content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django.contrib.auth import get_user_model from django.db import models from cajas.users.models.partner import Partner User = get_user_model() class Unit(models.Model): """ """ name = models.CharField( 'Nombre', max_length=255, ) partner = models.ForeignKey( Partner, verbose_name='Socio', on_delete=models.SET_NULL, blank=True, null=True, related_name='related_units' ) collector = models.ForeignKey( User, verbose_name='Cobrador', on_delete=models.SET_NULL, blank=True, null=True, related_name='related_collector_units' ) supervisor = models.ForeignKey( User, verbose_name='Supervisor', on_delete=models.SET_NULL, blank=True, null=True, related_name='related_supervisor_units' ) is_active = models.BooleanField( 'Unidad Activa', default=True ) observations = models.TextField( 'Observaciones', help_text='Por que se elimino el item?', blank=True, null=True )
[ 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 269, 1228, 292, 13, 18417, 13, 27530, 13, 3911, 1008, 1330, 35532, 198, 12982, 796, 651, 62, 7220, 62, 19849, 3419, 628, 198, 4871, 11801, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 45, 2381, 260, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 13381, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 5212, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 35532, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 11639, 37949, 952, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 5363, 62, 41667, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 22967, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11787, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 11639, 34, 672, 40368, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 5363, 62, 33327, 273, 62, 41667, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 21277, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11787, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 11639, 12442, 13131, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 5363, 62, 16668, 13131, 62, 41667, 6, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 318, 62, 5275, 796, 4981, 13, 46120, 13087, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3118, 32482, 2191, 12151, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 13050, 796, 4981, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31310, 712, 49443, 274, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 11639, 47, 273, 8358, 384, 5687, 2879, 1288, 2378, 30, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 9242, 28, 17821, 198, 220, 220, 220, 1267, 198 ]
2.186508
504
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.891892
37
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Schedule callables to run at a particular time.""" import heapq import threading import time class ScheduledExecutor(object): """An executor that supports scheduling.""" def add_event(self, runnable, eta, key=None): """Schedule an event to be run. Args: runnable: A callable to run. eta: An int containing when to run runnable in seconds since the epoch. key: An optional key that implements __hash__ that can be passed to update_event. """ event = _Event(eta, runnable, key) with self._work_ready_condition: if key is not None: self._key_to_events[key] = event self._enqueue_event(event) def update_event(self, eta, key): """Modify when an event should be run. Args: eta: An int containing when to schedule the event in seconds since the epoch. key: The key of the event to modify. """ with self._work_ready_condition: old_event = self._key_to_events.get(key) if old_event: event = old_event.copy(eta) old_event.cancel() self._key_to_events[key] = event self._enqueue_event(event)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 4343, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 37811, 27054, 5950, 869, 2977, 284, 1057, 379, 257, 1948, 640, 526, 15931, 198, 198, 11748, 24575, 80, 198, 11748, 4704, 278, 198, 11748, 640, 628, 198, 198, 4871, 27774, 6309, 23002, 38409, 7, 15252, 2599, 198, 220, 37227, 2025, 3121, 273, 326, 6971, 26925, 526, 15931, 628, 220, 825, 751, 62, 15596, 7, 944, 11, 1057, 77, 540, 11, 2123, 64, 11, 1994, 28, 14202, 2599, 198, 220, 220, 220, 37227, 27054, 5950, 281, 1785, 284, 307, 1057, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1057, 77, 540, 25, 317, 869, 540, 284, 1057, 13, 198, 220, 220, 220, 220, 220, 2123, 64, 25, 1052, 493, 7268, 618, 284, 1057, 1057, 77, 540, 287, 4201, 1201, 262, 36835, 13, 198, 220, 220, 220, 220, 220, 1994, 25, 1052, 11902, 1994, 326, 23986, 11593, 17831, 834, 326, 460, 307, 3804, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 15596, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1785, 796, 4808, 9237, 7, 17167, 11, 1057, 77, 540, 11, 1994, 8, 198, 220, 220, 220, 351, 2116, 13557, 1818, 62, 1493, 62, 31448, 25, 198, 220, 220, 220, 220, 220, 611, 1994, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2539, 62, 1462, 62, 31534, 58, 2539, 60, 796, 1785, 198, 220, 220, 220, 220, 220, 2116, 13557, 268, 36560, 62, 15596, 7, 15596, 8, 628, 220, 825, 4296, 62, 15596, 7, 944, 11, 2123, 64, 11, 1994, 2599, 198, 220, 220, 220, 37227, 5841, 1958, 618, 281, 1785, 815, 307, 1057, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 2123, 64, 25, 1052, 493, 7268, 618, 284, 7269, 262, 1785, 287, 4201, 1201, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 13, 198, 220, 220, 220, 220, 220, 1994, 25, 383, 1994, 286, 262, 1785, 284, 13096, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 2116, 13557, 1818, 62, 1493, 62, 31448, 25, 198, 220, 220, 220, 220, 220, 1468, 62, 15596, 796, 2116, 13557, 2539, 62, 1462, 62, 31534, 13, 1136, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 611, 1468, 62, 15596, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 796, 1468, 62, 15596, 13, 30073, 7, 17167, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 62, 15596, 13, 66, 21130, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2539, 62, 1462, 62, 31534, 58, 2539, 60, 796, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 268, 36560, 62, 15596, 7, 15596, 8, 198 ]
2.859477
612
#!/usr/bin/env python # -*- coding: utf-8 -*- """ { "server": server['server'], "server_ipv6": "::", "server_port": int(server['server_port']), "local_address": "127.0.0.1", "local_port": 1080, "password": server['password'], "timeout": 300, "udp_timeout": 60, "method": method, "protocol": ssr_protocol, "protocol_param": "", "obfs": obfs, "obfs_param": "", "fast_open": False, "workers": 1, "group": "ss.pythonic.life" } """ from ast import literal_eval import json import logging import regex as re import requests import cfscrape import js2py from bs4 import BeautifulSoup from ssshare.ss.parse import parse, scanNetQR, gen_uri, decode from ssshare.ss.ssr_check import validate import time fake_ua = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36'}
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 90, 198, 220, 220, 220, 366, 15388, 1298, 4382, 17816, 15388, 6, 4357, 198, 220, 220, 220, 366, 15388, 62, 541, 85, 21, 1298, 366, 3712, 1600, 198, 220, 220, 220, 366, 15388, 62, 634, 1298, 493, 7, 15388, 17816, 15388, 62, 634, 20520, 828, 198, 220, 220, 220, 366, 12001, 62, 21975, 1298, 366, 16799, 13, 15, 13, 15, 13, 16, 1600, 198, 220, 220, 220, 366, 12001, 62, 634, 1298, 17729, 11, 198, 220, 220, 220, 366, 28712, 1298, 4382, 17816, 28712, 6, 4357, 198, 220, 220, 220, 366, 48678, 1298, 5867, 11, 198, 220, 220, 220, 366, 463, 79, 62, 48678, 1298, 3126, 11, 198, 220, 220, 220, 366, 24396, 1298, 2446, 11, 198, 220, 220, 220, 366, 11235, 4668, 1298, 264, 27891, 62, 11235, 4668, 11, 198, 220, 220, 220, 366, 11235, 4668, 62, 17143, 1298, 366, 1600, 198, 220, 220, 220, 366, 672, 9501, 1298, 909, 9501, 11, 198, 220, 220, 220, 366, 672, 9501, 62, 17143, 1298, 366, 1600, 198, 220, 220, 220, 366, 7217, 62, 9654, 1298, 10352, 11, 198, 220, 220, 220, 366, 22896, 1298, 352, 11, 198, 220, 220, 220, 366, 8094, 1298, 366, 824, 13, 29412, 291, 13, 6042, 1, 198, 92, 198, 37811, 198, 6738, 6468, 1330, 18875, 62, 18206, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 40364, 355, 302, 198, 11748, 7007, 198, 11748, 30218, 1416, 13484, 198, 11748, 44804, 17, 9078, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 264, 824, 43466, 13, 824, 13, 29572, 1330, 21136, 11, 9367, 7934, 48, 49, 11, 2429, 62, 9900, 11, 36899, 198, 6738, 264, 824, 43466, 13, 824, 13, 824, 81, 62, 9122, 1330, 26571, 198, 11748, 640, 198, 198, 30706, 62, 6413, 796, 1391, 6, 12982, 12, 36772, 10354, 705, 44, 8590, 5049, 14, 20, 13, 15, 357, 11209, 24563, 838, 13, 15, 26, 7178, 2414, 26, 2124, 2414, 8, 4196, 13908, 20827, 14, 46096, 13, 2623, 357, 42, 28656, 11, 588, 2269, 37549, 8, 13282, 14, 3134, 13, 15, 13, 2091, 4846, 13, 5774, 23298, 14, 46096, 13, 2623, 6, 92, 628, 628, 628 ]
2.412234
376
"""Song Models File.""" from mongoengine import (Document, EmbeddedDocument, EmbeddedDocumentListField, FloatField, IntField, ObjectIdField, StringField) class SongRatings(EmbeddedDocument): """Song Ratings Model.""" song_id = ObjectIdField(required=True) rating = IntField(min_value=1, max_value=5, required=True) class Songs(Document): """Song Model.""" artist = StringField(max_length=200, required=True) title = StringField(max_length=200, required=True) difficulty = FloatField(required=True) level = FloatField(required=True) released = StringField(max_length=200, required=True) ratings = EmbeddedDocumentListField(SongRatings, required=False)
[ 37811, 44241, 32329, 9220, 526, 15931, 198, 198, 6738, 285, 25162, 18392, 1330, 357, 24941, 11, 13302, 47238, 24941, 11, 13302, 47238, 24941, 8053, 15878, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48436, 15878, 11, 2558, 15878, 11, 9515, 7390, 15878, 11, 10903, 15878, 8, 628, 198, 4871, 10940, 29665, 654, 7, 31567, 47238, 24941, 2599, 198, 220, 220, 220, 37227, 44241, 36826, 9104, 526, 15931, 628, 220, 220, 220, 3496, 62, 312, 796, 9515, 7390, 15878, 7, 35827, 28, 17821, 8, 198, 220, 220, 220, 7955, 796, 2558, 15878, 7, 1084, 62, 8367, 28, 16, 11, 3509, 62, 8367, 28, 20, 11, 2672, 28, 17821, 8, 628, 198, 4871, 31772, 7, 24941, 2599, 198, 220, 220, 220, 37227, 44241, 9104, 526, 15931, 628, 220, 220, 220, 6802, 796, 10903, 15878, 7, 9806, 62, 13664, 28, 2167, 11, 2672, 28, 17821, 8, 198, 220, 220, 220, 3670, 796, 10903, 15878, 7, 9806, 62, 13664, 28, 2167, 11, 2672, 28, 17821, 8, 198, 220, 220, 220, 8722, 796, 48436, 15878, 7, 35827, 28, 17821, 8, 198, 220, 220, 220, 1241, 796, 48436, 15878, 7, 35827, 28, 17821, 8, 198, 220, 220, 220, 2716, 796, 10903, 15878, 7, 9806, 62, 13664, 28, 2167, 11, 2672, 28, 17821, 8, 198, 220, 220, 220, 10109, 796, 13302, 47238, 24941, 8053, 15878, 7, 44241, 29665, 654, 11, 2672, 28, 25101, 8, 198 ]
2.939024
246
from selenium import webdriver from selenium.webdriver.firefox.options import Options from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 6495, 12792, 13, 25811, 1330, 18634, 198, 6738, 384, 11925, 1505, 13, 11321, 13, 1069, 11755, 1330, 1400, 16678, 20180, 16922, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
3.421053
95
from index import * from v1 import *
[ 6738, 6376, 1330, 1635, 198, 6738, 410, 16, 1330, 1635, 198 ]
3.363636
11
import numpy as np import matplotlib.pyplot as plt rows,cols = 5, 9 Z1 = np.linspace(0,1,rows*cols).reshape(rows,cols) show_array(Z1, 'ops-where-before.png') Z2 = np.where(Z1 > 0.5, 0, 1) show_array(Z2, 'ops-where-after.png') Z1 = np.linspace(0,1,rows*cols).reshape(rows,cols) show_array(Z1, 'ops-maximum-before.png') Z2 = np.maximum(Z1, 0.5) show_array(Z2, 'ops-maximum-after.png') Z1 = np.linspace(0,1,rows*cols).reshape(rows,cols) show_array(Z1, 'ops-minimum-before.png') Z2 = np.minimum(Z1, 0.5) show_array(Z2, 'ops-minimum-after.png') Z1 = np.linspace(0,1,rows*cols).reshape(rows,cols) show_array(Z1, 'ops-sum-before.png') Z2 = Z1.sum(axis=0) show_array(Z2, 'ops-sum-after.png')
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 198, 8516, 11, 4033, 82, 796, 642, 11, 860, 198, 198, 57, 16, 796, 45941, 13, 21602, 10223, 7, 15, 11, 16, 11, 8516, 9, 4033, 82, 737, 3447, 1758, 7, 8516, 11, 4033, 82, 8, 198, 12860, 62, 18747, 7, 57, 16, 11, 705, 2840, 12, 3003, 12, 19052, 13, 11134, 11537, 198, 57, 17, 796, 45941, 13, 3003, 7, 57, 16, 1875, 657, 13, 20, 11, 657, 11, 352, 8, 198, 12860, 62, 18747, 7, 57, 17, 11, 705, 2840, 12, 3003, 12, 8499, 13, 11134, 11537, 198, 198, 57, 16, 796, 45941, 13, 21602, 10223, 7, 15, 11, 16, 11, 8516, 9, 4033, 82, 737, 3447, 1758, 7, 8516, 11, 4033, 82, 8, 198, 12860, 62, 18747, 7, 57, 16, 11, 705, 2840, 12, 47033, 12, 19052, 13, 11134, 11537, 198, 57, 17, 796, 45941, 13, 47033, 7, 57, 16, 11, 657, 13, 20, 8, 198, 12860, 62, 18747, 7, 57, 17, 11, 705, 2840, 12, 47033, 12, 8499, 13, 11134, 11537, 198, 198, 57, 16, 796, 45941, 13, 21602, 10223, 7, 15, 11, 16, 11, 8516, 9, 4033, 82, 737, 3447, 1758, 7, 8516, 11, 4033, 82, 8, 198, 12860, 62, 18747, 7, 57, 16, 11, 705, 2840, 12, 39504, 12, 19052, 13, 11134, 11537, 198, 57, 17, 796, 45941, 13, 39504, 7, 57, 16, 11, 657, 13, 20, 8, 198, 12860, 62, 18747, 7, 57, 17, 11, 705, 2840, 12, 39504, 12, 8499, 13, 11134, 11537, 198, 198, 57, 16, 796, 45941, 13, 21602, 10223, 7, 15, 11, 16, 11, 8516, 9, 4033, 82, 737, 3447, 1758, 7, 8516, 11, 4033, 82, 8, 198, 12860, 62, 18747, 7, 57, 16, 11, 705, 2840, 12, 16345, 12, 19052, 13, 11134, 11537, 198, 57, 17, 796, 1168, 16, 13, 16345, 7, 22704, 28, 15, 8, 198, 12860, 62, 18747, 7, 57, 17, 11, 705, 2840, 12, 16345, 12, 8499, 13, 11134, 11537, 628 ]
2.071856
334
#!/usr/bin/python3 import pyglet from pyglet.gl import * import sys import math import time import numpy as np import random random.seed(7337) import sys sys.path.append("./libs") #sys.path.insert(0, "./db") #from db import * from objloader import * #from objloader_dbload import * from printfuncs import * #https://stackoverflow.com/a/23356273/4084546 #https://www.erikrotteveel.com/python/three-dimensional-ray-tracing-in-python/ width = 800 height = 600 window = pyglet.window.Window(width=width, height=height) @window.event @window.event @window.event @window.event @window.event @window.event @window.event @window.event # make OpenGL context current window.switch_to() # signify that one frame has passed pyglet.clock.tick() # poll the operating system event queue window.dispatch_events() selected_obj = 0 glLightfv(GL_LIGHT0, GL_POSITION, (-40, 200, 100, 0.0)) glLightfv(GL_LIGHT0, GL_AMBIENT, (0.2, 0.2, 0.2, 1.0)) glLightfv(GL_LIGHT0, GL_DIFFUSE, (0.5, 0.5, 0.5, 1.0)) glEnable(GL_LIGHT0) glEnable(GL_LIGHTING) glEnable(GL_COLOR_MATERIAL) glEnable(GL_DEPTH_TEST) glShadeModel(GL_SMOOTH) # most obj files expect to be smooth-shaded # Function checker #glDisable(GL_TEXTURE_2D) glEnable(GL_DEPTH_TEST) glEnable(GL_BLEND) glEnable(GL_CULL_FACE) # glViewport(0, 0, width, height) glMatrixMode(GL_PROJECTION) glLoadIdentity() gluPerspective(30.0, width/height, 1.0, 1000.0) glMatrixMode(GL_MODELVIEW) map = WorldMap() map.render_scene() frame_times = [] start_t = time.time() zpos = 5 rotate = move = False oo = map.objs[selected_obj] storeit = None if __name__ == '__main__': pyglet.clock.schedule_interval(timing, 1/60.0) pyglet.app.run()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 201, 198, 201, 198, 11748, 12972, 70, 1616, 201, 198, 6738, 12972, 70, 1616, 13, 4743, 1330, 1635, 201, 198, 201, 198, 11748, 25064, 201, 198, 11748, 10688, 201, 198, 11748, 640, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 4738, 201, 198, 25120, 13, 28826, 7, 22, 31496, 8, 201, 198, 201, 198, 11748, 25064, 201, 198, 17597, 13, 6978, 13, 33295, 7, 1911, 14, 8019, 82, 4943, 201, 198, 2, 17597, 13, 6978, 13, 28463, 7, 15, 11, 366, 19571, 9945, 4943, 201, 198, 2, 6738, 20613, 1330, 1635, 201, 198, 201, 198, 6738, 26181, 29356, 1330, 1635, 201, 198, 2, 6738, 26181, 29356, 62, 9945, 2220, 1330, 1635, 201, 198, 6738, 3601, 12543, 6359, 1330, 1635, 201, 198, 201, 198, 201, 198, 2, 5450, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 1954, 32066, 27367, 14, 26200, 2231, 3510, 201, 198, 2, 5450, 1378, 2503, 13, 263, 1134, 10599, 660, 303, 417, 13, 785, 14, 29412, 14, 15542, 12, 19577, 12, 2433, 12, 2213, 4092, 12, 259, 12, 29412, 14, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 10394, 796, 10460, 201, 198, 17015, 796, 10053, 201, 198, 17497, 796, 12972, 70, 1616, 13, 17497, 13, 27703, 7, 10394, 28, 10394, 11, 6001, 28, 17015, 8, 201, 198, 201, 198, 201, 198, 31, 17497, 13, 15596, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 31, 17497, 13, 15596, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 31, 17497, 13, 15596, 201, 198, 201, 198, 201, 198, 31, 17497, 13, 15596, 201, 198, 201, 198, 31, 17497, 13, 15596, 201, 198, 201, 198, 31, 17497, 13, 15596, 201, 198, 201, 198, 31, 17497, 13, 15596, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 31, 17497, 13, 15596, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 2, 787, 30672, 4732, 1459, 201, 198, 17497, 13, 31943, 62, 1462, 3419, 201, 198, 2, 44078, 326, 530, 5739, 468, 3804, 201, 198, 9078, 70, 1616, 13, 15750, 13, 42298, 3419, 201, 198, 2, 3278, 262, 5361, 1080, 1785, 16834, 201, 198, 17497, 13, 6381, 17147, 62, 31534, 3419, 201, 198, 201, 198, 34213, 62, 26801, 796, 657, 201, 198, 201, 198, 4743, 15047, 69, 85, 7, 8763, 62, 43, 9947, 15, 11, 10188, 62, 37997, 17941, 11, 220, 13841, 1821, 11, 939, 11, 1802, 11, 657, 13, 15, 4008, 201, 198, 4743, 15047, 69, 85, 7, 8763, 62, 43, 9947, 15, 11, 10188, 62, 2390, 3483, 3525, 11, 357, 15, 13, 17, 11, 657, 13, 17, 11, 657, 13, 17, 11, 352, 13, 15, 4008, 201, 198, 4743, 15047, 69, 85, 7, 8763, 62, 43, 9947, 15, 11, 10188, 62, 35, 29267, 19108, 11, 357, 15, 13, 20, 11, 657, 13, 20, 11, 657, 13, 20, 11, 352, 13, 15, 4008, 201, 198, 4743, 36695, 7, 8763, 62, 43, 9947, 15, 8, 201, 198, 4743, 36695, 7, 8763, 62, 43, 9947, 2751, 8, 201, 198, 4743, 36695, 7, 8763, 62, 46786, 62, 44, 23261, 12576, 8, 201, 198, 4743, 36695, 7, 8763, 62, 46162, 4221, 62, 51, 6465, 8, 201, 198, 4743, 2484, 671, 17633, 7, 8763, 62, 50, 11770, 26946, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 749, 26181, 3696, 1607, 284, 307, 7209, 12, 1477, 5286, 201, 198, 201, 198, 2, 15553, 2198, 263, 201, 198, 2, 4743, 48893, 7, 8763, 62, 47648, 62, 17, 35, 8, 201, 198, 4743, 36695, 7, 8763, 62, 46162, 4221, 62, 51, 6465, 8, 201, 198, 4743, 36695, 7, 8763, 62, 9148, 10619, 8, 201, 198, 4743, 36695, 7, 8763, 62, 34, 9994, 62, 49836, 8, 201, 198, 2, 201, 198, 201, 198, 4743, 7680, 634, 7, 15, 11, 657, 11, 9647, 11, 6001, 8, 201, 198, 4743, 46912, 19076, 7, 8763, 62, 31190, 23680, 2849, 8, 201, 198, 4743, 8912, 7390, 26858, 3419, 201, 198, 70, 2290, 30946, 806, 425, 7, 1270, 13, 15, 11, 9647, 14, 17015, 11, 352, 13, 15, 11, 8576, 13, 15, 8, 201, 198, 4743, 46912, 19076, 7, 8763, 62, 33365, 3698, 28206, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 201, 198, 8899, 796, 2159, 13912, 3419, 201, 198, 8899, 13, 13287, 62, 29734, 3419, 201, 198, 201, 198, 14535, 62, 22355, 796, 17635, 201, 198, 9688, 62, 83, 796, 640, 13, 2435, 3419, 201, 198, 201, 198, 89, 1930, 796, 642, 201, 198, 10599, 378, 796, 1445, 796, 10352, 201, 198, 2238, 796, 3975, 13, 672, 8457, 58, 34213, 62, 26801, 60, 201, 198, 201, 198, 8095, 270, 796, 6045, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 12972, 70, 1616, 13, 15750, 13, 15952, 5950, 62, 3849, 2100, 7, 16514, 278, 11, 352, 14, 1899, 13, 15, 8, 201, 198, 220, 220, 220, 12972, 70, 1616, 13, 1324, 13, 5143, 3419 ]
2.114222
893
# -*- coding: utf-8 -*- """ lantz.errors ~~~~~~~~~~~~ Implements base classes for instrumentation related exceptions. They are useful to mix with specific exceptions from libraries or modules and therefore allowing code to catch them via lantz excepts without breaking specific ones. :copyright: 2012 by The Lantz Authors :license: BSD, see LICENSE for more details. """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 220, 220, 220, 300, 46269, 13, 48277, 198, 220, 220, 220, 220, 15116, 8728, 628, 220, 220, 220, 1846, 1154, 902, 2779, 6097, 329, 8875, 341, 3519, 13269, 13, 1119, 389, 198, 220, 220, 220, 4465, 284, 5022, 351, 2176, 13269, 422, 12782, 393, 13103, 290, 198, 220, 220, 220, 4361, 5086, 2438, 284, 4929, 606, 2884, 300, 46269, 2845, 82, 1231, 198, 220, 220, 220, 7163, 2176, 3392, 13, 628, 220, 220, 220, 1058, 22163, 4766, 25, 2321, 416, 383, 406, 46269, 46665, 198, 220, 220, 220, 1058, 43085, 25, 347, 10305, 11, 766, 38559, 24290, 329, 517, 3307, 13, 198, 37811, 628 ]
3.383333
120
import boto3 import botocore import urllib2 import json # This method is suitable for IAM role. # This method is suitable for successful configuration. # This method is suitable for any other situation. # Get Client. # Input: String client type 'profile'|'temporary' # Output: Null.
[ 11748, 275, 2069, 18, 198, 11748, 10214, 420, 382, 198, 11748, 2956, 297, 571, 17, 198, 11748, 33918, 628, 198, 2, 770, 2446, 318, 11080, 329, 314, 2390, 2597, 13, 198, 198, 2, 770, 2446, 318, 11080, 329, 4388, 8398, 13, 198, 198, 2, 770, 2446, 318, 11080, 329, 597, 584, 3074, 13, 198, 198, 2, 3497, 20985, 13, 198, 2, 23412, 25, 220, 220, 220, 10903, 5456, 2099, 705, 13317, 6, 91, 6, 11498, 5551, 6, 198, 2, 25235, 25, 220, 220, 35886, 13, 198 ]
3.406977
86
from turbogears.feed import feed FeedController = feed.FeedController
[ 6738, 14830, 519, 4127, 13, 12363, 1330, 3745, 198, 18332, 22130, 796, 3745, 13, 18332, 22130, 198 ]
4.117647
17
"""General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for '--num_test' images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir <directory_path_to_save_result>' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html from PIL import Image import torch from torch.utils.data import DataLoader import torchvision.transforms as transforms from torch.utils.data import DataLoader, Dataset import numpy as np from util.util import tensor2im from random_perturb import RandomNoise from train_facade import AdvGAN_Attack #*Using this for changes if __name__ == '__main__': gen = RandomNoise(None) dataset = Facade(transform = transforms.ToTensor()) # our custom dataset dataloader = DataLoader(dataset, batch_size=1, num_workers=4, shuffle=False, drop_last=True) gen.save_results(dataloader)
[ 37811, 12218, 12, 29983, 1332, 4226, 329, 2939, 12, 1462, 12, 9060, 11059, 13, 198, 198, 7454, 345, 423, 8776, 534, 2746, 351, 4512, 13, 9078, 11, 345, 460, 779, 428, 4226, 284, 1332, 262, 2746, 13, 198, 1026, 481, 3440, 257, 7448, 2746, 422, 705, 438, 9122, 13033, 62, 15908, 6, 290, 3613, 262, 2482, 284, 705, 438, 43420, 62, 15908, 4458, 198, 198, 1026, 717, 8075, 2746, 290, 27039, 1813, 262, 3038, 13, 632, 481, 1327, 12, 8189, 617, 10007, 13, 198, 1026, 788, 4539, 32278, 329, 705, 438, 22510, 62, 9288, 6, 4263, 290, 3613, 2482, 284, 281, 11532, 2393, 13, 198, 198, 16281, 357, 1639, 761, 284, 4512, 4981, 717, 393, 4321, 662, 12, 35311, 4981, 422, 674, 3052, 2599, 198, 220, 220, 220, 6208, 257, 26993, 45028, 2746, 357, 16885, 5389, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21015, 1332, 13, 9078, 1377, 67, 9459, 1025, 24457, 19608, 292, 1039, 14, 31803, 1377, 3672, 8739, 62, 13696, 1030, 1377, 19849, 6772, 62, 1030, 628, 220, 220, 220, 6208, 257, 26993, 45028, 2746, 357, 505, 1735, 691, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21015, 1332, 13, 9078, 1377, 67, 9459, 1025, 40522, 14, 30527, 17, 89, 37052, 14, 9288, 32, 1377, 3672, 8223, 17, 89, 37052, 62, 5310, 13363, 1377, 19849, 1332, 1377, 3919, 62, 14781, 448, 628, 220, 220, 220, 383, 3038, 705, 438, 19849, 1332, 6, 318, 973, 329, 15453, 26993, 45028, 2482, 691, 329, 530, 1735, 13, 198, 220, 220, 220, 770, 3038, 481, 6338, 900, 705, 438, 19608, 292, 316, 62, 14171, 2060, 3256, 543, 691, 15989, 262, 4263, 422, 530, 900, 13, 198, 220, 220, 220, 1550, 262, 10388, 11, 1262, 705, 438, 19849, 6772, 62, 1030, 6, 4433, 11046, 290, 15453, 2482, 287, 1111, 11678, 11, 198, 220, 220, 220, 543, 318, 3360, 13114, 13, 383, 2482, 481, 307, 7448, 379, 24457, 43420, 11757, 198, 220, 220, 220, 5765, 705, 438, 43420, 62, 15908, 1279, 34945, 62, 6978, 62, 1462, 62, 21928, 62, 20274, 29, 6, 284, 11986, 262, 2482, 8619, 13, 628, 220, 220, 220, 6208, 257, 279, 844, 17, 79, 844, 2746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21015, 1332, 13, 9078, 1377, 67, 9459, 1025, 24457, 19608, 292, 1039, 14, 38942, 2367, 1377, 3672, 1777, 2367, 62, 79, 844, 17, 79, 844, 1377, 19849, 279, 844, 17, 79, 844, 1377, 37295, 347, 1462, 32, 198, 198, 6214, 3689, 14, 8692, 62, 25811, 13, 9078, 290, 3689, 14, 9288, 62, 25811, 13, 9078, 329, 517, 1332, 3689, 13, 198, 6214, 3047, 290, 1332, 9040, 379, 25, 3740, 1378, 12567, 13, 785, 14, 29741, 4121, 89, 14, 9078, 13165, 354, 12, 20418, 2375, 45028, 12, 392, 12, 79, 844, 17, 79, 844, 14, 2436, 672, 14, 9866, 14, 31628, 14, 41315, 13, 9132, 198, 6214, 6777, 1965, 2683, 379, 25, 3740, 1378, 12567, 13, 785, 14, 29741, 4121, 89, 14, 9078, 13165, 354, 12, 20418, 2375, 45028, 12, 392, 12, 79, 844, 17, 79, 844, 14, 2436, 672, 14, 9866, 14, 31628, 14, 20402, 13, 9132, 198, 37811, 198, 11748, 28686, 198, 6738, 3689, 13, 9288, 62, 25811, 1330, 6208, 29046, 198, 6738, 1366, 1330, 2251, 62, 19608, 292, 316, 198, 6738, 4981, 1330, 2251, 62, 19849, 198, 6738, 7736, 13, 41464, 7509, 1330, 3613, 62, 17566, 198, 6738, 7736, 1330, 27711, 198, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 31408, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 11, 16092, 292, 316, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 7736, 13, 22602, 1330, 11192, 273, 17, 320, 198, 198, 6738, 4738, 62, 11766, 5945, 1330, 14534, 2949, 786, 198, 6738, 4512, 62, 38942, 671, 1330, 8007, 45028, 62, 27732, 1303, 9, 12814, 428, 329, 2458, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2429, 796, 14534, 2949, 786, 7, 14202, 8, 628, 220, 220, 220, 27039, 796, 13585, 671, 7, 35636, 796, 31408, 13, 2514, 51, 22854, 28955, 220, 1303, 674, 2183, 27039, 198, 220, 220, 220, 4818, 282, 1170, 263, 796, 6060, 17401, 7, 19608, 292, 316, 11, 15458, 62, 7857, 28, 16, 11, 997, 62, 22896, 28, 19, 11, 36273, 28, 25101, 11, 4268, 62, 12957, 28, 17821, 8, 628, 220, 220, 220, 2429, 13, 21928, 62, 43420, 7, 67, 10254, 1170, 263, 8 ]
3.323529
748
# program to split email to username and domain name # made by itsmeevil print("***Email Splitter***") email = input("\nEnter an email: ") sliced = email.split("@") # split string at "@" which will put it in an array- ["username", "domain name"] print(f"\nUsername: {sliced[0]}\nDomain name: {sliced[1]}")
[ 2, 1430, 284, 6626, 3053, 284, 20579, 290, 7386, 1438, 198, 2, 925, 416, 663, 1326, 23542, 198, 198, 4798, 7203, 8162, 15333, 13341, 1967, 8162, 4943, 198, 198, 12888, 796, 5128, 7203, 59, 77, 17469, 281, 3053, 25, 366, 8, 198, 198, 82, 677, 276, 796, 3053, 13, 35312, 7203, 31, 4943, 1303, 6626, 4731, 379, 44212, 1, 543, 481, 1234, 340, 287, 281, 7177, 12, 14631, 29460, 1600, 366, 27830, 1438, 8973, 198, 198, 4798, 7, 69, 1, 59, 77, 5842, 13292, 25, 1391, 82, 677, 276, 58, 15, 60, 32239, 77, 43961, 1438, 25, 1391, 82, 677, 276, 58, 16, 48999, 4943, 198 ]
2.924528
106
from async_service import background_trio_service import pytest import trio from ddht.tools.factories.alexandria import AdvertisementFactory from ddht.v5_1.alexandria.messages import AdvertiseMessage, PingMessage from ddht.v5_1.alexandria.radius_tracker import RadiusTracker @pytest.mark.trio @pytest.mark.trio @pytest.mark.trio @pytest.mark.trio
[ 6738, 30351, 62, 15271, 1330, 4469, 62, 83, 27250, 62, 15271, 198, 11748, 12972, 9288, 198, 11748, 19886, 198, 198, 6738, 49427, 4352, 13, 31391, 13, 22584, 1749, 13, 1000, 87, 392, 7496, 1330, 39711, 22810, 198, 6738, 49427, 4352, 13, 85, 20, 62, 16, 13, 1000, 87, 392, 7496, 13, 37348, 1095, 1330, 1215, 1851, 786, 12837, 11, 34263, 12837, 198, 6738, 49427, 4352, 13, 85, 20, 62, 16, 13, 1000, 87, 392, 7496, 13, 42172, 62, 2213, 10735, 1330, 48838, 35694, 628, 198, 31, 9078, 9288, 13, 4102, 13, 83, 27250, 628, 198, 31, 9078, 9288, 13, 4102, 13, 83, 27250, 628, 198, 31, 9078, 9288, 13, 4102, 13, 83, 27250, 628, 198, 31, 9078, 9288, 13, 4102, 13, 83, 27250, 198 ]
2.870968
124
import logging from airflow.contrib.hooks.bigquery_hook import BigQueryHook from airflow.models import BaseOperator from airflow.utils import apply_defaults class BigQueryOperator(BaseOperator): """ Executes BigQuery SQL queries in a specific BigQuery database """ template_fields = ('bql',) template_ext = ('.sql',) ui_color = '#e4f0e8' @apply_defaults def __init__(self, bql, destination_dataset_table = False, write_disposition = 'WRITE_EMPTY', bigquery_conn_id='bigquery_default', *args, **kwargs): """ Create a new BigQueryOperator. :param bql: the sql code to be executed :type bql: Can receive a str representing a sql statement, a list of str (sql statements), or reference to a template file. Template reference are recognized by str ending in '.sql' :param destination_dataset_table: A dotted dataset.table that, if set, will store the results of the query. :type destination_dataset_table: string :param bigquery_conn_id: reference to a specific BigQuery hook. :type bigquery_conn_id: string """ super(BigQueryOperator, self).__init__(*args, **kwargs) self.bql = bql self.destination_dataset_table = destination_dataset_table self.write_disposition = write_disposition self.bigquery_conn_id = bigquery_conn_id
[ 11748, 18931, 198, 198, 6738, 45771, 13, 3642, 822, 13, 25480, 82, 13, 14261, 22766, 62, 25480, 1330, 4403, 20746, 39, 566, 198, 6738, 45771, 13, 27530, 1330, 7308, 18843, 1352, 198, 6738, 45771, 13, 26791, 1330, 4174, 62, 12286, 82, 198, 198, 4871, 4403, 20746, 18843, 1352, 7, 14881, 18843, 1352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8393, 1769, 4403, 20746, 16363, 20743, 287, 257, 2176, 4403, 20746, 6831, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11055, 62, 25747, 796, 19203, 65, 13976, 3256, 8, 198, 220, 220, 220, 11055, 62, 2302, 796, 357, 4458, 25410, 3256, 8, 198, 220, 220, 220, 334, 72, 62, 8043, 796, 705, 2, 68, 19, 69, 15, 68, 23, 6, 628, 220, 220, 220, 2488, 39014, 62, 12286, 82, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 275, 13976, 11, 10965, 62, 19608, 292, 316, 62, 11487, 796, 10352, 11, 3551, 62, 6381, 9150, 796, 705, 18564, 12709, 62, 39494, 9936, 3256, 1263, 22766, 62, 37043, 62, 312, 11639, 14261, 22766, 62, 12286, 3256, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 649, 4403, 20746, 18843, 1352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 275, 13976, 25, 262, 44161, 2438, 284, 307, 10945, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 275, 13976, 25, 1680, 3328, 257, 965, 10200, 257, 44161, 2643, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 1351, 286, 965, 357, 25410, 6299, 828, 393, 4941, 284, 257, 11055, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37350, 4941, 389, 8018, 416, 965, 7464, 287, 45302, 25410, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10965, 62, 19608, 292, 316, 62, 11487, 25, 317, 38745, 27039, 13, 11487, 326, 11, 611, 900, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 3650, 262, 2482, 286, 262, 12405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 10965, 62, 19608, 292, 316, 62, 11487, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1263, 22766, 62, 37043, 62, 312, 25, 4941, 284, 257, 2176, 4403, 20746, 8011, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1263, 22766, 62, 37043, 62, 312, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 12804, 20746, 18843, 1352, 11, 2116, 737, 834, 15003, 834, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 13976, 796, 275, 13976, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16520, 1883, 62, 19608, 292, 316, 62, 11487, 796, 10965, 62, 19608, 292, 316, 62, 11487, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 62, 6381, 9150, 796, 3551, 62, 6381, 9150, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14261, 22766, 62, 37043, 62, 312, 796, 1263, 22766, 62, 37043, 62, 312, 198 ]
2.636023
533
import warnings warnings.filterwarnings("ignore") import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import gym from BPG.ppo2 import PPO2 from BPG.ppo_policy import MlpPolicy env_id = "CartPole-v1" env = gym.make(env_id) model = PPO2(MlpPolicy, env, learning_rate=1e-4, verbose=1, tensorboard_log="MLP/", full_tensorboard_log=True) model.learn(int(10e3)) #model.save('../result/model/ppo_cartpole_2e5.pkl') #model = model.load('../result/model/ppo_cartpole_2e5.pkl') env = gym.make(env_id) obs = env.reset() for _ in range(10000): env.render() action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.close()
[ 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 198, 11748, 28686, 198, 418, 13, 268, 2268, 14692, 10234, 62, 8697, 47, 62, 23678, 62, 25294, 62, 2538, 18697, 8973, 796, 366, 18, 1, 198, 198, 11748, 11550, 198, 6738, 347, 6968, 13, 16634, 17, 1330, 350, 16402, 17, 198, 6738, 347, 6968, 13, 16634, 62, 30586, 1330, 337, 34431, 36727, 198, 198, 24330, 62, 312, 796, 366, 43476, 47, 2305, 12, 85, 16, 1, 198, 24330, 796, 11550, 13, 15883, 7, 24330, 62, 312, 8, 198, 19849, 796, 350, 16402, 17, 7, 44, 34431, 36727, 11, 17365, 11, 4673, 62, 4873, 28, 16, 68, 12, 19, 11, 15942, 577, 28, 16, 11, 11192, 273, 3526, 62, 6404, 2625, 5805, 47, 14, 1600, 1336, 62, 83, 22854, 3526, 62, 6404, 28, 17821, 8, 198, 19849, 13, 35720, 7, 600, 7, 940, 68, 18, 4008, 198, 2, 19849, 13, 21928, 10786, 40720, 20274, 14, 19849, 14, 16634, 62, 26674, 36869, 62, 17, 68, 20, 13, 79, 41582, 11537, 198, 2, 19849, 796, 2746, 13, 2220, 10786, 40720, 20274, 14, 19849, 14, 16634, 62, 26674, 36869, 62, 17, 68, 20, 13, 79, 41582, 11537, 198, 198, 24330, 796, 11550, 13, 15883, 7, 24330, 62, 312, 8, 198, 8158, 796, 17365, 13, 42503, 3419, 198, 198, 1640, 4808, 287, 2837, 7, 49388, 2599, 198, 220, 220, 220, 17365, 13, 13287, 3419, 198, 220, 220, 220, 2223, 11, 4808, 27219, 796, 2746, 13, 79, 17407, 7, 8158, 8, 198, 220, 220, 220, 10201, 11, 11530, 11, 836, 274, 11, 7508, 796, 17365, 13, 9662, 7, 2673, 8, 198, 24330, 13, 19836, 3419, 628 ]
2.40293
273
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from ax.core.arm import Arm from ax.core.generator_run import GeneratorRun from ax.utils.common.testutils import TestCase from ax.utils.testing.fake import ( get_arms, get_model_predictions, get_model_predictions_per_arm, get_optimization_config, get_search_space, ) GENERATOR_RUN_STR = "GeneratorRun(3 arms, total weight 3.0)" GENERATOR_RUN_STR_PLUS_1 = "GeneratorRun(3 arms, total weight 4.0)"
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 1439, 6923, 33876, 13, 198, 198, 6738, 7877, 13, 7295, 13, 1670, 1330, 7057, 198, 6738, 7877, 13, 7295, 13, 8612, 1352, 62, 5143, 1330, 35986, 10987, 198, 6738, 7877, 13, 26791, 13, 11321, 13, 9288, 26791, 1330, 6208, 20448, 198, 6738, 7877, 13, 26791, 13, 33407, 13, 30706, 1330, 357, 198, 220, 220, 220, 651, 62, 8357, 11, 198, 220, 220, 220, 651, 62, 19849, 62, 28764, 9278, 11, 198, 220, 220, 220, 651, 62, 19849, 62, 28764, 9278, 62, 525, 62, 1670, 11, 198, 220, 220, 220, 651, 62, 40085, 1634, 62, 11250, 11, 198, 220, 220, 220, 651, 62, 12947, 62, 13200, 11, 198, 8, 628, 198, 35353, 1137, 25633, 62, 49, 4944, 62, 18601, 796, 366, 8645, 1352, 10987, 7, 18, 5101, 11, 2472, 3463, 513, 13, 15, 16725, 198, 35353, 1137, 25633, 62, 49, 4944, 62, 18601, 62, 6489, 2937, 62, 16, 796, 366, 8645, 1352, 10987, 7, 18, 5101, 11, 2472, 3463, 604, 13, 15, 16725, 628 ]
2.768817
186
from __future__ import absolute_import import sys import logging from frontera.logger import formatters CONSOLE = logging.StreamHandler(stream=sys.stdout) CONSOLE.setFormatter(formatters.CONSOLE)
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 25064, 198, 11748, 18931, 198, 198, 6738, 1216, 261, 49600, 13, 6404, 1362, 1330, 5794, 1010, 198, 198, 10943, 15821, 2538, 796, 18931, 13, 12124, 25060, 7, 5532, 28, 17597, 13, 19282, 448, 8, 198, 10943, 15821, 2538, 13, 2617, 8479, 1436, 7, 18982, 1010, 13, 10943, 15821, 2538, 8, 198 ]
3.245902
61
# Expresiones Regulares I # las expresiones reguales son una secuencia de caracteres que forman un patron de busqueda # Sirven para el trabajo de procesamiento de texto import re cadena = "Vamos a aprender expresiones regulares en python. python es un lenguaje de sintaxis sencilla" #buscarmos las palabre aprender #print(re.search("aprender", cadena)) textoBuscar="aprender" textoBuscar1="python" if re.search(textoBuscar, cadena) is not None: print("He encontrado el texto") else: print("No Encontre el texto") ########################################################### textoEncontrado=re.search(textoBuscar,cadena) print(textoEncontrado.start())# buscar el nuevo de caracteres hasta llegar a la palabra deficinida (aprender) print(textoEncontrado.end())# carancte donde finaliza print(textoEncontrado.span())# hace los 2 primeros metodos ########################################################### print(re.findall(textoBuscar1, cadena)) print(len(re.findall(textoBuscar1, cadena))) #longitud
[ 2, 5518, 411, 295, 274, 3310, 377, 3565, 314, 198, 2, 39990, 1033, 411, 295, 274, 842, 723, 274, 3367, 555, 64, 792, 84, 29634, 390, 1097, 529, 68, 411, 8358, 329, 805, 555, 19686, 390, 1323, 421, 18082, 198, 198, 2, 7361, 574, 31215, 1288, 491, 397, 34944, 390, 386, 728, 321, 1153, 78, 390, 2420, 78, 198, 198, 11748, 302, 198, 198, 66, 38047, 796, 366, 53, 321, 418, 257, 2471, 13287, 1033, 411, 295, 274, 3475, 3565, 551, 21015, 13, 21015, 1658, 555, 300, 13561, 1228, 68, 390, 264, 600, 22704, 3308, 66, 5049, 1, 198, 198, 2, 10885, 66, 1670, 418, 39990, 6340, 46241, 2471, 13287, 198, 2, 4798, 7, 260, 13, 12947, 7203, 499, 13287, 1600, 20603, 8107, 4008, 198, 198, 5239, 78, 16286, 7718, 2625, 499, 13287, 1, 198, 5239, 78, 16286, 7718, 16, 2625, 29412, 1, 628, 198, 361, 302, 13, 12947, 7, 5239, 78, 16286, 7718, 11, 20603, 8107, 8, 318, 407, 6045, 25, 198, 220, 220, 220, 3601, 7203, 1544, 2207, 756, 81, 4533, 1288, 2420, 78, 4943, 198, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 2949, 2039, 3642, 260, 1288, 2420, 78, 4943, 198, 198, 29113, 14468, 7804, 21017, 198, 5239, 78, 4834, 3642, 81, 4533, 28, 260, 13, 12947, 7, 5239, 78, 16286, 7718, 11, 66, 38047, 8, 198, 4798, 7, 5239, 78, 4834, 3642, 81, 4533, 13, 9688, 28955, 2, 1323, 7718, 1288, 299, 518, 13038, 390, 1097, 529, 68, 411, 19338, 64, 300, 1455, 283, 257, 8591, 6340, 397, 430, 12630, 259, 3755, 357, 499, 13287, 8, 198, 4798, 7, 5239, 78, 4834, 3642, 81, 4533, 13, 437, 28955, 2, 1097, 272, 310, 68, 288, 14378, 2457, 23638, 198, 4798, 7, 5239, 78, 4834, 3642, 81, 4533, 13, 12626, 28955, 2, 289, 558, 22346, 362, 2684, 27498, 1138, 375, 418, 628, 198, 29113, 14468, 7804, 21017, 198, 4798, 7, 260, 13, 19796, 439, 7, 5239, 78, 16286, 7718, 16, 11, 20603, 8107, 4008, 198, 4798, 7, 11925, 7, 260, 13, 19796, 439, 7, 5239, 78, 16286, 7718, 16, 11, 20603, 8107, 22305, 1303, 6511, 26331, 198 ]
2.894587
351
from . import patch from .parameter import Parameter from .module import Module from .container import * from . import utils from .utils import make_method from .layers import * from .loss import * from .flat_param import FlatParam
[ 6738, 764, 1330, 8529, 198, 6738, 764, 17143, 2357, 1330, 25139, 2357, 198, 6738, 764, 21412, 1330, 19937, 198, 6738, 764, 34924, 1330, 1635, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 764, 26791, 1330, 787, 62, 24396, 198, 6738, 764, 75, 6962, 1330, 1635, 198, 6738, 764, 22462, 1330, 1635, 198, 6738, 764, 38568, 62, 17143, 1330, 21939, 22973, 198 ]
3.803279
61
from fileinput import FileInput from typing import Iterable import day07a if __name__ == "__main__": day07a.calculate_fuel_needed = calculate_fuel_needed input: "FileInput[str]" = FileInput() initial_positions = list(map(int, next(input).rstrip().split(","))) print(day07a.find_cheapest_position(initial_positions))
[ 6738, 2393, 15414, 1330, 9220, 20560, 198, 6738, 19720, 1330, 40806, 540, 198, 198, 11748, 1110, 2998, 64, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1110, 2998, 64, 13, 9948, 3129, 378, 62, 25802, 62, 27938, 796, 15284, 62, 25802, 62, 27938, 628, 220, 220, 220, 5128, 25, 366, 8979, 20560, 58, 2536, 30866, 796, 9220, 20560, 3419, 198, 220, 220, 220, 4238, 62, 1930, 1756, 796, 1351, 7, 8899, 7, 600, 11, 1306, 7, 15414, 737, 81, 36311, 22446, 35312, 7, 2430, 22305, 198, 220, 220, 220, 3601, 7, 820, 2998, 64, 13, 19796, 62, 2395, 35746, 62, 9150, 7, 36733, 62, 1930, 1756, 4008, 198 ]
2.888889
117
import math import phe.paillier as paillier pubkey, prikey = paillier.generate_paillier_keypair(n_length=1024) # TODO: fails when iterations more than 17 (key length 1024) irrational test intermittently fails. Result either incorrect (random) or overflow iterations = 17 # factorial test factorial = pubkey.encrypt(1) for x in range(1,iterations+1): factorial = factorial * x print("Factorial test ok "+ str(math.factorial(iterations) == prikey.decrypt(factorial))) # irrational test: pi * 1/pi * pi * 1/pi... piEnc = pubkey.encrypt(math.pi) for x in range(0,iterations): if x % 2 == 0: piEnc = piEnc * 1/math.pi else: piEnc = piEnc * math.pi if iterations % 2 == 0: print("Irrational test ok "+ str(math.fabs(math.pi - prikey.decrypt(piEnc)) < 0.0001)) else: print("Irrational test ok "+ str(math.fabs(1 - prikey.decrypt(piEnc)) < 0.0001))
[ 11748, 10688, 198, 11748, 279, 258, 13, 8957, 359, 959, 355, 14187, 359, 959, 198, 12984, 2539, 11, 1293, 2539, 796, 14187, 359, 959, 13, 8612, 378, 62, 8957, 359, 959, 62, 2539, 24874, 7, 77, 62, 13664, 28, 35500, 8, 198, 198, 2, 16926, 46, 25, 10143, 618, 34820, 517, 621, 1596, 357, 2539, 4129, 28119, 8, 25086, 1332, 30598, 1473, 10143, 13, 25414, 2035, 11491, 357, 25120, 8, 393, 30343, 198, 2676, 602, 796, 1596, 198, 198, 2, 1109, 5132, 1332, 198, 22584, 5132, 796, 2240, 2539, 13, 12685, 6012, 7, 16, 8, 198, 1640, 2124, 287, 2837, 7, 16, 11, 2676, 602, 10, 16, 2599, 198, 220, 220, 220, 1109, 5132, 796, 1109, 5132, 1635, 2124, 198, 4798, 7203, 29054, 5132, 1332, 12876, 43825, 965, 7, 11018, 13, 22584, 5132, 7, 2676, 602, 8, 6624, 1293, 2539, 13, 12501, 6012, 7, 22584, 5132, 22305, 198, 198, 2, 25086, 1332, 25, 220, 31028, 1635, 352, 14, 14415, 1635, 31028, 1635, 352, 14, 14415, 986, 198, 14415, 27195, 796, 2240, 2539, 13, 12685, 6012, 7, 11018, 13, 14415, 8, 198, 1640, 2124, 287, 2837, 7, 15, 11, 2676, 602, 2599, 198, 220, 220, 220, 611, 2124, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31028, 27195, 796, 31028, 27195, 1635, 352, 14, 11018, 13, 14415, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31028, 27195, 796, 31028, 27195, 1635, 10688, 13, 14415, 198, 198, 361, 34820, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 3601, 7203, 23820, 20310, 1332, 12876, 43825, 965, 7, 11018, 13, 69, 8937, 7, 11018, 13, 14415, 532, 1293, 2539, 13, 12501, 6012, 7, 14415, 27195, 4008, 1279, 657, 13, 18005, 4008, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 23820, 20310, 1332, 12876, 43825, 965, 7, 11018, 13, 69, 8937, 7, 16, 532, 1293, 2539, 13, 12501, 6012, 7, 14415, 27195, 4008, 1279, 657, 13, 18005, 4008, 628, 198 ]
2.695122
328
# author: Arlin Cherian, Kristin Bunyan, Michelle Wang, Berkay Bulut # date: 2021-11-18 """Downloads data csv data from the web to a local filepath as either a csv format Usage: src/download_data.py --url=<url> --out_file=<out_file> Options: --url=<url> URL from where to download the data (must be in standard csv format) --out_file=<out_file> Path (including filename) of where to locally write the file """ from docopt import docopt import os import pandas as pd opt = docopt(__doc__) if __name__ == "__main__": main(opt["--url"], opt["--out_file"])
[ 2, 1772, 25, 943, 2815, 19305, 666, 11, 14912, 259, 28515, 4121, 11, 16738, 15233, 11, 4312, 5568, 8510, 315, 198, 2, 3128, 25, 33448, 12, 1157, 12, 1507, 198, 198, 37811, 10002, 82, 1366, 269, 21370, 1366, 422, 262, 3992, 284, 257, 1957, 2393, 6978, 355, 2035, 257, 269, 21370, 5794, 198, 28350, 25, 12351, 14, 15002, 62, 7890, 13, 9078, 1377, 6371, 28, 27, 6371, 29, 1377, 448, 62, 7753, 28, 27, 448, 62, 7753, 29, 198, 198, 29046, 25, 198, 438, 6371, 28, 27, 6371, 29, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10289, 422, 810, 284, 4321, 262, 1366, 357, 27238, 307, 287, 3210, 269, 21370, 5794, 8, 198, 438, 448, 62, 7753, 28, 27, 448, 62, 7753, 29, 220, 220, 220, 10644, 357, 8201, 29472, 8, 286, 810, 284, 15726, 3551, 262, 2393, 198, 37811, 198, 198, 6738, 2205, 8738, 1330, 2205, 8738, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 8738, 796, 2205, 8738, 7, 834, 15390, 834, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 7, 8738, 14692, 438, 6371, 33116, 2172, 14692, 438, 448, 62, 7753, 8973, 8, 198 ]
2.792271
207
from time import sleep num = int(input('Digite um número inteiro de 4 digitos: ')) numero = str(num) print('Os digitos do número informado são: ') for c in range(0, 4): sleep(1) print(numero[c])
[ 6738, 640, 1330, 3993, 198, 22510, 796, 493, 7, 15414, 10786, 19511, 578, 23781, 299, 21356, 647, 78, 493, 68, 7058, 390, 604, 16839, 418, 25, 705, 4008, 198, 22510, 3529, 796, 965, 7, 22510, 8, 198, 4798, 10786, 16748, 16839, 418, 466, 299, 21356, 647, 78, 4175, 4533, 264, 28749, 25, 705, 8, 198, 1640, 269, 287, 2837, 7, 15, 11, 604, 2599, 220, 220, 220, 220, 198, 220, 220, 220, 3993, 7, 16, 8, 198, 220, 220, 220, 3601, 7, 22510, 3529, 58, 66, 12962, 198 ]
2.352273
88
from ctm_python_client.core.base import BaseJob
[ 6738, 269, 17209, 62, 29412, 62, 16366, 13, 7295, 13, 8692, 1330, 7308, 33308, 628 ]
3.266667
15
from serial import Serial from time import sleep from datetime import datetime import requests URL = 'http://127.0.0.1:8080/postLog' serial_connection = Serial('/dev/ttyACM0', 9600) while True: id = str(serial_connection.readline()) id = id.strip('\n') state = str(serial_connection.readline()) state = state.strip('\n') if id and state: print id print state post(id, state) sleep(0.01)
[ 6738, 11389, 1330, 23283, 198, 6738, 640, 1330, 3993, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 7007, 628, 198, 21886, 796, 705, 4023, 1378, 16799, 13, 15, 13, 15, 13, 16, 25, 1795, 1795, 14, 7353, 11187, 6, 198, 198, 46911, 62, 38659, 796, 23283, 10786, 14, 7959, 14, 42852, 2246, 44, 15, 3256, 860, 8054, 8, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 4686, 796, 965, 7, 46911, 62, 38659, 13, 961, 1370, 28955, 198, 220, 220, 220, 4686, 796, 4686, 13, 36311, 10786, 59, 77, 11537, 198, 220, 220, 220, 1181, 796, 965, 7, 46911, 62, 38659, 13, 961, 1370, 28955, 198, 220, 220, 220, 1181, 796, 1181, 13, 36311, 10786, 59, 77, 11537, 198, 220, 220, 220, 611, 4686, 290, 1181, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 7, 312, 11, 1181, 8, 198, 220, 220, 220, 3993, 7, 15, 13, 486, 8, 628 ]
2.528736
174
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> # Contributors: bart:neeneenee*de, http://www.neeneenee.de/vrml, Campbell Barton """ This script exports to X3D format. Usage: Run this script from "File->Export" menu. A pop-up will ask whether you want to export only selected or all relevant objects. Known issues: Doesn't handle multiple materials (don't use material indices);<br> Doesn't handle multiple UV textures on a single mesh (create a mesh for each texture);<br> Can't get the texture array associated with material * not the UV ones; """ import math import os import bpy import mathutils from bpy_extras.io_utils import create_derived_objects, free_derived_objects x3d_names_reserved = {'Anchor', 'Appearance', 'Arc2D', 'ArcClose2D', 'AudioClip', 'Background', 'Billboard', 'BooleanFilter', 'BooleanSequencer', 'BooleanToggle', 'BooleanTrigger', 'Box', 'Circle2D', 'Collision', 'Color', 'ColorInterpolator', 'ColorRGBA', 'component', 'Cone', 'connect', 'Contour2D', 'ContourPolyline2D', 'Coordinate', 'CoordinateDouble', 'CoordinateInterpolator', 'CoordinateInterpolator2D', 'Cylinder', 'CylinderSensor', 'DirectionalLight', 'Disk2D', 'ElevationGrid', 'EspduTransform', 'EXPORT', 'ExternProtoDeclare', 'Extrusion', 'field', 'fieldValue', 'FillProperties', 'Fog', 'FontStyle', 'GeoCoordinate', 'GeoElevationGrid', 'GeoLocationLocation', 'GeoLOD', 'GeoMetadata', 'GeoOrigin', 'GeoPositionInterpolator', 'GeoTouchSensor', 'GeoViewpoint', 'Group', 'HAnimDisplacer', 'HAnimHumanoid', 'HAnimJoint', 'HAnimSegment', 'HAnimSite', 'head', 'ImageTexture', 'IMPORT', 'IndexedFaceSet', 'IndexedLineSet', 'IndexedTriangleFanSet', 'IndexedTriangleSet', 'IndexedTriangleStripSet', 'Inline', 'IntegerSequencer', 'IntegerTrigger', 'IS', 'KeySensor', 'LineProperties', 'LineSet', 'LoadSensor', 'LOD', 'Material', 'meta', 'MetadataDouble', 'MetadataFloat', 'MetadataInteger', 'MetadataSet', 'MetadataString', 'MovieTexture', 'MultiTexture', 'MultiTextureCoordinate', 'MultiTextureTransform', 'NavigationInfo', 'Normal', 'NormalInterpolator', 'NurbsCurve', 'NurbsCurve2D', 'NurbsOrientationInterpolator', 'NurbsPatchSurface', 'NurbsPositionInterpolator', 'NurbsSet', 'NurbsSurfaceInterpolator', 'NurbsSweptSurface', 'NurbsSwungSurface', 'NurbsTextureCoordinate', 'NurbsTrimmedSurface', 'OrientationInterpolator', 'PixelTexture', 'PlaneSensor', 'PointLight', 'PointSet', 'Polyline2D', 'Polypoint2D', 'PositionInterpolator', 'PositionInterpolator2D', 'ProtoBody', 'ProtoDeclare', 'ProtoInstance', 'ProtoInterface', 'ProximitySensor', 'ReceiverPdu', 'Rectangle2D', 'ROUTE', 'ScalarInterpolator', 'Scene', 'Script', 'Shape', 'SignalPdu', 'Sound', 'Sphere', 'SphereSensor', 'SpotLight', 'StaticGroup', 'StringSensor', 'Switch', 'Text', 'TextureBackground', 'TextureCoordinate', 'TextureCoordinateGenerator', 'TextureTransform', 'TimeSensor', 'TimeTrigger', 'TouchSensor', 'Transform', 'TransmitterPdu', 'TriangleFanSet', 'TriangleSet', 'TriangleSet2D', 'TriangleStripSet', 'Viewpoint', 'VisibilitySensor', 'WorldInfo', 'X3D', 'XvlShell', 'VertexShader', 'FragmentShader', 'MultiShaderAppearance', 'ShaderAppearance'} # h3d defines H3D_TOP_LEVEL = 'TOP_LEVEL_TI' H3D_CAMERA_FOLLOW = 'CAMERA_FOLLOW_TRANSFORM' H3D_VIEW_MATRIX = 'view_matrix' def build_hierarchy(objects): """ returns parent child relationships, skipping """ objects_set = set(objects) par_lookup = {} for obj in objects: par_lookup.setdefault(test_parent(obj.parent), []).append((obj, [])) for parent, children in par_lookup.items(): for obj, subchildren in children: subchildren[:] = par_lookup.get(obj, []) return par_lookup.get(None, []) # ----------------------------------------------------------------------------- # H3D Functions # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Functions for writing output file # ----------------------------------------------------------------------------- ########################################################## # Callbacks, needed before Main ##########################################################
