, 8841, 7203, 14585, 12, 486, 12, 486, 3571, 25, 405, 4943, 198, 8, 628 ]
2.303318
211
from __future__ import unicode_literals import frappe from frappe.utils import getdate, validate_email_add, today import datetime from planning.planning.myfunction import mail_format_pms,actual_date_update,close_task_update @frappe.whitelist() @frappe.whitelist() @frappe.whitelist()
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 5306, 27768, 198, 6738, 5306, 27768, 13, 26791, 1330, 651, 4475, 11, 26571, 62, 12888, 62, 2860, 11, 1909, 198, 11748, 4818, 8079, 198, 6738, 5410, 13, 11578, 768, 13, 1820, 8818, 1330, 6920, 62, 18982, 62, 79, 907, 11, 50039, 62, 4475, 62, 19119, 11, 19836, 62, 35943, 62, 19119, 198, 198, 31, 69, 430, 27768, 13, 1929, 270, 46331, 3419, 628, 628, 198, 198, 31, 69, 430, 27768, 13, 1929, 270, 46331, 3419, 628, 197, 198, 31, 69, 430, 27768, 13, 1929, 270, 46331, 3419, 198, 197 ]
2.910891
101
import json import subprocess import sys import redis
[ 11748, 33918, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 198, 11748, 2266, 271, 628, 628 ]
3.625
16
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from six.moves import urllib from girder.api.rest import getApiUrl from girder.exceptions import RestException from girder.models.setting import Setting from .base import ProviderBase from .. import constants
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 220, 15069, 10897, 1574, 3457, 13, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 262, 366, 34156, 1, 5619, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 6738, 2237, 13, 76, 5241, 1330, 2956, 297, 571, 198, 198, 6738, 37370, 1082, 13, 15042, 13, 2118, 1330, 651, 32, 14415, 28165, 198, 6738, 37370, 1082, 13, 1069, 11755, 1330, 8324, 16922, 198, 6738, 37370, 1082, 13, 27530, 13, 33990, 1330, 25700, 198, 6738, 764, 8692, 1330, 32549, 14881, 198, 6738, 11485, 1330, 38491, 628 ]
3.984064
251
from rest_framework import routers from .api import TodoViewSet router = routers.DefaultRouter() router.register('api/todos', TodoViewSet, 'todos') urlpatterns = router.urls
[ 6738, 1334, 62, 30604, 1330, 41144, 198, 198, 6738, 764, 15042, 1330, 309, 24313, 7680, 7248, 198, 198, 472, 353, 796, 41144, 13, 19463, 49, 39605, 3419, 198, 472, 353, 13, 30238, 10786, 15042, 14, 83, 375, 418, 3256, 309, 24313, 7680, 7248, 11, 705, 83, 375, 418, 11537, 198, 198, 6371, 33279, 82, 796, 20264, 13, 6371, 82, 198 ]
2.95
60
import os import pandas as pd import configuration
[ 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 11748, 8398, 628 ]
3.785714
14
import sys from converter import processPreTrainModels if __name__ == '__main__': if len(sys.argv) < 4: print("usage: {} proto caffemodel output_dir".format(sys.argv[0])) exit(0) proto = sys.argv[1] model = sys.argv[2] output = sys.argv[3] file_path = processPreTrainModels( proto, model, output) print("file_path is", file_path)
[ 198, 11748, 25064, 198, 6738, 38394, 1330, 1429, 6719, 44077, 5841, 1424, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1279, 604, 25, 198, 220, 220, 220, 3601, 7203, 26060, 25, 23884, 44876, 1275, 487, 368, 375, 417, 5072, 62, 15908, 1911, 18982, 7, 17597, 13, 853, 85, 58, 15, 60, 4008, 198, 220, 220, 220, 8420, 7, 15, 8, 198, 220, 220, 220, 220, 198, 220, 44876, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 2746, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 220, 5072, 796, 25064, 13, 853, 85, 58, 18, 60, 198, 220, 220, 220, 220, 198, 220, 2393, 62, 6978, 796, 1429, 6719, 44077, 5841, 1424, 7, 198, 220, 220, 220, 44876, 11, 198, 220, 220, 220, 2746, 11, 198, 220, 220, 220, 5072, 8, 198, 220, 220, 220, 220, 198, 220, 3601, 7203, 7753, 62, 6978, 318, 1600, 2393, 62, 6978, 8 ]
2.290909
165
from unittest import TestCase from mock import Mock from cloudshell.cp.aws.domain.common.vm_details_provider import VmDetailsProvider
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 15290, 1330, 44123, 198, 198, 6738, 6279, 29149, 13, 13155, 13, 8356, 13, 27830, 13, 11321, 13, 14761, 62, 36604, 62, 15234, 1304, 1330, 569, 76, 24259, 29495, 628 ]
3.578947
38
#!/bin/env python """Evaluate a demosaicking model.""" import argparse import os import time import torch as th from torch.utils.data import DataLoader import numpy as np import ttools from ttools.modules.image_operators import crop_like import demosaicnet LOG = ttools.get_logger(__name__) def main(args): """Entrypoint to the training.""" # Load model parameters from checkpoint, if any # meta = ttools.Checkpointer.load_meta(args.checkpoint_dir) # if meta is None: # LOG.warning("No checkpoint found at %s, aborting.", args.checkpoint_dir) # return meta = { 'mode': 'bayer', 'depth': 15, 'width': 64 } data = demosaicnet.Dataset(args.data, download=False, mode=meta["mode"], subset=demosaicnet.TEST_SUBSET) dataloader = DataLoader( data, batch_size=1, num_workers=4, pin_memory=True, shuffle=False) if meta["mode"] == demosaicnet.BAYER_MODE: model = demosaicnet.BayerDemosaick(depth=meta["depth"], width=meta["width"], pretrained=True, pad=False) elif meta["mode"] == demosaicnet.XTRANS_MODE: model = demosaicnet.XTransDemosaick(depth=meta["depth"], width=meta["width"], pretrained=True, pad=False) # checkpointer = ttools.Checkpointer(args.checkpoint_dir, model, meta=meta) # checkpointer.load_latest() # Resume from checkpoint, if any. state_dict = th.load(args.checkpoint_dir) model.load_state_dict(state_dict) # No need for gradients for p in model.parameters(): p.requires_grad = False mse_fn = th.nn.MSELoss() psnr_fn = PSNR() device = "cpu" if th.cuda.is_available(): device = "cuda" LOG.info("Using CUDA") count = 0 mse = 0.0 psnr = 0.0 for idx, batch in enumerate(dataloader): mosaic = batch[0].to(device) target = batch[1].to(device) output = model(mosaic) target = crop_like(target, output) output = th.clamp(output, 0, 1) psnr_ = psnr_fn(output, target).item() mse_ = mse_fn(output, target).item() psnr += psnr_ mse += mse_ count += 1 LOG.info("Image %04d, PSNR = %.1f dB, MSE = %.5f", idx, psnr_, mse_) mse /= count psnr /= count LOG.info("-----------------------------------") LOG.info("Average, PSNR = %.1f dB, MSE = %.5f", psnr, mse) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("data", help="root directory for the demosaicnet dataset.") parser.add_argument("checkpoint_dir", help="directory with the model checkpoints.") args = parser.parse_args() ttools.set_logger(False) main(args)
[ 2, 48443, 8800, 14, 24330, 21015, 198, 37811, 36, 2100, 4985, 257, 1357, 8546, 7958, 2746, 526, 15931, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 640, 198, 198, 11748, 28034, 355, 294, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 256, 31391, 198, 6738, 256, 31391, 13, 18170, 13, 9060, 62, 3575, 2024, 1330, 13833, 62, 2339, 198, 198, 11748, 1357, 8546, 291, 3262, 628, 198, 25294, 796, 256, 31391, 13, 1136, 62, 6404, 1362, 7, 834, 3672, 834, 8, 198, 198, 4299, 1388, 7, 22046, 2599, 198, 220, 220, 220, 37227, 30150, 4122, 284, 262, 3047, 526, 15931, 628, 220, 220, 220, 1303, 8778, 2746, 10007, 422, 26954, 11, 611, 597, 198, 220, 220, 220, 1303, 13634, 796, 256, 31391, 13, 9787, 29536, 13, 2220, 62, 28961, 7, 22046, 13, 9122, 4122, 62, 15908, 8, 198, 220, 220, 220, 1303, 611, 13634, 318, 6045, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 41605, 13, 43917, 7203, 2949, 26954, 1043, 379, 4064, 82, 11, 15614, 278, 33283, 26498, 13, 9122, 4122, 62, 15908, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 13634, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14171, 10354, 705, 65, 2794, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18053, 10354, 1315, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 5598, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1366, 796, 1357, 8546, 291, 3262, 13, 27354, 292, 316, 7, 22046, 13, 7890, 11, 4321, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 28961, 14692, 14171, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24637, 28, 9536, 8546, 291, 3262, 13, 51, 6465, 62, 12564, 4462, 2767, 8, 198, 220, 220, 220, 4818, 282, 1170, 263, 796, 6060, 17401, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 15458, 62, 7857, 28, 16, 11, 997, 62, 22896, 28, 19, 11, 6757, 62, 31673, 28, 17821, 11, 36273, 28, 25101, 8, 628, 220, 220, 220, 611, 13634, 14692, 14171, 8973, 6624, 1357, 8546, 291, 3262, 13, 4339, 56, 1137, 62, 49058, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 1357, 8546, 291, 3262, 13, 33, 2794, 11522, 8546, 624, 7, 18053, 28, 28961, 14692, 18053, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 28, 28961, 14692, 10394, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 28, 25101, 8, 198, 220, 220, 220, 1288, 361, 13634, 14692, 14171, 8973, 6624, 1357, 8546, 291, 3262, 13, 55, 5446, 15037, 62, 49058, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 1357, 8546, 291, 3262, 13, 55, 8291, 11522, 8546, 624, 7, 18053, 28, 28961, 14692, 18053, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 28, 28961, 14692, 10394, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 28, 25101, 8, 628, 220, 220, 220, 1303, 2198, 29536, 796, 256, 31391, 13, 9787, 29536, 7, 22046, 13, 9122, 4122, 62, 15908, 11, 2746, 11, 13634, 28, 28961, 8, 198, 220, 220, 220, 1303, 2198, 29536, 13, 2220, 62, 42861, 3419, 220, 1303, 1874, 2454, 422, 26954, 11, 611, 597, 13, 198, 220, 220, 220, 1181, 62, 11600, 796, 294, 13, 2220, 7, 22046, 13, 9122, 4122, 62, 15908, 8, 198, 220, 220, 220, 2746, 13, 2220, 62, 5219, 62, 11600, 7, 5219, 62, 11600, 8, 628, 220, 220, 220, 1303, 1400, 761, 329, 3915, 2334, 198, 220, 220, 220, 329, 279, 287, 2746, 13, 17143, 7307, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 47911, 62, 9744, 796, 10352, 628, 220, 220, 220, 285, 325, 62, 22184, 796, 294, 13, 20471, 13, 5653, 3698, 793, 3419, 198, 220, 220, 220, 279, 16184, 81, 62, 22184, 796, 6599, 24723, 3419, 628, 220, 220, 220, 3335, 796, 366, 36166, 1, 198, 220, 220, 220, 611, 294, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 796, 366, 66, 15339, 1, 198, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 10951, 7203, 12814, 29369, 5631, 4943, 628, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 285, 325, 796, 657, 13, 15, 198, 220, 220, 220, 279, 16184, 81, 796, 657, 13, 15, 198, 220, 220, 220, 329, 4686, 87, 11, 15458, 287, 27056, 378, 7, 67, 10254, 1170, 263, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 47076, 796, 15458, 58, 15, 4083, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 15458, 58, 16, 4083, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 7, 76, 8546, 291, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 13833, 62, 2339, 7, 16793, 11, 5072, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 294, 13, 565, 696, 7, 22915, 11, 657, 11, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 279, 16184, 81, 62, 796, 279, 16184, 81, 62, 22184, 7, 22915, 11, 2496, 737, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 325, 62, 796, 285, 325, 62, 22184, 7, 22915, 11, 2496, 737, 9186, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 279, 16184, 81, 15853, 279, 16184, 81, 62, 198, 220, 220, 220, 220, 220, 220, 220, 285, 325, 15853, 285, 325, 62, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 41605, 13, 10951, 7203, 5159, 4064, 3023, 67, 11, 6599, 24723, 796, 4064, 13, 16, 69, 30221, 11, 337, 5188, 796, 4064, 13, 20, 69, 1600, 4686, 87, 11, 279, 16184, 81, 62, 11, 285, 325, 62, 8, 628, 220, 220, 220, 285, 325, 1220, 28, 954, 198, 220, 220, 220, 279, 16184, 81, 1220, 28, 954, 628, 220, 220, 220, 41605, 13, 10951, 7203, 3880, 6329, 4943, 198, 220, 220, 220, 41605, 13, 10951, 7203, 26287, 11, 6599, 24723, 796, 4064, 13, 16, 69, 30221, 11, 337, 5188, 796, 4064, 13, 20, 69, 1600, 279, 16184, 81, 11, 285, 325, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 7890, 1600, 1037, 2625, 15763, 8619, 329, 262, 1357, 8546, 291, 3262, 27039, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 9122, 4122, 62, 15908, 1600, 1037, 2625, 34945, 351, 262, 2746, 36628, 19570, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 256, 31391, 13, 2617, 62, 6404, 1362, 7, 25101, 8, 198, 220, 220, 220, 1388, 7, 22046, 8, 198 ]
2.091289
1,435
''' @author: Sebastian Lapuschkin @maintainer: Sebastian Lapuschkin @contact: [email protected], [email protected] @date: 30.09.2015 @version: 1.0 @copyright: Copyright (c) 2015-2017, Sebastian Lapuschkin, Alexander Binder, Gregoire Montavon, Klaus-Robert Mueller, Wojciech Samek @license : BSD-2-Clause ''' import modules import model_io import numpy as np ; na = np.newaxis D,N = 2,200000 #this is the XOR problem. X = np.random.rand(N,D) #we want [NxD] data X = (X > 0.5)*1.0 Y = X[:,0] == X[:,1] Y = (np.vstack((Y, np.invert(Y)))*1.0).T # and [NxC] labels X += np.random.randn(N,D)*0.1 # add some noise to the data. #build a network nn = modules.Sequential([modules.Linear(2,3), modules.Tanh(),modules.Linear(3,15), modules.Tanh(), modules.Linear(15,15), modules.Tanh(), modules.Linear(15,3), modules.Tanh() ,modules.Linear(3,2), modules.SoftMax()]) #train the network. nn.train(X,Y,Xval=X,Yval=Y, batchsize = 5) #save the network model_io.write(nn, '../xor_net_small_1000.txt')
[ 7061, 6, 198, 31, 9800, 25, 26190, 26944, 385, 354, 5116, 198, 31, 76, 2913, 10613, 25, 26190, 26944, 385, 354, 5116, 198, 31, 32057, 25, 384, 65, 459, 666, 13, 37796, 385, 354, 5116, 31, 71, 5303, 13, 69, 430, 403, 71, 30288, 13, 2934, 11, 266, 13210, 66, 494, 354, 13, 31642, 74, 31, 71, 5303, 13, 69, 430, 403, 71, 30288, 13, 2934, 198, 31, 4475, 25, 1542, 13, 2931, 13, 4626, 198, 31, 9641, 25, 352, 13, 15, 198, 31, 22163, 4766, 25, 15069, 357, 66, 8, 220, 1853, 12, 5539, 11, 26190, 26944, 385, 354, 5116, 11, 10009, 347, 5540, 11, 11955, 2188, 557, 5575, 615, 261, 11, 49739, 12, 19156, 17768, 11, 370, 13210, 66, 494, 354, 16766, 74, 198, 31, 43085, 1058, 347, 10305, 12, 17, 12, 2601, 682, 198, 7061, 6, 198, 198, 11748, 13103, 198, 11748, 2746, 62, 952, 198, 198, 11748, 299, 32152, 355, 45941, 2162, 12385, 796, 45941, 13, 3605, 22704, 198, 198, 35, 11, 45, 796, 362, 11, 33470, 198, 198, 2, 5661, 318, 262, 1395, 1581, 1917, 13, 198, 55, 796, 45941, 13, 25120, 13, 25192, 7, 45, 11, 35, 8, 1303, 732, 765, 685, 45, 87, 35, 60, 1366, 198, 55, 796, 357, 55, 1875, 657, 13, 20, 27493, 16, 13, 15, 198, 56, 796, 1395, 58, 45299, 15, 60, 6624, 1395, 58, 45299, 16, 60, 198, 56, 796, 357, 37659, 13, 85, 25558, 19510, 56, 11, 45941, 13, 259, 1851, 7, 56, 22305, 9, 16, 13, 15, 737, 51, 1303, 290, 685, 45, 87, 34, 60, 14722, 198, 198, 55, 15853, 45941, 13, 25120, 13, 25192, 77, 7, 45, 11, 35, 27493, 15, 13, 16, 1303, 751, 617, 7838, 284, 262, 1366, 13, 198, 198, 2, 11249, 257, 3127, 198, 20471, 796, 13103, 13, 44015, 1843, 26933, 18170, 13, 14993, 451, 7, 17, 11, 18, 828, 13103, 13, 45557, 71, 22784, 18170, 13, 14993, 451, 7, 18, 11, 1314, 828, 13103, 13, 45557, 71, 22784, 13103, 13, 14993, 451, 7, 1314, 11, 1314, 828, 13103, 13, 45557, 71, 22784, 13103, 13, 14993, 451, 7, 1314, 11, 18, 828, 13103, 13, 45557, 71, 3419, 837, 18170, 13, 14993, 451, 7, 18, 11, 17, 828, 13103, 13, 18380, 11518, 3419, 12962, 198, 2, 27432, 262, 3127, 13, 198, 20471, 13, 27432, 7, 55, 11, 56, 11, 55, 2100, 28, 55, 11, 56, 2100, 28, 56, 11, 15458, 7857, 796, 642, 8, 198, 198, 2, 21928, 262, 3127, 198, 19849, 62, 952, 13, 13564, 7, 20471, 11, 705, 40720, 87, 273, 62, 3262, 62, 17470, 62, 12825, 13, 14116, 11537, 628, 628 ]
2.373272
434
#!/usr/bin/env python3 from aws_cdk import App from python.python_stack import PythonStack app = App() PythonStack(app, "TestStack") app.synth()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 3253, 82, 62, 10210, 74, 1330, 2034, 198, 198, 6738, 21015, 13, 29412, 62, 25558, 1330, 11361, 25896, 628, 198, 1324, 796, 2034, 3419, 198, 37906, 25896, 7, 1324, 11, 366, 14402, 25896, 4943, 198, 198, 1324, 13, 28869, 400, 3419, 198 ]
2.811321
53
from abc import ABCMeta, abstractmethod, abstractproperty class ParslExecutor(metaclass=ABCMeta): """Define the strict interface for all Executor classes. This is a metaclass that only enforces concrete implementations of functionality by the child classes. In addition to the listed methods, a ParslExecutor instance must always have a member field: label: str - a human readable label for the executor, unique with respect to other executors. An executor may optionally expose: storage_access: List[parsl.data_provider.staging.Staging] - a list of staging providers that will be used for file staging. In the absence of this attribute, or if this attribute is `None`, then a default value of `parsl.data_provider.staging.default_staging` will be used by the staging code. Typechecker note: Ideally storage_access would be declared on executor __init__ methods as List[Staging] - however, lists are by default invariant, not co-variant, and it looks like @typeguard cannot be persuaded otherwise. So if you're implementing an executor and want to @typeguard the constructor, you'll have to use List[Any] here. """ @abstractmethod def start(self, *args, **kwargs): """Start the executor. Any spin-up operations (for example: starting thread pools) should be performed here. """ pass @abstractmethod def submit(self, *args, **kwargs): """Submit. We haven't yet decided on what the args to this can be, whether it should just be func, args, kwargs or be the partially evaluated fn """ pass @abstractmethod def scale_out(self, *args, **kwargs): """Scale out method. We should have the scale out method simply take resource object which will have the scaling methods, scale_out itself should be a coroutine, since scaling tasks can be slow. """ pass @abstractmethod def scale_in(self, blocks): """Scale in method. Cause the executor to reduce the number of blocks by count. We should have the scale in method simply take resource object which will have the scaling methods, scale_in itself should be a coroutine, since scaling tasks can be slow. """ pass @abstractmethod def shutdown(self, *args, **kwargs): """Shutdown the executor. This includes all attached resources such as workers and controllers. """ pass @abstractproperty def scaling_enabled(self): """Specify if scaling is enabled. The callers of ParslExecutors need to differentiate between Executors and Executors wrapped in a resource provider """ pass @property def run_dir(self): """Path to the run directory. """ return self._run_dir @run_dir.setter @property def hub_address(self): """Address to the Hub for monitoring. """ return self._hub_address @hub_address.setter @property def hub_port(self): """Port to the Hub for monitoring. """ return self._hub_port @hub_port.setter
[ 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 11, 12531, 26745, 628, 198, 4871, 23042, 75, 23002, 38409, 7, 4164, 330, 31172, 28, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 7469, 500, 262, 7646, 7071, 329, 477, 8393, 38409, 6097, 13, 628, 220, 220, 220, 770, 318, 257, 1138, 330, 31172, 326, 691, 551, 27087, 10017, 25504, 286, 198, 220, 220, 220, 11244, 416, 262, 1200, 6097, 13, 628, 220, 220, 220, 554, 3090, 284, 262, 5610, 5050, 11, 257, 23042, 75, 23002, 38409, 4554, 1276, 1464, 198, 220, 220, 220, 423, 257, 2888, 2214, 25, 628, 220, 220, 220, 220, 220, 220, 6167, 25, 965, 532, 257, 1692, 31744, 6167, 329, 262, 3121, 273, 11, 3748, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2461, 284, 584, 3121, 669, 13, 628, 220, 220, 220, 1052, 3121, 273, 743, 42976, 15651, 25, 628, 220, 220, 220, 220, 220, 220, 6143, 62, 15526, 25, 7343, 58, 79, 945, 75, 13, 7890, 62, 15234, 1304, 13, 301, 3039, 13, 1273, 3039, 60, 532, 257, 1351, 286, 29475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9549, 326, 481, 307, 973, 329, 2393, 29475, 13, 554, 262, 8889, 286, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 11, 393, 611, 428, 11688, 318, 4600, 14202, 47671, 788, 257, 4277, 1988, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 79, 945, 75, 13, 7890, 62, 15234, 1304, 13, 301, 3039, 13, 12286, 62, 301, 3039, 63, 481, 307, 973, 416, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29475, 2438, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 9122, 263, 3465, 25, 40067, 6143, 62, 15526, 561, 307, 6875, 319, 3121, 273, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 15003, 834, 5050, 355, 7343, 58, 1273, 3039, 60, 532, 2158, 11, 8341, 389, 416, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25275, 415, 11, 407, 763, 12, 25641, 415, 11, 290, 340, 3073, 588, 2488, 4906, 14864, 2314, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25562, 4306, 13, 1406, 611, 345, 821, 15427, 281, 3121, 273, 290, 765, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 4906, 14864, 262, 23772, 11, 345, 1183, 423, 284, 779, 7343, 58, 7149, 60, 994, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 923, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10434, 262, 3121, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4377, 7906, 12, 929, 4560, 357, 1640, 1672, 25, 3599, 4704, 20354, 8, 815, 307, 6157, 994, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 9199, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 45135, 13, 628, 220, 220, 220, 220, 220, 220, 220, 775, 4398, 470, 1865, 3066, 319, 644, 262, 26498, 284, 428, 460, 307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1771, 340, 815, 655, 307, 25439, 11, 26498, 11, 479, 86, 22046, 393, 307, 262, 12387, 16726, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 5046, 62, 448, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29990, 503, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 775, 815, 423, 262, 5046, 503, 2446, 2391, 1011, 8271, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 543, 481, 423, 262, 20796, 5050, 11, 5046, 62, 448, 2346, 815, 307, 257, 1162, 28399, 11, 1201, 198, 220, 220, 220, 220, 220, 220, 220, 20796, 8861, 460, 307, 3105, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 5046, 62, 259, 7, 944, 11, 7021, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29990, 287, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 24228, 262, 3121, 273, 284, 4646, 262, 1271, 286, 7021, 416, 954, 13, 628, 220, 220, 220, 220, 220, 220, 220, 775, 815, 423, 262, 5046, 287, 2446, 2391, 1011, 8271, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 543, 481, 423, 262, 20796, 5050, 11, 5046, 62, 259, 2346, 815, 307, 257, 1162, 28399, 11, 1201, 198, 220, 220, 220, 220, 220, 220, 220, 20796, 8861, 460, 307, 3105, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 18325, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 39079, 2902, 262, 3121, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 3407, 477, 7223, 4133, 884, 355, 3259, 290, 20624, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 397, 8709, 26745, 198, 220, 220, 220, 825, 20796, 62, 25616, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22882, 1958, 611, 20796, 318, 9343, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 869, 364, 286, 23042, 75, 23002, 315, 669, 761, 284, 28754, 1022, 8393, 315, 669, 198, 220, 220, 220, 220, 220, 220, 220, 290, 8393, 315, 669, 12908, 287, 257, 8271, 10131, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1057, 62, 15908, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15235, 284, 262, 1057, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 5143, 62, 15908, 628, 220, 220, 220, 2488, 5143, 62, 15908, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 12575, 62, 21975, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20231, 284, 262, 14699, 329, 9904, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 40140, 62, 21975, 628, 220, 220, 220, 2488, 40140, 62, 21975, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 12575, 62, 634, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13924, 284, 262, 14699, 329, 9904, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 40140, 62, 634, 628, 220, 220, 220, 2488, 40140, 62, 634, 13, 2617, 353, 198 ]
2.665345
1,261
def fourier_transform(yi): """a, b = fourier_transform(yi). Real-valued Fourier transform that determines the coefficients of the Fourier series for a given signal y. The coefficients of the cosine terms are returned in the array a; those of the sine terms in the array b. Frequencies start at zero and do not exceed the Nyquist frequency. yi = {y1,y2,...,xn} """ xi = np.arange(yi.size) length = yi.size // 2 + 1 a, b = np.empty(length), np.empty(length) # Compute zero and Nyquist frequency cases a[0] = np.mean(yi) a[-1] = yi @ np.cos(np.pi * xi) / yi.size b[0] = 0.0 b[-1] = 0.0 # Compute ordinary cases (overwrite Nyquist if odd length) for index in range(1, length + yi.size % 2 - 1): arg = 2.0 * np.pi * xi * index / yi.size a[index] = 2.0 / yi.size * yi @ np.cos(arg) b[index] = 2.0 / yi.size * yi @ np.sin(arg) return a, b
[ 4299, 46287, 5277, 62, 35636, 7, 48111, 2599, 198, 220, 220, 220, 37227, 64, 11, 275, 796, 46287, 5277, 62, 35636, 7, 48111, 737, 198, 220, 220, 220, 6416, 12, 39728, 34296, 5277, 6121, 326, 15947, 262, 198, 220, 220, 220, 44036, 286, 262, 34296, 5277, 2168, 329, 257, 1813, 198, 220, 220, 220, 6737, 331, 13, 383, 44036, 286, 262, 8615, 500, 2846, 389, 198, 220, 220, 220, 4504, 287, 262, 7177, 257, 26, 883, 286, 262, 264, 500, 2846, 198, 220, 220, 220, 287, 262, 7177, 275, 13, 22192, 3976, 923, 379, 6632, 290, 466, 198, 220, 220, 220, 407, 7074, 262, 17735, 30062, 8373, 13, 198, 220, 220, 220, 331, 72, 220, 220, 220, 220, 796, 1391, 88, 16, 11, 88, 17, 42303, 11, 87, 77, 92, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 72, 796, 45941, 13, 283, 858, 7, 48111, 13, 7857, 8, 198, 220, 220, 220, 4129, 796, 331, 72, 13, 7857, 3373, 362, 1343, 352, 198, 220, 220, 220, 257, 11, 275, 796, 45941, 13, 28920, 7, 13664, 828, 45941, 13, 28920, 7, 13664, 8, 198, 220, 220, 220, 1303, 3082, 1133, 6632, 290, 17735, 30062, 8373, 2663, 198, 220, 220, 220, 257, 58, 15, 60, 796, 45941, 13, 32604, 7, 48111, 8, 198, 220, 220, 220, 257, 58, 12, 16, 60, 796, 331, 72, 2488, 45941, 13, 6966, 7, 37659, 13, 14415, 1635, 2124, 72, 8, 1220, 331, 72, 13, 7857, 198, 220, 220, 220, 275, 58, 15, 60, 796, 657, 13, 15, 198, 220, 220, 220, 275, 58, 12, 16, 60, 796, 657, 13, 15, 220, 198, 220, 220, 220, 1303, 3082, 1133, 8850, 2663, 357, 2502, 13564, 17735, 30062, 611, 5629, 4129, 8, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 16, 11, 4129, 1343, 331, 72, 13, 7857, 4064, 362, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 796, 362, 13, 15, 1635, 45941, 13, 14415, 1635, 2124, 72, 1635, 6376, 1220, 331, 72, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 257, 58, 9630, 60, 796, 362, 13, 15, 1220, 331, 72, 13, 7857, 1635, 331, 72, 2488, 45941, 13, 6966, 7, 853, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 58, 9630, 60, 796, 362, 13, 15, 1220, 331, 72, 13, 7857, 1635, 331, 72, 2488, 45941, 13, 31369, 7, 853, 8, 198, 220, 220, 220, 1441, 257, 11, 275 ]
2.320988
405
import cv2 import numpy as np from math import pow, sqrt points = [] letters = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ") image = np.zeros((512, 512, 3), np.uint8) while True: cv2.putText(image, f'TO CLEAR THE POINTS PRESS (c)', (20, 20), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) cv2.imshow("DISTANCE BETWEEN TWO POINTS", image) cv2.setMouseCallback("DISTANCE BETWEEN TWO POINTS", mouseEvent, None) key = cv2.waitKey(1) if key & 0xFF == 27: cv2.destroyAllWindows() break elif key & 0xFF == ord('c'): image = np.zeros((512, 512, 3), np.uint8) points = [] # cm = pixels / 96 * 2.54
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 10688, 1330, 7182, 11, 19862, 17034, 198, 198, 13033, 796, 17635, 198, 15653, 796, 1351, 7203, 24694, 32988, 17511, 23852, 42, 31288, 45, 3185, 48, 49, 2257, 52, 30133, 34278, 57, 4943, 198, 9060, 796, 45941, 13, 9107, 418, 19510, 25836, 11, 22243, 11, 513, 828, 45941, 13, 28611, 23, 8, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 9060, 11, 277, 6, 10468, 30301, 1503, 3336, 19922, 1268, 4694, 44310, 357, 66, 8, 3256, 357, 1238, 11, 1160, 828, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 6489, 29833, 11, 352, 11, 357, 13381, 11, 14280, 11, 14280, 828, 352, 8, 198, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 35, 8808, 19240, 38651, 8845, 1677, 35288, 19922, 1268, 4694, 1600, 2939, 8, 198, 220, 220, 220, 269, 85, 17, 13, 2617, 39643, 47258, 7203, 35, 8808, 19240, 38651, 8845, 1677, 35288, 19922, 1268, 4694, 1600, 10211, 9237, 11, 6045, 8, 198, 220, 220, 220, 1994, 796, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 198, 220, 220, 220, 611, 1994, 1222, 657, 87, 5777, 6624, 2681, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 41659, 3237, 11209, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1288, 361, 1994, 1222, 657, 87, 5777, 6624, 2760, 10786, 66, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 45941, 13, 9107, 418, 19510, 25836, 11, 22243, 11, 513, 828, 45941, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2173, 796, 17635, 198, 2, 12067, 796, 17848, 1220, 9907, 1635, 362, 13, 4051, 198 ]
2.141414
297