[ 2, 46424, 347, 43312, 38644, 38559, 24290, 9878, 11290, 46424, 198, 2, 198, 2, 220, 770, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 198, 2, 220, 13096, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 355, 3199, 416, 262, 3232, 10442, 5693, 26, 2035, 2196, 362, 198, 2, 220, 286, 262, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 220, 1863, 351, 428, 1430, 26, 611, 407, 11, 3551, 284, 262, 3232, 10442, 5693, 11, 198, 2, 220, 3457, 1539, 6885, 14021, 3530, 11, 19383, 22343, 11, 6182, 11, 8779, 657, 2481, 940, 12, 1485, 486, 11, 4916, 13, 198, 2, 198, 2, 46424, 23578, 38644, 38559, 24290, 9878, 11290, 46424, 198, 198, 2, 1279, 431, 79, 23, 31332, 29, 198, 198, 2, 25767, 669, 25, 30539, 25, 710, 1734, 268, 1453, 9, 2934, 11, 2638, 1378, 2503, 13, 710, 1734, 268, 1453, 13, 2934, 14, 37020, 4029, 11, 14327, 32342, 198, 198, 37811, 198, 1212, 4226, 15319, 284, 1395, 18, 35, 5794, 13, 198, 198, 28350, 25, 198, 10987, 428, 4226, 422, 366, 8979, 3784, 43834, 1, 6859, 13, 220, 317, 1461, 12, 929, 481, 1265, 1771, 345, 198, 42949, 284, 10784, 691, 6163, 393, 477, 5981, 5563, 13, 198, 198, 29870, 2428, 25, 198, 220, 220, 220, 28048, 470, 5412, 3294, 5696, 357, 9099, 470, 779, 2587, 36525, 1776, 27, 1671, 29, 198, 220, 220, 220, 28048, 470, 5412, 3294, 22033, 20028, 319, 257, 2060, 19609, 357, 17953, 257, 19609, 329, 1123, 11743, 1776, 27, 1671, 29, 198, 220, 220, 220, 1680, 470, 651, 262, 11743, 7177, 3917, 351, 2587, 1635, 407, 262, 22033, 3392, 26, 198, 37811, 198, 198, 11748, 10688, 198, 11748, 28686, 198, 198, 11748, 275, 9078, 198, 11748, 10688, 26791, 198, 198, 6738, 275, 9078, 62, 2302, 8847, 13, 952, 62, 26791, 1330, 2251, 62, 34631, 62, 48205, 11, 1479, 62, 34631, 62, 48205, 198, 198, 87, 18, 67, 62, 14933, 62, 411, 8520, 796, 1391, 6, 2025, 354, 273, 3256, 705, 48231, 3256, 705, 24021, 17, 35, 3256, 705, 24021, 26125, 17, 35, 3256, 705, 21206, 2601, 541, 3256, 705, 21756, 3256, 705, 17798, 3526, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46120, 13087, 22417, 3256, 705, 46120, 13087, 44015, 12137, 3256, 705, 46120, 13087, 51, 20258, 3256, 705, 46120, 13087, 48344, 3256, 705, 14253, 3256, 705, 31560, 293, 17, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22667, 1166, 3256, 705, 10258, 3256, 705, 10258, 9492, 16104, 1352, 3256, 705, 10258, 48192, 4339, 3256, 705, 42895, 3256, 705, 34, 505, 3256, 705, 8443, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4264, 454, 17, 35, 3256, 705, 4264, 454, 34220, 1370, 17, 35, 3256, 705, 7222, 45480, 3256, 705, 7222, 45480, 25628, 3256, 705, 7222, 45480, 9492, 16104, 1352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7222, 45480, 9492, 16104, 1352, 17, 35, 3256, 705, 34, 2645, 5540, 3256, 705, 34, 2645, 5540, 47864, 3256, 705, 35, 4154, 282, 15047, 3256, 705, 40961, 17, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36, 2768, 341, 41339, 3256, 705, 36, 2777, 646, 41762, 3256, 705, 6369, 15490, 3256, 705, 3109, 759, 2964, 1462, 37835, 533, 3256, 705, 11627, 81, 4241, 3256, 705, 3245, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3245, 11395, 3256, 705, 33762, 2964, 18200, 3256, 705, 37, 519, 3256, 705, 23252, 21466, 3256, 705, 10082, 78, 7222, 45480, 3256, 705, 10082, 78, 36, 2768, 341, 41339, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10082, 78, 14749, 14749, 3256, 705, 10082, 78, 38543, 3256, 705, 10082, 78, 9171, 14706, 3256, 705, 10082, 78, 39688, 3256, 705, 10082, 78, 26545, 9492, 16104, 1352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10082, 78, 35211, 47864, 3256, 705, 10082, 78, 7680, 4122, 3256, 705, 13247, 3256, 705, 39, 35320, 7279, 489, 11736, 3256, 705, 39, 35320, 20490, 1868, 3256, 705, 39, 35320, 41, 1563, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39, 35320, 41030, 434, 3256, 705, 39, 35320, 29123, 3256, 705, 2256, 3256, 705, 5159, 32742, 3256, 705, 3955, 15490, 3256, 705, 15732, 276, 32388, 7248, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15732, 276, 13949, 7248, 3256, 705, 15732, 276, 14824, 9248, 22480, 7248, 3256, 705, 15732, 276, 14824, 9248, 7248, 3256, 705, 15732, 276, 14824, 9248, 1273, 5528, 7248, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 818, 1370, 3256, 705, 46541, 44015, 12137, 3256, 705, 46541, 48344, 3256, 705, 1797, 3256, 705, 9218, 47864, 3256, 705, 13949, 2964, 18200, 3256, 705, 13949, 7248, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8912, 47864, 3256, 705, 38543, 3256, 705, 17518, 3256, 705, 28961, 3256, 705, 9171, 14706, 25628, 3256, 705, 9171, 14706, 43879, 3256, 705, 9171, 14706, 46541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9171, 14706, 7248, 3256, 705, 9171, 14706, 10100, 3256, 705, 25097, 32742, 3256, 705, 29800, 32742, 3256, 705, 29800, 32742, 7222, 45480, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29800, 32742, 41762, 3256, 705, 30575, 7065, 12360, 3256, 705, 26447, 3256, 705, 26447, 9492, 16104, 1352, 3256, 705, 45, 333, 1443, 26628, 303, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 45, 333, 1443, 26628, 303, 17, 35, 3256, 705, 45, 333, 1443, 46, 8289, 341, 9492, 16104, 1352, 3256, 705, 45, 333, 1443, 33952, 14214, 2550, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 45, 333, 1443, 26545, 9492, 16104, 1352, 3256, 705, 45, 333, 1443, 7248, 3256, 705, 45, 333, 1443, 14214, 2550, 9492, 16104, 1352, 3256, 705, 45, 333, 1443, 40783, 457, 14214, 2550, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 45, 333, 1443, 10462, 2150, 14214, 2550, 3256, 705, 45, 333, 1443, 32742, 7222, 45480, 3256, 705, 45, 333, 1443, 2898, 320, 1150, 14214, 2550, 3256, 705, 46, 8289, 341, 9492, 16104, 1352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40809, 32742, 3256, 705, 3646, 1531, 47864, 3256, 705, 12727, 15047, 3256, 705, 12727, 7248, 3256, 705, 34220, 1370, 17, 35, 3256, 705, 34220, 4122, 17, 35, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26545, 9492, 16104, 1352, 3256, 705, 26545, 9492, 16104, 1352, 17, 35, 3256, 705, 2964, 1462, 25842, 3256, 705, 2964, 1462, 37835, 533, 3256, 705, 2964, 1462, 33384, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2964, 1462, 39317, 3256, 705, 2964, 87, 18853, 47864, 3256, 705, 3041, 39729, 47, 646, 3256, 705, 45474, 9248, 17, 35, 3256, 705, 49, 2606, 9328, 3256, 705, 3351, 282, 283, 9492, 16104, 1352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36542, 3256, 705, 7391, 3256, 705, 33383, 3256, 705, 11712, 282, 47, 646, 3256, 705, 21369, 3256, 705, 38882, 3256, 705, 38882, 47864, 3256, 705, 32565, 15047, 3256, 705, 45442, 13247, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10100, 47864, 3256, 705, 38978, 3256, 705, 8206, 3256, 705, 32742, 21756, 3256, 705, 32742, 7222, 45480, 3256, 705, 32742, 7222, 45480, 8645, 1352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32742, 41762, 3256, 705, 7575, 47864, 3256, 705, 7575, 48344, 3256, 705, 35211, 47864, 3256, 705, 41762, 3256, 705, 8291, 37974, 47, 646, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14824, 9248, 22480, 7248, 3256, 705, 14824, 9248, 7248, 3256, 705, 14824, 9248, 7248, 17, 35, 3256, 705, 14824, 9248, 1273, 5528, 7248, 3256, 705, 7680, 4122, 3256, 705, 15854, 2247, 47864, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10603, 12360, 3256, 705, 55, 18, 35, 3256, 705, 55, 19279, 23248, 3256, 705, 13414, 16886, 2484, 5067, 3256, 705, 42974, 434, 2484, 5067, 3256, 705, 29800, 2484, 5067, 48231, 3256, 705, 2484, 5067, 48231, 6, 92, 198, 198, 2, 289, 18, 67, 15738, 198, 39, 18, 35, 62, 35222, 62, 2538, 18697, 796, 705, 35222, 62, 2538, 18697, 62, 25621, 6, 198, 39, 18, 35, 62, 34, 2390, 46461, 62, 6080, 44765, 796, 705, 34, 2390, 46461, 62, 6080, 44765, 62, 5446, 15037, 21389, 6, 198, 39, 18, 35, 62, 28206, 62, 41636, 7112, 55, 796, 705, 1177, 62, 6759, 8609, 6, 628, 628, 628, 198, 198, 4299, 1382, 62, 71, 959, 9282, 7, 48205, 2599, 198, 220, 220, 220, 37227, 5860, 2560, 1200, 6958, 11, 31017, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5563, 62, 2617, 796, 900, 7, 48205, 8, 198, 220, 220, 220, 1582, 62, 5460, 929, 796, 23884, 628, 220, 220, 220, 329, 26181, 287, 5563, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 62, 5460, 929, 13, 2617, 12286, 7, 9288, 62, 8000, 7, 26801, 13, 8000, 828, 17635, 737, 33295, 19510, 26801, 11, 17635, 4008, 628, 220, 220, 220, 329, 2560, 11, 1751, 287, 1582, 62, 5460, 929, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 26181, 11, 850, 17197, 287, 1751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 17197, 58, 47715, 796, 1582, 62, 5460, 929, 13, 1136, 7, 26801, 11, 685, 12962, 628, 220, 220, 220, 1441, 1582, 62, 5460, 929, 13, 1136, 7, 14202, 11, 685, 12962, 628, 198, 2, 16529, 32501, 198, 2, 367, 18, 35, 40480, 198, 2, 16529, 32501, 628, 198, 198, 2, 16529, 32501, 198, 2, 40480, 329, 3597, 5072, 2393, 198, 2, 16529, 32501, 628, 198, 29113, 14468, 7804, 2235, 198, 2, 4889, 10146, 11, 2622, 878, 8774, 198, 29113, 14468, 7804, 2235, 628 ]
2.696098
2,050
var("x", NUMBER, default=50, min=10, max=301, handler=params) var("y", NUMBER, default=50, min=10, max=301, handler=params) var("r1", NUMBER, default=50, min=10, max=300, handler=params) var("r2", NUMBER, default=50, min=10, max=300, handler=params) paintcircle(x,y,r1,r2)
[ 628, 198, 7785, 7203, 87, 1600, 36871, 13246, 11, 4277, 28, 1120, 11, 949, 28, 940, 11, 3509, 28, 18938, 11, 21360, 28, 37266, 8, 198, 7785, 7203, 88, 1600, 36871, 13246, 11, 4277, 28, 1120, 11, 949, 28, 940, 11, 3509, 28, 18938, 11, 21360, 28, 37266, 8, 198, 7785, 7203, 81, 16, 1600, 36871, 13246, 11, 4277, 28, 1120, 11, 949, 28, 940, 11, 3509, 28, 6200, 11, 21360, 28, 37266, 8, 198, 7785, 7203, 81, 17, 1600, 36871, 13246, 11, 4277, 28, 1120, 11, 949, 28, 940, 11, 3509, 28, 6200, 11, 21360, 28, 37266, 8, 198, 198, 79, 2913, 45597, 7, 87, 11, 88, 11, 81, 16, 11, 81, 17, 8, 198 ]
2.387931
116
"""querying.py Functions for data discovery. """ import logging import os.path import pandas as pd from sqlalchemy import func, distinct import warnings import xarray as xr from . import database from .database import NCExperiment, NCFile, CFVariable, NCVar def get_experiments(session): """ Returns a DataFrame of all experiments and the number of netCDF4 files contained within each experiment. """ q = (session .query(NCExperiment.experiment, func.count(NCFile.experiment_id).label('ncfiles')) .join(NCFile.experiment) .group_by(NCFile.experiment_id)) return pd.DataFrame(q) def get_ncfiles(session, experiment): """ Returns a DataFrame of all netcdf files for a given experiment. """ q = (session .query(NCFile.ncfile, NCFile.index_time) .join(NCFile.experiment) .filter(NCExperiment.experiment == experiment) .order_by(NCFile.ncfile)) return pd.DataFrame(q) def get_variables(session, experiment, frequency=None): """ Returns a DataFrame of variables for a given experiment and optionally a given diagnostic frequency. """ q = (session .query(CFVariable.name, NCFile.frequency, NCFile.ncfile, func.count(NCFile.ncfile).label('# ncfiles'), func.min(NCFile.time_start).label('time_start'), func.max(NCFile.time_end).label('time_end')) .join(NCFile.experiment) .join(NCFile.ncvars) .join(NCVar.variable) .filter(NCExperiment.experiment == experiment) .order_by(NCFile.frequency, CFVariable.name, NCFile.time_start, NCFile.ncfile) .group_by(CFVariable.name, NCFile.frequency)) if frequency is not None: q = q.filter(NCFile.frequency == frequency) return pd.DataFrame(q) def get_frequencies(session, experiment=None): """ Returns a DataFrame with all diagnostics frequencies and optionally for a given experiment. """ if experiment is None: q = (session .query(NCFile.frequency) .group_by(NCFile.frequency)) else: q = (session .query(NCFile.frequency) .join(NCFile.experiment) .filter(NCExperiment.experiment == experiment) .group_by(NCFile.frequency)) return pd.DataFrame(q) def getvar(expt, variable, session, ncfile=None, start_time=None, end_time=None, n=None, **kwargs): """For a given experiment, return an xarray DataArray containing the specified variable. expt - text string indicating the name of the experiment variable - text string indicating the name of the variable to load session - a database session created by cc.database.create_session() ncfile - an optional text string indicating the pattern for filenames to load. All filenames containing this string will match, so be specific. '/' can be used to match the start of the filename, and '%' is a wildcard character. start_time - only load data after this date. specify as a text string, e.g. '1900-01-01' end_time - only load data before this date. specify as a text string, e.g. '1900-01-01' n - after all other queries, restrict the total number of files to the first n. pass a negative value to restrict to the last n Note that if start_time and/or end_time are used, the time range of the resulting dataset may not be bounded exactly on those values, depending on where the underlying files start/end. Use dataset.sel() to exactly select times from the dataset. Other kwargs are passed through to xarray.open_mfdataset, including: chunks - Override any chunking by passing a chunks dictionary. decode_times - Time decoding can be disabled by passing decode_times=False """ ncfiles = _ncfiles_for_variable(expt, variable, session, ncfile, start_time, end_time, n) # chunking -- use first row/file and assume it's the same across the whole dataset xr_kwargs = {"chunks": _parse_chunks(ncfiles[0].NCVar)} xr_kwargs.update(kwargs) ds = xr.open_mfdataset( (str(f.NCFile.ncfile_path) for f in ncfiles), parallel=True, combine="by_coords", preprocess=lambda d: d[variable].to_dataset() if variable not in d.coords else d, **xr_kwargs ) return ds[variable] def _ncfiles_for_variable(expt, variable, session, ncfile=None, start_time=None, end_time=None, n=None): """Return a list of (NCFile, NCVar) pairs corresponding to the database objects for a given variable. Optionally, pass ncfile, start_time, end_time or n for additional disambiguation (see getvar documentation for their semantics). """ f, v = database.NCFile, database.NCVar q = ( session.query(f, v) .join(f.ncvars) .join(f.experiment) .filter(v.varname == variable) .filter(database.NCExperiment.experiment == expt) .filter(f.present) .order_by(f.time_start) ) # additional disambiguation if ncfile is not None: q = q.filter(f.ncfile.like("%" + ncfile)) if start_time is not None: q = q.filter(f.time_end >= start_time) if end_time is not None: q = q.filter(f.time_start <= end_time) ncfiles = q.all() if n is not None: if n > 0: ncfiles = ncfiles[:n] else: ncfiles = ncfiles[n:] # ensure we actually got a result if not ncfiles: raise VariableNotFoundError( "No files were found containing '{}' in the '{}' experiment".format( variable, expt ) ) # check whether the results are unique unique_files = set(os.path.basename(f.NCFile.ncfile) for f in ncfiles) if len(unique_files) > 1: warnings.warn( f"Your query gets a variable from differently-named files: {unique_files}. " "This could lead to unexpected behaviour! Disambiguate by passing " "ncfile= to getvar, specifying the desired file." ) return ncfiles def _parse_chunks(ncvar): """Parse an NCVar, returning a dictionary mapping dimensions to chunking along that dimension.""" try: # this should give either a list, or 'None' (other values will raise an exception) var_chunks = eval(ncvar.chunking) if var_chunks is not None: return dict(zip(eval(ncvar.dimensions), var_chunks)) return None except NameError: # chunking could be 'contiguous', which doesn't evaluate return None
[ 37811, 10819, 1112, 13, 9078, 198, 198, 24629, 2733, 329, 1366, 9412, 13, 198, 198, 37811, 198, 198, 11748, 18931, 198, 11748, 28686, 13, 6978, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 44161, 282, 26599, 1330, 25439, 11, 7310, 198, 11748, 14601, 198, 11748, 2124, 18747, 355, 2124, 81, 198, 198, 6738, 764, 1330, 6831, 198, 6738, 764, 48806, 1330, 8823, 20468, 3681, 11, 8823, 8979, 11, 18551, 43015, 11, 8823, 19852, 628, 198, 4299, 651, 62, 23100, 6800, 7, 29891, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 6060, 19778, 286, 477, 10256, 290, 262, 1271, 286, 2010, 34, 8068, 19, 3696, 7763, 220, 198, 220, 220, 220, 1626, 1123, 6306, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10662, 796, 357, 29891, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22766, 7, 7792, 20468, 3681, 13, 23100, 3681, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 9127, 7, 7792, 8979, 13, 23100, 3681, 62, 312, 737, 18242, 10786, 10782, 16624, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 7792, 8979, 13, 23100, 3681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 62, 1525, 7, 7792, 8979, 13, 23100, 3681, 62, 312, 4008, 628, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 7, 80, 8, 198, 198, 4299, 651, 62, 10782, 16624, 7, 29891, 11, 6306, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 6060, 19778, 286, 477, 2010, 66, 7568, 3696, 329, 257, 1813, 6306, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10662, 796, 357, 29891, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22766, 7, 7792, 8979, 13, 10782, 7753, 11, 8823, 8979, 13, 9630, 62, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 7792, 8979, 13, 23100, 3681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 7792, 20468, 3681, 13, 23100, 3681, 6624, 6306, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2875, 62, 1525, 7, 7792, 8979, 13, 10782, 7753, 4008, 628, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 7, 80, 8, 198, 198, 4299, 651, 62, 25641, 2977, 7, 29891, 11, 6306, 11, 8373, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 6060, 19778, 286, 9633, 329, 257, 1813, 6306, 290, 42976, 198, 220, 220, 220, 257, 1813, 23584, 8373, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 10662, 796, 357, 29891, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22766, 7, 22495, 43015, 13, 3672, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8823, 8979, 13, 35324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8823, 8979, 13, 10782, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 9127, 7, 7792, 8979, 13, 10782, 7753, 737, 18242, 10786, 2, 299, 12993, 2915, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 1084, 7, 7792, 8979, 13, 2435, 62, 9688, 737, 18242, 10786, 2435, 62, 9688, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 9806, 7, 7792, 8979, 13, 2435, 62, 437, 737, 18242, 10786, 2435, 62, 437, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 7792, 8979, 13, 23100, 3681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 7792, 8979, 13, 10782, 85, 945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 7792, 19852, 13, 45286, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 7792, 20468, 3681, 13, 23100, 3681, 6624, 6306, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2875, 62, 1525, 7, 7792, 8979, 13, 35324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18551, 43015, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8823, 8979, 13, 2435, 62, 9688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8823, 8979, 13, 10782, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 62, 1525, 7, 22495, 43015, 13, 3672, 11, 8823, 8979, 13, 35324, 4008, 628, 220, 220, 220, 611, 8373, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 10662, 13, 24455, 7, 7792, 8979, 13, 35324, 6624, 8373, 8, 628, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 7, 80, 8, 198, 198, 4299, 651, 62, 69, 8897, 3976, 7, 29891, 11, 6306, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 6060, 19778, 351, 477, 6689, 34558, 19998, 290, 42976, 198, 220, 220, 220, 329, 257, 1813, 6306, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 6306, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 357, 29891, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22766, 7, 7792, 8979, 13, 35324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 62, 1525, 7, 7792, 8979, 13, 35324, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 357, 29891, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22766, 7, 7792, 8979, 13, 35324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 7792, 8979, 13, 23100, 3681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 7792, 20468, 3681, 13, 23100, 3681, 6624, 6306, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 62, 1525, 7, 7792, 8979, 13, 35324, 4008, 628, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 7, 80, 8, 628, 198, 4299, 651, 7785, 7, 1069, 457, 11, 7885, 11, 6246, 11, 299, 66, 7753, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 28, 14202, 11, 886, 62, 2435, 28, 14202, 11, 299, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 1890, 257, 1813, 6306, 11, 1441, 281, 2124, 18747, 6060, 19182, 7268, 262, 198, 220, 220, 220, 7368, 7885, 13, 628, 220, 220, 220, 409, 457, 532, 2420, 4731, 12739, 262, 1438, 286, 262, 6306, 198, 220, 220, 220, 7885, 532, 2420, 4731, 12739, 262, 1438, 286, 262, 7885, 284, 3440, 198, 220, 220, 220, 6246, 532, 257, 6831, 6246, 2727, 416, 36624, 13, 48806, 13, 17953, 62, 29891, 3419, 198, 220, 220, 220, 299, 66, 7753, 532, 220, 281, 11902, 2420, 4731, 12739, 262, 3912, 329, 1226, 268, 1047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 3440, 13, 1439, 1226, 268, 1047, 7268, 428, 4731, 481, 2872, 11, 523, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 2176, 13, 31051, 6, 460, 307, 973, 284, 2872, 262, 923, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 11, 290, 705, 4, 6, 318, 257, 4295, 9517, 2095, 13, 198, 220, 220, 220, 923, 62, 2435, 532, 691, 3440, 1366, 706, 428, 3128, 13, 11986, 355, 257, 2420, 4731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 705, 48104, 12, 486, 12, 486, 6, 198, 220, 220, 220, 886, 62, 2435, 532, 691, 3440, 1366, 878, 428, 3128, 13, 11986, 355, 257, 2420, 4731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 13, 705, 48104, 12, 486, 12, 486, 6, 198, 220, 220, 220, 299, 532, 706, 477, 584, 20743, 11, 4239, 262, 2472, 1271, 286, 3696, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 717, 299, 13, 1208, 257, 4633, 1988, 284, 4239, 284, 262, 938, 299, 628, 220, 220, 220, 5740, 326, 611, 923, 62, 2435, 290, 14, 273, 886, 62, 2435, 389, 973, 11, 262, 640, 2837, 198, 220, 220, 220, 286, 262, 7186, 27039, 743, 407, 307, 49948, 3446, 319, 883, 198, 220, 220, 220, 3815, 11, 6906, 319, 810, 262, 10238, 3696, 923, 14, 437, 13, 5765, 198, 220, 220, 220, 27039, 13, 741, 3419, 284, 3446, 2922, 1661, 422, 262, 27039, 13, 628, 220, 220, 220, 3819, 479, 86, 22046, 389, 3804, 832, 284, 2124, 18747, 13, 9654, 62, 76, 16344, 265, 292, 316, 11, 1390, 25, 628, 220, 220, 220, 22716, 532, 3827, 13154, 597, 16058, 278, 416, 6427, 257, 22716, 22155, 13, 198, 220, 220, 220, 36899, 62, 22355, 532, 3862, 39938, 460, 307, 10058, 416, 6427, 36899, 62, 22355, 28, 25101, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 299, 12993, 2915, 796, 4808, 10782, 16624, 62, 1640, 62, 45286, 7, 1069, 457, 11, 7885, 11, 6246, 11, 299, 66, 7753, 11, 923, 62, 2435, 11, 886, 62, 2435, 11, 299, 8, 628, 220, 220, 220, 1303, 16058, 278, 1377, 779, 717, 5752, 14, 7753, 290, 7048, 340, 338, 262, 976, 1973, 262, 2187, 27039, 198, 220, 220, 220, 2124, 81, 62, 46265, 22046, 796, 19779, 354, 14125, 1298, 4808, 29572, 62, 354, 14125, 7, 10782, 16624, 58, 15, 4083, 7792, 19852, 38165, 198, 220, 220, 220, 2124, 81, 62, 46265, 22046, 13, 19119, 7, 46265, 22046, 8, 628, 220, 220, 220, 288, 82, 796, 2124, 81, 13, 9654, 62, 76, 16344, 265, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 7, 69, 13, 7792, 8979, 13, 10782, 7753, 62, 6978, 8, 329, 277, 287, 299, 12993, 2915, 828, 198, 220, 220, 220, 220, 220, 220, 220, 10730, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12082, 2625, 1525, 62, 1073, 3669, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 662, 14681, 28, 50033, 288, 25, 288, 58, 45286, 4083, 1462, 62, 19608, 292, 316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7885, 407, 287, 288, 13, 1073, 3669, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 87, 81, 62, 46265, 22046, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 288, 82, 58, 45286, 60, 628, 198, 4299, 4808, 10782, 16624, 62, 1640, 62, 45286, 7, 1069, 457, 11, 7885, 11, 6246, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 66, 7753, 28, 14202, 11, 923, 62, 2435, 28, 14202, 11, 886, 62, 2435, 28, 14202, 11, 299, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13615, 257, 1351, 286, 357, 7792, 8979, 11, 8823, 19852, 8, 14729, 11188, 284, 262, 198, 220, 220, 220, 6831, 5563, 329, 257, 1813, 7885, 13, 628, 220, 220, 220, 16018, 453, 11, 1208, 299, 66, 7753, 11, 923, 62, 2435, 11, 886, 62, 2435, 393, 299, 329, 3224, 198, 220, 220, 220, 595, 4131, 328, 2288, 357, 3826, 651, 7785, 10314, 329, 511, 33815, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 277, 11, 410, 796, 6831, 13, 7792, 8979, 11, 6831, 13, 7792, 19852, 198, 220, 220, 220, 10662, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 22766, 7, 69, 11, 410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 69, 13, 10782, 85, 945, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 22179, 7, 69, 13, 23100, 3681, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 85, 13, 85, 1501, 480, 6624, 7885, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 48806, 13, 7792, 20468, 3681, 13, 23100, 3681, 6624, 409, 457, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 24455, 7, 69, 13, 25579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 764, 2875, 62, 1525, 7, 69, 13, 2435, 62, 9688, 8, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 3224, 595, 4131, 328, 2288, 198, 220, 220, 220, 611, 299, 66, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 10662, 13, 24455, 7, 69, 13, 10782, 7753, 13, 2339, 7203, 39658, 1343, 299, 66, 7753, 4008, 198, 220, 220, 220, 611, 923, 62, 2435, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 10662, 13, 24455, 7, 69, 13, 2435, 62, 437, 18189, 923, 62, 2435, 8, 198, 220, 220, 220, 611, 886, 62, 2435, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 10662, 13, 24455, 7, 69, 13, 2435, 62, 9688, 19841, 886, 62, 2435, 8, 198, 220, 220, 220, 299, 12993, 2915, 796, 10662, 13, 439, 3419, 628, 220, 220, 220, 611, 299, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 2915, 796, 299, 12993, 2915, 58, 25, 77, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 12993, 2915, 796, 299, 12993, 2915, 58, 77, 47715, 628, 220, 220, 220, 1303, 4155, 356, 1682, 1392, 257, 1255, 198, 220, 220, 220, 611, 407, 299, 12993, 2915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35748, 3673, 21077, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 3696, 547, 1043, 7268, 705, 90, 92, 6, 287, 262, 705, 90, 92, 6, 6306, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 11, 409, 457, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 2198, 1771, 262, 2482, 389, 3748, 198, 220, 220, 220, 3748, 62, 16624, 796, 900, 7, 418, 13, 6978, 13, 12093, 12453, 7, 69, 13, 7792, 8979, 13, 10782, 7753, 8, 329, 277, 287, 299, 12993, 2915, 8, 198, 220, 220, 220, 611, 18896, 7, 34642, 62, 16624, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 7120, 12405, 3011, 257, 7885, 422, 10338, 12, 13190, 3696, 25, 1391, 34642, 62, 16624, 27422, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1212, 714, 1085, 284, 10059, 9172, 0, 3167, 4131, 328, 4985, 416, 6427, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10782, 7753, 28, 284, 651, 7785, 11, 31577, 262, 10348, 2393, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 299, 12993, 2915, 198, 198, 4299, 4808, 29572, 62, 354, 14125, 7, 10782, 7785, 2599, 198, 220, 220, 220, 37227, 10044, 325, 281, 8823, 19852, 11, 8024, 257, 22155, 16855, 15225, 284, 16058, 278, 1863, 326, 15793, 526, 15931, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 815, 1577, 2035, 257, 1351, 11, 393, 705, 14202, 6, 357, 847, 3815, 481, 5298, 281, 6631, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 354, 14125, 796, 5418, 7, 10782, 7785, 13, 354, 2954, 278, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1401, 62, 354, 14125, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8633, 7, 13344, 7, 18206, 7, 10782, 7785, 13, 27740, 5736, 828, 1401, 62, 354, 14125, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2845, 6530, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16058, 278, 714, 307, 705, 3642, 29709, 3256, 543, 1595, 470, 13446, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198 ]
2.437478
2,807
from threading import Thread import time """ The Cat class is a Thread by itself. There must be an __init__ calling Super __init__ with self as an argument. Also, there must be an "run" def. """
[ 6738, 4704, 278, 1330, 14122, 198, 11748, 640, 198, 198, 37811, 383, 5181, 1398, 318, 257, 14122, 416, 2346, 13, 1318, 1276, 307, 281, 11593, 15003, 834, 4585, 3115, 198, 834, 15003, 834, 351, 2116, 355, 281, 4578, 13, 4418, 11, 612, 1276, 307, 281, 366, 5143, 1, 825, 13, 37227, 198 ]
3.769231
52
# IDEA: harvest.py? import sys import socket import simplejson as json from config import config dispatch_table = { "add-project" : add_project, "stop-project" : stop_project, "list-projects" : list_projects, "shutdown" : shutdown, } if len(sys.argv) == 1 or sys.argv[1] not in dispatch_table: print """Usage: add-project "Name" "tag1,tag2,tag3" -- add a project stop-project "id" -- stop recording data for a project list-projects -- list all active projects shutdown -- stop the daemon """ sys.exit() command = " ".join(sys.argv[1:]) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Connect the socket to the port where the server is listening server_address = ('localhost', config["server_socket_port"]) sock.connect(server_address) try: sock.sendall(command) data = "" while True: packet = sock.recv(1024) if not packet: break data += packet # print data print dispatch_table[sys.argv[1]](json.loads(data)) finally: sock.close()
[ 2, 4522, 16412, 25, 13222, 13, 9078, 30, 198, 198, 11748, 25064, 198, 11748, 17802, 198, 11748, 2829, 17752, 355, 33918, 198, 198, 6738, 4566, 1330, 4566, 628, 198, 6381, 17147, 62, 11487, 796, 1391, 198, 220, 220, 220, 366, 2860, 12, 16302, 1, 1058, 751, 62, 16302, 11, 198, 220, 220, 220, 366, 11338, 12, 16302, 1, 1058, 2245, 62, 16302, 11, 198, 220, 220, 220, 366, 4868, 12, 42068, 1, 1058, 1351, 62, 42068, 11, 198, 220, 220, 220, 366, 49625, 2902, 1, 1058, 18325, 11, 198, 92, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 352, 393, 25064, 13, 853, 85, 58, 16, 60, 407, 287, 27965, 62, 11487, 25, 198, 220, 220, 220, 3601, 37227, 28350, 25, 220, 198, 198, 2860, 12, 16302, 366, 5376, 1, 366, 12985, 16, 11, 12985, 17, 11, 12985, 18, 1, 1377, 751, 257, 1628, 198, 11338, 12, 16302, 366, 312, 1, 1377, 2245, 8296, 1366, 329, 257, 1628, 220, 198, 4868, 12, 42068, 1377, 1351, 477, 4075, 4493, 198, 49625, 2902, 1377, 2245, 262, 33386, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25064, 13, 37023, 3419, 198, 198, 21812, 796, 366, 27071, 22179, 7, 17597, 13, 853, 85, 58, 16, 25, 12962, 198, 198, 82, 735, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 198, 2, 8113, 262, 17802, 284, 262, 2493, 810, 262, 4382, 318, 8680, 198, 15388, 62, 21975, 796, 19203, 36750, 3256, 4566, 14692, 15388, 62, 44971, 62, 634, 8973, 8, 198, 82, 735, 13, 8443, 7, 15388, 62, 21975, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 32263, 13, 21280, 439, 7, 21812, 8, 198, 220, 220, 220, 1366, 796, 13538, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19638, 796, 32263, 13, 8344, 85, 7, 35500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 19638, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 15853, 19638, 198, 220, 220, 220, 1303, 3601, 1366, 198, 220, 220, 220, 3601, 27965, 62, 11487, 58, 17597, 13, 853, 85, 58, 16, 11907, 7, 17752, 13, 46030, 7, 7890, 4008, 198, 69, 3289, 25, 198, 220, 220, 220, 32263, 13, 19836, 3419, 198 ]
2.627204
397
from datetime import datetime
[ 198, 6738, 4818, 8079, 1330, 4818, 8079, 628, 628, 628, 198 ]
3.363636
11
# Python Program to print Strong Numbers from 1 to N import math maximum = int(input(" Please Enter the Maximum Value: ")) for Number in range(1, maximum): Temp = Number Sum = 0 while(Temp > 0): Reminder = Temp % 10 Factorial = math.factorial(Reminder) Sum = Sum + Factorial Temp = Temp // 10 if (Sum == Number): print(" %d is a Strong Number" %Number)
[ 2, 11361, 6118, 284, 3601, 13535, 27797, 422, 352, 284, 399, 198, 11748, 10688, 198, 198, 47033, 796, 493, 7, 15414, 7203, 4222, 6062, 262, 22246, 11052, 25, 366, 4008, 198, 198, 1640, 7913, 287, 2837, 7, 16, 11, 5415, 2599, 198, 220, 220, 220, 24189, 796, 7913, 198, 220, 220, 220, 5060, 796, 657, 198, 220, 220, 220, 981, 7, 30782, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3982, 5540, 796, 24189, 4064, 838, 198, 220, 220, 220, 220, 220, 220, 220, 19020, 5132, 796, 10688, 13, 22584, 5132, 7, 8413, 5540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5060, 796, 5060, 1343, 19020, 5132, 198, 220, 220, 220, 220, 220, 220, 220, 24189, 796, 24189, 3373, 838, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 357, 13065, 6624, 7913, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4064, 67, 318, 257, 13535, 7913, 1, 4064, 15057, 8 ]
2.59375
160
# # pip install pyside6 # from PySide6 import QtWidgets, QtGui, QtCore import logging from glglue.ctypesmath.camera import FrameState import glglue.gl3.samplecontroller from glglue.gl3 import gizmo logger = logging.getLogger(__name__) logging.basicConfig(format='%(levelname)s:%(name)s:%(message)s', level=logging.DEBUG) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) window = Window() window.show() sys.exit(app.exec())
[ 2, 198, 2, 7347, 2721, 279, 893, 485, 21, 198, 2, 198, 6738, 9485, 24819, 21, 1330, 33734, 54, 312, 11407, 11, 33734, 8205, 72, 11, 33734, 14055, 198, 11748, 18931, 198, 6738, 1278, 4743, 518, 13, 310, 9497, 11018, 13, 25695, 1330, 25184, 9012, 198, 11748, 1278, 4743, 518, 13, 4743, 18, 13, 39873, 36500, 198, 6738, 1278, 4743, 518, 13, 4743, 18, 1330, 308, 528, 5908, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 5715, 3672, 8, 82, 25, 4, 7, 3672, 8, 82, 25, 4, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 30531, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 598, 796, 33734, 54, 312, 11407, 13, 48, 23416, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 4324, 796, 26580, 3419, 198, 220, 220, 220, 4324, 13, 12860, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 1324, 13, 18558, 28955, 198 ]
2.426471
204
import psyneulink as pnl import numpy as np import matplotlib.pyplot as plt #sample Hebb FeatureNames=['small','medium','large','red','yellow','blue','circle','rectangle','triangle'] # create a variable that corresponds to the size of our feature space sizeF = len(FeatureNames) small_red_circle = [1,0,0,1,0,0,1,0,0] src = small_red_circle Hebb_comp = pnl.Composition() Hebb_mech=pnl.RecurrentTransferMechanism( size=sizeF, function=pnl.Linear, #integrator_mode = True, #integration_rate = 0.5, enable_learning = True, learning_rate = .1, name='Hebb_mech', #matrix=pnl.AutoAssociativeProjection, auto=0, hetero=0 ) Hebb_comp.add_node(Hebb_mech) Hebb_comp.execution_id = 1 # Use print_info to show numerical values and vis_info to show graphs of the changing values inputs_dict = {Hebb_mech:np.array(src)} out=Hebb_comp.learn(num_trials=5, # call_after_trial=vis_info, inputs=inputs_dict) print_info()
[ 11748, 17331, 710, 377, 676, 355, 279, 21283, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 39873, 679, 11848, 198, 198, 38816, 36690, 28, 17816, 17470, 41707, 24132, 41707, 11664, 41707, 445, 41707, 36022, 41707, 17585, 41707, 45597, 41707, 2554, 9248, 41707, 28461, 9248, 20520, 198, 198, 2, 2251, 257, 7885, 326, 24866, 284, 262, 2546, 286, 674, 3895, 2272, 198, 7857, 37, 796, 18896, 7, 38816, 36690, 8, 198, 17470, 62, 445, 62, 45597, 796, 685, 16, 11, 15, 11, 15, 11, 16, 11, 15, 11, 15, 11, 16, 11, 15, 11, 15, 60, 198, 10677, 796, 1402, 62, 445, 62, 45597, 628, 198, 1544, 11848, 62, 5589, 796, 279, 21283, 13, 5377, 9150, 3419, 198, 198, 1544, 11848, 62, 1326, 354, 28, 79, 21283, 13, 6690, 6657, 43260, 28452, 48162, 7, 198, 220, 220, 220, 2546, 28, 7857, 37, 11, 198, 220, 220, 220, 2163, 28, 79, 21283, 13, 14993, 451, 11, 198, 220, 220, 220, 1303, 18908, 12392, 62, 14171, 796, 6407, 11, 198, 220, 220, 220, 1303, 18908, 1358, 62, 4873, 796, 657, 13, 20, 11, 198, 220, 220, 220, 7139, 62, 40684, 796, 6407, 11, 198, 220, 220, 220, 4673, 62, 4873, 796, 764, 16, 11, 198, 220, 220, 220, 1438, 11639, 1544, 11848, 62, 1326, 354, 3256, 198, 220, 220, 220, 1303, 6759, 8609, 28, 79, 21283, 13, 27722, 8021, 1733, 876, 16775, 295, 11, 198, 220, 220, 220, 8295, 28, 15, 11, 198, 220, 220, 220, 14445, 78, 28, 15, 198, 220, 220, 220, 1267, 198, 198, 1544, 11848, 62, 5589, 13, 2860, 62, 17440, 7, 1544, 11848, 62, 1326, 354, 8, 198, 198, 1544, 11848, 62, 5589, 13, 18558, 1009, 62, 312, 796, 352, 198, 198, 2, 5765, 3601, 62, 10951, 284, 905, 29052, 3815, 290, 1490, 62, 10951, 284, 905, 28770, 286, 262, 5609, 3815, 628, 198, 15414, 82, 62, 11600, 796, 1391, 1544, 11848, 62, 1326, 354, 25, 37659, 13, 18747, 7, 10677, 38165, 198, 448, 28, 1544, 11848, 62, 5589, 13, 35720, 7, 22510, 62, 28461, 874, 28, 20, 11, 198, 220, 220, 220, 220, 220, 1303, 869, 62, 8499, 62, 45994, 28, 4703, 62, 10951, 11, 198, 220, 220, 220, 220, 220, 17311, 28, 15414, 82, 62, 11600, 8, 198, 198, 4798, 62, 10951, 3419, 198 ]
2.491003
389
import os, hashlib from cryptography.fernet import Fernet import base64 #import ast import json import module_postcode import datetime ''' Encrypt Mode : Fernet Decrypt Mode : Fernet Key size : 32bytes ''' # 키를 사용하기위해 만드는 로직 # 클라이언트에게 보낼 키를 암호화 # 클라이언트에게 받은 키를 복호화
[ 11748, 28686, 11, 12234, 8019, 198, 6738, 45898, 13, 69, 1142, 316, 1330, 38982, 316, 198, 11748, 2779, 2414, 198, 2, 11748, 6468, 198, 11748, 33918, 198, 11748, 8265, 62, 7353, 8189, 198, 11748, 4818, 8079, 628, 198, 198, 7061, 6, 198, 198, 27195, 6012, 10363, 1058, 38982, 316, 198, 10707, 6012, 10363, 1058, 38982, 316, 198, 198, 9218, 2546, 1058, 3933, 33661, 198, 198, 7061, 6, 628, 220, 220, 220, 1303, 220, 169, 224, 97, 167, 98, 120, 23821, 8955, 168, 248, 102, 47991, 246, 166, 116, 108, 168, 250, 226, 47991, 112, 31619, 100, 234, 167, 241, 250, 167, 232, 242, 31619, 94, 250, 168, 100, 223, 628, 220, 220, 220, 1303, 220, 169, 223, 112, 167, 251, 120, 35975, 112, 168, 244, 116, 169, 232, 116, 168, 245, 238, 166, 110, 234, 31619, 111, 112, 167, 224, 120, 220, 169, 224, 97, 167, 98, 120, 23821, 243, 242, 169, 246, 116, 169, 247, 242, 628, 220, 220, 220, 1303, 220, 169, 223, 112, 167, 251, 120, 35975, 112, 168, 244, 116, 169, 232, 116, 168, 245, 238, 166, 110, 234, 31619, 108, 249, 35975, 222, 220, 169, 224, 97, 167, 98, 120, 31619, 111, 113, 169, 246, 116, 169, 247, 242, 628 ]
1.4
205
import os from skimage.transform import rescale import numpy as np import matplotlib.pyplot as plt from cv_class.proj1.code.student import vis_hybrid_image, load_image, save_image, my_imfilter, gen_hybrid_image resultsDir = '..' + os.sep + 'results' if not os.path.exists(resultsDir): os.mkdir(resultsDir) test_image = load_image('../data/cat.bmp') print(test_image.shape) # cv2.imshow('test1', test_image) # cv2.waitKey(1000) test_image = rescale(test_image, [0.7, 0.7, 1], mode='reflect') print(test_image.shape) # cv2.imshow('test2', test_image) # cv2.waitKey(1000) identity_filter = np.asarray([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32) identity_image = my_imfilter(test_image, identity_filter) plt.imshow(identity_image) done = save_image(resultsDir + os.sep + 'identity_image.jpg', identity_image) blur_filter = np.ones((3, 3), dtype=np.float32) blur_filter /= np.sum(blur_filter, dtype=np.float32) # making the filter sum to 1 blur_image = my_imfilter(test_image, blur_filter) plt.imshow(blur_image) done = save_image(resultsDir + os.sep + 'blur_image.jpg', blur_image) sobel_filter = np.asarray([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32) # should respond to horizontal gradients sobel_image = my_imfilter(test_image, sobel_filter) # 0.5 added because the output image is centered around zero otherwise and mostly black sobel_image = np.clip(sobel_image + 0.5, 0.0, 1.0) plt.imshow(sobel_image) done = save_image(resultsDir + os.sep + 'sobel_image.jpg', sobel_image) laplacian_filter = np.asarray([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float32) laplacian_image = my_imfilter(test_image, laplacian_filter) # added because the output image is centered around zero otherwise and mostly black laplacian_image = np.clip(laplacian_image + 0.5, 0.0, 1.0) plt.figure() plt.imshow(laplacian_image) done = save_image(resultsDir + os.sep + 'laplacian_image.jpg', laplacian_image) # High pass "filter" alternative high_pass_image = test_image - blur_image high_pass_image = np.clip(high_pass_image + 0.5, 0.0, 1.0) plt.figure() plt.imshow(high_pass_image) done = save_image(resultsDir + os.sep + 'high_pass_image.jpg', high_pass_image) image1 = load_image('../data/dog.bmp') image2 = load_image('../data/cat.bmp') # display the dog and cat images plt.figure(figsize=(3, 3)) plt.imshow((image1 * 255).astype(np.uint8)) plt.figure(figsize=(3, 3)) plt.imshow((image2 * 255).astype(np.uint8)) cutoff_frequency = 7 low_frequencies, high_frequencies, hybrid_image = gen_hybrid_image(image1, image2, cutoff_frequency) ## Visualize and save outputs ## plt.figure() plt.imshow((low_frequencies * 255).astype(np.uint8)) plt.figure() plt.imshow(((high_frequencies + 0.5) * 255).astype(np.uint8)) vis = vis_hybrid_image(hybrid_image) plt.figure(figsize=(20, 20)) plt.imshow(vis) low_frequencies = np.clip(low_frequencies, 0.0, 1.0) high_frequencies = np.clip(high_frequencies, 0.0, 1.0) hybrid_image = np.clip(hybrid_image, 0.0, 1.0) vis = np.clip(vis, 0.0, 1.0) save_image('../results/low_frequencies.jpg', low_frequencies) save_image('../results/high_frequencies.jpg', high_frequencies) save_image('../results/hybrid_image.jpg', hybrid_image) save_image('../results/hybrid_image_scales.jpg', vis)
[ 11748, 28686, 198, 6738, 1341, 9060, 13, 35636, 1330, 6811, 1000, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 269, 85, 62, 4871, 13, 1676, 73, 16, 13, 8189, 13, 50139, 1330, 1490, 62, 12114, 10236, 62, 9060, 11, 3440, 62, 9060, 11, 3613, 62, 9060, 11, 616, 62, 320, 24455, 11, 2429, 62, 12114, 10236, 62, 9060, 198, 198, 43420, 35277, 796, 705, 492, 6, 1343, 28686, 13, 325, 79, 1343, 705, 43420, 6, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 43420, 35277, 2599, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 43420, 35277, 8, 198, 198, 9288, 62, 9060, 796, 3440, 62, 9060, 10786, 40720, 7890, 14, 9246, 13, 65, 3149, 11537, 198, 4798, 7, 9288, 62, 9060, 13, 43358, 8, 198, 2, 269, 85, 17, 13, 320, 12860, 10786, 9288, 16, 3256, 1332, 62, 9060, 8, 198, 2, 269, 85, 17, 13, 17077, 9218, 7, 12825, 8, 198, 198, 9288, 62, 9060, 796, 6811, 1000, 7, 9288, 62, 9060, 11, 685, 15, 13, 22, 11, 657, 13, 22, 11, 352, 4357, 4235, 11639, 35051, 11537, 198, 4798, 7, 9288, 62, 9060, 13, 43358, 8, 198, 2, 269, 85, 17, 13, 320, 12860, 10786, 9288, 17, 3256, 1332, 62, 9060, 8, 198, 2, 269, 85, 17, 13, 17077, 9218, 7, 12825, 8, 198, 198, 738, 414, 62, 24455, 796, 45941, 13, 292, 18747, 26933, 58, 15, 11, 657, 11, 657, 4357, 685, 15, 11, 352, 11, 657, 4357, 685, 15, 11, 657, 11, 657, 60, 4357, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 738, 414, 62, 9060, 796, 616, 62, 320, 24455, 7, 9288, 62, 9060, 11, 5369, 62, 24455, 8, 198, 489, 83, 13, 320, 12860, 7, 738, 414, 62, 9060, 8, 198, 28060, 796, 3613, 62, 9060, 7, 43420, 35277, 1343, 28686, 13, 325, 79, 1343, 705, 738, 414, 62, 9060, 13, 9479, 3256, 5369, 62, 9060, 8, 198, 198, 2436, 333, 62, 24455, 796, 45941, 13, 1952, 19510, 18, 11, 513, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 2436, 333, 62, 24455, 1220, 28, 45941, 13, 16345, 7, 2436, 333, 62, 24455, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 220, 1303, 1642, 262, 8106, 2160, 284, 352, 198, 2436, 333, 62, 9060, 796, 616, 62, 320, 24455, 7, 9288, 62, 9060, 11, 23671, 62, 24455, 8, 198, 489, 83, 13, 320, 12860, 7, 2436, 333, 62, 9060, 8, 198, 28060, 796, 3613, 62, 9060, 7, 43420, 35277, 1343, 28686, 13, 325, 79, 1343, 705, 2436, 333, 62, 9060, 13, 9479, 3256, 23671, 62, 9060, 8, 198, 198, 568, 6667, 62, 24455, 796, 45941, 13, 292, 18747, 26933, 58, 12, 16, 11, 657, 11, 352, 4357, 25915, 17, 11, 657, 11, 362, 4357, 25915, 16, 11, 657, 11, 352, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 220, 1303, 815, 3031, 284, 16021, 3915, 2334, 198, 568, 6667, 62, 9060, 796, 616, 62, 320, 24455, 7, 9288, 62, 9060, 11, 523, 6667, 62, 24455, 8, 198, 198, 2, 657, 13, 20, 2087, 780, 262, 5072, 2939, 318, 19254, 1088, 6632, 4306, 290, 4632, 2042, 198, 568, 6667, 62, 9060, 796, 45941, 13, 15036, 7, 568, 6667, 62, 9060, 1343, 657, 13, 20, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 489, 83, 13, 320, 12860, 7, 568, 6667, 62, 9060, 8, 198, 28060, 796, 3613, 62, 9060, 7, 43420, 35277, 1343, 28686, 13, 325, 79, 1343, 705, 568, 6667, 62, 9060, 13, 9479, 3256, 523, 6667, 62, 9060, 8, 198, 198, 5031, 489, 330, 666, 62, 24455, 796, 45941, 13, 292, 18747, 26933, 58, 15, 11, 352, 11, 657, 4357, 685, 16, 11, 532, 19, 11, 352, 4357, 685, 15, 11, 352, 11, 657, 60, 4357, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 5031, 489, 330, 666, 62, 9060, 796, 616, 62, 320, 24455, 7, 9288, 62, 9060, 11, 8591, 489, 330, 666, 62, 24455, 8, 198, 198, 2, 2087, 780, 262, 5072, 2939, 318, 19254, 1088, 6632, 4306, 290, 4632, 2042, 198, 5031, 489, 330, 666, 62, 9060, 796, 45941, 13, 15036, 7, 5031, 489, 330, 666, 62, 9060, 1343, 657, 13, 20, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 320, 12860, 7, 5031, 489, 330, 666, 62, 9060, 8, 198, 28060, 796, 3613, 62, 9060, 7, 43420, 35277, 1343, 28686, 13, 325, 79, 1343, 705, 5031, 489, 330, 666, 62, 9060, 13, 9479, 3256, 8591, 489, 330, 666, 62, 9060, 8, 198, 198, 2, 3334, 1208, 366, 24455, 1, 5559, 198, 8929, 62, 6603, 62, 9060, 796, 1332, 62, 9060, 532, 23671, 62, 9060, 198, 8929, 62, 6603, 62, 9060, 796, 45941, 13, 15036, 7, 8929, 62, 6603, 62, 9060, 1343, 657, 13, 20, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 320, 12860, 7, 8929, 62, 6603, 62, 9060, 8, 198, 28060, 796, 3613, 62, 9060, 7, 43420, 35277, 1343, 28686, 13, 325, 79, 1343, 705, 8929, 62, 6603, 62, 9060, 13, 9479, 3256, 1029, 62, 6603, 62, 9060, 8, 198, 198, 9060, 16, 796, 3440, 62, 9060, 10786, 40720, 7890, 14, 9703, 13, 65, 3149, 11537, 198, 9060, 17, 796, 3440, 62, 9060, 10786, 40720, 7890, 14, 9246, 13, 65, 3149, 11537, 198, 198, 2, 3359, 262, 3290, 290, 3797, 4263, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 18, 11, 513, 4008, 198, 489, 83, 13, 320, 12860, 19510, 9060, 16, 1635, 14280, 737, 459, 2981, 7, 37659, 13, 28611, 23, 4008, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 18, 11, 513, 4008, 198, 489, 83, 13, 320, 12860, 19510, 9060, 17, 1635, 14280, 737, 459, 2981, 7, 37659, 13, 28611, 23, 4008, 198, 8968, 2364, 62, 35324, 796, 767, 198, 9319, 62, 69, 8897, 3976, 11, 1029, 62, 69, 8897, 3976, 11, 14554, 62, 9060, 796, 2429, 62, 12114, 10236, 62, 9060, 7, 9060, 16, 11, 2939, 17, 11, 45616, 62, 35324, 8, 198, 2235, 15612, 1096, 290, 3613, 23862, 22492, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 320, 12860, 19510, 9319, 62, 69, 8897, 3976, 1635, 14280, 737, 459, 2981, 7, 37659, 13, 28611, 23, 4008, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 320, 12860, 19510, 7, 8929, 62, 69, 8897, 3976, 1343, 657, 13, 20, 8, 1635, 14280, 737, 459, 2981, 7, 37659, 13, 28611, 23, 4008, 198, 4703, 796, 1490, 62, 12114, 10236, 62, 9060, 7, 12114, 10236, 62, 9060, 8, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 1238, 11, 1160, 4008, 198, 489, 83, 13, 320, 12860, 7, 4703, 8, 198, 9319, 62, 69, 8897, 3976, 796, 45941, 13, 15036, 7, 9319, 62, 69, 8897, 3976, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 8929, 62, 69, 8897, 3976, 796, 45941, 13, 15036, 7, 8929, 62, 69, 8897, 3976, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 12114, 10236, 62, 9060, 796, 45941, 13, 15036, 7, 12114, 10236, 62, 9060, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 4703, 796, 45941, 13, 15036, 7, 4703, 11, 657, 13, 15, 11, 352, 13, 15, 8, 198, 21928, 62, 9060, 10786, 40720, 43420, 14, 9319, 62, 69, 8897, 3976, 13, 9479, 3256, 1877, 62, 69, 8897, 3976, 8, 198, 21928, 62, 9060, 10786, 40720, 43420, 14, 8929, 62, 69, 8897, 3976, 13, 9479, 3256, 1029, 62, 69, 8897, 3976, 8, 198, 21928, 62, 9060, 10786, 40720, 43420, 14, 12114, 10236, 62, 9060, 13, 9479, 3256, 14554, 62, 9060, 8, 198, 21928, 62, 9060, 10786, 40720, 43420, 14, 12114, 10236, 62, 9060, 62, 1416, 2040, 13, 9479, 3256, 1490, 8, 198 ]
2.454751
1,326
# Copyright 2019 The Feast Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from abc import ABC, abstractmethod from dataclasses import asdict, dataclass from datetime import datetime, timedelta from typing import Callable, Dict, List, Optional, Type, Union import pandas as pd import pyarrow from google.cloud import bigquery from jinja2 import BaseLoader, Environment from feast.data_source import BigQuerySource, DataSource, FileSource from feast.feature_view import FeatureView from feast.repo_config import RepoConfig ENTITY_DF_EVENT_TIMESTAMP_COL = "event_timestamp" class RetrievalJob(ABC): """RetrievalJob is used to manage the execution of a historical feature retrieval""" @abstractmethod def to_df(self): """Return dataset as Pandas DataFrame synchronously""" pass @dataclass(frozen=True) class FeatureViewQueryContext: """Context object used to template a BigQuery point-in-time SQL query""" name: str ttl: int entities: List[str] features: List[str] # feature reference format table_ref: str event_timestamp_column: str created_timestamp_column: str field_mapping: Dict[str, str] query: str table_subquery: str class OfflineStore(ABC): """ OfflineStore is an object used for all interaction between Feast and the service used for offline storage of features. Currently BigQuery is supported. """ @staticmethod @abstractmethod def pull_latest_from_table_or_query( data_source: DataSource, entity_names: List[str], feature_names: List[str], event_timestamp_column: str, created_timestamp_column: Optional[str], start_date: datetime, end_date: datetime, ) -> pyarrow.Table: """ Note that entity_names, feature_names, event_timestamp_column, and created_timestamp_column have all already been mapped back to column names of the source table and those column names are the values passed into this function. """ pass @staticmethod @abstractmethod def _upload_entity_df_into_bigquery(project, entity_df) -> str: """Uploads a Pandas entity dataframe into a BigQuery table and returns a reference to the resulting table""" client = bigquery.Client() # First create the BigQuery dataset if it doesn't exist dataset = bigquery.Dataset(f"{client.project}.feast_{project}") dataset.location = "US" client.create_dataset( dataset, exists_ok=True ) # TODO: Consider moving this to apply or BigQueryOfflineStore # Drop the index so that we dont have unnecessary columns entity_df.reset_index(drop=True, inplace=True) # Upload the dataframe into BigQuery, creating a temporary table job_config = bigquery.LoadJobConfig() table_id = f"{client.project}.feast_{project}.entity_df_{int(time.time())}" job = client.load_table_from_dataframe(entity_df, table_id, job_config=job_config,) job.result() # Ensure that the table expires after some time table = client.get_table(table=table_id) table.expires = datetime.utcnow() + timedelta(minutes=30) client.update_table(table, ["expires"]) return table_id def get_feature_view_query_context( feature_refs: List[str], feature_views: List[FeatureView] ) -> List[FeatureViewQueryContext]: """Build a query context containing all information required to template a BigQuery point-in-time SQL query""" feature_views_to_feature_map = _get_requested_feature_views_to_features_dict( feature_refs, feature_views ) query_context = [] for feature_view, features in feature_views_to_feature_map.items(): entity_names = [entity for entity in feature_view.entities] if isinstance(feature_view.ttl, timedelta): ttl_seconds = int(feature_view.ttl.total_seconds()) else: ttl_seconds = 0 assert isinstance(feature_view.input, BigQuerySource) context = FeatureViewQueryContext( name=feature_view.name, ttl=ttl_seconds, entities=entity_names, features=features, table_ref=feature_view.input.table_ref, event_timestamp_column=feature_view.input.event_timestamp_column, created_timestamp_column=feature_view.input.created_timestamp_column, # TODO: Make created column optional and not hardcoded field_mapping=feature_view.input.field_mapping, query=feature_view.input.query, table_subquery=feature_view.input.get_table_query_string(), ) query_context.append(context) return query_context def build_point_in_time_query( feature_view_query_contexts: List[FeatureViewQueryContext], min_timestamp: datetime, max_timestamp: datetime, left_table_query_string: str, ): """Build point-in-time query between each feature view table and the entity dataframe""" template = Environment(loader=BaseLoader()).from_string( source=SINGLE_FEATURE_VIEW_POINT_IN_TIME_JOIN ) # Add additional fields to dict template_context = { "min_timestamp": min_timestamp, "max_timestamp": max_timestamp, "left_table_query_string": left_table_query_string, "featureviews": [asdict(context) for context in feature_view_query_contexts], } query = template.render(template_context) return query def get_offline_store_for_retrieval(feature_views: List[FeatureView],) -> OfflineStore: """Detect which offline store should be used for retrieving historical features""" source_types = [type(feature_view.input) for feature_view in feature_views] # Retrieve features from ParquetOfflineStore if all(source == FileSource for source in source_types): return FileOfflineStore() # Retrieve features from BigQueryOfflineStore if all(source == BigQuerySource for source in source_types): return BigQueryOfflineStore() # Could not map inputs to an OfflineStore implementation raise NotImplementedError( "Unsupported combination of feature view input source types. Please ensure that all source types are " "consistent and available in the same offline store." ) def _get_requested_feature_views_to_features_dict( feature_refs: List[str], feature_views: List[FeatureView] ) -> Dict[FeatureView, List[str]]: """Create a dict of FeatureView -> List[Feature] for all requested features""" feature_views_to_feature_map = {} # type: Dict[FeatureView, List[str]] for ref in feature_refs: ref_parts = ref.split(":") feature_view_from_ref = ref_parts[0] feature_from_ref = ref_parts[1] found = False for feature_view_from_registry in feature_views: if feature_view_from_registry.name == feature_view_from_ref: found = True if feature_view_from_registry in feature_views_to_feature_map: feature_views_to_feature_map[feature_view_from_registry].append( feature_from_ref ) else: feature_views_to_feature_map[feature_view_from_registry] = [ feature_from_ref ] if not found: raise ValueError(f"Could not find feature view from reference {ref}") return feature_views_to_feature_map # TODO: Optimizations # * Use GENERATE_UUID() instead of ROW_NUMBER(), or join on entity columns directly # * Precompute ROW_NUMBER() so that it doesn't have to be recomputed for every query on entity_dataframe # * Create temporary tables instead of keeping all tables in memory SINGLE_FEATURE_VIEW_POINT_IN_TIME_JOIN = """ WITH entity_dataframe AS ( SELECT ROW_NUMBER() OVER() AS row_number, edf.* FROM {{ left_table_query_string }} as edf ), {% for featureview in featureviews %} /* This query template performs the point-in-time correctness join for a single feature set table to the provided entity table. 1. Concatenate the timestamp and entities from the feature set table with the entity dataset. Feature values are joined to this table later for improved efficiency. featureview_timestamp is equal to null in rows from the entity dataset. */ {{ featureview.name }}__union_features AS ( SELECT -- unique identifier for each row in the entity dataset. row_number, -- event_timestamp contains the timestamps to join onto event_timestamp, -- the feature_timestamp, i.e. the latest occurrence of the requested feature relative to the entity_dataset timestamp NULL as {{ featureview.name }}_feature_timestamp, -- created timestamp of the feature at the corresponding feature_timestamp NULL as created_timestamp, -- select only entities belonging to this feature set {{ featureview.entities | join(', ')}}, -- boolean for filtering the dataset later true AS is_entity_table FROM entity_dataframe UNION ALL SELECT NULL as row_number, {{ featureview.event_timestamp_column }} as event_timestamp, {{ featureview.event_timestamp_column }} as {{ featureview.name }}_feature_timestamp, {{ featureview.created_timestamp_column }} as created_timestamp, {{ featureview.entities | join(', ')}}, false AS is_entity_table FROM {{ featureview.table_subquery }} WHERE {{ featureview.event_timestamp_column }} <= '{{ max_timestamp }}' {% if featureview.ttl == 0 %}{% else %}AND {{ featureview.event_timestamp_column }} >= Timestamp_sub(TIMESTAMP '{{ min_timestamp }}', interval {{ featureview.ttl }} second){% endif %} ), /* 2. Window the data in the unioned dataset, partitioning by entity and ordering by event_timestamp, as well as is_entity_table. Within each window, back-fill the feature_timestamp - as a result of this, the null feature_timestamps in the rows from the entity table should now contain the latest timestamps relative to the row's event_timestamp. For rows where event_timestamp(provided datetime) - feature_timestamp > max age, set the feature_timestamp to null. */ {{ featureview.name }}__joined AS ( SELECT row_number, event_timestamp, {{ featureview.entities | join(', ')}}, {% for feature in featureview.features %} IF(event_timestamp >= {{ featureview.name }}_feature_timestamp {% if featureview.ttl == 0 %}{% else %}AND Timestamp_sub(event_timestamp, interval {{ featureview.ttl }} second) < {{ featureview.name }}_feature_timestamp{% endif %}, {{ featureview.name }}__{{ feature }}, NULL) as {{ featureview.name }}__{{ feature }}{% if loop.last %}{% else %}, {% endif %} {% endfor %} FROM ( SELECT row_number, event_timestamp, {{ featureview.entities | join(', ')}}, FIRST_VALUE(created_timestamp IGNORE NULLS) over w AS created_timestamp, FIRST_VALUE({{ featureview.name }}_feature_timestamp IGNORE NULLS) over w AS {{ featureview.name }}_feature_timestamp, is_entity_table FROM {{ featureview.name }}__union_features WINDOW w AS (PARTITION BY {{ featureview.entities | join(', ') }} ORDER BY event_timestamp DESC, is_entity_table DESC, created_timestamp DESC ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) ) /* 3. Select only the rows from the entity table, and join the features from the original feature set table to the dataset using the entity values, feature_timestamp, and created_timestamps. */ LEFT JOIN ( SELECT {{ featureview.event_timestamp_column }} as {{ featureview.name }}_feature_timestamp, {{ featureview.created_timestamp_column }} as created_timestamp, {{ featureview.entities | join(', ')}}, {% for feature in featureview.features %} {{ feature }} as {{ featureview.name }}__{{ feature }}{% if loop.last %}{% else %}, {% endif %} {% endfor %} FROM {{ featureview.table_subquery }} WHERE {{ featureview.event_timestamp_column }} <= '{{ max_timestamp }}' {% if featureview.ttl == 0 %}{% else %}AND {{ featureview.event_timestamp_column }} >= Timestamp_sub(TIMESTAMP '{{ min_timestamp }}', interval {{ featureview.ttl }} second){% endif %} ) USING ({{ featureview.name }}_feature_timestamp, created_timestamp, {{ featureview.entities | join(', ')}}) WHERE is_entity_table ), /* 4. Finally, deduplicate the rows by selecting the first occurrence of each entity table row_number. */ {{ featureview.name }}__deduped AS (SELECT k.* FROM ( SELECT ARRAY_AGG(row LIMIT 1)[OFFSET(0)] k FROM {{ featureview.name }}__joined row GROUP BY row_number )){% if loop.last %}{% else %}, {% endif %} {% endfor %} /* Joins the outputs of multiple time travel joins to a single table. */ SELECT edf.event_timestamp as event_timestamp, * EXCEPT (row_number, event_timestamp) FROM entity_dataframe edf {% for featureview in featureviews %} LEFT JOIN ( SELECT row_number, {% for feature in featureview.features %} {{ featureview.name }}__{{ feature }}{% if loop.last %}{% else %}, {% endif %} {% endfor %} FROM {{ featureview.name }}__deduped ) USING (row_number) {% endfor %} ORDER BY event_timestamp """
[ 2, 15069, 13130, 383, 42936, 46665, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 11748, 640, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 4818, 330, 28958, 1330, 355, 11600, 11, 4818, 330, 31172, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 19720, 1330, 4889, 540, 11, 360, 713, 11, 7343, 11, 32233, 11, 5994, 11, 4479, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 12972, 6018, 198, 6738, 23645, 13, 17721, 1330, 1263, 22766, 198, 6738, 474, 259, 6592, 17, 1330, 7308, 17401, 11, 9344, 198, 198, 6738, 26951, 13, 7890, 62, 10459, 1330, 4403, 20746, 7416, 11, 6060, 7416, 11, 9220, 7416, 198, 6738, 26951, 13, 30053, 62, 1177, 1330, 27018, 7680, 198, 6738, 26951, 13, 260, 7501, 62, 11250, 1330, 1432, 78, 16934, 198, 198, 3525, 9050, 62, 8068, 62, 20114, 3525, 62, 51, 3955, 6465, 23518, 62, 25154, 796, 366, 15596, 62, 16514, 27823, 1, 628, 198, 4871, 4990, 380, 18206, 33308, 7, 24694, 2599, 198, 220, 220, 220, 37227, 9781, 380, 18206, 33308, 318, 973, 284, 6687, 262, 9706, 286, 257, 6754, 3895, 45069, 37811, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 284, 62, 7568, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 27039, 355, 16492, 292, 6060, 19778, 18305, 3481, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 198, 4871, 27018, 7680, 20746, 21947, 25, 198, 220, 220, 220, 37227, 21947, 2134, 973, 284, 11055, 257, 4403, 20746, 966, 12, 259, 12, 2435, 16363, 12405, 37811, 628, 220, 220, 220, 1438, 25, 965, 198, 220, 220, 220, 256, 28781, 25, 493, 198, 220, 220, 220, 12066, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 3033, 25, 7343, 58, 2536, 60, 220, 1303, 3895, 4941, 5794, 198, 220, 220, 220, 3084, 62, 5420, 25, 965, 198, 220, 220, 220, 1785, 62, 16514, 27823, 62, 28665, 25, 965, 198, 220, 220, 220, 2727, 62, 16514, 27823, 62, 28665, 25, 965, 198, 220, 220, 220, 2214, 62, 76, 5912, 25, 360, 713, 58, 2536, 11, 965, 60, 198, 220, 220, 220, 12405, 25, 965, 198, 220, 220, 220, 3084, 62, 7266, 22766, 25, 965, 628, 198, 4871, 49749, 22658, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49749, 22658, 318, 281, 2134, 973, 329, 477, 10375, 1022, 42936, 290, 262, 2139, 973, 329, 18043, 6143, 286, 198, 220, 220, 220, 3033, 13, 16888, 4403, 20746, 318, 4855, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 2834, 62, 42861, 62, 6738, 62, 11487, 62, 273, 62, 22766, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 10459, 25, 6060, 7416, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9312, 62, 14933, 25, 7343, 58, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 14933, 25, 7343, 58, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 16514, 27823, 62, 28665, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 16514, 27823, 62, 28665, 25, 32233, 58, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4475, 25, 4818, 8079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 4475, 25, 4818, 8079, 11, 198, 220, 220, 220, 1267, 4613, 12972, 6018, 13, 10962, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 9312, 62, 14933, 11, 3895, 62, 14933, 11, 1785, 62, 16514, 27823, 62, 28665, 11, 290, 2727, 62, 16514, 27823, 62, 28665, 198, 220, 220, 220, 220, 220, 220, 220, 423, 477, 1541, 587, 27661, 736, 284, 5721, 3891, 286, 262, 2723, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 290, 883, 5721, 3891, 389, 262, 3815, 3804, 656, 428, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 2488, 397, 8709, 24396, 628, 198, 198, 4299, 4808, 25850, 62, 26858, 62, 7568, 62, 20424, 62, 14261, 22766, 7, 16302, 11, 9312, 62, 7568, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 41592, 82, 257, 16492, 292, 9312, 1366, 14535, 656, 257, 4403, 20746, 3084, 290, 5860, 257, 4941, 284, 262, 7186, 3084, 37811, 198, 220, 220, 220, 5456, 796, 1263, 22766, 13, 11792, 3419, 628, 220, 220, 220, 1303, 3274, 2251, 262, 4403, 20746, 27039, 611, 340, 1595, 470, 2152, 198, 220, 220, 220, 27039, 796, 1263, 22766, 13, 27354, 292, 316, 7, 69, 1, 90, 16366, 13, 16302, 27422, 5036, 459, 23330, 16302, 92, 4943, 198, 220, 220, 220, 27039, 13, 24886, 796, 366, 2937, 1, 198, 220, 220, 220, 5456, 13, 17953, 62, 19608, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 11, 7160, 62, 482, 28, 17821, 198, 220, 220, 220, 1267, 220, 1303, 16926, 46, 25, 12642, 3867, 428, 284, 4174, 393, 4403, 20746, 28657, 22658, 628, 220, 220, 220, 1303, 14258, 262, 6376, 523, 326, 356, 17666, 423, 13114, 15180, 198, 220, 220, 220, 9312, 62, 7568, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 11, 287, 5372, 28, 17821, 8, 628, 220, 220, 220, 1303, 36803, 262, 1366, 14535, 656, 4403, 20746, 11, 4441, 257, 8584, 3084, 198, 220, 220, 220, 1693, 62, 11250, 796, 1263, 22766, 13, 8912, 33308, 16934, 3419, 198, 220, 220, 220, 3084, 62, 312, 796, 277, 1, 90, 16366, 13, 16302, 27422, 5036, 459, 23330, 16302, 27422, 26858, 62, 7568, 23330, 600, 7, 2435, 13, 2435, 28955, 36786, 198, 220, 220, 220, 1693, 796, 5456, 13, 2220, 62, 11487, 62, 6738, 62, 7890, 14535, 7, 26858, 62, 7568, 11, 3084, 62, 312, 11, 1693, 62, 11250, 28, 21858, 62, 11250, 35751, 198, 220, 220, 220, 1693, 13, 20274, 3419, 628, 220, 220, 220, 1303, 48987, 326, 262, 3084, 27396, 706, 617, 640, 198, 220, 220, 220, 3084, 796, 5456, 13, 1136, 62, 11487, 7, 11487, 28, 11487, 62, 312, 8, 198, 220, 220, 220, 3084, 13, 11201, 2387, 796, 4818, 8079, 13, 315, 66, 2197, 3419, 1343, 28805, 12514, 7, 1084, 1769, 28, 1270, 8, 198, 220, 220, 220, 5456, 13, 19119, 62, 11487, 7, 11487, 11, 14631, 11201, 2387, 8973, 8, 628, 220, 220, 220, 1441, 3084, 62, 312, 628, 198, 4299, 651, 62, 30053, 62, 1177, 62, 22766, 62, 22866, 7, 198, 220, 220, 220, 3895, 62, 5420, 82, 25, 7343, 58, 2536, 4357, 3895, 62, 33571, 25, 7343, 58, 38816, 7680, 60, 198, 8, 4613, 7343, 58, 38816, 7680, 20746, 21947, 5974, 198, 220, 220, 220, 37227, 15580, 257, 12405, 4732, 7268, 477, 1321, 2672, 284, 11055, 257, 4403, 20746, 966, 12, 259, 12, 2435, 16363, 12405, 37811, 628, 220, 220, 220, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 796, 4808, 1136, 62, 25927, 276, 62, 30053, 62, 33571, 62, 1462, 62, 40890, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 5420, 82, 11, 3895, 62, 33571, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 12405, 62, 22866, 796, 17635, 198, 220, 220, 220, 329, 3895, 62, 1177, 11, 3033, 287, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 9312, 62, 14933, 796, 685, 26858, 329, 9312, 287, 3895, 62, 1177, 13, 298, 871, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 30053, 62, 1177, 13, 926, 75, 11, 28805, 12514, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 28781, 62, 43012, 796, 493, 7, 30053, 62, 1177, 13, 926, 75, 13, 23350, 62, 43012, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 28781, 62, 43012, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 30053, 62, 1177, 13, 15414, 11, 4403, 20746, 7416, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 27018, 7680, 20746, 21947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 30053, 62, 1177, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 28781, 28, 926, 75, 62, 43012, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12066, 28, 26858, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 40890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 5420, 28, 30053, 62, 1177, 13, 15414, 13, 11487, 62, 5420, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 16514, 27823, 62, 28665, 28, 30053, 62, 1177, 13, 15414, 13, 15596, 62, 16514, 27823, 62, 28665, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 16514, 27823, 62, 28665, 28, 30053, 62, 1177, 13, 15414, 13, 25598, 62, 16514, 27823, 62, 28665, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 6889, 2727, 5721, 11902, 290, 407, 1327, 40976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 62, 76, 5912, 28, 30053, 62, 1177, 13, 15414, 13, 3245, 62, 76, 5912, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 28, 30053, 62, 1177, 13, 15414, 13, 22766, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 7266, 22766, 28, 30053, 62, 1177, 13, 15414, 13, 1136, 62, 11487, 62, 22766, 62, 8841, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 22866, 13, 33295, 7, 22866, 8, 198, 220, 220, 220, 1441, 12405, 62, 22866, 628, 198, 4299, 1382, 62, 4122, 62, 259, 62, 2435, 62, 22766, 7, 198, 220, 220, 220, 3895, 62, 1177, 62, 22766, 62, 22866, 82, 25, 7343, 58, 38816, 7680, 20746, 21947, 4357, 198, 220, 220, 220, 949, 62, 16514, 27823, 25, 4818, 8079, 11, 198, 220, 220, 220, 3509, 62, 16514, 27823, 25, 4818, 8079, 11, 198, 220, 220, 220, 1364, 62, 11487, 62, 22766, 62, 8841, 25, 965, 11, 198, 2599, 198, 220, 220, 220, 37227, 15580, 966, 12, 259, 12, 2435, 12405, 1022, 1123, 3895, 1570, 3084, 290, 262, 9312, 1366, 14535, 37811, 198, 220, 220, 220, 11055, 796, 9344, 7, 29356, 28, 14881, 17401, 3419, 737, 6738, 62, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 28, 50, 2751, 2538, 62, 15112, 40086, 62, 28206, 62, 16402, 12394, 62, 1268, 62, 34694, 62, 45006, 1268, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 3060, 3224, 7032, 284, 8633, 198, 220, 220, 220, 11055, 62, 22866, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 62, 16514, 27823, 1298, 949, 62, 16514, 27823, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9806, 62, 16514, 27823, 1298, 3509, 62, 16514, 27823, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9464, 62, 11487, 62, 22766, 62, 8841, 1298, 1364, 62, 11487, 62, 22766, 62, 8841, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30053, 33571, 1298, 685, 292, 11600, 7, 22866, 8, 329, 4732, 287, 3895, 62, 1177, 62, 22766, 62, 22866, 82, 4357, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 12405, 796, 11055, 13, 13287, 7, 28243, 62, 22866, 8, 198, 220, 220, 220, 1441, 12405, 628, 198, 198, 4299, 651, 62, 2364, 1370, 62, 8095, 62, 1640, 62, 1186, 380, 18206, 7, 30053, 62, 33571, 25, 7343, 58, 38816, 7680, 4357, 8, 4613, 49749, 22658, 25, 198, 220, 220, 220, 37227, 47504, 543, 18043, 3650, 815, 307, 973, 329, 50122, 6754, 3033, 37811, 628, 220, 220, 220, 2723, 62, 19199, 796, 685, 4906, 7, 30053, 62, 1177, 13, 15414, 8, 329, 3895, 62, 1177, 287, 3895, 62, 33571, 60, 628, 220, 220, 220, 1303, 4990, 30227, 3033, 422, 2547, 21108, 28657, 22658, 198, 220, 220, 220, 611, 477, 7, 10459, 6624, 9220, 7416, 329, 2723, 287, 2723, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9220, 28657, 22658, 3419, 628, 220, 220, 220, 1303, 4990, 30227, 3033, 422, 4403, 20746, 28657, 22658, 198, 220, 220, 220, 611, 477, 7, 10459, 6624, 4403, 20746, 7416, 329, 2723, 287, 2723, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4403, 20746, 28657, 22658, 3419, 628, 220, 220, 220, 1303, 10347, 407, 3975, 17311, 284, 281, 49749, 22658, 7822, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3118, 15999, 6087, 286, 3895, 1570, 5128, 2723, 3858, 13, 4222, 4155, 326, 477, 2723, 3858, 389, 366, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5936, 7609, 290, 1695, 287, 262, 976, 18043, 3650, 526, 198, 220, 220, 220, 1267, 628, 198, 4299, 4808, 1136, 62, 25927, 276, 62, 30053, 62, 33571, 62, 1462, 62, 40890, 62, 11600, 7, 198, 220, 220, 220, 3895, 62, 5420, 82, 25, 7343, 58, 2536, 4357, 3895, 62, 33571, 25, 7343, 58, 38816, 7680, 60, 198, 8, 4613, 360, 713, 58, 38816, 7680, 11, 7343, 58, 2536, 60, 5974, 198, 220, 220, 220, 37227, 16447, 257, 8633, 286, 27018, 7680, 4613, 7343, 58, 38816, 60, 329, 477, 9167, 3033, 37811, 628, 220, 220, 220, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 796, 23884, 220, 1303, 2099, 25, 360, 713, 58, 38816, 7680, 11, 7343, 58, 2536, 11907, 198, 220, 220, 220, 329, 1006, 287, 3895, 62, 5420, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 42632, 796, 1006, 13, 35312, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 1177, 62, 6738, 62, 5420, 796, 1006, 62, 42632, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 6738, 62, 5420, 796, 1006, 62, 42632, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3895, 62, 1177, 62, 6738, 62, 2301, 4592, 287, 3895, 62, 33571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3895, 62, 1177, 62, 6738, 62, 2301, 4592, 13, 3672, 6624, 3895, 62, 1177, 62, 6738, 62, 5420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3895, 62, 1177, 62, 6738, 62, 2301, 4592, 287, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 58, 30053, 62, 1177, 62, 6738, 62, 2301, 4592, 4083, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 6738, 62, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 58, 30053, 62, 1177, 62, 6738, 62, 2301, 4592, 60, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 6738, 62, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 23722, 407, 1064, 3895, 1570, 422, 4941, 1391, 5420, 92, 4943, 198, 220, 220, 220, 1441, 3895, 62, 33571, 62, 1462, 62, 30053, 62, 8899, 628, 198, 2, 16926, 46, 25, 30011, 4582, 198, 2, 220, 220, 1635, 5765, 24700, 1137, 6158, 62, 52, 27586, 3419, 2427, 286, 371, 3913, 62, 41359, 13246, 22784, 393, 4654, 319, 9312, 15180, 3264, 198, 2, 220, 220, 1635, 3771, 5589, 1133, 371, 3913, 62, 41359, 13246, 3419, 523, 326, 340, 1595, 470, 423, 284, 307, 664, 296, 17128, 329, 790, 12405, 319, 9312, 62, 7890, 14535, 198, 2, 220, 220, 1635, 13610, 8584, 8893, 2427, 286, 5291, 477, 8893, 287, 4088, 198, 198, 50, 2751, 2538, 62, 15112, 40086, 62, 28206, 62, 16402, 12394, 62, 1268, 62, 34694, 62, 45006, 1268, 796, 37227, 198, 54, 10554, 9312, 62, 7890, 14535, 7054, 357, 198, 220, 220, 220, 33493, 371, 3913, 62, 41359, 13246, 3419, 28729, 3419, 7054, 5752, 62, 17618, 11, 1225, 69, 15885, 16034, 22935, 1364, 62, 11487, 62, 22766, 62, 8841, 34949, 355, 1225, 69, 198, 828, 198, 90, 4, 329, 3895, 1177, 287, 3895, 33571, 4064, 92, 198, 15211, 198, 770, 12405, 11055, 17706, 262, 966, 12, 259, 12, 2435, 29409, 4654, 329, 257, 2060, 3895, 900, 3084, 198, 284, 262, 2810, 9312, 3084, 13, 198, 352, 13, 1482, 9246, 268, 378, 262, 41033, 290, 12066, 422, 262, 3895, 900, 3084, 351, 262, 9312, 27039, 13, 198, 27018, 3815, 389, 5399, 284, 428, 3084, 1568, 329, 6596, 9332, 13, 198, 3895, 1177, 62, 16514, 27823, 318, 4961, 284, 9242, 287, 15274, 422, 262, 9312, 27039, 13, 198, 9466, 198, 27007, 3895, 1177, 13, 3672, 34949, 834, 24592, 62, 40890, 7054, 357, 198, 46506, 198, 220, 1377, 3748, 27421, 329, 1123, 5752, 287, 262, 9312, 27039, 13, 198, 220, 5752, 62, 17618, 11, 198, 220, 1377, 1785, 62, 16514, 27823, 4909, 262, 4628, 395, 9430, 284, 4654, 4291, 198, 220, 1785, 62, 16514, 27823, 11, 198, 220, 1377, 262, 3895, 62, 16514, 27823, 11, 1312, 13, 68, 13, 262, 3452, 19810, 286, 262, 9167, 3895, 3585, 284, 262, 9312, 62, 19608, 292, 316, 41033, 198, 220, 15697, 355, 22935, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 11, 198, 220, 1377, 2727, 41033, 286, 262, 3895, 379, 262, 11188, 3895, 62, 16514, 27823, 198, 220, 15697, 355, 2727, 62, 16514, 27823, 11, 198, 220, 1377, 2922, 691, 12066, 16686, 284, 428, 3895, 900, 198, 220, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 38165, 5512, 198, 220, 1377, 25131, 329, 25431, 262, 27039, 1568, 198, 220, 2081, 7054, 318, 62, 26858, 62, 11487, 198, 10913, 2662, 9312, 62, 7890, 14535, 198, 4944, 2849, 11096, 198, 46506, 198, 220, 15697, 355, 5752, 62, 17618, 11, 198, 220, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 355, 1785, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 355, 22935, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 25598, 62, 16514, 27823, 62, 28665, 34949, 355, 2727, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 38165, 5512, 198, 220, 3991, 7054, 318, 62, 26858, 62, 11487, 198, 10913, 2662, 22935, 3895, 1177, 13, 11487, 62, 7266, 22766, 34949, 33411, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 19841, 705, 27007, 3509, 62, 16514, 27823, 34949, 6, 198, 90, 4, 611, 3895, 1177, 13, 926, 75, 6624, 657, 4064, 18477, 4, 2073, 4064, 92, 6981, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 18189, 5045, 27823, 62, 7266, 7, 51, 3955, 6465, 23518, 705, 27007, 949, 62, 16514, 27823, 34949, 3256, 16654, 22935, 3895, 1177, 13, 926, 75, 34949, 1218, 19953, 4, 45762, 4064, 92, 198, 828, 198, 15211, 198, 362, 13, 26580, 262, 1366, 287, 262, 6441, 276, 27039, 11, 18398, 278, 416, 9312, 290, 16216, 416, 1785, 62, 16514, 27823, 11, 355, 198, 880, 355, 318, 62, 26858, 62, 11487, 13, 198, 12511, 1123, 4324, 11, 736, 12, 20797, 262, 3895, 62, 16514, 27823, 532, 355, 257, 1255, 286, 428, 11, 262, 9242, 3895, 62, 16514, 395, 9430, 198, 287, 262, 15274, 422, 262, 9312, 3084, 815, 783, 3994, 262, 3452, 4628, 395, 9430, 3585, 284, 262, 5752, 338, 198, 1785, 62, 16514, 27823, 13, 198, 1114, 15274, 810, 1785, 62, 16514, 27823, 7, 41279, 4818, 8079, 8, 532, 3895, 62, 16514, 27823, 1875, 3509, 2479, 11, 900, 262, 198, 3895, 62, 16514, 27823, 284, 9242, 13, 198, 9466, 198, 27007, 3895, 1177, 13, 3672, 34949, 834, 46416, 7054, 357, 198, 46506, 198, 220, 5752, 62, 17618, 11, 198, 220, 1785, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 38165, 5512, 198, 220, 1391, 4, 329, 3895, 287, 3895, 1177, 13, 40890, 4064, 92, 198, 220, 16876, 7, 15596, 62, 16514, 27823, 18189, 22935, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 1391, 4, 611, 3895, 1177, 13, 926, 75, 6624, 657, 4064, 18477, 4, 2073, 4064, 92, 6981, 5045, 27823, 62, 7266, 7, 15596, 62, 16514, 27823, 11, 16654, 22935, 3895, 1177, 13, 926, 75, 34949, 1218, 8, 1279, 22935, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 90, 4, 45762, 4064, 5512, 22935, 3895, 1177, 13, 3672, 34949, 834, 27007, 3895, 1782, 5512, 15697, 8, 355, 22935, 3895, 1177, 13, 3672, 34949, 834, 27007, 3895, 1782, 18477, 4, 611, 9052, 13, 12957, 4064, 18477, 4, 2073, 4064, 5512, 1391, 4, 45762, 4064, 92, 198, 220, 1391, 4, 886, 1640, 4064, 92, 198, 10913, 2662, 357, 198, 46506, 198, 220, 5752, 62, 17618, 11, 198, 220, 1785, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 38165, 5512, 198, 220, 31328, 62, 39488, 7, 25598, 62, 16514, 27823, 28730, 6965, 15697, 50, 8, 625, 266, 7054, 2727, 62, 16514, 27823, 11, 198, 220, 31328, 62, 39488, 15090, 90, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 28730, 6965, 15697, 50, 8, 625, 266, 7054, 22935, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 11, 198, 220, 318, 62, 26858, 62, 11487, 198, 10913, 2662, 22935, 3895, 1177, 13, 3672, 34949, 834, 24592, 62, 40890, 198, 28929, 3913, 266, 7054, 357, 30709, 17941, 11050, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 8, 34949, 38678, 11050, 1785, 62, 16514, 27823, 22196, 34, 11, 318, 62, 26858, 62, 11487, 22196, 34, 11, 2727, 62, 16514, 27823, 22196, 34, 371, 22845, 38651, 8845, 1677, 327, 39237, 371, 3913, 5357, 4725, 33, 15919, 1961, 11895, 44765, 2751, 8, 198, 8, 198, 15211, 198, 513, 13, 9683, 691, 262, 15274, 422, 262, 9312, 3084, 11, 290, 4654, 262, 3033, 422, 262, 2656, 3895, 900, 3084, 198, 284, 262, 27039, 1262, 262, 9312, 3815, 11, 3895, 62, 16514, 27823, 11, 290, 2727, 62, 16514, 395, 9430, 13, 198, 9466, 198, 2538, 9792, 32357, 1268, 357, 198, 46506, 198, 220, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 355, 22935, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 25598, 62, 16514, 27823, 62, 28665, 34949, 355, 2727, 62, 16514, 27823, 11, 198, 220, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 38165, 5512, 198, 220, 1391, 4, 329, 3895, 287, 3895, 1177, 13, 40890, 4064, 92, 198, 220, 22935, 3895, 34949, 355, 22935, 3895, 1177, 13, 3672, 34949, 834, 27007, 3895, 1782, 18477, 4, 611, 9052, 13, 12957, 4064, 18477, 4, 2073, 4064, 5512, 1391, 4, 45762, 4064, 92, 198, 220, 1391, 4, 886, 1640, 4064, 92, 198, 10913, 2662, 22935, 3895, 1177, 13, 11487, 62, 7266, 22766, 34949, 33411, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 19841, 705, 27007, 3509, 62, 16514, 27823, 34949, 6, 198, 90, 4, 611, 3895, 1177, 13, 926, 75, 6624, 657, 4064, 18477, 4, 2073, 4064, 92, 6981, 22935, 3895, 1177, 13, 15596, 62, 16514, 27823, 62, 28665, 34949, 18189, 5045, 27823, 62, 7266, 7, 51, 3955, 6465, 23518, 705, 27007, 949, 62, 16514, 27823, 34949, 3256, 16654, 22935, 3895, 1177, 13, 926, 75, 34949, 1218, 19953, 4, 45762, 4064, 92, 198, 8, 1294, 2751, 357, 27007, 3895, 1177, 13, 3672, 34949, 62, 30053, 62, 16514, 27823, 11, 2727, 62, 16514, 27823, 11, 22935, 3895, 1177, 13, 298, 871, 930, 4654, 7, 3256, 705, 8, 11709, 8, 198, 47357, 318, 62, 26858, 62, 11487, 198, 828, 198, 15211, 198, 604, 13, 9461, 11, 4648, 84, 489, 5344, 262, 15274, 416, 17246, 262, 717, 19810, 286, 1123, 9312, 3084, 5752, 62, 17618, 13, 198, 9466, 198, 27007, 3895, 1177, 13, 3672, 34949, 834, 9395, 929, 276, 7054, 357, 46506, 198, 220, 479, 15885, 198, 10913, 2662, 357, 198, 220, 33493, 5923, 30631, 62, 4760, 38, 7, 808, 27564, 2043, 352, 38381, 27977, 28480, 7, 15, 15437, 479, 198, 220, 16034, 22935, 3895, 1177, 13, 3672, 34949, 834, 46416, 5752, 198, 220, 44441, 11050, 5752, 62, 17618, 198, 4008, 90, 4, 611, 9052, 13, 12957, 4064, 18477, 4, 2073, 4064, 5512, 1391, 4, 45762, 4064, 92, 198, 198, 90, 4, 886, 1640, 4064, 92, 198, 15211, 198, 5302, 1040, 262, 23862, 286, 3294, 640, 3067, 15449, 284, 257, 2060, 3084, 13, 198, 9466, 198, 46506, 1225, 69, 13, 15596, 62, 16514, 27823, 355, 1785, 62, 16514, 27823, 11, 1635, 7788, 42006, 357, 808, 62, 17618, 11, 1785, 62, 16514, 27823, 8, 16034, 9312, 62, 7890, 14535, 1225, 69, 198, 90, 4, 329, 3895, 1177, 287, 3895, 33571, 4064, 92, 198, 2538, 9792, 32357, 1268, 357, 198, 220, 220, 220, 33493, 198, 220, 220, 220, 5752, 62, 17618, 11, 198, 220, 220, 220, 1391, 4, 329, 3895, 287, 3895, 1177, 13, 40890, 4064, 92, 198, 220, 220, 220, 22935, 3895, 1177, 13, 3672, 34949, 834, 27007, 3895, 1782, 18477, 4, 611, 9052, 13, 12957, 4064, 18477, 4, 2073, 4064, 5512, 1391, 4, 45762, 4064, 92, 198, 220, 220, 220, 1391, 4, 886, 1640, 4064, 92, 198, 220, 220, 220, 16034, 22935, 3895, 1177, 13, 3672, 34949, 834, 9395, 929, 276, 198, 8, 1294, 2751, 357, 808, 62, 17618, 8, 198, 90, 4, 886, 1640, 4064, 92, 198, 12532, 1137, 11050, 1785, 62, 16514, 27823, 198, 37811, 628 ]
2.941317
4,601
"""Reversi, by Al Sweigart [email protected] A tile flipping game, also called reversi. More info https://en.wikipedia.org/wiki/Reversi""" __version__ = 1 # A version of this game is featured in the book, "Invent Your Own # Computer Games with Python. https://nostarch.com/inventwithpython import random, sys COLS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'] ROWS = ['1', '2', '3', '4', '5', '6', '7', '8'] def getScoreOfBoard(board): """Returns a dictionary with keys 'X' and 'O', whose values.""" scores = {'X': 0, 'O': 0} # The scores start at 0. # Loop over each space on the board: for x in range(8): for y in range(8): # Increment the score if there is an X or O on this space: if board[(x, y)] == 'X': scores['X'] += 1 if board[(x, y)] == 'O': scores['O'] += 1 return scores def displayBoard(board): """Displays the board data structure passed to this function.""" print(' ABCDEFGH') print(' +--------+') for y in range(8): print('{}|'.format((y + 1)), end='') # Display the row number. for x in range(8): print(board[(x, y)], end='') # Display the row. print('|{}'.format((y + 1))) # Display the row number. print(' +--------+') print(' ABCDEFGH') # Prints out the current score. scores = getScoreOfBoard(board) print('X has {} points. O has {} points.'.format(scores['X'], scores['O'])) def getNewBoard(): """Return a board data structure with the starting tiles.""" board = {} for x in range(8): for y in range(8): board[(x, y)] = ' ' # Place the two starting tiles for each player: board[(3, 3)] = 'X' board[(3, 4)] = 'O' board[(4, 3)] = 'O' board[(4, 4)] = 'X' return board def isValidMove(board, tile, xstart, ystart): """Returns False if the player's move on xstart, ystart is invalid. If it is a valid move, returns a list of spaces that would become the player's if they made a move here.""" if board[(xstart, ystart)] != ' ' or not isOnBoard(xstart, ystart): return False board[(xstart, ystart)] = tile # Set the tile on the board. if tile == 'X': otherTile = 'O' else: otherTile = 'X' tilesToFlip = [] for xdirection, ydirection in [[0, 1], [1, 1], [1, 0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]: x, y = xstart, ystart x += xdirection # First step in the x direction. y += ydirection # First step in the y direction. if isOnBoard(x, y) and board[(x, y)] == otherTile: # Find if the other player's tile next to our tile. x += xdirection y += ydirection if not isOnBoard(x, y): continue while board[(x, y)] == otherTile: x += xdirection y += ydirection # Break out of while loop, then continue in for loop: if not isOnBoard(x, y): break if not isOnBoard(x, y): continue if board[(x, y)] == tile: # Found tiles to flip over. Go in reverse direction # until we reach the original space, noting all the # tiles along the way. while True: x -= xdirection y -= ydirection if x == xstart and y == ystart: break tilesToFlip.append([x, y]) board[(xstart, ystart)] = ' ' # Restore the original empty space. # If no tiles were flipped, this is not a valid move: if len(tilesToFlip) == 0: return False return tilesToFlip def getBoardWithValidMoves(board, tile): """Returns a new board with . marking the possible moves.""" dupeBoard = getBoardCopy(board) for x, y in getValidMoves(dupeBoard, tile): dupeBoard[(x, y)] = '.' return dupeBoard def getValidMoves(board, tile): """Returns a list of [x, y] lists of valid moves for the given player on the given board.""" validMoves = [] for x in range(8): for y in range(8): if isValidMove(board, tile, x, y) != False: validMoves.append([x, y]) return validMoves def enterPlayerTile(): """Lets the player enter whether they want to be X or O. Returns a list with the player's tile first, the computer's tile second.""" tile = '' while not (tile == 'X' or tile == 'O'): print('Do you want to be X or O?') tile = input().upper() # The first string is the player's tile: if tile == 'X': return ['X', 'O'] else: return ['O', 'X'] def makeMove(board, tile, xstart, ystart): """Place a tile on the board, flipping any of the opponent's pieces. Returns False for invalid moves, True for valid.""" tilesToFlip = isValidMove(board, tile, xstart, ystart) if tilesToFlip == False: return False board[(xstart, ystart)] = tile for x, y in tilesToFlip: board[(x, y)] = tile return True def getBoardCopy(board): """Make a duplicate of the board list and return the duplicate.""" dupeBoard = {} for x in range(8): for y in range(8): dupeBoard[(x, y)] = board[(x, y)] return dupeBoard def isOnCorner(x, y): """Returns True if the position is in one of the four corners.""" return (x == 0 and y == 0) or (x == 7 and y == 0) or (x == 0 and y == 7) or (x == 7 and y == 7) def getPlayerMove(board, playerTile): """Let the player type in their move. Returns the move as [x, y] (or returns the string 'QUIT')""" while True: print('Enter your move, or type quit to end the game.') move = input().upper() if move == 'QUIT': return 'QUIT' if len(move) == 2 and move[0] in COLS and move[1] in ROWS: x = 'ABCDEFGH'.find(move[0]) y = int(move[1]) - 1 if isValidMove(board, playerTile, x, y) == False: print('That is not a valid space to place a tile.') continue else: break else: print('Type the column (A-H) and row (1-8).') print('For example, H1 will be the top-right corner.') return [x, y] def getComputerMove(board, computerTile): """Given a board and the computer's tile, determine where to move and return that move as a [x, y] list.""" possibleMoves = getValidMoves(board, computerTile) # Randomize the order of the possible moves so that if there are # multiple best scoring moves, a random one is selected. random.shuffle(possibleMoves) # Always go for a corner if available: for x, y in possibleMoves: if isOnCorner(x, y): return [x, y] # Go through all possible moves and remember the best scoring move: bestScore = -1 for x, y in possibleMoves: dupeBoard = getBoardCopy(board) makeMove(dupeBoard, computerTile, x, y) score = getScoreOfBoard(dupeBoard)[computerTile] if score > bestScore: bestMove = [x, y] bestScore = score return bestMove if __name__ == '__main__': main()
[ 37811, 3041, 690, 72, 11, 416, 978, 19372, 328, 433, 435, 31, 259, 1151, 4480, 29412, 13, 785, 198, 198, 32, 17763, 33097, 983, 11, 635, 1444, 10372, 72, 13, 198, 5167, 7508, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 3041, 690, 72, 37811, 198, 834, 9641, 834, 796, 352, 198, 198, 2, 317, 2196, 286, 428, 983, 318, 8096, 287, 262, 1492, 11, 366, 818, 1151, 3406, 11744, 198, 2, 13851, 5776, 351, 11361, 13, 3740, 1378, 77, 455, 998, 13, 785, 14, 259, 1151, 4480, 29412, 198, 198, 11748, 4738, 11, 25064, 198, 198, 25154, 50, 796, 37250, 32, 3256, 705, 33, 3256, 705, 34, 3256, 705, 35, 3256, 705, 36, 3256, 705, 37, 3256, 705, 38, 3256, 705, 39, 20520, 198, 49, 22845, 796, 37250, 16, 3256, 705, 17, 3256, 705, 18, 3256, 705, 19, 3256, 705, 20, 3256, 705, 21, 3256, 705, 22, 3256, 705, 23, 20520, 628, 198, 4299, 651, 26595, 5189, 29828, 7, 3526, 2599, 198, 220, 220, 220, 37227, 35561, 257, 22155, 351, 8251, 705, 55, 6, 290, 705, 46, 3256, 3025, 3815, 526, 15931, 198, 220, 220, 220, 8198, 796, 1391, 6, 55, 10354, 657, 11, 705, 46, 10354, 657, 92, 220, 1303, 383, 8198, 923, 379, 657, 13, 198, 220, 220, 220, 1303, 26304, 625, 1123, 2272, 319, 262, 3096, 25, 198, 220, 220, 220, 329, 2124, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10791, 434, 262, 4776, 611, 612, 318, 281, 1395, 393, 440, 319, 428, 2272, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3096, 58, 7, 87, 11, 331, 15437, 6624, 705, 55, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 17816, 55, 20520, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3096, 58, 7, 87, 11, 331, 15437, 6624, 705, 46, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 17816, 46, 20520, 15853, 352, 198, 220, 220, 220, 1441, 8198, 628, 198, 4299, 3359, 29828, 7, 3526, 2599, 198, 220, 220, 220, 37227, 7279, 26024, 262, 3096, 1366, 4645, 3804, 284, 428, 2163, 526, 15931, 628, 220, 220, 220, 3601, 10786, 220, 9738, 32988, 17511, 11537, 198, 220, 220, 220, 3601, 10786, 1343, 982, 10, 11537, 628, 220, 220, 220, 329, 331, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 90, 92, 91, 4458, 18982, 19510, 88, 1343, 352, 36911, 886, 28, 7061, 8, 220, 1303, 16531, 262, 5752, 1271, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3526, 58, 7, 87, 11, 331, 8, 4357, 886, 28, 7061, 8, 220, 1303, 16531, 262, 5752, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 91, 90, 92, 4458, 18982, 19510, 88, 1343, 352, 22305, 220, 1303, 16531, 262, 5752, 1271, 13, 628, 220, 220, 220, 3601, 10786, 1343, 982, 10, 11537, 198, 220, 220, 220, 3601, 10786, 220, 9738, 32988, 17511, 11537, 628, 220, 220, 220, 1303, 12578, 82, 503, 262, 1459, 4776, 13, 198, 220, 220, 220, 8198, 796, 651, 26595, 5189, 29828, 7, 3526, 8, 198, 220, 220, 220, 3601, 10786, 55, 468, 23884, 2173, 13, 440, 468, 23884, 2173, 2637, 13, 18982, 7, 1416, 2850, 17816, 55, 6, 4357, 8198, 17816, 46, 20520, 4008, 628, 198, 4299, 651, 3791, 29828, 33529, 198, 220, 220, 220, 37227, 13615, 257, 3096, 1366, 4645, 351, 262, 3599, 19867, 526, 15931, 198, 220, 220, 220, 3096, 796, 23884, 198, 220, 220, 220, 329, 2124, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3096, 58, 7, 87, 11, 331, 15437, 796, 705, 705, 628, 220, 220, 220, 1303, 8474, 262, 734, 3599, 19867, 329, 1123, 2137, 25, 198, 220, 220, 220, 3096, 58, 7, 18, 11, 513, 15437, 796, 705, 55, 6, 198, 220, 220, 220, 3096, 58, 7, 18, 11, 604, 15437, 796, 705, 46, 6, 198, 220, 220, 220, 3096, 58, 7, 19, 11, 513, 15437, 796, 705, 46, 6, 198, 220, 220, 220, 3096, 58, 7, 19, 11, 604, 15437, 796, 705, 55, 6, 198, 220, 220, 220, 1441, 3096, 628, 198, 4299, 318, 47139, 21774, 7, 3526, 11, 17763, 11, 2124, 9688, 11, 331, 9688, 2599, 198, 220, 220, 220, 37227, 35561, 10352, 611, 262, 2137, 338, 1445, 319, 2124, 9688, 11, 331, 9688, 318, 12515, 13, 198, 220, 220, 220, 1002, 340, 318, 257, 4938, 1445, 11, 5860, 257, 1351, 286, 9029, 326, 561, 1716, 198, 220, 220, 220, 262, 2137, 338, 611, 484, 925, 257, 1445, 994, 526, 15931, 198, 220, 220, 220, 611, 3096, 58, 7, 87, 9688, 11, 331, 9688, 15437, 14512, 705, 705, 393, 407, 318, 2202, 29828, 7, 87, 9688, 11, 331, 9688, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 3096, 58, 7, 87, 9688, 11, 331, 9688, 15437, 796, 17763, 220, 1303, 5345, 262, 17763, 319, 262, 3096, 13, 628, 220, 220, 220, 611, 17763, 6624, 705, 55, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 584, 35103, 796, 705, 46, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 584, 35103, 796, 705, 55, 6, 628, 220, 220, 220, 19867, 2514, 7414, 541, 796, 17635, 198, 220, 220, 220, 329, 2124, 37295, 11, 331, 37295, 287, 16410, 15, 11, 352, 4357, 685, 16, 11, 352, 4357, 685, 16, 11, 657, 4357, 685, 16, 11, 532, 16, 4357, 685, 15, 11, 532, 16, 4357, 25915, 16, 11, 532, 16, 4357, 25915, 16, 11, 657, 4357, 25915, 16, 11, 352, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 2124, 9688, 11, 331, 9688, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 15853, 2124, 37295, 220, 1303, 3274, 2239, 287, 262, 2124, 4571, 13, 198, 220, 220, 220, 220, 220, 220, 220, 331, 15853, 331, 37295, 220, 1303, 3274, 2239, 287, 262, 331, 4571, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 2202, 29828, 7, 87, 11, 331, 8, 290, 3096, 58, 7, 87, 11, 331, 15437, 6624, 584, 35103, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 611, 262, 584, 2137, 338, 17763, 1306, 284, 674, 17763, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 15853, 2124, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 15853, 331, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 2202, 29828, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 3096, 58, 7, 87, 11, 331, 15437, 6624, 584, 35103, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 15853, 2124, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 15853, 331, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12243, 503, 286, 981, 9052, 11, 788, 2555, 287, 329, 9052, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 2202, 29828, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 2202, 29828, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3096, 58, 7, 87, 11, 331, 15437, 6624, 17763, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4062, 19867, 284, 14283, 625, 13, 1514, 287, 9575, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1566, 356, 3151, 262, 2656, 2272, 11, 10820, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19867, 1863, 262, 835, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 48185, 2124, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 48185, 331, 37295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 6624, 2124, 9688, 290, 331, 6624, 331, 9688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19867, 2514, 7414, 541, 13, 33295, 26933, 87, 11, 331, 12962, 628, 220, 220, 220, 3096, 58, 7, 87, 9688, 11, 331, 9688, 15437, 796, 705, 705, 220, 1303, 42019, 262, 2656, 6565, 2272, 13, 198, 220, 220, 220, 1303, 1002, 645, 19867, 547, 26157, 11, 428, 318, 407, 257, 4938, 1445, 25, 198, 220, 220, 220, 611, 18896, 7, 83, 2915, 2514, 7414, 541, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 19867, 2514, 7414, 541, 628, 198, 198, 4299, 651, 29828, 3152, 47139, 44, 5241, 7, 3526, 11, 17763, 2599, 198, 220, 220, 220, 37227, 35561, 257, 649, 3096, 351, 764, 18730, 262, 1744, 6100, 526, 15931, 198, 220, 220, 220, 7043, 431, 29828, 796, 651, 29828, 29881, 7, 3526, 8, 628, 220, 220, 220, 329, 2124, 11, 331, 287, 651, 47139, 44, 5241, 7, 646, 431, 29828, 11, 17763, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7043, 431, 29828, 58, 7, 87, 11, 331, 15437, 796, 705, 2637, 198, 220, 220, 220, 1441, 7043, 431, 29828, 628, 198, 4299, 651, 47139, 44, 5241, 7, 3526, 11, 17763, 2599, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 685, 87, 11, 331, 60, 8341, 286, 4938, 6100, 329, 262, 1813, 198, 220, 220, 220, 2137, 319, 262, 1813, 3096, 526, 15931, 198, 220, 220, 220, 4938, 44, 5241, 796, 17635, 628, 220, 220, 220, 329, 2124, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 47139, 21774, 7, 3526, 11, 17763, 11, 2124, 11, 331, 8, 14512, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 44, 5241, 13, 33295, 26933, 87, 11, 331, 12962, 198, 220, 220, 220, 1441, 4938, 44, 5241, 628, 198, 4299, 3802, 14140, 35103, 33529, 198, 220, 220, 220, 37227, 43, 1039, 262, 2137, 3802, 1771, 484, 765, 284, 307, 1395, 393, 440, 13, 16409, 257, 198, 220, 220, 220, 1351, 351, 262, 2137, 338, 17763, 717, 11, 262, 3644, 338, 17763, 1218, 526, 15931, 198, 220, 220, 220, 17763, 796, 10148, 198, 220, 220, 220, 981, 407, 357, 40927, 6624, 705, 55, 6, 393, 17763, 6624, 705, 46, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 5211, 345, 765, 284, 307, 1395, 393, 440, 8348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17763, 796, 5128, 22446, 45828, 3419, 628, 220, 220, 220, 1303, 383, 717, 4731, 318, 262, 2137, 338, 17763, 25, 198, 220, 220, 220, 611, 17763, 6624, 705, 55, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37250, 55, 3256, 705, 46, 20520, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37250, 46, 3256, 705, 55, 20520, 628, 198, 4299, 787, 21774, 7, 3526, 11, 17763, 11, 2124, 9688, 11, 331, 9688, 2599, 198, 220, 220, 220, 37227, 27271, 257, 17763, 319, 262, 3096, 11, 33097, 597, 286, 262, 6125, 338, 5207, 13, 198, 220, 220, 220, 16409, 10352, 329, 12515, 6100, 11, 6407, 329, 4938, 526, 15931, 198, 220, 220, 220, 19867, 2514, 7414, 541, 796, 318, 47139, 21774, 7, 3526, 11, 17763, 11, 2124, 9688, 11, 331, 9688, 8, 628, 220, 220, 220, 611, 19867, 2514, 7414, 541, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 3096, 58, 7, 87, 9688, 11, 331, 9688, 15437, 796, 17763, 198, 220, 220, 220, 329, 2124, 11, 331, 287, 19867, 2514, 7414, 541, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3096, 58, 7, 87, 11, 331, 15437, 796, 17763, 198, 220, 220, 220, 1441, 6407, 628, 198, 4299, 651, 29828, 29881, 7, 3526, 2599, 198, 220, 220, 220, 37227, 12050, 257, 23418, 286, 262, 3096, 1351, 290, 1441, 262, 23418, 526, 15931, 198, 220, 220, 220, 7043, 431, 29828, 796, 23884, 628, 220, 220, 220, 329, 2124, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 23, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7043, 431, 29828, 58, 7, 87, 11, 331, 15437, 796, 3096, 58, 7, 87, 11, 331, 15437, 628, 220, 220, 220, 1441, 7043, 431, 29828, 628, 198, 4299, 318, 2202, 10606, 1008, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 37227, 35561, 6407, 611, 262, 2292, 318, 287, 530, 286, 262, 1440, 14371, 526, 15931, 198, 220, 220, 220, 1441, 357, 87, 6624, 657, 290, 331, 6624, 657, 8, 393, 357, 87, 6624, 767, 290, 331, 6624, 657, 8, 393, 357, 87, 6624, 657, 290, 331, 6624, 767, 8, 393, 357, 87, 6624, 767, 290, 331, 6624, 767, 8, 628, 198, 4299, 651, 14140, 21774, 7, 3526, 11, 2137, 35103, 2599, 198, 220, 220, 220, 37227, 5756, 262, 2137, 2099, 287, 511, 1445, 13, 16409, 262, 1445, 355, 685, 87, 11, 331, 60, 198, 220, 220, 220, 357, 273, 5860, 262, 4731, 705, 10917, 2043, 11537, 37811, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 17469, 534, 1445, 11, 393, 2099, 11238, 284, 886, 262, 983, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1445, 796, 5128, 22446, 45828, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1445, 6624, 705, 10917, 2043, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 10917, 2043, 6, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 21084, 8, 6624, 362, 290, 1445, 58, 15, 60, 287, 20444, 50, 290, 1445, 58, 16, 60, 287, 371, 22845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 705, 24694, 32988, 17511, 4458, 19796, 7, 21084, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 493, 7, 21084, 58, 16, 12962, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 47139, 21774, 7, 3526, 11, 2137, 35103, 11, 2124, 11, 331, 8, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2504, 318, 407, 257, 4938, 2272, 284, 1295, 257, 17763, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 6030, 262, 5721, 357, 32, 12, 39, 8, 290, 5752, 357, 16, 12, 23, 737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1890, 1672, 11, 367, 16, 481, 307, 262, 1353, 12, 3506, 5228, 2637, 8, 628, 220, 220, 220, 1441, 685, 87, 11, 331, 60, 628, 198, 4299, 651, 34556, 21774, 7, 3526, 11, 3644, 35103, 2599, 198, 220, 220, 220, 37227, 15056, 257, 3096, 290, 262, 3644, 338, 17763, 11, 5004, 810, 284, 1445, 198, 220, 220, 220, 290, 1441, 326, 1445, 355, 257, 685, 87, 11, 331, 60, 1351, 526, 15931, 198, 220, 220, 220, 1744, 44, 5241, 796, 651, 47139, 44, 5241, 7, 3526, 11, 3644, 35103, 8, 628, 220, 220, 220, 1303, 14534, 1096, 262, 1502, 286, 262, 1744, 6100, 523, 326, 611, 612, 389, 198, 220, 220, 220, 1303, 3294, 1266, 9689, 6100, 11, 257, 4738, 530, 318, 6163, 13, 198, 220, 220, 220, 4738, 13, 1477, 18137, 7, 79, 4733, 44, 5241, 8, 628, 220, 220, 220, 1303, 16622, 467, 329, 257, 5228, 611, 1695, 25, 198, 220, 220, 220, 329, 2124, 11, 331, 287, 1744, 44, 5241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 2202, 10606, 1008, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 87, 11, 331, 60, 628, 220, 220, 220, 1303, 1514, 832, 477, 1744, 6100, 290, 3505, 262, 1266, 9689, 1445, 25, 198, 220, 220, 220, 1266, 26595, 796, 532, 16, 198, 220, 220, 220, 329, 2124, 11, 331, 287, 1744, 44, 5241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7043, 431, 29828, 796, 651, 29828, 29881, 7, 3526, 8, 198, 220, 220, 220, 220, 220, 220, 220, 787, 21774, 7, 646, 431, 29828, 11, 3644, 35103, 11, 2124, 11, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 796, 651, 26595, 5189, 29828, 7, 646, 431, 29828, 38381, 33215, 35103, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4776, 1875, 1266, 26595, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 21774, 796, 685, 87, 11, 331, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 26595, 796, 4776, 198, 220, 220, 220, 1441, 1266, 21774, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.310649