import json import pandas as pd import numpy as np from pandas import DataFrame """ output """ # Note: some output is shortened to save spaces. # This file introduces methods to group data. # Data from https://github.com/mwaskom/seaborn-data df = pd.read_csv('E:\\tips.csv') """ total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4 5 25.29 4.71 Male No Sun Dinner 4 .. ... ... ... ... ... ... ... 240 27.18 2.00 Female Yes Sat Dinner 2 241 22.67 2.00 Male Yes Sat Dinner 2 242 17.82 1.75 Male No Sat Dinner 2 243 18.78 3.00 Female No Thur Dinner 2 [244 rows x 7 columns] """ # ------------------------------------------------------------------------------ # if we want to form group based on 'day' column group = df.groupby('day') # print out the first value (first line) in each group print (group.first()) """ total_bill tip sex smoker time size day Fri 28.97 3.00 Male Yes Dinner 2 Sat 20.65 3.35 Male No Dinner 3 Sun 16.99 1.01 Female No Dinner 2 Thur 27.20 4.00 Male No Lunch 4 """ # print out the last value (last line) in each group print (group.first()) """ total_bill tip sex smoker time size day Fri 10.09 2.00 Female Yes Lunch 2 Sat 17.82 1.75 Male No Dinner 2 Sun 15.69 1.50 Male Yes Dinner 2 Thur 18.78 3.00 Female No Dinner 2 """
[ 11748, 33918, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 19798, 292, 1330, 6060, 19778, 198, 198, 37811, 198, 22915, 198, 37811, 198, 2, 5740, 25, 617, 5072, 318, 34464, 284, 3613, 9029, 13, 198, 198, 2, 770, 2393, 20718, 5050, 284, 1448, 1366, 13, 198, 198, 2, 6060, 422, 3740, 1378, 12567, 13, 785, 14, 76, 86, 2093, 296, 14, 325, 397, 1211, 12, 7890, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 36, 25, 6852, 41315, 13, 40664, 11537, 198, 198, 37811, 198, 220, 220, 220, 220, 2472, 62, 35546, 220, 220, 8171, 220, 220, 220, 220, 1714, 41644, 220, 220, 1110, 220, 220, 220, 640, 220, 2546, 198, 15, 220, 220, 220, 220, 220, 220, 220, 220, 1467, 13, 2079, 220, 352, 13, 486, 220, 15396, 220, 220, 220, 220, 1400, 220, 220, 3825, 220, 34584, 220, 220, 220, 220, 362, 198, 16, 220, 220, 220, 220, 220, 220, 220, 220, 838, 13, 2682, 220, 352, 13, 2791, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 220, 3825, 220, 34584, 220, 220, 220, 220, 513, 198, 17, 220, 220, 220, 220, 220, 220, 220, 220, 2310, 13, 486, 220, 513, 13, 1120, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 220, 3825, 220, 34584, 220, 220, 220, 220, 513, 198, 18, 220, 220, 220, 220, 220, 220, 220, 220, 2242, 13, 3104, 220, 513, 13, 3132, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 220, 3825, 220, 34584, 220, 220, 220, 220, 362, 198, 19, 220, 220, 220, 220, 220, 220, 220, 220, 1987, 13, 3270, 220, 513, 13, 5333, 220, 15396, 220, 220, 220, 220, 1400, 220, 220, 3825, 220, 34584, 220, 220, 220, 220, 604, 198, 20, 220, 220, 220, 220, 220, 220, 220, 220, 1679, 13, 1959, 220, 604, 13, 4869, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 220, 3825, 220, 34584, 220, 220, 220, 220, 604, 198, 492, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 2644, 220, 220, 220, 220, 2644, 220, 220, 220, 2644, 220, 220, 2644, 220, 220, 220, 220, 2644, 220, 220, 2644, 198, 16102, 220, 220, 220, 220, 220, 220, 2681, 13, 1507, 220, 362, 13, 405, 220, 15396, 220, 220, 220, 3363, 220, 220, 7031, 220, 34584, 220, 220, 220, 220, 362, 198, 28872, 220, 220, 220, 220, 220, 220, 2534, 13, 3134, 220, 362, 13, 405, 220, 220, 220, 12674, 220, 220, 220, 3363, 220, 220, 7031, 220, 34584, 220, 220, 220, 220, 362, 198, 27877, 220, 220, 220, 220, 220, 220, 1596, 13, 6469, 220, 352, 13, 2425, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 220, 7031, 220, 34584, 220, 220, 220, 220, 362, 198, 26660, 220, 220, 220, 220, 220, 220, 1248, 13, 3695, 220, 513, 13, 405, 220, 15396, 220, 220, 220, 220, 1400, 220, 36975, 220, 34584, 220, 220, 220, 220, 362, 198, 58, 25707, 15274, 2124, 767, 15180, 60, 198, 37811, 198, 198, 2, 16529, 26171, 198, 2, 611, 356, 765, 284, 1296, 1448, 1912, 319, 705, 820, 6, 5721, 198, 198, 8094, 796, 47764, 13, 8094, 1525, 10786, 820, 11537, 198, 198, 2, 3601, 503, 262, 717, 1988, 357, 11085, 1627, 8, 287, 1123, 1448, 198, 4798, 357, 8094, 13, 11085, 28955, 198, 198, 37811, 198, 220, 220, 220, 220, 220, 2472, 62, 35546, 220, 220, 8171, 220, 220, 220, 220, 1714, 41644, 220, 220, 220, 640, 220, 2546, 198, 820, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 30214, 220, 220, 220, 220, 220, 220, 220, 2579, 13, 5607, 220, 513, 13, 405, 220, 220, 220, 12674, 220, 220, 220, 3363, 220, 34584, 220, 220, 220, 220, 362, 198, 20245, 220, 220, 220, 220, 220, 220, 220, 1160, 13, 2996, 220, 513, 13, 2327, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 34584, 220, 220, 220, 220, 513, 198, 16012, 220, 220, 220, 220, 220, 220, 220, 1467, 13, 2079, 220, 352, 13, 486, 220, 15396, 220, 220, 220, 220, 1400, 220, 34584, 220, 220, 220, 220, 362, 198, 817, 333, 220, 220, 220, 220, 220, 220, 2681, 13, 1238, 220, 604, 13, 405, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 220, 40514, 220, 220, 220, 220, 604, 198, 37811, 198, 198, 2, 3601, 503, 262, 938, 1988, 357, 12957, 1627, 8, 287, 1123, 1448, 198, 4798, 357, 8094, 13, 11085, 28955, 198, 198, 37811, 198, 220, 220, 220, 220, 220, 2472, 62, 35546, 220, 220, 8171, 220, 220, 220, 220, 1714, 41644, 220, 220, 220, 640, 220, 2546, 198, 820, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 30214, 220, 220, 220, 220, 220, 220, 220, 838, 13, 2931, 220, 362, 13, 405, 220, 15396, 220, 220, 220, 3363, 220, 220, 40514, 220, 220, 220, 220, 362, 198, 20245, 220, 220, 220, 220, 220, 220, 220, 1596, 13, 6469, 220, 352, 13, 2425, 220, 220, 220, 12674, 220, 220, 220, 220, 1400, 220, 34584, 220, 220, 220, 220, 362, 198, 16012, 220, 220, 220, 220, 220, 220, 220, 1315, 13, 3388, 220, 352, 13, 1120, 220, 220, 220, 12674, 220, 220, 220, 3363, 220, 34584, 220, 220, 220, 220, 362, 198, 817, 333, 220, 220, 220, 220, 220, 220, 1248, 13, 3695, 220, 513, 13, 405, 220, 15396, 220, 220, 220, 220, 1400, 220, 34584, 220, 220, 220, 220, 362, 198, 37811, 198 ]
1.973658
987
# -*- coding: utf-8 -*- # Copyright (C) 2012, Almar Klein # # Visvis is distributed under the terms of the (new) BSD License. # The full license can be found in 'license.txt'. def reportIssue(): """ help() Open a webbrowser with the visvis website at the issue list. """ import webbrowser webbrowser.open("http://code.google.com/p/visvis/issues/list") if __name__ == '__main__': reportIssue()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 34, 8, 2321, 11, 978, 3876, 22864, 198, 2, 198, 2, 6911, 4703, 318, 9387, 739, 262, 2846, 286, 262, 357, 3605, 8, 347, 10305, 13789, 13, 198, 2, 383, 1336, 5964, 460, 307, 1043, 287, 705, 43085, 13, 14116, 4458, 198, 198, 4299, 989, 45147, 33529, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 1037, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 4946, 257, 3992, 40259, 351, 262, 1490, 4703, 3052, 379, 262, 2071, 1351, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 3992, 40259, 198, 220, 220, 220, 3992, 40259, 13, 9654, 7203, 4023, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 4703, 4703, 14, 37165, 14, 4868, 4943, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 989, 45147, 3419, 198 ]
2.638554
166
#!/usr/bin/python def printme3( str ): "This prints a passed string into this function" print(str) return def printme3too( str ): "This prints a passed string into this function" print(str) return
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 4299, 3601, 1326, 18, 7, 965, 15179, 198, 220, 220, 366, 1212, 20842, 257, 3804, 4731, 656, 428, 2163, 1, 198, 220, 220, 3601, 7, 2536, 8, 198, 220, 220, 1441, 198, 198, 4299, 3601, 1326, 18, 18820, 7, 965, 15179, 198, 220, 220, 366, 1212, 20842, 257, 3804, 4731, 656, 428, 2163, 1, 198, 220, 220, 3601, 7, 2536, 8, 198, 220, 220, 1441, 198 ]
2.893333
75
""" Week 2, day 7, lec 7 """ # i = 5 # while i >= 0: # i = i - 1 # if i == 3: # # break #breaks the smallest loop # # continue #skips the current iteration and moves on # # pass #does nothing, but is placehold if you need something for syntax # print(i) # for word in 'hello world'.split(): # print(word) # for str_item in word: # if str_item == '1': # break # print(str_item) # try: # print(1/0) # except ZeroDivisionError: # print('error') i = 5 while i >= 0: try: print(1/(i-3)) except: pass i = i - 1
[ 37811, 198, 20916, 362, 11, 1110, 767, 11, 443, 66, 767, 198, 37811, 198, 198, 2, 1312, 796, 642, 198, 2, 981, 1312, 18189, 657, 25, 198, 2, 220, 220, 220, 220, 1312, 796, 1312, 532, 352, 198, 2, 220, 220, 220, 220, 611, 1312, 6624, 513, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2270, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30058, 262, 18197, 9052, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2555, 220, 220, 220, 220, 220, 1303, 8135, 2419, 262, 1459, 24415, 290, 6100, 319, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1208, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22437, 2147, 11, 475, 318, 1295, 2946, 611, 345, 761, 1223, 329, 15582, 198, 2, 220, 220, 220, 220, 3601, 7, 72, 8, 198, 198, 2, 329, 1573, 287, 705, 31373, 995, 4458, 35312, 33529, 198, 2, 220, 220, 220, 220, 3601, 7, 4775, 8, 198, 2, 220, 220, 220, 220, 329, 965, 62, 9186, 287, 1573, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 965, 62, 9186, 6624, 705, 16, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 62, 9186, 8, 198, 198, 2, 1949, 25, 198, 2, 220, 220, 220, 220, 3601, 7, 16, 14, 15, 8, 198, 2, 2845, 12169, 24095, 1166, 12331, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18224, 11537, 198, 198, 72, 796, 642, 198, 4514, 1312, 18189, 657, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 16, 29006, 72, 12, 18, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1312, 796, 1312, 532, 352 ]
1.981481
324
import pandas as pd import numpy as np from collections import Counter from datetime import datetime from nltk.tokenize import RegexpTokenizer from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import re def annotate_logs(comments, tickets): """ Annotates comments and tickets with additional information: 1. whether the body was updated (Boolean) 2. the number of PRs and issues opened by the comment author at the time of the comment posting 3. comment order (comment dataframe only) 4. identify whether ticket is closed (Boolean; ticket dataframe only) 5. identify whether a comment is associated to an issue or a PR Requires: pandas Parameters ---------- comments : pd.DataFrame tickets : pd.DataFrame Returns ------- The same dataframe, but with additional columns Examples -------- >> import pandas as pd >> import utils >> tickets = pd.read_csv("data/numpy/issues.tsv", sep="\t") >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate_logs(comments, tickets) """ # identify whether the body of comments or tickets were updated comments["was_updated"] = comments["created_at"] != comments["updated_at"] tickets["was_updated"] = tickets["created_at"] != tickets["updated_at"] # comments df: add number of PRs created by author to date num_PR_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "pull_request") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(comments["created_at"], comments["author_id"])] comments["num_PR_created"] = num_PR_per_pers # issues df: add number of PRs created by author to date num_PR_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "pull_request") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(tickets["created_at"], tickets["author_id"])] tickets["num_PR_created"] = num_PR_per_pers # comments df: add number of issues created by author to date num_issue_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "issue") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(comments["created_at"], comments["author_id"])] comments["num_issue_created"] = num_issue_per_pers # tickets df: add number of issues created by author to date num_issue_per_pers = [ sum((tickets["created_at"] < created_at) & (tickets["type"] == "issue") & (tickets["author_id"] == author_id)) for created_at, author_id in zip(tickets["created_at"], tickets["author_id"])] tickets["num_issue_created"] = num_issue_per_pers # track the comment order comments['comment_order'] = comments.sort_values(by=['created_at']) \ .groupby(by=['ticket_id']) \ .cumcount() # identify whether the PR is closed tickets['is_closed'] = pd.notnull(tickets['closed_at']) mask = tickets["closed_at"].isnull() tickets.loc[mask, "closed_at"] = pd.to_datetime(datetime.now()) open_duration = ( pd.to_datetime(tickets["closed_at"]) - pd.to_datetime(tickets["created_at"])) tickets["open_duration"] = open_duration.apply( lambda x: x.total_seconds()) # Now we want to remove this estimate for anything created before 1970 m = [True if c.startswith("1970") else False for c in tickets["created_at"]] tickets.loc[m, "open_duration"] = np.nan # For each comment, get the information on when the corresponding ticket # has been opened when it is available (comments can also be added to # commits) tickets.set_index("ticket_id", inplace=True, drop=False) # We're using the reindex function to tacket the case where we don't have # the ticket associated to a particular comment. comments["ticket_created_at"] = tickets.reindex( comments["ticket_id"])["created_at"].values comments["type"] = tickets.reindex( comments["ticket_id"])["type"].values # Reset the old index tickets.set_index("id", inplace=True, drop=False) # return the dataframes return comments, tickets def body_cleanup(comments, grateful_list, bot_list): """ Prepare comment or issue dataframe for text analysis: 1. Count number of times gratitude words appear in HTML comments (i.e., auto-generated templates for PRs and issues provided by projects) 2. Remove HTML comments 3. Remove quoted text 4. Strip newlines 5. Count and remove code blocks 6. Identify other users referenced in body 7. Flag whether the author was a bot Requires: pandas , nltk , collections , re Parameters ---------- comments : pd.DataFrame, ideally annotated with `annotate_logs()`; can be run with either comments df or issues/tickets df grateful_list : list or pd.Series of gratitude words to identify; currently works only with grateful unigrams bot_list : list or pd.Series of bot usernames to be ignored Returns ------- The same dataframe, but with cleaned body text and new columns (code_blocks , referenced_users , bot_flag) Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) """ # replace all NaN with empty strings comments['body'] = comments['body'].replace(np.nan, '', regex=True) # count thanks in HTML comments comments['html_comments'] = comments['body'].str.findall('(\<\!--.*?--\>)').apply(' '.join) # tokenize and count words tokenizer = RegexpTokenizer(r'\w+') comments['html_tokenized'] = comments['html_comments'].apply(str.lower).apply(tokenizer.tokenize) comments['html_word_count'] = comments['html_tokenized'].apply(lambda x: Counter(x)) # count words if they're in our grateful list comments['automatic_grateful_count'] = ( comments['html_word_count'].apply( lambda x: np.sum([v for k, v in x.items() if k in grateful_list]))) # let us know which ones were used comments['automatic_grateful_list'] = ( comments['html_word_count'].apply( lambda x: [k for k in x if k in grateful_list])) # remove the columns we don't need anymore comments = comments.drop(columns=['html_tokenized', 'html_word_count']) # remove the HTML comments from the body comments['body'] = (comments['body'].str.replace( "(<!--.*?-->)", " ", regex=True, flags=re.DOTALL)) # remove text quotes comments['body'] = (comments['body'].replace( "(^|\n|\r)+\>.*(?=\n|$)", " ", regex=True)) # remove newlines comments['body'] = (comments['body'].replace( "[\n\r]+", " ", regex=True)) # count and then remove code blocks comments['code_blocks'] = comments['body'].str.count("\`{3}")/2 comments['body'] = (comments['body'].replace( "\`{3}.*\`{3}", " ", regex=True)) # identify other humans comments['referenced_users'] = comments['body'].str.findall('@\w{1,}') # identify bots comments['bot_flag'] = comments['author_name'].isin(bot_list) # return our dataframe return comments def add_sentiment(comments): """ Add sentiment analysis scores to comments dataframe: * negative emotion * positive emotion * neutral emotion * compound emotion Requires: pandas , vaderSentiment For more on vaderSentiment, see https://github.com/cjhutto/vaderSentiment Parameters ---------- comments : pd.DataFrame ideally after `annotate_logs()` and `body_cleanup()`; can be run with either comments df or issues/tickets df Returns ------- The same dataframe but with new sentiment columns Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) >> comments = utils.annotate.add_sentiment(comments) """ # initialize sentiment analyzer analyser = SentimentIntensityAnalyzer() # remove NaNs comments['body'] = comments['body'].replace(np.nan, ' ', regex=True) # run sentiment analyzer over each comment body sentiment_df = ( comments['body'] .apply(analyser.polarity_scores) .astype(str) .str.strip('{}') .str.split(', ', expand=True)) # split the emotion output dictionary into new columns # (thanks to https://stackoverflow.com/a/13053267 for partial solution) comments['negative_emotion'] = sentiment_df[0].str.split( ': ').str[-1].astype(float) comments['neutral_emotion'] = sentiment_df[1].str.split( ': ').str[-1].astype(float) comments['positive_emotion'] = sentiment_df[2].str.split( ': ').str[-1].astype(float) comments['compound_emotion'] = sentiment_df[3].str.split( ': ').str[-1].astype(float) # return our dataframe return comments def add_gratitude(comments, grateful_list): """ Track expressions of gratitude: * overall counts * specific words Thanks to https://stackoverflow.com/a/47686394 Requires: pandas , nltk , collections Parameters ---------- comments : pd.DataFrame ideally after `annotate_logs()` and `body_cleanup()`; can be run with either comments df or issues/tickets df grateful_list : list or pd.Series of gratitude words to identify; currently works only with grateful unigrams Returns ------- The same dataframe but with new gratitude columns Examples -------- >> import pandas as pd >> import utils >> comments = pd.read_csv("data/numpy/comments.tsv", sep="\t") >> comments, tickets = utils.annotate.annotate_logs(comments, tickets) >> comments = utils.annotate.body_cleanup(comments, bot_list_df) >> comments = utils.annotate.add_gratitude(comments) """ # tokenize and count words tokenizer = RegexpTokenizer(r'\w+') comments['tokenized'] = comments['body'].apply( str.lower).apply(tokenizer.tokenize) comments['word_count'] = comments['tokenized'].apply(lambda x: Counter(x)) # count words if they're in our grateful list comments['grateful_count'] = ( comments['word_count'].apply( lambda x: np.sum([v for k, v in x.items() if k in grateful_list]))) # let us know which ones were used comments['grateful_list'] = ( comments['word_count'].apply( lambda x: [k for k in x if k in grateful_list])) # remove the columns we don't need anymore comments = comments.drop(columns=['tokenized', 'word_count']) # spit back our dataframe now return comments
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 17268, 1330, 15034, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 797, 25636, 79, 30642, 7509, 198, 6738, 410, 5067, 31837, 3681, 13, 85, 5067, 31837, 3681, 1330, 11352, 3681, 5317, 6377, 37702, 9107, 198, 11748, 302, 628, 198, 4299, 24708, 378, 62, 6404, 82, 7, 15944, 11, 8587, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 1662, 689, 3651, 290, 8587, 351, 3224, 1321, 25, 628, 220, 220, 220, 352, 13, 1771, 262, 1767, 373, 6153, 357, 46120, 13087, 8, 198, 220, 220, 220, 362, 13, 262, 1271, 286, 4810, 82, 290, 2428, 4721, 416, 262, 2912, 1772, 379, 262, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 2912, 10754, 198, 220, 220, 220, 513, 13, 2912, 1502, 357, 23893, 1366, 14535, 691, 8, 198, 220, 220, 220, 604, 13, 5911, 1771, 7846, 318, 4838, 357, 46120, 13087, 26, 7846, 1366, 14535, 691, 8, 198, 220, 220, 220, 642, 13, 5911, 1771, 257, 2912, 318, 3917, 284, 281, 2071, 393, 257, 4810, 628, 220, 220, 220, 26848, 25, 19798, 292, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3651, 1058, 279, 67, 13, 6601, 19778, 628, 220, 220, 220, 8587, 1058, 279, 67, 13, 6601, 19778, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 383, 976, 1366, 14535, 11, 475, 351, 3224, 15180, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 9609, 1330, 19798, 292, 355, 279, 67, 198, 220, 220, 220, 9609, 1330, 3384, 4487, 198, 220, 220, 220, 9609, 8587, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 77, 32152, 14, 37165, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 9609, 3651, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 77, 32152, 14, 15944, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 9609, 3651, 11, 8587, 796, 3384, 4487, 13, 34574, 378, 62, 6404, 82, 7, 15944, 11, 8587, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 5911, 1771, 262, 1767, 286, 3651, 393, 8587, 547, 6153, 198, 220, 220, 220, 3651, 14692, 9776, 62, 43162, 8973, 796, 3651, 14692, 25598, 62, 265, 8973, 14512, 3651, 14692, 43162, 62, 265, 8973, 198, 220, 220, 220, 8587, 14692, 9776, 62, 43162, 8973, 796, 8587, 14692, 25598, 62, 265, 8973, 14512, 8587, 14692, 43162, 62, 265, 8973, 628, 220, 220, 220, 1303, 3651, 47764, 25, 751, 1271, 286, 4810, 82, 2727, 416, 1772, 284, 3128, 198, 220, 220, 220, 997, 62, 4805, 62, 525, 62, 19276, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 19510, 83, 15970, 14692, 25598, 62, 265, 8973, 1279, 2727, 62, 265, 8, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 4906, 8973, 6624, 366, 31216, 62, 25927, 4943, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 9800, 62, 312, 8973, 6624, 1772, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2727, 62, 265, 11, 1772, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 287, 19974, 7, 15944, 14692, 25598, 62, 265, 33116, 3651, 14692, 9800, 62, 312, 8973, 15437, 198, 220, 220, 220, 3651, 14692, 22510, 62, 4805, 62, 25598, 8973, 796, 997, 62, 4805, 62, 525, 62, 19276, 628, 220, 220, 220, 1303, 2428, 47764, 25, 751, 1271, 286, 4810, 82, 2727, 416, 1772, 284, 3128, 198, 220, 220, 220, 997, 62, 4805, 62, 525, 62, 19276, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 19510, 83, 15970, 14692, 25598, 62, 265, 8973, 1279, 2727, 62, 265, 8, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 4906, 8973, 6624, 366, 31216, 62, 25927, 4943, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 9800, 62, 312, 8973, 6624, 1772, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2727, 62, 265, 11, 1772, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 287, 19974, 7, 83, 15970, 14692, 25598, 62, 265, 33116, 8587, 14692, 9800, 62, 312, 8973, 15437, 198, 220, 220, 220, 8587, 14692, 22510, 62, 4805, 62, 25598, 8973, 796, 997, 62, 4805, 62, 525, 62, 19276, 628, 220, 220, 220, 1303, 3651, 47764, 25, 751, 1271, 286, 2428, 2727, 416, 1772, 284, 3128, 198, 220, 220, 220, 997, 62, 21949, 62, 525, 62, 19276, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 19510, 83, 15970, 14692, 25598, 62, 265, 8973, 1279, 2727, 62, 265, 8, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 4906, 8973, 6624, 366, 21949, 4943, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 9800, 62, 312, 8973, 6624, 1772, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2727, 62, 265, 11, 1772, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 287, 19974, 7, 15944, 14692, 25598, 62, 265, 33116, 3651, 14692, 9800, 62, 312, 8973, 15437, 198, 220, 220, 220, 3651, 14692, 22510, 62, 21949, 62, 25598, 8973, 796, 997, 62, 21949, 62, 525, 62, 19276, 628, 220, 220, 220, 1303, 8587, 47764, 25, 751, 1271, 286, 2428, 2727, 416, 1772, 284, 3128, 198, 220, 220, 220, 997, 62, 21949, 62, 525, 62, 19276, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 19510, 83, 15970, 14692, 25598, 62, 265, 8973, 1279, 2727, 62, 265, 8, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 4906, 8973, 6624, 366, 21949, 4943, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 83, 15970, 14692, 9800, 62, 312, 8973, 6624, 1772, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2727, 62, 265, 11, 1772, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 287, 19974, 7, 83, 15970, 14692, 25598, 62, 265, 33116, 8587, 14692, 9800, 62, 312, 8973, 15437, 198, 220, 220, 220, 8587, 14692, 22510, 62, 21949, 62, 25598, 8973, 796, 997, 62, 21949, 62, 525, 62, 19276, 628, 220, 220, 220, 1303, 2610, 262, 2912, 1502, 198, 220, 220, 220, 3651, 17816, 23893, 62, 2875, 20520, 796, 3651, 13, 30619, 62, 27160, 7, 1525, 28, 17816, 25598, 62, 265, 6, 12962, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 1525, 7, 1525, 28, 17816, 43350, 62, 312, 6, 12962, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 36340, 9127, 3419, 628, 220, 220, 220, 1303, 5911, 1771, 262, 4810, 318, 4838, 198, 220, 220, 220, 8587, 17816, 271, 62, 20225, 20520, 796, 279, 67, 13, 1662, 8423, 7, 83, 15970, 17816, 20225, 62, 265, 6, 12962, 198, 220, 220, 220, 9335, 796, 8587, 14692, 20225, 62, 265, 1, 4083, 271, 8423, 3419, 198, 220, 220, 220, 8587, 13, 17946, 58, 27932, 11, 366, 20225, 62, 265, 8973, 796, 279, 67, 13, 1462, 62, 19608, 8079, 7, 19608, 8079, 13, 2197, 28955, 198, 220, 220, 220, 1280, 62, 32257, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 1462, 62, 19608, 8079, 7, 83, 15970, 14692, 20225, 62, 265, 8973, 8, 532, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 1462, 62, 19608, 8079, 7, 83, 15970, 14692, 25598, 62, 265, 8973, 4008, 198, 220, 220, 220, 8587, 14692, 9654, 62, 32257, 8973, 796, 1280, 62, 32257, 13, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 2124, 13, 23350, 62, 43012, 28955, 628, 220, 220, 220, 1303, 2735, 356, 765, 284, 4781, 428, 8636, 329, 1997, 2727, 878, 8069, 198, 220, 220, 220, 285, 796, 685, 17821, 611, 269, 13, 9688, 2032, 342, 7203, 30986, 4943, 2073, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 8587, 14692, 25598, 62, 265, 8973, 60, 198, 220, 220, 220, 8587, 13, 17946, 58, 76, 11, 366, 9654, 62, 32257, 8973, 796, 45941, 13, 12647, 628, 220, 220, 220, 1303, 1114, 1123, 2912, 11, 651, 262, 1321, 319, 618, 262, 11188, 7846, 198, 220, 220, 220, 1303, 468, 587, 4721, 618, 340, 318, 1695, 357, 15944, 460, 635, 307, 2087, 284, 198, 220, 220, 220, 1303, 23463, 8, 198, 220, 220, 220, 8587, 13, 2617, 62, 9630, 7203, 43350, 62, 312, 1600, 287, 5372, 28, 17821, 11, 4268, 28, 25101, 8, 628, 220, 220, 220, 1303, 775, 821, 1262, 262, 302, 9630, 2163, 284, 6331, 316, 262, 1339, 810, 356, 836, 470, 423, 198, 220, 220, 220, 1303, 262, 7846, 3917, 284, 257, 1948, 2912, 13, 198, 220, 220, 220, 3651, 14692, 43350, 62, 25598, 62, 265, 8973, 796, 8587, 13, 260, 9630, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 14692, 43350, 62, 312, 8973, 8, 14692, 25598, 62, 265, 1, 4083, 27160, 198, 220, 220, 220, 3651, 14692, 4906, 8973, 796, 8587, 13, 260, 9630, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 14692, 43350, 62, 312, 8973, 8, 14692, 4906, 1, 4083, 27160, 198, 220, 220, 220, 1303, 30027, 262, 1468, 6376, 198, 220, 220, 220, 8587, 13, 2617, 62, 9630, 7203, 312, 1600, 287, 5372, 28, 17821, 11, 4268, 28, 25101, 8, 628, 220, 220, 220, 1303, 1441, 262, 1366, 37805, 198, 220, 220, 220, 1441, 3651, 11, 8587, 628, 198, 4299, 1767, 62, 27773, 929, 7, 15944, 11, 14066, 62, 4868, 11, 10214, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43426, 2912, 393, 2071, 1366, 14535, 329, 2420, 3781, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 352, 13, 2764, 1271, 286, 1661, 24083, 2456, 1656, 287, 11532, 3651, 198, 220, 220, 220, 220, 220, 220, 220, 357, 72, 13, 68, 1539, 8295, 12, 27568, 24019, 329, 4810, 82, 290, 2428, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 416, 4493, 8, 198, 220, 220, 220, 362, 13, 17220, 11532, 3651, 198, 220, 220, 220, 513, 13, 17220, 10947, 2420, 198, 220, 220, 220, 604, 13, 18508, 649, 6615, 198, 220, 220, 220, 642, 13, 2764, 290, 4781, 2438, 7021, 198, 220, 220, 220, 718, 13, 11440, 1958, 584, 2985, 20717, 287, 1767, 198, 220, 220, 220, 767, 13, 19762, 1771, 262, 1772, 373, 257, 10214, 628, 220, 220, 220, 26848, 25, 19798, 292, 837, 299, 2528, 74, 837, 17268, 837, 302, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3651, 1058, 279, 67, 13, 6601, 19778, 11, 30274, 24708, 515, 351, 4600, 34574, 378, 62, 6404, 82, 3419, 63, 26, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 1057, 351, 2035, 3651, 47764, 393, 2428, 14, 83, 15970, 47764, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 14066, 62, 4868, 1058, 1351, 393, 279, 67, 13, 27996, 286, 24083, 2456, 284, 5911, 26, 198, 220, 220, 220, 220, 220, 220, 220, 3058, 2499, 691, 351, 14066, 555, 328, 9474, 628, 220, 220, 220, 10214, 62, 4868, 1058, 1351, 393, 279, 67, 13, 27996, 286, 10214, 514, 1142, 1047, 284, 307, 9514, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 383, 976, 1366, 14535, 11, 475, 351, 20750, 1767, 2420, 290, 649, 15180, 198, 220, 220, 220, 357, 8189, 62, 27372, 837, 20717, 62, 18417, 837, 10214, 62, 32109, 8, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 9609, 1330, 19798, 