3,174
import pandas as pd import numpy as np import os from configs import general_config from data_helpers.utils import readNewFile,loadDict import logging import tensorflow as tf """ 将单词列表形式的句子转为句子列表形式的文档, 以"."、"?"、"!"为句子分隔符。 """
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 4566, 82, 1330, 2276, 62, 11250, 198, 6738, 1366, 62, 16794, 364, 13, 26791, 1330, 1100, 3791, 8979, 11, 2220, 35, 713, 198, 11748, 18931, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 628, 628, 198, 37811, 198, 49546, 39355, 243, 46237, 235, 26344, 245, 26193, 101, 37605, 95, 28156, 237, 21410, 20998, 98, 36310, 164, 121, 105, 10310, 118, 20998, 98, 36310, 26344, 245, 26193, 101, 37605, 95, 28156, 237, 21410, 23877, 229, 162, 94, 96, 171, 120, 234, 198, 20015, 98, 1, 526, 23513, 1, 1701, 23513, 1, 2474, 10310, 118, 20998, 98, 36310, 26344, 228, 49694, 242, 163, 105, 99, 16764, 198, 37811, 628 ]
1.879032
124
import numpy as np import pandas as pd from apyori import apriori # Loading the Data data = pd.read_excel('Online_Retail.xlsx') data.head() # Exploring the columns of the data data.columns # Exploring the different regions of transactions data.Country.unique() # Stripping extra spaces in the description data['Description'] = data['Description'].str.strip() # Dropping the rows without any invoice number data.dropna(axis = 0, subset =['InvoiceNo'], inplace = True) data['InvoiceNo'] = data['InvoiceNo'].astype('str') # Dropping all transactions which were done on credit data = data[~data['InvoiceNo'].str.contains('C')] # Transactions done in France basket_France = (data[data['Country'] =="France"] .groupby(['InvoiceNo', 'Description'])['Quantity'] .sum().unstack().reset_index().fillna(0) .set_index('InvoiceNo')) # Transactions done in the United Kingdom basket_UK = (data[data['Country'] =="United Kingdom"] .groupby(['InvoiceNo', 'Description'])['Quantity'] .sum().unstack().reset_index().fillna(0) .set_index('InvoiceNo')) # Transactions done in Portugal basket_Por = (data[data['Country'] =="Portugal"] .groupby(['InvoiceNo', 'Description'])['Quantity'] .sum().unstack().reset_index().fillna(0) .set_index('InvoiceNo')) basket_Sweden = (data[data['Country'] =="Sweden"] .groupby(['InvoiceNo', 'Description'])['Quantity'] .sum().unstack().reset_index().fillna(0) .set_index('InvoiceNo')) # Defining the hot encoding function to make the data suitable # for the concerned libraries # Encoding the datasets basket_encoded = basket_France.applymap(hot_encode) basket_France = basket_encoded basket_encoded = basket_UK.applymap(hot_encode) basket_UK = basket_encoded basket_encoded = basket_Por.applymap(hot_encode) basket_Por = basket_encoded basket_encoded = basket_Sweden.applymap(hot_encode) basket_Sweden = basket_encoded # Building the model frq_items = apriori(basket_France, min_support = 0.05, use_colnames = True) #results = list(frq_items) #results frq_items2 = apriori(basket_UK, min_support = 0.05, use_colnames = True) #results2 = list(frq_items2) #results2 frq_items3 = apriori(basket_Por, min_support = 0.05, use_colnames = True) #results3 = list(frq_items3) #results3 frq_items4 = apriori(basket_Sweden, min_support = 0.05, use_colnames = True) #results4 = list(frq_items4) #results4
[ 11748, 299, 32152, 355, 45941, 220, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 6738, 2471, 88, 10145, 1330, 2471, 7701, 72, 628, 628, 198, 2, 12320, 262, 6060, 220, 198, 7890, 796, 279, 67, 13, 961, 62, 1069, 5276, 10786, 14439, 62, 9781, 603, 13, 87, 7278, 87, 11537, 220, 198, 7890, 13, 2256, 3419, 220, 628, 198, 2, 5905, 3255, 262, 15180, 286, 262, 1366, 220, 198, 7890, 13, 28665, 82, 220, 198, 198, 2, 5905, 3255, 262, 1180, 7652, 286, 8945, 220, 198, 7890, 13, 33921, 13, 34642, 3419, 220, 198, 198, 2, 26137, 2105, 3131, 9029, 287, 262, 6764, 220, 198, 7890, 17816, 11828, 20520, 796, 1366, 17816, 11828, 6, 4083, 2536, 13, 36311, 3419, 220, 198, 198, 2, 21045, 2105, 262, 15274, 1231, 597, 45458, 1271, 220, 198, 7890, 13, 14781, 2616, 7, 22704, 796, 657, 11, 24637, 796, 17816, 19904, 2942, 2949, 6, 4357, 287, 5372, 796, 6407, 8, 220, 198, 7890, 17816, 19904, 2942, 2949, 20520, 796, 1366, 17816, 19904, 2942, 2949, 6, 4083, 459, 2981, 10786, 2536, 11537, 220, 198, 198, 2, 21045, 2105, 477, 8945, 543, 547, 1760, 319, 3884, 220, 198, 7890, 796, 1366, 58, 93, 7890, 17816, 19904, 2942, 2949, 6, 4083, 2536, 13, 3642, 1299, 10786, 34, 11537, 60, 220, 198, 198, 2, 46192, 1760, 287, 4881, 220, 198, 65, 11715, 62, 28572, 796, 357, 7890, 58, 7890, 17816, 33921, 20520, 796, 2625, 28572, 8973, 220, 198, 197, 197, 13, 8094, 1525, 7, 17816, 19904, 2942, 2949, 3256, 705, 11828, 6, 12962, 17816, 31208, 20520, 220, 198, 197, 197, 13, 16345, 22446, 403, 25558, 22446, 42503, 62, 9630, 22446, 20797, 2616, 7, 15, 8, 220, 198, 197, 197, 13, 2617, 62, 9630, 10786, 19904, 2942, 2949, 6, 4008, 220, 198, 198, 2, 46192, 1760, 287, 262, 1578, 7526, 220, 198, 65, 11715, 62, 15039, 796, 357, 7890, 58, 7890, 17816, 33921, 20520, 796, 2625, 17013, 7526, 8973, 220, 198, 197, 197, 13, 8094, 1525, 7, 17816, 19904, 2942, 2949, 3256, 705, 11828, 6, 12962, 17816, 31208, 20520, 220, 198, 197, 197, 13, 16345, 22446, 403, 25558, 22446, 42503, 62, 9630, 22446, 20797, 2616, 7, 15, 8, 220, 198, 197, 197, 13, 2617, 62, 9630, 10786, 19904, 2942, 2949, 6, 4008, 220, 198, 198, 2, 46192, 1760, 287, 19101, 220, 198, 65, 11715, 62, 47, 273, 796, 357, 7890, 58, 7890, 17816, 33921, 20520, 796, 2625, 13924, 43778, 8973, 220, 198, 197, 197, 13, 8094, 1525, 7, 17816, 19904, 2942, 2949, 3256, 705, 11828, 6, 12962, 17816, 31208, 20520, 220, 198, 197, 197, 13, 16345, 22446, 403, 25558, 22446, 42503, 62, 9630, 22446, 20797, 2616, 7, 15, 8, 220, 198, 197, 197, 13, 2617, 62, 9630, 10786, 19904, 2942, 2949, 6, 4008, 220, 198, 198, 65, 11715, 62, 10462, 31829, 796, 357, 7890, 58, 7890, 17816, 33921, 20520, 796, 2625, 10462, 31829, 8973, 220, 198, 197, 197, 13, 8094, 1525, 7, 17816, 19904, 2942, 2949, 3256, 705, 11828, 6, 12962, 17816, 31208, 20520, 220, 198, 197, 197, 13, 16345, 22446, 403, 25558, 22446, 42503, 62, 9630, 22446, 20797, 2616, 7, 15, 8, 220, 198, 197, 197, 13, 2617, 62, 9630, 10786, 19904, 2942, 2949, 6, 4008, 220, 198, 198, 2, 2896, 3191, 262, 3024, 21004, 2163, 284, 787, 262, 1366, 11080, 220, 198, 2, 329, 262, 5213, 12782, 220, 198, 198, 2, 14711, 7656, 262, 40522, 220, 198, 65, 11715, 62, 12685, 9043, 796, 7988, 62, 28572, 13, 39014, 8899, 7, 8940, 62, 268, 8189, 8, 220, 198, 65, 11715, 62, 28572, 796, 7988, 62, 12685, 9043, 220, 198, 198, 65, 11715, 62, 12685, 9043, 796, 7988, 62, 15039, 13, 39014, 8899, 7, 8940, 62, 268, 8189, 8, 220, 198, 65, 11715, 62, 15039, 796, 7988, 62, 12685, 9043, 220, 198, 198, 65, 11715, 62, 12685, 9043, 796, 7988, 62, 47, 273, 13, 39014, 8899, 7, 8940, 62, 268, 8189, 8, 220, 198, 65, 11715, 62, 47, 273, 796, 7988, 62, 12685, 9043, 220, 198, 198, 65, 11715, 62, 12685, 9043, 796, 7988, 62, 10462, 31829, 13, 39014, 8899, 7, 8940, 62, 268, 8189, 8, 220, 198, 65, 11715, 62, 10462, 31829, 796, 7988, 62, 12685, 9043, 220, 198, 198, 2, 11819, 262, 2746, 220, 198, 8310, 80, 62, 23814, 796, 2471, 7701, 72, 7, 65, 11715, 62, 28572, 11, 949, 62, 11284, 796, 657, 13, 2713, 11, 779, 62, 4033, 14933, 796, 6407, 8, 220, 198, 198, 2, 43420, 796, 1351, 7, 8310, 80, 62, 23814, 8, 198, 2, 43420, 628, 198, 8310, 80, 62, 23814, 17, 796, 2471, 7701, 72, 7, 65, 11715, 62, 15039, 11, 949, 62, 11284, 796, 657, 13, 2713, 11, 779, 62, 4033, 14933, 796, 6407, 8, 220, 198, 198, 2, 43420, 17, 796, 1351, 7, 8310, 80, 62, 23814, 17, 8, 198, 2, 43420, 17, 198, 198, 8310, 80, 62, 23814, 18, 796, 2471, 7701, 72, 7, 65, 11715, 62, 47, 273, 11, 949, 62, 11284, 796, 657, 13, 2713, 11, 779, 62, 4033, 14933, 796, 6407, 8, 220, 198, 2, 43420, 18, 796, 1351, 7, 8310, 80, 62, 23814, 18, 8, 198, 2, 43420, 18, 628, 198, 8310, 80, 62, 23814, 19, 796, 2471, 7701, 72, 7, 65, 11715, 62, 10462, 31829, 11, 949, 62, 11284, 796, 657, 13, 2713, 11, 779, 62, 4033, 14933, 796, 6407, 8, 220, 198, 2, 43420, 19, 796, 1351, 7, 8310, 80, 62, 23814, 19, 8, 198, 2, 43420, 19, 628, 628 ]
2.685969
898
from prediction.endpoints import worker_microsoft as endpoints from prediction import request_utils
[ 6738, 17724, 13, 437, 13033, 1330, 8383, 62, 40485, 355, 886, 13033, 198, 6738, 17724, 1330, 2581, 62, 26791 ]
5.210526
19
# Copyright 2020-present NAVER Corp. Under BSD 3-clause license """ Evaluation with kapture objects """ import math from typing import Union, List, Tuple, Set from statistics import mean, median import kapture from kapture.algo.pose_operations import world_pose_transform_distance def evaluate_error_absolute(poses_to_test: List[Tuple[str, kapture.PoseTransform]], poses_ground_truth: List[Tuple[str, kapture.PoseTransform]] ) -> List[Tuple[str, float, float]]: """ Evaluate the absolute error for poses to a ground truth. :param poses_to_test: poses to test :param poses_ground_truth: reference poses :return: list of error evaluation """ poses_ground_truth_as_dict = {name: pose for name, pose in poses_ground_truth} result = [(name,) + world_pose_transform_distance(pose, poses_ground_truth_as_dict[name]) for (name, pose) in poses_to_test] return result def get_poses(k_data: kapture.Kapture, image_set: Union[Set[str], List[str]]) -> List[Tuple[str, kapture.PoseTransform]]: """ Computes the poses for a set of images within a kapture. :param k_data: the kapture :param image_set: set of image names :return: list of (image name,pose) """ assert k_data.trajectories is not None if isinstance(image_set, list): image_set = set(image_set) assert isinstance(image_set, set) assert isinstance(k_data, kapture.Kapture) # apply rigs to trajectories if k_data.rigs is not None: trajectories = kapture.rigs_remove(k_data.trajectories, k_data.rigs) else: trajectories = k_data.trajectories poses = [] for timestamp, device_id, filename in kapture.flatten(k_data.records_camera, is_sorted=True): if filename in image_set and (timestamp, device_id) in trajectories: pose = trajectories[(timestamp, device_id)] poses.append((filename, pose)) return poses def evaluate(k_data: kapture.Kapture, k_data_gt: kapture.Kapture, image_set: Union[Set[str], List[str]]) -> List[Tuple[str, float, float]]: """ Evaluate the pose found for images in a kapture with a reference kapture. :param k_data: the kapture to test :param k_data_gt: the reference kapture :param image_set: list of image names :return: list of image pose evaluation """ if isinstance(image_set, list): image_set = set(image_set) assert isinstance(image_set, set) assert(len(image_set) > 0) assert isinstance(k_data, kapture.Kapture) assert isinstance(k_data_gt, kapture.Kapture) poses_to_test = get_poses(k_data, image_set) poses_gt = get_poses(k_data_gt, image_set) evaluated = evaluate_error_absolute(poses_to_test, poses_gt) localized_images = {name for name, position_error, rotation_error in evaluated} missing_images = [name for name in image_set if name not in localized_images] for name in missing_images: evaluated.append((name, math.nan, math.nan)) return sorted(evaluated) def fill_bins(results: List[Tuple[str, float, float]], bins: List[Tuple[float, float]] ) -> List[Tuple[float, float, int]]: """ Fill a bin with the number of images within position thresholds. :param results: list of error evaluation (image name, translation error, rotation error) :param bins: list of translation and rotation thresholds :return: number of images in every pair of (translation,rotation) error """ assert isinstance(results, list) assert isinstance(bins, list) all_positions = [(translation_error, rotation_error) for name, translation_error, rotation_error in results] filled_bins = [] for a_bin in bins: trans_threshold = a_bin[0] rot_threshold = a_bin[1] number_of_images_in_bin = 0 for translation_error, rotation_error in all_positions: if (math.isnan(rot_threshold) or rot_threshold < 0) and translation_error <= trans_threshold: number_of_images_in_bin += 1 elif translation_error <= trans_threshold and rotation_error <= rot_threshold: number_of_images_in_bin += 1 filled_bins.append((trans_threshold, rot_threshold, number_of_images_in_bin)) return filled_bins
[ 2, 15069, 12131, 12, 25579, 11746, 5959, 11421, 13, 4698, 347, 10305, 513, 12, 565, 682, 5964, 198, 198, 37811, 198, 36, 2100, 2288, 351, 479, 2373, 495, 5563, 198, 37811, 198, 198, 11748, 10688, 198, 6738, 19720, 1330, 4479, 11, 7343, 11, 309, 29291, 11, 5345, 198, 6738, 7869, 1330, 1612, 11, 14288, 198, 198, 11748, 479, 2373, 495, 198, 6738, 479, 2373, 495, 13, 282, 2188, 13, 3455, 62, 3575, 602, 1330, 995, 62, 3455, 62, 35636, 62, 30246, 628, 198, 4299, 13446, 62, 18224, 62, 48546, 7, 4832, 62, 1462, 62, 9288, 25, 7343, 58, 51, 29291, 58, 2536, 11, 479, 2373, 495, 13, 47, 577, 41762, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17313, 62, 2833, 62, 35310, 25, 7343, 58, 51, 29291, 58, 2536, 11, 479, 2373, 495, 13, 47, 577, 41762, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 7343, 58, 51, 29291, 58, 2536, 11, 12178, 11, 12178, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26439, 4985, 262, 4112, 4049, 329, 17313, 284, 257, 2323, 3872, 13, 628, 220, 220, 220, 1058, 17143, 17313, 62, 1462, 62, 9288, 25, 17313, 284, 1332, 198, 220, 220, 220, 1058, 17143, 17313, 62, 2833, 62, 35310, 25, 4941, 17313, 198, 220, 220, 220, 1058, 7783, 25, 1351, 286, 4049, 12660, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17313, 62, 2833, 62, 35310, 62, 292, 62, 11600, 796, 1391, 3672, 25, 12705, 329, 1438, 11, 12705, 287, 17313, 62, 2833, 62, 35310, 92, 198, 220, 220, 220, 1255, 796, 47527, 3672, 35751, 1343, 995, 62, 3455, 62, 35636, 62, 30246, 7, 3455, 11, 17313, 62, 2833, 62, 35310, 62, 292, 62, 11600, 58, 3672, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 3672, 11, 12705, 8, 287, 17313, 62, 1462, 62, 9288, 60, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 651, 62, 4832, 7, 74, 62, 7890, 25, 479, 2373, 495, 13, 42, 2373, 495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 2617, 25, 4479, 58, 7248, 58, 2536, 4357, 7343, 58, 2536, 11907, 8, 4613, 7343, 58, 51, 29291, 58, 2536, 11, 479, 2373, 495, 13, 47, 577, 41762, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1769, 262, 17313, 329, 257, 900, 286, 4263, 1626, 257, 479, 2373, 495, 13, 628, 220, 220, 220, 1058, 17143, 479, 62, 7890, 25, 262, 479, 2373, 495, 198, 220, 220, 220, 1058, 17143, 2939, 62, 2617, 25, 900, 286, 2939, 3891, 198, 220, 220, 220, 1058, 7783, 25, 1351, 286, 357, 9060, 1438, 11, 3455, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 479, 62, 7890, 13, 9535, 752, 1749, 318, 407, 6045, 198, 220, 220, 220, 611, 318, 39098, 7, 9060, 62, 2617, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 2617, 796, 900, 7, 9060, 62, 2617, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 9060, 62, 2617, 11, 900, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 74, 62, 7890, 11, 479, 2373, 495, 13, 42, 2373, 495, 8, 628, 220, 220, 220, 1303, 4174, 45932, 284, 20134, 1749, 198, 220, 220, 220, 611, 479, 62, 7890, 13, 4359, 82, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20134, 1749, 796, 479, 2373, 495, 13, 4359, 82, 62, 28956, 7, 74, 62, 7890, 13, 9535, 752, 1749, 11, 479, 62, 7890, 13, 4359, 82, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20134, 1749, 796, 479, 62, 7890, 13, 9535, 752, 1749, 628, 220, 220, 220, 17313, 796, 17635, 198, 220, 220, 220, 329, 41033, 11, 3335, 62, 312, 11, 29472, 287, 479, 2373, 495, 13, 2704, 41769, 7, 74, 62, 7890, 13, 8344, 3669, 62, 25695, 11, 318, 62, 82, 9741, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 287, 2939, 62, 2617, 290, 357, 16514, 27823, 11, 3335, 62, 312, 8, 287, 20134, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12705, 796, 20134, 1749, 58, 7, 16514, 27823, 11, 3335, 62, 312, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17313, 13, 33295, 19510, 34345, 11, 12705, 4008, 198, 220, 220, 220, 1441, 17313, 628, 198, 4299, 13446, 7, 74, 62, 7890, 25, 479, 2373, 495, 13, 42, 2373, 495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 7890, 62, 13655, 25, 479, 2373, 495, 13, 42, 2373, 495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 2617, 25, 4479, 58, 7248, 58, 2536, 4357, 7343, 58, 2536, 11907, 8, 4613, 7343, 58, 51, 29291, 58, 2536, 11, 12178, 11, 12178, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26439, 4985, 262, 12705, 1043, 329, 4263, 287, 257, 479, 2373, 495, 351, 257, 4941, 479, 2373, 495, 13, 628, 220, 220, 220, 1058, 17143, 479, 62, 7890, 25, 262, 479, 2373, 495, 284, 1332, 198, 220, 220, 220, 1058, 17143, 479, 62, 7890, 62, 13655, 25, 262, 4941, 479, 2373, 495, 198, 220, 220, 220, 1058, 17143, 2939, 62, 2617, 25, 1351, 286, 2939, 3891, 198, 220, 220, 220, 1058, 7783, 25, 1351, 286, 2939, 12705, 12660, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 9060, 62, 2617, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 2617, 796, 900, 7, 9060, 62, 2617, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 9060, 62, 2617, 11, 900, 8, 198, 220, 220, 220, 6818, 7, 11925, 7, 9060, 62, 2617, 8, 1875, 657, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 74, 62, 7890, 11, 479, 2373, 495, 13, 42, 2373, 495, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 74, 62, 7890, 62, 13655, 11, 479, 2373, 495, 13, 42, 2373, 495, 8, 628, 220, 220, 220, 17313, 62, 1462, 62, 9288, 796, 651, 62, 4832, 7, 74, 62, 7890, 11, 2939, 62, 2617, 8, 198, 220, 220, 220, 17313, 62, 13655, 796, 651, 62, 4832, 7, 74, 62, 7890, 62, 13655, 11, 2939, 62, 2617, 8, 628, 220, 220, 220, 16726, 796, 13446, 62, 18224, 62, 48546, 7, 4832, 62, 1462, 62, 9288, 11, 17313, 62, 13655, 8, 198, 220, 220, 220, 36618, 62, 17566, 796, 1391, 3672, 329, 1438, 11, 2292, 62, 18224, 11, 13179, 62, 18224, 287, 16726, 92, 198, 220, 220, 220, 4814, 62, 17566, 796, 685, 3672, 329, 1438, 287, 2939, 62, 2617, 611, 1438, 407, 287, 36618, 62, 17566, 60, 198, 220, 220, 220, 329, 1438, 287, 4814, 62, 17566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16726, 13, 33295, 19510, 3672, 11, 10688, 13, 12647, 11, 10688, 13, 12647, 4008, 198, 220, 220, 220, 1441, 23243, 7, 18206, 6605, 8, 628, 198, 4299, 6070, 62, 65, 1040, 7, 43420, 25, 7343, 58, 51, 29291, 58, 2536, 11, 12178, 11, 12178, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41701, 25, 7343, 58, 51, 29291, 58, 22468, 11, 12178, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4613, 7343, 58, 51, 29291, 58, 22468, 11, 12178, 11, 493, 60, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27845, 257, 9874, 351, 262, 1271, 286, 4263, 1626, 2292, 40885, 13, 628, 220, 220, 220, 1058, 17143, 2482, 25, 1351, 286, 4049, 12660, 357, 9060, 1438, 11, 11059, 4049, 11, 13179, 4049, 8, 198, 220, 220, 220, 1058, 17143, 41701, 25, 1351, 286, 11059, 290, 13179, 40885, 198, 220, 220, 220, 1058, 7783, 25, 1271, 286, 4263, 287, 790, 5166, 286, 357, 41519, 11, 10599, 341, 8, 4049, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 39098, 7, 43420, 11, 1351, 8, 198, 220, 220, 220, 6818, 318, 39098, 7, 65, 1040, 11, 1351, 8, 628, 220, 220, 220, 477, 62, 1930, 1756, 796, 47527, 41519, 62, 18224, 11, 13179, 62, 18224, 8, 329, 1438, 11, 11059, 62, 18224, 11, 13179, 62, 18224, 287, 2482, 60, 198, 220, 220, 220, 5901, 62, 65, 1040, 796, 17635, 198, 220, 220, 220, 329, 257, 62, 8800, 287, 41701, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 62, 400, 10126, 796, 257, 62, 8800, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5724, 62, 400, 10126, 796, 257, 62, 8800, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 17566, 62, 259, 62, 8800, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11059, 62, 18224, 11, 13179, 62, 18224, 287, 477, 62, 1930, 1756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 11018, 13, 271, 12647, 7, 10599, 62, 400, 10126, 8, 393, 5724, 62, 400, 10126, 1279, 657, 8, 290, 11059, 62, 18224, 19841, 1007, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 17566, 62, 259, 62, 8800, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 11059, 62, 18224, 19841, 1007, 62, 400, 10126, 290, 13179, 62, 18224, 19841, 5724, 62, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 17566, 62, 259, 62, 8800, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 5901, 62, 65, 1040, 13, 33295, 19510, 7645, 62, 400, 10126, 11, 5724, 62, 400, 10126, 11, 1271, 62, 1659, 62, 17566, 62, 259, 62, 8800, 4008, 198, 220, 220, 220, 1441, 5901, 62, 65, 1040, 628 ]
2.559391
1,709
#!/usr/bin/python # encoding: utf-8 DEBUG = True SQLALCHEMY_ECHO = True SQLALCHEMY_DATABASE_URI = 'mysql://root:[email protected]/mysql' SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_ENCODING = 'utf-8'
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 30531, 796, 6407, 198, 17861, 1847, 3398, 3620, 56, 62, 25994, 46, 796, 6407, 198, 17861, 1847, 3398, 3620, 56, 62, 35, 1404, 6242, 11159, 62, 47269, 796, 705, 28744, 13976, 1378, 15763, 25, 27532, 1485, 41734, 31, 16799, 13, 15, 13, 15, 13, 16, 14, 28744, 13976, 6, 198, 17861, 1847, 3398, 3620, 56, 62, 5446, 8120, 62, 33365, 30643, 18421, 796, 10352, 198, 17861, 1847, 3398, 3620, 56, 62, 24181, 3727, 2751, 796, 705, 40477, 12, 23, 6, 198 ]
2.134021
97
initial_health = 100 initial_bitcoins = 0 is_dead = False rooms = input().split('|') health = initial_health bitcoins = initial_bitcoins max_bitcoins = 0 for i in range(len(rooms)): command = rooms[i] tokens = command.split() if tokens[0] == 'potion': health_points = int(tokens[1]) if health + health_points > initial_health: health_points = initial_health - health health = initial_health else: health += health_points print(f'You healed for {health_points} hp.') print(f'Current health: {health} hp.') elif tokens[0] == 'chest': amount = int(tokens[1]) print(f'You found {amount} bitcoins.') bitcoins += amount if bitcoins >= max_bitcoins: max_bitcoins = bitcoins else: monster = tokens[0] attack = int(tokens[1]) health -= attack if health > 0: print(f'You slayed {monster}.') else: print(f'You died! Killed by {monster}.') print(f'Best room: {i+1}') is_dead = True break if not is_dead: print(f"You've made it!") print(f"Bitcoins: {bitcoins}") print(f"Health: {health}")
[ 36733, 62, 13948, 796, 1802, 201, 198, 36733, 62, 2545, 14624, 796, 657, 201, 198, 271, 62, 25124, 796, 10352, 201, 198, 201, 198, 9649, 796, 5128, 22446, 35312, 10786, 91, 11537, 201, 198, 201, 198, 13948, 796, 4238, 62, 13948, 201, 198, 2545, 14624, 796, 4238, 62, 2545, 14624, 201, 198, 9806, 62, 2545, 14624, 796, 657, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 9649, 8, 2599, 201, 198, 220, 220, 220, 3141, 796, 9519, 58, 72, 60, 201, 198, 220, 220, 220, 16326, 796, 3141, 13, 35312, 3419, 201, 198, 201, 198, 220, 220, 220, 611, 16326, 58, 15, 60, 6624, 705, 49324, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1535, 62, 13033, 796, 493, 7, 83, 482, 641, 58, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1535, 1343, 1535, 62, 13033, 1875, 4238, 62, 13948, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1535, 62, 13033, 796, 4238, 62, 13948, 532, 1535, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1535, 796, 4238, 62, 13948, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1535, 15853, 1535, 62, 13033, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 1639, 28557, 329, 1391, 13948, 62, 13033, 92, 27673, 2637, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 11297, 1535, 25, 1391, 13948, 92, 27673, 2637, 8, 201, 198, 201, 198, 220, 220, 220, 1288, 361, 16326, 58, 15, 60, 6624, 705, 46713, 10354, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2033, 796, 493, 7, 83, 482, 641, 58, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 1639, 1043, 1391, 17287, 92, 22690, 2637, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 22690, 15853, 2033, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 22690, 18189, 3509, 62, 2545, 14624, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2545, 14624, 796, 22690, 201, 198, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9234, 796, 16326, 58, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1368, 796, 493, 7, 83, 482, 641, 58, 16, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1535, 48185, 1368, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1535, 1875, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 1639, 1017, 16548, 1391, 39050, 92, 2637, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 1639, 3724, 0, 13095, 416, 1391, 39050, 92, 2637, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 13014, 2119, 25, 1391, 72, 10, 16, 92, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 25124, 796, 6407, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 201, 198, 361, 407, 318, 62, 25124, 25, 201, 198, 220, 220, 220, 3601, 7, 69, 1, 1639, 1053, 925, 340, 2474, 8, 201, 198, 220, 220, 220, 3601, 7, 69, 1, 13128, 14624, 25, 1391, 2545, 14624, 92, 4943, 201, 198, 220, 220, 220, 3601, 7, 69, 1, 18081, 25, 1391, 13948, 92, 4943, 201, 198 ]
2.067742
620
import sys import pytest import toml from single_source.version import ( VERSION_REGEX, VersionNotFoundError, _get_version_from_metadata, _get_version_from_path, get_version, )
[ 11748, 25064, 198, 198, 11748, 12972, 9288, 198, 11748, 284, 4029, 198, 198, 6738, 2060, 62, 10459, 13, 9641, 1330, 357, 198, 220, 220, 220, 44156, 2849, 62, 31553, 6369, 11, 198, 220, 220, 220, 10628, 3673, 21077, 12331, 11, 198, 220, 220, 220, 4808, 1136, 62, 9641, 62, 6738, 62, 38993, 11, 198, 220, 220, 220, 4808, 1136, 62, 9641, 62, 6738, 62, 6978, 11, 198, 220, 220, 220, 651, 62, 9641, 11, 198, 8, 628, 628, 628 ]
2.582278
79
""" team_fouls_utils.py This function contains helpful functions for pulling in basketball data for use by team_fouls.py """ from typing import Union, List, Dict import pandas as pd from py_ball import playbyplay, boxscore, scoreboard, player from team_fouls_constants import TWO_MINUTES # Header information needed for py_ball HEADERS = {'Connection': 'keep-alive', 'Host': 'stats.nba.com', 'Origin': 'http://stats.nba.com', 'Upgrade-Insecure-Requests': '1', 'Referer': 'stats.nba.com', 'x-nba-stats-origin': 'stats', 'x-nba-stats-token': 'true', 'Accept-Language': 'en-US,en;q=0.9', "X-NewRelic-ID": "VQECWF5UChAHUlNTBwgBVw==", 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6)' +\ ' AppleWebKit/537.36 (KHTML, like Gecko)' + \ ' Chrome/81.0.4044.129 Safari/537.36'} def get_shot_data(season: str, game_id: str, league_id: str) -> List: """ get_game_ids returns the NBA game IDs that take place on the provided date @param season (str): Season in YYYY-ZZ format for NBA and G-League, YYYY format for WNBA @param game_id (str): Unique identifier for the game @param league_id (str): One of '00' (NBA), '10' (WNBA), '20' (G League) Returns: - shot_df (DataFrame): DataFrame containing all shot data """ shots = player.Player(headers=HEADERS, endpoint='shotchartdetail', league_id=league_id, player_id='0', game_id=game_id, season=season) shot_df = pd.DataFrame(shots.data['Shot_Chart_Detail']) return shot_df def get_game_ids(date: str, league_id: str) -> List: """ get_game_ids returns the NBA game IDs that take place on the provided date @param date (str): Date in MM/DD/YYYY format @param league_id (str): One of '00' (NBA), '10' (WNBA), '20' (G League) Returns: - game_id_list (list): List of game IDs """ scores = scoreboard.ScoreBoard(headers=HEADERS, endpoint='scoreboardv2', league_id=league_id, game_date=date, day_offset='0') games = scores.data['GameHeader'] game_id_list = [x['GAME_ID'] for x in games] return game_id_list def pull_team_ids(game_id: str) -> Union[int, int, bool, List]: """ This function pulls the JSON file for a game's play-by-play data and converts it into a Pandas DataFrame @param game_id (str): 10-digit string \ that represents a unique game. The format is two leading zeroes, \ followed by a season indicator number ('1' for preseason, \ '2' for regular season, '4' for the post-season), \ then the trailing digits of the season in which the game \ took place (e.g. '17' for the 2017-18 season). The following \ 5 digits increment from '00001' in order as the season progresses. \ For example, '0021600001' is the **game_id** of the first game \ of the 2016-17 NBA regular season. Returns: - home_id (int): 10-digit integer that uniquely identifies the home team - away_id (int): 10-digit integer that uniquely identifies the away team - home_winner (bool): Boolean indicating whether the home team won or not - line (list): List containing line score information by team """ box = boxscore.BoxScore(headers=HEADERS, endpoint='boxscoresummaryv2', game_id=game_id) metadata = box.data["GameSummary"] line = box.data["LineScore"] home_id, away_id = metadata[0]["HOME_TEAM_ID"], metadata[0]["VISITOR_TEAM_ID"] # Find winner by comparing point totals if line[0]["TEAM_ID"] == home_id: home_points = line[0]["PTS"] away_points = line[1]["PTS"] else: home_points = line[1]["PTS"] away_points = line[0]["PTS"] if pd.notnull(home_points) and pd.notnull(away_points): home_winner = home_points > away_points else: home_winner = None return home_id, away_id, home_winner, line def pull_pbp_file(game_id: str) -> pd.DataFrame: """ This function pulls the JSON file for a game's play-by-play data and converts it into a Pandas DataFrame @param game_id (str): 10-digit string \ that represents a unique game. The format is two leading zeroes, \ followed by a season indicator number ('1' for preseason, \ '2' for regular season, '4' for the post-season), \ then the trailing digits of the season in which the game \ took place (e.g. '17' for the 2017-18 season). The following \ 5 digits increment from '00001' in order as the season progresses. \ For example, '0021600001' is the **game_id** of the first game \ of the 2016-17 NBA regular season. Returns: - pbp_df (DataFrame): DataFrame containing play-by-play data for the game corresponding to game_id """ plays = playbyplay.PlayByPlay(headers=HEADERS, endpoint='playbyplayv2', game_id=game_id) pbp_df = pd.DataFrame(plays.data['PlayByPlay']) return pbp_df def str_to_time(time_str: str, period: int) -> int: """ This function converts a period and time to seconds remaining in the quarter @param time_str (str): Game time in MM:SS format @param period (int): Game quarter (5 is OT1, 6 is OT2, etc.) Returns - seconds_left_period (int): Seconds left in the given period """ split_time = time_str.split(':') seconds_left_period = int(split_time[0]) * 60 + int(split_time[1]) return seconds_left_period def add_fouls(foul_dict: Dict, period: int, quarter_time: int, team_id: int, penalty_dict: Dict) -> Dict: """ This function adds fouls to a team's total and their L2M total if applicable @param foul_dict (dict): Dictionary containing the number of fouls and L2M fouls a team has accumulated @param period (int): Game quarter (5 is OT1, 6 is OT2, etc.) @param quarter_time (int): Time remaining in the quarter @param team_id (int): Unique identifier of team committing a foul @param penalty_dict (dict): Dictionary containing team foul related data Returns: - foul_dict (int): Incremented number of team fouls and L2M fouls in the quarter - penalty_dict (dict): Dictionary containing updated team foul related data """ foul_dict["fouls"] += 1 penalty_dict[team_id]["time_to_foul"][period][foul_dict["fouls"]] = foul_dict["last_foul_time"] - quarter_time foul_dict["last_foul_time"] = quarter_time if quarter_time <= TWO_MINUTES: foul_dict["l2m"] += 1 return foul_dict, penalty_dict def is_in_penalty(foul_dict: Dict, period: int, penalty: bool) -> Union[bool, int]: """ This function determines if a team is in the penalty @param foul_dict (dict): Dictionary containing the number of fouls and L2M fouls a team has accumulated @param period (int): Game quarter (5 is OT1, 6 is OT2, etc.) @param penalty (bool): Boolean indicating whether the team is in the penalty Returns: - penalty (bool): Boolean indicating whether the team is in the penalty - period_fouls (int): Number of fouls to reach the penalty """ period_fouls = 4 if period <= 4 else 3 if foul_dict["fouls"] >= period_fouls or foul_dict["l2m"] >= 1: penalty = True else: penalty = False return penalty, period_fouls
[ 37811, 198, 15097, 62, 69, 42033, 62, 26791, 13, 9078, 198, 198, 1212, 2163, 4909, 7613, 5499, 329, 198, 31216, 278, 287, 9669, 1366, 329, 779, 416, 198, 15097, 62, 69, 42033, 13, 9078, 198, 37811, 198, 198, 6738, 19720, 1330, 4479, 11, 7343, 11, 360, 713, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 6738, 12972, 62, 1894, 1330, 711, 1525, 1759, 11, 3091, 26675, 11, 50198, 11, 2137, 198, 198, 6738, 1074, 62, 69, 42033, 62, 9979, 1187, 1330, 35288, 62, 23678, 3843, 1546, 628, 198, 2, 48900, 1321, 2622, 329, 12972, 62, 1894, 198, 37682, 4877, 796, 1391, 6, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17932, 10354, 705, 34242, 13, 77, 7012, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39688, 10354, 705, 4023, 1378, 34242, 13, 77, 7012, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8134, 11882, 10354, 705, 34242, 13, 77, 7012, 13, 785, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 87, 12, 77, 7012, 12, 34242, 12, 47103, 10354, 705, 34242, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 87, 12, 77, 7012, 12, 34242, 12, 30001, 10354, 705, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38855, 12, 32065, 10354, 705, 268, 12, 2937, 11, 268, 26, 80, 28, 15, 13, 24, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 55, 12, 3791, 6892, 291, 12, 2389, 1298, 366, 53, 48, 2943, 48397, 20, 52, 1925, 18429, 47920, 11251, 33, 86, 70, 33, 53, 86, 855, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12982, 12, 36772, 10354, 705, 44, 8590, 5049, 14, 20, 13, 15, 357, 14155, 37638, 26, 8180, 4100, 7294, 1395, 838, 62, 1415, 62, 21, 33047, 1343, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4196, 13908, 20827, 14, 46096, 13, 2623, 357, 42, 28656, 11, 588, 2269, 37549, 33047, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13282, 14, 6659, 13, 15, 13, 1821, 2598, 13, 18741, 23298, 14, 46096, 13, 2623, 6, 92, 198, 198, 4299, 651, 62, 9442, 62, 7890, 7, 6230, 25, 965, 11, 983, 62, 312, 25, 965, 11, 4652, 62, 312, 25, 965, 8, 4613, 7343, 25, 198, 197, 37811, 651, 62, 6057, 62, 2340, 5860, 262, 7403, 983, 32373, 198, 197, 5562, 1011, 1295, 319, 262, 2810, 3128, 628, 197, 31, 17143, 1622, 357, 2536, 2599, 7369, 287, 575, 26314, 56, 12, 30148, 5794, 329, 7403, 198, 197, 197, 392, 402, 12, 24623, 11, 575, 26314, 56, 5794, 329, 370, 32470, 198, 197, 31, 17143, 983, 62, 312, 357, 2536, 2599, 30015, 27421, 329, 262, 983, 198, 197, 31, 17143, 4652, 62, 312, 357, 2536, 2599, 1881, 286, 705, 405, 6, 357, 32470, 828, 705, 940, 6, 357, 29767, 4339, 828, 198, 197, 197, 6, 1238, 6, 357, 38, 4041, 8, 628, 197, 35561, 25, 628, 197, 197, 12, 2823, 62, 7568, 357, 6601, 19778, 2599, 6060, 19778, 7268, 477, 198, 197, 197, 197, 9442, 1366, 198, 197, 37811, 628, 197, 20910, 796, 2137, 13, 14140, 7, 50145, 28, 37682, 4877, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 11639, 9442, 40926, 49170, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4652, 62, 312, 28, 19316, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 62, 312, 11639, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 62, 312, 28, 6057, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1622, 28, 6230, 8, 628, 197, 9442, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 20910, 13, 7890, 17816, 28512, 62, 45488, 62, 11242, 603, 6, 12962, 628, 197, 7783, 2823, 62, 7568, 628, 198, 4299, 651, 62, 6057, 62, 2340, 7, 4475, 25, 965, 11, 4652, 62, 312, 25, 965, 8, 4613, 7343, 25, 198, 197, 37811, 651, 62, 6057, 62, 2340, 5860, 262, 7403, 983, 32373, 198, 197, 5562, 1011, 1295, 319, 262, 2810, 3128, 628, 197, 31, 17143, 3128, 357, 2536, 2599, 7536, 287, 20806, 14, 16458, 14, 26314, 26314, 5794, 198, 197, 31, 17143, 4652, 62, 312, 357, 2536, 2599, 1881, 286, 705, 405, 6, 357, 32470, 828, 705, 940, 6, 357, 29767, 4339, 828, 198, 197, 197, 6, 1238, 6, 357, 38, 4041, 8, 628, 197, 35561, 25, 628, 197, 197, 12, 983, 62, 312, 62, 4868, 357, 4868, 2599, 7343, 286, 983, 32373, 198, 197, 37811, 628, 197, 1416, 2850, 796, 50198, 13, 26595, 29828, 7, 50145, 28, 37682, 4877, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 197, 220, 220, 36123, 11639, 26675, 3526, 85, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4652, 62, 312, 28, 19316, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 197, 220, 220, 983, 62, 4475, 28, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 197, 220, 220, 1110, 62, 28968, 11639, 15, 11537, 628, 197, 19966, 796, 8198, 13, 7890, 17816, 8777, 39681, 20520, 198, 197, 6057, 62, 312, 62, 4868, 796, 685, 87, 17816, 47109, 62, 2389, 20520, 329, 2124, 287, 1830, 60, 628, 197, 7783, 983, 62, 312, 62, 4868, 628, 198, 4299, 2834, 62, 15097, 62, 2340, 7, 6057, 62, 312, 25, 965, 8, 4613, 4479, 58, 600, 11, 493, 11, 20512, 11, 7343, 5974, 198, 197, 37811, 770, 2163, 16194, 262, 19449, 2393, 329, 257, 198, 197, 6057, 338, 711, 12, 1525, 12, 1759, 1366, 290, 26161, 340, 656, 198, 197, 64, 16492, 292, 6060, 19778, 628, 197, 31, 17143, 983, 62, 312, 357, 2536, 2599, 838, 12, 27003, 4731, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 326, 6870, 257, 3748, 983, 13, 383, 5794, 318, 734, 3756, 1976, 263, 3028, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 3940, 416, 257, 1622, 16916, 1271, 19203, 16, 6, 329, 18913, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17, 6, 329, 3218, 1622, 11, 705, 19, 6, 329, 262, 1281, 12, 6230, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 788, 262, 25462, 19561, 286, 262, 1622, 287, 543, 262, 983, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1718, 1295, 357, 68, 13, 70, 13, 705, 1558, 6, 329, 262, 2177, 12, 1507, 1622, 737, 383, 1708, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 642, 19561, 18703, 422, 705, 2388, 16, 6, 287, 1502, 355, 262, 1622, 33226, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 11, 705, 405, 20666, 2388, 16, 6, 318, 262, 12429, 6057, 62, 312, 1174, 286, 262, 717, 983, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 1584, 12, 1558, 7403, 3218, 1622, 13, 628, 197, 35561, 25, 628, 197, 197, 12, 1363, 62, 312, 357, 600, 2599, 838, 12, 27003, 18253, 326, 24139, 21079, 262, 198, 197, 197, 197, 11195, 1074, 198, 197, 197, 12, 1497, 62, 312, 357, 600, 2599, 838, 12, 27003, 18253, 326, 24139, 21079, 262, 198, 197, 197, 197, 8272, 1074, 198, 197, 197, 12, 1363, 62, 39791, 357, 30388, 2599, 41146, 12739, 1771, 262, 1363, 1074, 198, 197, 197, 197, 26502, 393, 407, 198, 197, 197, 12, 1627, 357, 4868, 2599, 7343, 7268, 1627, 4776, 1321, 416, 1074, 198, 197, 37811, 628, 197, 3524, 796, 3091, 26675, 13, 14253, 26595, 7, 50145, 28, 37682, 4877, 11, 36123, 11639, 3524, 1416, 2850, 388, 6874, 85, 17, 3256, 983, 62, 312, 28, 6057, 62, 312, 8, 198, 197, 38993, 796, 3091, 13, 7890, 14692, 8777, 22093, 8973, 198, 197, 1370, 796, 3091, 13, 7890, 14692, 13949, 26595, 8973, 198, 197, 11195, 62, 312, 11, 1497, 62, 312, 796, 20150, 58, 15, 7131, 1, 39069, 62, 9328, 2390, 62, 2389, 33116, 20150, 58, 15, 7131, 1, 29817, 2043, 1581, 62, 9328, 2390, 62, 2389, 8973, 628, 197, 2, 9938, 8464, 416, 14176, 966, 26310, 198, 197, 361, 1627, 58, 15, 7131, 1, 9328, 2390, 62, 2389, 8973, 6624, 1363, 62, 312, 25, 198, 197, 197, 11195, 62, 13033, 796, 1627, 58, 15, 7131, 1, 47, 4694, 8973, 198, 197, 197, 8272, 62, 13033, 796, 1627, 58, 16, 7131, 1, 47, 4694, 8973, 198, 197, 17772, 25, 198, 197, 197, 11195, 62, 13033, 796, 1627, 58, 16, 7131, 1, 47, 4694, 8973, 198, 197, 197, 8272, 62, 13033, 796, 1627, 58, 15, 7131, 1, 47, 4694, 8973, 628, 197, 361, 279, 67, 13, 1662, 8423, 7, 11195, 62, 13033, 8, 290, 279, 67, 13, 1662, 8423, 7, 8272, 62, 13033, 2599, 198, 197, 197, 11195, 62, 39791, 796, 1363, 62, 13033, 1875, 1497, 62, 13033, 198, 197, 17772, 25, 198, 197, 197, 11195, 62, 39791, 796, 6045, 628, 197, 7783, 1363, 62, 312, 11, 1497, 62, 312, 11, 1363, 62, 39791, 11, 1627, 628, 198, 4299, 2834, 62, 40842, 79, 62, 7753, 7, 6057, 62, 312, 25, 965, 8, 4613, 279, 67, 13, 6601, 19778, 25, 198, 197, 37811, 770, 2163, 16194, 262, 19449, 2393, 329, 257, 198, 197, 6057, 338, 711, 12, 1525, 12, 1759, 1366, 290, 26161, 340, 656, 198, 197, 64, 16492, 292, 6060, 19778, 628, 197, 31, 17143, 983, 62, 312, 357, 2536, 2599, 838, 12, 27003, 4731, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 326, 6870, 257, 3748, 983, 13, 383, 5794, 318, 734, 3756, 1976, 263, 3028, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 3940, 416, 257, 1622, 16916, 1271, 19203, 16, 6, 329, 18913, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17, 6, 329, 3218, 1622, 11, 705, 19, 6, 329, 262, 1281, 12, 6230, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 788, 262, 25462, 19561, 286, 262, 1622, 287, 543, 262, 983, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1718, 1295, 357, 68, 13, 70, 13, 705, 1558, 6, 329, 262, 2177, 12, 1507, 1622, 737, 383, 1708, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 642, 19561, 18703, 422, 705, 2388, 16, 6, 287, 1502, 355, 262, 1622, 33226, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 11, 705, 405, 20666, 2388, 16, 6, 318, 262, 12429, 6057, 62, 312, 1174, 286, 262, 717, 983, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 1584, 12, 1558, 7403, 3218, 1622, 13, 628, 197, 35561, 25, 628, 197, 197, 12, 279, 46583, 62, 7568, 357, 6601, 19778, 2599, 6060, 19778, 7268, 711, 12, 1525, 12, 1759, 198, 197, 197, 197, 7890, 329, 262, 983, 11188, 284, 983, 62, 312, 198, 197, 37811, 628, 197, 26024, 796, 711, 1525, 1759, 13, 11002, 3886, 11002, 7, 50145, 28, 37682, 4877, 11, 36123, 11639, 1759, 1525, 1759, 85, 17, 3256, 983, 62, 312, 28, 6057, 62, 312, 8, 198, 197, 40842, 79, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 26024, 13, 7890, 17816, 11002, 3886, 11002, 6, 12962, 628, 197, 7783, 279, 46583, 62, 7568, 628, 198, 4299, 965, 62, 1462, 62, 2435, 7, 2435, 62, 2536, 25, 965, 11, 2278, 25, 493, 8, 4613, 493, 25, 198, 220, 220, 220, 37227, 770, 2163, 26161, 257, 2278, 290, 640, 284, 4201, 5637, 198, 220, 220, 220, 287, 262, 3860, 628, 198, 197, 31, 17143, 640, 62, 2536, 357, 2536, 2599, 3776, 640, 287, 20806, 25, 5432, 5794, 198, 197, 31, 17143, 2278, 357, 600, 2599, 3776, 3860, 357, 20, 318, 21676, 16, 11, 718, 318, 21676, 17, 11, 3503, 2014, 628, 197, 35561, 628, 197, 197, 12, 4201, 62, 9464, 62, 41007, 357, 600, 2599, 40876, 1364, 287, 262, 1813, 2278, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6626, 62, 2435, 796, 640, 62, 2536, 13, 35312, 7, 10354, 11537, 198, 220, 220, 220, 4201, 62, 9464, 62, 41007, 796, 493, 7, 35312, 62, 2435, 58, 15, 12962, 1635, 3126, 1343, 493, 7, 35312, 62, 2435, 58, 16, 12962, 628, 220, 220, 220, 1441, 4201, 62, 9464, 62, 41007, 628, 198, 4299, 751, 62, 69, 42033, 7, 69, 2852, 62, 11600, 25, 360, 713, 11, 2278, 25, 493, 11, 3860, 62, 2435, 25, 493, 11, 1074, 62, 312, 25, 493, 11, 7389, 62, 11600, 25, 360, 713, 8, 4613, 360, 713, 25, 198, 197, 37811, 770, 2163, 6673, 15626, 82, 284, 257, 1074, 338, 2472, 290, 511, 198, 197, 43, 17, 44, 2472, 611, 9723, 628, 197, 31, 17143, 15626, 62, 11600, 357, 11600, 2599, 28261, 7268, 262, 1271, 286, 15626, 82, 198, 197, 197, 392, 406, 17, 44, 15626, 82, 257, 1074, 468, 22425, 198, 197, 31, 17143, 2278, 357, 600, 2599, 3776, 3860, 357, 20, 318, 21676, 16, 11, 718, 318, 21676, 17, 11, 3503, 2014, 198, 197, 31, 17143, 3860, 62, 2435, 357, 600, 2599, 3862, 5637, 287, 262, 3860, 198, 197, 31, 17143, 1074, 62, 312, 357, 600, 2599, 30015, 27421, 286, 1074, 17222, 257, 15626, 198, 197, 31, 17143, 7389, 62, 11600, 357, 11600, 2599, 28261, 7268, 1074, 15626, 198, 197, 197, 5363, 1366, 628, 197, 35561, 25, 628, 197, 197, 12, 15626, 62, 11600, 357, 600, 2599, 10791, 12061, 1271, 286, 1074, 15626, 82, 198, 197, 197, 197, 392, 406, 17, 44, 15626, 82, 287, 262, 3860, 198, 197, 197, 12, 7389, 62, 11600, 357, 11600, 2599, 28261, 7268, 6153, 198, 197, 197, 197, 15097, 15626, 3519, 1366, 198, 197, 37811, 628, 197, 69, 2852, 62, 11600, 14692, 69, 42033, 8973, 15853, 352, 198, 197, 3617, 6017, 62, 11600, 58, 15097, 62, 312, 7131, 1, 2435, 62, 1462, 62, 69, 2852, 1, 7131, 41007, 7131, 69, 2852, 62, 11600, 14692, 69, 42033, 8973, 60, 796, 15626, 62, 11600, 14692, 12957, 62, 69, 2852, 62, 2435, 8973, 532, 3860, 62, 2435, 198, 197, 69, 2852, 62, 11600, 14692, 12957, 62, 69, 2852, 62, 2435, 8973, 796, 3860, 62, 2435, 198, 197, 361, 3860, 62, 2435, 19841, 35288, 62, 23678, 3843, 1546, 25, 198, 197, 197, 69, 2852, 62, 11600, 14692, 75, 17, 76, 8973, 15853, 352, 628, 197, 7783, 15626, 62, 11600, 11, 7389, 62, 11600, 628, 198, 4299, 318, 62, 259, 62, 3617, 6017, 7, 69, 2852, 62, 11600, 25, 360, 713, 11, 2278, 25, 493, 11, 7389, 25, 20512, 8, 4613, 4479, 58, 30388, 11, 493, 5974, 198, 197, 37811, 770, 2163, 15947, 611, 257, 1074, 318, 287, 262, 7389, 628, 197, 31, 17143, 15626, 62, 11600, 357, 11600, 2599, 28261, 7268, 262, 1271, 286, 15626, 82, 198, 197, 197, 392, 406, 17, 44, 15626, 82, 257, 1074, 468, 22425, 198, 197, 31, 17143, 2278, 357, 600, 2599, 3776, 3860, 357, 20, 318, 21676, 16, 11, 718, 318, 21676, 17, 11, 3503, 2014, 198, 197, 31, 17143, 7389, 357, 30388, 2599, 41146, 12739, 1771, 262, 198, 197, 197, 15097, 318, 287, 262, 7389, 628, 197, 35561, 25, 628, 197, 197, 12, 7389, 357, 30388, 2599, 41146, 12739, 1771, 262, 198, 197, 197, 197, 15097, 318, 287, 262, 7389, 198, 197, 197, 12, 2278, 62, 69, 42033, 357, 600, 2599, 7913, 286, 15626, 82, 284, 3151, 262, 7389, 198, 197, 37811, 628, 197, 41007, 62, 69, 42033, 796, 604, 611, 2278, 19841, 604, 2073, 513, 628, 197, 361, 15626, 62, 11600, 14692, 69, 42033, 8973, 18189, 2278, 62, 69, 42033, 393, 15626, 62, 11600, 14692, 75, 17, 76, 8973, 18189, 352, 25, 198, 197, 197, 3617, 6017, 796, 6407, 198, 197, 17772, 25, 198, 197, 197, 3617, 6017, 796, 10352, 628, 197, 7783, 7389, 11, 2278, 62, 69, 42033, 198 ]
2.57458
2,856
import wave import AudioParse import AudioSteganography main()
[ 11748, 6769, 198, 11748, 13491, 10044, 325, 198, 11748, 13491, 7447, 1030, 4867, 198, 198, 12417, 3419 ]
3.705882
17
"""Utility functions for two- and three-dimensional vectors.""" __all__ = [ "quaternion_mult", "quaternion_from_angle_axis", "angle_axis_from_quaternion", "quaternion_conjugate", "rotate_vector", "thick_diagonal", "rotation_matrix", "rotation_about_z", "z_to_vector", "angle_of_vector", "angle_between_vectors", "project_along_vector", "normalize", "get_unit_normal", "compass_directions", "regular_vertices", "complex_to_R3", "R3_to_complex", "complex_func_to_R3_func", "center_of_mass", "midpoint", "find_intersection", "line_intersection", "get_winding_number", "cross2d", "earclip_triangulation", "perpendicular_bisector", ] import itertools as it import math from functools import reduce from typing import List, Optional, Sequence, Tuple, Union import numpy as np from mapbox_earcut import triangulate_float32 as earcut from .. import config from ..constants import DOWN, OUT, PI, RIGHT, TAU from ..utils.iterables import adjacent_pairs # Quaternions # TODO, implement quaternion type def quaternion_mult( *quats: Sequence[float], ) -> Union[np.ndarray, List[Union[float, np.ndarray]]]: """Gets the Hamilton product of the quaternions provided. For more information, check `this Wikipedia page <https://en.wikipedia.org/wiki/Quaternion>`_. Returns ------- Union[np.ndarray, List[Union[float, np.ndarray]]] Returns a list of product of two quaternions. """ if config.renderer == "opengl": if len(quats) == 0: return [1, 0, 0, 0] result = quats[0] for next_quat in quats[1:]: w1, x1, y1, z1 = result w2, x2, y2, z2 = next_quat result = [ w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2, w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2, w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2, w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2, ] return result else: q1 = quats[0] q2 = quats[1] w1, x1, y1, z1 = q1 w2, x2, y2, z2 = q2 return np.array( [ w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2, w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2, w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2, w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2, ] ) def quaternion_from_angle_axis( angle: float, axis: np.ndarray, axis_normalized: bool = False ) -> List[float]: """Gets a quaternion from an angle and an axis. For more information, check `this Wikipedia page <https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles>`_. Parameters ---------- angle The angle for the quaternion. axis The axis for the quaternion axis_normalized : bool, optional Checks whether the axis is normalized, by default False Returns ------- List[float] Gives back a quaternion from the angle and axis """ if config.renderer == "opengl": if not axis_normalized: axis = normalize(axis) return [math.cos(angle / 2), *(math.sin(angle / 2) * axis)] else: return np.append(np.cos(angle / 2), np.sin(angle / 2) * normalize(axis)) def angle_axis_from_quaternion(quaternion: Sequence[float]) -> Sequence[float]: """Gets angle and axis from a quaternion. Parameters ---------- quaternion The quaternion from which we get the angle and axis. Returns ------- Sequence[float] Gives the angle and axis """ axis = normalize(quaternion[1:], fall_back=np.array([1, 0, 0])) angle = 2 * np.arccos(quaternion[0]) if angle > TAU / 2: angle = TAU - angle return angle, axis def quaternion_conjugate(quaternion: Sequence[float]) -> np.ndarray: """Used for finding the conjugate of the quaternion Parameters ---------- quaternion The quaternion for which you want to find the conjugate for. Returns ------- np.ndarray The conjugate of the quaternion. """ result = np.array(quaternion) result[1:] *= -1 return result def rotate_vector(vector: np.ndarray, angle: int, axis: np.ndarray = OUT) -> np.ndarray: """Function for rotating a vector. Parameters ---------- vector The vector to be rotated. angle The angle to be rotated by. axis The axis to be rotated, by default OUT Returns ------- np.ndarray The rotated vector with provided angle and axis. Raises ------ ValueError If vector is not of dimension 2 or 3. """ if len(vector) == 2: # Use complex numbers...because why not z = complex(*vector) * np.exp(complex(0, angle)) return np.array([z.real, z.imag]) elif len(vector) == 3: # Use quaternions...because why not quat = quaternion_from_angle_axis(angle, axis) quat_inv = quaternion_conjugate(quat) product = reduce(quaternion_mult, [quat, np.append(0, vector), quat_inv]) return product[1:] else: raise ValueError("vector must be of dimension 2 or 3") def rotation_matrix_transpose_from_quaternion(quat: np.ndarray) -> List[np.ndarray]: """Converts the quaternion, quat, to an equivalent rotation matrix representation. For more information, check `this page <https://in.mathworks.com/help/driving/ref/quaternion.rotmat.html>`_. Parameters ---------- quat The quaternion which is to be converted. Returns ------- List[np.ndarray] Gives back the Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array. """ quat_inv = quaternion_conjugate(quat) return [ quaternion_mult(quat, [0, *basis], quat_inv)[1:] for basis in [ [1, 0, 0], [0, 1, 0], [0, 0, 1], ] ] def rotation_matrix( angle: float, axis: np.ndarray, homogeneous: bool = False ) -> np.ndarray: """ Rotation in R^3 about a specified axis of rotation. """ about_z = rotation_about_z(angle) z_to_axis = z_to_vector(axis) axis_to_z = np.linalg.inv(z_to_axis) inhomogeneous_rotation_matrix = reduce(np.dot, [z_to_axis, about_z, axis_to_z]) if not homogeneous: return inhomogeneous_rotation_matrix else: rotation_matrix = np.eye(4) rotation_matrix[:3, :3] = inhomogeneous_rotation_matrix return rotation_matrix def rotation_about_z(angle: float) -> List[List[float]]: """Returns a rotation matrix for a given angle. Parameters ---------- angle : float Angle for the rotation matrix. Returns ------- List[float] Gives back the rotated matrix. """ return [ [np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1], ] def z_to_vector(vector: np.ndarray) -> np.ndarray: """ Returns some matrix in SO(3) which takes the z-axis to the (normalized) vector provided as an argument """ norm = np.linalg.norm(vector) if norm == 0: return np.identity(3) v = np.array(vector) / norm phi = np.arccos(v[2]) if any(v[:2]): # projection of vector to unit circle axis_proj = v[:2] / np.linalg.norm(v[:2]) theta = np.arccos(axis_proj[0]) if axis_proj[1] < 0: theta = -theta else: theta = 0 phi_down = np.array( [[np.cos(phi), 0, np.sin(phi)], [0, 1, 0], [-np.sin(phi), 0, np.cos(phi)]] ) return np.dot(rotation_about_z(theta), phi_down) def angle_of_vector(vector: Sequence[float]) -> float: """Returns polar coordinate theta when vector is projected on xy plane. Parameters ---------- vector The vector to find the angle for. Returns ------- float The angle of the vector projected. """ if config.renderer == "opengl": return np.angle(complex(*vector[:2])) else: z = complex(*vector[:2]) if z == 0: return 0 return np.angle(complex(*vector[:2])) def angle_between_vectors(v1: np.ndarray, v2: np.ndarray) -> np.ndarray: """Returns the angle between two vectors. This angle will always be between 0 and pi Parameters ---------- v1 The first vector. v2 The second vector. Returns ------- np.ndarray The angle between the vectors. """ return 2 * np.arctan2( np.linalg.norm(normalize(v1) - normalize(v2)), np.linalg.norm(normalize(v1) + normalize(v2)), ) def project_along_vector(point: float, vector: np.ndarray) -> np.ndarray: """Projects a vector along a point. Parameters ---------- point The point to be project from. vector The vector which has to projected. Returns ------- np.ndarray A dot product of the point and vector. """ matrix = np.identity(3) - np.outer(vector, vector) return np.dot(point, matrix.T) def normalize_along_axis(array: np.ndarray, axis: np.ndarray) -> np.ndarray: """Normalizes an array with the provided axis. Parameters ---------- array The array which has to be normalized. axis The axis to be normalized to. Returns ------- np.ndarray Array which has been normalized according to the axis. """ norms = np.sqrt((array * array).sum(axis)) norms[norms == 0] = 1 buffed_norms = np.repeat(norms, array.shape[axis]).reshape(array.shape) array /= buffed_norms return array def get_unit_normal(v1: np.ndarray, v2: np.ndarray, tol: float = 1e-6) -> np.ndarray: """Gets the unit normal of the vectors. Parameters ---------- v1 The first vector. v2 The second vector tol [description], by default 1e-6 Returns ------- np.ndarray The normal of the two vectors. """ if config.renderer == "opengl": v1 = normalize(v1) v2 = normalize(v2) cp = np.cross(v1, v2) cp_norm = np.linalg.norm(cp) if cp_norm < tol: # Vectors align, so find a normal to them in the plane shared with the z-axis new_cp = np.cross(np.cross(v1, OUT), v1) new_cp_norm = np.linalg.norm(new_cp) if new_cp_norm < tol: return DOWN return new_cp / new_cp_norm return cp / cp_norm else: return normalize(np.cross(v1, v2)) ### def compass_directions(n: int = 4, start_vect: np.ndarray = RIGHT) -> np.ndarray: """Finds the cardinal directions using tau. Parameters ---------- n The amount to be rotated, by default 4 start_vect The direction for the angle to start with, by default RIGHT Returns ------- np.ndarray The angle which has been rotated. """ angle = TAU / n return np.array([rotate_vector(start_vect, k * angle) for k in range(n)]) def regular_vertices( n: int, *, radius: float = 1, start_angle: Optional[float] = None ) -> Tuple[np.ndarray, float]: """Generates regularly spaced vertices around a circle centered at the origin. Parameters ---------- n The number of vertices radius The radius of the circle that the vertices are placed on. start_angle The angle the vertices start at. If unspecified, for even ``n`` values, ``0`` will be used. For odd ``n`` values, 90 degrees is used. Returns ------- vertices : :class:`numpy.ndarray` The regularly spaced vertices. start_angle : :class:`float` The angle the vertices start at. """ if start_angle is None: if n % 2 == 0: start_angle = 0 else: start_angle = TAU / 4 start_vector = rotate_vector(RIGHT * radius, start_angle) vertices = compass_directions(n, start_vector) return vertices, start_angle def center_of_mass(points: Sequence[float]) -> np.ndarray: """Gets the center of mass of the points in space. Parameters ---------- points The points to find the center of mass from. Returns ------- np.ndarray The center of mass of the points. """ points = [np.array(point).astype("float") for point in points] return sum(points) / len(points) def midpoint( point1: Sequence[float], point2: Sequence[float] ) -> Union[float, np.ndarray]: """Gets the midpoint of two points. Parameters ---------- point1 The first point. point2 The second point. Returns ------- Union[float, np.ndarray] The midpoint of the points """ return center_of_mass([point1, point2]) def line_intersection(line1: Sequence[float], line2: Sequence[float]) -> np.ndarray: """Returns intersection point of two lines, each defined with a pair of vectors determining the end points. Parameters ---------- line1 The first line. line2 The second line. Returns ------- np.ndarray The intersection points of the two lines which are intersecting. Raises ------ ValueError Error is produced if the two lines don't intersect with each other """ x_diff = (line1[0][0] - line1[1][0], line2[0][0] - line2[1][0]) y_diff = (line1[0][1] - line1[1][1], line2[0][1] - line2[1][1]) div = det(x_diff, y_diff) if div == 0: raise ValueError("Lines do not intersect") d = (det(*line1), det(*line2)) x = det(d, x_diff) / div y = det(d, y_diff) / div return np.array([x, y, 0]) def find_intersection(p0, v0, p1, v1, threshold=1e-5) -> np.ndarray: """ Return the intersection of a line passing through p0 in direction v0 with one passing through p1 in direction v1. (Or array of intersections from arrays of such points/directions). For 3d values, it returns the point on the ray p0 + v0 * t closest to the ray p1 + v1 * t """ p0 = np.array(p0, ndmin=2) v0 = np.array(v0, ndmin=2) p1 = np.array(p1, ndmin=2) v1 = np.array(v1, ndmin=2) m, n = np.shape(p0) assert n in [2, 3] numerator = np.cross(v1, p1 - p0) denominator = np.cross(v1, v0) if n == 3: d = len(np.shape(numerator)) new_numerator = np.multiply(numerator, numerator).sum(d - 1) new_denominator = np.multiply(denominator, numerator).sum(d - 1) numerator, denominator = new_numerator, new_denominator denominator[abs(denominator) < threshold] = np.inf # So that ratio goes to 0 there ratio = numerator / denominator ratio = np.repeat(ratio, n).reshape((m, n)) return p0 + ratio * v0 def shoelace(x_y: np.ndarray) -> float: """2D implementation of the shoelace formula. Returns ------- :class:`float` Returns signed area. """ x = x_y[:, 0] y = x_y[:, 1] area = 0.5 * np.array(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) return area def shoelace_direction(x_y: np.ndarray) -> str: """ Uses the area determined by the shoelace method to determine whether the input set of points is directed clockwise or counterclockwise. Returns ------- :class:`str` Either ``"CW"`` or ``"CCW"``. """ area = shoelace(x_y) return "CW" if area > 0 else "CCW" def earclip_triangulation(verts: np.ndarray, ring_ends: list) -> list: """Returns a list of indices giving a triangulation of a polygon, potentially with holes. Parameters ---------- verts verts is a numpy array of points. ring_ends ring_ends is a list of indices indicating where the ends of new paths are. Returns ------- list A list of indices giving a triangulation of a polygon. """ # First, connect all the rings so that the polygon # with holes is instead treated as a (very convex) # polygon with one edge. Do this by drawing connections # between rings close to each other rings = [list(range(e0, e1)) for e0, e1 in zip([0, *ring_ends], ring_ends)] attached_rings = rings[:1] detached_rings = rings[1:] loop_connections = {} while detached_rings: i_range, j_range = [ list( filter( # Ignore indices that are already being # used to draw some connection lambda i: i not in loop_connections, it.chain(*ring_group), ) ) for ring_group in (attached_rings, detached_rings) ] # Closest point on the attached rings to an estimated midpoint # of the detached rings tmp_j_vert = midpoint(verts[j_range[0]], verts[j_range[len(j_range) // 2]]) i = min(i_range, key=lambda i: norm_squared(verts[i] - tmp_j_vert)) # Closest point of the detached rings to the aforementioned # point of the attached rings j = min(j_range, key=lambda j: norm_squared(verts[i] - verts[j])) # Recalculate i based on new j i = min(i_range, key=lambda i: norm_squared(verts[i] - verts[j])) # Remember to connect the polygon at these points loop_connections[i] = j loop_connections[j] = i # Move the ring which j belongs to from the # attached list to the detached list new_ring = next(filter(lambda ring: ring[0] <= j < ring[-1], detached_rings)) detached_rings.remove(new_ring) attached_rings.append(new_ring) # Setup linked list after = [] end0 = 0 for end1 in ring_ends: after.extend(range(end0 + 1, end1)) after.append(end0) end0 = end1 # Find an ordering of indices walking around the polygon indices = [] i = 0 for _ in range(len(verts) + len(ring_ends) - 1): # starting = False if i in loop_connections: j = loop_connections[i] indices.extend([i, j]) i = after[j] else: indices.append(i) i = after[i] if i == 0: break meta_indices = earcut(verts[indices, :2], [len(indices)]) return [indices[mi] for mi in meta_indices] def perpendicular_bisector( line: Sequence[np.ndarray], norm_vector=OUT ) -> Sequence[np.ndarray]: """Returns a list of two points that correspond to the ends of the perpendicular bisector of the two points given. Parameters ---------- line a list of two numpy array points (corresponding to the ends of a line). norm_vector the vector perpendicular to both the line given and the perpendicular bisector. Returns ------- list A list of two numpy array points that correspond to the ends of the perpendicular bisector """ p1 = line[0] p2 = line[1] direction = np.cross(p1 - p2, norm_vector) m = midpoint(p1, p2) return [m + direction, m - direction]
[ 37811, 18274, 879, 5499, 329, 734, 12, 290, 1115, 12, 19577, 30104, 526, 15931, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 421, 9205, 295, 62, 16680, 1600, 198, 220, 220, 220, 366, 421, 9205, 295, 62, 6738, 62, 9248, 62, 22704, 1600, 198, 220, 220, 220, 366, 9248, 62, 22704, 62, 6738, 62, 421, 9205, 295, 1600, 198, 220, 220, 220, 366, 421, 9205, 295, 62, 1102, 31761, 378, 1600, 198, 220, 220, 220, 366, 10599, 378, 62, 31364, 1600, 198, 220, 220, 220, 366, 400, 624, 62, 10989, 27923, 1600, 198, 220, 220, 220, 366, 10599, 341, 62, 6759, 8609, 1600, 198, 220, 220, 220, 366, 10599, 341, 62, 10755, 62, 89, 1600, 198, 220, 220, 220, 366, 89, 62, 1462, 62, 31364, 1600, 198, 220, 220, 220, 366, 9248, 62, 1659, 62, 31364, 1600, 198, 220, 220, 220, 366, 9248, 62, 23395, 62, 303, 5217, 1600, 198, 220, 220, 220, 366, 16302, 62, 24176, 62, 31364, 1600, 198, 220, 220, 220, 366, 11265, 1096, 1600, 198, 220, 220, 220, 366, 1136, 62, 20850, 62, 11265, 1600, 198, 220, 220, 220, 366, 5589, 562, 62, 12942, 507, 1600, 198, 220, 220, 220, 366, 16338, 62, 1851, 1063, 1600, 198, 220, 220, 220, 366, 41887, 62, 1462, 62, 49, 18, 1600, 198, 220, 220, 220, 366, 49, 18, 62, 1462, 62, 41887, 1600, 198, 220, 220, 220, 366, 41887, 62, 20786, 62, 1462, 62, 49, 18, 62, 20786, 1600, 198, 220, 220, 220, 366, 16159, 62, 1659, 62, 22208, 1600, 198, 220, 220, 220, 366, 13602, 4122, 1600, 198, 220, 220, 220, 366, 19796, 62, 3849, 5458, 1600, 198, 220, 220, 220, 366, 1370, 62, 3849, 5458, 1600, 198, 220, 220, 220, 366, 1136, 62, 86, 6020, 62, 17618, 1600, 198, 220, 220, 220, 366, 19692, 17, 67, 1600, 198, 220, 220, 220, 366, 451, 15036, 62, 28461, 648, 1741, 1600, 198, 220, 220, 220, 366, 525, 37038, 13174, 62, 41907, 9250, 1600, 198, 60, 628, 198, 11748, 340, 861, 10141, 355, 340, 198, 11748, 10688, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 19720, 1330, 7343, 11, 32233, 11, 45835, 11, 309, 29291, 11, 4479, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3975, 3524, 62, 451, 8968, 1330, 1333, 648, 5039, 62, 22468, 2624, 355, 1027, 8968, 198, 198, 6738, 11485, 1330, 4566, 198, 6738, 11485, 9979, 1187, 1330, 30320, 11, 16289, 11, 30434, 11, 33621, 11, 21664, 52, 198, 6738, 11485, 26791, 13, 2676, 2977, 1330, 15909, 62, 79, 3468, 628, 198, 198, 2, 2264, 9205, 507, 198, 2, 16926, 46, 11, 3494, 627, 9205, 295, 2099, 628, 198, 4299, 627, 9205, 295, 62, 16680, 7, 198, 220, 220, 220, 1635, 421, 1381, 25, 45835, 58, 22468, 4357, 198, 8, 4613, 4479, 58, 37659, 13, 358, 18747, 11, 7343, 58, 38176, 58, 22468, 11, 45941, 13, 358, 18747, 11907, 5974, 198, 220, 220, 220, 37227, 38, 1039, 262, 11582, 1720, 286, 262, 627, 9205, 507, 2810, 13, 198, 220, 220, 220, 1114, 517, 1321, 11, 2198, 4600, 5661, 15312, 2443, 198, 220, 220, 220, 1279, 5450, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 4507, 9205, 295, 29, 63, 44807, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4479, 58, 37659, 13, 358, 18747, 11, 7343, 58, 38176, 58, 22468, 11, 45941, 13, 358, 18747, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 1351, 286, 1720, 286, 734, 627, 9205, 507, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4566, 13, 10920, 11882, 6624, 366, 404, 1516, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 421, 1381, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 16, 11, 657, 11, 657, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 627, 1381, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1306, 62, 421, 265, 287, 627, 1381, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 11, 2124, 16, 11, 331, 16, 11, 1976, 16, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 17, 11, 2124, 17, 11, 331, 17, 11, 1976, 17, 796, 1306, 62, 421, 265, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 266, 17, 532, 2124, 16, 1635, 2124, 17, 532, 331, 16, 1635, 331, 17, 532, 1976, 16, 1635, 1976, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 2124, 17, 1343, 2124, 16, 1635, 266, 17, 1343, 331, 16, 1635, 1976, 17, 532, 1976, 16, 1635, 331, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 331, 17, 1343, 331, 16, 1635, 266, 17, 1343, 1976, 16, 1635, 2124, 17, 532, 2124, 16, 1635, 1976, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 1976, 17, 1343, 1976, 16, 1635, 266, 17, 1343, 2124, 16, 1635, 331, 17, 532, 331, 16, 1635, 2124, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 16, 796, 627, 1381, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 796, 627, 1381, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 266, 16, 11, 2124, 16, 11, 331, 16, 11, 1976, 16, 796, 10662, 16, 198, 220, 220, 220, 220, 220, 220, 220, 266, 17, 11, 2124, 17, 11, 331, 17, 11, 1976, 17, 796, 10662, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 266, 17, 532, 2124, 16, 1635, 2124, 17, 532, 331, 16, 1635, 331, 17, 532, 1976, 16, 1635, 1976, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 2124, 17, 1343, 2124, 16, 1635, 266, 17, 1343, 331, 16, 1635, 1976, 17, 532, 1976, 16, 1635, 331, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 331, 17, 1343, 331, 16, 1635, 266, 17, 1343, 1976, 16, 1635, 2124, 17, 532, 2124, 16, 1635, 1976, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16, 1635, 1976, 17, 1343, 1976, 16, 1635, 266, 17, 1343, 2124, 16, 1635, 331, 17, 532, 331, 16, 1635, 2124, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 627, 9205, 295, 62, 6738, 62, 9248, 62, 22704, 7, 198, 220, 220, 220, 9848, 25, 12178, 11, 16488, 25, 45941, 13, 358, 18747, 11, 16488, 62, 11265, 1143, 25, 20512, 796, 10352, 198, 8, 4613, 7343, 58, 22468, 5974, 198, 220, 220, 220, 37227, 38, 1039, 257, 627, 9205, 295, 422, 281, 9848, 290, 281, 16488, 13, 198, 220, 220, 220, 1114, 517, 1321, 11, 2198, 4600, 5661, 15312, 2443, 198, 220, 220, 220, 1279, 5450, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 3103, 9641, 62, 23395, 62, 421, 9205, 507, 62, 392, 62, 36, 18173, 62, 27787, 29, 63, 44807, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 329, 262, 627, 9205, 295, 13, 198, 220, 220, 220, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16488, 329, 262, 627, 9205, 295, 198, 220, 220, 220, 16488, 62, 11265, 1143, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 1771, 262, 16488, 318, 39279, 11, 416, 4277, 10352, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7343, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 402, 1083, 736, 257, 627, 9205, 295, 422, 262, 9848, 290, 16488, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4566, 13, 10920, 11882, 6624, 366, 404, 1516, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16488, 62, 11265, 1143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 796, 3487, 1096, 7, 22704, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 11018, 13, 6966, 7, 9248, 1220, 362, 828, 1635, 7, 11018, 13, 31369, 7, 9248, 1220, 362, 8, 1635, 16488, 15437, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 33295, 7, 37659, 13, 6966, 7, 9248, 1220, 362, 828, 45941, 13, 31369, 7, 9248, 1220, 362, 8, 1635, 3487, 1096, 7, 22704, 4008, 628, 198, 4299, 9848, 62, 22704, 62, 6738, 62, 421, 9205, 295, 7, 421, 9205, 295, 25, 45835, 58, 22468, 12962, 4613, 45835, 58, 22468, 5974, 198, 220, 220, 220, 37227, 38, 1039, 9848, 290, 16488, 422, 257, 627, 9205, 295, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 627, 9205, 295, 198, 220, 220, 220, 220, 220, 220, 220, 383, 627, 9205, 295, 422, 543, 356, 651, 262, 9848, 290, 16488, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45835, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 402, 1083, 262, 9848, 290, 16488, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16488, 796, 3487, 1096, 7, 421, 9205, 295, 58, 16, 25, 4357, 2121, 62, 1891, 28, 37659, 13, 18747, 26933, 16, 11, 657, 11, 657, 60, 4008, 198, 220, 220, 220, 9848, 796, 362, 1635, 45941, 13, 283, 535, 418, 7, 421, 9205, 295, 58, 15, 12962, 198, 220, 220, 220, 611, 9848, 1875, 21664, 52, 1220, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 21664, 52, 532, 9848, 198, 220, 220, 220, 1441, 9848, 11, 16488, 628, 198, 4299, 627, 9205, 295, 62, 1102, 31761, 378, 7, 421, 9205, 295, 25, 45835, 58, 22468, 12962, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 38052, 329, 4917, 262, 11644, 1018, 378, 286, 262, 627, 9205, 295, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 627, 9205, 295, 198, 220, 220, 220, 220, 220, 220, 220, 383, 627, 9205, 295, 329, 543, 345, 765, 284, 1064, 262, 11644, 1018, 378, 329, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 11644, 1018, 378, 286, 262, 627, 9205, 295, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1255, 796, 45941, 13, 18747, 7, 421, 9205, 295, 8, 198, 220, 220, 220, 1255, 58, 16, 47715, 1635, 28, 532, 16, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 23064, 62, 31364, 7, 31364, 25, 45941, 13, 358, 18747, 11, 9848, 25, 493, 11, 16488, 25, 45941, 13, 358, 18747, 796, 16289, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 22203, 329, 24012, 257, 15879, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 383, 15879, 284, 307, 38375, 13, 198, 220, 220, 220, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 284, 307, 38375, 416, 13, 198, 220, 220, 220, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16488, 284, 307, 38375, 11, 416, 4277, 16289, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 38375, 15879, 351, 2810, 9848, 290, 16488, 13, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 15879, 318, 407, 286, 15793, 362, 393, 513, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 18896, 7, 31364, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 3716, 3146, 986, 13893, 1521, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 3716, 46491, 31364, 8, 1635, 45941, 13, 11201, 7, 41887, 7, 15, 11, 9848, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 89, 13, 5305, 11, 1976, 13, 48466, 12962, 198, 220, 220, 220, 1288, 361, 18896, 7, 31364, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 627, 9205, 507, 986, 13893, 1521, 407, 198, 220, 220, 220, 220, 220, 220, 220, 627, 265, 796, 627, 9205, 295, 62, 6738, 62, 9248, 62, 22704, 7, 9248, 11, 16488, 8, 198, 220, 220, 220, 220, 220, 220, 220, 627, 265, 62, 16340, 796, 627, 9205, 295, 62, 1102, 31761, 378, 7, 421, 265, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1720, 796, 4646, 7, 421, 9205, 295, 62, 16680, 11, 685, 421, 265, 11, 45941, 13, 33295, 7, 15, 11, 15879, 828, 627, 265, 62, 16340, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1720, 58, 16, 47715, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 31364, 1276, 307, 286, 15793, 362, 393, 513, 4943, 628, 198, 198, 4299, 13179, 62, 6759, 8609, 62, 7645, 3455, 62, 6738, 62, 421, 9205, 295, 7, 421, 265, 25, 45941, 13, 358, 18747, 8, 4613, 7343, 58, 37659, 13, 358, 18747, 5974, 198, 220, 220, 220, 37227, 3103, 24040, 262, 627, 9205, 295, 11, 627, 265, 11, 284, 281, 7548, 13179, 17593, 10552, 13, 198, 220, 220, 220, 1114, 517, 1321, 11, 2198, 4600, 5661, 2443, 198, 220, 220, 220, 1279, 5450, 1378, 259, 13, 11018, 5225, 13, 785, 14, 16794, 14, 24255, 14, 5420, 14, 421, 9205, 295, 13, 10599, 6759, 13, 6494, 29, 63, 44807, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 627, 265, 198, 220, 220, 220, 220, 220, 220, 220, 383, 627, 9205, 295, 543, 318, 284, 307, 11513, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7343, 58, 37659, 13, 358, 18747, 60, 198, 220, 220, 220, 220, 220, 220, 220, 402, 1083, 736, 262, 371, 14221, 17593, 10552, 11, 4504, 355, 257, 513, 12, 1525, 12, 18, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 393, 513, 12, 1525, 12, 18, 12, 1525, 12, 45, 1963, 312, 16198, 7177, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 627, 265, 62, 16340, 796, 627, 9205, 295, 62, 1102, 31761, 378, 7, 421, 265, 8, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 627, 9205, 295, 62, 16680, 7, 421, 265, 11, 685, 15, 11, 1635, 12093, 271, 4357, 627, 265, 62, 16340, 38381, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4308, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 657, 11, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 352, 11, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 2361, 628, 628, 198, 4299, 13179, 62, 6759, 8609, 7, 198, 220, 220, 220, 9848, 25, 12178, 11, 16488, 25, 45941, 13, 358, 18747, 11, 3488, 32269, 25, 20512, 796, 10352, 198, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 371, 14221, 287, 371, 61, 18, 546, 257, 7368, 16488, 286, 13179, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 546, 62, 89, 796, 13179, 62, 10755, 62, 89, 7, 9248, 8, 198, 220, 220, 220, 1976, 62, 1462, 62, 22704, 796, 1976, 62, 1462, 62, 31364, 7, 22704, 8, 198, 220, 220, 220, 16488, 62, 1462, 62, 89, 796, 45941, 13, 75, 1292, 70, 13, 16340, 7, 89, 62, 1462, 62, 22704, 8, 198, 220, 220, 220, 25783, 296, 32269, 62, 10599, 341, 62, 6759, 8609, 796, 4646, 7, 37659, 13, 26518, 11, 685, 89, 62, 1462, 62, 22704, 11, 546, 62, 89, 11, 16488, 62, 1462, 62, 89, 12962, 198, 220, 220, 220, 611, 407, 3488, 32269, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25783, 296, 32269, 62, 10599, 341, 62, 6759, 8609, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 62, 6759, 8609, 796, 45941, 13, 25379, 7, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 62, 6759, 8609, 58, 25, 18, 11, 1058, 18, 60, 796, 25783, 296, 32269, 62, 10599, 341, 62, 6759, 8609, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13179, 62, 6759, 8609, 628, 198, 4299, 13179, 62, 10755, 62, 89, 7, 9248, 25, 12178, 8, 4613, 7343, 58, 8053, 58, 22468, 60, 5974, 198, 220, 220, 220, 37227, 35561, 257, 13179, 17593, 329, 257, 1813, 9848, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 9848, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 42375, 329, 262, 13179, 17593, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 7343, 58, 22468, 60, 198, 220, 220, 220, 220, 220, 220, 220, 402, 1083, 736, 262, 38375, 17593, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 685, 37659, 13, 6966, 7, 9248, 828, 532, 37659, 13, 31369, 7, 9248, 828, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 37659, 13, 31369, 7, 9248, 828, 45941, 13, 6966, 7, 9248, 828, 657, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 352, 4357, 198, 220, 220, 220, 2361, 628, 198, 4299, 1976, 62, 1462, 62, 31364, 7, 31364, 25, 45941, 13, 358, 18747, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 617, 17593, 287, 12809, 7, 18, 8, 543, 2753, 262, 1976, 12, 22704, 284, 262, 198, 220, 220, 220, 357, 11265, 1143, 8, 15879, 2810, 355, 281, 4578, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2593, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 31364, 8, 198, 220, 220, 220, 611, 2593, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 738, 414, 7, 18, 8, 198, 220, 220, 220, 410, 796, 45941, 13, 18747, 7, 31364, 8, 1220, 2593, 198, 220, 220, 220, 872, 72, 796, 45941, 13, 283, 535, 418, 7, 85, 58, 17, 12962, 198, 220, 220, 220, 611, 597, 7, 85, 58, 25, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20128, 286, 15879, 284, 4326, 9197, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 1676, 73, 796, 410, 58, 25, 17, 60, 1220, 45941, 13, 75, 1292, 70, 13, 27237, 7, 85, 58, 25, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 45941, 13, 283, 535, 418, 7, 22704, 62, 1676, 73, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16488, 62, 1676, 73, 58, 16, 60, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 532, 1169, 8326, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 796, 657, 198, 220, 220, 220, 872, 72, 62, 2902, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 37659, 13, 6966, 7, 34846, 828, 657, 11, 45941, 13, 31369, 7, 34846, 8, 4357, 685, 15, 11, 352, 11, 657, 4357, 25915, 37659, 13, 31369, 7, 34846, 828, 657, 11, 45941, 13, 6966, 7, 34846, 8, 11907, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 45941, 13, 26518, 7, 10599, 341, 62, 10755, 62, 89, 7, 1169, 8326, 828, 872, 72, 62, 2902, 8, 628, 198, 4299, 9848, 62, 1659, 62, 31364, 7, 31364, 25, 45835, 58, 22468, 12962, 4613, 12178, 25, 198, 220, 220, 220, 37227, 35561, 13559, 20435, 262, 8326, 618, 15879, 318, 13301, 319, 2124, 88, 6614, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 383, 15879, 284, 1064, 262, 9848, 329, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 286, 262, 15879, 13301, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4566, 13, 10920, 11882, 6624, 366, 404, 1516, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 9248, 7, 41887, 46491, 31364, 58, 25, 17, 60, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 3716, 46491, 31364, 58, 25, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1976, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 9248, 7, 41887, 46491, 31364, 58, 25, 17, 60, 4008, 628, 198, 4299, 9848, 62, 23395, 62, 303, 5217, 7, 85, 16, 25, 45941, 13, 358, 18747, 11, 410, 17, 25, 45941, 13, 358, 18747, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 35561, 262, 9848, 1022, 734, 30104, 13, 198, 220, 220, 220, 770, 9848, 481, 1464, 307, 1022, 657, 290, 31028, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 410, 16, 198, 220, 220, 220, 220, 220, 220, 220, 383, 717, 15879, 13, 198, 220, 220, 220, 410, 17, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1218, 15879, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 1022, 262, 30104, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 362, 1635, 45941, 13, 283, 310, 272, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 75, 1292, 70, 13, 27237, 7, 11265, 1096, 7, 85, 16, 8, 532, 3487, 1096, 7, 85, 17, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 75, 1292, 70, 13, 27237, 7, 11265, 1096, 7, 85, 16, 8, 1343, 3487, 1096, 7, 85, 17, 36911, 198, 220, 220, 220, 1267, 628, 198, 4299, 1628, 62, 24176, 62, 31364, 7, 4122, 25, 12178, 11, 15879, 25, 45941, 13, 358, 18747, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 16775, 82, 257, 15879, 1863, 257, 966, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 966, 198, 220, 220, 220, 220, 220, 220, 220, 383, 966, 284, 307, 1628, 422, 13, 198, 220, 220, 220, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 383, 15879, 543, 468, 284, 13301, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 317, 16605, 1720, 286, 262, 966, 290, 15879, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17593, 796, 45941, 13, 738, 414, 7, 18, 8, 532, 45941, 13, 39605, 7, 31364, 11, 15879, 8, 198, 220, 220, 220, 1441, 45941, 13, 26518, 7, 4122, 11, 17593, 13, 51, 8, 628, 198, 198, 4299, 3487, 1096, 62, 24176, 62, 22704, 7, 18747, 25, 45941, 13, 358, 18747, 11, 16488, 25, 45941, 13, 358, 18747, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 26447, 4340, 281, 7177, 351, 262, 2810, 16488, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7177, 543, 468, 284, 307, 39279, 13, 198, 220, 220, 220, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16488, 284, 307, 39279, 284, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 543, 468, 587, 39279, 1864, 284, 262, 16488, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19444, 796, 45941, 13, 31166, 17034, 19510, 18747, 1635, 7177, 737, 16345, 7, 22704, 4008, 198, 220, 220, 220, 19444, 58, 27237, 82, 6624, 657, 60, 796, 352, 198, 220, 220, 220, 6940, 276, 62, 27237, 82, 796, 45941, 13, 44754, 7, 27237, 82, 11, 7177, 13, 43358, 58, 22704, 35944, 3447, 1758, 7, 18747, 13, 43358, 8, 198, 220, 220, 220, 7177, 1220, 28, 6940, 276, 62, 27237, 82, 198, 220, 220, 220, 1441, 7177, 628, 198, 4299, 651, 62, 20850, 62, 11265, 7, 85, 16, 25, 45941, 13, 358, 18747, 11, 410, 17, 25, 45941, 13, 358, 18747, 11, 284, 75, 25, 12178, 796, 352, 68, 12, 21, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 38, 1039, 262, 4326, 3487, 286, 262, 30104, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 410, 16, 198, 220, 220, 220, 220, 220, 220, 220, 383, 717, 15879, 13, 198, 220, 220, 220, 410, 17, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1218, 15879, 198, 220, 220, 220, 284, 75, 198, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 4357, 416, 4277, 352, 68, 12, 21, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3487, 286, 262, 734, 30104, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 4566, 13, 10920, 11882, 6624, 366, 404, 1516, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 410, 16, 796, 3487, 1096, 7, 85, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 17, 796, 3487, 1096, 7, 85, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31396, 796, 45941, 13, 19692, 7, 85, 16, 11, 410, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31396, 62, 27237, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 13155, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 31396, 62, 27237, 1279, 284, 75, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 569, 478, 669, 10548, 11, 523, 1064, 257, 3487, 284, 606, 287, 262, 6614, 4888, 351, 262, 1976, 12, 22704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 13155, 796, 45941, 13, 19692, 7, 37659, 13, 19692, 7, 85, 16, 11, 16289, 828, 410, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 13155, 62, 27237, 796, 45941, 13, 75, 1292, 70, 13, 27237, 7, 3605, 62, 13155, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 13155, 62, 27237, 1279, 284, 75, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 30320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 13155, 1220, 649, 62, 13155, 62, 27237, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 31396, 1220, 31396, 62, 27237, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3487, 1096, 7, 37659, 13, 19692, 7, 85, 16, 11, 410, 17, 4008, 628, 198, 21017, 628, 198, 4299, 31855, 62, 12942, 507, 7, 77, 25, 493, 796, 604, 11, 923, 62, 303, 310, 25, 45941, 13, 358, 18747, 796, 33621, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 16742, 82, 262, 38691, 11678, 1262, 256, 559, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 284, 307, 38375, 11, 416, 4277, 604, 198, 220, 220, 220, 923, 62, 303, 310, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4571, 329, 262, 9848, 284, 923, 351, 11, 416, 4277, 33621, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 543, 468, 587, 38375, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9848, 796, 21664, 52, 1220, 299, 198, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 10599, 378, 62, 31364, 7, 9688, 62, 303, 310, 11, 479, 1635, 9848, 8, 329, 479, 287, 2837, 7, 77, 8, 12962, 628, 198, 4299, 3218, 62, 1851, 1063, 7, 198, 220, 220, 220, 299, 25, 493, 11, 1635, 11, 16874, 25, 12178, 796, 352, 11, 923, 62, 9248, 25, 32233, 58, 22468, 60, 796, 6045, 198, 8, 4613, 309, 29291, 58, 37659, 13, 358, 18747, 11, 12178, 5974, 198, 220, 220, 220, 37227, 8645, 689, 7987, 38980, 9421, 1063, 1088, 257, 9197, 19254, 379, 262, 8159, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 9421, 1063, 198, 220, 220, 220, 16874, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16874, 286, 262, 9197, 326, 262, 9421, 1063, 389, 4624, 319, 13, 198, 220, 220, 220, 923, 62, 9248, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 262, 9421, 1063, 923, 379, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 29547, 11, 329, 772, 7559, 77, 15506, 3815, 11, 7559, 15, 15506, 481, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 5629, 7559, 77, 15506, 3815, 11, 4101, 7370, 318, 973, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 9421, 1063, 1058, 1058, 4871, 25, 63, 77, 32152, 13, 358, 18747, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7987, 38980, 9421, 1063, 13, 198, 220, 220, 220, 923, 62, 9248, 1058, 1058, 4871, 25, 63, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 262, 9421, 1063, 923, 379, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 923, 62, 9248, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 4064, 362, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 9248, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 9248, 796, 21664, 52, 1220, 604, 628, 220, 220, 220, 923, 62, 31364, 796, 23064, 62, 31364, 7, 49, 9947, 1635, 16874, 11, 923, 62, 9248, 8, 198, 220, 220, 220, 9421, 1063, 796, 31855, 62, 12942, 507, 7, 77, 11, 923, 62, 31364, 8, 628, 220, 220, 220, 1441, 9421, 1063, 11, 923, 62, 9248, 628, 628, 198, 198, 4299, 3641, 62, 1659, 62, 22208, 7, 13033, 25, 45835, 58, 22468, 12962, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 38, 1039, 262, 3641, 286, 2347, 286, 262, 2173, 287, 2272, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2173, 284, 1064, 262, 3641, 286, 2347, 422, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3641, 286, 2347, 286, 262, 2173, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2173, 796, 685, 37659, 13, 18747, 7, 4122, 737, 459, 2981, 7203, 22468, 4943, 329, 966, 287, 2173, 60, 198, 220, 220, 220, 1441, 2160, 7, 13033, 8, 1220, 18896, 7, 13033, 8, 628, 198, 4299, 3095, 4122, 7, 198, 220, 220, 220, 966, 16, 25, 45835, 58, 22468, 4357, 966, 17, 25, 45835, 58, 22468, 60, 198, 8, 4613, 4479, 58, 22468, 11, 45941, 13, 358, 18747, 5974, 198, 220, 220, 220, 37227, 38, 1039, 262, 3095, 4122, 286, 734, 2173, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 966, 16, 198, 220, 220, 220, 220, 220, 220, 220, 383, 717, 966, 13, 198, 220, 220, 220, 966, 17, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1218, 966, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4479, 58, 22468, 11, 45941, 13, 358, 18747, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3095, 4122, 286, 262, 2173, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 3641, 62, 1659, 62, 22208, 26933, 4122, 16, 11, 966, 17, 12962, 628, 198, 4299, 1627, 62, 3849, 5458, 7, 1370, 16, 25, 45835, 58, 22468, 4357, 1627, 17, 25, 45835, 58, 22468, 12962, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 35561, 16246, 966, 286, 734, 3951, 11, 1123, 5447, 351, 198, 220, 220, 220, 257, 5166, 286, 30104, 13213, 262, 886, 2173, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1627, 16, 198, 220, 220, 220, 220, 220, 220, 220, 383, 717, 1627, 13, 198, 220, 220, 220, 1627, 17, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1218, 1627, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 45941, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16246, 2173, 286, 262, 734, 3951, 543, 389, 36177, 278, 13, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 13047, 318, 4635, 611, 262, 734, 3951, 836, 470, 36177, 351, 1123, 584, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 62, 26069, 796, 357, 1370, 16, 58, 15, 7131, 15, 60, 532, 1627, 16, 58, 16, 7131, 15, 4357, 1627, 17, 58, 15, 7131, 15, 60, 532, 1627, 17, 58, 16, 7131, 15, 12962, 198, 220, 220, 220, 331, 62, 26069, 796, 357, 1370, 16, 58, 15, 7131, 16, 60, 532, 1627, 16, 58, 16, 7131, 16, 4357, 1627, 17, 58, 15, 7131, 16, 60, 532, 1627, 17, 58, 16, 7131, 16, 12962, 628, 220, 220, 220, 2659, 796, 1062, 7, 87, 62, 26069, 11, 331, 62, 26069, 8, 198, 220, 220, 220, 611, 2659, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43, 1127, 466, 407, 36177, 4943, 198, 220, 220, 220, 288, 796, 357, 15255, 46491, 1370, 16, 828, 1062, 46491, 1370, 17, 4008, 198, 220, 220, 220, 2124, 796, 1062, 7, 67, 11, 2124, 62, 26069, 8, 1220, 2659, 198, 220, 220, 220, 331, 796, 1062, 7, 67, 11, 331, 62, 26069, 8, 1220, 2659, 198, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 87, 11, 331, 11, 657, 12962, 628, 198, 4299, 1064, 62, 3849, 5458, 7, 79, 15, 11, 410, 15, 11, 279, 16, 11, 410, 16, 11, 11387, 28, 16, 68, 12, 20, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 16246, 286, 257, 1627, 6427, 832, 279, 15, 287, 4571, 410, 15, 198, 220, 220, 220, 351, 530, 6427, 832, 279, 16, 287, 4571, 410, 16, 13, 220, 357, 5574, 7177, 286, 42085, 198, 220, 220, 220, 422, 26515, 286, 884, 2173, 14, 12942, 507, 737, 198, 220, 220, 220, 1114, 513, 67, 3815, 11, 340, 5860, 262, 966, 319, 262, 26842, 279, 15, 1343, 410, 15, 1635, 256, 11706, 284, 262, 198, 220, 220, 220, 26842, 279, 16, 1343, 410, 16, 1635, 256, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 15, 796, 45941, 13, 18747, 7, 79, 15, 11, 299, 67, 1084, 28, 17, 8, 198, 220, 220, 220, 410, 15, 796, 45941, 13, 18747, 7, 85, 15, 11, 299, 67, 1084, 28, 17, 8, 198, 220, 220, 220, 279, 16, 796, 45941, 13, 18747, 7, 79, 16, 11, 299, 67, 1084, 28, 17, 8, 198, 220, 220, 220, 410, 16, 796, 45941, 13, 18747, 7, 85, 16, 11, 299, 67, 1084, 28, 17, 8, 198, 220, 220, 220, 285, 11, 299, 796, 45941, 13, 43358, 7, 79, 15, 8, 198, 220, 220, 220, 6818, 299, 287, 685, 17, 11, 513, 60, 628, 220, 220, 220, 5470, 1352, 796, 45941, 13, 19692, 7, 85, 16, 11, 279, 16, 532, 279, 15, 8, 198, 220, 220, 220, 31457, 1352, 796, 45941, 13, 19692, 7, 85, 16, 11, 410, 15, 8, 198, 220, 220, 220, 611, 299, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 18896, 7, 37659, 13, 43358, 7, 77, 6975, 1352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 77, 6975, 1352, 796, 45941, 13, 16680, 541, 306, 7, 77, 6975, 1352, 11, 5470, 1352, 737, 16345, 7, 67, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 6559, 6351, 1352, 796, 45941, 13, 16680, 541, 306, 7, 6559, 6351, 1352, 11, 5470, 1352, 737, 16345, 7, 67, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5470, 1352, 11, 31457, 1352, 796, 649, 62, 77, 6975, 1352, 11, 649, 62, 6559, 6351, 1352, 628, 220, 220, 220, 31457, 1352, 58, 8937, 7, 6559, 6351, 1352, 8, 1279, 11387, 60, 796, 45941, 13, 10745, 220, 1303, 1406, 326, 8064, 2925, 284, 657, 612, 198, 220, 220, 220, 8064, 796, 5470, 1352, 1220, 31457, 1352, 198, 220, 220, 220, 8064, 796, 45941, 13, 44754, 7, 10366, 952, 11, 299, 737, 3447, 1758, 19510, 76, 11, 299, 4008, 198, 220, 220, 220, 1441, 279, 15, 1343, 8064, 1635, 410, 15, 628, 198, 198, 4299, 7354, 417, 558, 7, 87, 62, 88, 25, 45941, 13, 358, 18747, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 17, 35, 7822, 286, 262, 7354, 417, 558, 10451, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1058, 4871, 25, 63, 22468, 63, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 4488, 1989, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 796, 2124, 62, 88, 58, 45299, 657, 60, 198, 220, 220, 220, 331, 796, 2124, 62, 88, 58, 45299, 352, 60, 198, 220, 220, 220, 1989, 796, 657, 13, 20, 1635, 45941, 13, 18747, 7, 37659, 13, 26518, 7, 87, 11, 45941, 13, 2487, 7, 88, 11, 352, 4008, 532, 45941, 13, 26518, 7, 88, 11, 45941, 13, 2487, 7, 87, 11, 352, 22305, 198, 220, 220, 220, 1441, 1989, 628, 198, 4299, 7354, 417, 558, 62, 37295, 7, 87, 62, 88, 25, 45941, 13, 358, 18747, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 36965, 262, 1989, 5295, 416, 262, 7354, 417, 558, 2446, 284, 5004, 1771, 198, 220, 220, 220, 262, 5128, 900, 286, 2173, 318, 7924, 8801, 3083, 393, 3753, 15750, 3083, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1058, 4871, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 15467, 7559, 1, 43538, 1, 15506, 393, 7559, 1, 4093, 54, 1, 15506, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1989, 796, 7354, 417, 558, 7, 87, 62, 88, 8, 198, 220, 220, 220, 1441, 366, 43538, 1, 611, 1989, 1875, 657, 2073, 366, 4093, 54, 1, 628, 198, 198, 4299, 1027, 15036, 62, 28461, 648, 1741, 7, 24040, 25, 45941, 13, 358, 18747, 11, 5858, 62, 2412, 25, 1351, 8, 4613, 1351, 25, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 36525, 3501, 257, 1333, 648, 1741, 198, 220, 220, 220, 286, 257, 7514, 14520, 11, 6196, 351, 10421, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3326, 912, 198, 220, 220, 220, 220, 220, 220, 220, 3326, 912, 318, 257, 299, 32152, 7177, 286, 2173, 13, 198, 220, 220, 220, 5858, 62, 2412, 198, 220, 220, 220, 220, 220, 220, 220, 5858, 62, 2412, 318, 257, 1351, 286, 36525, 12739, 810, 198, 220, 220, 220, 262, 5645, 286, 649, 13532, 389, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 36525, 3501, 257, 1333, 648, 1741, 286, 257, 7514, 14520, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3274, 11, 2018, 477, 262, 13917, 523, 326, 262, 7514, 14520, 198, 220, 220, 220, 1303, 351, 10421, 318, 2427, 5716, 355, 257, 357, 548, 24748, 87, 8, 198, 220, 220, 220, 1303, 7514, 14520, 351, 530, 5743, 13, 220, 2141, 428, 416, 8263, 8787, 198, 220, 220, 220, 1303, 1022, 13917, 1969, 284, 1123, 584, 198, 220, 220, 220, 13917, 796, 685, 4868, 7, 9521, 7, 68, 15, 11, 304, 16, 4008, 329, 304, 15, 11, 304, 16, 287, 19974, 26933, 15, 11, 1635, 1806, 62, 2412, 4357, 5858, 62, 2412, 15437, 198, 220, 220, 220, 7223, 62, 33173, 796, 13917, 58, 25, 16, 60, 198, 220, 220, 220, 30795, 62, 33173, 796, 13917, 58, 16, 47715, 198, 220, 220, 220, 9052, 62, 8443, 507, 796, 23884, 628, 220, 220, 220, 981, 30795, 62, 33173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 9521, 11, 474, 62, 9521, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 36525, 326, 389, 1541, 852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 973, 284, 3197, 617, 4637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 1312, 25, 1312, 407, 287, 9052, 62, 8443, 507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 340, 13, 7983, 46491, 1806, 62, 8094, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5858, 62, 8094, 287, 357, 1078, 2317, 62, 33173, 11, 30795, 62, 33173, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1012, 418, 395, 966, 319, 262, 7223, 13917, 284, 281, 6108, 3095, 4122, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 262, 30795, 13917, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 73, 62, 1851, 796, 3095, 4122, 7, 24040, 58, 73, 62, 9521, 58, 15, 60, 4357, 3326, 912, 58, 73, 62, 9521, 58, 11925, 7, 73, 62, 9521, 8, 3373, 362, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 949, 7, 72, 62, 9521, 11, 1994, 28, 50033, 1312, 25, 2593, 62, 16485, 1144, 7, 24040, 58, 72, 60, 532, 45218, 62, 73, 62, 1851, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1012, 418, 395, 966, 286, 262, 30795, 13917, 284, 262, 20794, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 966, 286, 262, 7223, 13917, 198, 220, 220, 220, 220, 220, 220, 220, 474, 796, 949, 7, 73, 62, 9521, 11, 1994, 28, 50033, 474, 25, 2593, 62, 16485, 1144, 7, 24040, 58, 72, 60, 532, 3326, 912, 58, 73, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3311, 282, 3129, 378, 1312, 1912, 319, 649, 474, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 949, 7, 72, 62, 9521, 11, 1994, 28, 50033, 1312, 25, 2593, 62, 16485, 1144, 7, 24040, 58, 72, 60, 532, 3326, 912, 58, 73, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11436, 284, 2018, 262, 7514, 14520, 379, 777, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 62, 8443, 507, 58, 72, 60, 796, 474, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 62, 8443, 507, 58, 73, 60, 796, 1312, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10028, 262, 5858, 543, 474, 14448, 284, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7223, 1351, 284, 262, 30795, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1806, 796, 1306, 7, 24455, 7, 50033, 5858, 25, 5858, 58, 15, 60, 19841, 474, 1279, 5858, 58, 12, 16, 4357, 30795, 62, 33173, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 30795, 62, 33173, 13, 28956, 7, 3605, 62, 1806, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7223, 62, 33173, 13, 33295, 7, 3605, 62, 1806, 8, 628, 220, 220, 220, 1303, 31122, 6692, 1351, 198, 220, 220, 220, 706, 796, 17635, 198, 220, 220, 220, 886, 15, 796, 657, 198, 220, 220, 220, 329, 886, 16, 287, 5858, 62, 2412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 706, 13, 2302, 437, 7, 9521, 7, 437, 15, 1343, 352, 11, 886, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 706, 13, 33295, 7, 437, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 15, 796, 886, 16, 628, 220, 220, 220, 1303, 9938, 281, 16216, 286, 36525, 6155, 1088, 262, 7514, 14520, 198, 220, 220, 220, 36525, 796, 17635, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 11925, 7, 24040, 8, 1343, 18896, 7, 1806, 62, 2412, 8, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3599, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 287, 9052, 62, 8443, 507, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 9052, 62, 8443, 507, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 13, 2302, 437, 26933, 72, 11, 474, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 706, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 706, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 13634, 62, 521, 1063, 796, 1027, 8968, 7, 24040, 58, 521, 1063, 11, 1058, 17, 4357, 685, 11925, 7, 521, 1063, 8, 12962, 198, 220, 220, 220, 1441, 685, 521, 1063, 58, 11632, 60, 329, 21504, 287, 13634, 62, 521, 1063, 60, 628, 628, 198, 4299, 47190, 62, 41907, 9250, 7, 198, 220, 220, 220, 1627, 25, 45835, 58, 37659, 13, 358, 18747, 4357, 2593, 62, 31364, 28, 12425, 198, 8, 4613, 45835, 58, 37659, 13, 358, 18747, 5974, 198, 220, 220, 220, 37227, 35561, 257, 1351, 286, 734, 2173, 326, 6053, 198, 220, 220, 220, 284, 262, 5645, 286, 262, 47190, 47457, 9250, 286, 262, 198, 220, 220, 220, 734, 2173, 1813, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1351, 286, 734, 299, 32152, 7177, 2173, 357, 10215, 5546, 278, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 5645, 286, 257, 1627, 737, 198, 220, 220, 220, 2593, 62, 31364, 198, 220, 220, 220, 220, 220, 220, 220, 262, 15879, 47190, 284, 1111, 262, 1627, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 47190, 47457, 9250, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1351, 286, 734, 299, 32152, 7177, 2173, 326, 6053, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 5645, 286, 262, 47190, 47457, 9250, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 16, 796, 1627, 58, 15, 60, 198, 220, 220, 220, 279, 17, 796, 1627, 58, 16, 60, 198, 220, 220, 220, 4571, 796, 45941, 13, 19692, 7, 79, 16, 532, 279, 17, 11, 2593, 62, 31364, 8, 198, 220, 220, 220, 285, 796, 3095, 4122, 7, 79, 16, 11, 279, 17, 8, 198, 220, 220, 220, 1441, 685, 76, 1343, 4571, 11, 285, 532, 4571, 60, 198 ]
2.307269
8,351
import inspect """ An immutable class representing a command, which is anything that has a side effect or is asynchronous. """
[ 11748, 10104, 198, 198, 37811, 198, 2025, 40139, 1398, 10200, 257, 3141, 11, 543, 318, 1997, 326, 468, 257, 1735, 198, 10760, 393, 318, 39354, 13, 198, 37811, 198 ]
4.413793
29
my_func(2, 3, 4, 5, 6, a=7, b=8)
[ 198, 1820, 62, 20786, 7, 17, 11, 513, 11, 604, 11, 642, 11, 718, 11, 257, 28, 22, 11, 275, 28, 23, 8, 198 ]
1.416667
24
# Learning rate parameters BASE_LR = 0.001 EPOCH_DECAY = 30 # number of epochs after which the Learning rate is decayed exponentially. DECAY_WEIGHT = 0.1 # factor by which the learning rate is reduced. # DATASET INFO NUM_CLASSES = 6 # set the number of classes in your dataset DATA_DIR = 'output_dataset/' # to run with the sample dataset, just set to 'hymenoptera_data' # DATALOADER PROPERTIES BATCH_SIZE = 10 # Set as high as possible. If you keep it too high, you'll get an out of memory error. ### GPU SETTINGS CUDA_DEVICE = 0 # Enter device ID of your gpu if you want to run on gpu. Otherwise neglect. GPU_MODE = 0 # set to 1 if want to run on gpu. # SETTINGS FOR DISPLAYING ON TENSORBOARD USE_TENSORBOARD = 0 #if you want to use tensorboard set this to 1. TENSORBOARD_SERVER = "YOUR TENSORBOARD SERVER ADDRESS HERE" # If you set. EXP_NAME = "fine_tuning_experiment" # if using tensorboard, enter name of experiment you want it to be displayed as.