292, 355, 279, 67, 198, 220, 220, 220, 9609, 1330, 3384, 4487, 198, 220, 220, 220, 9609, 3651, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 77, 32152, 14, 15944, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 9609, 3651, 11, 8587, 796, 3384, 4487, 13, 34574, 378, 13, 34574, 378, 62, 6404, 82, 7, 15944, 11, 8587, 8, 198, 220, 220, 220, 9609, 3651, 796, 3384, 4487, 13, 34574, 378, 13, 2618, 62, 27773, 929, 7, 15944, 11, 10214, 62, 4868, 62, 7568, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6330, 477, 11013, 45, 351, 6565, 13042, 198, 220, 220, 220, 3651, 17816, 2618, 20520, 796, 3651, 17816, 2618, 6, 4083, 33491, 7, 37659, 13, 12647, 11, 705, 3256, 40364, 28, 17821, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 954, 5176, 287, 11532, 3651, 198, 220, 220, 220, 3651, 17816, 6494, 62, 15944, 20520, 796, 3651, 17816, 2618, 6, 4083, 2536, 13, 19796, 439, 10786, 38016, 27, 59, 28112, 15885, 30, 438, 59, 43734, 27691, 39014, 10786, 45302, 22179, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 11241, 1096, 290, 954, 2456, 198, 220, 220, 220, 11241, 7509, 796, 797, 25636, 79, 30642, 7509, 7, 81, 6, 59, 86, 10, 11537, 198, 220, 220, 220, 3651, 17816, 6494, 62, 30001, 1143, 20520, 796, 3651, 17816, 6494, 62, 15944, 6, 4083, 39014, 7, 2536, 13, 21037, 737, 39014, 7, 30001, 7509, 13, 30001, 1096, 8, 198, 220, 220, 220, 3651, 17816, 6494, 62, 4775, 62, 9127, 20520, 796, 3651, 17816, 6494, 62, 30001, 1143, 6, 4083, 39014, 7, 50033, 2124, 25, 15034, 7, 87, 4008, 628, 220, 220, 220, 1303, 954, 2456, 611, 484, 821, 287, 674, 14066, 1351, 198, 220, 220, 220, 3651, 17816, 37800, 62, 2164, 11850, 62, 9127, 20520, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 17816, 6494, 62, 4775, 62, 9127, 6, 4083, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 45941, 13, 16345, 26933, 85, 329, 479, 11, 410, 287, 2124, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 14066, 62, 4868, 60, 22305, 628, 220, 220, 220, 1303, 1309, 514, 760, 543, 3392, 547, 973, 198, 220, 220, 220, 3651, 17816, 37800, 62, 2164, 11850, 62, 4868, 20520, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 17816, 6494, 62, 4775, 62, 9127, 6, 4083, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 685, 74, 329, 479, 287, 2124, 611, 479, 287, 14066, 62, 4868, 60, 4008, 628, 220, 220, 220, 1303, 4781, 262, 15180, 356, 836, 470, 761, 7471, 198, 220, 220, 220, 3651, 796, 3651, 13, 14781, 7, 28665, 82, 28, 17816, 6494, 62, 30001, 1143, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6494, 62, 4775, 62, 9127, 6, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 4781, 262, 11532, 3651, 422, 262, 1767, 198, 220, 220, 220, 3651, 17816, 2618, 20520, 796, 357, 15944, 17816, 2618, 6, 4083, 2536, 13, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30629, 27, 28112, 15885, 30, 46904, 42501, 366, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9701, 28, 260, 13, 35, 2394, 7036, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 4781, 2420, 13386, 198, 220, 220, 220, 3651, 17816, 2618, 20520, 796, 357, 15944, 17816, 2618, 6, 4083, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30629, 61, 91, 59, 77, 91, 59, 81, 47762, 59, 29, 15885, 7, 30, 28, 59, 77, 91, 3, 42501, 366, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 40364, 28, 17821, 4008, 628, 220, 220, 220, 1303, 4781, 649, 6615, 198, 220, 220, 220, 3651, 17816, 2618, 20520, 796, 357, 15944, 17816, 2618, 6, 4083, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12878, 59, 77, 59, 81, 48688, 1600, 366, 33172, 40364, 28, 17821, 4008, 628, 220, 220, 220, 1303, 954, 290, 788, 4781, 2438, 7021, 198, 220, 220, 220, 3651, 17816, 8189, 62, 27372, 20520, 796, 3651, 17816, 2618, 6, 4083, 2536, 13, 9127, 7203, 59, 63, 90, 18, 92, 4943, 14, 17, 198, 220, 220, 220, 3651, 17816, 2618, 20520, 796, 357, 15944, 17816, 2618, 6, 4083, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 63, 90, 18, 92, 15885, 59, 63, 90, 18, 92, 1600, 366, 33172, 40364, 28, 17821, 4008, 628, 220, 220, 220, 1303, 5911, 584, 5384, 198, 220, 220, 220, 3651, 17816, 5420, 14226, 771, 62, 18417, 20520, 796, 3651, 17816, 2618, 6, 4083, 2536, 13, 19796, 439, 10786, 31, 59, 86, 90, 16, 11, 92, 11537, 628, 220, 220, 220, 1303, 5911, 29641, 198, 220, 220, 220, 3651, 17816, 13645, 62, 32109, 20520, 796, 3651, 17816, 9800, 62, 3672, 6, 4083, 45763, 7, 13645, 62, 4868, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1441, 674, 1366, 14535, 198, 220, 220, 220, 1441, 3651, 628, 198, 4299, 751, 62, 34086, 3681, 7, 15944, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3060, 15598, 3781, 8198, 284, 3651, 1366, 14535, 25, 198, 220, 220, 220, 1635, 4633, 9942, 198, 220, 220, 220, 1635, 3967, 9942, 198, 220, 220, 220, 1635, 8500, 9942, 198, 220, 220, 220, 1635, 13061, 9942, 628, 220, 220, 220, 26848, 25, 19798, 292, 837, 410, 5067, 31837, 3681, 628, 220, 220, 220, 1114, 517, 319, 410, 5067, 31837, 3681, 11, 766, 3740, 1378, 12567, 13, 785, 14, 66, 73, 71, 315, 1462, 14, 85, 5067, 31837, 3681, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3651, 1058, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 30274, 706, 4600, 34574, 378, 62, 6404, 82, 3419, 63, 290, 4600, 2618, 62, 27773, 929, 3419, 63, 26, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 1057, 351, 2035, 3651, 47764, 393, 2428, 14, 83, 15970, 47764, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 383, 976, 1366, 14535, 475, 351, 649, 15598, 15180, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 9609, 1330, 19798, 292, 355, 279, 67, 198, 220, 220, 220, 9609, 1330, 3384, 4487, 198, 220, 220, 220, 9609, 3651, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 77, 32152, 14, 15944, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 9609, 3651, 11, 8587, 796, 3384, 4487, 13, 34574, 378, 13, 34574, 378, 62, 6404, 82, 7, 15944, 11, 8587, 8, 198, 220, 220, 220, 9609, 3651, 796, 3384, 4487, 13, 34574, 378, 13, 2618, 62, 27773, 929, 7, 15944, 11, 10214, 62, 4868, 62, 7568, 8, 198, 220, 220, 220, 9609, 3651, 796, 3384, 4487, 13, 34574, 378, 13, 2860, 62, 34086, 3681, 7, 15944, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 41216, 15598, 4284, 9107, 198, 220, 220, 220, 11090, 263, 796, 11352, 3681, 5317, 6377, 37702, 9107, 3419, 628, 220, 220, 220, 1303, 4781, 11013, 47503, 198, 220, 220, 220, 3651, 17816, 2618, 20520, 796, 3651, 17816, 2618, 6, 4083, 33491, 7, 37659, 13, 12647, 11, 705, 46083, 40364, 28, 17821, 8, 628, 220, 220, 220, 1303, 1057, 15598, 4284, 9107, 625, 1123, 2912, 1767, 198, 220, 220, 220, 15598, 62, 7568, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 17816, 2618, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 764, 39014, 7, 272, 26266, 263, 13, 79, 6192, 414, 62, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 459, 2981, 7, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2536, 13, 36311, 10786, 90, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2536, 13, 35312, 7, 3256, 46083, 4292, 28, 17821, 4008, 628, 220, 220, 220, 1303, 6626, 262, 9942, 5072, 22155, 656, 649, 15180, 198, 220, 220, 220, 1303, 357, 27547, 284, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 12952, 4310, 25674, 329, 13027, 4610, 8, 198, 220, 220, 220, 3651, 17816, 31591, 62, 368, 9650, 20520, 796, 15598, 62, 7568, 58, 15, 4083, 2536, 13, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25, 705, 737, 2536, 58, 12, 16, 4083, 459, 2981, 7, 22468, 8, 198, 220, 220, 220, 3651, 17816, 29797, 62, 368, 9650, 20520, 796, 15598, 62, 7568, 58, 16, 4083, 2536, 13, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25, 705, 737, 2536, 58, 12, 16, 4083, 459, 2981, 7, 22468, 8, 198, 220, 220, 220, 3651, 17816, 24561, 62, 368, 9650, 20520, 796, 15598, 62, 7568, 58, 17, 4083, 2536, 13, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25, 705, 737, 2536, 58, 12, 16, 4083, 459, 2981, 7, 22468, 8, 198, 220, 220, 220, 3651, 17816, 5589, 633, 62, 368, 9650, 20520, 796, 15598, 62, 7568, 58, 18, 4083, 2536, 13, 35312, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25, 705, 737, 2536, 58, 12, 16, 4083, 459, 2981, 7, 22468, 8, 628, 220, 220, 220, 1303, 1441, 674, 1366, 14535, 198, 220, 220, 220, 1441, 3651, 628, 198, 4299, 751, 62, 2164, 265, 3984, 7, 15944, 11, 14066, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17762, 14700, 286, 24083, 25, 198, 220, 220, 220, 1635, 4045, 9853, 198, 220, 220, 220, 1635, 2176, 2456, 628, 220, 220, 220, 6930, 284, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 2857, 33808, 34626, 628, 220, 220, 220, 26848, 25, 19798, 292, 837, 299, 2528, 74, 837, 17268, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3651, 1058, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 30274, 706, 4600, 34574, 378, 62, 6404, 82, 3419, 63, 290, 4600, 2618, 62, 27773, 929, 3419, 63, 26, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 1057, 351, 2035, 3651, 47764, 393, 2428, 14, 83, 15970, 47764, 628, 220, 220, 220, 14066, 62, 4868, 1058, 1351, 393, 279, 67, 13, 27996, 286, 24083, 2456, 284, 5911, 26, 198, 220, 220, 220, 220, 220, 220, 220, 3058, 2499, 691, 351, 14066, 555, 328, 9474, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 383, 976, 1366, 14535, 475, 351, 649, 24083, 15180, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 9609, 1330, 19798, 292, 355, 279, 67, 198, 220, 220, 220, 9609, 1330, 3384, 4487, 198, 220, 220, 220, 9609, 3651, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 77, 32152, 14, 15944, 13, 912, 85, 1600, 41767, 2625, 59, 83, 4943, 198, 220, 220, 220, 9609, 3651, 11, 8587, 796, 3384, 4487, 13, 34574, 378, 13, 34574, 378, 62, 6404, 82, 7, 15944, 11, 8587, 8, 198, 220, 220, 220, 9609, 3651, 796, 3384, 4487, 13, 34574, 378, 13, 2618, 62, 27773, 929, 7, 15944, 11, 10214, 62, 4868, 62, 7568, 8, 198, 220, 220, 220, 9609, 3651, 796, 3384, 4487, 13, 34574, 378, 13, 2860, 62, 2164, 265, 3984, 7, 15944, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 11241, 1096, 290, 954, 2456, 198, 220, 220, 220, 11241, 7509, 796, 797, 25636, 79, 30642, 7509, 7, 81, 6, 59, 86, 10, 11537, 198, 220, 220, 220, 3651, 17816, 30001, 1143, 20520, 796, 3651, 17816, 2618, 6, 4083, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 965, 13, 21037, 737, 39014, 7, 30001, 7509, 13, 30001, 1096, 8, 198, 220, 220, 220, 3651, 17816, 4775, 62, 9127, 20520, 796, 3651, 17816, 30001, 1143, 6, 4083, 39014, 7, 50033, 2124, 25, 15034, 7, 87, 4008, 628, 220, 220, 220, 1303, 954, 2456, 611, 484, 821, 287, 674, 14066, 1351, 198, 220, 220, 220, 3651, 17816, 2164, 11850, 62, 9127, 20520, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 17816, 4775, 62, 9127, 6, 4083, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 45941, 13, 16345, 26933, 85, 329, 479, 11, 410, 287, 2124, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 14066, 62, 4868, 60, 22305, 628, 220, 220, 220, 1303, 1309, 514, 760, 543, 3392, 547, 973, 198, 220, 220, 220, 3651, 17816, 2164, 11850, 62, 4868, 20520, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 17816, 4775, 62, 9127, 6, 4083, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 685, 74, 329, 479, 287, 2124, 611, 479, 287, 14066, 62, 4868, 60, 4008, 628, 220, 220, 220, 1303, 4781, 262, 15180, 356, 836, 470, 761, 7471, 198, 220, 220, 220, 3651, 796, 3651, 13, 14781, 7, 28665, 82, 28, 17816, 30001, 1143, 3256, 705, 4775, 62, 9127, 6, 12962, 628, 220, 220, 220, 1303, 27591, 736, 674, 1366, 14535, 783, 198, 220, 220, 220, 1441, 3651, 198 ]
2.62787
4,356
from lldbsuite.test import decorators from lldbsuite.test import lldbinline lldbinline.MakeInlineTest( __file__, globals(), [ decorators.skipIfFreeBSD, decorators.skipIfLinux, decorators.skipIfWindows, decorators.expectedFailureAll( oslist=['macosx'], archs=['i386'], bugnumber='rdar://28656677')])
[ 6738, 32660, 67, 1443, 84, 578, 13, 9288, 1330, 11705, 2024, 198, 6738, 32660, 67, 1443, 84, 578, 13, 9288, 1330, 32660, 67, 8800, 1370, 198, 198, 297, 67, 8800, 1370, 13, 12050, 818, 1370, 14402, 7, 198, 220, 220, 220, 11593, 7753, 834, 11, 15095, 874, 22784, 685, 198, 220, 220, 220, 220, 220, 220, 220, 11705, 2024, 13, 48267, 1532, 11146, 21800, 11, 11705, 2024, 13, 48267, 1532, 19314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11705, 2024, 13, 48267, 1532, 11209, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11705, 2024, 13, 40319, 50015, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 4868, 28, 17816, 20285, 418, 87, 6, 4357, 3934, 82, 28, 17816, 72, 21734, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 809, 4593, 4494, 11639, 4372, 283, 1378, 2078, 2996, 2791, 3324, 11537, 12962, 198 ]
2.242038
157
"""Adapt repository rules in npm_import.bzl to be called from MODULE.bazel See https://bazel.build/docs/bzlmod#extension-definition """ load("//js/private:pnpm_utils.bzl", "pnpm_utils") load("//js/private:translate_pnpm_lock.bzl", translate_pnpm_lock_lib = "translate_pnpm_lock") load("//js:npm_import.bzl", "npm_import", "translate_pnpm_lock") load("//js/private:transitive_closure.bzl", "translate_to_transitive_closure") npm = module_extension( implementation = _extension_impl, tag_classes = { "translate_pnpm_lock": tag_class(attrs = dict({"name": attr.string()}, **translate_pnpm_lock_lib.attrs)), # todo: support individual packages as well # "package": tag_class(attrs = dict({"name": attr.string()}, **_npm_import.attrs)), }, )
[ 37811, 48003, 16099, 3173, 287, 30599, 62, 11748, 13, 65, 48274, 284, 307, 1444, 422, 33893, 13, 65, 41319, 198, 6214, 3740, 1378, 65, 41319, 13, 11249, 14, 31628, 14, 65, 48274, 4666, 2, 2302, 3004, 12, 46758, 198, 37811, 198, 198, 2220, 7203, 1003, 8457, 14, 19734, 25, 21999, 4426, 62, 26791, 13, 65, 48274, 1600, 366, 21999, 4426, 62, 26791, 4943, 198, 2220, 7203, 1003, 8457, 14, 19734, 25, 7645, 17660, 62, 21999, 4426, 62, 5354, 13, 65, 48274, 1600, 15772, 62, 21999, 4426, 62, 5354, 62, 8019, 796, 366, 7645, 17660, 62, 21999, 4426, 62, 5354, 4943, 198, 2220, 7203, 1003, 8457, 25, 77, 4426, 62, 11748, 13, 65, 48274, 1600, 366, 77, 4426, 62, 11748, 1600, 366, 7645, 17660, 62, 21999, 4426, 62, 5354, 4943, 198, 2220, 7203, 1003, 8457, 14, 19734, 25, 7645, 1800, 62, 17966, 13, 65, 48274, 1600, 366, 7645, 17660, 62, 1462, 62, 7645, 1800, 62, 17966, 4943, 198, 198, 77, 4426, 796, 8265, 62, 2302, 3004, 7, 198, 220, 220, 220, 7822, 796, 4808, 2302, 3004, 62, 23928, 11, 198, 220, 220, 220, 7621, 62, 37724, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7645, 17660, 62, 21999, 4426, 62, 5354, 1298, 7621, 62, 4871, 7, 1078, 3808, 796, 8633, 7, 4895, 3672, 1298, 708, 81, 13, 8841, 3419, 5512, 12429, 7645, 17660, 62, 21999, 4426, 62, 5354, 62, 8019, 13, 1078, 3808, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 4598, 25, 1104, 1981, 10392, 355, 880, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 26495, 1298, 7621, 62, 4871, 7, 1078, 3808, 796, 8633, 7, 4895, 3672, 1298, 708, 81, 13, 8841, 3419, 5512, 12429, 62, 77, 4426, 62, 11748, 13, 1078, 3808, 36911, 198, 220, 220, 220, 8964, 198, 8, 198 ]
2.574751
301
# Copyright 2015-2018 Yelp Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import difflib import glob import hashlib import json import logging import os import pkgutil import re import subprocess import traceback from string import Formatter from typing import List from typing import Tuple import yaml from service_configuration_lib import read_extra_service_information from service_configuration_lib import read_yaml_file from service_configuration_lib.spark_config import generate_clusterman_metrics_entries from service_configuration_lib.spark_config import get_aws_credentials from service_configuration_lib.spark_config import get_resources_requested from service_configuration_lib.spark_config import get_spark_conf from service_configuration_lib.spark_config import K8S_AUTH_FOLDER from service_configuration_lib.spark_config import stringify_spark_env from paasta_tools.mesos_tools import mesos_services_running_here try: from yaml.cyaml import CSafeDumper as Dumper except ImportError: # pragma: no cover (no libyaml-dev / pypy) Dumper = yaml.SafeDumper # type: ignore from paasta_tools.clusterman import get_clusterman_metrics from paasta_tools.tron.client import TronClient from paasta_tools.tron import tron_command_context from paasta_tools.utils import DEFAULT_SOA_DIR from paasta_tools.utils import DockerParameter from paasta_tools.utils import DockerVolume from paasta_tools.utils import InstanceConfig from paasta_tools.utils import InvalidInstanceConfig from paasta_tools.utils import load_system_paasta_config from paasta_tools.utils import SystemPaastaConfig from paasta_tools.utils import load_v2_deployments_json from paasta_tools.utils import NoConfigurationForServiceError from paasta_tools.utils import NoDeploymentsAvailable from paasta_tools.utils import time_cache from paasta_tools.utils import filter_templates_from_config from paasta_tools.spark_tools import get_webui_url from paasta_tools.spark_tools import inject_spark_conf_str from paasta_tools import monitoring_tools from paasta_tools.monitoring_tools import list_teams from typing import Optional from typing import Dict from typing import Any log = logging.getLogger(__name__) logging.getLogger("tron").setLevel(logging.WARNING) MASTER_NAMESPACE = "MASTER" SPACER = "." VALID_MONITORING_KEYS = set( json.loads( pkgutil.get_data("paasta_tools.cli", "schemas/tron_schema.json").decode() )["definitions"]["job"]["properties"]["monitoring"]["properties"].keys() ) MESOS_EXECUTOR_NAMES = ("paasta", "spark") DEFAULT_AWS_REGION = "us-west-2" clusterman_metrics, _ = get_clusterman_metrics() class TronConfig(dict): """System-level configuration for Tron.""" def get_cluster_name(self): """:returns The name of the Tron cluster""" try: return self["cluster_name"] except KeyError: raise TronNotConfigured( "Could not find name of Tron cluster in system Tron config" ) def get_url(self): """:returns The URL for the Tron master's API""" try: return self["url"] except KeyError: raise TronNotConfigured( "Could not find URL of Tron master in system Tron config" ) def decompose_instance(instance): """Get (job_name, action_name) from an instance.""" decomposed = instance.split(SPACER) if len(decomposed) != 2: raise InvalidInstanceConfig("Invalid instance name: %s" % instance) return (decomposed[0], decomposed[1]) def decompose_executor_id(executor_id) -> Tuple[str, str, int, str]: """(service, job, run_number, action)""" service, job, str_run_number, action, _ = executor_id.split(SPACER) return (service, job, int(str_run_number), action) def parse_time_variables(command: str, parse_time: datetime.datetime = None) -> str: """Parses an input string and uses the Tron-style dateparsing to replace time variables. Currently supports only the date/time variables listed in the tron documentation: http://tron.readthedocs.io/en/latest/command_context.html#built-in-cc :param input_string: input string to be parsed :param parse_time: Reference Datetime object to parse the date and time strings, defaults to now. :returns: A string with the date and time variables replaced """ if parse_time is None: parse_time = datetime.datetime.now() # We build up a tron context object that has the right # methods to parse tron-style time syntax job_context = tron_command_context.JobRunContext( tron_command_context.CommandContext() ) # The tron context object needs the run_time attribute set so it knows # how to interpret the date strings job_context.job_run.run_time = parse_time return StringFormatter(job_context).format(command) class TronJobConfig: """Represents a job in Tron, consisting of action(s) and job-level configuration values.""" def format_tron_action_dict(action_config): """Generate a dict of tronfig for an action, from the TronActionConfig. :param job_config: TronActionConfig """ executor = action_config.get_executor() result = { "command": action_config.get_cmd(), "executor": executor, "requires": action_config.get_requires(), "node": action_config.get_node(), "retries": action_config.get_retries(), "retries_delay": action_config.get_retries_delay(), "expected_runtime": action_config.get_expected_runtime(), "trigger_downstreams": action_config.get_trigger_downstreams(), "triggered_by": action_config.get_triggered_by(), "on_upstream_rerun": action_config.get_on_upstream_rerun(), "trigger_timeout": action_config.get_trigger_timeout(), } if executor in MESOS_EXECUTOR_NAMES: result["executor"] = "mesos" result["cpus"] = action_config.get_cpus() result["mem"] = action_config.get_mem() result["disk"] = action_config.get_disk() result["env"] = action_config.get_env() result["extra_volumes"] = format_volumes(action_config.get_extra_volumes()) result["docker_parameters"] = [ {"key": param["key"], "value": param["value"]} for param in action_config.format_docker_parameters() ] constraint_labels = ["attribute", "operator", "value"] result["constraints"] = [ dict(zip(constraint_labels, constraint)) for constraint in action_config.get_calculated_constraints() ] result["docker_image"] = action_config.get_docker_url() # Only pass non-None values, so Tron will use defaults for others return {key: val for key, val in result.items() if val is not None} def format_tron_job_dict(job_config): """Generate a dict of tronfig for a job, from the TronJobConfig. :param job_config: TronJobConfig """ action_dict = { action_config.get_action_name(): format_tron_action_dict(action_config) for action_config in job_config.get_actions() } result = { "node": job_config.get_node(), "schedule": job_config.get_schedule(), "actions": action_dict, "monitoring": job_config.get_monitoring(), "queueing": job_config.get_queueing(), "run_limit": job_config.get_run_limit(), "all_nodes": job_config.get_all_nodes(), "enabled": job_config.get_enabled(), "allow_overlap": job_config.get_allow_overlap(), "max_runtime": job_config.get_max_runtime(), "time_zone": job_config.get_time_zone(), "expected_runtime": job_config.get_expected_runtime(), } cleanup_config = job_config.get_cleanup_action() if cleanup_config: cleanup_action = format_tron_action_dict(cleanup_config) result["cleanup_action"] = cleanup_action # Only pass non-None values, so Tron will use defaults for others return {key: val for key, val in result.items() if val is not None} @time_cache(ttl=5) def load_tron_service_config_no_cache( service, cluster, load_deployments=True, soa_dir=DEFAULT_SOA_DIR, for_validation=False, ): """Load all configured jobs for a service, and any additional config values.""" config = read_extra_service_information( service_name=service, extra_info=f"tron-{cluster}", soa_dir=soa_dir ) jobs = filter_templates_from_config(config) job_configs = [ TronJobConfig( name=name, service=service, cluster=cluster, config_dict=job, load_deployments=load_deployments, soa_dir=soa_dir, for_validation=for_validation, ) for name, job in jobs.items() ] return job_configs def create_complete_config(service, cluster, soa_dir=DEFAULT_SOA_DIR): """Generate a namespace configuration file for Tron, for a service.""" job_configs = load_tron_service_config( service=service, cluster=cluster, load_deployments=True, soa_dir=soa_dir ) preproccessed_config = {} preproccessed_config["jobs"] = { job_config.get_name(): format_tron_job_dict(job_config) for job_config in job_configs } return yaml.dump(preproccessed_config, Dumper=Dumper, default_flow_style=False) def list_tron_clusters(service: str, soa_dir: str = DEFAULT_SOA_DIR) -> List[str]: """Returns the Tron clusters a service is configured to deploy to.""" search_re = r"/tron-([0-9a-z-_]*)\.yaml$" service_dir = os.path.join(soa_dir, service) clusters = [] for filename in glob.glob(f"{service_dir}/*.yaml"): cluster_re_match = re.search(search_re, filename) if cluster_re_match is not None: clusters.append(cluster_re_match.group(1)) return clusters def parse_service_instance_from_executor_id(task_id: str) -> Tuple[str, str]: """Parses tron mesos task ids, like schematizer.traffic_generator.28414.turnstyle.46da87d7-6092-4ed4-b926-ffa7b21c7785""" try: service, job, job_run, action, uuid = task_id.split(".") except Exception as e: log.warning( f"Couldn't parse the mesos task id into a valid tron job: {task_id}: {e}" ) service, job, action = "unknown_service", "unknown_job", "unknown_action" return service, f"{job}.{action}"
[ 2, 15069, 1853, 12, 7908, 44628, 3457, 13, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 11748, 4818, 8079, 198, 11748, 814, 8019, 198, 11748, 15095, 198, 11748, 12234, 8019, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 279, 10025, 22602, 198, 11748, 302, 198, 11748, 850, 14681, 198, 11748, 12854, 1891, 198, 6738, 4731, 1330, 5178, 1436, 198, 6738, 19720, 1330, 7343, 198, 6738, 19720, 1330, 309, 29291, 198, 198, 11748, 331, 43695, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 1330, 1100, 62, 26086, 62, 15271, 62, 17018, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 1330, 1100, 62, 88, 43695, 62, 7753, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 13, 2777, 668, 62, 11250, 1330, 7716, 62, 565, 436, 2224, 62, 4164, 10466, 62, 298, 1678, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 13, 2777, 668, 62, 11250, 1330, 651, 62, 8356, 62, 66, 445, 14817, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 13, 2777, 668, 62, 11250, 1330, 651, 62, 37540, 62, 25927, 276, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 13, 2777, 668, 62, 11250, 1330, 651, 62, 2777, 668, 62, 10414, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 13, 2777, 668, 62, 11250, 1330, 509, 23, 50, 62, 32, 24318, 62, 37, 3535, 14418, 198, 6738, 2139, 62, 11250, 3924, 62, 8019, 13, 2777, 668, 62, 11250, 1330, 4731, 1958, 62, 2777, 668, 62, 24330, 198, 198, 6738, 14187, 40197, 62, 31391, 13, 6880, 418, 62, 31391, 1330, 18842, 418, 62, 30416, 62, 20270, 62, 1456, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 331, 43695, 13, 948, 43695, 1330, 9429, 8635, 35, 15829, 355, 360, 15829, 198, 16341, 17267, 12331, 25, 220, 1303, 23864, 2611, 25, 645, 3002, 357, 3919, 9195, 88, 43695, 12, 7959, 1220, 279, 4464, 88, 8, 198, 220, 220, 220, 360, 15829, 796, 331, 43695, 13, 31511, 35, 15829, 220, 1303, 2099, 25, 8856, 198, 198, 6738, 14187, 40197, 62, 31391, 13, 565, 436, 2224, 1330, 651, 62, 565, 436, 2224, 62, 4164, 10466, 198, 6738, 14187, 40197, 62, 31391, 13, 83, 1313, 13, 16366, 1330, 833, 261, 11792, 198, 6738, 14187, 40197, 62, 31391, 13, 83, 1313, 1330, 491, 261, 62, 21812, 62, 22866, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 5550, 38865, 62, 15821, 32, 62, 34720, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 25716, 36301, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 25716, 31715, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 2262, 590, 16934, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 17665, 33384, 16934, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 3440, 62, 10057, 62, 8957, 40197, 62, 11250, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 4482, 28875, 40197, 16934, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 3440, 62, 85, 17, 62, 2934, 1420, 902, 62, 17752, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 1400, 38149, 1890, 16177, 12331, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 1400, 49322, 902, 10493, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 640, 62, 23870, 198, 6738, 14187, 40197, 62, 31391, 13, 26791, 1330, 8106, 62, 11498, 17041, 62, 6738, 62, 11250, 198, 6738, 14187, 40197, 62, 31391, 13, 2777, 668, 62, 31391, 1330, 651, 62, 12384, 9019, 62, 6371, 198, 6738, 14187, 40197, 62, 31391, 13, 2777, 668, 62, 31391, 1330, 8677, 62, 2777, 668, 62, 10414, 62, 2536, 198, 198, 6738, 14187, 40197, 62, 31391, 1330, 9904, 62, 31391, 198, 6738, 14187, 40197, 62, 31391, 13, 41143, 278, 62, 31391, 1330, 1351, 62, 660, 4105, 198, 6738, 19720, 1330, 32233, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 19720, 1330, 4377, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 2667, 13, 1136, 11187, 1362, 7203, 83, 1313, 11074, 2617, 4971, 7, 6404, 2667, 13, 31502, 8, 198, 198, 31180, 5781, 62, 45, 29559, 47, 11598, 796, 366, 31180, 5781, 1, 198, 4303, 2246, 1137, 796, 366, 526, 198, 23428, 2389, 62, 27857, 2043, 1581, 2751, 62, 7336, 16309, 796, 900, 7, 198, 220, 220, 220, 33918, 13, 46030, 7, 198, 220, 220, 220, 220, 220, 220, 220, 279, 10025, 22602, 13, 1136, 62, 7890, 7203, 8957, 40197, 62, 31391, 13, 44506, 1600, 366, 1416, 4411, 292, 14, 83, 1313, 62, 15952, 2611, 13, 17752, 11074, 12501, 1098, 3419, 198, 220, 220, 220, 1267, 14692, 4299, 50101, 1, 7131, 1, 21858, 1, 7131, 1, 48310, 1, 7131, 1, 41143, 278, 1, 7131, 1, 48310, 1, 4083, 13083, 3419, 198, 8, 198, 44, 1546, 2640, 62, 6369, 2943, 3843, 1581, 62, 45, 29559, 796, 5855, 8957, 40197, 1600, 366, 2777, 668, 4943, 198, 7206, 38865, 62, 12298, 50, 62, 31553, 2849, 796, 366, 385, 12, 7038, 12, 17, 1, 198, 565, 436, 2224, 62, 4164, 10466, 11, 4808, 796, 651, 62, 565, 436, 2224, 62, 4164, 10466, 3419, 628, 628, 198, 4871, 833, 261, 16934, 7, 11600, 2599, 198, 220, 220, 220, 37227, 11964, 12, 5715, 8398, 329, 