[ 201, 198, 2, 18252, 2494, 10007, 201, 198, 33, 11159, 62, 35972, 796, 657, 13, 8298, 201, 198, 8905, 46, 3398, 62, 41374, 4792, 796, 1542, 1303, 1271, 286, 36835, 82, 706, 543, 262, 18252, 2494, 318, 875, 16548, 35529, 13, 201, 198, 41374, 4792, 62, 8845, 9947, 796, 657, 13, 16, 1303, 5766, 416, 543, 262, 4673, 2494, 318, 5322, 13, 201, 198, 201, 198, 201, 198, 2, 360, 1404, 1921, 2767, 24890, 201, 198, 41359, 62, 31631, 1546, 796, 718, 1303, 900, 262, 1271, 286, 6097, 287, 534, 27039, 201, 198, 26947, 62, 34720, 796, 705, 22915, 62, 19608, 292, 316, 14, 6, 1303, 284, 1057, 351, 262, 6291, 27039, 11, 655, 900, 284, 705, 12114, 3653, 32563, 64, 62, 7890, 6, 201, 198, 201, 198, 2, 360, 1404, 1847, 41048, 1137, 4810, 3185, 17395, 11015, 201, 198, 33, 11417, 62, 33489, 796, 838, 1303, 5345, 355, 1029, 355, 1744, 13, 1002, 345, 1394, 340, 1165, 1029, 11, 345, 1183, 651, 281, 503, 286, 4088, 4049, 13, 201, 198, 201, 198, 201, 198, 21017, 11362, 25823, 51, 20754, 201, 198, 43633, 5631, 62, 7206, 27389, 796, 657, 1303, 6062, 3335, 4522, 286, 534, 308, 19944, 611, 345, 765, 284, 1057, 319, 308, 19944, 13, 15323, 17985, 13, 201, 198, 33346, 62, 49058, 796, 657, 1303, 900, 284, 352, 611, 765, 284, 1057, 319, 308, 19944, 13, 201, 198, 201, 198, 201, 198, 2, 25823, 51, 20754, 7473, 13954, 31519, 2751, 6177, 309, 16938, 1581, 8202, 9795, 201, 198, 19108, 62, 51, 16938, 1581, 8202, 9795, 796, 657, 1303, 361, 345, 765, 284, 779, 11192, 273, 3526, 900, 428, 284, 352, 13, 201, 198, 51, 16938, 1581, 8202, 9795, 62, 35009, 5959, 796, 366, 56, 11698, 309, 16938, 1581, 8202, 9795, 18871, 5959, 5984, 7707, 7597, 15698, 1, 1303, 1002, 345, 900, 13, 201, 198, 49864, 62, 20608, 796, 366, 38125, 62, 28286, 278, 62, 23100, 3681, 1, 1303, 611, 1262, 11192, 273, 3526, 11, 3802, 1438, 286, 6306, 345, 765, 340, 284, 307, 9066, 355, 13 ]
2.908284
338
import logging import sys import time from abc import ABCMeta, abstractmethod import serial import six logger = logging.getLogger(__name__) @six.add_metaclass(ABCMeta)
[ 11748, 18931, 198, 11748, 25064, 198, 11748, 640, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 198, 198, 11748, 11389, 198, 11748, 2237, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 31, 19412, 13, 2860, 62, 4164, 330, 31172, 7, 24694, 48526, 8, 628, 198 ]
3.125
56
import unittest, tempfile, os from pychemy.peptide_sets import * import random import numpy as np AA_dict = {1:'A', 2:'C', 3:'D', 4:'E', 5:'F', 6:'G', 7:'H', 8:'I', 9:'L', 10:'K', 11:'M', 12:'N', 13:'P', 14:'Q', 15:'R', 16:'S', 17:'T', 18:'V', 19:'W', 20:'Y'} ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### ############################### if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 11, 20218, 7753, 11, 28686, 198, 6738, 12972, 26599, 13, 431, 457, 485, 62, 28709, 1330, 1635, 198, 11748, 4738, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 3838, 62, 11600, 796, 1391, 16, 32105, 32, 3256, 362, 32105, 34, 3256, 513, 32105, 35, 3256, 604, 32105, 36, 3256, 642, 32105, 37, 3256, 718, 32105, 38, 3256, 767, 32105, 39, 3256, 807, 32105, 40, 3256, 860, 32105, 43, 3256, 838, 32105, 42, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1367, 32105, 44, 3256, 1105, 32105, 45, 3256, 1511, 32105, 47, 3256, 1478, 32105, 48, 3256, 1315, 32105, 49, 3256, 1467, 32105, 50, 3256, 1596, 32105, 51, 3256, 1248, 32105, 53, 3256, 678, 32105, 54, 3256, 1160, 32105, 56, 6, 92, 198, 220, 220, 220, 628, 628, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 220, 220, 220, 220, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 198, 198, 14468, 7804, 4242, 21017, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.231707
246
""" Objects related to data downloads from the public PTF data server. Based on information and examples in Should work in python 2 and 3. """ import requests import pandas as pd from future.standard_library import install_aliases install_aliases() from urllib.request import urlopen import os __all__ = ['PTFImages'] class PTFImages(object): """ A class useful for downloading images that enclose point sources at different times as a function of coordinates (ra, dec). Choices in time ranges can also be made. """ def _get_url(self, ra=None, dec=None, fixedurl=None): """get url from ra, dec Parameters ---------- ra : ra in degrees dec : dec in degrees fixedurl : fixed url string """ if ra is None: ra = self.ra if dec is None: dec = self.dec if fixedurl is None: fixedurl = self.fixedurl pos = "{:3.6f},{:3.6f}".format(ra, dec) url = fixedurl + pos return url @property def response(self): """ text of the response from the url """ if self._response is None: url = self._get_url() r = requests.get(url) if r.status_code != 200: raise ValueError('response from url resulted in incorrect status', r.status) else: self._response = r.text return self._response @property def response_cat(self): """ A `pd.DataFrame` showing the catalog of images enclosing coordinates provided to create class instances """ linesu = list(l for l in self.response.split('\n')) headers = [] data = [] for l in linesu: if '|' in l: headers.append(l) elif len(l.strip()) > 0 and '\\' not in l: data.append(self._process_dataline(l)) else: # blank line pass #return pd.DataFrame(data), headers header_names, header_types, header_units = self.get_header(headers[:3]) return pd.DataFrame(data, columns=header_names).convert_objects(convert_numeric=True) @staticmethod def _process_dataline(line): """tokenise each line of the data by splitting on whitespace, but then joining the 5th and 6th element, and the two final elements Parameters ---------- line : string (unicode/bytes) line of the return split on '\n' .. notes : It is important that this does not include the newline character """ l = list(x.strip() for x in line.split()) # join the fields to create strings l[4] = ' '.join([l[4], l[5]]) l[-2] = ' '.join([l[-2], l[-1]]) # pop the extra fields l.pop(-1) l.pop(5) return l def get_header(self, headers): """tuples of header strings """ header_names, types, units = tuple(self._process_headerline(line) for line in headers) return header_names, types, units @staticmethod def _process_headerline(line): """tokenise each line of the data by splitting on whitespace, but then joining the 5th and 6th element, and the two final elements Parameters ---------- line : string (unicode/bytes) line of the return split on '\n' .. notes : It is important that this does not include the newline character """ l = list(x.strip() for x in line.split('|')) return l[1:-1] def get_urls(self, query=None): """return a list of image urls based on a dataframe query of self.response_cat Parameters ---------- query : string `pd.dataFrame.queries` of any kind are allowed """ if query is not None: x = self.response_cat.query(query) else: x = self.response_cat pfilenames = list(self.imageurl + fname for fname in x['pfilename'].values) afilename1 = list(self.imageurl + fname for fname in x['afilename1'].values) return afilename1, pfilenames @staticmethod def downloadfilefromurl(url, outdir='./'): """ Download a single file into the directory `outdir` Parameters ---------- url : string url from which to download file outdir : string, defaults to `./` absolute path to existing output directory into which files will be downloaded .. note : `outdir` needs to exist """ # Filename to write to is the same as the original file outdir = os.path.abspath(outdir) wfilename = os.path.join(outdir, url.split('/')[-1]) resp = urlopen(url) with open(wfilename, 'wb') as f: while True: chunk = resp.read() if not chunk: break f.write(chunk) return 0 def downloadimages(self, query=None): """ """ afilename1, pfilenames = self.get_urls(query) print (afilename1, pfilenames) x = list(self.downloadfilefromurl(fname) for fname in afilename1) x = list(self.downloadfilefromurl(fname) for fname in pfilenames) return x
[ 37811, 198, 10267, 82, 3519, 284, 1366, 21333, 422, 262, 1171, 350, 10234, 1366, 4382, 13, 13403, 319, 1321, 290, 6096, 198, 259, 220, 220, 198, 198, 19926, 670, 287, 21015, 362, 290, 513, 13, 198, 37811, 198, 11748, 7007, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 2003, 13, 20307, 62, 32016, 1330, 2721, 62, 7344, 1386, 198, 17350, 62, 7344, 1386, 3419, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19016, 9654, 198, 11748, 28686, 198, 198, 834, 439, 834, 796, 37250, 47, 10234, 29398, 20520, 198, 198, 4871, 350, 10234, 29398, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1398, 4465, 329, 22023, 4263, 326, 13507, 577, 966, 4237, 379, 1180, 1661, 355, 257, 2163, 286, 198, 220, 220, 220, 22715, 357, 430, 11, 875, 737, 10031, 1063, 287, 640, 16069, 460, 635, 307, 925, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4808, 1136, 62, 6371, 7, 944, 11, 2179, 28, 14202, 11, 875, 28, 14202, 11, 5969, 6371, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1136, 19016, 422, 2179, 11, 875, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2179, 1058, 2179, 287, 7370, 198, 220, 220, 220, 220, 220, 220, 220, 875, 1058, 875, 287, 7370, 198, 220, 220, 220, 220, 220, 220, 220, 5969, 6371, 1058, 5969, 19016, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2179, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2179, 796, 2116, 13, 430, 198, 220, 220, 220, 220, 220, 220, 220, 611, 875, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 875, 796, 2116, 13, 12501, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5969, 6371, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5969, 6371, 796, 220, 2116, 13, 34021, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 45144, 25, 18, 13, 21, 69, 5512, 90, 25, 18, 13, 21, 69, 92, 1911, 18982, 7, 430, 11, 875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 5969, 6371, 1343, 1426, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19016, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2882, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 286, 262, 2882, 422, 262, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 26209, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 2116, 13557, 1136, 62, 6371, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 7007, 13, 1136, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 374, 13, 13376, 62, 8189, 14512, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 26209, 422, 19016, 8724, 287, 11491, 3722, 3256, 374, 13, 13376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 26209, 796, 374, 13, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 26209, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2882, 62, 9246, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 317, 4600, 30094, 13, 6601, 19778, 63, 4478, 262, 18388, 286, 4263, 13507, 2752, 22715, 2810, 284, 198, 220, 220, 220, 220, 220, 220, 220, 2251, 1398, 10245, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 84, 796, 1351, 7, 75, 329, 300, 287, 2116, 13, 26209, 13, 35312, 10786, 59, 77, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 3951, 84, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 91, 6, 287, 300, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 13, 33295, 7, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 75, 13, 36311, 28955, 1875, 657, 290, 705, 6852, 6, 407, 287, 300, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 944, 13557, 14681, 62, 67, 10254, 500, 7, 75, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9178, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7783, 279, 67, 13, 6601, 19778, 7, 7890, 828, 24697, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 14933, 11, 13639, 62, 19199, 11, 13639, 62, 41667, 796, 2116, 13, 1136, 62, 25677, 7, 50145, 58, 25, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 67, 13, 6601, 19778, 7, 7890, 11, 15180, 28, 25677, 62, 14933, 737, 1102, 1851, 62, 48205, 7, 1102, 1851, 62, 77, 39223, 28, 17821, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 14681, 62, 67, 10254, 500, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30001, 786, 1123, 1627, 286, 262, 1366, 416, 26021, 319, 13216, 10223, 11, 475, 788, 9679, 262, 642, 400, 290, 718, 400, 5002, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 734, 2457, 4847, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 1058, 4731, 357, 46903, 1098, 14, 33661, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 286, 262, 1441, 6626, 319, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11485, 4710, 1058, 632, 318, 1593, 326, 428, 857, 407, 2291, 262, 649, 1370, 2095, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 1351, 7, 87, 13, 36311, 3419, 329, 2124, 287, 1627, 13, 35312, 28955, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4654, 262, 7032, 284, 2251, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 300, 58, 19, 60, 796, 705, 45302, 22179, 26933, 75, 58, 19, 4357, 300, 58, 20, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 58, 12, 17, 60, 796, 705, 45302, 22179, 26933, 75, 58, 12, 17, 4357, 300, 58, 12, 16, 11907, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1461, 262, 3131, 7032, 198, 220, 220, 220, 220, 220, 220, 220, 300, 13, 12924, 32590, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 13, 12924, 7, 20, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 628, 220, 220, 220, 825, 651, 62, 25677, 7, 944, 11, 24697, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 28047, 2374, 286, 13639, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 14933, 11, 3858, 11, 4991, 796, 46545, 7, 944, 13557, 14681, 62, 25677, 1370, 7, 1370, 8, 329, 1627, 287, 24697, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13639, 62, 14933, 11, 3858, 11, 4991, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 14681, 62, 25677, 1370, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30001, 786, 1123, 1627, 286, 262, 1366, 416, 26021, 319, 13216, 10223, 11, 475, 788, 9679, 262, 642, 400, 290, 718, 400, 5002, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 734, 2457, 4847, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 1058, 4731, 357, 46903, 1098, 14, 33661, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 286, 262, 1441, 6626, 319, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11485, 4710, 1058, 632, 318, 1593, 326, 428, 857, 407, 2291, 262, 649, 1370, 2095, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 1351, 7, 87, 13, 36311, 3419, 329, 2124, 287, 1627, 13, 35312, 10786, 91, 6, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 58, 16, 21912, 16, 60, 628, 220, 220, 220, 825, 651, 62, 6371, 82, 7, 944, 11, 12405, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7783, 257, 1351, 286, 2939, 2956, 7278, 1912, 319, 257, 1366, 14535, 12405, 286, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26209, 62, 9246, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 30094, 13, 7890, 19778, 13, 421, 10640, 63, 286, 597, 1611, 389, 3142, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12405, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 26209, 62, 9246, 13, 22766, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 26209, 62, 9246, 198, 220, 220, 220, 220, 220, 220, 220, 279, 10379, 268, 1047, 796, 1351, 7, 944, 13, 9060, 6371, 1343, 277, 3672, 329, 277, 3672, 287, 220, 2124, 17816, 79, 34345, 6, 4083, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6580, 346, 12453, 16, 796, 1351, 7, 944, 13, 9060, 6371, 1343, 277, 3672, 329, 277, 3672, 287, 220, 2124, 17816, 1878, 346, 12453, 16, 6, 4083, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6580, 346, 12453, 16, 11, 279, 10379, 268, 1047, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4321, 7753, 6738, 6371, 7, 6371, 11, 503, 15908, 28, 4458, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10472, 257, 2060, 2393, 656, 262, 8619, 4600, 448, 15908, 63, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 422, 543, 284, 4321, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 503, 15908, 1058, 4731, 11, 26235, 284, 4600, 19571, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4112, 3108, 284, 4683, 5072, 8619, 656, 543, 3696, 481, 307, 15680, 198, 197, 492, 3465, 1058, 4600, 448, 15908, 63, 2476, 284, 2152, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7066, 12453, 284, 3551, 284, 318, 262, 976, 355, 262, 2656, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 503, 15908, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 448, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 266, 34345, 796, 28686, 13, 6978, 13, 22179, 7, 448, 15908, 11, 19016, 13, 35312, 10786, 14, 11537, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 19016, 9654, 7, 6371, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 86, 34345, 11, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16058, 796, 1217, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16058, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 354, 2954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 628, 220, 220, 220, 825, 4321, 17566, 7, 944, 11, 12405, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6580, 346, 12453, 16, 11, 279, 10379, 268, 1047, 796, 2116, 13, 1136, 62, 6371, 82, 7, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 1878, 346, 12453, 16, 11, 279, 10379, 268, 1047, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 1351, 7, 944, 13, 15002, 7753, 6738, 6371, 7, 69, 3672, 8, 329, 277, 3672, 287, 6580, 346, 12453, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 1351, 7, 944, 13, 15002, 7753, 6738, 6371, 7, 69, 3672, 8, 329, 277, 3672, 287, 279, 10379, 268, 1047, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 628 ]
2.204775
2,471
import unittest from analog_noise_estimator import laplacians
[ 11748, 555, 715, 395, 198, 198, 6738, 15075, 62, 3919, 786, 62, 395, 320, 1352, 1330, 8591, 489, 330, 1547 ]
3.1
20
#!/usr/bin/env python3 import re import sys import codecs inputfile = codecs.open(sys.argv[1], mode='r', encoding='utf-8', errors='replace') lineprefix = re.compile(r'^(?P<time>\d+)\s+(?P<rss>\d+)\s+(?P<cpu>\d+\.\d+)\s+(?P<th>\d+) (?P<msg>.*)$') pkgre = re.compile(r'^(?P<result>(?:FAIL|ok |\? ))\tgithub.com/cockroachdb/cockroach/pkg/(?P<pkgname>[^ \t]*)\t(?P<tail>.*)$') testrunre = re.compile(r'^=== RUN (?P<testname>(?:Test|Example)[^/]*)$') testresre = re.compile(r'^--- (?P<result>FAIL|PASS|SKIP): (?P<testname>(?:Test|Example)[^/]*) (?:\((?P<tail>.*)\))?$') subtestrunre = re.compile(r'^=== RUN (?P<testname>(?:Test|Example)[^/]*)/(?P<stestname>[^ ]*)$') subtestresre = re.compile(r'^--- (?P<result>FAIL|PASS|SKIP): (?P<testname>(?:Test|Example)[^/]*)/(?P<stestname>[^ ]*) (?:\((?P<tail>.*)\))?$') allpackages = [] currentpkg = PkgRes() currenttest = None lasttest = None for line in inputfile: # line = line.strip() m = lineprefix.match(line) if m is None: print("UNEXPECTED:", line, file=sys.stderr) continue time, rss, cpu, th, msg = int(m.group('time')), int(m.group('rss')), float(m.group('cpu')), int(m.group('th')), m.group('msg') currentpkg.update(time, rss, cpu, th, len(line)) if currenttest is not None: currenttest.update(time, rss, cpu, th, len(line)) # print("msg=%r" % msg, file=sys.stderr) m = pkgre.match(msg) if m is not None: result, pkgname, tail = m.group('result'), m.group('pkgname'), m.group('tail') currentpkg.finish(result, pkgname, tail) # print("XXX", currentpkg.pkgresult(), file=sys.stderr) allpackages.append(currentpkg.pkgresult()) currentpkg = PkgRes() currenttest = None continue m = testrunre.match(msg) if m is not None: if currenttest is not None: # print("ABSORBED %r: %r" % (currenttest.testname, line), file=sys.stderr) lasttest = currenttest currenttest = None # This is possible if a test is emulating go test output # as a test result. # In that case, just count it as output # in the current test. # continue tn = m.group('testname') currenttest = TestRes(tn, currentpkg) currentpkg.add(currenttest) continue m = testresre.match(msg) if m is not None: nm = m.group('testname') if currenttest is None: print("NO TEST STARTED:", line, file=sys.stderr) continue if nm != currenttest.testname: # This is possible if a test is emulating go test output # as a test result. # In that case, just count it as output # in the current test. continue # print("MISMATCH: EXPECTED %r, got %r", currenttest.testname, nm, file=sys.stderr) currenttest.finish(m.group('result'), m.group('tail')) lasttest = currenttest currenttest = None # print("YYY", currenttest.testresult(), file=sys.stderr) # print("UNKNOWN:", line, file=sys.stderr) # print("ZZZ", line) m = subtestrunre.match(msg) if m is not None: tn = m.group('testname') if currenttest is None: currenttest = TestRes(tn, currentpkg) currentpkg.add(currenttest) if tn != currenttest.testname: # This is possible if a test is emulating go test output # as a test result. # In that case, just count it as output # in the current test. continue # print("MISMATCH: EXPECTED %r, got %r", currenttest.testname, nm, file=sys.stderr) currenttest.addsubtest(m.group('stestname')) continue m = subtestresre.match(msg) if m is not None: nm = m.group('testname') if lasttest is None: print("NO TEST STARTED:", line, file=sys.stderr) continue # print("ZZZ2", nm, lasttest.testname) if nm != lasttest.testname: # This is possible if a test is emulating go test output # as a test result. # In that case, just count it as output # in the current test. continue # print("MISMATCH: EXPECTED %r, got %r", currenttest.testname, nm, file=sys.stderr) lasttest.finishsubtest(m.group('result'), m.group('stestname'), m.group('tail')) # print("ZZZ3", len(lasttest.subtests)) #allpackages.append(currentpkg.pkgresult()) print("AT END", file=sys.stderr) print(allpackages) # Overall structure of a test output: # # === RUN TestXXXX # (optionally, more:) # === RUN TestXXXX/YYYY # (at end) # --- (PASS|FAIL|SKIP): TestXXXX (dur) # (optionally, more) # --- (PASSS|FAIL|SKIP): TestXXXX/YYYY (dur) # (at end of pkg) # PASS|FAIL # ok
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 40481, 82, 628, 628, 198, 198, 15414, 7753, 796, 40481, 82, 13, 9654, 7, 17597, 13, 853, 85, 58, 16, 4357, 4235, 11639, 81, 3256, 21004, 11639, 40477, 12, 23, 3256, 8563, 11639, 33491, 11537, 198, 198, 1370, 40290, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 7, 30, 47, 27, 2435, 29, 59, 67, 10, 19415, 82, 33747, 30, 47, 27, 42216, 29, 59, 67, 10, 19415, 82, 33747, 30, 47, 27, 36166, 29, 59, 67, 10, 17405, 59, 67, 10, 19415, 82, 33747, 30, 47, 27, 400, 29, 59, 67, 28988, 357, 30, 47, 27, 19662, 29, 15885, 8, 3, 11537, 198, 198, 35339, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 7, 30, 47, 27, 20274, 33994, 27514, 7708, 4146, 91, 482, 220, 930, 59, 30, 220, 220, 15306, 59, 83, 12567, 13, 785, 14, 21517, 28562, 9945, 14, 21517, 28562, 14, 35339, 29006, 30, 47, 27, 35339, 3672, 36937, 61, 3467, 83, 60, 9, 19415, 83, 7, 30, 47, 27, 13199, 29, 15885, 8, 3, 11537, 198, 198, 9288, 5143, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 18604, 32494, 220, 220, 357, 30, 47, 27, 9288, 3672, 33994, 27514, 14402, 91, 16281, 38381, 61, 14, 60, 28104, 3, 11537, 198, 9288, 411, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 6329, 357, 30, 47, 27, 20274, 29, 7708, 4146, 91, 47924, 91, 18831, 4061, 2599, 357, 30, 47, 27, 9288, 3672, 33994, 27514, 14402, 91, 16281, 38381, 61, 14, 60, 28104, 357, 30, 7479, 19510, 30, 47, 27, 13199, 29, 15885, 19415, 4008, 30, 3, 11537, 198, 7266, 9288, 5143, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 18604, 32494, 220, 220, 357, 30, 47, 27, 9288, 3672, 33994, 27514, 14402, 91, 16281, 38381, 61, 14, 60, 9, 20679, 7, 30, 47, 27, 301, 395, 3672, 36937, 61, 2361, 28104, 3, 11537, 198, 7266, 9288, 411, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 6329, 357, 30, 47, 27, 20274, 29, 7708, 4146, 91, 47924, 91, 18831, 4061, 2599, 357, 30, 47, 27, 9288, 3672, 33994, 27514, 14402, 91, 16281, 38381, 61, 14, 60, 9, 20679, 7, 30, 47, 27, 301, 395, 3672, 36937, 61, 2361, 28104, 357, 30, 7479, 19510, 30, 47, 27, 13199, 29, 15885, 19415, 4008, 30, 3, 11537, 198, 198, 439, 43789, 796, 17635, 198, 14421, 35339, 796, 350, 10025, 4965, 3419, 198, 14421, 9288, 796, 6045, 198, 12957, 9288, 796, 6045, 198, 1640, 1627, 287, 5128, 7753, 25, 198, 220, 220, 220, 1303, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 285, 796, 1627, 40290, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 611, 285, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4944, 49864, 9782, 1961, 25, 1600, 1627, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 640, 11, 374, 824, 11, 42804, 11, 294, 11, 31456, 796, 493, 7, 76, 13, 8094, 10786, 2435, 11537, 828, 493, 7, 76, 13, 8094, 10786, 42216, 11537, 828, 12178, 7, 76, 13, 8094, 10786, 36166, 11537, 828, 493, 7, 76, 13, 8094, 10786, 400, 11537, 828, 285, 13, 8094, 10786, 19662, 11537, 198, 220, 220, 220, 1459, 35339, 13, 19119, 7, 2435, 11, 374, 824, 11, 42804, 11, 294, 11, 18896, 7, 1370, 4008, 198, 220, 220, 220, 611, 1459, 9288, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 13, 19119, 7, 2435, 11, 374, 824, 11, 42804, 11, 294, 11, 18896, 7, 1370, 4008, 198, 220, 220, 220, 1303, 3601, 7203, 19662, 28, 4, 81, 1, 4064, 31456, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 285, 796, 279, 10025, 260, 13, 15699, 7, 19662, 8, 198, 220, 220, 220, 611, 285, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 11, 279, 10025, 3672, 11, 7894, 796, 285, 13, 8094, 10786, 20274, 33809, 285, 13, 8094, 10786, 35339, 3672, 33809, 285, 13, 8094, 10786, 13199, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 35339, 13, 15643, 680, 7, 20274, 11, 279, 10025, 3672, 11, 7894, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 43145, 1600, 1459, 35339, 13, 35339, 20274, 22784, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 43789, 13, 33295, 7, 14421, 35339, 13, 35339, 20274, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 35339, 796, 350, 10025, 4965, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 285, 796, 1332, 5143, 260, 13, 15699, 7, 19662, 8, 198, 220, 220, 220, 611, 285, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 9288, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 32, 4462, 1581, 33, 1961, 4064, 81, 25, 4064, 81, 1, 4064, 357, 14421, 9288, 13, 9288, 3672, 11, 1627, 828, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 9288, 796, 1459, 9288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 1744, 611, 257, 1332, 318, 795, 8306, 467, 1332, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 257, 1332, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 326, 1339, 11, 655, 954, 340, 355, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 262, 1459, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 256, 77, 796, 285, 13, 8094, 10786, 9288, 3672, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 796, 6208, 4965, 7, 34106, 11, 1459, 35339, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 35339, 13, 2860, 7, 14421, 9288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 285, 796, 1332, 411, 260, 13, 15699, 7, 19662, 8, 198, 220, 220, 220, 611, 285, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28642, 796, 285, 13, 8094, 10786, 9288, 3672, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 9288, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15285, 43001, 33303, 1961, 25, 1600, 1627, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28642, 14512, 1459, 9288, 13, 9288, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 1744, 611, 257, 1332, 318, 795, 8306, 467, 1332, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 257, 1332, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 326, 1339, 11, 655, 954, 340, 355, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 262, 1459, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 44, 31125, 11417, 25, 25703, 9782, 1961, 4064, 81, 11, 1392, 4064, 81, 1600, 1459, 9288, 13, 9288, 3672, 11, 28642, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 13, 15643, 680, 7, 76, 13, 8094, 10786, 20274, 33809, 285, 13, 8094, 10786, 13199, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 938, 9288, 796, 1459, 9288, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 26314, 56, 1600, 1459, 9288, 13, 9288, 20274, 22784, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 1303, 3601, 7203, 4944, 44706, 25, 1600, 1627, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 1303, 3601, 7203, 30148, 57, 1600, 1627, 8, 198, 220, 220, 220, 285, 796, 850, 9288, 5143, 260, 13, 15699, 7, 19662, 8, 198, 220, 220, 220, 611, 285, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 77, 796, 285, 13, 8094, 10786, 9288, 3672, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 9288, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 796, 6208, 4965, 7, 34106, 11, 1459, 35339, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 35339, 13, 2860, 7, 14421, 9288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 77, 14512, 1459, 9288, 13, 9288, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 1744, 611, 257, 1332, 318, 795, 8306, 467, 1332, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 257, 1332, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 326, 1339, 11, 655, 954, 340, 355, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 262, 1459, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 44, 31125, 11417, 25, 25703, 9782, 1961, 4064, 81, 11, 1392, 4064, 81, 1600, 1459, 9288, 13, 9288, 3672, 11, 28642, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 9288, 13, 2860, 7266, 9288, 7, 76, 13, 8094, 10786, 301, 395, 3672, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 285, 796, 850, 9288, 411, 260, 13, 15699, 7, 19662, 8, 198, 220, 220, 220, 611, 285, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28642, 796, 285, 13, 8094, 10786, 9288, 3672, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 938, 9288, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15285, 43001, 33303, 1961, 25, 1600, 1627, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 30148, 57, 17, 1600, 28642, 11, 938, 9288, 13, 9288, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28642, 14512, 938, 9288, 13, 9288, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 1744, 611, 257, 1332, 318, 795, 8306, 467, 1332, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 355, 257, 1332, 1255, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 326, 1339, 11, 655, 954, 340, 355, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 262, 1459, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 44, 31125, 11417, 25, 25703, 9782, 1961, 4064, 81, 11, 1392, 4064, 81, 1600, 1459, 9288, 13, 9288, 3672, 11, 28642, 11, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 938, 9288, 13, 15643, 680, 7266, 9288, 7, 76, 13, 8094, 10786, 20274, 33809, 285, 13, 8094, 10786, 301, 395, 3672, 33809, 285, 13, 8094, 10786, 13199, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 30148, 57, 18, 1600, 18896, 7, 12957, 9288, 13, 7266, 41989, 4008, 198, 198, 2, 439, 43789, 13, 33295, 7, 14421, 35339, 13, 35339, 20274, 28955, 198, 198, 4798, 7203, 1404, 23578, 1600, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 198, 4798, 7, 439, 43789, 8, 628, 198, 2, 14674, 4645, 286, 257, 1332, 5072, 25, 198, 2, 198, 2, 24844, 32494, 220, 220, 6208, 24376, 198, 2, 357, 18076, 453, 11, 517, 25, 8, 198, 2, 24844, 32494, 220, 220, 6208, 24376, 14, 26314, 26314, 198, 2, 357, 265, 886, 8, 198, 2, 11420, 357, 47924, 91, 7708, 4146, 91, 18831, 4061, 2599, 220, 6208, 24376, 357, 67, 333, 8, 198, 2, 357, 18076, 453, 11, 517, 8, 198, 2, 11420, 357, 47, 1921, 5432, 91, 7708, 4146, 91, 18831, 4061, 2599, 6208, 24376, 14, 26314, 26314, 357, 67, 333, 8, 198, 2, 357, 265, 886, 286, 279, 10025, 8, 198, 2, 41752, 91, 7708, 4146, 198, 2, 12876, 220, 198 ]
2.16868
2,235
from .timefrequency_convert import * from .timefrequency_crud import * from .timefrequency_identify import * from .timefrequency_resolution import *
[ 6738, 764, 2435, 35324, 62, 1102, 1851, 1330, 1635, 198, 6738, 764, 2435, 35324, 62, 6098, 463, 1330, 1635, 198, 6738, 764, 2435, 35324, 62, 738, 1958, 1330, 1635, 198, 6738, 764, 2435, 35324, 62, 29268, 1330, 1635, 628 ]
3.846154
39
from todolist_backend.models.classes import BaseODM
[ 6738, 284, 67, 349, 396, 62, 1891, 437, 13, 27530, 13, 37724, 1330, 7308, 3727, 44, 628, 628 ]
3.055556
18
__URL_EU = 'https://api-eu.restb.ai' __URL_US = 'https://api-us.restb.ai' __ENDPOINT = '/vision/v2/predict' __ENDPOINT_MULTIPREDICT = '/vision/v2/multipredict' __MODELS = [ 're_roomtype_global_v2', 're_exterior_styles', 're_features_v3', 're_logo', 're_appliances_v2', 're_compliance', 're_condition' ] __PARAMS = { 'client_key': None, 'model_id': None, 'image_url': None, 'image_base64': None } __all__ = [ '__URL_EU', '__URL_US', '__ENDPOINT', '__ENDPOINT_MULTIPREDICT', '__MODELS', '__PARAMS' ]
[ 834, 21886, 62, 19684, 796, 705, 5450, 1378, 15042, 12, 12496, 13, 2118, 65, 13, 1872, 6, 198, 834, 21886, 62, 2937, 796, 705, 5450, 1378, 15042, 12, 385, 13, 2118, 65, 13, 1872, 6, 198, 834, 1677, 6322, 46, 12394, 796, 31051, 10178, 14, 85, 17, 14, 79, 17407, 6, 198, 834, 1677, 6322, 46, 12394, 62, 44, 16724, 4061, 22083, 18379, 796, 31051, 10178, 14, 85, 17, 14, 16680, 541, 17407, 6, 198, 834, 33365, 37142, 796, 685, 198, 220, 220, 220, 705, 260, 62, 3823, 4906, 62, 20541, 62, 85, 17, 3256, 198, 220, 220, 220, 705, 260, 62, 1069, 14172, 62, 47720, 3256, 198, 220, 220, 220, 705, 260, 62, 40890, 62, 85, 18, 3256, 198, 220, 220, 220, 705, 260, 62, 6404, 78, 3256, 198, 220, 220, 220, 705, 260, 62, 1324, 75, 16097, 62, 85, 17, 3256, 198, 220, 220, 220, 705, 260, 62, 47587, 3256, 198, 220, 220, 220, 705, 260, 62, 31448, 6, 198, 60, 198, 834, 27082, 40834, 796, 1391, 198, 220, 220, 220, 705, 16366, 62, 2539, 10354, 6045, 11, 198, 220, 220, 220, 705, 19849, 62, 312, 10354, 6045, 11, 198, 220, 220, 220, 705, 9060, 62, 6371, 10354, 6045, 11, 198, 220, 220, 220, 705, 9060, 62, 8692, 2414, 10354, 6045, 198, 92, 628, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 834, 21886, 62, 19684, 3256, 198, 220, 220, 220, 705, 834, 21886, 62, 2937, 3256, 198, 220, 220, 220, 705, 834, 1677, 6322, 46, 12394, 3256, 198, 220, 220, 220, 705, 834, 1677, 6322, 46, 12394, 62, 44, 16724, 4061, 22083, 18379, 3256, 198, 220, 220, 220, 705, 834, 33365, 37142, 3256, 198, 220, 220, 220, 705, 834, 27082, 40834, 6, 198, 60, 198 ]
1.95189
291
# -*- coding: utf-8 -*- """ Created on Wed Jun 9 14:01:42 2021 @author: Ghozy El Fatih """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.interpolate as inter from PIL import Image #load gambar semblance path_gambar = "IMAGE_PATH\\" path_pick = "PICK_PATH\\normpick" gambar = "*" img = [] pick1 = [] for i in gambar: gg = Image.open(path_gambar+i+".png") img.append(gg) pp = np.loadtxt("interp_normpick"+i+".txt") pp = pp[:,0] pick1.append(pp) pick1 = np.array(pick1) pick1 = np.reshape(pick1,(10,80)).T pick2 = np.zeros([80,200]) for i in range(10): aa = list(pick1[:,i])*20 aa = np.array(aa) aa = np.reshape(aa,(20,80)).T pick2[:,i*20:(i+1)*20] = aa # sort the coordinate # normalize coordinate from pixel to x = velocity, y = time x_pick,y_pick = selection_sort(pick[:,0]),selection_sort(pick[:,1]) norm_x_pick = ((x_pick-0))/(500-0)*(4000-1000)+1000 norm_y_pick = ((y_pick-0))/(500-0)*(3-0)+0 norm = np.array([norm_x_pick,norm_y_pick]).T savenorm = np.savetxt('normpick'+gambar+'.txt',norm) vel = pick2[:,0] t = pick2[:,1] t[len(t)-1] = 3 t[0] = 0 y = t x = vel # Interpolate the data using a cubic spline to "new_length" samples new_length = 80 new_y = np.linspace(np.min(y), np.max(y), new_length) new_x = inter.interp1d(y, x, kind='linear')(new_y) new = np.array([new_x,new_y]).T neww = np.savetxt("interp_normpick"+no+".txt",new) # load rms buat pembanding path_rms = "C:\\Users\\Acer\\OneDrive - UNIVERSITAS INDONESIA\\Documents\\Kuliah\\Crispy\\velocity rms\\RMS Model 3\\" rms1 = pd.read_csv(path_rms+"RMS_3_80x200_1.csv",header=None) rms1 = np.array(rms1) rms = rms1[:,20] Y = np.linspace(0,3,80) error = (abs(rms1-pick2)/rms1)*100 mean_error = np.mean(error)/2 plt.figure() plt.suptitle('Perbandingan RMS Velocity Map, Error : '+str(round(mean_error,3))+'%',fontsize=20) plt.subplot(211) plt.title('RMS Velocity Hasil Pick CNN') plt.imshow(rms1,extent=[0,10000,3,0],aspect='auto',cmap='jet',interpolation='bicubic') plt.ylabel('Kedalaman (s)') plt.subplot(212) plt.title('RMS Velocity Hasil Perhitungan') plt.imshow(rms1,extent=[0,10000,3,0],aspect='auto',cmap='jet',interpolation='bicubic') plt.xlabel('Offset (m)')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 3300, 7653, 220, 860, 1478, 25, 486, 25, 3682, 33448, 201, 198, 201, 198, 31, 9800, 25, 402, 8873, 7357, 2574, 12301, 4449, 201, 198, 37811, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 629, 541, 88, 13, 3849, 16104, 378, 355, 987, 201, 198, 6738, 350, 4146, 1330, 7412, 201, 198, 201, 198, 2, 2220, 45756, 283, 45960, 201, 198, 6978, 62, 70, 4131, 283, 796, 366, 3955, 11879, 62, 34219, 6852, 1, 201, 198, 6978, 62, 27729, 796, 366, 47, 11860, 62, 34219, 6852, 27237, 27729, 1, 201, 198, 70, 4131, 283, 796, 366, 9, 1, 201, 198, 201, 198, 9600, 796, 17635, 201, 198, 27729, 16, 796, 17635, 201, 198, 1640, 1312, 287, 45756, 283, 25, 201, 198, 220, 220, 220, 308, 70, 796, 7412, 13, 9654, 7, 6978, 62, 70, 4131, 283, 10, 72, 10, 1911, 11134, 4943, 201, 198, 220, 220, 220, 33705, 13, 33295, 7, 1130, 8, 201, 198, 220, 220, 220, 9788, 796, 45941, 13, 2220, 14116, 7203, 3849, 79, 62, 27237, 27729, 1, 10, 72, 10, 1911, 14116, 4943, 201, 198, 220, 220, 220, 9788, 796, 9788, 58, 45299, 15, 60, 201, 198, 220, 220, 220, 2298, 16, 13, 33295, 7, 381, 8, 201, 198, 201, 198, 27729, 16, 796, 45941, 13, 18747, 7, 27729, 16, 8, 201, 198, 27729, 16, 796, 45941, 13, 3447, 1758, 7, 27729, 16, 11, 7, 940, 11, 1795, 29720, 51, 201, 198, 201, 198, 27729, 17, 796, 45941, 13, 9107, 418, 26933, 1795, 11, 2167, 12962, 201, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 201, 198, 220, 220, 220, 257, 64, 796, 1351, 7, 27729, 16, 58, 45299, 72, 12962, 9, 1238, 201, 198, 220, 220, 220, 257, 64, 796, 45941, 13, 18747, 7, 7252, 8, 201, 198, 220, 220, 220, 257, 64, 796, 45941, 13, 3447, 1758, 7, 7252, 11, 7, 1238, 11, 1795, 29720, 51, 201, 198, 220, 220, 220, 2298, 17, 58, 45299, 72, 9, 1238, 37498, 72, 10, 16, 27493, 1238, 60, 796, 257, 64, 201, 198, 201, 198, 2, 3297, 262, 20435, 201, 198, 201, 198, 2, 3487, 1096, 20435, 422, 17465, 284, 2124, 796, 15432, 11, 331, 796, 640, 201, 198, 220, 220, 201, 198, 87, 62, 27729, 11, 88, 62, 27729, 796, 6356, 62, 30619, 7, 27729, 58, 45299, 15, 46570, 49283, 62, 30619, 7, 27729, 58, 45299, 16, 12962, 201, 198, 27237, 62, 87, 62, 27729, 796, 14808, 87, 62, 27729, 12, 15, 4008, 29006, 4059, 12, 15, 27493, 7, 27559, 12, 12825, 47762, 12825, 201, 198, 27237, 62, 88, 62, 27729, 796, 14808, 88, 62, 27729, 12, 15, 4008, 29006, 4059, 12, 15, 27493, 7, 18, 12, 15, 47762, 15, 201, 198, 201, 198, 27237, 796, 45941, 13, 18747, 26933, 27237, 62, 87, 62, 27729, 11, 27237, 62, 88, 62, 27729, 35944, 51, 201, 198, 201, 198, 82, 4005, 579, 796, 45941, 13, 21928, 14116, 10786, 27237, 27729, 6, 10, 70, 4131, 283, 10, 4458, 14116, 3256, 27237, 8, 201, 198, 201, 198, 626, 796, 2298, 17, 58, 45299, 15, 60, 201, 198, 83, 796, 2298, 17, 58, 45299, 16, 60, 201, 198, 83, 58, 11925, 7, 83, 13219, 16, 60, 796, 513, 201, 198, 83, 58, 15, 60, 796, 657, 201, 198, 201, 198, 88, 796, 256, 201, 198, 87, 796, 11555, 201, 198, 201, 198, 2, 4225, 16104, 378, 262, 1366, 1262, 257, 27216, 4328, 500, 284, 366, 3605, 62, 13664, 1, 8405, 201, 198, 3605, 62, 13664, 796, 4019, 201, 198, 3605, 62, 88, 796, 45941, 13, 21602, 10223, 7, 37659, 13, 1084, 7, 88, 828, 45941, 13, 9806, 7, 88, 828, 649, 62, 13664, 8, 201, 198, 3605, 62, 87, 796, 987, 13, 3849, 79, 16, 67, 7, 88, 11, 2124, 11, 1611, 11639, 29127, 6, 5769, 3605, 62, 88, 8, 201, 198, 201, 198, 3605, 796, 45941, 13, 18747, 26933, 3605, 62, 87, 11, 3605, 62, 88, 35944, 51, 201, 198, 3605, 86, 796, 45941, 13, 21928, 14116, 7203, 3849, 79, 62, 27237, 27729, 1, 10, 3919, 10, 1911, 14116, 1600, 3605, 8, 201, 198, 201, 198, 2, 3440, 374, 907, 809, 265, 279, 368, 3903, 278, 201, 198, 6978, 62, 81, 907, 796, 366, 34, 25, 6852, 14490, 6852, 32, 2189, 6852, 3198, 24825, 532, 49677, 2043, 1921, 24413, 39677, 3539, 6852, 38354, 6852, 42, 377, 9520, 6852, 34, 2442, 9078, 6852, 626, 11683, 374, 907, 6852, 49, 5653, 9104, 513, 6852, 1, 201, 198, 81, 907, 16, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 62, 81, 907, 10, 1, 49, 5653, 62, 18, 62, 1795, 87, 2167, 62, 16, 13, 40664, 1600, 25677, 28, 14202, 8, 201, 198, 81, 907, 16, 796, 45941, 13, 18747, 7, 81, 907, 16, 8, 201, 198, 81, 907, 796, 374, 907, 16, 58, 45299, 1238, 60, 201, 198, 56, 796, 45941, 13, 21602, 10223, 7, 15, 11, 18, 11, 1795, 8, 201, 198, 201, 198, 18224, 796, 357, 8937, 7, 81, 907, 16, 12, 27729, 17, 20679, 81, 907, 16, 27493, 3064, 201, 198, 32604, 62, 18224, 796, 45941, 13, 32604, 7, 18224, 20679, 17, 201, 198, 201, 198, 489, 83, 13, 26875, 3419, 201, 198, 489, 83, 13, 2385, 457, 2578, 10786, 5990, 3903, 278, 272, 371, 5653, 43137, 9347, 11, 13047, 1058, 705, 10, 2536, 7, 744, 7, 32604, 62, 18224, 11, 18, 4008, 10, 6, 4, 3256, 10331, 7857, 28, 1238, 8, 201, 198, 489, 83, 13, 7266, 29487, 7, 21895, 8, 201, 198, 489, 83, 13, 7839, 10786, 49, 5653, 43137, 7875, 346, 12346, 8100, 11537, 201, 198, 489, 83, 13, 320, 12860, 7, 81, 907, 16, 11, 2302, 298, 41888, 15, 11, 49388, 11, 18, 11, 15, 4357, 292, 806, 11639, 23736, 3256, 66, 8899, 11639, 31173, 3256, 3849, 16104, 341, 11639, 65, 291, 549, 291, 11537, 201, 198, 489, 83, 13, 2645, 9608, 10786, 42, 276, 282, 10546, 357, 82, 8, 11537, 201, 198, 489, 83, 13, 7266, 29487, 7, 21777, 8, 201, 198, 489, 83, 13, 7839, 10786, 49, 5653, 43137, 7875, 346, 2448, 17945, 403, 1030, 11537, 201, 198, 489, 83, 13, 320, 12860, 7, 81, 907, 16, 11, 2302, 298, 41888, 15, 11, 49388, 11, 18, 11, 15, 4357, 292, 806, 11639, 23736, 3256, 66, 8899, 11639, 31173, 3256, 3849, 16104, 341, 11639, 65, 291, 549, 291, 11537, 201, 198, 489, 83, 13, 87, 18242, 10786, 34519, 357, 76, 8, 11537, 201, 198 ]
2.091568
1,103
# -*- coding: utf-8 -*- __name__ = 'google_streetview' __author__ = 'Richard Wen' __email__ = '[email protected]' __version__ = '1.2.9' __license__ = 'MIT' __description__ = 'A command line tool and module for Google Street View Image API.' __long_description_content_type__='text/markdown' __keywords__ = [ 'google', 'api', 'street', 'view', 'streetview', 'image', 'map', 'address', 'location', 'road', 'route', 'city', 'panorama', 'photo', 'cli', 'command', 'line', 'interface', 'tool', 'module'] __url__ = 'https://github.com/rrwen/google_streetview' __download_url__ = 'https://github.com/rrwen/google_streetview/archive/master.zip' __install_requires__ = [ 'kwconfig', 'requests' ] __packages__ = ['google_streetview'] __package_data__ = {'google_streetview': ['config.json']} __entry_points__ = {'console_scripts': ['google_streetview=google_streetview.cli:run']}
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 834, 3672, 834, 796, 705, 13297, 62, 25662, 1177, 6, 201, 198, 834, 9800, 834, 796, 705, 22245, 31164, 6, 201, 198, 834, 12888, 834, 796, 705, 21062, 21006, 13, 7959, 31, 14816, 13, 785, 6, 201, 198, 834, 9641, 834, 796, 705, 16, 13, 17, 13, 24, 6, 201, 198, 834, 43085, 834, 796, 705, 36393, 6, 201, 198, 834, 11213, 834, 796, 705, 32, 3141, 1627, 2891, 290, 8265, 329, 3012, 3530, 3582, 7412, 7824, 2637, 201, 198, 834, 6511, 62, 11213, 62, 11299, 62, 4906, 834, 11639, 5239, 14, 4102, 2902, 6, 201, 198, 834, 2539, 10879, 834, 796, 685, 201, 198, 220, 705, 13297, 3256, 201, 198, 220, 705, 15042, 3256, 201, 198, 220, 705, 25662, 3256, 201, 198, 220, 705, 1177, 3256, 201, 198, 220, 705, 25662, 1177, 3256, 201, 198, 220, 705, 9060, 3256, 201, 198, 220, 705, 8899, 3256, 201, 198, 220, 705, 21975, 3256, 201, 198, 220, 705, 24886, 3256, 201, 198, 220, 705, 6344, 3256, 201, 198, 220, 705, 38629, 3256, 201, 198, 220, 705, 19205, 3256, 201, 198, 220, 705, 6839, 36161, 3256, 201, 198, 220, 705, 23074, 3256, 201, 198, 220, 705, 44506, 3256, 201, 198, 220, 705, 21812, 3256, 220, 201, 198, 220, 705, 1370, 3256, 201, 198, 220, 705, 39994, 3256, 201, 198, 220, 705, 25981, 3256, 201, 198, 220, 705, 21412, 20520, 201, 198, 834, 6371, 834, 796, 705, 5450, 1378, 12567, 13, 785, 14, 21062, 21006, 14, 13297, 62, 25662, 1177, 6, 201, 198, 834, 15002, 62, 6371, 834, 796, 705, 5450, 1378, 12567, 13, 785, 14, 21062, 21006, 14, 13297, 62, 25662, 1177, 14, 17474, 14, 9866, 13, 13344, 6, 201, 198, 834, 17350, 62, 47911, 834, 796, 685, 201, 198, 220, 705, 46265, 11250, 3256, 201, 198, 220, 705, 8897, 3558, 6, 201, 198, 60, 201, 198, 834, 43789, 834, 796, 37250, 13297, 62, 25662, 1177, 20520, 201, 198, 834, 26495, 62, 7890, 834, 796, 1391, 6, 13297, 62, 25662, 1177, 10354, 37250, 11250, 13, 17752, 20520, 92, 201, 198, 834, 13000, 62, 13033, 834, 796, 1391, 6, 41947, 62, 46521, 10354, 37250, 13297, 62, 25662, 1177, 28, 13297, 62, 25662, 1177, 13, 44506, 25, 5143, 20520, 92, 201, 198 ]
2.492188
384
task_estimated_time = 25 # minutes tasks_arriving_distribution_params = 20, 6 # normal distribution with mean 20 and sd 6
[ 198, 35943, 62, 395, 15655, 62, 2435, 796, 1679, 1303, 2431, 198, 83, 6791, 62, 283, 380, 1075, 62, 17080, 3890, 62, 37266, 796, 1160, 11, 718, 1303, 3487, 6082, 351, 1612, 1160, 290, 45647, 718, 198 ]
3.324324
37
a = ('zero', 'um', 'dois', 'três', 'quatro', 'cinco', 'seis', 'sete', 'oito', 'nove', 'dez', 'onze', 'doze', 'treze', 'cartoze', 'quinze') n = int(input('DIGITE UM NÚMERO DE 0 A 15: ')) if n > 15 or n < 0: while True: n = int(input('DIGITE UM NÚMERO DE 0 A 15: ')) if 0 <= n <= 15: break print(f'Você digitou o numéro {a[n]}')
[ 64, 796, 19203, 22570, 3256, 705, 388, 3256, 705, 4598, 271, 3256, 705, 2213, 25792, 82, 3256, 705, 421, 47756, 3256, 705, 17879, 1073, 3256, 705, 325, 271, 3256, 705, 2617, 68, 3256, 705, 78, 10094, 3256, 705, 77, 659, 3256, 705, 2934, 89, 3256, 705, 261, 2736, 3256, 705, 4598, 2736, 3256, 705, 33945, 2736, 3256, 705, 26674, 78, 2736, 3256, 705, 21915, 2736, 11537, 198, 77, 796, 493, 7, 15414, 10786, 35, 3528, 12709, 44352, 399, 127, 248, 29296, 46, 5550, 657, 317, 1315, 25, 705, 4008, 198, 361, 299, 1875, 1315, 393, 299, 1279, 657, 25, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 493, 7, 15414, 10786, 35, 3528, 12709, 44352, 399, 127, 248, 29296, 46, 5550, 657, 317, 1315, 25, 705, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 657, 19841, 299, 19841, 1315, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 4798, 7, 69, 6, 53, 420, 25792, 16839, 280, 267, 997, 2634, 305, 1391, 64, 58, 77, 48999, 11537 ]
1.945652
184
import importlib import os testdir = os.path.dirname(os.path.realpath("__file__")) srcdir = 'src/main/python/daggit' abs_path = os.path.join(testdir, srcdir)
[ 11748, 1330, 8019, 198, 11748, 28686, 198, 198, 9288, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7203, 834, 7753, 834, 48774, 198, 10677, 15908, 796, 705, 10677, 14, 12417, 14, 29412, 14, 67, 9460, 270, 6, 198, 8937, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 9288, 15908, 11, 12351, 15908, 8, 628 ]
2.580645
62
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="rfm", version="1.0.7", author="Suresh Sonwane", author_email="[email protected]", description="Python Package for RFM Analysis and Customer Segmentation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/sonwanesuresh95/rfm", project_urls={ "Bug Tracker": "https://github.com/sonwanesuresh95/rfm/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "."}, packages=setuptools.find_packages(where="."), python_requires=">=3.6", install_requires=['pandas>=1.2.4', 'numpy>=1.20.1', 'matplotlib>=3.3.4'] )