833, 261, 526, 15931, 628, 220, 220, 220, 825, 651, 62, 565, 5819, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 7783, 82, 383, 1438, 286, 262, 833, 261, 13946, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 14692, 565, 5819, 62, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 833, 261, 3673, 16934, 1522, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23722, 407, 1064, 1438, 286, 833, 261, 13946, 287, 1080, 833, 261, 4566, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 651, 62, 6371, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1298, 7783, 82, 383, 10289, 329, 262, 833, 261, 4958, 338, 7824, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 14692, 6371, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 833, 261, 3673, 16934, 1522, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23722, 407, 1064, 10289, 286, 833, 261, 4958, 287, 1080, 833, 261, 4566, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 628, 628, 198, 4299, 26969, 3455, 62, 39098, 7, 39098, 2599, 198, 220, 220, 220, 37227, 3855, 357, 21858, 62, 3672, 11, 2223, 62, 3672, 8, 422, 281, 4554, 526, 15931, 198, 220, 220, 220, 38237, 1335, 796, 4554, 13, 35312, 7, 4303, 2246, 1137, 8, 198, 220, 220, 220, 611, 18896, 7, 12501, 3361, 1335, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 33384, 16934, 7203, 44651, 4554, 1438, 25, 4064, 82, 1, 4064, 4554, 8, 198, 220, 220, 220, 1441, 357, 12501, 3361, 1335, 58, 15, 4357, 38237, 1335, 58, 16, 12962, 628, 198, 4299, 26969, 3455, 62, 18558, 38409, 62, 312, 7, 18558, 38409, 62, 312, 8, 4613, 309, 29291, 58, 2536, 11, 965, 11, 493, 11, 965, 5974, 198, 220, 220, 220, 13538, 18109, 15271, 11, 1693, 11, 1057, 62, 17618, 11, 2223, 8, 37811, 198, 220, 220, 220, 2139, 11, 1693, 11, 965, 62, 5143, 62, 17618, 11, 2223, 11, 4808, 796, 3121, 273, 62, 312, 13, 35312, 7, 4303, 2246, 1137, 8, 198, 220, 220, 220, 1441, 357, 15271, 11, 1693, 11, 493, 7, 2536, 62, 5143, 62, 17618, 828, 2223, 8, 628, 198, 198, 4299, 21136, 62, 2435, 62, 25641, 2977, 7, 21812, 25, 965, 11, 21136, 62, 2435, 25, 4818, 8079, 13, 19608, 8079, 796, 6045, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 47, 945, 274, 281, 5128, 4731, 290, 3544, 262, 833, 261, 12, 7635, 3128, 79, 945, 278, 198, 220, 220, 220, 284, 6330, 640, 9633, 13, 16888, 6971, 691, 262, 3128, 14, 2435, 198, 220, 220, 220, 9633, 5610, 287, 262, 491, 261, 10314, 25, 198, 220, 220, 220, 2638, 1378, 83, 1313, 13, 961, 83, 704, 420, 82, 13, 952, 14, 268, 14, 42861, 14, 21812, 62, 22866, 13, 6494, 2, 18780, 12, 259, 12, 535, 628, 220, 220, 220, 1058, 17143, 5128, 62, 8841, 25, 5128, 4731, 284, 307, 44267, 198, 220, 220, 220, 1058, 17143, 21136, 62, 2435, 25, 20984, 16092, 8079, 2134, 284, 21136, 262, 3128, 290, 640, 13042, 11, 26235, 284, 783, 13, 198, 220, 220, 220, 1058, 7783, 82, 25, 317, 4731, 351, 262, 3128, 290, 640, 9633, 6928, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 21136, 62, 2435, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 1303, 775, 1382, 510, 257, 491, 261, 4732, 2134, 326, 468, 262, 826, 198, 220, 220, 220, 1303, 5050, 284, 21136, 491, 261, 12, 7635, 640, 15582, 198, 220, 220, 220, 1693, 62, 22866, 796, 491, 261, 62, 21812, 62, 22866, 13, 33308, 10987, 21947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 491, 261, 62, 21812, 62, 22866, 13, 21575, 21947, 3419, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 383, 491, 261, 4732, 2134, 2476, 262, 1057, 62, 2435, 11688, 900, 523, 340, 4206, 198, 220, 220, 220, 1303, 703, 284, 6179, 262, 3128, 13042, 198, 220, 220, 220, 1693, 62, 22866, 13, 21858, 62, 5143, 13, 5143, 62, 2435, 796, 21136, 62, 2435, 198, 220, 220, 220, 1441, 10903, 8479, 1436, 7, 21858, 62, 22866, 737, 18982, 7, 21812, 8, 628, 628, 198, 4871, 833, 261, 33308, 16934, 25, 198, 220, 220, 220, 37227, 6207, 6629, 257, 1693, 287, 833, 261, 11, 17747, 286, 2223, 7, 82, 8, 290, 1693, 12, 5715, 8398, 3815, 526, 15931, 628, 628, 198, 4299, 5794, 62, 83, 1313, 62, 2673, 62, 11600, 7, 2673, 62, 11250, 2599, 198, 220, 220, 220, 37227, 8645, 378, 257, 8633, 286, 491, 261, 5647, 329, 281, 2223, 11, 422, 262, 833, 261, 12502, 16934, 13, 628, 220, 220, 220, 1058, 17143, 1693, 62, 11250, 25, 833, 261, 12502, 16934, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3121, 273, 796, 2223, 62, 11250, 13, 1136, 62, 18558, 38409, 3419, 198, 220, 220, 220, 1255, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21812, 1298, 2223, 62, 11250, 13, 1136, 62, 28758, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18558, 38409, 1298, 3121, 273, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 47911, 1298, 2223, 62, 11250, 13, 1136, 62, 47911, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 2223, 62, 11250, 13, 1136, 62, 17440, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1186, 1678, 1298, 2223, 62, 11250, 13, 1136, 62, 1186, 1678, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1186, 1678, 62, 40850, 1298, 2223, 62, 11250, 13, 1136, 62, 1186, 1678, 62, 40850, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 40319, 62, 43282, 1298, 2223, 62, 11250, 13, 1136, 62, 40319, 62, 43282, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 46284, 62, 2902, 5532, 82, 1298, 2223, 62, 11250, 13, 1136, 62, 46284, 62, 2902, 5532, 82, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2213, 328, 10446, 62, 1525, 1298, 2223, 62, 11250, 13, 1136, 62, 2213, 328, 10446, 62, 1525, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 261, 62, 929, 5532, 62, 260, 5143, 1298, 2223, 62, 11250, 13, 1136, 62, 261, 62, 929, 5532, 62, 260, 5143, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 46284, 62, 48678, 1298, 2223, 62, 11250, 13, 1136, 62, 46284, 62, 48678, 22784, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 611, 3121, 273, 287, 337, 1546, 2640, 62, 6369, 2943, 3843, 1581, 62, 45, 29559, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 18558, 38409, 8973, 796, 366, 6880, 418, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 13155, 385, 8973, 796, 2223, 62, 11250, 13, 1136, 62, 13155, 385, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 11883, 8973, 796, 2223, 62, 11250, 13, 1136, 62, 11883, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 39531, 8973, 796, 2223, 62, 11250, 13, 1136, 62, 39531, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 24330, 8973, 796, 2223, 62, 11250, 13, 1136, 62, 24330, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 26086, 62, 10396, 8139, 8973, 796, 5794, 62, 10396, 8139, 7, 2673, 62, 11250, 13, 1136, 62, 26086, 62, 10396, 8139, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 45986, 62, 17143, 7307, 8973, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 2539, 1298, 5772, 14692, 2539, 33116, 366, 8367, 1298, 5772, 14692, 8367, 8973, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5772, 287, 2223, 62, 11250, 13, 18982, 62, 45986, 62, 17143, 7307, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 32315, 62, 23912, 1424, 796, 14631, 42348, 1600, 366, 46616, 1600, 366, 8367, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 1102, 2536, 6003, 8973, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 7, 13344, 7, 1102, 2536, 2913, 62, 23912, 1424, 11, 32315, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 32315, 287, 2223, 62, 11250, 13, 1136, 62, 9948, 49262, 62, 1102, 2536, 6003, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 45986, 62, 9060, 8973, 796, 2223, 62, 11250, 13, 1136, 62, 45986, 62, 6371, 3419, 628, 220, 220, 220, 1303, 5514, 1208, 1729, 12, 14202, 3815, 11, 523, 833, 261, 481, 779, 26235, 329, 1854, 198, 220, 220, 220, 1441, 1391, 2539, 25, 1188, 329, 1994, 11, 1188, 287, 1255, 13, 23814, 3419, 611, 1188, 318, 407, 6045, 92, 628, 198, 4299, 5794, 62, 83, 1313, 62, 21858, 62, 11600, 7, 21858, 62, 11250, 2599, 198, 220, 220, 220, 37227, 8645, 378, 257, 8633, 286, 491, 261, 5647, 329, 257, 1693, 11, 422, 262, 833, 261, 33308, 16934, 13, 628, 220, 220, 220, 1058, 17143, 1693, 62, 11250, 25, 833, 261, 33308, 16934, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2223, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 62, 11250, 13, 1136, 62, 2673, 62, 3672, 33529, 5794, 62, 83, 1313, 62, 2673, 62, 11600, 7, 2673, 62, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 62, 11250, 287, 1693, 62, 11250, 13, 1136, 62, 4658, 3419, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1255, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17440, 1298, 1693, 62, 11250, 13, 1136, 62, 17440, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15952, 5950, 1298, 1693, 62, 11250, 13, 1136, 62, 15952, 5950, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4658, 1298, 2223, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41143, 278, 1298, 1693, 62, 11250, 13, 1136, 62, 41143, 278, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 36560, 278, 1298, 1693, 62, 11250, 13, 1136, 62, 36560, 278, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5143, 62, 32374, 1298, 1693, 62, 11250, 13, 1136, 62, 5143, 62, 32374, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 439, 62, 77, 4147, 1298, 1693, 62, 11250, 13, 1136, 62, 439, 62, 77, 4147, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25616, 1298, 1693, 62, 11250, 13, 1136, 62, 25616, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12154, 62, 2502, 37796, 1298, 1693, 62, 11250, 13, 1136, 62, 12154, 62, 2502, 37796, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9806, 62, 43282, 1298, 1693, 62, 11250, 13, 1136, 62, 9806, 62, 43282, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 62, 11340, 1298, 1693, 62, 11250, 13, 1136, 62, 2435, 62, 11340, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 40319, 62, 43282, 1298, 1693, 62, 11250, 13, 1136, 62, 40319, 62, 43282, 22784, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 27425, 62, 11250, 796, 1693, 62, 11250, 13, 1136, 62, 27773, 929, 62, 2673, 3419, 198, 220, 220, 220, 611, 27425, 62, 11250, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27425, 62, 2673, 796, 5794, 62, 83, 1313, 62, 2673, 62, 11600, 7, 27773, 929, 62, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 14692, 27773, 929, 62, 2673, 8973, 796, 27425, 62, 2673, 628, 220, 220, 220, 1303, 5514, 1208, 1729, 12, 14202, 3815, 11, 523, 833, 261, 481, 779, 26235, 329, 1854, 198, 220, 220, 220, 1441, 1391, 2539, 25, 1188, 329, 1994, 11, 1188, 287, 1255, 13, 23814, 3419, 611, 1188, 318, 407, 6045, 92, 628, 198, 198, 31, 2435, 62, 23870, 7, 926, 75, 28, 20, 8, 628, 198, 4299, 3440, 62, 83, 1313, 62, 15271, 62, 11250, 62, 3919, 62, 23870, 7, 198, 220, 220, 220, 2139, 11, 198, 220, 220, 220, 13946, 11, 198, 220, 220, 220, 3440, 62, 2934, 1420, 902, 28, 17821, 11, 198, 220, 220, 220, 523, 64, 62, 15908, 28, 7206, 38865, 62, 15821, 32, 62, 34720, 11, 198, 220, 220, 220, 329, 62, 12102, 341, 28, 25101, 11, 198, 2599, 198, 220, 220, 220, 37227, 8912, 477, 17839, 3946, 329, 257, 2139, 11, 290, 597, 3224, 4566, 3815, 526, 15931, 198, 220, 220, 220, 4566, 796, 1100, 62, 26086, 62, 15271, 62, 17018, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 3672, 28, 15271, 11, 3131, 62, 10951, 28, 69, 1, 83, 1313, 12, 90, 565, 5819, 92, 1600, 523, 64, 62, 15908, 28, 568, 64, 62, 15908, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3946, 796, 8106, 62, 11498, 17041, 62, 6738, 62, 11250, 7, 11250, 8, 198, 220, 220, 220, 1693, 62, 11250, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 833, 261, 33308, 16934, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 28, 15271, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13946, 28, 565, 5819, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 11600, 28, 21858, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 2934, 1420, 902, 28, 2220, 62, 2934, 1420, 902, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 523, 64, 62, 15908, 28, 568, 64, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 62, 12102, 341, 28, 1640, 62, 12102, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 1693, 287, 3946, 13, 23814, 3419, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 1441, 1693, 62, 11250, 82, 628, 198, 198, 4299, 2251, 62, 20751, 62, 11250, 7, 15271, 11, 13946, 11, 523, 64, 62, 15908, 28, 7206, 38865, 62, 15821, 32, 62, 34720, 2599, 198, 220, 220, 220, 37227, 8645, 378, 257, 25745, 8398, 2393, 329, 833, 261, 11, 329, 257, 2139, 526, 15931, 198, 220, 220, 220, 1693, 62, 11250, 82, 796, 3440, 62, 83, 1313, 62, 15271, 62, 11250, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2139, 28, 15271, 11, 13946, 28, 565, 5819, 11, 3440, 62, 2934, 1420, 902, 28, 17821, 11, 523, 64, 62, 15908, 28, 568, 64, 62, 15908, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 662, 1676, 1591, 276, 62, 11250, 796, 23884, 198, 220, 220, 220, 662, 1676, 1591, 276, 62, 11250, 14692, 43863, 8973, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 11250, 13, 1136, 62, 3672, 33529, 5794, 62, 83, 1313, 62, 21858, 62, 11600, 7, 21858, 62, 11250, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1693, 62, 11250, 287, 1693, 62, 11250, 82, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1441, 331, 43695, 13, 39455, 7, 3866, 1676, 1591, 276, 62, 11250, 11, 360, 15829, 28, 35, 15829, 11, 4277, 62, 11125, 62, 7635, 28, 25101, 8, 628, 628, 198, 4299, 1351, 62, 83, 1313, 62, 565, 13654, 7, 15271, 25, 965, 11, 523, 64, 62, 15908, 25, 965, 796, 5550, 38865, 62, 15821, 32, 62, 34720, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 35561, 262, 833, 261, 23163, 257, 2139, 318, 17839, 284, 6061, 284, 526, 15931, 198, 220, 220, 220, 2989, 62, 260, 796, 374, 1, 14, 83, 1313, 12, 26933, 15, 12, 24, 64, 12, 89, 12, 62, 60, 28104, 17405, 88, 43695, 3, 1, 198, 220, 220, 220, 2139, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 568, 64, 62, 15908, 11, 2139, 8, 198, 220, 220, 220, 23163, 796, 17635, 198, 220, 220, 220, 329, 29472, 287, 15095, 13, 4743, 672, 7, 69, 1, 90, 15271, 62, 15908, 92, 15211, 13, 88, 43695, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 260, 62, 15699, 796, 302, 13, 12947, 7, 12947, 62, 260, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13946, 62, 260, 62, 15699, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23163, 13, 33295, 7, 565, 5819, 62, 260, 62, 15699, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 1441, 23163, 628, 628, 198, 4299, 21136, 62, 15271, 62, 39098, 62, 6738, 62, 18558, 38409, 62, 312, 7, 35943, 62, 312, 25, 965, 8, 4613, 309, 29291, 58, 2536, 11, 965, 5974, 198, 220, 220, 220, 37227, 47, 945, 274, 491, 261, 18842, 418, 4876, 220, 2340, 11, 588, 3897, 6759, 7509, 13, 9535, 2108, 62, 8612, 1352, 13, 30336, 1415, 13, 15344, 7635, 13, 3510, 6814, 5774, 67, 22, 12, 1899, 5892, 12, 19, 276, 19, 12, 65, 24, 2075, 12, 487, 64, 22, 65, 2481, 66, 3324, 5332, 37811, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2139, 11, 1693, 11, 1693, 62, 5143, 11, 2223, 11, 334, 27112, 796, 4876, 62, 312, 13, 35312, 7203, 19570, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 23722, 77, 470, 21136, 262, 18842, 418, 4876, 4686, 656, 257, 4938, 491, 261, 1693, 25, 1391, 35943, 62, 312, 38362, 1391, 68, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2139, 11, 1693, 11, 2223, 796, 366, 34680, 62, 15271, 1600, 366, 34680, 62, 21858, 1600, 366, 34680, 62, 2673, 1, 198, 220, 220, 220, 1441, 2139, 11, 277, 1, 90, 21858, 27422, 90, 2673, 36786, 198 ]
2.649127
4,124
# -*- coding: utf-8 -*- # # Copyright (C) 2019 CESNET. # # Invenio Records Presentation is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """ Example Presentation workflow.""" from invenio_workflows import WorkflowEngine from invenio_records_presentation.api import PresentationOutputFile from invenio_records_presentation.workflows import presentation_workflow_factory example = presentation_workflow_factory(task_list=[ print_extra_data, create_example_file, print_data, transform_example_file, output_example_file, ])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 13130, 42700, 12884, 13, 198, 2, 198, 2, 554, 574, 952, 13407, 21662, 341, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 198, 2, 739, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 3307, 13, 198, 198, 37811, 17934, 21662, 341, 30798, 526, 15931, 198, 6738, 287, 574, 952, 62, 1818, 44041, 1330, 5521, 11125, 13798, 198, 198, 6738, 287, 574, 952, 62, 8344, 3669, 62, 25579, 341, 13, 15042, 1330, 21662, 341, 26410, 8979, 198, 6738, 287, 574, 952, 62, 8344, 3669, 62, 25579, 341, 13, 1818, 44041, 1330, 10470, 62, 1818, 11125, 62, 69, 9548, 628, 628, 628, 198, 198, 20688, 796, 10470, 62, 1818, 11125, 62, 69, 9548, 7, 35943, 62, 4868, 41888, 198, 220, 220, 220, 3601, 62, 26086, 62, 7890, 11, 198, 220, 220, 220, 2251, 62, 20688, 62, 7753, 11, 198, 220, 220, 220, 3601, 62, 7890, 11, 198, 220, 220, 220, 6121, 62, 20688, 62, 7753, 11, 198, 220, 220, 220, 5072, 62, 20688, 62, 7753, 11, 198, 12962, 198 ]
3.175879
199
#!/usr/bin/python # -*- coding: utf-8 -*- #add the path of the twitter egg import sys egg_path = '/home/users/web/........./cgi-bin/PyPkg/twitter-1.14.3-py2.7.egg' sys.path.append(egg_path) # Import the CGI, string, sys, and md5crypt modules import json, urllib2, re, time, datetime, sys, cgi, os import sqlite3 import MySQLdb as mdb import string, random from urlparse import urlparse from twitter import * from tempfile import TemporaryFile from collections import * from py_site_header import * def lex_anal(incomingTweetList): ''' routine to do lexical analysis ''' #final_tweet_list --- date / sender full name / tweet #read the tweets and create a list of sender-htag and sender-@ #incoming TweetList has two layer lists sender_htag = [] sender_at = [] h_tags_all = [] at_items_all = [] ts_all = [] for lex2 in incomingTweetList: for lex22 in lex2: td = lex22[0] #this is the tweet date try: ts = text_sanitize(lex22[1]) #this is the tweet sender except: print 'something wrong with ',lex22[1] ts = '---' ts_all.append(ts) h_tags = re.findall('[#]\w+',lex22[2]) #these are the h-tags at_items = re.findall('[@]\w+',lex22[2]) #these are the other users h_tags = [hti.lower() for hti in h_tags] at_items = [ati.lower() for ati in at_items] for h2 in h_tags: sender_htag.append([td,ts.lower()+'-'+h2]) h_tags_all.append(h2) for at2 in at_items: sender_at.append([td,ts.lower()+'-'+at2]) at_items_all.append(at2) #summarize the two new lists #following lists don't have dates sender_htag2 = [xx[1] for xx in sender_htag] sender_at2 = [yy[1] for yy in sender_at] #make a list of the tweet senders only ts_all = list(set(ts_all)) #print ts_all #get the top 10 htags #py2.6 ht_col = collections.Counter(h_tags_all) htag_data4heatmap = [] at_data4heatmap = [] #print '<ul>Top 10 Hashtags' #py2.6 for h_item in ht_col.most_common(10): for h_item in top_list(h_tags_all,10): #print '<li>', h_item, '</li>' #count the number of times each of the hastag was referenced by each tweet sender try: for tsitem in ts_all: try: itemtocount = str(tsitem+'-'+h_item[1]) htag_data4heatmap.append([tsitem,h_item[1], sender_htag2.count(itemtocount)]) except: print 'Problem here: ',h_item,tsitem except: print 'Problem here',h_item print '</ul>' #get the top 10 user references #py2.6 at_col = collections.Counter(at_items_all) #print '<ul>Top 10 Users' #py2.6 for a_item in at_col.most_common(10): for a_item in top_list(at_items_all,10): #print '<li>', a_item, '</li>' #count the number of times each of the hastag was referenced by each tweet sender try: for tsitem in ts_all: itemtocount = str(tsitem+'-'+a_item[1]) at_data4heatmap.append([tsitem,a_item[1], sender_at2.count(itemtocount)]) except: print 'Problem here 2',a_item print '</ul>' #draw the table with the heatmap tcols = len(ts_all) #number of tweet senders - rows trows = len(htag_data4heatmap) / tcols #number of hastags - cols #print trows, tcols if trows>0: print '<br><br>' print '<h3>Most Popular Hashtags</h3>' heatmap_table(trows,tcols,htag_data4heatmap) tcols = len(ts_all) #number of tweet senders - rows trows = len(at_data4heatmap) / tcols #number of hastags - cols #print trows, tcols if trows>0: print '<br><br>' print '<h3>Most Referenced Users</h3>' heatmap_table(trows,tcols,at_data4heatmap) # Define main function. main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 2, 2860, 262, 3108, 286, 262, 17044, 5935, 201, 198, 11748, 25064, 201, 198, 33856, 62, 6978, 796, 31051, 11195, 14, 18417, 14, 12384, 14, 34617, 14, 37157, 12, 8800, 14, 20519, 47, 10025, 14, 6956, 12, 16, 13, 1415, 13, 18, 12, 9078, 17, 13, 22, 13, 33856, 6, 201, 198, 17597, 13, 6978, 13, 33295, 7, 33856, 62, 6978, 8, 201, 198, 201, 198, 201, 198, 2, 17267, 262, 36378, 11, 4731, 11, 25064, 11, 290, 45243, 20, 29609, 13103, 201, 198, 11748, 33918, 11, 2956, 297, 571, 17, 11, 302, 11, 640, 11, 4818, 8079, 11, 25064, 11, 269, 12397, 11, 28686, 201, 198, 11748, 44161, 578, 18, 201, 198, 11748, 33476, 9945, 355, 285, 9945, 201, 198, 11748, 4731, 11, 4738, 201, 198, 6738, 19016, 29572, 1330, 19016, 29572, 201, 198, 6738, 17044, 1330, 1635, 201, 198, 6738, 20218, 7753, 1330, 46042, 8979, 201, 198, 6738, 17268, 1330, 1635, 201, 198, 6738, 12972, 62, 15654, 62, 25677, 1330, 1635, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 197, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 4299, 31191, 62, 272, 282, 7, 259, 4976, 47845, 8053, 2599, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 8027, 284, 466, 31191, 605, 3781, 201, 198, 220, 220, 220, 705, 7061, 201, 198, 220, 220, 220, 1303, 20311, 62, 83, 7277, 62, 4868, 11420, 3128, 1220, 29788, 1336, 1438, 1220, 6126, 201, 198, 220, 220, 220, 1303, 961, 262, 12665, 290, 2251, 257, 1351, 286, 29788, 12, 4352, 363, 290, 29788, 12, 31, 201, 198, 220, 220, 220, 1303, 259, 4976, 18752, 8053, 468, 734, 7679, 8341, 201, 198, 220, 220, 220, 29788, 62, 4352, 363, 796, 17635, 201, 198, 220, 220, 220, 29788, 62, 265, 796, 17635, 201, 198, 220, 220, 220, 289, 62, 31499, 62, 439, 796, 17635, 201, 198, 220, 220, 220, 379, 62, 23814, 62, 439, 796, 17635, 201, 198, 220, 220, 220, 40379, 62, 439, 796, 17635, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 329, 31191, 17, 287, 15619, 47845, 8053, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 31191, 1828, 287, 31191, 17, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41560, 796, 31191, 1828, 58, 15, 60, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5661, 318, 262, 6126, 3128, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 796, 2420, 62, 12807, 270, 1096, 7, 2588, 1828, 58, 16, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5661, 318, 262, 6126, 29788, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 18927, 2642, 351, 46083, 2588, 1828, 58, 16, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 796, 705, 6329, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 62, 439, 13, 33295, 7, 912, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 62, 31499, 796, 302, 13, 19796, 439, 10786, 58, 2, 60, 59, 86, 10, 3256, 2588, 1828, 58, 17, 12962, 220, 220, 220, 220, 220, 220, 220, 1303, 27218, 389, 262, 289, 12, 31499, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 62, 23814, 796, 302, 13, 19796, 439, 10786, 58, 31, 60, 59, 86, 10, 3256, 2588, 1828, 58, 17, 12962, 220, 220, 220, 1303, 27218, 389, 262, 584, 2985, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 62, 31499, 796, 685, 4352, 72, 13, 21037, 3419, 329, 289, 20259, 287, 289, 62, 31499, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 62, 23814, 796, 685, 7246, 13, 21037, 3419, 329, 379, 72, 287, 379, 62, 23814, 60, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 289, 17, 287, 289, 62, 31499, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 4352, 363, 13, 33295, 26933, 8671, 11, 912, 13, 21037, 3419, 10, 6, 19355, 10, 71, 17, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 62, 31499, 62, 439, 13, 33295, 7, 71, 17, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 379, 17, 287, 379, 62, 23814, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29788, 62, 265, 13, 33295, 26933, 8671, 11, 912, 13, 21037, 3419, 10, 6, 19355, 10, 265, 17, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 62, 23814, 62, 439, 13, 33295, 7, 265, 17, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 16345, 3876, 1096, 262, 734, 649, 8341, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 27780, 278, 8341, 836, 470, 423, 9667, 201, 198, 220, 220, 220, 29788, 62, 4352, 363, 17, 796, 685, 5324, 58, 16, 60, 329, 31383, 287, 29788, 62, 4352, 363, 60, 201, 198, 220, 220, 220, 29788, 62, 265, 17, 796, 685, 22556, 58, 16, 60, 329, 331, 88, 287, 29788, 62, 265, 60, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 15883, 257, 1351, 286, 262, 6126, 3758, 364, 691, 201, 198, 220, 220, 220, 40379, 62, 439, 796, 1351, 7, 2617, 7, 912, 62, 439, 4008, 201, 198, 220, 220, 220, 1303, 4798, 40379, 62, 439, 201, 198, 201, 198, 220, 220, 220, 1303, 1136, 262, 1353, 838, 289, 31499, 201, 198, 220, 220, 220, 1303, 9078, 17, 13, 21, 220, 220, 220, 289, 83, 62, 4033, 796, 17268, 13, 31694, 7, 71, 62, 31499, 62, 439, 8, 201, 198, 220, 220, 220, 289, 12985, 62, 7890, 19, 25080, 8899, 796, 17635, 201, 198, 220, 220, 220, 379, 62, 7890, 19, 25080, 8899, 796, 17635, 201, 198, 220, 220, 220, 1303, 4798, 705, 27, 377, 29, 9126, 838, 21059, 31499, 6, 201, 198, 220, 220, 220, 1303, 9078, 17, 13, 21, 220, 220, 220, 329, 289, 62, 9186, 287, 289, 83, 62, 4033, 13, 1712, 62, 11321, 7, 940, 2599, 201, 198, 220, 220, 220, 329, 289, 62, 9186, 287, 1353, 62, 4868, 7, 71, 62, 31499, 62, 439, 11, 940, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 27, 4528, 29, 3256, 289, 62, 9186, 11, 705, 3556, 4528, 29, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9127, 262, 1271, 286, 1661, 1123, 286, 262, 19338, 363, 373, 20717, 416, 1123, 6126, 29788, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 40379, 9186, 287, 40379, 62, 439, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 40301, 608, 796, 965, 7, 912, 9186, 10, 6, 19355, 10, 71, 62, 9186, 58, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 12985, 62, 7890, 19, 25080, 8899, 13, 33295, 26933, 912, 9186, 11, 71, 62, 9186, 58, 16, 4357, 29788, 62, 4352, 363, 17, 13, 9127, 7, 9186, 40301, 608, 8, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 40781, 994, 25, 46083, 71, 62, 9186, 11, 912, 9186, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 40781, 994, 3256, 71, 62, 9186, 201, 198, 201, 198, 220, 220, 220, 3601, 705, 3556, 377, 29, 6, 201, 198, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 1136, 262, 1353, 838, 2836, 10288, 201, 198, 220, 220, 220, 1303, 9078, 17, 13, 21, 220, 220, 379, 62, 4033, 796, 17268, 13, 31694, 7, 265, 62, 23814, 62, 439, 8, 201, 198, 220, 220, 220, 1303, 4798, 705, 27, 377, 29, 9126, 838, 18987, 6, 201, 198, 220, 220, 220, 1303, 9078, 17, 13, 21, 220, 220, 329, 257, 62, 9186, 287, 379, 62, 4033, 13, 1712, 62, 11321, 7, 940, 2599, 201, 198, 220, 220, 220, 329, 257, 62, 9186, 287, 1353, 62, 4868, 7, 265, 62, 23814, 62, 439, 11, 940, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 705, 27, 4528, 29, 3256, 257, 62, 9186, 11, 705, 3556, 4528, 29, 6, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9127, 262, 1271, 286, 1661, 1123, 286, 262, 19338, 363, 373, 20717, 416, 1123, 6126, 29788, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 40379, 9186, 287, 40379, 62, 439, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 40301, 608, 796, 965, 7, 912, 9186, 10, 6, 19355, 10, 64, 62, 9186, 58, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 62, 7890, 19, 25080, 8899, 13, 33295, 26933, 912, 9186, 11, 64, 62, 9186, 58, 16, 4357, 29788, 62, 265, 17, 13, 9127, 7, 9186, 40301, 608, 8, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 40781, 994, 362, 3256, 64, 62, 9186, 201, 198, 201, 198, 220, 220, 220, 3601, 705, 3556, 377, 29, 6, 201, 198, 201, 198, 220, 220, 220, 1303, 19334, 262, 3084, 351, 262, 4894, 8899, 201, 198, 220, 220, 220, 256, 4033, 82, 796, 18896, 7, 912, 62, 439, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17618, 286, 6126, 3758, 364, 532, 15274, 201, 198, 220, 220, 220, 256, 8516, 796, 18896, 7, 4352, 363, 62, 7890, 19, 25080, 8899, 8, 1220, 256, 4033, 82, 220, 220, 220, 220, 1303, 17618, 286, 19338, 3775, 532, 951, 82, 201, 198, 220, 220, 220, 1303, 4798, 256, 8516, 11, 256, 4033, 82, 201, 198, 220, 220, 220, 611, 256, 8516, 29, 15, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 1671, 6927, 1671, 29, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 71, 18, 29, 6943, 22623, 21059, 31499, 3556, 71, 18, 29, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4894, 8899, 62, 11487, 7, 83, 8516, 11, 83, 4033, 82, 11, 4352, 363, 62, 7890, 19, 25080, 8899, 8, 201, 198, 201, 198, 220, 220, 220, 256, 4033, 82, 796, 18896, 7, 912, 62, 439, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17618, 286, 6126, 3758, 364, 532, 15274, 201, 198, 220, 220, 220, 256, 8516, 796, 18896, 7, 265, 62, 7890, 19, 25080, 8899, 8, 1220, 256, 4033, 82, 220, 220, 220, 220, 1303, 17618, 286, 19338, 3775, 532, 951, 82, 201, 198, 220, 220, 220, 1303, 4798, 256, 8516, 11, 256, 4033, 82, 201, 198, 220, 220, 220, 611, 256, 8516, 29, 15, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 1671, 6927, 1671, 29, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 27, 71, 18, 29, 6943, 6524, 14226, 771, 18987, 3556, 71, 18, 29, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4894, 8899, 62, 11487, 7, 83, 8516, 11, 83, 4033, 82, 11, 265, 62, 7890, 19, 25080, 8899, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 2, 2896, 500, 1388, 2163, 13, 201, 198, 201, 198, 201, 198, 201, 198, 12417, 3419, 201, 198 ]