[ 11748, 900, 37623, 10141, 201, 198, 201, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 1600, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 71, 25, 201, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 201, 198, 201, 198, 2617, 37623, 10141, 13, 40406, 7, 201, 198, 220, 220, 220, 1438, 2625, 81, 38353, 1600, 201, 198, 220, 220, 220, 2196, 2625, 16, 13, 15, 13, 22, 1600, 201, 198, 220, 220, 220, 1772, 2625, 50, 942, 71, 6295, 86, 1531, 1600, 201, 198, 220, 220, 220, 1772, 62, 12888, 2625, 1559, 86, 7305, 942, 71, 22, 2670, 31, 14816, 13, 785, 1600, 201, 198, 220, 220, 220, 6764, 2625, 37906, 15717, 329, 20445, 44, 14691, 290, 22092, 1001, 5154, 341, 1600, 201, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 201, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 201, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 1559, 86, 7305, 942, 71, 3865, 14, 81, 38353, 1600, 201, 198, 220, 220, 220, 1628, 62, 6371, 82, 34758, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25624, 26885, 1298, 366, 5450, 1378, 12567, 13, 785, 14, 1559, 86, 7305, 942, 71, 3865, 14, 81, 38353, 14, 37165, 1600, 201, 198, 220, 220, 220, 8964, 201, 198, 220, 220, 220, 1398, 13350, 41888, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 201, 198, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 5301, 62, 15908, 28, 4895, 1298, 366, 526, 5512, 201, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 7, 3003, 2625, 526, 828, 201, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 13, 21, 1600, 201, 198, 220, 220, 220, 2721, 62, 47911, 28, 17816, 79, 392, 292, 29, 28, 16, 13, 17, 13, 19, 3256, 705, 77, 32152, 29, 28, 16, 13, 1238, 13, 16, 3256, 705, 6759, 29487, 8019, 29, 28, 18, 13, 18, 13, 19, 20520, 201, 198, 8, 201, 198 ]
2.341709
398
#!/usr/bin/env python import cv2 as cv import numpy as np import matplotlib.pyplot as plt cap = cv.VideoCapture(0) plt.ion() fig = plt.figure(figsize=(10,3)) fig.suptitle('histogram') ax = fig.add_axes([-0.25,0,1,1]) im = ax.imshow(np.zeros((480,640)),'gray',vmin=0,vmax=255) ax.set_axis_off(); ax2 = fig.add_axes([0.55,0.1,0.4,0.8]) l1, = ax2.plot([], [], '-r',lw=2) ax2.set_xlim(0,255) ax2.set_ylim(0,10000) plt.show() for _ in range(100): ret, frame = cap.read() x = cv.cvtColor(frame,cv.COLOR_BGR2GRAY) im.set_data(x) h,b = np.histogram(x, np.arange(257)) l1.set_data(b[1:],h); plt.pause(0.001)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 269, 85, 17, 355, 269, 85, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11128, 796, 269, 85, 13, 10798, 49630, 7, 15, 8, 198, 198, 489, 83, 13, 295, 3419, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 940, 11, 18, 4008, 198, 5647, 13, 2385, 457, 2578, 10786, 10034, 21857, 11537, 198, 198, 897, 796, 2336, 13, 2860, 62, 897, 274, 26933, 12, 15, 13, 1495, 11, 15, 11, 16, 11, 16, 12962, 198, 320, 796, 7877, 13, 320, 12860, 7, 37659, 13, 9107, 418, 19510, 22148, 11, 31102, 36911, 6, 44605, 3256, 85, 1084, 28, 15, 11, 85, 9806, 28, 13381, 8, 198, 897, 13, 2617, 62, 22704, 62, 2364, 9783, 198, 198, 897, 17, 796, 2336, 13, 2860, 62, 897, 274, 26933, 15, 13, 2816, 11, 15, 13, 16, 11, 15, 13, 19, 11, 15, 13, 23, 12962, 198, 75, 16, 11, 796, 7877, 17, 13, 29487, 26933, 4357, 685, 4357, 705, 12, 81, 3256, 75, 86, 28, 17, 8, 198, 897, 17, 13, 2617, 62, 87, 2475, 7, 15, 11, 13381, 8, 198, 897, 17, 13, 2617, 62, 88, 2475, 7, 15, 11, 49388, 8, 198, 198, 489, 83, 13, 12860, 3419, 198, 198, 1640, 4808, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 1005, 11, 5739, 796, 1451, 13, 961, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2124, 796, 269, 85, 13, 33967, 83, 10258, 7, 14535, 11, 33967, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 198, 220, 220, 220, 545, 13, 2617, 62, 7890, 7, 87, 8, 628, 220, 220, 220, 289, 11, 65, 796, 45941, 13, 10034, 21857, 7, 87, 11, 45941, 13, 283, 858, 7, 28676, 4008, 628, 220, 220, 220, 300, 16, 13, 2617, 62, 7890, 7, 65, 58, 16, 25, 4357, 71, 1776, 628, 220, 220, 220, 458, 83, 13, 32125, 7, 15, 13, 8298, 8, 628 ]
1.884956
339
import logging from sklearn.ensemble import RandomForestRegressor from skopt.space import Integer from lib.models import SKModel
[ 11748, 18931, 198, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 8081, 44292, 198, 6738, 1341, 8738, 13, 13200, 1330, 34142, 198, 198, 6738, 9195, 13, 27530, 1330, 14277, 17633, 628 ]
4
33
#!/usr/bin/python # -*- coding: utf-8 -*- from web import template from configuration import WEBSITE_NAME, ADMIN_VERSION from auth import get_logged_user, get_logoff_url from model import get_exposed_managed_tables import os rootpath = os.path.abspath(os.path.dirname(__file__)) admin_template_path = template.render(rootpath + '/templates/admin', cache=False)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 6738, 3992, 1330, 11055, 201, 198, 6738, 8398, 1330, 12887, 4462, 12709, 62, 20608, 11, 5984, 23678, 62, 43717, 201, 198, 6738, 6284, 1330, 651, 62, 6404, 2004, 62, 7220, 11, 651, 62, 6404, 2364, 62, 6371, 201, 198, 6738, 2746, 1330, 651, 62, 11201, 1335, 62, 39935, 62, 83, 2977, 201, 198, 201, 198, 11748, 28686, 201, 198, 15763, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 201, 198, 201, 198, 28482, 62, 28243, 62, 6978, 796, 11055, 13, 13287, 7, 15763, 6978, 1343, 31051, 11498, 17041, 14, 28482, 3256, 12940, 28, 25101, 8, 201, 198 ]
2.791045
134
__version__='0.41-beta'
[ 834, 9641, 834, 11639, 15, 13, 3901, 12, 31361, 6, 198 ]
2.181818
11
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import serial import click import platform import glob import json import signal import sys from itertools import cycle from influxdb import InfluxDBClient serial_port = serial.Serial() client = None progress_pool = cycle(["_ ", "__ ", "___"]) @click.command() @click.option('--baud_rate', default = 19200, help='Override the default baud_rate value.') @click.option('--verbose', default = False, help='Prints the retrieved json on console.') def routine(verbose, baud_rate): """ This script intends to log the data output from an Arduino connected to the PC and running the MPU-9250 firmware provided. The data is logged to an InfluxDB instance as soon as it arrives. All tuning/synchronization is untested and there may be race around conditions here. """ open_serial_port(baud_rate) click.secho("[INF] ", fg = 'cyan', nl = False) click.secho("Serial Port '{0}' opened.".format(serial_port.name)) while True: try: line = serial_port.readline().decode('utf-8') act_upon(line) except Exception: click.secho("\n[ERR] ", fg = 'cyan', nl = False, err = True) click.secho("Connection Lost.", err = True, fg = 'red') click.secho("[INF] ", fg = 'cyan', nl = False) click.secho("Terminating Process.") sys.exit(1) def open_serial_port(baud_rate): """ Prompts to select the correct Serial Port and then uses that to gather the data from. """ global serial_port ports = list_serial_ports() for index, port in enumerate(ports, start = 1): click.secho("[{0}]".format(index), fg = 'cyan', nl = False) click.secho(" {0}".format(port), fg = 'yellow') port_number = click.prompt('Please enter the Serial Port Number', type = int) try: ser = serial.Serial(ports[port_number - 1], baud_rate) serial_port = ser except IndexError: click.secho("[ERR] ", fg = 'cyan', nl = False, err = True) click.secho("Incorrect port number. Terminating.", err = True, fg = 'red') sys.exit(1) except Exception: click.secho("[ERR] ", fg = 'cyan', nl = False, err = True) click.secho("Cannot open the Serial Port at '{0}'.".format(ports[port_number - 1]), err = True, fg = 'red') click.secho("[INF] ", fg = 'cyan', nl = False) click.secho("Terminating Process.".format(index)) sys.exit(1) def act_upon(line): """ Acts upon the lines received from the Device. """ try: dat = json.loads(line) if all([ 'A' in dat, 'G' in dat, 'C' in dat ]): inf = click.style("[LOGGING DATA] {0}".format(next(progress_pool)), fg = 'cyan') click.secho('\r{0}'.format(inf), nl = False) # Add data in influx now json_body = [ { "measurement": "accelerometer", "tags": { "host": "server01", }, "fields": { "x": dat['A'][0], "y": dat['A'][1], "z": dat['A'][2] } }, { "measurement": "gyroscope", "tags": { "host": "server01", }, "fields": { "x": dat['G'][0], "y": dat['G'][1], "z": dat['G'][2] } }, { "measurement": "magnetometer", "tags": { "host": "server01", }, "fields": { "x": dat['C'][0], "y": dat['C'][1], "z": dat['C'][2] } } ] client.write_points(json_body) except ValueError: if "ok" in line: click.secho("[INF] ", fg = 'cyan', nl = False) click.secho("Sensors are Online. Beginning Data Logging.") click.secho("[INF] ", fg = 'yellow', nl = False) click.secho("Press CTRL + C to stop.", ) if "L" in line: click.echo(line) if "M" in line: click.echo(line) def signal_handler(signal, frame): """ Handles SIGINT. """ click.secho("\n[INF] ", fg = 'cyan', nl = False) click.secho("Closing Ports and Exiting.") serial_port.close() sys.exit(0) def list_serial_ports(): """ Scans and lists the available Serial Ports. """ system_name = platform.system() if system_name == "Windows": # Scan for available ports. available = [] for i in range(256): try: s = serial.Serial(i) available.append(i) s.close() except serial.SerialException: pass return available elif system_name == "Darwin": # Mac return glob.glob('/dev/tty.*') #+ glob.glob('/dev/cu.*') else: # Assume Linux or something else return glob.glob('/dev/ttyS*') + glob.glob('/dev/ttyUSB*') if __name__ == '__main__': signal.signal(signal.SIGINT, signal_handler) client = InfluxDBClient('localhost', 8086, 'root', 'root', 'example') #client.create_database('example') routine()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 11389, 198, 11748, 3904, 198, 11748, 3859, 198, 11748, 15095, 198, 11748, 33918, 198, 11748, 6737, 198, 11748, 25064, 198, 6738, 340, 861, 10141, 1330, 6772, 198, 6738, 25065, 9945, 1330, 4806, 22564, 11012, 11792, 198, 198, 46911, 62, 634, 796, 11389, 13, 32634, 3419, 198, 16366, 796, 6045, 198, 33723, 62, 7742, 796, 6772, 7, 14692, 62, 220, 33172, 366, 834, 33172, 366, 17569, 8973, 8, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 65, 3885, 62, 4873, 3256, 4277, 796, 678, 2167, 11, 1037, 11639, 37961, 262, 4277, 275, 3885, 62, 4873, 1988, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 19011, 577, 3256, 4277, 796, 10352, 11, 1037, 11639, 18557, 82, 262, 29517, 33918, 319, 8624, 2637, 8, 198, 4299, 8027, 7, 19011, 577, 11, 275, 3885, 62, 4873, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 4226, 19582, 284, 2604, 262, 1366, 5072, 422, 281, 27634, 5884, 284, 262, 4217, 198, 220, 220, 220, 290, 2491, 262, 4904, 52, 12, 5892, 1120, 18779, 2810, 13, 198, 220, 220, 220, 383, 1366, 318, 18832, 284, 281, 4806, 22564, 11012, 4554, 355, 2582, 355, 340, 14443, 13, 628, 220, 220, 220, 1439, 24549, 14, 28869, 11413, 1634, 318, 1418, 7287, 290, 612, 743, 307, 3234, 1088, 3403, 198, 220, 220, 220, 994, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1280, 62, 46911, 62, 634, 7, 65, 3885, 62, 4873, 8, 198, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1268, 37, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 3904, 13, 325, 6679, 7203, 32634, 4347, 705, 90, 15, 92, 6, 4721, 526, 13, 18982, 7, 46911, 62, 634, 13, 3672, 4008, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 11389, 62, 634, 13, 961, 1370, 22446, 12501, 1098, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 719, 62, 27287, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 59, 77, 58, 1137, 49, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 11, 11454, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 32048, 9164, 33283, 11454, 796, 6407, 11, 277, 70, 796, 705, 445, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1268, 37, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 44798, 803, 10854, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 4299, 1280, 62, 46911, 62, 634, 7, 65, 3885, 62, 4873, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45965, 82, 284, 2922, 262, 3376, 23283, 4347, 290, 788, 3544, 326, 284, 6431, 262, 198, 220, 220, 220, 1366, 422, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 11389, 62, 634, 628, 220, 220, 220, 14090, 796, 1351, 62, 46911, 62, 3742, 3419, 628, 220, 220, 220, 329, 6376, 11, 2493, 287, 27056, 378, 7, 3742, 11, 923, 796, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 90, 15, 92, 60, 1911, 18982, 7, 9630, 828, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 1391, 15, 92, 1911, 18982, 7, 634, 828, 220, 220, 277, 70, 796, 705, 36022, 11537, 628, 220, 220, 220, 2493, 62, 17618, 796, 3904, 13, 16963, 457, 10786, 5492, 3802, 262, 23283, 4347, 7913, 3256, 2099, 796, 493, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1055, 796, 11389, 13, 32634, 7, 3742, 58, 634, 62, 17618, 532, 352, 4357, 275, 3885, 62, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 62, 634, 796, 1055, 198, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1137, 49, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 11, 11454, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 818, 30283, 2493, 1271, 13, 15527, 803, 33283, 11454, 796, 6407, 11, 277, 70, 796, 705, 445, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1137, 49, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 11, 11454, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 34, 34574, 1280, 262, 23283, 4347, 379, 705, 90, 15, 92, 30827, 13, 18982, 7, 3742, 58, 634, 62, 17618, 532, 352, 46570, 11454, 796, 6407, 11, 277, 70, 796, 705, 445, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1268, 37, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 44798, 803, 10854, 526, 13, 18982, 7, 9630, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 4299, 719, 62, 27287, 7, 1370, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25528, 2402, 262, 3951, 2722, 422, 262, 16232, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 796, 33918, 13, 46030, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 477, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32, 6, 287, 4818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 6, 287, 4818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34, 6, 287, 4818, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1167, 796, 3904, 13, 7635, 7203, 58, 25294, 38, 2751, 42865, 60, 1391, 15, 92, 1911, 18982, 7, 19545, 7, 33723, 62, 7742, 36911, 277, 70, 796, 705, 948, 272, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 10786, 59, 81, 90, 15, 92, 4458, 18982, 7, 10745, 828, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 1366, 287, 25065, 783, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2618, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1326, 5015, 434, 1298, 366, 330, 7015, 15635, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31499, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4774, 1298, 366, 15388, 486, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25747, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 1298, 4818, 17816, 32, 6, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 88, 1298, 4818, 17816, 32, 6, 7131, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 89, 1298, 4818, 17816, 32, 6, 7131, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1326, 5015, 434, 1298, 366, 1360, 305, 29982, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31499, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4774, 1298, 366, 15388, 486, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25747, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 1298, 4818, 17816, 38, 6, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 88, 1298, 4818, 17816, 38, 6, 7131, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 89, 1298, 4818, 17816, 38, 6, 7131, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1326, 5015, 434, 1298, 366, 19726, 3262, 15635, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31499, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4774, 1298, 366, 15388, 486, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25747, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 1298, 4818, 17816, 34, 6, 7131, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 88, 1298, 4818, 17816, 34, 6, 7131, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 89, 1298, 4818, 17816, 34, 6, 7131, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 13564, 62, 13033, 7, 17752, 62, 2618, 8, 628, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 482, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1268, 37, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 50, 641, 669, 389, 7467, 13, 25976, 6060, 5972, 2667, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 58, 1268, 37, 60, 33172, 277, 70, 796, 705, 36022, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 325, 6679, 7203, 13800, 45249, 1343, 327, 284, 2245, 33283, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 43, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 44, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 7, 1370, 8, 198, 198, 4299, 6737, 62, 30281, 7, 12683, 282, 11, 5739, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7157, 829, 33993, 12394, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3904, 13, 325, 6679, 7203, 59, 77, 58, 1268, 37, 60, 33172, 277, 70, 796, 705, 948, 272, 3256, 299, 75, 796, 10352, 8, 198, 220, 220, 220, 3904, 13, 325, 6679, 7203, 2601, 2752, 30824, 290, 1475, 1780, 19570, 198, 220, 220, 220, 11389, 62, 634, 13, 19836, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 198, 4299, 1351, 62, 46911, 62, 3742, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1446, 504, 290, 8341, 262, 1695, 23283, 30824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1080, 62, 3672, 796, 3859, 13, 10057, 3419, 198, 220, 220, 220, 611, 1080, 62, 3672, 6624, 366, 11209, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20937, 329, 1695, 14090, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1695, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11645, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 11389, 13, 32634, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1695, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11389, 13, 32634, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1695, 198, 220, 220, 220, 1288, 361, 1080, 62, 3672, 6624, 366, 32708, 5404, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4100, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15095, 13, 4743, 672, 10786, 14, 7959, 14, 42852, 15885, 11537, 1303, 10, 15095, 13, 4743, 672, 10786, 14, 7959, 14, 27399, 15885, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 2454, 7020, 393, 1223, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15095, 13, 4743, 672, 10786, 14, 7959, 14, 42852, 50, 9, 11537, 1343, 15095, 13, 4743, 672, 10786, 14, 7959, 14, 42852, 27155, 9, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 6737, 13, 12683, 282, 7, 12683, 282, 13, 50, 3528, 12394, 11, 6737, 62, 30281, 8, 198, 220, 220, 220, 5456, 796, 4806, 22564, 11012, 11792, 10786, 36750, 3256, 41241, 21, 11, 705, 15763, 3256, 705, 15763, 3256, 705, 20688, 11537, 198, 220, 220, 220, 1303, 16366, 13, 17953, 62, 48806, 10786, 20688, 11537, 198, 220, 220, 220, 8027, 3419, 198 ]
1.957559
2,851
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest from libcloud.storage.drivers.rgw import S3RGWStorageDriver from libcloud.storage.drivers.rgw import S3RGWOutscaleStorageDriver from libcloud.storage.drivers.rgw import S3RGWConnectionAWS4 from libcloud.storage.drivers.rgw import S3RGWConnectionAWS2 from libcloud.test.secrets import STORAGE_S3_PARAMS if __name__ == "__main__": sys.exit(unittest.main())
[ 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 393, 517, 198, 2, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 9387, 351, 198, 2, 428, 670, 329, 3224, 1321, 5115, 6634, 9238, 13, 198, 2, 383, 7054, 37, 16625, 428, 2393, 284, 921, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 198, 2, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 198, 6738, 9195, 17721, 13, 35350, 13, 36702, 13, 41345, 86, 1330, 311, 18, 49, 33191, 31425, 32103, 198, 6738, 9195, 17721, 13, 35350, 13, 36702, 13, 41345, 86, 1330, 311, 18, 49, 33191, 7975, 9888, 31425, 32103, 198, 6738, 9195, 17721, 13, 35350, 13, 36702, 13, 41345, 86, 1330, 311, 18, 49, 33191, 32048, 12298, 50, 19, 198, 6738, 9195, 17721, 13, 35350, 13, 36702, 13, 41345, 86, 1330, 311, 18, 49, 33191, 32048, 12298, 50, 17, 198, 198, 6738, 9195, 17721, 13, 9288, 13, 2363, 8004, 1330, 46366, 11879, 62, 50, 18, 62, 27082, 40834, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 403, 715, 395, 13, 12417, 28955, 198 ]
3.637771
323
"""Converts images to TFRecords file format with Example protos.""" import os import sys import glob import json import tensorflow as tf from PIL import Image import tifffile import numpy as np import Utils from Label import class2label def convertTo( input_path_list, output_path, class_label_file_path, organize_type, is_3d=False, resize=False, new_size=None, number=None): ''' create tfrecords file input_path_list (string) output_path (string) : tfrecords output file path organize_type (int) : 1->organize by folder, 2->organize in one folder, 3->don't care label for gan is_3d (bool) : is input image 3d ''' global result result = dict() writer = tf.python_io.TFRecordWriter(output_path) for input_path in input_path_list: for image, label in _readFolders( input_path, class_label_file_path, organize_type, resize, new_size, is_3d, number): image_raw = image.tostring() image_shape = image.shape if is_3d: example = tf.train.Example( features=tf.train.Features( feature={ 'depth': _int64_feature(int(image_shape[0])), 'width': _int64_feature(int(image_shape[1])), 'height': _int64_feature(int(image_shape[2])), 'channel': _int64_feature(int(image_shape[3])), 'label': _int64_feature(int(label)), 'image_raw': _bytes_feature(image_raw) } ) ) else: example = tf.train.Example( features=tf.train.Features( feature={ 'height': _int64_feature(image_shape[0]), 'width': _int64_feature(image_shape[1]), 'depth': _int64_feature(image_shape[2]), 'label': _int64_feature(label), 'image_raw': _bytes_feature(image_raw) } ) ) writer.write(example.SerializeToString()) return result if __name__ == '__main__': tf.app.run()
[ 37811, 3103, 24040, 4263, 284, 24958, 6690, 3669, 2393, 5794, 351, 17934, 1237, 418, 526, 15931, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 15095, 198, 11748, 33918, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 256, 361, 487, 576, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 7273, 4487, 198, 6738, 36052, 1330, 1398, 17, 18242, 628, 628, 198, 4299, 10385, 2514, 7, 198, 220, 220, 220, 5128, 62, 6978, 62, 4868, 11, 198, 220, 220, 220, 5072, 62, 6978, 11, 198, 220, 220, 220, 1398, 62, 18242, 62, 7753, 62, 6978, 11, 198, 220, 220, 220, 16481, 62, 4906, 11, 198, 197, 271, 62, 18, 67, 28, 25101, 11, 198, 197, 411, 1096, 28, 25101, 11, 198, 220, 220, 220, 649, 62, 7857, 28, 14202, 11, 198, 220, 220, 220, 1271, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 2251, 48700, 8344, 3669, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 6978, 62, 4868, 357, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 6978, 357, 8841, 8, 1058, 48700, 8344, 3669, 5072, 2393, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 16481, 62, 4906, 357, 600, 8, 1058, 352, 3784, 9971, 1096, 416, 9483, 11, 362, 3784, 9971, 1096, 287, 530, 9483, 11, 513, 3784, 9099, 470, 1337, 6167, 329, 308, 272, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 18, 67, 357, 30388, 8, 1058, 318, 5128, 2939, 513, 67, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3298, 1255, 198, 220, 220, 220, 1255, 796, 8633, 3419, 198, 220, 220, 220, 6260, 796, 48700, 13, 29412, 62, 952, 13, 10234, 23739, 34379, 7, 22915, 62, 6978, 8, 198, 220, 220, 220, 329, 5128, 62, 6978, 287, 5128, 62, 6978, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2939, 11, 6167, 287, 4808, 961, 37, 727, 364, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 18242, 62, 7753, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16481, 62, 4906, 11, 198, 197, 197, 197, 411, 1096, 11, 198, 197, 197, 197, 3605, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 18, 67, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 1831, 796, 2939, 13, 83, 455, 1806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43358, 796, 2939, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 18, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1672, 796, 48700, 13, 27432, 13, 16281, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 27110, 13, 27432, 13, 23595, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18053, 10354, 4808, 600, 2414, 62, 30053, 7, 600, 7, 9060, 62, 43358, 58, 15, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 4808, 600, 2414, 62, 30053, 7, 600, 7, 9060, 62, 43358, 58, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 4808, 600, 2414, 62, 30053, 7, 600, 7, 9060, 62, 43358, 58, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17620, 10354, 4808, 600, 2414, 62, 30053, 7, 600, 7, 9060, 62, 43358, 58, 18, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18242, 10354, 4808, 600, 2414, 62, 30053, 7, 600, 7, 18242, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9060, 62, 1831, 10354, 4808, 33661, 62, 30053, 7, 9060, 62, 1831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1672, 796, 48700, 13, 27432, 13, 16281, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 27110, 13, 27432, 13, 23595, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17015, 10354, 4808, 600, 2414, 62, 30053, 7, 9060, 62, 43358, 58, 15, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10394, 10354, 4808, 600, 2414, 62, 30053, 7, 9060, 62, 43358, 58, 16, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18053, 10354, 4808, 600, 2414, 62, 30053, 7, 9060, 62, 43358, 58, 17, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18242, 10354, 4808, 600, 2414, 62, 30053, 7, 18242, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9060, 62, 1831, 10354, 4808, 33661, 62, 30053, 7, 9060, 62, 1831, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 7, 20688, 13, 32634, 1096, 2514, 10100, 28955, 628, 220, 220, 220, 1441, 1255, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 48700, 13, 1324, 13, 5143, 3419, 198 ]
1.816817
1,332
import os import numpy as np import pandas as pd import glob as glob import matplotlib.pyplot as plt # import scipy.stats # import seaborn as sns # from sklearn import metrics as skm import math from collections import Counter import networkx as nx import matplotlib.lines as mlines from itertools import combinations import matplotlib # import os # import numpy as np # import pandas as pd # import glob as glob # import matplotlib.pyplot as plt # # import scipy.stats # # import seaborn as sns # # from sklearn import metrics as skm # import math # from collections import Counter # import networkx as nx # import matplotlib.lines as mlines # from itertools import combinations # import matplotlib # def create_bboxes(pos, text_scale = 14): # node_bboxes = {} # for node in list(pos.keys()): # xy = pos[node] # x = xy[0] # y = xy[1] # bbox_length = len(node) * text_scale / 1000 # bbox_height = 2 * text_scale / 1000 # bbox = np.array([(x-bbox_length/2,y-bbox_height/2),bbox_length, bbox_height]) # node_bboxes[node] = bbox # return node_bboxes # def visualize(subG, pos, node_bboxes): # fig, ax = plt.subplots() # fig.set_figheight(10) # fig.set_figwidth(10) # nodelabels = dict([(x,x) for x in subG.nodes(data=False)]) # nx.draw_networkx_labels(subG, pos, labels=nodelabels, ax=ax) # for node in list(node_bboxes.keys()): # bbox = node_bboxes[node] # rect = matplotlib.patches.Rectangle(bbox[0], # bbox[1], # bbox[2], # edgecolor = 'black', # fill=False) # ax.add_patch(rect) # plt.show() # # def visualize_bboxes(node_bboxes): # # fig, ax = plt.subplots() # # fig.set_figheight(5) # # fig.set_figwidth(5) # # for node in list(node_bboxes.keys()): # # bbox = node_bboxes[node] # # rect = matplotlib.patches.Rectangle(bbox[0], # # bbox[1], # # bbox[2], # # edgecolor = 'black', # # fill=False) # # ax.add_patch(rect) # # plt.show() # def calculate_overlap(node1, node2, node_bboxes): # bbox1 = node_bboxes[node1] # bbox2 = node_bboxes[node2] # xmin1 = bbox1[0][0] # ymin1 = bbox1[0][1] # xmax1 = xmin1 + bbox1[1] # ymax1 = ymin1 + bbox1[2] # xmin2 = bbox2[0][0] # ymin2 = bbox2[0][1] # xmax2 = xmin2 + bbox2[1] # ymax2 = ymin2 + bbox2[2] # dx = min(xmax1,xmax2) - max(xmin1,xmin2) # dy = min(ymax1,ymax2) - max(ymin1,ymin2) # if (dx < 0) | (dy < 0): # return 0 # else: # return dx*dy # def calculate_total_overlap(node_bboxes): # all_pairs = [x for x in combinations(list(node_bboxes.keys()),2)] # total_overlap = 0 # node_bboxes = node_bboxes ## # for pair in all_pairs: # overlap = calculate_overlap(pair[0], pair[1], node_bboxes) # total_overlap += overlap # return total_overlap # def calculate_node_overlap(node_bboxes): # # node_bboxes = node_bboxes ## # node_list = list(node_bboxes.keys()) # node_overlap_dict = {} # for node in node_list: # node_overlap = 0 # for othernode in node_list: # if node != othernode: # node_overlap += calculate_overlap(node, othernode, node_bboxes) # node_overlap_dict[node] = node_overlap # return node_overlap_dict # def jiggle(node_bboxes, node_overlap_dict, scale): # node_list = list(node_bboxes.keys()) # new_node_bboxes = {} # for node in node_list: # bbox = node_bboxes[node] # overlap = node_overlap_dict[node] # dx = (np.random.randn()*overlap + np.random.randn()*0.00001) * scale # dy = (np.random.randn()*overlap + np.random.randn()*0.00001) * scale # # print(dx,dy) # new_bbox = np.array([(bbox[0][0]+dx, bbox[0][1]+dy), bbox[1], bbox[2]]) # new_node_bboxes[node] = new_bbox # return new_node_bboxes # def bbox2pos(bbox): # return (bbox[0][0]+bbox[1]/2, bbox[0][1]+bbox[2]/2) # def bboxes2pos(node_bboxes): # new_pos = {} # for node in list(node_bboxes.keys()): # xy = bbox2pos(node_bboxes[node]) # new_pos[node] = xy # return new_pos # # def fit_jiggle(node_bboxes, num_iter = 500, scale = 100): # # best_node_bboxes = node_bboxes # # for i in range(num_iter): # # current_node_overlap = calculate_total_overlap(best_node_bboxes) # current total overlap # # node_overlap_dict = calculate_node_overlap(best_node_bboxes) # current overlap per node # # new_node_bboxes = jiggle(best_node_bboxes, node_overlap_dict, scale=scale) # make new bboxes # # # if new_node_bboxes['ADORA1'][0] == best_node_bboxes['ADORA1'][0]: # # # print('No change') # # # break # # new_node_overlap = calculate_total_overlap(new_node_bboxes) # new total overlap # # print(f'Iteration {i}, current overlap {current_node_overlap}, new overlap {new_node_overlap}') # # if new_node_overlap < current_node_overlap: # # best_node_bboxes = new_node_bboxes # # print(f'Saving better version') # # if new_node_overlap <= 0: # # break # # return best_node_bboxes # def fit_jiggle(node_bboxes, num_iter = 500, scale=100): # best_node_bboxes = node_bboxes # for i in range(num_iter): # current_node_overlap = calculate_total_overlap(best_node_bboxes) # current total overlap # node_overlap_dict = calculate_node_overlap(best_node_bboxes) # current overlap per node # new_node_bboxes = jiggle(best_node_bboxes, node_overlap_dict, scale=scale) # make new bboxes # # if new_node_bboxes['ADORA1'][0] == best_node_bboxes['ADORA1'][0]: # # print('No change') # # break # new_node_overlap = calculate_total_overlap(new_node_bboxes) # new total overlap # print(f'Iteration {i}, current overlap {current_node_overlap}, new overlap {new_node_overlap}') # if new_node_overlap < current_node_overlap: # best_node_bboxes = new_node_bboxes # print(f'Saving better version') # if new_node_overlap <= 0: # break # return best_node_bboxes # def main_jiggle(G, pos, text_scale = 14, num_iter = 500): # # Make bboxes # node_bboxes = create_bboxes(pos, text_scale = text_scale) # # Check that they look correct # visualize(G, pos, node_bboxes) # # Fit a jiggle # new_node_bboxes = fit_jiggle(node_bboxes, num_iter = num_iter) # print('Finished fitting.') # # Convert back to node positions # new_pos = bboxes2pos(new_node_bboxes) # # Inspect new bboxes # visualize(G, new_pos, new_node_bboxes) # return new_pos
[ 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 15095, 355, 15095, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 1330, 629, 541, 88, 13, 34242, 198, 2, 1330, 384, 397, 1211, 355, 3013, 82, 198, 2, 422, 1341, 35720, 1330, 20731, 355, 1341, 76, 198, 11748, 10688, 198, 6738, 17268, 1330, 15034, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 2603, 29487, 8019, 13, 6615, 355, 285, 6615, 198, 6738, 340, 861, 10141, 1330, 17790, 198, 11748, 2603, 29487, 8019, 628, 628, 628, 198, 2, 1330, 28686, 198, 2, 1330, 299, 32152, 355, 45941, 198, 2, 1330, 19798, 292, 355, 279, 67, 198, 2, 1330, 15095, 355, 15095, 198, 2, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 1303, 1330, 629, 541, 88, 13, 34242, 198, 2, 1303, 1330, 384, 397, 1211, 355, 3013, 82, 198, 2, 1303, 422, 1341, 35720, 1330, 20731, 355, 1341, 76, 198, 2, 1330, 10688, 198, 2, 422, 17268, 1330, 15034, 198, 2, 1330, 3127, 87, 355, 299, 87, 198, 2, 1330, 2603, 29487, 8019, 13, 6615, 355, 285, 6615, 198, 2, 422, 340, 861, 10141, 1330, 17790, 198, 2, 1330, 2603, 29487, 8019, 198, 198, 2, 825, 2251, 62, 65, 29305, 7, 1930, 11, 2420, 62, 9888, 796, 1478, 2599, 198, 2, 220, 220, 220, 220, 10139, 62, 65, 29305, 796, 23884, 198, 2, 220, 220, 220, 220, 329, 10139, 287, 1351, 7, 1930, 13, 13083, 3419, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 796, 1426, 58, 17440, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2124, 88, 58, 15, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2124, 88, 58, 16, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 13664, 796, 18896, 7, 17440, 8, 1635, 2420, 62, 9888, 1220, 8576, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 17015, 796, 362, 1635, 2420, 62, 9888, 1220, 8576, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 45941, 13, 18747, 26933, 7, 87, 12, 65, 3524, 62, 13664, 14, 17, 11, 88, 12, 65, 3524, 62, 17015, 14, 17, 828, 65, 3524, 62, 13664, 11, 275, 3524, 62, 17015, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 65, 29305, 58, 17440, 60, 796, 275, 3524, 198, 2, 220, 220, 220, 220, 1441, 10139, 62, 65, 29305, 198, 198, 2, 825, 38350, 7, 7266, 38, 11, 1426, 11, 10139, 62, 65, 29305, 2599, 198, 2, 220, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 2, 220, 220, 220, 220, 2336, 13, 2617, 62, 5647, 17015, 7, 940, 8, 198, 2, 220, 220, 220, 220, 2336, 13, 2617, 62, 5647, 10394, 7, 940, 8, 198, 198, 2, 220, 220, 220, 220, 18666, 417, 397, 1424, 796, 8633, 26933, 7, 87, 11, 87, 8, 329, 2124, 287, 850, 38, 13, 77, 4147, 7, 7890, 28, 25101, 8, 12962, 198, 198, 2, 220, 220, 220, 220, 299, 87, 13, 19334, 62, 27349, 87, 62, 23912, 1424, 7, 7266, 38, 11, 1426, 11, 14722, 28, 77, 375, 417, 397, 1424, 11, 7877, 28, 897, 8, 198, 198, 2, 220, 220, 220, 220, 329, 10139, 287, 1351, 7, 17440, 62, 65, 29305, 13, 13083, 3419, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 10139, 62, 65, 29305, 58, 17440, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 13621, 796, 2603, 29487, 8019, 13, 8071, 2052, 13, 45474, 9248, 7, 65, 3524, 58, 15, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 58, 16, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 58, 17, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 8043, 796, 705, 13424, 3256, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 28, 25101, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2860, 62, 17147, 7, 2554, 8, 198, 198, 2, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 198, 2, 1303, 825, 38350, 62, 65, 29305, 7, 17440, 62, 65, 29305, 2599, 198, 2, 1303, 220, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 3419, 198, 2, 1303, 220, 220, 220, 220, 2336, 13, 2617, 62, 5647, 17015, 7, 20, 8, 198, 2, 1303, 220, 220, 220, 220, 2336, 13, 2617, 62, 5647, 10394, 7, 20, 8, 198, 198, 2, 1303, 220, 220, 220, 220, 329, 10139, 287, 1351, 7, 17440, 62, 65, 29305, 13, 13083, 3419, 2599, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 10139, 62, 65, 29305, 58, 17440, 60, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 13621, 796, 2603, 29487, 8019, 13, 8071, 2052, 13, 45474, 9248, 7, 65, 3524, 58, 15, 4357, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 58, 16, 4357, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 58, 17, 4357, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 8043, 796, 705, 13424, 3256, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 28, 25101, 8, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2860, 62, 17147, 7, 2554, 8, 198, 198, 2, 1303, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 2, 825, 15284, 62, 2502, 37796, 7, 17440, 16, 11, 10139, 17, 11, 10139, 62, 65, 29305, 2599, 198, 198, 2, 220, 220, 220, 220, 275, 3524, 16, 796, 10139, 62, 65, 29305, 58, 17440, 16, 60, 198, 2, 220, 220, 220, 220, 275, 3524, 17, 796, 10139, 62, 65, 29305, 58, 17440, 17, 60, 198, 198, 2, 220, 220, 220, 220, 2124, 1084, 16, 796, 275, 3524, 16, 58, 15, 7131, 15, 60, 198, 2, 220, 220, 220, 220, 331, 1084, 16, 796, 275, 3524, 16, 58, 15, 7131, 16, 60, 198, 2, 220, 220, 220, 220, 2124, 9806, 16, 796, 2124, 1084, 16, 1343, 275, 3524, 16, 58, 16, 60, 198, 2, 220, 220, 220, 220, 331, 9806, 16, 796, 331, 1084, 16, 1343, 275, 3524, 16, 58, 17, 60, 198, 198, 2, 220, 220, 220, 220, 2124, 1084, 17, 796, 275, 3524, 17, 58, 15, 7131, 15, 60, 198, 2, 220, 220, 220, 220, 331, 1084, 17, 796, 275, 3524, 17, 58, 15, 7131, 16, 60, 198, 2, 220, 220, 220, 220, 2124, 9806, 17, 796, 2124, 1084, 17, 1343, 275, 3524, 17, 58, 16, 60, 198, 2, 220, 220, 220, 220, 331, 9806, 17, 796, 331, 1084, 17, 1343, 275, 3524, 17, 58, 17, 60, 198, 198, 2, 220, 220, 220, 220, 44332, 796, 949, 7, 87, 9806, 16, 11, 87, 9806, 17, 8, 532, 3509, 7, 87, 1084, 16, 11, 87, 1084, 17, 8, 198, 2, 220, 220, 220, 220, 20268, 796, 949, 7, 4948, 897, 16, 11, 4948, 897, 17, 8, 532, 3509, 7, 88, 1084, 16, 11, 88, 1084, 17, 8, 198, 198, 2, 220, 220, 220, 220, 611, 357, 34350, 1279, 657, 8, 930, 357, 9892, 1279, 657, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 44332, 9, 9892, 198, 198, 2, 825, 15284, 62, 23350, 62, 2502, 37796, 7, 17440, 62, 65, 29305, 2599, 198, 2, 220, 220, 220, 220, 477, 62, 79, 3468, 796, 685, 87, 329, 2124, 287, 17790, 7, 4868, 7, 17440, 62, 65, 29305, 13, 13083, 3419, 828, 17, 15437, 198, 2, 220, 220, 220, 220, 2472, 62, 2502, 37796, 796, 657, 198, 2, 220, 220, 220, 220, 10139, 62, 65, 29305, 796, 10139, 62, 65, 29305, 22492, 198, 2, 220, 220, 220, 220, 329, 5166, 287, 477, 62, 79, 3468, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 21721, 796, 15284, 62, 2502, 37796, 7, 24874, 58, 15, 4357, 5166, 58, 16, 4357, 10139, 62, 65, 29305, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 2502, 37796, 15853, 21721, 198, 2, 220, 220, 220, 220, 1441, 2472, 62, 2502, 37796, 198, 198, 2, 825, 15284, 62, 17440, 62, 2502, 37796, 7, 17440, 62, 65, 29305, 2599, 198, 2, 220, 220, 220, 220, 1303, 10139, 62, 65, 29305, 796, 10139, 62, 65, 29305, 22492, 198, 2, 220, 220, 220, 220, 10139, 62, 4868, 796, 1351, 7, 17440, 62, 65, 29305, 13, 13083, 28955, 198, 2, 220, 220, 220, 220, 10139, 62, 2502, 37796, 62, 11600, 796, 23884, 198, 2, 220, 220, 220, 220, 329, 10139, 287, 10139, 62, 4868, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2502, 37796, 796, 657, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 329, 584, 17440, 287, 10139, 62, 4868, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 14512, 584, 17440, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2502, 37796, 15853, 15284, 62, 2502, 37796, 7, 17440, 11, 584, 17440, 11, 10139, 62, 65, 29305, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2502, 37796, 62, 11600, 58, 17440, 60, 796, 10139, 62, 2502, 37796, 198, 2, 220, 220, 220, 220, 1441, 10139, 62, 2502, 37796, 62, 11600, 198, 198, 2, 825, 474, 24082, 7, 17440, 62, 65, 29305, 11, 10139, 62, 2502, 37796, 62, 11600, 11, 5046, 2599, 198, 2, 220, 220, 220, 220, 10139, 62, 4868, 796, 1351, 7, 17440, 62, 65, 29305, 13, 13083, 28955, 198, 2, 220, 220, 220, 220, 649, 62, 17440, 62, 65, 29305, 796, 23884, 198, 2, 220, 220, 220, 220, 329, 10139, 287, 10139, 62, 4868, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 10139, 62, 65, 29305, 58, 17440, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 21721, 796, 10139, 62, 2502, 37796, 62, 11600, 58, 17440, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 796, 357, 37659, 13, 25120, 13, 25192, 77, 3419, 9, 2502, 37796, 1343, 45941, 13, 25120, 13, 25192, 77, 3419, 9, 15, 13, 2388, 16, 8, 1635, 5046, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 796, 357, 37659, 13, 25120, 13, 25192, 77, 3419, 9, 2502, 37796, 1343, 45941, 13, 25120, 13, 25192, 77, 3419, 9, 15, 13, 2388, 16, 8, 1635, 5046, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 34350, 11, 9892, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 65, 3524, 796, 45941, 13, 18747, 26933, 7, 65, 3524, 58, 15, 7131, 15, 48688, 34350, 11, 275, 3524, 58, 15, 7131, 16, 48688, 9892, 828, 275, 3524, 58, 16, 4357, 275, 3524, 58, 17, 11907, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 62, 65, 29305, 58, 17440, 60, 796, 649, 62, 65, 3524, 198, 2, 220, 220, 220, 220, 1441, 649, 62, 17440, 62, 65, 29305, 198, 198, 2, 825, 275, 3524, 17, 1930, 7, 65, 3524, 2599, 198, 2, 220, 220, 220, 220, 1441, 357, 65, 3524, 58, 15, 7131, 15, 48688, 65, 3524, 58, 16, 60, 14, 17, 11, 275, 3524, 58, 15, 7131, 16, 48688, 65, 3524, 58, 17, 60, 14, 17, 8, 198, 198, 2, 825, 275, 29305, 17, 1930, 7, 17440, 62, 65, 29305, 2599, 198, 2, 220, 220, 220, 220, 649, 62, 1930, 796, 23884, 198, 2, 220, 220, 220, 220, 329, 10139, 287, 1351, 7, 17440, 62, 65, 29305, 13, 13083, 3419, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 796, 275, 3524, 17, 1930, 7, 17440, 62, 65, 29305, 58, 17440, 12962, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 1930, 58, 17440, 60, 796, 2124, 88, 198, 2, 220, 220, 220, 220, 1441, 649, 62, 1930, 198, 198, 2, 1303, 825, 4197, 62, 73, 24082, 7, 17440, 62, 65, 29305, 11, 997, 62, 2676, 796, 5323, 11, 5046, 796, 1802, 2599, 198, 2, 1303, 220, 220, 220, 220, 1266, 62, 17440, 62, 65, 29305, 796, 10139, 62, 65, 29305, 198, 2, 1303, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 2676, 2599, 198, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 17440, 62, 2502, 37796, 796, 15284, 62, 23350, 62, 2502, 37796, 7, 13466, 62, 17440, 62, 65, 29305, 8, 1303, 1459, 2472, 21721, 198, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2502, 37796, 62, 11600, 796, 15284, 62, 17440, 62, 2502, 37796, 7, 13466, 62, 17440, 62, 65, 29305, 8, 1303, 1459, 21721, 583, 10139, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 62, 65, 29305, 796, 474, 24082, 7, 13466, 62, 17440, 62, 65, 29305, 11, 10139, 62, 2502, 37796, 62, 11600, 11, 5046, 28, 9888, 8, 1303, 787, 649, 275, 29305, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 649, 62, 17440, 62, 65, 29305, 17816, 2885, 1581, 32, 16, 6, 7131, 15, 60, 6624, 1266, 62, 17440, 62, 65, 29305, 17816, 2885, 1581, 32, 16, 6, 7131, 15, 5974, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 10786, 2949, 1487, 11537, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2270, 198, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 62, 2502, 37796, 796, 15284, 62, 23350, 62, 2502, 37796, 7, 3605, 62, 17440, 62, 65, 29305, 8, 1303, 649, 2472, 21721, 198, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 29993, 341, 1391, 72, 5512, 1459, 21721, 1391, 14421, 62, 17440, 62, 2502, 37796, 5512, 649, 21721, 1391, 3605, 62, 17440, 62, 2502, 37796, 92, 11537, 198, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 17440, 62, 2502, 37796, 1279, 1459, 62, 17440, 62, 2502, 37796, 25, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 17440, 62, 65, 29305, 796, 649, 62, 17440, 62, 65, 29305, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 50, 2703, 1365, 2196, 11537, 198, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 17440, 62, 2502, 37796, 19841, 657, 25, 198, 2, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 2, 1303, 220, 220, 220, 220, 1441, 1266, 62, 17440, 62, 65, 29305, 628, 198, 2, 825, 4197, 62, 73, 24082, 7, 17440, 62, 65, 29305, 11, 997, 62, 2676, 796, 5323, 11, 5046, 28, 3064, 2599, 198, 198, 2, 220, 220, 220, 220, 1266, 62, 17440, 62, 65, 29305, 796, 10139, 62, 65, 29305, 198, 198, 2, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 2676, 2599, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 17440, 62, 2502, 37796, 796, 15284, 62, 23350, 62, 2502, 37796, 7, 13466, 62, 17440, 62, 65, 29305, 8, 1303, 1459, 2472, 21721, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 2502, 37796, 62, 11600, 796, 15284, 62, 17440, 62, 2502, 37796, 7, 13466, 62, 17440, 62, 65, 29305, 8, 1303, 1459, 21721, 583, 10139, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 62, 65, 29305, 796, 474, 24082, 7, 13466, 62, 17440, 62, 65, 29305, 11, 10139, 62, 2502, 37796, 62, 11600, 11, 5046, 28, 9888, 8, 1303, 787, 649, 275, 29305, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 649, 62, 17440, 62, 65, 29305, 17816, 2885, 1581, 32, 16, 6, 7131, 15, 60, 6624, 1266, 62, 17440, 62, 65, 29305, 17816, 2885, 1581, 32, 16, 6, 7131, 15, 5974, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 10786, 2949, 1487, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2270, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 62, 2502, 37796, 796, 15284, 62, 23350, 62, 2502, 37796, 7, 3605, 62, 17440, 62, 65, 29305, 8, 1303, 649, 2472, 21721, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 29993, 341, 1391, 72, 5512, 1459, 21721, 1391, 14421, 62, 17440, 62, 2502, 37796, 5512, 649, 21721, 1391, 3605, 62, 17440, 62, 2502, 37796, 92, 11537, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 17440, 62, 2502, 37796, 1279, 1459, 62, 17440, 62, 2502, 37796, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 17440, 62, 65, 29305, 796, 649, 62, 17440, 62, 65, 29305, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 50, 2703, 1365, 2196, 11537, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 17440, 62, 2502, 37796, 19841, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 2, 220, 220, 220, 220, 1441, 1266, 62, 17440, 62, 65, 29305, 628, 198, 2, 825, 1388, 62, 73, 24082, 7, 38, 11, 1426, 11, 2420, 62, 9888, 796, 1478, 11, 997, 62, 2676, 796, 5323, 2599, 198, 198, 2, 220, 220, 220, 220, 1303, 6889, 275, 29305, 198, 2, 220, 220, 220, 220, 10139, 62, 65, 29305, 796, 2251, 62, 65, 29305, 7, 1930, 11, 2420, 62, 9888, 796, 2420, 62, 9888, 8, 198, 198, 2, 220, 220, 220, 220, 1303, 6822, 326, 484, 804, 3376, 198, 2, 220, 220, 220, 220, 38350, 7, 38, 11, 1426, 11, 10139, 62, 65, 29305, 8, 198, 198, 2, 220, 220, 220, 220, 1303, 25048, 257, 474, 24082, 198, 2, 220, 220, 220, 220, 649, 62, 17440, 62, 65, 29305, 796, 4197, 62, 73, 24082, 7, 17440, 62, 65, 29305, 11, 997, 62, 2676, 796, 997, 62, 2676, 8, 198, 198, 2, 220, 220, 220, 220, 3601, 10786, 18467, 1348, 15830, 2637, 8, 198, 198, 2, 220, 220, 220, 220, 1303, 38240, 736, 284, 10139, 6116, 198, 2, 220, 220, 220, 220, 649, 62, 1930, 796, 275, 29305, 17, 1930, 7, 3605, 62, 17440, 62, 65, 29305, 8, 198, 198, 2, 220, 220, 220, 220, 1303, 20904, 649, 275, 29305, 198, 2, 220, 220, 220, 220, 38350, 7, 38, 11, 649, 62, 1930, 11, 649, 62, 17440, 62, 65, 29305, 8, 198, 198, 2, 220, 220, 220, 220, 1441, 649, 62, 1930 ]
2.021696
3,503