1.915826
2,281
""" QAQC Viewer based on Chaco & Traits """ #from enthought.chaco.example_support import COLOR_PALETTE #from enthought.enable.example_support import DemoFrame, demo_main # Enthought library imports from enthought.enable.api import Window, Component, ComponentEditor from enthought.traits.api import HasTraits, Instance from enthought.traits.ui.api import Item, Group, View # Chaco imports from enthought.chaco.api import Plot, ArrayDataSource, ArrayPlotData, \ BarPlot, DataRange1D, LabelAxis, LinearMapper, VPlotContainer, \ PlotAxis, PlotGrid, LinePlot, add_default_grids, PlotLabel from enthought.chaco.tools.api import PanTool, ZoomTool from enthought.chaco.scales.api import CalendarScaleSystem from enthought.chaco.scales_tick_generator import ScalesTickGenerator from sonde import Sonde import time import numpy as np #============================================================================== # Attributes to use for the plot view. #size=(800,600) #title="Salinity plot example" if __name__ == "__main__": viewer = BaseViewer() viewer.configure_traits()
[ 37811, 198, 48, 32, 48, 34, 3582, 263, 1912, 319, 609, 10602, 1222, 4759, 896, 198, 37811, 198, 198, 2, 6738, 920, 71, 2917, 13, 354, 10602, 13, 20688, 62, 11284, 1330, 20444, 1581, 62, 47, 1847, 2767, 9328, 198, 2, 6738, 920, 71, 2917, 13, 21633, 13, 20688, 62, 11284, 1330, 34588, 19778, 11, 13605, 62, 12417, 198, 198, 2, 2039, 28895, 5888, 17944, 198, 6738, 920, 71, 2917, 13, 21633, 13, 15042, 1330, 26580, 11, 35100, 11, 35100, 17171, 198, 6738, 920, 71, 2917, 13, 9535, 896, 13, 15042, 1330, 7875, 15721, 896, 11, 2262, 590, 198, 6738, 920, 71, 2917, 13, 9535, 896, 13, 9019, 13, 15042, 1330, 9097, 11, 4912, 11, 3582, 198, 198, 2, 609, 10602, 17944, 198, 6738, 920, 71, 2917, 13, 354, 10602, 13, 15042, 1330, 28114, 11, 15690, 6601, 7416, 11, 15690, 43328, 6601, 11, 3467, 198, 220, 220, 220, 220, 2409, 43328, 11, 6060, 17257, 16, 35, 11, 36052, 31554, 271, 11, 44800, 44, 11463, 11, 569, 43328, 29869, 11, 3467, 198, 220, 220, 220, 220, 28114, 31554, 271, 11, 28114, 41339, 11, 6910, 43328, 11, 751, 62, 12286, 62, 2164, 2340, 11, 28114, 33986, 198, 6738, 920, 71, 2917, 13, 354, 10602, 13, 31391, 13, 15042, 1330, 5961, 25391, 11, 40305, 25391, 198, 6738, 920, 71, 2917, 13, 354, 10602, 13, 1416, 2040, 13, 15042, 1330, 26506, 29990, 11964, 198, 6738, 920, 71, 2917, 13, 354, 10602, 13, 1416, 2040, 62, 42298, 62, 8612, 1352, 1330, 1446, 2040, 51, 624, 8645, 1352, 198, 198, 6738, 264, 14378, 1330, 311, 14378, 198, 11748, 640, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 23926, 25609, 855, 198, 2, 49213, 284, 779, 329, 262, 7110, 1570, 13, 198, 2, 7857, 16193, 7410, 11, 8054, 8, 198, 2, 7839, 2625, 19221, 6269, 7110, 1672, 1, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 19091, 796, 7308, 7680, 263, 3419, 198, 220, 220, 220, 19091, 13, 11250, 495, 62, 9535, 896, 3419, 198 ]
3.240356
337
import datetime from . import relations
[ 198, 11748, 4818, 8079, 198, 198, 6738, 764, 1330, 2316, 628, 628, 628 ]
3.615385
13
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from comics.models import Comic, ComicChapter # class PageFileInline(admin.TabularInline): # model = ComicChapter # # # class PageAdmin(admin.ModelAdmin): # inlines = [PageFileInline, ] # class ChapterInline(admin.TabularInline): # model = ComicChapterFiles # # class ComicAdmin(admin.ModelAdmin): # inlines = [ # ChapterInline, # ] # admin.site.register(ComicChapter, ComicAdmin) admin.site.register(Comic) admin.site.register(ComicChapter)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 12770, 13, 27530, 1330, 19949, 11, 19949, 14126, 628, 198, 2, 1398, 7873, 8979, 818, 1370, 7, 28482, 13, 33349, 934, 818, 1370, 2599, 198, 2, 220, 220, 220, 220, 2746, 796, 19949, 14126, 198, 2, 198, 2, 198, 2, 1398, 7873, 46787, 7, 28482, 13, 17633, 46787, 2599, 198, 2, 220, 220, 220, 220, 287, 6615, 796, 685, 9876, 8979, 818, 1370, 11, 2361, 198, 198, 2, 1398, 7006, 818, 1370, 7, 28482, 13, 33349, 934, 818, 1370, 2599, 198, 2, 220, 220, 220, 220, 2746, 796, 19949, 14126, 25876, 198, 2, 198, 2, 1398, 19949, 46787, 7, 28482, 13, 17633, 46787, 2599, 198, 2, 220, 220, 220, 220, 287, 6615, 796, 685, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 7006, 818, 1370, 11, 198, 2, 220, 220, 220, 220, 2361, 198, 198, 2, 13169, 13, 15654, 13, 30238, 7, 5377, 291, 14126, 11, 19949, 46787, 8, 198, 198, 28482, 13, 15654, 13, 30238, 7, 5377, 291, 8, 198, 28482, 13, 15654, 13, 30238, 7, 5377, 291, 14126, 8, 198 ]
2.728571
210
# This program displays 100 lowercase letters, fifteen per line import turtle from random import randint main() print() # Draw a line from (x1, y1) to (x2, y2) # def drawLine(x1, y1, x2, y2): # turtle.penup() # turtle.goto(x1, y1) # turtle.pendown() # turtle.goto(x2, y2) # def writeText(s, x, y): # turtle.penup() # Pull the pen up # turtle.goto(x, y) # turtle.pendown() # Pull the pen down # turtle.write(s) # Write a string # # Draw a point at the specified location (x, y) # def drawPoint(x, y): # turtle.penup() # Pull the pen up # turtle.goto(x, y) # turtle.pendown() # Pull the pen down # turtle.begin_fill() # Begin to fill color in a shape # turtle.circle(3) # turtle.end_fill() # Fill the shape # # Draw a circle centered at (x, y) with the specified radius # def drawCircle(x = 0, y = 0, radius = 10): # turtle.penup() # Pull the pen up # turtle.goto(x, y - radius) # turtle.pendown() # Pull the pen down # turtle.circle(radius) # # Draw a rectangle at (x, y) with the specified width and height # def drawRectangle(x = 0, y = 0, width = 10, height = 10): # turtle.penup() # Pull the pen up # turtle.goto(x + width / 2, y + height / 2) # turtle.pendown() # Pull the pen down # turtle.right(90) # turtle.forward(height) # turtle.right(90) # turtle.forward(width) # turtle.right(90) # turtle.forward(height) # turtle.right(90) # turtle.forward(width) # Generate a random uppercase letter # def getRandomUpperCaseLetter() : # return getRandomCharacter('A', 'Z') # # Generate a random digit character # def getRandomDigitCharacter() : # return getRandomCharacter('0', '9') # # Generate a random character # def getRandomASCIICharacter() : # return chr(randint(0, 127)) # # # Generate a random character between ch1 and ch2 # def getRandomCharacter(ch1, ch2) : # return chr(randint(ord(ch1), ord(ch2))) #
[ 2, 770, 1430, 11298, 1802, 2793, 7442, 7475, 11, 17280, 583, 1627, 198, 198, 11748, 28699, 198, 6738, 4738, 1330, 43720, 600, 628, 628, 628, 198, 12417, 3419, 198, 198, 4798, 3419, 198, 198, 2, 15315, 257, 1627, 422, 357, 87, 16, 11, 331, 16, 8, 284, 357, 87, 17, 11, 331, 17, 8, 198, 2, 825, 3197, 13949, 7, 87, 16, 11, 331, 16, 11, 2124, 17, 11, 331, 17, 2599, 198, 2, 28699, 13, 3617, 929, 3419, 198, 2, 28699, 13, 70, 2069, 7, 87, 16, 11, 331, 16, 8, 198, 2, 28699, 13, 37038, 593, 3419, 198, 2, 28699, 13, 70, 2069, 7, 87, 17, 11, 331, 17, 8, 628, 198, 2, 825, 3551, 8206, 7, 82, 11, 2124, 11, 331, 2599, 198, 2, 28699, 13, 3617, 929, 3419, 1303, 21429, 262, 3112, 510, 198, 2, 28699, 13, 70, 2069, 7, 87, 11, 331, 8, 198, 2, 28699, 13, 37038, 593, 3419, 1303, 21429, 262, 3112, 866, 198, 2, 28699, 13, 13564, 7, 82, 8, 1303, 19430, 257, 4731, 198, 198, 2, 1303, 15315, 257, 966, 379, 262, 7368, 4067, 357, 87, 11, 331, 8, 198, 2, 825, 3197, 12727, 7, 87, 11, 331, 2599, 198, 2, 28699, 13, 3617, 929, 3419, 1303, 21429, 262, 3112, 510, 198, 2, 28699, 13, 70, 2069, 7, 87, 11, 331, 8, 198, 2, 28699, 13, 37038, 593, 3419, 1303, 21429, 262, 3112, 866, 198, 2, 28699, 13, 27471, 62, 20797, 3419, 1303, 16623, 284, 6070, 3124, 287, 257, 5485, 198, 2, 28699, 13, 45597, 7, 18, 8, 198, 2, 28699, 13, 437, 62, 20797, 3419, 1303, 27845, 262, 5485, 628, 198, 2, 1303, 15315, 257, 9197, 19254, 379, 357, 87, 11, 331, 8, 351, 262, 7368, 16874, 198, 2, 825, 3197, 31560, 293, 7, 87, 796, 657, 11, 331, 796, 657, 11, 16874, 796, 838, 2599, 198, 2, 28699, 13, 3617, 929, 3419, 1303, 21429, 262, 3112, 510, 198, 2, 28699, 13, 70, 2069, 7, 87, 11, 331, 532, 16874, 8, 198, 2, 28699, 13, 37038, 593, 3419, 1303, 21429, 262, 3112, 866, 198, 2, 28699, 13, 45597, 7, 42172, 8, 628, 198, 2, 1303, 15315, 257, 35991, 379, 357, 87, 11, 331, 8, 351, 262, 7368, 9647, 290, 6001, 198, 2, 825, 3197, 45474, 9248, 7, 87, 796, 657, 11, 331, 796, 657, 11, 9647, 796, 838, 11, 6001, 796, 838, 2599, 198, 2, 28699, 13, 3617, 929, 3419, 1303, 21429, 262, 3112, 510, 198, 2, 28699, 13, 70, 2069, 7, 87, 1343, 9647, 1220, 362, 11, 331, 1343, 6001, 1220, 362, 8, 198, 2, 28699, 13, 37038, 593, 3419, 1303, 21429, 262, 3112, 866, 198, 2, 28699, 13, 3506, 7, 3829, 8, 198, 2, 28699, 13, 11813, 7, 17015, 8, 198, 2, 28699, 13, 3506, 7, 3829, 8, 198, 2, 28699, 13, 11813, 7, 10394, 8, 198, 2, 28699, 13, 3506, 7, 3829, 8, 198, 2, 28699, 13, 11813, 7, 17015, 8, 198, 2, 28699, 13, 3506, 7, 3829, 8, 198, 2, 28699, 13, 11813, 7, 10394, 8, 198, 198, 2, 2980, 378, 257, 4738, 334, 39921, 589, 3850, 198, 2, 825, 651, 29531, 52, 2848, 20448, 45708, 3419, 1058, 198, 2, 1441, 651, 29531, 27275, 10786, 32, 3256, 705, 57, 11537, 198, 198, 2, 1303, 2980, 378, 257, 4738, 16839, 2095, 198, 2, 825, 651, 29531, 19511, 270, 27275, 3419, 1058, 198, 2, 1441, 651, 29531, 27275, 10786, 15, 3256, 705, 24, 11537, 198, 198, 2, 1303, 2980, 378, 257, 4738, 2095, 198, 2, 825, 651, 29531, 42643, 3978, 27275, 3419, 1058, 198, 2, 1441, 442, 81, 7, 25192, 600, 7, 15, 11, 18112, 4008, 198, 2, 198, 2, 1303, 2980, 378, 257, 4738, 2095, 1022, 442, 16, 290, 442, 17, 198, 2, 825, 651, 29531, 27275, 7, 354, 16, 11, 442, 17, 8, 1058, 198, 2, 1441, 442, 81, 7, 25192, 600, 7, 585, 7, 354, 16, 828, 2760, 7, 354, 17, 22305, 198, 2, 628, 198 ]
2.814132
651
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('allrecipes/', views.allrecipes, name='allrecipes'), path('newrecipe/', views.newrecipe, name='newrecipe'), path('profile/', views.profile, name='profile'), path('newuser/', views.newuser, name='newuser'), path('details/<int:ID>', views.details, name='details'), path('edituser/<int:ID>', views.edituser, name='edituser'), path('editrecipe/<int:ID>', views.editrecipe, name='editrecipe'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 1330, 5009, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 5009, 13, 9630, 11, 1438, 11639, 9630, 33809, 198, 220, 220, 220, 3108, 10786, 439, 8344, 18636, 14, 3256, 5009, 13, 439, 8344, 18636, 11, 1438, 11639, 439, 8344, 18636, 33809, 198, 220, 220, 220, 3108, 10786, 3605, 29102, 431, 14, 3256, 5009, 13, 3605, 29102, 431, 11, 1438, 11639, 3605, 29102, 431, 33809, 198, 220, 220, 220, 3108, 10786, 13317, 14, 3256, 5009, 13, 13317, 11, 1438, 11639, 13317, 33809, 198, 220, 220, 220, 3108, 10786, 3605, 7220, 14, 3256, 5009, 13, 3605, 7220, 11, 1438, 11639, 3605, 7220, 33809, 198, 220, 220, 220, 3108, 10786, 36604, 14, 27, 600, 25, 2389, 29, 3256, 5009, 13, 36604, 11, 1438, 11639, 36604, 33809, 198, 220, 220, 220, 3108, 10786, 19312, 7220, 14, 27, 600, 25, 2389, 29, 3256, 5009, 13, 19312, 7220, 11, 1438, 11639, 19312, 7220, 33809, 198, 220, 220, 220, 3108, 10786, 19312, 29102, 431, 14, 27, 600, 25, 2389, 29, 3256, 5009, 13, 19312, 29102, 431, 11, 1438, 11639, 19312, 29102, 431, 33809, 198, 60 ]
2.723077
195
# Importing the hashing library import hashlib # Importing the visual libraries from PyInquirer import Separator, prompt from termcolor import colored # Defining the hash function.
[ 2, 17267, 278, 262, 49544, 5888, 198, 11748, 12234, 8019, 198, 198, 2, 17267, 278, 262, 5874, 12782, 198, 6738, 9485, 818, 29782, 81, 1330, 8621, 283, 1352, 11, 6152, 198, 6738, 3381, 8043, 1330, 16396, 198, 198, 2, 2896, 3191, 262, 12234, 2163, 13, 628, 628 ]
3.957447
47
#----------------------------------------------------------------------------- # # Copyright (c) 2007 by Enthought, Inc. # All rights reserved. # #----------------------------------------------------------------------------- """ The UI service for the Data plugin. """ # Standard library imports. import logging # Enthought library imports. from envisage.api import ApplicationObject, UOL from pyface.api import confirm, error, FileDialog, information, YES # Data library imports. # Local imports. from services import IDATA_MODEL # Setup a logger for this module logger = logging.getLogger(__name__) class UiService(ApplicationObject): """ The UI service for the Data plugin. """ ########################################################################## # Attributes ########################################################################## #### public 'UiService' interface ######################################## # A reference to the Data plugin's model service. model_service = UOL ########################################################################## # 'Object' interface ########################################################################## #### operator methods #################################################### def __init__(self, **kws): """ Constructor. Extended to ensure our UOL properties are set. """ super(UiService, self).__init__(**kws) # Ensure we have a default model-service if one wasn't specified. if self.model_service is None: self.model_service = 'service://%s' % IDATA_MODEL return ########################################################################## # 'UIService' interface ########################################################################## #### public methods ###################################################### #TODO cgalvan: to be implemented # def delete_data(self, context, data_name, parent_window): # """ # Delete a Data. # # """ # # # Open confirmation-dialog to confirm deletion # message = 'Are you sure you want to delete %s?' % data_name # if confirm(parent_window, message) == YES: # self.model_service.delete_context_item(context, data_name) # # return def edit_data(self, window, data): """ Edit the data parameters of the specified data. """ data_parameters = data.data_parameters edit_ui = data_parameters.edit_traits( view='data_view', kind='livemodal', # handler=handler, parent=window) return edit_ui.result def display_message(self, msg, title=None, is_error=False): """ Display the specified message to the user. """ # Ensure we record any reasons this method doesn't work. Especially # since it's critical in displaying errors to users! try: # Attempt to identify the current application window. parent_window = None workbench = self.application.get_service('envisage.' 'workbench.IWorkbench') if workbench is not None: parent_window = workbench.active_window.control # Display the requested message if is_error: error(parent_window, msg, title=title) else: information(parent_window, msg, title=title) except: logger.exception('Unable to display pop-up message') return #### EOF #####################################################################
[ 2, 10097, 32501, 198, 2, 198, 2, 220, 15069, 357, 66, 8, 4343, 416, 2039, 28895, 11, 3457, 13, 198, 2, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 10097, 32501, 198, 37811, 198, 464, 12454, 2139, 329, 262, 6060, 13877, 13, 198, 198, 37811, 198, 198, 2, 8997, 5888, 17944, 13, 198, 11748, 18931, 198, 198, 2, 2039, 28895, 5888, 17944, 13, 198, 6738, 45633, 496, 13, 15042, 1330, 15678, 10267, 11, 471, 3535, 198, 6738, 12972, 2550, 13, 15042, 1330, 6216, 11, 4049, 11, 9220, 44204, 11, 1321, 11, 21560, 198, 198, 2, 6060, 5888, 17944, 13, 198, 198, 2, 10714, 17944, 13, 198, 6738, 2594, 1330, 4522, 13563, 62, 33365, 3698, 198, 198, 2, 31122, 257, 49706, 329, 428, 8265, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 471, 72, 16177, 7, 23416, 10267, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 12454, 2139, 329, 262, 6060, 13877, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 198, 220, 220, 220, 1303, 49213, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 628, 220, 220, 220, 1303, 21017, 1171, 705, 52, 72, 16177, 6, 7071, 1303, 29113, 4242, 21017, 628, 220, 220, 220, 1303, 317, 4941, 284, 262, 6060, 13877, 338, 2746, 2139, 13, 198, 220, 220, 220, 2746, 62, 15271, 796, 471, 3535, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 198, 220, 220, 220, 1303, 705, 10267, 6, 7071, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 628, 220, 220, 220, 1303, 21017, 10088, 5050, 1303, 29113, 14468, 21017, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 12429, 74, 18504, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 24204, 284, 4155, 674, 471, 3535, 6608, 389, 900, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 52, 72, 16177, 11, 2116, 737, 834, 15003, 834, 7, 1174, 74, 18504, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 356, 423, 257, 4277, 2746, 12, 15271, 611, 530, 2492, 470, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 19849, 62, 15271, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 62, 15271, 796, 705, 15271, 1378, 4, 82, 6, 4064, 4522, 13563, 62, 33365, 3698, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 198, 220, 220, 220, 1303, 705, 52, 1797, 712, 501, 6, 7071, 198, 220, 220, 220, 1303, 29113, 29113, 7804, 2, 628, 220, 220, 220, 1303, 21017, 1171, 5050, 1303, 29113, 14468, 4242, 2, 628, 220, 220, 220, 1303, 51, 3727, 46, 269, 13528, 10438, 25, 284, 307, 9177, 198, 220, 220, 220, 1303, 220, 220, 220, 825, 12233, 62, 7890, 7, 944, 11, 4732, 11, 1366, 62, 3672, 11, 2560, 62, 17497, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 23520, 257, 6060, 13, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 12641, 12, 38969, 519, 284, 6216, 39948, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 705, 8491, 345, 1654, 345, 765, 284, 12233, 4064, 82, 8348, 4064, 1366, 62, 3672, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 611, 6216, 7, 8000, 62, 17497, 11, 3275, 8, 6624, 21560, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 62, 15271, 13, 33678, 62, 22866, 62, 9186, 7, 22866, 11, 1366, 62, 3672, 8, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 825, 4370, 62, 7890, 7, 944, 11, 4324, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5312, 262, 1366, 10007, 286, 262, 7368, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 17143, 7307, 796, 1366, 13, 7890, 62, 17143, 7307, 628, 220, 220, 220, 220, 220, 220, 220, 4370, 62, 9019, 796, 1366, 62, 17143, 7307, 13, 19312, 62, 9535, 896, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1570, 11639, 7890, 62, 1177, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1611, 11639, 12583, 4666, 282, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21360, 28, 30281, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 28, 17497, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4370, 62, 9019, 13, 20274, 628, 220, 220, 220, 825, 3359, 62, 20500, 7, 944, 11, 31456, 11, 3670, 28, 14202, 11, 318, 62, 18224, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16531, 262, 7368, 3275, 284, 262, 2836, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 356, 1700, 597, 3840, 428, 2446, 1595, 470, 670, 13, 220, 18948, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1201, 340, 338, 4688, 287, 19407, 8563, 284, 2985, 0, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25770, 284, 5911, 262, 1459, 3586, 4324, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 17497, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 670, 26968, 796, 2116, 13, 31438, 13, 1136, 62, 15271, 10786, 268, 4703, 496, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1818, 26968, 13, 40, 12468, 26968, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 670, 26968, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2560, 62, 17497, 796, 670, 26968, 13, 5275, 62, 17497, 13, 13716, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16531, 262, 9167, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 8000, 62, 17497, 11, 31456, 11, 3670, 28, 7839, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1321, 7, 8000, 62, 17497, 11, 31456, 11, 3670, 28, 7839, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 3118, 540, 284, 3359, 1461, 12, 929, 3275, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 4242, 412, 19238, 1303, 29113, 29113, 4242, 198 ]
2.889734
1,315
import pytest from channels.db import database_sync_to_async from channels.testing import WebsocketCommunicator from ..api.model_mixins import Request from ..api.push import push_message_about_instance, report_error from ..api.serializers import ( EpicSerializer, ProjectSerializer, ScratchOrgSerializer, TaskSerializer, ) from ..consumers import PushNotificationConsumer from ..routing import websockets pytestmark = pytest.mark.asyncio @database_sync_to_async @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db @pytest.mark.django_db # These tests need to go last, after any tests that start up a Communicator: @pytest.mark.django_db
[ 11748, 12972, 9288, 198, 6738, 9619, 13, 9945, 1330, 6831, 62, 27261, 62, 1462, 62, 292, 13361, 198, 6738, 9619, 13, 33407, 1330, 47736, 5459, 30813, 26407, 198, 198, 6738, 11485, 15042, 13, 19849, 62, 19816, 1040, 1330, 19390, 198, 6738, 11485, 15042, 13, 14689, 1330, 4574, 62, 20500, 62, 10755, 62, 39098, 11, 989, 62, 18224, 198, 6738, 11485, 15042, 13, 46911, 11341, 1330, 357, 198, 220, 220, 220, 16781, 32634, 7509, 11, 198, 220, 220, 220, 4935, 32634, 7509, 11, 198, 220, 220, 220, 1446, 36722, 46808, 32634, 7509, 11, 198, 220, 220, 220, 15941, 32634, 7509, 11, 198, 8, 198, 6738, 11485, 5936, 31260, 1330, 23691, 3673, 2649, 49106, 198, 6738, 11485, 81, 13660, 1330, 2639, 11603, 198, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 292, 13361, 952, 628, 198, 31, 48806, 62, 27261, 62, 1462, 62, 292, 13361, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198, 2, 2312, 5254, 761, 284, 467, 938, 11, 706, 597, 5254, 326, 923, 510, 257, 4440, 26407, 25, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 198 ]
2.871795
273
import markdown from flask import redirect, url_for, flash, render_template, session, request, current_app, abort from flask_login import current_user, login_user, logout_user, login_required from cajitos_site import bcrypt from cajitos_site.users import users from cajitos_site.users.forms import RegistrationForm, LoginForm, UpdateAccountForm, RequestResetForm, ResetPasswordForm from cajitos_site.models import User, load_user from cajitos_site.utils.email import send_service_email from cajitos_site.utils.utils import ( get_redirect_target, save_picture ) from cajitos_site.utils.auth_utils import generate_google_auth_request, get_google_user_info # Disbaled temporarily or forever # @users.route("/register", methods=['GET', 'POST']) @users.route("/login", methods=['GET', 'POST']) @users.route('/google_login') @users.route('/google_login/callback') @users.route('/logout') @users.route('/account/<int:user_id>') @users.route('/account/<int:user_id>/update', methods=['GET', 'POST']) @login_required @users.route("/reset_password", methods=['GET', 'POST']) @users.route("/reset_password/<token>", methods=['GET', 'POST'])
[ 11748, 1317, 2902, 198, 6738, 42903, 1330, 18941, 11, 19016, 62, 1640, 11, 7644, 11, 8543, 62, 28243, 11, 6246, 11, 2581, 11, 1459, 62, 1324, 11, 15614, 198, 6738, 42903, 62, 38235, 1330, 1459, 62, 7220, 11, 17594, 62, 7220, 11, 2604, 448, 62, 7220, 11, 17594, 62, 35827, 198, 198, 6738, 269, 1228, 270, 418, 62, 15654, 1330, 275, 29609, 198, 6738, 269, 1228, 270, 418, 62, 15654, 13, 18417, 1330, 2985, 198, 6738, 269, 1228, 270, 418, 62, 15654, 13, 18417, 13, 23914, 1330, 24610, 8479, 11, 23093, 8479, 11, 10133, 30116, 8479, 11, 19390, 4965, 316, 8479, 11, 30027, 35215, 8479, 198, 6738, 269, 1228, 270, 418, 62, 15654, 13, 27530, 1330, 11787, 11, 3440, 62, 7220, 198, 6738, 269, 1228, 270, 418, 62, 15654, 13, 26791, 13, 12888, 1330, 3758, 62, 15271, 62, 12888, 198, 6738, 269, 1228, 270, 418, 62, 15654, 13, 26791, 13, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 445, 1060, 62, 16793, 11, 3613, 62, 34053, 198, 8, 198, 6738, 269, 1228, 270, 418, 62, 15654, 13, 26791, 13, 18439, 62, 26791, 1330, 7716, 62, 13297, 62, 18439, 62, 25927, 11, 651, 62, 13297, 62, 7220, 62, 10951, 628, 198, 2, 3167, 65, 3021, 13413, 393, 8097, 198, 2, 2488, 18417, 13, 38629, 7203, 14, 30238, 1600, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 18417, 13, 38629, 7203, 14, 38235, 1600, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 18417, 13, 38629, 10786, 14, 13297, 62, 38235, 11537, 628, 198, 31, 18417, 13, 38629, 10786, 14, 13297, 62, 38235, 14, 47423, 11537, 628, 198, 31, 18417, 13, 38629, 10786, 14, 6404, 448, 11537, 628, 198, 31, 18417, 13, 38629, 10786, 14, 23317, 14, 27, 600, 25, 7220, 62, 312, 29, 11537, 628, 198, 31, 18417, 13, 38629, 10786, 14, 23317, 14, 27, 600, 25, 7220, 62, 312, 29, 14, 19119, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198, 31, 38235, 62, 35827, 628, 198, 31, 18417, 13, 38629, 7203, 14, 42503, 62, 28712, 1600, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 18417, 13, 38629, 7203, 14, 42503, 62, 28712, 14, 27, 30001, 29, 1600, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 198 ]
3.018325
382
import json import os from typing import Callable, Union from typing import Optional, List import torch from sdc.constants import SCENE_TAG_TYPE_TO_OPTIONS, VALID_TRAJECTORY_TAGS from ..features import FeatureProducerBase from ..proto import get_tags_from_request, proto_to_dict from ..utils import ( get_file_paths, get_gt_trajectory, get_latest_track_state_by_id, get_to_track_frame_transform, read_feature_map_from_file, request_is_valid, scenes_generator, transform_2d_points, )
[ 11748, 33918, 198, 11748, 28686, 198, 6738, 19720, 1330, 4889, 540, 11, 4479, 198, 6738, 19720, 1330, 32233, 11, 7343, 198, 198, 11748, 28034, 198, 198, 6738, 264, 17896, 13, 9979, 1187, 1330, 6374, 39267, 62, 42197, 62, 25216, 62, 10468, 62, 3185, 51, 11053, 11, 26173, 2389, 62, 51, 3861, 23680, 15513, 62, 42197, 50, 198, 6738, 11485, 40890, 1330, 27018, 11547, 2189, 14881, 198, 6738, 11485, 1676, 1462, 1330, 651, 62, 31499, 62, 6738, 62, 25927, 11, 44876, 62, 1462, 62, 11600, 198, 6738, 11485, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 7753, 62, 6978, 82, 11, 198, 220, 220, 220, 651, 62, 13655, 62, 9535, 752, 652, 11, 198, 220, 220, 220, 651, 62, 42861, 62, 11659, 62, 5219, 62, 1525, 62, 312, 11, 198, 220, 220, 220, 651, 62, 1462, 62, 11659, 62, 14535, 62, 35636, 11, 198, 220, 220, 220, 1100, 62, 30053, 62, 8899, 62, 6738, 62, 7753, 11, 198, 220, 220, 220, 2581, 62, 271, 62, 12102, 11, 198, 220, 220, 220, 8188, 62, 8612, 1352, 11, 198, 220, 220, 220, 6121, 62, 17, 67, 62, 13033, 11, 198, 8, 628, 628 ]
2.722513
191
__all__ = ["file_read", 'image_deal', 'search_order', 'static_data']
[ 834, 439, 834, 796, 14631, 7753, 62, 961, 1600, 705, 9060, 62, 31769, 3256, 705, 12947, 62, 2875, 3256, 705, 12708, 62, 7890, 20520, 201, 198 ]
2.692308
26
''' @Author: Pawn @Date: 2020-08-12 @LastEditTime: 2020-08-12 17:06:08 @Description: example for module timer @FilePath: example_wdt.py ''' from machine import WDT from machine import Timer timer1 = Timer(Timer.Timer1) if __name__ == '__main__': wdt = WDT(20) # 启动看门狗,间隔时长 timer1.start(period=15000, mode=timer1.PERIODIC, callback=feed) # 使用定时器喂狗 # wdt.stop()
[ 7061, 6, 198, 31, 13838, 25, 350, 3832, 198, 31, 10430, 25, 12131, 12, 2919, 12, 1065, 198, 31, 5956, 18378, 7575, 25, 12131, 12, 2919, 12, 1065, 1596, 25, 3312, 25, 2919, 198, 31, 11828, 25, 1672, 329, 8265, 19781, 198, 31, 8979, 15235, 25, 1672, 62, 16993, 83, 13, 9078, 198, 7061, 6, 198, 198, 6738, 4572, 1330, 370, 24544, 198, 6738, 4572, 1330, 5045, 263, 628, 198, 45016, 16, 796, 5045, 263, 7, 48801, 13, 48801, 16, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 266, 28664, 796, 370, 24544, 7, 1238, 8, 220, 1303, 10263, 238, 107, 27950, 101, 40367, 233, 29785, 101, 45379, 245, 171, 120, 234, 29785, 112, 49694, 242, 33768, 114, 165, 243, 123, 198, 220, 220, 220, 19781, 16, 13, 9688, 7, 41007, 28, 1314, 830, 11, 4235, 28, 45016, 16, 13, 18973, 40, 3727, 2149, 11, 23838, 28, 12363, 8, 220, 1303, 220, 45635, 18796, 101, 22522, 248, 33768, 114, 161, 247, 101, 161, 244, 224, 45379, 245, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 266, 28664, 13, 11338, 3419, 198 ]
1.994792
192
from django.conf.urls import url from django.urls import reverse , resolve from rest_framework import status from rest_framework.test import APITestCase from users.views import ( followUser , users , UserProfileUpdate , ProfilePictureUpdate , usersRecommended , user , userMumbles, userArticles, passwordChange, sendActivationEmail, sendActivationEmail , activate) # Create your tests here.
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 837, 10568, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2043, 395, 20448, 198, 6738, 2985, 13, 33571, 1330, 357, 198, 220, 220, 220, 1061, 12982, 837, 2985, 837, 11787, 37046, 10260, 837, 220, 198, 220, 220, 220, 13118, 28070, 10260, 837, 2985, 36171, 837, 198, 220, 220, 220, 2836, 837, 2836, 44, 25329, 11, 2836, 8001, 2983, 11, 9206, 19400, 11, 198, 220, 220, 220, 3758, 25526, 341, 15333, 11, 3758, 25526, 341, 15333, 837, 15155, 8, 198, 2, 13610, 534, 5254, 994, 13 ]
3.633929
112
import configparser import os from redmine import Redmine
[ 11748, 4566, 48610, 198, 11748, 28686, 198, 6738, 2266, 3810, 1330, 2297, 3810, 198 ]
4.142857
14
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Utility functions These functions are designed to be imported and run at module level to add functionality to the test environment. """ import os import sys import time import random import transaction import layer @layer.appcall def setupCoreSessions(app): '''Sets up the session_data_manager e.a.''' from Acquisition import aq_base commit = 0 if not hasattr(app, 'temp_folder'): from Products.TemporaryFolder.TemporaryFolder import MountedTemporaryFolder tf = MountedTemporaryFolder('temp_folder', 'Temporary Folder') app._setObject('temp_folder', tf) commit = 1 if not hasattr(aq_base(app.temp_folder), 'session_data'): from Products.Transience.Transience import TransientObjectContainer toc = TransientObjectContainer('session_data', 'Session Data Container', timeout_mins=3, limit=100) app.temp_folder._setObject('session_data', toc) commit = 1 if not hasattr(app, 'browser_id_manager'): from Products.Sessions.BrowserIdManager import BrowserIdManager bid = BrowserIdManager('browser_id_manager', 'Browser Id Manager') app._setObject('browser_id_manager', bid) commit = 1 if not hasattr(app, 'session_data_manager'): from Products.Sessions.SessionDataManager import SessionDataManager sdm = SessionDataManager('session_data_manager', title='Session Data Manager', path='/temp_folder/session_data', requestName='SESSION') app._setObject('session_data_manager', sdm) commit = 1 if commit: transaction.commit() @layer.appcall def setupSiteErrorLog(app): '''Sets up the error_log object required by ZPublisher.''' if not hasattr(app, 'error_log'): try: from Products.SiteErrorLog.SiteErrorLog import SiteErrorLog except ImportError: pass else: app._setObject('error_log', SiteErrorLog()) transaction.commit() def importObjectFromFile(container, filename, quiet=0): '''Imports an object from a (.zexp) file into the given container.''' from ZopeLite import _print, _patched quiet = quiet or not _patched start = time.time() if not quiet: _print("Importing %s ... " % os.path.basename(filename)) container._importObjectFromFile(filename, verify=0) transaction.commit() if not quiet: _print('done (%.3fs)\n' % (time.time() - start)) _Z2HOST = None _Z2PORT = None def startZServer(number_of_threads=1, log=None): '''Starts an HTTP ZServer thread.''' global _Z2HOST, _Z2PORT if _Z2HOST is None: _Z2HOST = '127.0.0.1' _Z2PORT = random.choice(range(55000, 55500)) from threadutils import setNumberOfThreads setNumberOfThreads(number_of_threads) from threadutils import QuietThread, zserverRunner t = QuietThread(target=zserverRunner, args=(_Z2HOST, _Z2PORT, log)) t.setDaemon(1) t.start() time.sleep(0.1) # Sandor Palfy return _Z2HOST, _Z2PORT def makerequest(app, stdout=sys.stdout): '''Wraps the app into a fresh REQUEST.''' from Testing.makerequest import makerequest as _makerequest environ = {} environ['SERVER_NAME'] = _Z2HOST or 'nohost' environ['SERVER_PORT'] = '%d' % (_Z2PORT or 80) environ['REQUEST_METHOD'] = 'GET' return _makerequest(app, stdout=stdout, environ=environ) def appcall(func, *args, **kw): '''Calls a function passing 'app' as first argument.''' from base import app, close app = app() args = (app,) + args try: return func(*args, **kw) finally: transaction.abort() close(app) def makelist(arg): '''Turns arg into a list. Where arg may be list, tuple, or string. ''' if type(arg) == type([]): return arg if type(arg) == type(()): return list(arg) if type(arg) == type(''): return filter(None, [arg]) raise ValueError('Argument must be list, tuple, or string') __all__ = [ 'setupCoreSessions', 'setupSiteErrorLog', 'startZServer', 'importObjectFromFile', 'appcall', 'makerequest', 'makelist', ]
[ 29113, 29113, 7804, 4242, 2235, 198, 2, 198, 2, 15069, 357, 66, 8, 5075, 1168, 3008, 5693, 290, 25767, 669, 13, 198, 2, 198, 2, 770, 3788, 318, 2426, 284, 262, 8617, 286, 262, 1168, 3008, 5094, 13789, 11, 198, 2, 10628, 362, 13, 16, 357, 57, 6489, 737, 220, 317, 4866, 286, 262, 1168, 6489, 815, 13873, 428, 6082, 13, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1, 5357, 15529, 5357, 11096, 7788, 32761, 6375, 8959, 49094, 198, 2, 34764, 11015, 15986, 13954, 48778, 1961, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 34764, 11015, 3963, 37977, 2538, 11, 34482, 3398, 1565, 5603, 25382, 11, 36218, 38604, 3268, 10913, 2751, 12529, 11, 5357, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 198, 2, 198, 29113, 29113, 7804, 4242, 2235, 198, 37811, 18274, 879, 5499, 198, 198, 4711, 5499, 389, 3562, 284, 307, 17392, 290, 1057, 379, 198, 21412, 1241, 284, 751, 11244, 284, 262, 1332, 2858, 13, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 4738, 198, 11748, 8611, 198, 11748, 7679, 628, 198, 31, 29289, 13, 1324, 13345, 198, 4299, 9058, 14055, 50, 6202, 7, 1324, 2599, 198, 220, 220, 220, 705, 7061, 50, 1039, 510, 262, 6246, 62, 7890, 62, 37153, 304, 13, 64, 2637, 7061, 198, 220, 220, 220, 422, 44564, 1330, 257, 80, 62, 8692, 198, 220, 220, 220, 4589, 796, 657, 628, 220, 220, 220, 611, 407, 468, 35226, 7, 1324, 11, 705, 29510, 62, 43551, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 422, 18675, 13, 12966, 5551, 41092, 13, 12966, 5551, 41092, 1330, 5628, 276, 12966, 5551, 41092, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 796, 5628, 276, 12966, 5551, 41092, 10786, 29510, 62, 43551, 3256, 705, 12966, 5551, 48107, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13557, 2617, 10267, 10786, 29510, 62, 43551, 3256, 48700, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 796, 352, 628, 220, 220, 220, 611, 407, 468, 35226, 7, 30188, 62, 8692, 7, 1324, 13, 29510, 62, 43551, 828, 705, 29891, 62, 7890, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 422, 18675, 13, 8291, 1240, 13, 8291, 1240, 1330, 3602, 1153, 10267, 29869, 198, 220, 220, 220, 220, 220, 220, 220, 284, 66, 796, 3602, 1153, 10267, 29869, 10786, 29891, 62, 7890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36044, 6060, 43101, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 62, 42951, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4179, 28, 3064, 8, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13, 29510, 62, 43551, 13557, 2617, 10267, 10786, 29891, 62, 7890, 3256, 284, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 796, 352, 628, 220, 220, 220, 611, 407, 468, 35226, 7, 1324, 11, 705, 40259, 62, 312, 62, 37153, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 422, 18675, 13, 50, 6202, 13, 46532, 7390, 13511, 1330, 34270, 7390, 13511, 198, 220, 220, 220, 220, 220, 220, 220, 8406, 796, 34270, 7390, 13511, 10786, 40259, 62, 312, 62, 37153, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46532, 5121, 9142, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13557, 2617, 10267, 10786, 40259, 62, 312, 62, 37153, 3256, 8406, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 796, 352, 628, 220, 220, 220, 611, 407, 468, 35226, 7, 1324, 11, 705, 29891, 62, 7890, 62, 37153, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 422, 18675, 13, 50, 6202, 13, 36044, 6601, 13511, 1330, 23575, 6601, 13511, 198, 220, 220, 220, 220, 220, 220, 220, 264, 36020, 796, 23575, 6601, 13511, 10786, 29891, 62, 7890, 62, 37153, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 36044, 6060, 9142, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 11639, 14, 29510, 62, 43551, 14, 29891, 62, 7890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 5376, 11639, 50, 47621, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 598, 13557, 2617, 10267, 10786, 29891, 62, 7890, 62, 37153, 3256, 264, 36020, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 796, 352, 628, 220, 220, 220, 611, 4589, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8611, 13, 41509, 3419, 628, 198, 31, 29289, 13, 1324, 13345, 198, 4299, 9058, 29123, 12331, 11187, 7, 1324, 2599, 198, 220, 220, 220, 705, 7061, 50, 1039, 510, 262, 4049, 62, 6404, 2134, 2672, 416, 1168, 46471, 2637, 7061, 198, 220, 220, 220, 611, 407, 468, 35226, 7, 1324, 11, 705, 18224, 62, 6404, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 18675, 13, 29123, 12331, 11187, 13, 29123, 12331, 11187, 1330, 14413, 12331, 11187, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 598, 13557, 2617, 10267, 10786, 18224, 62, 6404, 3256, 14413, 12331, 11187, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8611, 13, 41509, 3419, 628, 198, 4299, 1330, 10267, 4863, 8979, 7, 34924, 11, 29472, 11, 5897, 28, 15, 2599, 198, 220, 220, 220, 705, 7061, 3546, 3742, 281, 2134, 422, 257, 20262, 89, 11201, 8, 2393, 656, 262, 1813, 9290, 2637, 7061, 198, 220, 220, 220, 422, 1168, 3008, 43, 578, 1330, 4808, 4798, 11, 4808, 8071, 1740, 198, 220, 220, 220, 5897, 796, 5897, 393, 407, 4808, 8071, 1740, 198, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 611, 407, 5897, 25, 4808, 4798, 7203, 20939, 278, 4064, 82, 2644, 366, 4064, 28686, 13, 6978, 13, 12093, 12453, 7, 34345, 4008, 198, 220, 220, 220, 9290, 13557, 11748, 10267, 4863, 8979, 7, 34345, 11, 11767, 28, 15, 8, 198, 220, 220, 220, 8611, 13, 41509, 3419, 198, 220, 220, 220, 611, 407, 5897, 25, 4808, 4798, 10786, 28060, 357, 7225, 18, 9501, 19415, 77, 6, 4064, 357, 2435, 13, 2435, 3419, 532, 923, 4008, 628, 198, 62, 57, 17, 39, 10892, 796, 6045, 198, 62, 57, 17, 15490, 796, 6045, 198, 198, 4299, 923, 57, 10697, 7, 17618, 62, 1659, 62, 16663, 82, 28, 16, 11, 2604, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 1273, 5889, 281, 14626, 1168, 10697, 4704, 2637, 7061, 198, 220, 220, 220, 3298, 4808, 57, 17, 39, 10892, 11, 4808, 57, 17, 15490, 198, 220, 220, 220, 611, 4808, 57, 17, 39, 10892, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 57, 17, 39, 10892, 796, 705, 16799, 13, 15, 13, 15, 13, 16, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 57, 17, 15490, 796, 4738, 13, 25541, 7, 9521, 7, 2816, 830, 11, 44717, 405, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 422, 4704, 26791, 1330, 900, 15057, 5189, 16818, 82, 198, 220, 220, 220, 220, 220, 220, 220, 900, 15057, 5189, 16818, 82, 7, 17618, 62, 1659, 62, 16663, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 422, 4704, 26791, 1330, 37355, 16818, 11, 1976, 15388, 49493, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 37355, 16818, 7, 16793, 28, 89, 15388, 49493, 11, 26498, 16193, 62, 57, 17, 39, 10892, 11, 4808, 57, 17, 15490, 11, 2604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 2617, 26531, 7966, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 16, 8, 1303, 3837, 273, 350, 1604, 88, 198, 220, 220, 220, 1441, 4808, 57, 17, 39, 10892, 11, 4808, 57, 17, 15490, 628, 198, 4299, 787, 25927, 7, 1324, 11, 14367, 448, 28, 17597, 13, 19282, 448, 2599, 198, 220, 220, 220, 705, 7061, 36918, 862, 262, 598, 656, 257, 4713, 4526, 35780, 2637, 7061, 198, 220, 220, 220, 422, 23983, 13, 15883, 25927, 1330, 787, 25927, 355, 4808, 15883, 25927, 198, 220, 220, 220, 551, 2268, 796, 23884, 198, 220, 220, 220, 551, 2268, 17816, 35009, 5959, 62, 20608, 20520, 796, 4808, 57, 17, 39, 10892, 393, 705, 77, 1219, 455, 6, 198, 220, 220, 220, 551, 2268, 17816, 35009, 5959, 62, 15490, 20520, 796, 705, 4, 67, 6, 4064, 44104, 57, 17, 15490, 393, 4019, 8, 198, 220, 220, 220, 551, 2268, 17816, 2200, 35780, 62, 49273, 20520, 796, 705, 18851, 6, 198, 220, 220, 220, 1441, 4808, 15883, 25927, 7, 1324, 11, 14367, 448, 28, 19282, 448, 11, 551, 2268, 28, 268, 2268, 8, 628, 198, 4299, 598, 13345, 7, 20786, 11, 1635, 22046, 11, 12429, 46265, 2599, 198, 220, 220, 220, 705, 7061, 34, 5691, 257, 2163, 6427, 705, 1324, 6, 355, 717, 4578, 2637, 7061, 198, 220, 220, 220, 422, 2779, 1330, 598, 11, 1969, 198, 220, 220, 220, 598, 796, 598, 3419, 198, 220, 220, 220, 26498, 796, 357, 1324, 35751, 1343, 26498, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25439, 46491, 22046, 11, 12429, 46265, 8, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8611, 13, 397, 419, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1969, 7, 1324, 8, 628, 198, 4299, 787, 4868, 7, 853, 2599, 198, 220, 220, 220, 705, 7061, 17278, 82, 1822, 656, 257, 1351, 13, 6350, 1822, 743, 307, 198, 220, 220, 220, 220, 220, 220, 1351, 11, 46545, 11, 393, 4731, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 2099, 7, 853, 8, 6624, 2099, 7, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1822, 198, 220, 220, 220, 611, 2099, 7, 853, 8, 6624, 2099, 7, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 853, 8, 198, 220, 220, 220, 611, 2099, 7, 853, 8, 6624, 2099, 7, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 1441, 8106, 7, 14202, 11, 685, 853, 12962, 198, 220, 220, 220, 5298, 11052, 12331, 10786, 28100, 1713, 1276, 307, 1351, 11, 46545, 11, 393, 4731, 11537, 628, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 40406, 14055, 50, 6202, 3256, 198, 220, 220, 220, 705, 40406, 29123, 12331, 11187, 3256, 198, 220, 220, 220, 705, 9688, 57, 10697, 3256, 198, 220, 220, 220, 705, 11748, 10267, 4863, 8979, 3256, 198, 220, 220, 220, 705, 1324, 13345, 3256, 198, 220, 220, 220, 705, 15883, 25927, 3256, 198, 220, 220, 220, 705, 15883, 4868, 3256, 198, 60, 628 ]
2.572399
1,913
emm_fmt = """<?xml version="1.0" encoding="utf-8" ?> <EIGEN_MM> <OPTIONS _splitmaxiters="10" _nodesperevaluator="1" _subproblemsperevaluator="1" _totalsubproblems="1" _nevaluators="1" _taskspernode="%d" _nevals="-1" _nk="10" _nb="4" _p="0" _nv="10" _raditers="20" _splittol="0.9" _radtol="1e-8" _L="1.1" _R="-1" _terse="0" _details="0" _debug="1" _save_correctness="0" _save_operators="0" _save_eigenvalues="0" _save_eigenbasis="1" _correctness_filename="" _operators_filename="" _eigenvalues_filename="" _eigenbasis_filename="%s" /> </EIGEN_MM>""" import sys if __name__ == "__main__": taskspernode = int(sys.argv[1]) optionsdir = sys.argv[2] outputdir = sys.argv[3] expname = sys.argv[4] emmpath = optionsdir + "/" + expname + "_options.xml" f = open(emmpath, 'w') f_str = emm_fmt % (taskspernode, outputdir + "/" + expname) f.write(f_str) f.close()
[ 368, 76, 62, 69, 16762, 796, 37227, 47934, 19875, 2196, 2625, 16, 13, 15, 1, 21004, 2625, 40477, 12, 23, 1, 5633, 29, 198, 27, 36, 3528, 1677, 62, 12038, 29, 198, 220, 220, 220, 1279, 3185, 51, 11053, 220, 198, 197, 197, 62, 35312, 9806, 270, 364, 2625, 940, 1, 220, 198, 197, 197, 62, 77, 4147, 431, 260, 2100, 84, 1352, 2625, 16, 1, 220, 198, 197, 197, 62, 7266, 1676, 22143, 431, 260, 2100, 84, 1352, 2625, 16, 1, 220, 198, 197, 197, 62, 83, 313, 874, 549, 1676, 22143, 2625, 16, 1, 220, 198, 197, 197, 62, 710, 2100, 84, 2024, 2625, 16, 1, 220, 198, 197, 197, 62, 83, 6791, 525, 17440, 2625, 4, 67, 1, 198, 197, 197, 62, 710, 12786, 2625, 12, 16, 1, 198, 197, 197, 62, 77, 74, 2625, 940, 1, 198, 197, 197, 62, 46803, 2625, 19, 1, 198, 197, 197, 62, 79, 2625, 15, 1, 220, 198, 197, 197, 62, 48005, 2625, 940, 1, 220, 198, 197, 197, 62, 6335, 270, 364, 2625, 1238, 1, 220, 198, 197, 197, 62, 22018, 715, 349, 2625, 15, 13, 24, 1, 220, 198, 197, 197, 62, 6335, 83, 349, 2625, 16, 68, 12, 23, 1, 220, 198, 197, 197, 62, 43, 2625, 16, 13, 16, 1, 220, 198, 197, 197, 62, 49, 2625, 12, 16, 1, 220, 198, 197, 197, 62, 353, 325, 2625, 15, 1, 220, 198, 197, 197, 62, 36604, 2625, 15, 1, 220, 198, 197, 197, 62, 24442, 2625, 16, 1, 220, 198, 197, 197, 62, 21928, 62, 30283, 1108, 2625, 15, 1, 198, 197, 197, 62, 21928, 62, 3575, 2024, 2625, 15, 1, 198, 197, 197, 62, 21928, 62, 68, 9324, 27160, 2625, 15, 1, 198, 197, 197, 62, 21928, 62, 68, 9324, 12093, 271, 2625, 16, 1, 198, 197, 197, 62, 30283, 1108, 62, 34345, 33151, 220, 198, 197, 197, 62, 3575, 2024, 62, 34345, 33151, 198, 197, 197, 62, 68, 9324, 27160, 62, 34345, 33151, 220, 198, 197, 197, 62, 68, 9324, 12093, 271, 62, 34345, 2625, 4, 82, 1, 11037, 198, 3556, 36, 3528, 1677, 62, 12038, 29, 37811, 198, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 8861, 525, 17440, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 3689, 15908, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 220, 220, 220, 5072, 15908, 796, 25064, 13, 853, 85, 58, 18, 60, 198, 220, 220, 220, 1033, 3672, 796, 25064, 13, 853, 85, 58, 19, 60, 628, 220, 220, 220, 795, 3149, 776, 796, 3689, 15908, 1343, 12813, 1, 1343, 1033, 3672, 1343, 45434, 25811, 13, 19875, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 277, 796, 1280, 7, 368, 3149, 776, 11, 705, 86, 11537, 198, 220, 220, 220, 277, 62, 2536, 796, 795, 76, 62, 69, 16762, 4064, 357, 83, 6791, 525, 17440, 11, 5072, 15908, 1343, 12813, 1, 1343, 1033, 3672, 8, 198, 220, 220, 220, 277, 13, 13564, 7, 69, 62, 2536, 8, 198, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 220, 198 ]
1.857414
526
import os # Workarround for nvidia propietary drivers import ctypes import ctypes.util ctypes.CDLL(ctypes.util.find_library("GL"), mode=ctypes.RTLD_GLOBAL) # end of Workarround from qtpy.QtCore import Signal, Slot, QUrl, QTimer from qtpy.QtQuickWidgets import QQuickWidget from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities import logger from qtpyvcp.utilities.hal_qlib import QComponent LOG = logger.getLogger(__name__) STATUS = getPlugin('status') TOOLTABLE = getPlugin('tooltable') IN_DESIGNER = os.getenv('DESIGNER', False) WIDGET_PATH = os.path.dirname(os.path.abspath(__file__))
[ 11748, 28686, 198, 198, 2, 5521, 283, 744, 329, 299, 21744, 2632, 1155, 560, 6643, 198, 198, 11748, 269, 19199, 198, 11748, 269, 19199, 13, 22602, 198, 198, 310, 9497, 13, 8610, 3069, 7, 310, 9497, 13, 22602, 13, 19796, 62, 32016, 7203, 8763, 12340, 4235, 28, 310, 9497, 13, 14181, 11163, 62, 8763, 9864, 1847, 8, 198, 198, 2, 886, 286, 5521, 283, 744, 628, 198, 6738, 10662, 83, 9078, 13, 48, 83, 14055, 1330, 26484, 11, 32026, 11, 1195, 28165, 11, 1195, 48801, 198, 6738, 10662, 83, 9078, 13, 48, 83, 21063, 54, 312, 11407, 1330, 1195, 21063, 38300, 198, 198, 6738, 10662, 83, 9078, 85, 13155, 13, 37390, 1330, 651, 37233, 198, 6738, 10662, 83, 9078, 85, 13155, 13, 315, 2410, 1330, 49706, 198, 6738, 10662, 83, 9078, 85, 13155, 13, 315, 2410, 13, 14201, 62, 80, 8019, 1330, 1195, 21950, 198, 198, 25294, 796, 49706, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 35744, 2937, 796, 651, 37233, 10786, 13376, 11537, 198, 10468, 3535, 38148, 796, 651, 37233, 10786, 25981, 11487, 11537, 198, 1268, 62, 30910, 16284, 1137, 796, 28686, 13, 1136, 24330, 10786, 30910, 16284, 1137, 3256, 10352, 8, 198, 54, 2389, 18851, 62, 34219, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628 ]
2.70852
223
# Generated by Django 3.2.9 on 2021-11-08 04:50 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 24, 319, 33448, 12, 1157, 12, 2919, 8702, 25, 1120, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
from constants import * import time import threading from chaos import *
[ 6738, 38491, 1330, 1635, 198, 11748, 640, 198, 11748, 4704, 278, 198, 6738, 11918, 1330, 1635, 198 ]
4.294118
17
import argparse import logging import os from .exporter import add_stdout_logging, establish_and_return_ldap_connection, \ establish_and_return_session, fake_connection, fetch_current_ldap_users, \ fetch_users_to_sync, get_config_or_exit, logger, sync_all logger = logging.getLogger('ldap_sync') NAME_LEVEL_MAPPING = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } parser = argparse.ArgumentParser(description="Pycroft ldap syncer") parser.add_argument('--fake', dest='fake', action='store_true', default=False, help="Use a mocked LDAP backend") parser.add_argument("-l", "--log", dest='loglevel', type=str, choices=list(NAME_LEVEL_MAPPING.keys()), default='info', help="Set the loglevel") parser.add_argument("-d", "--debug", dest='loglevel', action='store_const', const='debug', help="Short for --log=debug") if __name__ == '__main__': exit(main())
[ 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 764, 1069, 26634, 1330, 751, 62, 19282, 448, 62, 6404, 2667, 11, 4474, 62, 392, 62, 7783, 62, 335, 499, 62, 38659, 11, 3467, 198, 220, 220, 220, 220, 4474, 62, 392, 62, 7783, 62, 29891, 11, 8390, 62, 38659, 11, 21207, 62, 14421, 62, 335, 499, 62, 18417, 11, 3467, 198, 220, 220, 220, 220, 21207, 62, 18417, 62, 1462, 62, 27261, 11, 651, 62, 11250, 62, 273, 62, 37023, 11, 49706, 11, 17510, 62, 439, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 335, 499, 62, 27261, 11537, 628, 628, 198, 20608, 62, 2538, 18697, 62, 44, 24805, 2751, 796, 1391, 198, 220, 220, 220, 705, 24442, 10354, 18931, 13, 30531, 11, 198, 220, 220, 220, 705, 10951, 10354, 18931, 13, 10778, 11, 198, 220, 220, 220, 705, 43917, 10354, 18931, 13, 31502, 11, 198, 220, 220, 220, 705, 18224, 10354, 18931, 13, 24908, 11, 198, 220, 220, 220, 705, 34666, 10354, 18931, 13, 9419, 2043, 20151, 11, 198, 92, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 20519, 36714, 300, 67, 499, 6171, 2189, 4943, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 30706, 3256, 2244, 11639, 30706, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 11041, 257, 29180, 27178, 2969, 30203, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 75, 1600, 366, 438, 6404, 1600, 2244, 11639, 75, 2467, 626, 3256, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 4868, 7, 20608, 62, 2538, 18697, 62, 44, 24805, 2751, 13, 13083, 3419, 828, 4277, 11639, 10951, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 7248, 262, 300, 2467, 626, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 366, 438, 24442, 1600, 2244, 11639, 75, 2467, 626, 3256, 2223, 11639, 8095, 62, 9979, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 11639, 24442, 3256, 1037, 2625, 16438, 329, 1377, 6404, 28, 24442, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 8420, 7, 12417, 28955, 198 ]
2.502358
424
""" visdex: Exploratory graphs The exploratory graphs section defines specialised data visualisations that can be generated by the user on request """ import logging from dash import html, dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output, State, MATCH import plotly.graph_objects as go from . import ( bar_graph, histogram_graph, manhattan_graph, scatter_graph, violin_graph, ) from visdex.common import standard_margin_left, vstack, plot_style LOG = logging.getLogger(__name__) def generate_generic_group(n_clicks, group_type): """ The generic builder for each of the component types. :param n_clicks: :param group_type: :param component_list: :return: """ LOG.info(f"generate_generic_group {group_type}") children = list() component_list = all_components[group_type] for component in component_list: name = component["id"] args_to_replicate = dict(component) del args_to_replicate["component_type"] del args_to_replicate["id"] del args_to_replicate["label"] # Generate each component with the correct id, index, and arguments, inside its # own Div. children.append( html.Div( [ component["label"] + ":", component["component_type"]( id={"type": group_type + "-" + name, "index": n_clicks}, **args_to_replicate, ), ], id={"type": "div-" + group_type + "-" + name, "index": n_clicks}, style=plot_style, ) ) children.append( dcc.Graph( id={"type": "gen-" + group_type + "-graph", "index": n_clicks}, figure=go.Figure(data=go.Scatter()), ) ) LOG.debug(f"{children}") return html.Div( id={"type": "filter-graph-group-" + group_type, "index": n_clicks}, children=children, )
[ 37811, 198, 4703, 67, 1069, 25, 5905, 273, 2870, 28770, 198, 198, 464, 39180, 2870, 28770, 2665, 15738, 2041, 1417, 1366, 5874, 38189, 326, 198, 5171, 307, 7560, 416, 262, 2836, 319, 2581, 198, 37811, 198, 11748, 18931, 198, 198, 6738, 14470, 1330, 27711, 11, 288, 535, 198, 11748, 14470, 62, 18769, 26418, 62, 5589, 3906, 355, 288, 15630, 198, 6738, 14470, 13, 45841, 3976, 1330, 23412, 11, 25235, 11, 1812, 11, 337, 11417, 198, 11748, 7110, 306, 13, 34960, 62, 48205, 355, 467, 198, 198, 6738, 764, 1330, 357, 198, 220, 220, 220, 2318, 62, 34960, 11, 198, 220, 220, 220, 1554, 21857, 62, 34960, 11, 198, 220, 220, 220, 582, 12904, 62, 34960, 11, 198, 220, 220, 220, 41058, 62, 34960, 11, 198, 220, 220, 220, 38283, 62, 34960, 11, 198, 8, 198, 198, 6738, 1490, 67, 1069, 13, 11321, 1330, 3210, 62, 36153, 62, 9464, 11, 410, 25558, 11, 7110, 62, 7635, 198, 198, 25294, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 4299, 7716, 62, 41357, 62, 8094, 7, 77, 62, 565, 3378, 11, 1448, 62, 4906, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 14276, 27098, 329, 1123, 286, 262, 7515, 3858, 13, 198, 220, 220, 220, 1058, 17143, 299, 62, 565, 3378, 25, 198, 220, 220, 220, 1058, 17143, 1448, 62, 4906, 25, 198, 220, 220, 220, 1058, 17143, 7515, 62, 4868, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 41605, 13, 10951, 7, 69, 1, 8612, 378, 62, 41357, 62, 8094, 1391, 8094, 62, 4906, 92, 4943, 198, 220, 220, 220, 1751, 796, 1351, 3419, 628, 220, 220, 220, 7515, 62, 4868, 796, 477, 62, 5589, 3906, 58, 8094, 62, 4906, 60, 198, 220, 220, 220, 329, 7515, 287, 7515, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 7515, 14692, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 62, 1462, 62, 35666, 5344, 796, 8633, 7, 42895, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 26498, 62, 1462, 62, 35666, 5344, 14692, 42895, 62, 4906, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 26498, 62, 1462, 62, 35666, 5344, 14692, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 26498, 62, 1462, 62, 35666, 5344, 14692, 18242, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 1123, 7515, 351, 262, 3376, 4686, 11, 6376, 11, 290, 7159, 11, 2641, 663, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 898, 4777, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 24095, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7515, 14692, 18242, 8973, 1343, 366, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7515, 14692, 42895, 62, 4906, 8973, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 4895, 4906, 1298, 1448, 62, 4906, 1343, 366, 21215, 1343, 1438, 11, 366, 9630, 1298, 299, 62, 565, 3378, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 62, 1462, 62, 35666, 5344, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 4895, 4906, 1298, 366, 7146, 21215, 1343, 1448, 62, 4906, 1343, 366, 21215, 1343, 1438, 11, 366, 9630, 1298, 299, 62, 565, 3378, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3918, 28, 29487, 62, 7635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1751, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 37065, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 4895, 4906, 1298, 366, 5235, 21215, 1343, 1448, 62, 4906, 1343, 27444, 34960, 1600, 366, 9630, 1298, 299, 62, 565, 3378, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3785, 28, 2188, 13, 11337, 7, 7890, 28, 2188, 13, 3351, 1436, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 41605, 13, 24442, 7, 69, 1, 90, 17197, 92, 4943, 628, 220, 220, 220, 1441, 27711, 13, 24095, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 28, 4895, 4906, 1298, 366, 24455, 12, 34960, 12, 8094, 21215, 1343, 1448, 62, 4906, 11, 366, 9630, 1298, 299, 62, 565, 3378, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 28, 17197, 11, 198, 220, 220, 220, 1267, 198 ]
2.238411
906
# Copyright 2012-2017, Intel Corporation, All Rights Reserved. # # This software is supplied under the terms of a license # agreement or nondisclosure agreement with Intel Corp. # and may not be copied or disclosed except in accordance # with the terms of that agreement. import os import re import micp.kernel as micp_kernel import micp.info as micp_info import micp.common as micp_common import micp.params as micp_params from micp.common import mp_print, get_ln, CAT_ERROR confParamNames = [ 'groups', 'nImg', 'inpWidth', 'inpHeight', 'nIfm', \ 'nOfm', 'kw', 'kh', 'stride', 'pad', 'iters' ] optimalParamValues = '1 16 224 224 3 64 7 7 2 3 100' # expected minimal number of parsed scores in output CONST_expected_perf_scores = 3 # expected number of "|"-separated sections in output CONST_expected_sections = 2 # expected measurements per row CONST_expected_meas_per_row = 4
[ 2, 220, 15069, 2321, 12, 5539, 11, 8180, 10501, 11, 1439, 6923, 33876, 13, 198, 2, 198, 2, 770, 3788, 318, 14275, 739, 262, 2846, 286, 257, 5964, 198, 2, 4381, 393, 30745, 271, 17966, 4381, 351, 8180, 11421, 13, 198, 2, 290, 743, 407, 307, 18984, 393, 16404, 2845, 287, 10213, 198, 2, 351, 262, 2846, 286, 326, 4381, 13, 198, 198, 11748, 28686, 198, 11748, 302, 198, 198, 11748, 12314, 79, 13, 33885, 355, 12314, 79, 62, 33885, 198, 11748, 12314, 79, 13, 10951, 355, 12314, 79, 62, 10951, 198, 11748, 12314, 79, 13, 11321, 355, 12314, 79, 62, 11321, 198, 11748, 12314, 79, 13, 37266, 355, 12314, 79, 62, 37266, 198, 198, 6738, 12314, 79, 13, 11321, 1330, 29034, 62, 4798, 11, 651, 62, 18755, 11, 38348, 62, 24908, 198, 198, 10414, 22973, 36690, 796, 685, 705, 24432, 3256, 705, 77, 3546, 70, 3256, 705, 259, 79, 30916, 3256, 705, 259, 79, 23106, 3256, 705, 77, 1532, 76, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 5189, 76, 3256, 705, 46265, 3256, 705, 14636, 3256, 705, 2536, 485, 3256, 705, 15636, 3256, 705, 270, 364, 6, 2361, 198, 8738, 4402, 22973, 40161, 796, 705, 16, 1467, 26063, 26063, 513, 5598, 767, 767, 362, 513, 1802, 6, 198, 198, 2, 2938, 10926, 1271, 286, 44267, 8198, 287, 5072, 198, 10943, 2257, 62, 40319, 62, 525, 69, 62, 1416, 2850, 796, 513, 198, 2, 2938, 1271, 286, 366, 91, 26793, 25512, 515, 9004, 287, 5072, 198, 10943, 2257, 62, 40319, 62, 23946, 796, 362, 198, 2, 2938, 13871, 583, 5752, 198, 10943, 2257, 62, 40319, 62, 1326, 292, 62, 525, 62, 808, 796, 604, 198 ]
3.125
288
import numpy as np import galsim def BBSED(T): """(unnormalized) Blackbody SED for temperature T in Kelvin. """ waves_nm = np.arange(330.0, 1120.0, 10.0) flambda = planck(T, waves_nm*1e-9) return galsim.SED( galsim.LookupTable(waves_nm, flambda), wave_type='nm', flux_type='flambda' )
[ 11748, 299, 32152, 355, 45941, 198, 11748, 308, 874, 320, 628, 198, 4299, 347, 4462, 1961, 7, 51, 2599, 198, 220, 220, 220, 13538, 18109, 403, 11265, 1143, 8, 2619, 2618, 311, 1961, 329, 5951, 309, 287, 46577, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9813, 62, 21533, 796, 45941, 13, 283, 858, 7, 26073, 13, 15, 11, 352, 10232, 13, 15, 11, 838, 13, 15, 8, 198, 220, 220, 220, 781, 4131, 6814, 796, 1410, 694, 7, 51, 11, 9813, 62, 21533, 9, 16, 68, 12, 24, 8, 198, 220, 220, 220, 1441, 308, 874, 320, 13, 50, 1961, 7, 198, 220, 220, 220, 220, 220, 220, 220, 308, 874, 320, 13, 8567, 929, 10962, 7, 32569, 62, 21533, 11, 781, 4131, 6814, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 62, 4906, 11639, 21533, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 62, 4906, 11639, 69, 50033, 6, 198, 220, 220, 220, 1267, 198 ]
2.055215
163
import re from elasticsearch import Elasticsearch, helpers from itertools import islice # initialize Elasticsearch client es = Elasticsearch()
[ 11748, 302, 198, 6738, 27468, 12947, 1330, 48567, 12947, 11, 49385, 198, 6738, 340, 861, 10141, 1330, 318, 75, 501, 198, 198, 2, 41216, 48567, 12947, 5456, 198, 274, 796, 48567, 12947, 3419, 628, 628 ]
4.2
35
import argparse import configparser import functools import textwrap import pytest import configfetch fetch_ = configfetch.fetch fetch = functools.partial( configfetch.fetch, option_builder=configfetch.FiniOptionBuilder) # blank string returns ``None`` # Just checking the standard library's behaviors. class _CustomFunc(configfetch.Func): """Used the test below.""" @configfetch.register
[ 198, 11748, 1822, 29572, 198, 11748, 4566, 48610, 198, 11748, 1257, 310, 10141, 198, 11748, 2420, 37150, 198, 198, 11748, 12972, 9288, 198, 198, 11748, 4566, 69, 7569, 198, 198, 69, 7569, 62, 796, 4566, 69, 7569, 13, 69, 7569, 198, 198, 69, 7569, 796, 1257, 310, 10141, 13, 47172, 7, 198, 220, 220, 220, 4566, 69, 7569, 13, 69, 7569, 11, 3038, 62, 38272, 28, 11250, 69, 7569, 13, 37, 5362, 19722, 32875, 8, 628, 628, 628, 220, 220, 220, 1303, 9178, 4731, 5860, 7559, 14202, 15506, 628, 628, 198, 2, 2329, 10627, 262, 3210, 5888, 338, 14301, 13, 628, 198, 198, 4871, 4808, 15022, 37, 19524, 7, 11250, 69, 7569, 13, 37, 19524, 2599, 198, 220, 220, 220, 37227, 38052, 262, 1332, 2174, 526, 15931, 628, 220, 220, 220, 2488, 11250, 69, 7569, 13, 30238, 628, 628, 628, 628, 198 ]
3.035211
142
import os from portal_gun.commands.helpers import get_provider_config, get_portal_spec, get_portal_name, \ get_provider_from_portal from portal_gun.context_managers.no_print import no_print from .base_command import BaseCommand from .handlers import create_handler
[ 11748, 28686, 198, 198, 6738, 17898, 62, 7145, 13, 9503, 1746, 13, 16794, 364, 1330, 651, 62, 15234, 1304, 62, 11250, 11, 651, 62, 634, 282, 62, 16684, 11, 651, 62, 634, 282, 62, 3672, 11, 3467, 198, 197, 1136, 62, 15234, 1304, 62, 6738, 62, 634, 282, 198, 6738, 17898, 62, 7145, 13, 22866, 62, 805, 10321, 13, 3919, 62, 4798, 1330, 645, 62, 4798, 198, 6738, 764, 8692, 62, 21812, 1330, 7308, 21575, 198, 6738, 764, 4993, 8116, 1330, 2251, 62, 30281, 628 ]
3.152941
85
import time import xcffib.xproto import xpybutil import xpybutil.event as event import xpybutil.ewmh as ewmh import xpybutil.motif as motif import xpybutil.icccm as icccm import xpybutil.rect as rect import xpybutil.util as util import xpybutil.window as window from debug import debug import config import state import tile clients = {} ignore = [] # Some clients are never gunna make it... event.connect('PropertyNotify', xpybutil.root, cb_property_notify)
[ 11748, 640, 198, 198, 11748, 2124, 66, 487, 571, 13, 87, 1676, 1462, 198, 198, 11748, 2124, 9078, 4360, 346, 198, 11748, 2124, 9078, 4360, 346, 13, 15596, 355, 1785, 198, 11748, 2124, 9078, 4360, 346, 13, 413, 76, 71, 355, 304, 26377, 71, 198, 11748, 2124, 9078, 4360, 346, 13, 27926, 361, 355, 32702, 198, 11748, 2124, 9078, 4360, 346, 13, 291, 535, 76, 355, 14158, 535, 76, 198, 11748, 2124, 9078, 4360, 346, 13, 2554, 355, 13621, 198, 11748, 2124, 9078, 4360, 346, 13, 22602, 355, 7736, 198, 11748, 2124, 9078, 4360, 346, 13, 17497, 355, 4324, 198, 198, 6738, 14257, 1330, 14257, 198, 198, 11748, 4566, 198, 11748, 1181, 198, 11748, 17763, 198, 198, 565, 2334, 796, 23884, 198, 46430, 796, 17635, 1303, 2773, 7534, 389, 1239, 2485, 2616, 787, 340, 986, 198, 198, 15596, 13, 8443, 10786, 21746, 3673, 1958, 3256, 2124, 9078, 4360, 346, 13, 15763, 11, 269, 65, 62, 26745, 62, 1662, 1958, 8, 628 ]
2.89441
161
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 201, 198, 201, 198 ]
2.909091
11
#!/usr/bin/env python # coding=utf-8 # Stan 2018-09-27 from __future__ import (division, absolute_import, print_function, unicode_literals) import json from sqlalchemy.types import UserDefinedType, TypeDecorator, Text # class JsonType(UserDefinedType): # def get_col_spec(self, **kw): # return "JSON" # # def bind_processor(self, dialect): # def process(value): # return json.dumps(value, ensure_ascii=False).encode('utf8') # # return process # # def result_processor(self, dialect, coltype): # def process(value): # return json.loads(value) # # return process
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 28, 40477, 12, 23, 198, 2, 7299, 2864, 12, 2931, 12, 1983, 198, 198, 6738, 11593, 37443, 834, 1330, 357, 21426, 11, 4112, 62, 11748, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 8, 198, 198, 11748, 33918, 198, 198, 6738, 44161, 282, 26599, 13, 19199, 1330, 11787, 7469, 1389, 6030, 11, 5994, 10707, 273, 1352, 11, 8255, 628, 198, 198, 2, 1398, 449, 1559, 6030, 7, 12982, 7469, 1389, 6030, 2599, 198, 2, 220, 220, 220, 220, 825, 651, 62, 4033, 62, 16684, 7, 944, 11, 12429, 46265, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 40386, 1, 198, 2, 198, 2, 220, 220, 220, 220, 825, 11007, 62, 41341, 7, 944, 11, 23637, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 1429, 7, 8367, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 8367, 11, 4155, 62, 292, 979, 72, 28, 25101, 737, 268, 8189, 10786, 40477, 23, 11537, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1429, 198, 2, 198, 2, 220, 220, 220, 220, 825, 1255, 62, 41341, 7, 944, 11, 23637, 11, 951, 4906, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 825, 1429, 7, 8367, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 46030, 7, 8367, 8, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1429, 198 ]
2.268707
294
# -*- coding: utf-8 -*- import os.path from chaoslib.settings import get_loaded_settings, load_settings, save_settings settings_dir = os.path.join(os.path.dirname(__file__), "fixtures")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 13, 6978, 198, 6738, 11918, 8019, 13, 33692, 1330, 651, 62, 14578, 62, 33692, 11, 3440, 62, 33692, 11, 3613, 62, 33692, 628, 198, 33692, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 69, 25506, 4943, 628, 628, 628, 198 ]
2.811594
69
import os SECRET_KEY = os.getenv("SECRET_KEY")
[ 11748, 28686, 628, 198, 23683, 26087, 62, 20373, 796, 28686, 13, 1136, 24330, 7203, 23683, 26087, 62, 20373, 4943, 198 ]
2.45
20
# Generated by Django 2.2 on 2021-09-06 08:38 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 319, 33448, 12, 2931, 12, 3312, 8487, 25, 2548, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.892857
28
from source.etl import ETL x = ETL() df = x.extract(True) x.transform(df) #x.load(df)
[ 6738, 2723, 13, 316, 75, 1330, 12152, 43, 198, 198, 87, 796, 12152, 43, 3419, 198, 198, 7568, 796, 2124, 13, 2302, 974, 7, 17821, 8, 198, 198, 87, 13, 35636, 7, 7568, 8, 198, 2, 87, 13, 2220, 7, 7568, 8 ]
2.095238
42
"""Advent of Code 2021, day 9: Smoke Basin""" def main(input_matrix: tuple[str]) -> int: """ Find all of the low points on your heightmap. What is the sum of the risk levels of all low points on your heightmap? """ # It's a brute force approach that does not scale to part two, # but it's what I could think of with very little time. # Transform string input into usable int values. for line in input_matrix: int_line: list[int] = [] for num in line: int_line.append(int(num)) DEPTH_MAP.append(int_line) # Find local minima. low_points: list[int] = [] for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): neighbours: list[int] = [] if point_index - 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index - 1]) if point_index + 1 in range(0, len(line)): neighbours.append(DEPTH_MAP[line_index][point_index + 1]) if line_index - 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index - 1][point_index]) if line_index + 1 in range(0, len(DEPTH_MAP)): neighbours.append(DEPTH_MAP[line_index + 1][point_index]) if point < min(neighbours): low_points.append(point + 1) return sum(low_points) def part_two(): """What do you get if you multiply together the sizes of the three largest basins? Unlike most other days, this part_two() is dependent on main(), as it's there that the global DEPTH_MAP is generated. """ basins_sizes: list[int] = [] # This loop is to initiate recursive calls, whenever it finds a new basin. for line_index, line in enumerate(DEPTH_MAP): for point_index, point in enumerate(line): if point < 9: basins_sizes.append(map_basin((line_index, point_index))) basins_sizes.sort() return basins_sizes[-3] * basins_sizes[-2] * basins_sizes[-1] if __name__ == "__main__": with open("../input", "r") as file: INPUT_FILE = tuple(file.read().splitlines()) # Global so that it doesn't have to be remade for part two. DEPTH_MAP: list[list[int]] = [] print(main(INPUT_FILE)) print(part_two())
[ 37811, 2782, 1151, 286, 6127, 33448, 11, 1110, 860, 25, 25416, 32666, 37811, 198, 198, 4299, 1388, 7, 15414, 62, 6759, 8609, 25, 46545, 58, 2536, 12962, 4613, 493, 25, 198, 197, 37811, 198, 197, 16742, 477, 286, 262, 1877, 2173, 319, 534, 6001, 8899, 13, 198, 197, 2061, 318, 262, 2160, 286, 262, 2526, 2974, 286, 477, 1877, 2173, 319, 534, 6001, 8899, 30, 198, 197, 37811, 628, 197, 2, 632, 338, 257, 33908, 2700, 3164, 326, 857, 407, 5046, 284, 636, 734, 11, 198, 197, 2, 475, 340, 338, 644, 314, 714, 892, 286, 351, 845, 1310, 640, 13, 628, 197, 2, 26981, 4731, 5128, 656, 24284, 493, 3815, 13, 198, 197, 1640, 1627, 287, 5128, 62, 6759, 8609, 25, 198, 197, 197, 600, 62, 1370, 25, 1351, 58, 600, 60, 796, 17635, 198, 197, 197, 1640, 997, 287, 1627, 25, 198, 197, 197, 197, 600, 62, 1370, 13, 33295, 7, 600, 7, 22510, 4008, 198, 197, 197, 46162, 4221, 62, 33767, 13, 33295, 7, 600, 62, 1370, 8, 628, 197, 2, 9938, 1957, 949, 8083, 13, 198, 197, 9319, 62, 13033, 25, 1351, 58, 600, 60, 796, 17635, 198, 197, 1640, 1627, 62, 9630, 11, 1627, 287, 27056, 378, 7, 46162, 4221, 62, 33767, 2599, 198, 197, 197, 1640, 966, 62, 9630, 11, 966, 287, 27056, 378, 7, 1370, 2599, 628, 197, 197, 197, 710, 394, 65, 4662, 25, 1351, 58, 600, 60, 796, 17635, 198, 197, 197, 197, 361, 966, 62, 9630, 532, 352, 287, 2837, 7, 15, 11, 18896, 7, 1370, 8, 2599, 198, 197, 197, 197, 197, 710, 394, 65, 4662, 13, 33295, 7, 46162, 4221, 62, 33767, 58, 1370, 62, 9630, 7131, 4122, 62, 9630, 532, 352, 12962, 628, 197, 197, 197, 361, 966, 62, 9630, 1343, 352, 287, 2837, 7, 15, 11, 18896, 7, 1370, 8, 2599, 198, 197, 197, 197, 197, 710, 394, 65, 4662, 13, 33295, 7, 46162, 4221, 62, 33767, 58, 1370, 62, 9630, 7131, 4122, 62, 9630, 1343, 352, 12962, 628, 197, 197, 197, 361, 1627, 62, 9630, 532, 352, 287, 2837, 7, 15, 11, 18896, 7, 46162, 4221, 62, 33767, 8, 2599, 198, 197, 197, 197, 197, 710, 394, 65, 4662, 13, 33295, 7, 46162, 4221, 62, 33767, 58, 1370, 62, 9630, 532, 352, 7131, 4122, 62, 9630, 12962, 628, 197, 197, 197, 361, 1627, 62, 9630, 1343, 352, 287, 2837, 7, 15, 11, 18896, 7, 46162, 4221, 62, 33767, 8, 2599, 198, 197, 197, 197, 197, 710, 394, 65, 4662, 13, 33295, 7, 46162, 4221, 62, 33767, 58, 1370, 62, 9630, 1343, 352, 7131, 4122, 62, 9630, 12962, 628, 197, 197, 197, 361, 966, 1279, 949, 7, 710, 394, 65, 4662, 2599, 198, 197, 197, 197, 197, 9319, 62, 13033, 13, 33295, 7, 4122, 1343, 352, 8, 628, 198, 197, 7783, 2160, 7, 9319, 62, 13033, 8, 628, 198, 4299, 636, 62, 11545, 33529, 198, 197, 37811, 2061, 466, 345, 651, 611, 345, 29162, 1978, 262, 10620, 286, 262, 1115, 4387, 1615, 1040, 30, 628, 197, 18521, 749, 584, 1528, 11, 428, 636, 62, 11545, 3419, 318, 10795, 319, 1388, 22784, 198, 197, 292, 340, 338, 612, 326, 262, 3298, 5550, 47, 4221, 62, 33767, 318, 7560, 13, 198, 197, 37811, 628, 198, 197, 12093, 1040, 62, 82, 4340, 25, 1351, 58, 600, 60, 796, 17635, 628, 197, 2, 770, 9052, 318, 284, 22118, 45115, 3848, 11, 8797, 340, 7228, 257, 649, 34164, 13, 198, 197, 1640, 1627, 62, 9630, 11, 1627, 287, 27056, 378, 7, 46162, 4221, 62, 33767, 2599, 198, 197, 197, 1640, 966, 62, 9630, 11, 966, 287, 27056, 378, 7, 1370, 2599, 198, 197, 197, 197, 361, 966, 1279, 860, 25, 198, 197, 197, 197, 197, 12093, 1040, 62, 82, 4340, 13, 33295, 7, 8899, 62, 12093, 259, 19510, 1370, 62, 9630, 11, 966, 62, 9630, 22305, 628, 197, 12093, 1040, 62, 82, 4340, 13, 30619, 3419, 628, 197, 7783, 1615, 1040, 62, 82, 4340, 58, 12, 18, 60, 1635, 1615, 1040, 62, 82, 4340, 58, 12, 17, 60, 1635, 1615, 1040, 62, 82, 4340, 58, 12, 16, 60, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 4480, 1280, 7203, 40720, 15414, 1600, 366, 81, 4943, 355, 2393, 25, 198, 197, 197, 1268, 30076, 62, 25664, 796, 46545, 7, 7753, 13, 961, 22446, 35312, 6615, 28955, 628, 197, 2, 8060, 523, 326, 340, 1595, 470, 423, 284, 307, 816, 671, 329, 636, 734, 13, 198, 197, 46162, 4221, 62, 33767, 25, 1351, 58, 4868, 58, 600, 11907, 796, 17635, 628, 197, 4798, 7, 12417, 7, 1268, 30076, 62, 25664, 4008, 198, 197, 4798, 7, 3911, 62, 11545, 28955, 198 ]
2.689521
773
import sys import random from trace_gen import * if __name__ == "__main__": random.seed(0) num_cache_p = int(sys.argv[1]) block_size_in_words_p = int(sys.argv[2]) tg = TraceGen(block_size_in_words_p) tg.clear_tags() #words = (2**18)/num_cache_p # 1MB words = (2**18)/num_cache_p # 1MB max_range = (2**14)# 64KB for i in range(words): taddr = random.randint(0, max_range-1) << 2 write_not_read = random.randint(0,1) if write_not_read: tg.send_write(taddr) else: tg.send_read(taddr) tg.done()
[ 11748, 25064, 198, 11748, 4738, 198, 6738, 12854, 62, 5235, 1330, 1635, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 4738, 13, 28826, 7, 15, 8, 198, 220, 997, 62, 23870, 62, 79, 796, 493, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 2512, 62, 7857, 62, 259, 62, 10879, 62, 79, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 628, 220, 256, 70, 796, 34912, 13746, 7, 9967, 62, 7857, 62, 259, 62, 10879, 62, 79, 8, 198, 220, 256, 70, 13, 20063, 62, 31499, 3419, 628, 220, 1303, 10879, 796, 357, 17, 1174, 1507, 20679, 22510, 62, 23870, 62, 79, 1303, 352, 10744, 198, 220, 2456, 796, 357, 17, 1174, 1507, 20679, 22510, 62, 23870, 62, 79, 1303, 352, 10744, 628, 220, 3509, 62, 9521, 796, 357, 17, 1174, 1415, 8, 2, 5598, 22764, 628, 220, 329, 1312, 287, 2837, 7, 10879, 2599, 198, 220, 220, 220, 256, 29851, 796, 4738, 13, 25192, 600, 7, 15, 11, 3509, 62, 9521, 12, 16, 8, 9959, 362, 198, 220, 220, 220, 3551, 62, 1662, 62, 961, 796, 4738, 13, 25192, 600, 7, 15, 11, 16, 8, 198, 220, 220, 220, 611, 3551, 62, 1662, 62, 961, 25, 198, 220, 220, 220, 220, 220, 256, 70, 13, 21280, 62, 13564, 7, 83, 29851, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 256, 70, 13, 21280, 62, 961, 7, 83, 29851, 8, 628, 220, 256, 70, 13, 28060, 3419, 198 ]
2.15415
253
# Copyright 2015 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.tests.aws import StubberTestCase from touchdown.tests.fixtures.aws import ( NetworkAclFixture, RouteTableFixture, VpcFixture, ) from touchdown.tests.stubs.aws import SubnetStubber
[ 2, 15069, 1853, 1148, 313, 6086, 15302, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 10242, 13, 41989, 13, 8356, 1330, 41135, 527, 14402, 20448, 198, 6738, 10242, 13, 41989, 13, 69, 25506, 13, 8356, 1330, 357, 198, 220, 220, 220, 7311, 32, 565, 37, 9602, 11, 198, 220, 220, 220, 18956, 10962, 37, 9602, 11, 198, 220, 220, 220, 569, 14751, 37, 9602, 11, 198, 8, 198, 6738, 10242, 13, 41989, 13, 301, 23161, 13, 8356, 1330, 3834, 3262, 1273, 549, 527, 628, 198 ]
3.577273
220
from pymbs.processing.loops.loop import Loop from pymbs.common.functions import sqrt from pymbs.processing import Frame from pymbs.processing.loads.constraint import Constraint from numpy import pi from pymbs.symbolics import Matrix, eye, cos, sin, atan, atan2, acos, zeros, transpose AL = 'FB_%s_AL' BE = 'FB_%s_BE' GA = 'FB_%s_GA' DE = 'FB_%s_DE' L1 = 'FB_%s_L1' L2 = 'FB_%s_L2' L3 = 'FB_%s_L3' L4 = 'FB_%s_L4' PHI = 'FB_%s_PHI' PSI = 'FB_%s_PSI' THETA = 'FB_%s_THETA' A = 'FB_%s_A' B = 'FB_%s_B' C = 'FB_%s_C' D = 'FB_%s_D' E = 'FB_%s_E' F = 'FB_%s_F' from pymbs.symbolics import Graph class FourBar(Loop): ''' Explicit Treatment of a Four Bar Linkage Mechanism ''' ''' Sketch: B--3--C / \ 2 4 / \ A-----1------D ''' def __init__(self, name, csCa, csCb, posture): ''' Constructor @param setup: Four Bar Linkage has two setups: -1, 1 ''' # Assertions assert ( isinstance(csCa, Frame) ) assert ( isinstance(csCb, Frame) ) assert ( isinstance(posture, int) ) assert ( (posture == 1) or (posture == -1 )) # Check parents if (csCa.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCa.name)) if (csCb.parentBody.joint is None): raise ValueError('Loop "%s": Coordinate System "%s" is directly connected to the world!'%(name,csCb.name)) # Build complete FourBarLinkage jB = csCa.parentBody.joint jD = csCb.parentBody.joint if (jB.coordSys.parentBody.joint == None): jB = csCb.parentBody.joint jD = csCa.parentBody.joint jA = jB.coordSys.parentBody.joint csC3 = csCb csC4 = csCa else: jA = jB.coordSys.parentBody.joint csC3 = csCa csC4 = csCb # Do the Joints have the same axis of Rotation if (jA.Phi == Matrix([1,0,0])): self.sign = 1 self.pick = Matrix([[0,1,0], [0,0,1]]) elif (jA.Phi == Matrix([0,1,0])): self.sign = -1 self.pick = Matrix([[1,0,0], [0,0,1]]) elif (jA.Phi == Matrix([0,0,1])): self.sign = 1 self.pick = Matrix([[1,0,0], [0,1,0]]) else: raise ValueError('Loop "%s": Axis of Rotation must be either x,y or z!'%name) assert( jA.Phi == jB.Phi ), 'jA.Phi(%s): %s, jB.Phi(%s): %s'%(jA.name,jA.Phi,jB.name,jB.Phi) assert( jA.Phi == jD.Phi ), 'jA.Phi(%s): %s, jD.Phi(%s): %s'%(jA.name,jA.Phi,jD.name,jD.Phi) assert( jA.Psi.norm() == 0 ) assert( jB.Psi.norm() == 0 ) assert( jD.Psi.norm() == 0 ) # Are All Coordinate Systems aligned like their parentBody? assert( (jA.coordSys.R - eye(3)) == zeros(3) ) assert( (jB.coordSys.R - eye(3)) == zeros(3) ) assert( (jD.coordSys.R - eye(3)) == zeros(3) ) # Check that bodies between joints are the same assert( jA.coordSys.parentBody == jD.coordSys.parentBody ) assert( jA.body == jB.coordSys.parentBody ) assert( jB.body == csC3.parentBody ) assert( jD.body == csC4.parentBody ) # Super Constructor Loop.__init__(self, name) # Save Parameters self.jA = jA self.jB = jB self.jD = jD self.csC3 = csC3 self.csC4 = csC4 self.posture = posture # Independent Coordinates self.u = [jA.q] self.ud = [jA.qd] self.udd = [jA.qdd] # Dependent Coordinates self.v = [jB.q, jD.q] self.vd = [jB.qd, jD.qd] self.vdd = [jB.qdd, jD.qdd] def calc(self, graph): ''' Returns precalculated v(u), Bvu and b_prime, s.t. q = [u,v]', where u: independent coordinates v: dependent coordinates Starting from the Constraint Equation: Phi(q) = 0, One Obtains by Differentiation: (d(Phi)/du)*u_dot + (d(Phi)/dv)*v_dot = 0 Ju*u_dot + Jv+v_dot = 0 Thus, v_dot = -(inv(Jv)*Ju)*u_dot = Bvu*u_dot, with Jv = d(Phi)/dv and Ju = d(Phi)/du Differentiating once more, yields Ju*u_ddot + Jv*v_ddot + [Ju_dot, Jv_dot]*[u_dot,v_dot]' = 0 Ju*u_ddot + Jv*v_ddot + J_dot*q_dot = 0 Using this relations, one may obtain an expression for v_ddot v_ddot = -(inv(Jv)*Ju)*u_ddot - inv(Jv)*J_dot*q_dot = Bvu*u_ddot + b_prime, with b_prime = -inv(Jv)*J_dot*q_dot Finally one can transform the Equation of Motion M*q_ddot + h = f + W'*mu M*(J*u_ddot + b) + h = f + W'*mu with J = [1, Bvu']' and b = [0,b_prime']' (J'*M*J)*u_ddot + J'*M*b + J'*h = J'*f, since J'*W' = 0 M_star*u_ddot + h_star = f_star M_star = (J'*M*J) h_star = J'*M*b + J'*h f_star = J'*f ''' assert isinstance(graph, Graph) # Abbrevations s = self.sign # Generalised Coordinates q1 = self.jA.q # u[0] # angle between x-axes q1d = self.jA.qd q2 = self.jB.q # v[0] # angle between x-axes q2d = self.jB.qd q3 = self.jD.q # v[1] # angle between x-axes q3d = self.jD.qd # Length of bars and angle between x-axis and bar l1_vec = self.jD.coordSys.p - self.jA.coordSys.p l1_vec2 = self.pick*l1_vec l1 = graph.addEquation(L1%self.name, sqrt((transpose(l1_vec)*l1_vec))) alpha = graph.addEquation(AL%self.name, s*atan2(l1_vec2[1],l1_vec2[0])) l2_vec = self.jB.coordSys.p l2_vec2 = self.pick*l2_vec l2 = graph.addEquation(L2%self.name, sqrt((transpose(l2_vec)*l2_vec))) beta = graph.addEquation(BE%self.name, s*atan2(l2_vec2[1],l2_vec2[0])) l3_vec = self.csC3.p l3_vec2 = self.pick*l3_vec l3 = graph.addEquation(L3%self.name, sqrt((transpose(l3_vec)*l3_vec))) gamma = graph.addEquation(GA%self.name, s*atan2(l3_vec2[1],l3_vec2[0])) l4_vec = self.csC4.p l4_vec2 = self.pick*l4_vec l4 = graph.addEquation(L4%self.name, sqrt((transpose(l4_vec)*l4_vec))) delta = graph.addEquation(DE%self.name, s*atan2(l4_vec2[1],l4_vec2[0])) # angle between bars phi_prime = graph.addEquation(PHI%self.name, q1 + beta - alpha) # A = P1, B = P2, C = P3 #P1 = graph.addEquation(A%self.name, 2*l4*(l1-l2*cos(phi_prime))) #P2 = graph.addEquation(B%self.name, -2*l2*l4*sin(phi_prime)) #P3 = graph.addEquation(C%self.name, l1**2+l2**2-l3**2+l4**2-2*l1*l2*cos(phi_prime)) # D = P1, E = P2, F = P3 P4 = graph.addEquation(D%self.name, 2*l3*(l2-l1*cos(-phi_prime))) P5 = graph.addEquation(E%self.name, -2*l1*l3*sin(-phi_prime)) P6 = graph.addEquation(F%self.name, l2**2+l1**2-l4**2+l3**2-2*l2*l1*cos(-phi_prime)) # Calculate v theta_prime = graph.addEquation(THETA%self.name, 2*atan((P5-self.posture*sqrt(P4**2+P5**2-P6**2))/(P4-P6))) psi_prime = graph.addEquation(PSI%self.name, ((l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime))/abs(l2*sin(phi_prime)+l3*sin(phi_prime+theta_prime)))*acos((l2*cos(phi_prime)+l3*cos(phi_prime+theta_prime)-l1)/l4)) v1 = (psi_prime + alpha - delta) v0 = (theta_prime + beta - gamma) Bvu = Matrix( [[-l2*sin(phi_prime-psi_prime)/(l3*sin(phi_prime+theta_prime-psi_prime))-1], [(l2*sin(theta_prime))/(l4*sin(phi_prime+theta_prime-psi_prime))]] ) b_prime = Matrix( [-(q1d**2*l2*cos(phi_prime-psi_prime)+l3*cos(phi_prime+theta_prime-psi_prime)*(q1d+q2d)**2-l4*q3d**2)/(l3*sin(phi_prime+theta_prime-psi_prime)) , -(q1d**2*l2*cos(theta_prime)+l3*(q1d+q2d)**2-l4*q3d**2*cos(phi_prime+theta_prime-psi_prime))/(l4*sin(phi_prime+theta_prime-psi_prime)) ] ) return ([v0,v1],Bvu,b_prime) def applyConstraintLoads(self): ''' apply Constraint Forces at the end of the cut ''' # locking all directions perpendicular to axis of rotation transLock = [0,0,0] for i in [0,1,2]: if (self.jA.Phi[i] == 0): transLock[i] = 1 # apply Constraint c = Constraint(name='Constraint_%s'%self.name, parent=self.csC3, child=self.csC4, \ transLock=transLock, rotLock=[0,0,0], active=False) # return load object return c
[ 6738, 279, 4948, 1443, 13, 36948, 13, 5439, 2840, 13, 26268, 1330, 26304, 198, 6738, 279, 4948, 1443, 13, 11321, 13, 12543, 2733, 1330, 19862, 17034, 198, 6738, 279, 4948, 1443, 13, 36948, 1330, 25184, 198, 198, 6738, 279, 4948, 1443, 13, 36948, 13, 46030, 13, 1102, 2536, 2913, 1330, 1482, 2536, 2913, 198, 198, 6738, 299, 32152, 1330, 31028, 198, 198, 6738, 279, 4948, 1443, 13, 1837, 2022, 19615, 1330, 24936, 11, 4151, 11, 8615, 11, 7813, 11, 379, 272, 11, 379, 272, 17, 11, 936, 418, 11, 1976, 27498, 11, 1007, 3455, 198, 198, 1847, 796, 705, 26001, 62, 4, 82, 62, 1847, 6, 198, 12473, 796, 705, 26001, 62, 4, 82, 62, 12473, 6, 198, 9273, 796, 705, 26001, 62, 4, 82, 62, 9273, 6, 198, 7206, 796, 705, 26001, 62, 4, 82, 62, 7206, 6, 198, 198, 43, 16, 796, 705, 26001, 62, 4, 82, 62, 43, 16, 6, 198, 43, 17, 796, 705, 26001, 62, 4, 82, 62, 43, 17, 6, 198, 43, 18, 796, 705, 26001, 62, 4, 82, 62, 43, 18, 6, 198, 43, 19, 796, 705, 26001, 62, 4, 82, 62, 43, 19, 6, 198, 198, 11909, 40, 796, 705, 26001, 62, 4, 82, 62, 11909, 40, 6, 198, 3705, 40, 796, 705, 26001, 62, 4, 82, 62, 3705, 40, 6, 198, 4221, 20892, 796, 705, 26001, 62, 4, 82, 62, 4221, 20892, 6, 198, 198, 32, 796, 705, 26001, 62, 4, 82, 62, 32, 6, 198, 33, 796, 705, 26001, 62, 4, 82, 62, 33, 6, 198, 34, 796, 705, 26001, 62, 4, 82, 62, 34, 6, 198, 198, 35, 796, 705, 26001, 62, 4, 82, 62, 35, 6, 198, 36, 796, 705, 26001, 62, 4, 82, 62, 36, 6, 198, 37, 796, 705, 26001, 62, 4, 82, 62, 37, 6, 198, 198, 6738, 279, 4948, 1443, 13, 1837, 2022, 19615, 1330, 29681, 198, 198, 4871, 6675, 10374, 7, 39516, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 11884, 21415, 286, 257, 6675, 2409, 7502, 496, 13438, 1042, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 17001, 25, 198, 220, 220, 220, 220, 220, 220, 347, 438, 18, 438, 34, 198, 220, 220, 220, 220, 220, 1220, 220, 220, 220, 220, 220, 220, 3467, 198, 220, 220, 220, 220, 362, 220, 220, 220, 220, 220, 220, 220, 604, 198, 220, 220, 220, 1220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 198, 220, 220, 317, 30934, 16, 23031, 35, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 11, 50115, 24334, 11, 50115, 34, 65, 11, 24521, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 9058, 25, 6675, 2409, 7502, 496, 468, 734, 44266, 25, 532, 16, 11, 352, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 861, 507, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 318, 39098, 7, 6359, 24334, 11, 25184, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 318, 39098, 7, 6359, 34, 65, 11, 25184, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 318, 39098, 7, 7353, 495, 11, 493, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 357, 7353, 495, 6624, 352, 8, 393, 357, 7353, 495, 6624, 532, 16, 15306, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 3397, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 6359, 24334, 13, 8000, 25842, 13, 73, 1563, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 39516, 36521, 82, 1298, 22819, 4559, 4482, 36521, 82, 1, 318, 3264, 5884, 284, 262, 995, 13679, 4, 7, 3672, 11, 6359, 24334, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 6359, 34, 65, 13, 8000, 25842, 13, 73, 1563, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 39516, 36521, 82, 1298, 22819, 4559, 4482, 36521, 82, 1, 318, 3264, 5884, 284, 262, 995, 13679, 4, 7, 3672, 11, 6359, 34, 65, 13, 3672, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 1844, 6675, 10374, 11280, 496, 198, 220, 220, 220, 220, 220, 220, 220, 474, 33, 796, 50115, 24334, 13, 8000, 25842, 13, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 474, 35, 796, 50115, 34, 65, 13, 8000, 25842, 13, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 73, 33, 13, 37652, 44387, 13, 8000, 25842, 13, 73, 1563, 6624, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 33, 796, 50115, 34, 65, 13, 8000, 25842, 13, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 35, 796, 50115, 24334, 13, 8000, 25842, 13, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 32, 796, 474, 33, 13, 37652, 44387, 13, 8000, 25842, 13, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 34, 18, 796, 50115, 34, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 34, 19, 796, 50115, 24334, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 32, 796, 474, 33, 13, 37652, 44387, 13, 8000, 25842, 13, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 34, 18, 796, 50115, 24334, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 34, 19, 796, 50115, 34, 65, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2141, 262, 16798, 82, 423, 262, 976, 16488, 286, 371, 14221, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 73, 32, 13, 2725, 72, 6624, 24936, 26933, 16, 11, 15, 11, 15, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12683, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27729, 796, 24936, 26933, 58, 15, 11, 16, 11, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 15, 11, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 73, 32, 13, 2725, 72, 6624, 24936, 26933, 15, 11, 16, 11, 15, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12683, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27729, 796, 24936, 26933, 58, 16, 11, 15, 11, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 15, 11, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 73, 32, 13, 2725, 72, 6624, 24936, 26933, 15, 11, 15, 11, 16, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12683, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27729, 796, 24936, 26933, 58, 16, 11, 15, 11, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 16, 11, 15, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 39516, 36521, 82, 1298, 38349, 286, 371, 14221, 1276, 307, 2035, 2124, 11, 88, 393, 1976, 13679, 4, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 32, 13, 2725, 72, 6624, 474, 33, 13, 2725, 72, 10612, 705, 73, 32, 13, 2725, 72, 7, 4, 82, 2599, 4064, 82, 11, 474, 33, 13, 2725, 72, 7, 4, 82, 2599, 4064, 82, 6, 4, 7, 73, 32, 13, 3672, 11, 73, 32, 13, 2725, 72, 11, 73, 33, 13, 3672, 11, 73, 33, 13, 2725, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 32, 13, 2725, 72, 6624, 474, 35, 13, 2725, 72, 10612, 705, 73, 32, 13, 2725, 72, 7, 4, 82, 2599, 4064, 82, 11, 474, 35, 13, 2725, 72, 7, 4, 82, 2599, 4064, 82, 6, 4, 7, 73, 32, 13, 3672, 11, 73, 32, 13, 2725, 72, 11, 73, 35, 13, 3672, 11, 73, 35, 13, 2725, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 32, 13, 12016, 72, 13, 27237, 3419, 6624, 657, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 33, 13, 12016, 72, 13, 27237, 3419, 6624, 657, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 35, 13, 12016, 72, 13, 27237, 3419, 6624, 657, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4231, 1439, 22819, 4559, 11998, 19874, 588, 511, 2560, 25842, 30, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 357, 73, 32, 13, 37652, 44387, 13, 49, 532, 4151, 7, 18, 4008, 6624, 1976, 27498, 7, 18, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 357, 73, 33, 13, 37652, 44387, 13, 49, 532, 4151, 7, 18, 4008, 6624, 1976, 27498, 7, 18, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 357, 73, 35, 13, 37652, 44387, 13, 49, 532, 4151, 7, 18, 4008, 6624, 1976, 27498, 7, 18, 8, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 326, 5920, 1022, 24039, 389, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 32, 13, 37652, 44387, 13, 8000, 25842, 6624, 474, 35, 13, 37652, 44387, 13, 8000, 25842, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 32, 13, 2618, 6624, 474, 33, 13, 37652, 44387, 13, 8000, 25842, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 33, 13, 2618, 6624, 50115, 34, 18, 13, 8000, 25842, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 474, 35, 13, 2618, 6624, 50115, 34, 19, 13, 8000, 25842, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3115, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 26304, 13, 834, 15003, 834, 7, 944, 11, 1438, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 73, 32, 796, 474, 32, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 73, 33, 796, 474, 33, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 73, 35, 796, 474, 35, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6359, 34, 18, 796, 50115, 34, 18, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6359, 34, 19, 796, 50115, 34, 19, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7353, 495, 796, 24521, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13362, 22819, 17540, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 84, 796, 685, 73, 32, 13, 80, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 463, 796, 685, 73, 32, 13, 80, 67, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4185, 796, 685, 73, 32, 13, 80, 1860, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37947, 298, 22819, 17540, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 85, 796, 685, 73, 33, 13, 80, 11, 474, 35, 13, 80, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20306, 796, 685, 73, 33, 13, 80, 67, 11, 474, 35, 13, 80, 67, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 85, 1860, 796, 685, 73, 33, 13, 80, 1860, 11, 474, 35, 13, 80, 1860, 60, 628, 220, 220, 220, 825, 42302, 7, 944, 11, 4823, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3718, 282, 49262, 410, 7, 84, 828, 347, 40939, 290, 275, 62, 35505, 11, 264, 13, 83, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 685, 84, 11, 85, 60, 3256, 810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 25, 4795, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 25, 10795, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 17962, 422, 262, 1482, 2536, 2913, 7889, 341, 25, 47256, 7, 80, 8, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1881, 1835, 12143, 416, 20615, 3920, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 67, 7, 2725, 72, 20679, 646, 27493, 84, 62, 26518, 1343, 357, 67, 7, 2725, 72, 20679, 67, 85, 27493, 85, 62, 26518, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 12585, 9, 84, 62, 26518, 1343, 449, 85, 10, 85, 62, 26518, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 6660, 11, 410, 62, 26518, 796, 532, 7, 16340, 7, 41, 85, 27493, 33018, 27493, 84, 62, 26518, 796, 347, 40939, 9, 84, 62, 26518, 11, 351, 449, 85, 796, 288, 7, 2725, 72, 20679, 67, 85, 290, 12585, 796, 288, 7, 2725, 72, 20679, 646, 198, 220, 220, 220, 220, 220, 220, 220, 20615, 26336, 1752, 517, 11, 19299, 198, 220, 220, 220, 220, 220, 220, 220, 12585, 9, 84, 62, 1860, 313, 1343, 449, 85, 9, 85, 62, 1860, 313, 1343, 685, 33018, 62, 26518, 11, 449, 85, 62, 26518, 60, 9, 58, 84, 62, 26518, 11, 85, 62, 26518, 49946, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 12585, 9, 84, 62, 1860, 313, 1343, 449, 85, 9, 85, 62, 1860, 313, 1343, 449, 62, 26518, 9, 80, 62, 26518, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 8554, 428, 2316, 11, 530, 743, 7330, 281, 5408, 329, 410, 62, 1860, 313, 198, 220, 220, 220, 220, 220, 220, 220, 410, 62, 1860, 313, 796, 532, 7, 16340, 7, 41, 85, 27493, 33018, 27493, 84, 62, 1860, 313, 532, 800, 7, 41, 85, 27493, 41, 62, 26518, 9, 80, 62, 26518, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 347, 40939, 9, 84, 62, 1860, 313, 1343, 275, 62, 35505, 11, 351, 275, 62, 35505, 796, 532, 16340, 7, 41, 85, 27493, 41, 62, 26518, 9, 80, 62, 26518, 628, 220, 220, 220, 220, 220, 220, 220, 9461, 530, 460, 6121, 262, 7889, 341, 286, 20843, 198, 220, 220, 220, 220, 220, 220, 220, 337, 9, 80, 62, 1860, 313, 1343, 289, 796, 277, 1343, 370, 6, 9, 30300, 198, 220, 220, 220, 220, 220, 220, 220, 337, 9, 7, 41, 9, 84, 62, 1860, 313, 1343, 275, 8, 1343, 289, 796, 277, 1343, 370, 6, 9, 30300, 220, 220, 220, 351, 449, 796, 685, 16, 11, 347, 40939, 20520, 6, 290, 275, 796, 685, 15, 11, 65, 62, 35505, 20520, 6, 198, 220, 220, 220, 220, 220, 220, 220, 357, 41, 6, 9, 44, 9, 41, 27493, 84, 62, 1860, 313, 1343, 449, 6, 9, 44, 9, 65, 1343, 449, 6, 9, 71, 796, 449, 6, 9, 69, 11, 1201, 449, 6, 9, 54, 6, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 337, 62, 7364, 9, 84, 62, 1860, 313, 1343, 289, 62, 7364, 796, 277, 62, 7364, 198, 220, 220, 220, 220, 220, 220, 220, 337, 62, 7364, 796, 357, 41, 6, 9, 44, 9, 41, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 62, 7364, 796, 449, 6, 9, 44, 9, 65, 1343, 449, 6, 9, 71, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 7364, 796, 449, 6, 9, 69, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 34960, 11, 29681, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2275, 4679, 85, 602, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 2116, 13, 12683, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3611, 1417, 22819, 17540, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 16, 796, 2116, 13, 73, 32, 13, 80, 220, 220, 220, 220, 1303, 334, 58, 15, 60, 220, 220, 220, 1303, 9848, 1022, 2124, 12, 897, 274, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 16, 67, 796, 2116, 13, 73, 32, 13, 80, 67, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 796, 2116, 13, 73, 33, 13, 80, 220, 220, 220, 220, 1303, 410, 58, 15, 60, 220, 220, 220, 1303, 9848, 1022, 2124, 12, 897, 274, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 67, 796, 2116, 13, 73, 33, 13, 80, 67, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 18, 796, 2116, 13, 73, 35, 13, 80, 220, 220, 220, 220, 1303, 410, 58, 16, 60, 220, 220, 220, 1303, 9848, 1022, 2124, 12, 897, 274, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 18, 67, 796, 2116, 13, 73, 35, 13, 80, 67, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 22313, 286, 9210, 290, 9848, 1022, 2124, 12, 22704, 290, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 62, 35138, 796, 2116, 13, 73, 35, 13, 37652, 44387, 13, 79, 532, 2116, 13, 73, 32, 13, 37652, 44387, 13, 79, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 62, 35138, 17, 796, 2116, 13, 27729, 9, 75, 16, 62, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 4823, 13, 2860, 23588, 341, 7, 43, 16, 4, 944, 13, 3672, 11, 19862, 17034, 19510, 7645, 3455, 7, 75, 16, 62, 35138, 27493, 75, 16, 62, 35138, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 796, 4823, 13, 2860, 23588, 341, 7, 1847, 4, 944, 13, 3672, 11, 264, 9, 39036, 17, 7, 75, 16, 62, 35138, 17, 58, 16, 4357, 75, 16, 62, 35138, 17, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 300, 17, 62, 35138, 796, 2116, 13, 73, 33, 13, 37652, 44387, 13, 79, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 62, 35138, 17, 796, 2116, 13, 27729, 9, 75, 17, 62, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 796, 4823, 13, 2860, 23588, 341, 7, 43, 17, 4, 944, 13, 3672, 11, 19862, 17034, 19510, 7645, 3455, 7, 75, 17, 62, 35138, 27493, 75, 17, 62, 35138, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 12159, 796, 4823, 13, 2860, 23588, 341, 7, 12473, 4, 944, 13, 3672, 11, 264, 9, 39036, 17, 7, 75, 17, 62, 35138, 17, 58, 16, 4357, 75, 17, 62, 35138, 17, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 300, 18, 62, 35138, 796, 2116, 13, 6359, 34, 18, 13, 79, 198, 220, 220, 220, 220, 220, 220, 220, 300, 18, 62, 35138, 17, 796, 2116, 13, 27729, 9, 75, 18, 62, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 300, 18, 796, 4823, 13, 2860, 23588, 341, 7, 43, 18, 4, 944, 13, 3672, 11, 19862, 17034, 19510, 7645, 3455, 7, 75, 18, 62, 35138, 27493, 75, 18, 62, 35138, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 796, 4823, 13, 2860, 23588, 341, 7, 9273, 4, 944, 13, 3672, 11, 264, 9, 39036, 17, 7, 75, 18, 62, 35138, 17, 58, 16, 4357, 75, 18, 62, 35138, 17, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 300, 19, 62, 35138, 796, 2116, 13, 6359, 34, 19, 13, 79, 198, 220, 220, 220, 220, 220, 220, 220, 300, 19, 62, 35138, 17, 796, 2116, 13, 27729, 9, 75, 19, 62, 35138, 198, 220, 220, 220, 220, 220, 220, 220, 300, 19, 796, 4823, 13, 2860, 23588, 341, 7, 43, 19, 4, 944, 13, 3672, 11, 19862, 17034, 19510, 7645, 3455, 7, 75, 19, 62, 35138, 27493, 75, 19, 62, 35138, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 4823, 13, 2860, 23588, 341, 7, 7206, 4, 944, 13, 3672, 11, 264, 9, 39036, 17, 7, 75, 19, 62, 35138, 17, 58, 16, 4357, 75, 19, 62, 35138, 17, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9848, 1022, 9210, 198, 220, 220, 220, 220, 220, 220, 220, 872, 72, 62, 35505, 796, 4823, 13, 2860, 23588, 341, 7, 11909, 40, 4, 944, 13, 3672, 11, 10662, 16, 1343, 12159, 532, 17130, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 317, 796, 350, 16, 11, 347, 796, 350, 17, 11, 327, 796, 350, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47, 16, 796, 4823, 13, 2860, 23588, 341, 7, 32, 4, 944, 13, 3672, 11, 362, 9, 75, 19, 9, 7, 75, 16, 12, 75, 17, 9, 6966, 7, 34846, 62, 35505, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47, 17, 796, 4823, 13, 2860, 23588, 341, 7, 33, 4, 944, 13, 3672, 11, 532, 17, 9, 75, 17, 9, 75, 19, 9, 31369, 7, 34846, 62, 35505, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47, 18, 796, 4823, 13, 2860, 23588, 341, 7, 34, 4, 944, 13, 3672, 11, 300, 16, 1174, 17, 10, 75, 17, 1174, 17, 12, 75, 18, 1174, 17, 10, 75, 19, 1174, 17, 12, 17, 9, 75, 16, 9, 75, 17, 9, 6966, 7, 34846, 62, 35505, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 360, 796, 350, 16, 11, 412, 796, 350, 17, 11, 376, 796, 350, 18, 198, 220, 220, 220, 220, 220, 220, 220, 350, 19, 796, 4823, 13, 2860, 23588, 341, 7, 35, 4, 944, 13, 3672, 11, 362, 9, 75, 18, 9, 7, 75, 17, 12, 75, 16, 9, 6966, 32590, 34846, 62, 35505, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 350, 20, 796, 4823, 13, 2860, 23588, 341, 7, 36, 4, 944, 13, 3672, 11, 532, 17, 9, 75, 16, 9, 75, 18, 9, 31369, 32590, 34846, 62, 35505, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 350, 21, 796, 4823, 13, 2860, 23588, 341, 7, 37, 4, 944, 13, 3672, 11, 300, 17, 1174, 17, 10, 75, 16, 1174, 17, 12, 75, 19, 1174, 17, 10, 75, 18, 1174, 17, 12, 17, 9, 75, 17, 9, 75, 16, 9, 6966, 32590, 34846, 62, 35505, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 410, 198, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 62, 35505, 796, 4823, 13, 2860, 23588, 341, 7, 4221, 20892, 4, 944, 13, 3672, 11, 362, 9, 39036, 19510, 47, 20, 12, 944, 13, 7353, 495, 9, 31166, 17034, 7, 47, 19, 1174, 17, 10, 47, 20, 1174, 17, 12, 47, 21, 1174, 17, 4008, 29006, 47, 19, 12, 47, 21, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 46231, 62, 35505, 796, 4823, 13, 2860, 23588, 341, 7, 3705, 40, 4, 944, 13, 3672, 11, 14808, 75, 17, 9, 31369, 7, 34846, 62, 35505, 47762, 75, 18, 9, 31369, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 4008, 14, 8937, 7, 75, 17, 9, 31369, 7, 34846, 62, 35505, 47762, 75, 18, 9, 31369, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 22305, 9, 330, 418, 19510, 75, 17, 9, 6966, 7, 34846, 62, 35505, 47762, 75, 18, 9, 6966, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 13219, 75, 16, 20679, 75, 19, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 410, 16, 796, 357, 862, 72, 62, 35505, 1343, 17130, 532, 25979, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 15, 796, 357, 1169, 8326, 62, 35505, 1343, 12159, 532, 34236, 8, 628, 220, 220, 220, 220, 220, 220, 220, 347, 40939, 796, 24936, 7, 16410, 12, 75, 17, 9, 31369, 7, 34846, 62, 35505, 12, 862, 72, 62, 35505, 20679, 7, 75, 18, 9, 31369, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 12, 862, 72, 62, 35505, 4008, 12, 16, 4357, 47527, 75, 17, 9, 31369, 7, 1169, 8326, 62, 35505, 4008, 29006, 75, 19, 9, 31369, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 12, 862, 72, 62, 35505, 4008, 11907, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 275, 62, 35505, 796, 24936, 7, 25915, 7, 80, 16, 67, 1174, 17, 9, 75, 17, 9, 6966, 7, 34846, 62, 35505, 12, 862, 72, 62, 35505, 47762, 75, 18, 9, 6966, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 12, 862, 72, 62, 35505, 27493, 7, 80, 16, 67, 10, 80, 17, 67, 8, 1174, 17, 12, 75, 19, 9, 80, 18, 67, 1174, 17, 20679, 7, 75, 18, 9, 31369, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 12, 862, 72, 62, 35505, 4008, 837, 532, 7, 80, 16, 67, 1174, 17, 9, 75, 17, 9, 6966, 7, 1169, 8326, 62, 35505, 47762, 75, 18, 9, 7, 80, 16, 67, 10, 80, 17, 67, 8, 1174, 17, 12, 75, 19, 9, 80, 18, 67, 1174, 17, 9, 6966, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 12, 862, 72, 62, 35505, 4008, 29006, 75, 19, 9, 31369, 7, 34846, 62, 35505, 10, 1169, 8326, 62, 35505, 12, 862, 72, 62, 35505, 4008, 2361, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 29565, 85, 15, 11, 85, 16, 4357, 33, 40939, 11, 65, 62, 35505, 8, 628, 628, 220, 220, 220, 825, 4174, 3103, 2536, 2913, 8912, 82, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 4174, 1482, 2536, 2913, 12700, 379, 262, 886, 286, 262, 2005, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 22656, 477, 11678, 47190, 284, 16488, 286, 13179, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 25392, 796, 685, 15, 11, 15, 11, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 685, 15, 11, 16, 11, 17, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 73, 32, 13, 2725, 72, 58, 72, 60, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 25392, 58, 72, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4174, 1482, 2536, 2913, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 1482, 2536, 2913, 7, 3672, 11639, 3103, 2536, 2913, 62, 4, 82, 6, 4, 944, 13, 3672, 11, 2560, 28, 944, 13, 6359, 34, 18, 11, 1200, 28, 944, 13, 6359, 34, 19, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1007, 25392, 28, 7645, 25392, 11, 5724, 25392, 41888, 15, 11, 15, 11, 15, 4357, 4075, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 3440, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 628 ]
1.831097
4,695
#!/usr/bin/env python2.7 # # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Holds meta-information about the image formats we support.""" import collections ImageSpec = collections.namedtuple( "ImageSpec", "content_type file_extension pil_format") IMAGE_SPECS = {"jpg": ImageSpec("image/jpeg", "jpg", "JPEG"), "png": ImageSpec("image/png", "png", "PNG") } def IsKnownFormat(fmt): """Checks if the format is supported. Args: fmt: Format of the image. Returns: boolean: If the format is supported. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return True return False def GetImageSpec(fmt): """Get the Imagespec. Args: fmt: Format of the image. Returns: image_spec: image spec. """ for spec in IMAGE_SPECS.values(): if spec.content_type == fmt: return spec return None def FormatIsPng(fmt): """Checks if the format is of type png. Args: fmt: Format of the image. Returns: boolean: If the format is png or not. """ for typ, spec in IMAGE_SPECS.iteritems(): if spec.content_type == fmt: return typ == "png" return False if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 13, 22, 198, 2, 198, 2, 15069, 2177, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628, 198, 37811, 39, 10119, 13634, 12, 17018, 546, 262, 2939, 17519, 356, 1104, 526, 15931, 198, 198, 11748, 17268, 628, 198, 5159, 22882, 796, 17268, 13, 13190, 83, 29291, 7, 198, 220, 220, 220, 366, 5159, 22882, 1600, 366, 11299, 62, 4906, 2393, 62, 2302, 3004, 5560, 62, 18982, 4943, 198, 198, 3955, 11879, 62, 48451, 50, 796, 19779, 9479, 1298, 7412, 22882, 7203, 9060, 14, 73, 22071, 1600, 366, 9479, 1600, 366, 12889, 7156, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11134, 1298, 7412, 22882, 7203, 9060, 14, 11134, 1600, 366, 11134, 1600, 366, 47, 10503, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 4299, 1148, 29870, 26227, 7, 69, 16762, 2599, 198, 220, 37227, 7376, 4657, 611, 262, 5794, 318, 4855, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 46996, 25, 18980, 286, 262, 2939, 13, 198, 220, 16409, 25, 198, 220, 220, 220, 25131, 25, 1002, 262, 5794, 318, 4855, 13, 198, 220, 37227, 198, 220, 329, 1020, 287, 8959, 11879, 62, 48451, 50, 13, 27160, 33529, 198, 220, 220, 220, 611, 1020, 13, 11299, 62, 4906, 6624, 46996, 25, 198, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 1441, 10352, 628, 198, 4299, 3497, 5159, 22882, 7, 69, 16762, 2599, 198, 220, 37227, 3855, 262, 5382, 43106, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 46996, 25, 18980, 286, 262, 2939, 13, 198, 220, 16409, 25, 198, 220, 220, 220, 2939, 62, 16684, 25, 2939, 1020, 13, 198, 220, 37227, 198, 220, 329, 1020, 287, 8959, 11879, 62, 48451, 50, 13, 27160, 33529, 198, 220, 220, 220, 611, 1020, 13, 11299, 62, 4906, 6624, 46996, 25, 198, 220, 220, 220, 220, 220, 1441, 1020, 628, 220, 1441, 6045, 628, 198, 4299, 18980, 3792, 47, 782, 7, 69, 16762, 2599, 198, 220, 37227, 7376, 4657, 611, 262, 5794, 318, 286, 2099, 279, 782, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 46996, 25, 18980, 286, 262, 2939, 13, 198, 220, 16409, 25, 198, 220, 220, 220, 25131, 25, 1002, 262, 5794, 318, 279, 782, 393, 407, 13, 198, 220, 37227, 198, 220, 329, 2170, 11, 1020, 287, 8959, 11879, 62, 48451, 50, 13, 2676, 23814, 33529, 198, 220, 220, 220, 611, 1020, 13, 11299, 62, 4906, 6624, 46996, 25, 198, 220, 220, 220, 220, 220, 1441, 2170, 6624, 366, 11134, 1, 198, 220, 1441, 10352, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1388, 3419, 198 ]
2.927852
596
comma="," result="SET ANSI_NULLS ON\n" result+="GO\n" result+="SET QUOTED_IDENTIFIER ON\n" result+="GO\n" result+="CREATE PROCEDURE "+Model.TableName+"_Update\n" result+=mapcols(pars) result+="AS\n" result+="BEGIN\n" result+="SET NOCOUNT ON;\n" result+="update [dbo].["+Model.TableName+"]\n" result+=" set (" result+=mapusual(sqf) result+=")\n" result+="WHERE " +Model.PK.Name+"=@"+Model.PK.Name+"\n" result+="END\n" result+="GO\n"
[ 785, 2611, 28, 2430, 198, 20274, 2625, 28480, 3537, 11584, 62, 33991, 50, 6177, 59, 77, 1, 198, 20274, 10, 2625, 11230, 59, 77, 1, 198, 20274, 10, 2625, 28480, 19604, 2394, 1961, 62, 25256, 5064, 38311, 6177, 59, 77, 1, 198, 20274, 10, 2625, 11230, 59, 77, 1, 198, 20274, 10, 2625, 43387, 6158, 41755, 1961, 11335, 43825, 17633, 13, 10962, 5376, 10, 1, 62, 10260, 59, 77, 1, 198, 20274, 47932, 8899, 4033, 82, 7, 79, 945, 8, 198, 20274, 10, 2625, 1921, 59, 77, 1, 198, 20274, 10, 2625, 33, 43312, 59, 77, 1, 198, 20274, 10, 2625, 28480, 399, 4503, 28270, 6177, 26, 59, 77, 1, 198, 20274, 10, 2625, 19119, 685, 67, 2127, 60, 3693, 1, 10, 17633, 13, 10962, 5376, 10, 8973, 59, 77, 1, 198, 20274, 10, 2625, 900, 5855, 198, 20274, 47932, 8899, 37850, 7, 31166, 69, 8, 198, 20274, 10, 2625, 19415, 77, 1, 198, 20274, 10, 2625, 47357, 366, 1343, 17633, 13, 40492, 13, 5376, 10, 1, 28, 31, 1, 10, 17633, 13, 40492, 13, 5376, 10, 1, 59, 77, 1, 198, 20274, 10, 2625, 10619, 59, 77, 1, 198, 20274, 10, 2625, 11230, 59, 77, 1, 198 ]
2.181818
198
# -*- coding: utf-8 -*- import unittest import tests.common import core from core.localisation import _ from core import Rpg import models.player from models.saved_game import saved_game import json import sqlite3
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 555, 715, 395, 198, 198, 11748, 5254, 13, 11321, 198, 11748, 4755, 198, 6738, 4755, 13, 12001, 5612, 1330, 4808, 198, 6738, 4755, 1330, 371, 6024, 198, 11748, 4981, 13, 7829, 198, 6738, 4981, 13, 82, 9586, 62, 6057, 1330, 7448, 62, 6057, 198, 198, 11748, 33918, 198, 11748, 44161, 578, 18, 628 ]
3.191176
68