# -*- coding: utf-8 -*- import click import platform import tcfcli.common.base_infor as infor from tcfcli.help.message import ConfigureHelp as help from tcfcli.common.user_config import UserConfig from tcfcli.common.operation_msg import Operation version = platform.python_version() if version >= '3': from functools import reduce REGIONS = infor.REGIONS @click.command(short_help=help.ADD_SHORT_HELP) @click.option('--secret-id', '-si', help=help.SET_SECRET_ID) @click.option('--secret-key', '-sk', help=help.SET_SECRET_KEY) @click.option('--region', '-r', help=help.SET_REGION) @click.option('--appid', '-a', help=help.SET_APPID) @click.option('--using-cos', '-uc', help=help.SET_USING_COS) def add(**kwargs): ''' \b Add a user. \b Common usage: \b * Add a user. $ scf configure add ''' uc = UserConfig() using_cos_true = "False (By default, it isn't deployed by COS.)" using_cos_false = "True (By default, it is deployed by COS.)" if "region" in kwargs and kwargs["region"]: if kwargs["region"] not in REGIONS: Operation("The region must in %s." % (", ".join(REGIONS))).warning() kwargs["region"] = uc.section_map[UserConfig.USER_QCLOUD_CONFIG]['region'] return if "using_cos" in kwargs and kwargs["using_cos"]: kwargs["using_cos"] = using_cos_true if kwargs["using_cos"] not in ["y", "Y"] else using_cos_false values = [v for k, v in kwargs.items()] if not reduce(lambda x, y: (bool(x) or bool(y)), values): list(map(set_true, kwargs)) attrs = uc.get_attrs(kwargs) config = {} skip_attr = {'using_cos'} for attr in sorted(attrs): if attr not in skip_attr: while True: v = click.prompt( text="TencentCloud {}".format(attr), default=None, show_default=False) config[attr] = v if attr != "region": break else: if v in REGIONS: break else: Operation("The region must in %s." % (", ".join(REGIONS))).warning() v = click.prompt(text="Deploy SCF function by COS, it will be faster. (y/n)", default="y" if str(attrs["using_cos"]).startswith("True") else "n", show_default=False) if v: config["using_cos"] = using_cos_true if v not in ["y", "Y"] else using_cos_false else: config["using_cos"] = attrs["using_cos"] kwargs = config user = uc.add_user(data=kwargs) uc.flush() Operation('Add User %s success!' % user).success() Operation(user).process() Operation('%-10s %-15s %-15s %-15s %-15s %-10s' % ('UserId', 'AppId', 'region', 'secret_id', 'secret_key', 'using_cos')).process() userinfo = uc.get_user_info(user) secret_id = ("*" * 3 + userinfo['secret_id'][32:]) if userinfo['secret_id'].upper() != 'NONE' else 'None' secret_key = ("*" * 3 + userinfo['secret_key'][28:]) if userinfo['secret_key'].upper() != 'NONE' else 'None' Operation('%-10s %-15s %-15s %-15s %-15s %-10s' % (user.strip('USER_'), userinfo['appid'], userinfo['region'], secret_id, secret_key, userinfo['using_cos'][:5])).process() Operation('You can use `scf configure change -u %s` to switch user.' % (user.strip('USER_'))).process()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 3904, 198, 11748, 3859, 198, 11748, 256, 12993, 44506, 13, 11321, 13, 8692, 62, 259, 1640, 355, 1167, 273, 198, 6738, 256, 12993, 44506, 13, 16794, 13, 20500, 1330, 17056, 495, 22087, 355, 1037, 198, 6738, 256, 12993, 44506, 13, 11321, 13, 7220, 62, 11250, 1330, 11787, 16934, 198, 6738, 256, 12993, 44506, 13, 11321, 13, 27184, 62, 19662, 1330, 14680, 198, 198, 9641, 796, 3859, 13, 29412, 62, 9641, 3419, 198, 361, 2196, 18189, 705, 18, 10354, 198, 220, 220, 220, 422, 1257, 310, 10141, 1330, 4646, 628, 198, 198, 31553, 11053, 796, 1167, 273, 13, 31553, 11053, 628, 198, 31, 12976, 13, 21812, 7, 19509, 62, 16794, 28, 16794, 13, 29266, 62, 9693, 9863, 62, 39, 3698, 47, 8, 198, 31, 12976, 13, 18076, 10786, 438, 21078, 12, 312, 3256, 705, 12, 13396, 3256, 1037, 28, 16794, 13, 28480, 62, 23683, 26087, 62, 2389, 8, 198, 31, 12976, 13, 18076, 10786, 438, 21078, 12, 2539, 3256, 705, 12, 8135, 3256, 1037, 28, 16794, 13, 28480, 62, 23683, 26087, 62, 20373, 8, 198, 31, 12976, 13, 18076, 10786, 438, 36996, 3256, 705, 12, 81, 3256, 1037, 28, 16794, 13, 28480, 62, 31553, 2849, 8, 198, 31, 12976, 13, 18076, 10786, 438, 1324, 312, 3256, 705, 12, 64, 3256, 1037, 28, 16794, 13, 28480, 62, 24805, 2389, 8, 198, 31, 12976, 13, 18076, 10786, 438, 3500, 12, 6966, 3256, 705, 12, 1229, 3256, 1037, 28, 16794, 13, 28480, 62, 2937, 2751, 62, 34, 2640, 8, 198, 4299, 751, 7, 1174, 46265, 22046, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 257, 2836, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 8070, 8748, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 3060, 257, 2836, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 629, 69, 17425, 751, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 334, 66, 796, 11787, 16934, 3419, 628, 220, 220, 220, 1262, 62, 6966, 62, 7942, 796, 366, 25101, 357, 3886, 4277, 11, 340, 2125, 470, 12380, 416, 327, 2640, 2014, 1, 198, 220, 220, 220, 1262, 62, 6966, 62, 9562, 796, 366, 17821, 357, 3886, 4277, 11, 340, 318, 12380, 416, 327, 2640, 2014, 1, 628, 220, 220, 220, 611, 366, 36996, 1, 287, 479, 86, 22046, 290, 479, 86, 22046, 14692, 36996, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 14692, 36996, 8973, 407, 287, 23337, 11053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 7203, 464, 3814, 1276, 287, 4064, 82, 526, 4064, 357, 1600, 27071, 22179, 7, 31553, 11053, 4008, 737, 43917, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 36996, 8973, 796, 334, 66, 13, 5458, 62, 8899, 58, 12982, 16934, 13, 29904, 62, 48, 5097, 2606, 35, 62, 10943, 16254, 7131, 6, 36996, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 611, 366, 3500, 62, 6966, 1, 287, 479, 86, 22046, 290, 479, 86, 22046, 14692, 3500, 62, 6966, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 3500, 62, 6966, 8973, 796, 1262, 62, 6966, 62, 7942, 611, 479, 86, 22046, 14692, 3500, 62, 6966, 8973, 407, 287, 14631, 88, 1600, 366, 56, 8973, 2073, 1262, 62, 6966, 62, 9562, 628, 220, 220, 220, 3815, 796, 685, 85, 329, 479, 11, 410, 287, 479, 86, 22046, 13, 23814, 3419, 60, 198, 220, 220, 220, 611, 407, 4646, 7, 50033, 2124, 11, 331, 25, 357, 30388, 7, 87, 8, 393, 20512, 7, 88, 36911, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 8899, 7, 2617, 62, 7942, 11, 479, 86, 22046, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 796, 334, 66, 13, 1136, 62, 1078, 3808, 7, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 35226, 796, 1391, 6, 3500, 62, 6966, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 287, 23243, 7, 1078, 3808, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 407, 287, 14267, 62, 35226, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 3904, 13, 16963, 457, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 2625, 24893, 1087, 18839, 23884, 1911, 18982, 7, 35226, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 12286, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 58, 35226, 60, 796, 410, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 14512, 366, 36996, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 287, 23337, 11053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14680, 7203, 464, 3814, 1276, 287, 4064, 82, 526, 4064, 357, 1600, 27071, 22179, 7, 31553, 11053, 4008, 737, 43917, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 410, 796, 3904, 13, 16963, 457, 7, 5239, 2625, 49322, 6374, 37, 2163, 416, 327, 2640, 11, 340, 481, 307, 5443, 13, 357, 88, 14, 77, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 88, 1, 611, 965, 7, 1078, 3808, 14692, 3500, 62, 6966, 8973, 737, 9688, 2032, 342, 7203, 17821, 4943, 2073, 366, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 12286, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 410, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 14692, 3500, 62, 6966, 8973, 796, 1262, 62, 6966, 62, 7942, 611, 410, 407, 287, 14631, 88, 1600, 366, 56, 8973, 2073, 1262, 62, 6966, 62, 9562, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 14692, 3500, 62, 6966, 8973, 796, 708, 3808, 14692, 3500, 62, 6966, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 4566, 628, 220, 220, 220, 2836, 796, 334, 66, 13, 2860, 62, 7220, 7, 7890, 28, 46265, 22046, 8, 198, 220, 220, 220, 334, 66, 13, 25925, 3419, 198, 220, 220, 220, 14680, 10786, 4550, 11787, 4064, 82, 1943, 13679, 4064, 2836, 737, 13138, 3419, 198, 220, 220, 220, 14680, 7, 7220, 737, 14681, 3419, 198, 220, 220, 220, 14680, 10786, 33963, 940, 82, 4064, 12, 1314, 82, 4064, 12, 1314, 82, 4064, 12, 1314, 82, 4064, 12, 1314, 82, 4064, 12, 940, 82, 6, 4064, 19203, 12982, 7390, 3256, 705, 4677, 7390, 3256, 705, 36996, 3256, 705, 21078, 62, 312, 3256, 705, 21078, 62, 2539, 3256, 705, 3500, 62, 6966, 11537, 737, 14681, 3419, 198, 220, 220, 220, 2836, 10951, 796, 334, 66, 13, 1136, 62, 7220, 62, 10951, 7, 7220, 8, 198, 220, 220, 220, 3200, 62, 312, 796, 5855, 9, 1, 1635, 513, 1343, 2836, 10951, 17816, 21078, 62, 312, 6, 7131, 2624, 25, 12962, 611, 2836, 10951, 17816, 21078, 62, 312, 6, 4083, 45828, 3419, 14512, 705, 45, 11651, 6, 2073, 705, 14202, 6, 198, 220, 220, 220, 3200, 62, 2539, 796, 5855, 9, 1, 1635, 513, 1343, 2836, 10951, 17816, 21078, 62, 2539, 6, 7131, 2078, 25, 12962, 611, 2836, 10951, 17816, 21078, 62, 2539, 6, 4083, 45828, 3419, 14512, 705, 45, 11651, 6, 2073, 705, 14202, 6, 198, 220, 220, 220, 14680, 10786, 33963, 940, 82, 4064, 12, 1314, 82, 4064, 12, 1314, 82, 4064, 12, 1314, 82, 4064, 12, 1314, 82, 4064, 12, 940, 82, 6, 4064, 357, 7220, 13, 36311, 10786, 29904, 62, 33809, 2836, 10951, 17816, 1324, 312, 6, 4357, 2836, 10951, 17816, 36996, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3200, 62, 312, 11, 3200, 62, 2539, 11, 2836, 10951, 17816, 3500, 62, 6966, 6, 7131, 25, 20, 12962, 737, 14681, 3419, 198, 220, 220, 220, 14680, 10786, 1639, 460, 779, 4600, 1416, 69, 17425, 1487, 532, 84, 4064, 82, 63, 284, 5078, 2836, 2637, 4064, 357, 7220, 13, 36311, 10786, 29904, 62, 6, 4008, 737, 14681, 3419, 198 ]
2.059024
1,762
#!/usr/bin/env python """ 4. Use TextFSM to parse the 'show arp' output from a Juniper SRX (see link below). Extract the following fields into tabular data: MAC Address, Address, Name, Interface. https://github.com/ktbyers/pyplus_course/blob/master/class4/exercises/ex4_junos_show_arp.txt """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 19, 13, 5765, 8255, 10652, 44, 284, 21136, 262, 705, 12860, 610, 79, 6, 5072, 422, 257, 7653, 9346, 16808, 55, 357, 3826, 2792, 2174, 737, 220, 198, 11627, 974, 262, 1708, 7032, 656, 7400, 934, 1366, 25, 20582, 17917, 11, 17917, 11, 6530, 11, 26491, 13, 198, 198, 5450, 1378, 12567, 13, 785, 14, 21841, 1525, 364, 14, 9078, 9541, 62, 17319, 14, 2436, 672, 14, 9866, 14, 4871, 19, 14, 1069, 2798, 2696, 14, 1069, 19, 62, 29741, 418, 62, 12860, 62, 5117, 13, 14116, 198, 37811, 198 ]
2.901961
102
"""Import a file from Illumina BaseSpace.""" import atexit import gzip import os import time import traceback from pathlib import Path from requests import RequestException, Session from resolwe.process import ( BooleanField, FileField, GroupField, IntegerField, Persistence, Process, SecretField, StringField, ) class BaseSpaceDownloadError(Exception): """BaseSpace download error.""" pass def download_file_repeatedly( tries, session, file_id, file_name, expected_file_size, request_headers, error ): """Attempt to download BaseSpace file numerous times in case of errors.""" for i in range(tries): try: download_file( session=session, file_id=file_id, file_name=file_name, request_headers=request_headers, error=error, ) raise_for_file_corruption( file_name=file_name, expected_file_size=expected_file_size, error=error ) break except BaseSpaceDownloadError: if i + 1 == tries: error("Could not download file from BaseSpace.") else: time.sleep(3) def download_file(session, file_id, file_name, request_headers, error): """Download BaseSpace file.""" response = make_get_request( session=session, url=get_api_file_content_url(file_id=file_id), headers=request_headers, error=error, stream=True, ) try: with open(file_name, "wb") as f: chunk_size = 1024 * 1024 * 10 for chunk in response.iter_content(chunk_size=chunk_size): f.write(chunk) except FileNotFoundError: error(f"Could not save file to {file_name}, due to directory not being found") except PermissionError: error(f"Could not save file to {file_name}, due to insufficient permissions") except RequestException: error(f"Could not save file to {file_name}, due to a network error") def get_file_properties(session, file_id, request_headers, error): """Get file name and size (in bytes).""" response = make_get_request( session=session, url=get_api_file_url(file_id=file_id), headers=request_headers, error=error, ) info = response.json()["Response"] return info["Name"], info["Size"] def make_get_request(session, url, headers, error, stream=False): """Make a get request.""" response = session.get(url=url, headers=headers, stream=stream, timeout=60) if response.status_code == 401: error(f"Authentication failed on URL {url}") elif response.status_code == 404: error(f"BaseSpace file {url} not found") elif response.status_code != 200: error(f"Failed to retrieve content from {url}") return response def get_api_file_url(file_id): """Get BaseSpace API file URL.""" api_url = "https://api.basespace.illumina.com/v1pre3" return f"{api_url}/files/{file_id}" def get_api_file_content_url(file_id): """Get BaseSpace API file contents URL.""" return f"{get_api_file_url(file_id=file_id)}/content" def output(output_option, value): """Print to standard output.""" if output_option == "full": print(value) elif output_option == "filename": if value.startswith("filename="): print(value[len("filename=") :]) def get_token_from_secret_file(secret_file_path, error): """Read secret file to obtain access token.""" try: with open(secret_file_path, "r") as f: return f.readline() except FileNotFoundError: error("Secret file not found") except PermissionError: error("No permissions to read secret file") def on_exit(session): """Clean up function called on exit.""" session.close() def raise_for_file_corruption(file_name, expected_file_size, error): """Raise an error if file does not pass integrity check.""" # Check file size. actual_file_size = os.path.getsize(file_name) if expected_file_size != actual_file_size: error( f"File's ({file_name}) expected size ({expected_file_size}) " f"does not match its actual size ({actual_file_size})" ) # Check gzip integrity. if file_name.split(".")[-1] == "gz": try: with gzip.open(file_name, "rb") as f: chunk_size = 1024 * 1024 * 10 while bool(f.read(chunk_size)): pass except OSError: error(f"File {file_name} did not pass gzip integrity check") class BaseSpaceImport(Process): """Import a file from Illumina BaseSpace.""" slug = "basespace-file-import" name = "BaseSpace file" process_type = "data:file" version = "1.4.0" category = "Import" data_name = 'BaseSpace ({{ file_id|default("?") }})' persistence = Persistence.TEMP requirements = { "expression-engine": "jinja", "executor": { "docker": {"image": "public.ecr.aws/s4q6j6e8/resolwebio/common:3.0.0"} }, "resources": { "cores": 1, "memory": 1024, "network": True, "secrets": True, }, } class Input: """Input fields to process BaseSpaceImport.""" file_id = StringField(label="BaseSpace file ID") access_token_secret = SecretField( label="BaseSpace access token", description="BaseSpace access token secret handle needed to download the file.", ) show_advanced = BooleanField( label="Show advanced options", default=False, ) class Advanced: """Advanced options.""" output = StringField( label="Output", allow_custom_choice=False, choices=[("full", "Full"), ("filename", "Filename")], default="filename", description="Sets what is printed to standard output. " "Argument 'Full' outputs everything, " "argument 'Filename' outputs only file names of downloaded files.", ) tries = IntegerField( label="Tries", description="Number of tries to download a file before giving up.", range=[1, 10], default=3, ) verbose = BooleanField( label="Verbose", default=False, description="Print detailed exception information to standard output " "when error occurs. Output argument had no effect on this argument.", ) advanced = GroupField( Advanced, label="Advanced options", hidden="!show_advanced" ) class Output: """Output fields to process BaseSpaceImport.""" file = FileField(label="File with reads") def run(self, inputs, outputs): """Run import.""" secret_path = Path("/secrets") / inputs.access_token_secret["handle"] session = Session() atexit.register(on_exit, session) try: file_id = inputs.file_id access_token = get_token_from_secret_file( secret_file_path=secret_path, error=self.error ) headers = {"x-access-token": access_token} file_name, file_size = get_file_properties( session=session, file_id=file_id, request_headers=headers, error=self.error, ) download_file_repeatedly( tries=inputs.advanced.tries, session=session, file_id=file_id, file_name=file_name, expected_file_size=file_size, request_headers=headers, error=self.error, ) output(inputs.advanced.output, f"filename={file_name}") except Exception as error: if inputs.advanced.verbose: traceback.print_exc() self.error( "Unexpected error occurred while trying to download files from BaseSpace. " "Check standard output for more details." ) else: print(str(error)) self.error( "Unexpected error occurred while trying to download files from BaseSpace. " "Set Verbose to True to see the traceback." ) outputs.file = file_name
[ 37811, 20939, 257, 2393, 422, 39256, 1437, 7308, 14106, 526, 15931, 198, 198, 11748, 379, 37023, 198, 11748, 308, 13344, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 12854, 1891, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 7007, 1330, 19390, 16922, 11, 23575, 198, 198, 6738, 581, 349, 732, 13, 14681, 1330, 357, 198, 220, 220, 220, 41146, 15878, 11, 198, 220, 220, 220, 9220, 15878, 11, 198, 220, 220, 220, 4912, 15878, 11, 198, 220, 220, 220, 34142, 15878, 11, 198, 220, 220, 220, 9467, 13274, 11, 198, 220, 220, 220, 10854, 11, 198, 220, 220, 220, 3943, 15878, 11, 198, 220, 220, 220, 10903, 15878, 11, 198, 8, 628, 198, 4871, 7308, 14106, 10002, 12331, 7, 16922, 2599, 198, 220, 220, 220, 37227, 14881, 14106, 4321, 4049, 526, 15931, 628, 220, 220, 220, 1208, 628, 198, 4299, 4321, 62, 7753, 62, 45956, 515, 306, 7, 198, 220, 220, 220, 8404, 11, 6246, 11, 2393, 62, 312, 11, 2393, 62, 3672, 11, 2938, 62, 7753, 62, 7857, 11, 2581, 62, 50145, 11, 4049, 198, 2599, 198, 220, 220, 220, 37227, 37177, 284, 4321, 7308, 14106, 2393, 6409, 1661, 287, 1339, 286, 8563, 526, 15931, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 83, 1678, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 7753, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 312, 28, 7753, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 28, 7753, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 50145, 28, 25927, 62, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 18224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 62, 1640, 62, 7753, 62, 46260, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 28, 7753, 62, 3672, 11, 2938, 62, 7753, 62, 7857, 28, 40319, 62, 7753, 62, 7857, 11, 4049, 28, 18224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7308, 14106, 10002, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1343, 352, 6624, 8404, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 7203, 23722, 407, 4321, 2393, 422, 7308, 14106, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 18, 8, 628, 198, 4299, 4321, 62, 7753, 7, 29891, 11, 2393, 62, 312, 11, 2393, 62, 3672, 11, 2581, 62, 50145, 11, 4049, 2599, 198, 220, 220, 220, 37227, 10002, 7308, 14106, 2393, 526, 15931, 198, 220, 220, 220, 2882, 796, 787, 62, 1136, 62, 25927, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 1136, 62, 15042, 62, 7753, 62, 11299, 62, 6371, 7, 7753, 62, 312, 28, 7753, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 25927, 62, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 18224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4269, 28, 17821, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 3672, 11, 366, 39346, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16058, 62, 7857, 796, 28119, 1635, 28119, 1635, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 16058, 287, 2882, 13, 2676, 62, 11299, 7, 354, 2954, 62, 7857, 28, 354, 2954, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 354, 2954, 8, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 23722, 407, 3613, 2393, 284, 1391, 7753, 62, 3672, 5512, 2233, 284, 8619, 407, 852, 1043, 4943, 198, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 23722, 407, 3613, 2393, 284, 1391, 7753, 62, 3672, 5512, 2233, 284, 19022, 21627, 4943, 198, 220, 220, 220, 2845, 19390, 16922, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 23722, 407, 3613, 2393, 284, 1391, 7753, 62, 3672, 5512, 2233, 284, 257, 3127, 4049, 4943, 628, 198, 4299, 651, 62, 7753, 62, 48310, 7, 29891, 11, 2393, 62, 312, 11, 2581, 62, 50145, 11, 4049, 2599, 198, 220, 220, 220, 37227, 3855, 2393, 1438, 290, 2546, 357, 259, 9881, 21387, 15931, 198, 220, 220, 220, 2882, 796, 787, 62, 1136, 62, 25927, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 1136, 62, 15042, 62, 7753, 62, 6371, 7, 7753, 62, 312, 28, 7753, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 25927, 62, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 18224, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 7508, 796, 2882, 13, 17752, 3419, 14692, 31077, 8973, 198, 220, 220, 220, 1441, 7508, 14692, 5376, 33116, 7508, 14692, 10699, 8973, 628, 198, 4299, 787, 62, 1136, 62, 25927, 7, 29891, 11, 19016, 11, 24697, 11, 4049, 11, 4269, 28, 25101, 2599, 198, 220, 220, 220, 37227, 12050, 257, 651, 2581, 526, 15931, 198, 220, 220, 220, 2882, 796, 6246, 13, 1136, 7, 6371, 28, 6371, 11, 24697, 28, 50145, 11, 4269, 28, 5532, 11, 26827, 28, 1899, 8, 628, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 22219, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 47649, 3299, 4054, 319, 10289, 1391, 6371, 92, 4943, 198, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 14881, 14106, 2393, 1391, 6371, 92, 407, 1043, 4943, 198, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 14512, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 37, 6255, 284, 19818, 2695, 422, 1391, 6371, 92, 4943, 628, 220, 220, 220, 1441, 2882, 628, 198, 4299, 651, 62, 15042, 62, 7753, 62, 6371, 7, 7753, 62, 312, 2599, 198, 220, 220, 220, 37227, 3855, 7308, 14106, 7824, 2393, 10289, 526, 15931, 198, 220, 220, 220, 40391, 62, 6371, 796, 366, 5450, 1378, 15042, 13, 65, 1386, 10223, 13, 359, 388, 1437, 13, 785, 14, 85, 16, 3866, 18, 1, 198, 220, 220, 220, 1441, 277, 1, 90, 15042, 62, 6371, 92, 14, 16624, 14, 90, 7753, 62, 312, 36786, 628, 198, 4299, 651, 62, 15042, 62, 7753, 62, 11299, 62, 6371, 7, 7753, 62, 312, 2599, 198, 220, 220, 220, 37227, 3855, 7308, 14106, 7824, 2393, 10154, 10289, 526, 15931, 198, 220, 220, 220, 1441, 277, 1, 90, 1136, 62, 15042, 62, 7753, 62, 6371, 7, 7753, 62, 312, 28, 7753, 62, 312, 38165, 14, 11299, 1, 628, 198, 4299, 5072, 7, 22915, 62, 18076, 11, 1988, 2599, 198, 220, 220, 220, 37227, 18557, 284, 3210, 5072, 526, 15931, 198, 220, 220, 220, 611, 5072, 62, 18076, 6624, 366, 12853, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8367, 8, 198, 220, 220, 220, 1288, 361, 5072, 62, 18076, 6624, 366, 34345, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 13, 9688, 2032, 342, 7203, 34345, 2625, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8367, 58, 11925, 7203, 34345, 2625, 8, 1058, 12962, 628, 198, 4299, 651, 62, 30001, 62, 6738, 62, 21078, 62, 7753, 7, 21078, 62, 7753, 62, 6978, 11, 4049, 2599, 198, 220, 220, 220, 37227, 5569, 3200, 2393, 284, 7330, 1895, 11241, 526, 15931, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 21078, 62, 7753, 62, 6978, 11, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 13, 961, 1370, 3419, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7203, 23725, 2393, 407, 1043, 4943, 198, 220, 220, 220, 2845, 2448, 3411, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7203, 2949, 21627, 284, 1100, 3200, 2393, 4943, 628, 198, 4299, 319, 62, 37023, 7, 29891, 2599, 198, 220, 220, 220, 37227, 32657, 510, 2163, 1444, 319, 8420, 526, 15931, 198, 220, 220, 220, 6246, 13, 19836, 3419, 628, 198, 4299, 5298, 62, 1640, 62, 7753, 62, 46260, 7, 7753, 62, 3672, 11, 2938, 62, 7753, 62, 7857, 11, 4049, 2599, 198, 220, 220, 220, 37227, 21762, 786, 281, 4049, 611, 2393, 857, 407, 1208, 11540, 2198, 526, 15931, 198, 220, 220, 220, 1303, 6822, 2393, 2546, 13, 198, 220, 220, 220, 4036, 62, 7753, 62, 7857, 796, 28686, 13, 6978, 13, 11407, 1096, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 611, 2938, 62, 7753, 62, 7857, 14512, 4036, 62, 7753, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 8979, 338, 37913, 7753, 62, 3672, 30072, 2938, 2546, 37913, 40319, 62, 7753, 62, 7857, 30072, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 22437, 407, 2872, 663, 4036, 2546, 37913, 50039, 62, 7753, 62, 7857, 92, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 6822, 308, 13344, 11540, 13, 198, 220, 220, 220, 611, 2393, 62, 3672, 13, 35312, 7203, 19570, 58, 12, 16, 60, 6624, 366, 34586, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 308, 13344, 13, 9654, 7, 7753, 62, 3672, 11, 366, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16058, 62, 7857, 796, 28119, 1635, 28119, 1635, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 20512, 7, 69, 13, 961, 7, 354, 2954, 62, 7857, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 7, 69, 1, 8979, 1391, 7753, 62, 3672, 92, 750, 407, 1208, 308, 13344, 11540, 2198, 4943, 628, 198, 4871, 7308, 14106, 20939, 7, 18709, 2599, 198, 220, 220, 220, 37227, 20939, 257, 2393, 422, 39256, 1437, 7308, 14106, 526, 15931, 628, 220, 220, 220, 31065, 796, 366, 65, 1386, 10223, 12, 7753, 12, 11748, 1, 198, 220, 220, 220, 1438, 796, 366, 14881, 14106, 2393, 1, 198, 220, 220, 220, 1429, 62, 4906, 796, 366, 7890, 25, 7753, 1, 198, 220, 220, 220, 2196, 796, 366, 16, 13, 19, 13, 15, 1, 198, 220, 220, 220, 6536, 796, 366, 20939, 1, 198, 220, 220, 220, 1366, 62, 3672, 796, 705, 14881, 14106, 357, 27007, 2393, 62, 312, 91, 12286, 7203, 1701, 8, 1782, 30072, 6, 198, 220, 220, 220, 30802, 796, 9467, 13274, 13, 51, 39494, 198, 220, 220, 220, 5359, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 38011, 12, 18392, 1298, 366, 18594, 6592, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18558, 38409, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45986, 1298, 19779, 9060, 1298, 366, 11377, 13, 721, 81, 13, 8356, 14, 82, 19, 80, 21, 73, 21, 68, 23, 14, 411, 349, 12384, 952, 14, 11321, 25, 18, 13, 15, 13, 15, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37540, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 2850, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31673, 1298, 28119, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27349, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2363, 8004, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1398, 23412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20560, 7032, 284, 1429, 7308, 14106, 20939, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 312, 796, 10903, 15878, 7, 18242, 2625, 14881, 14106, 2393, 4522, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 62, 21078, 796, 3943, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 14881, 14106, 1895, 11241, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 14881, 14106, 1895, 11241, 3200, 5412, 2622, 284, 4321, 262, 2393, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 32225, 2903, 796, 41146, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 15307, 6190, 3689, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 13435, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 28809, 3689, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 26410, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1249, 62, 23144, 62, 25541, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 41888, 7203, 12853, 1600, 366, 13295, 12340, 5855, 34345, 1600, 366, 35063, 4943, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 34345, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 50, 1039, 644, 318, 10398, 284, 3210, 5072, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28100, 1713, 705, 13295, 6, 23862, 2279, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49140, 705, 35063, 6, 23862, 691, 2393, 3891, 286, 15680, 3696, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8404, 796, 34142, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 51, 1678, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 15057, 286, 8404, 284, 4321, 257, 2393, 878, 3501, 510, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 41888, 16, 11, 838, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 796, 41146, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 2625, 13414, 65, 577, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 18557, 6496, 6631, 1321, 284, 3210, 5072, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12518, 4049, 8833, 13, 25235, 4578, 550, 645, 1245, 319, 428, 4578, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 6190, 796, 4912, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13435, 11, 6167, 2625, 28809, 3689, 1600, 7104, 2625, 0, 12860, 62, 32225, 2903, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1398, 25235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26410, 7032, 284, 1429, 7308, 14106, 20939, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 796, 9220, 15878, 7, 18242, 2625, 8979, 351, 9743, 4943, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 17311, 11, 23862, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 1330, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 3200, 62, 6978, 796, 10644, 7203, 14, 2363, 8004, 4943, 1220, 17311, 13, 15526, 62, 30001, 62, 21078, 14692, 28144, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 6246, 796, 23575, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 379, 37023, 13, 30238, 7, 261, 62, 37023, 11, 6246, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 312, 796, 17311, 13, 7753, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1895, 62, 30001, 796, 651, 62, 30001, 62, 6738, 62, 21078, 62, 7753, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3200, 62, 7753, 62, 6978, 28, 21078, 62, 6978, 11, 4049, 28, 944, 13, 18224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 19779, 87, 12, 15526, 12, 30001, 1298, 1895, 62, 30001, 92, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 11, 2393, 62, 7857, 796, 651, 62, 7753, 62, 48310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 312, 28, 7753, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 50145, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 944, 13, 18224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 7753, 62, 45956, 515, 306, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8404, 28, 15414, 82, 13, 32225, 2903, 13, 83, 1678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 28, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 312, 28, 7753, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 28, 7753, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 7753, 62, 7857, 28, 7753, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 50145, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 28, 944, 13, 18224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 7, 15414, 82, 13, 32225, 2903, 13, 22915, 11, 277, 1, 34345, 34758, 7753, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17311, 13, 32225, 2903, 13, 19011, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 1891, 13, 4798, 62, 41194, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 52, 42072, 4049, 5091, 981, 2111, 284, 4321, 3696, 422, 7308, 14106, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9787, 3210, 5072, 329, 517, 3307, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 7, 18224, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 52, 42072, 4049, 5091, 981, 2111, 284, 4321, 3696, 422, 7308, 14106, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7248, 49973, 577, 284, 6407, 284, 766, 262, 12854, 1891, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 23862, 13, 7753, 796, 2393, 62, 3672, 198 ]
2.225077
3,892
import re if __name__ == '__main__': filename = 'data/wiki_humble_monthly.txt' verbose = True bundles = build_dictionary(filename, verbose) print(bundles)
[ 11748, 302, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 29472, 796, 705, 7890, 14, 15466, 62, 71, 10344, 62, 8424, 306, 13, 14116, 6, 198, 220, 220, 220, 15942, 577, 796, 6407, 198, 220, 220, 220, 36344, 796, 1382, 62, 67, 14188, 7, 34345, 11, 15942, 577, 8, 198, 220, 220, 220, 3601, 7, 65, 917, 829, 8, 198 ]
2.528571
70
''' Manage Azure Database for MySQL servers. ''' from .. pyaz_utils import _call_az from . import db, flexible_server, server, server_logs
[ 7061, 6, 198, 5124, 496, 22134, 24047, 329, 33476, 9597, 13, 198, 7061, 6, 198, 6738, 11485, 12972, 1031, 62, 26791, 1330, 4808, 13345, 62, 1031, 198, 6738, 764, 1330, 20613, 11, 12846, 62, 15388, 11, 4382, 11, 4382, 62, 6404, 82, 628 ]
3.255814
43
import pandas as pd import numpy as np from pathlib import Path from sklearn.preprocessing import QuantileTransformer, StandardScaler, LabelEncoder from utils import read_data from config import UTILITY if __name__=="__main__": print("Reading data") train = read_data("train") test = read_data("test") print("preprocess data") train, test = preprocess_data(train, test) print("Generating extra features") train = get_extra_feats(train) test = get_extra_feats(test) feats = ["etype", "cns_desc", "loan_ratio", "avg_acc_age", "cr_hist_len", "age", "disbursed_pri_amt", "sanctioned_pri_amt", "disbur_to_sanction", "disbur_to_sanction2", "total_disbursed", "total_sanctioned", "total_disbur_to_sanction_ratio"] print("Quantile transformer") train_qnt, test_qnt = scale_data(train, test, feats) print("Saving stuff") train[feats].to_csv(str(Path(UTILITY) / "train_feats1.csv"), index=False) test[feats].to_csv(str(Path(UTILITY) / "test_feats1.csv"), index=False) train_qnt.to_csv(str(Path(UTILITY) / "train_feats1_qnt.csv"), index=False) test_qnt.to_csv(str(Path(UTILITY) / "test_feats1_qnt.csv"), index=False)
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 16972, 576, 8291, 16354, 11, 8997, 3351, 36213, 11, 36052, 27195, 12342, 198, 198, 6738, 3384, 4487, 1330, 1100, 62, 7890, 220, 198, 6738, 4566, 1330, 19255, 4146, 9050, 628, 628, 198, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 36120, 1366, 4943, 198, 220, 220, 220, 4512, 796, 1100, 62, 7890, 7203, 27432, 4943, 198, 220, 220, 220, 1332, 796, 1100, 62, 7890, 7203, 9288, 4943, 628, 220, 220, 220, 3601, 7203, 3866, 14681, 1366, 4943, 198, 220, 220, 220, 4512, 11, 1332, 796, 662, 14681, 62, 7890, 7, 27432, 11, 1332, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7203, 8645, 803, 3131, 3033, 4943, 198, 220, 220, 220, 4512, 796, 651, 62, 26086, 62, 5036, 1381, 7, 27432, 8, 198, 220, 220, 220, 1332, 796, 651, 62, 26086, 62, 5036, 1381, 7, 9288, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 35664, 796, 14631, 2963, 431, 1600, 366, 66, 5907, 62, 20147, 1600, 366, 5439, 272, 62, 10366, 952, 1600, 366, 615, 70, 62, 4134, 62, 496, 1600, 366, 6098, 62, 10034, 62, 11925, 1600, 366, 496, 1600, 366, 6381, 65, 17539, 62, 3448, 62, 321, 83, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12807, 596, 276, 62, 3448, 62, 321, 83, 1600, 366, 6381, 6236, 62, 1462, 62, 12807, 596, 1600, 366, 6381, 6236, 62, 1462, 62, 12807, 596, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 6381, 65, 17539, 1600, 366, 23350, 62, 12807, 596, 276, 1600, 220, 366, 23350, 62, 6381, 6236, 62, 1462, 62, 12807, 596, 62, 10366, 952, 8973, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7203, 24915, 576, 47385, 4943, 198, 220, 220, 220, 4512, 62, 80, 429, 11, 1332, 62, 80, 429, 796, 5046, 62, 7890, 7, 27432, 11, 1332, 11, 35664, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7203, 50, 2703, 3404, 4943, 198, 220, 220, 220, 4512, 58, 5036, 1381, 4083, 1462, 62, 40664, 7, 2536, 7, 15235, 7, 3843, 4146, 9050, 8, 1220, 366, 27432, 62, 5036, 1381, 16, 13, 40664, 12340, 6376, 28, 25101, 8, 198, 220, 220, 220, 1332, 58, 5036, 1381, 4083, 1462, 62, 40664, 7, 2536, 7, 15235, 7, 3843, 4146, 9050, 8, 1220, 366, 9288, 62, 5036, 1381, 16, 13, 40664, 12340, 6376, 28, 25101, 8, 628, 220, 220, 220, 4512, 62, 80, 429, 13, 1462, 62, 40664, 7, 2536, 7, 15235, 7, 3843, 4146, 9050, 8, 1220, 366, 27432, 62, 5036, 1381, 16, 62, 80, 429, 13, 40664, 12340, 6376, 28, 25101, 8, 198, 220, 220, 220, 1332, 62, 80, 429, 13, 1462, 62, 40664, 7, 2536, 7, 15235, 7, 3843, 4146, 9050, 8, 1220, 366, 9288, 62, 5036, 1381, 16, 62, 80, 429, 13, 40664, 12340, 6376, 28, 25101, 8, 628 ]
2.364683
521
import os import logging from logging.handlers import RotatingFileHandler # Set the logs VERBOSITY = os.getenv( "VERBOSITY", "debug" ) # info as default, #debug for local dev LOG_PATH = os.getenv("LOG_PATH", "./logs") # Define the logs # Set verbosity ROWS = 40 COLUMNS = 40 MAX_PROB = 2 MAX_TICK = 60
[ 11748, 28686, 198, 11748, 18931, 198, 6738, 18931, 13, 4993, 8116, 1330, 18481, 803, 8979, 25060, 198, 198, 2, 5345, 262, 17259, 198, 5959, 33, 2640, 9050, 796, 28686, 13, 1136, 24330, 7, 198, 220, 220, 220, 366, 5959, 33, 2640, 9050, 1600, 366, 24442, 1, 198, 8, 220, 1303, 7508, 355, 4277, 11, 1303, 24442, 329, 1957, 1614, 198, 198, 25294, 62, 34219, 796, 28686, 13, 1136, 24330, 7203, 25294, 62, 34219, 1600, 366, 19571, 6404, 82, 4943, 628, 198, 2, 2896, 500, 262, 17259, 198, 2, 5345, 15942, 16579, 628, 198, 49, 22845, 796, 2319, 198, 25154, 5883, 8035, 796, 2319, 198, 22921, 62, 4805, 9864, 796, 362, 198, 22921, 62, 51, 11860, 796, 3126, 198 ]
2.652542
118
str = 'ABC' print Solution().convert(str, 1)
[ 198, 2536, 796, 705, 24694, 6, 198, 4798, 28186, 22446, 1102, 1851, 7, 2536, 11, 352, 8 ]
2.647059
17
#!/usr/bin/env python """ Lists key(s) detail(s) visible to the supplied Cosm user API key To use this script you must create a text file containing your API key and pass it to this script using the --keyfile argument as follows: List all keys visible to supplied key: $ key_view.py --keyfile=/path/to/apikey/file List details for a particular key $ key_view.py --keyfile=path/to/apikey/file --key=XXX txcosm must be installed or visible on the PYTHONPATH. """ import logging from optparse import OptionParser import os import sys from twisted.internet import reactor, defer from txcosm.HTTPClient import HTTPClient parser = OptionParser("") parser.add_option("-k", "--keyfile", dest="keyfile", default=None, help="Path to file containing your Cosm API key") parser.add_option("-i", "--key", dest="key_id", default=None, help="A specific Cosm key id to view") @defer.inlineCallbacks if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s : %(message)s") (options, args) = parser.parse_args() # confirm keyfile is suppplied and valid if options.keyfile is None: print parser.get_usage() sys.exit(1) keyfile = os.path.expanduser(options.keyfile) if not os.path.exists(keyfile): logging.error("Invalid API key file path: %s" % keyfile) sys.exit(1) fd = open(keyfile, 'r') key = fd.read().strip() fd.close() reactor.callWhenRunning(demo, key, options.key_id) reactor.run()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 43, 1023, 1994, 7, 82, 8, 3703, 7, 82, 8, 7424, 284, 262, 14275, 10437, 76, 2836, 7824, 1994, 198, 198, 2514, 779, 428, 4226, 345, 1276, 2251, 257, 2420, 2393, 7268, 534, 7824, 1994, 198, 392, 1208, 340, 284, 428, 4226, 1262, 262, 1377, 2539, 7753, 4578, 355, 5679, 25, 198, 198, 8053, 477, 8251, 7424, 284, 14275, 1994, 25, 198, 3, 1994, 62, 1177, 13, 9078, 1377, 2539, 7753, 33223, 6978, 14, 1462, 14, 499, 522, 88, 14, 7753, 198, 198, 8053, 3307, 329, 257, 1948, 1994, 198, 3, 1994, 62, 1177, 13, 9078, 1377, 2539, 7753, 28, 6978, 14, 1462, 14, 499, 522, 88, 14, 7753, 1377, 2539, 28, 43145, 198, 198, 17602, 6966, 76, 1276, 307, 6589, 393, 7424, 319, 262, 350, 56, 4221, 1340, 34219, 13, 198, 37811, 198, 198, 11748, 18931, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 19074, 13, 37675, 1330, 21905, 11, 29135, 198, 6738, 27765, 6966, 76, 13, 40717, 11792, 1330, 14626, 11792, 628, 198, 48610, 796, 16018, 46677, 7203, 4943, 198, 48610, 13, 2860, 62, 18076, 7203, 12, 74, 1600, 366, 438, 2539, 7753, 1600, 2244, 2625, 2539, 7753, 1600, 4277, 28, 14202, 11, 1037, 2625, 15235, 284, 2393, 7268, 534, 10437, 76, 7824, 1994, 4943, 198, 48610, 13, 2860, 62, 18076, 7203, 12, 72, 1600, 366, 438, 2539, 1600, 2244, 2625, 2539, 62, 312, 1600, 4277, 28, 14202, 11, 1037, 2625, 32, 2176, 10437, 76, 1994, 4686, 284, 1570, 4943, 628, 198, 31, 4299, 263, 13, 45145, 14134, 10146, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 5794, 2625, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 5715, 3672, 8, 82, 1058, 4064, 7, 20500, 8, 82, 4943, 628, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1303, 6216, 1994, 7753, 318, 802, 489, 798, 290, 4938, 198, 220, 220, 220, 611, 3689, 13, 2539, 7753, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 30751, 13, 1136, 62, 26060, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 1994, 7753, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7, 25811, 13, 2539, 7753, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 2539, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7203, 44651, 7824, 1994, 2393, 3108, 25, 4064, 82, 1, 4064, 1994, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 220, 220, 277, 67, 796, 1280, 7, 2539, 7753, 11, 705, 81, 11537, 198, 220, 220, 220, 1994, 796, 277, 67, 13, 961, 22446, 36311, 3419, 198, 220, 220, 220, 277, 67, 13, 19836, 3419, 628, 220, 220, 220, 21905, 13, 13345, 2215, 28768, 7, 9536, 78, 11, 1994, 11, 3689, 13, 2539, 62, 312, 8, 198, 220, 220, 220, 21905, 13, 5143, 3419, 198 ]
2.831144
533
import logging import torch from torch.nn import functional as F import torch.nn as nn import torch.utils.checkpoint as cp from mmcv.runner.checkpoint import open_mmlab_model_urls, load_state_dict from torch.nn.modules.batchnorm import _BatchNorm import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module import mmcv import torch import torchvision from torch.utils import model_zoo from mmcv.runner import get_dist_info from mmcv.cnn import constant_init, kaiming_init from mmcv.runner import load_checkpoint from torch.utils import model_zoo from mmdet.ops import DeformConv, ModulatedDeformConv, ContextBlock from mmdet.models.plugins import GeneralizedAttention from ..registry import BACKBONES from ..utils import build_conv_layer, build_norm_layer def load_url_dist(url): """ In distributed setting, this function only download checkpoint at local rank 0 """ rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url) return checkpoint @BACKBONES.register_module class DeShNet(nn.Module): """deep shallow backbone. Args: depth (int): Depth of resnet, from {18, 34, 50, 101, 152}. num_stages (int): Resnet stages, normally 4. strides (Sequence[int]): Strides of the first block of each stage. dilations (Sequence[int]): Dilation of each stage. out_indices (Sequence[int]): Output from which stages. style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. norm_cfg (dict): dictionary to construct and config norm layer. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. zero_init_residual (bool): whether to use zero init for last norm layer in resblocks to let them behave as identity. """ arch_settings = { 18: (BasicBlock, (2, 2, 2, 2)), 34: (BasicBlock, (3, 4, 6, 3)), 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } @property @property
[ 11748, 18931, 201, 198, 11748, 28034, 201, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 201, 198, 11748, 28034, 13, 20471, 355, 299, 77, 201, 198, 11748, 28034, 13, 26791, 13, 9122, 4122, 355, 31396, 201, 198, 6738, 8085, 33967, 13, 16737, 13, 9122, 4122, 1330, 1280, 62, 3020, 23912, 62, 19849, 62, 6371, 82, 11, 3440, 62, 5219, 62, 11600, 201, 198, 6738, 28034, 13, 20471, 13, 18170, 13, 43501, 27237, 1330, 4808, 33, 963, 35393, 201, 198, 201, 198, 11748, 28686, 201, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 201, 198, 11748, 279, 10025, 22602, 201, 198, 11748, 640, 201, 198, 11748, 14601, 201, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 201, 198, 6738, 1330, 8019, 1330, 1330, 62, 21412, 201, 198, 201, 198, 11748, 8085, 33967, 201, 198, 11748, 28034, 201, 198, 11748, 28034, 10178, 201, 198, 6738, 28034, 13, 26791, 1330, 2746, 62, 89, 2238, 201, 198, 6738, 8085, 33967, 13, 16737, 1330, 651, 62, 17080, 62, 10951, 201, 198, 201, 198, 6738, 8085, 33967, 13, 66, 20471, 1330, 6937, 62, 15003, 11, 479, 1385, 278, 62, 15003, 201, 198, 6738, 8085, 33967, 13, 16737, 1330, 3440, 62, 9122, 4122, 201, 198, 6738, 28034, 13, 26791, 1330, 2746, 62, 89, 2238, 201, 198, 201, 198, 6738, 8085, 15255, 13, 2840, 1330, 1024, 687, 3103, 85, 11, 3401, 4817, 5005, 687, 3103, 85, 11, 30532, 12235, 201, 198, 6738, 8085, 15255, 13, 27530, 13, 37390, 1330, 3611, 1143, 8086, 1463, 201, 198, 201, 198, 6738, 11485, 2301, 4592, 1330, 28767, 33, 39677, 201, 198, 6738, 11485, 26791, 1330, 1382, 62, 42946, 62, 29289, 11, 1382, 62, 27237, 62, 29289, 201, 198, 201, 198, 201, 198, 4299, 3440, 62, 6371, 62, 17080, 7, 6371, 2599, 201, 198, 220, 220, 220, 37227, 554, 9387, 4634, 11, 428, 2163, 691, 4321, 26954, 379, 201, 198, 220, 220, 220, 1957, 4279, 657, 37227, 201, 198, 220, 220, 220, 4279, 11, 995, 62, 7857, 796, 651, 62, 17080, 62, 10951, 3419, 201, 198, 220, 220, 220, 4279, 796, 493, 7, 418, 13, 268, 2268, 13, 1136, 10786, 29701, 1847, 62, 49, 15154, 3256, 4279, 4008, 201, 198, 220, 220, 220, 611, 4279, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 796, 2746, 62, 89, 2238, 13, 2220, 62, 6371, 7, 6371, 8, 201, 198, 220, 220, 220, 611, 995, 62, 7857, 1875, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 17080, 6169, 13, 5657, 5277, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 1875, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 796, 2746, 62, 89, 2238, 13, 2220, 62, 6371, 7, 6371, 8, 201, 198, 220, 220, 220, 1441, 26954, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 31, 31098, 33, 39677, 13, 30238, 62, 21412, 201, 198, 4871, 1024, 2484, 7934, 7, 20471, 13, 26796, 2599, 201, 198, 220, 220, 220, 37227, 22089, 19337, 32774, 13, 201, 198, 201, 198, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 357, 600, 2599, 36350, 286, 581, 3262, 11, 422, 1391, 1507, 11, 4974, 11, 2026, 11, 8949, 11, 24848, 27422, 201, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 301, 1095, 357, 600, 2599, 1874, 3262, 9539, 11, 7685, 604, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 35002, 357, 44015, 594, 58, 600, 60, 2599, 4285, 1460, 286, 262, 717, 2512, 286, 1123, 3800, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 11844, 602, 357, 44015, 594, 58, 600, 60, 2599, 360, 10520, 286, 1123, 3800, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 521, 1063, 357, 44015, 594, 58, 600, 60, 2599, 25235, 422, 543, 9539, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 357, 2536, 2599, 4600, 9078, 13165, 354, 63, 393, 4600, 66, 21223, 44646, 1002, 900, 284, 366, 9078, 13165, 354, 1600, 262, 33769, 12, 11545, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7679, 318, 262, 513, 87, 18, 3063, 7679, 11, 4306, 262, 33769, 12, 11545, 7679, 318, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 717, 352, 87, 16, 3063, 7679, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 12912, 62, 301, 1095, 357, 600, 2599, 520, 1095, 284, 307, 12912, 357, 11338, 3915, 290, 900, 5418, 4235, 737, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 1724, 407, 20884, 597, 10007, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 37581, 357, 11600, 2599, 22155, 284, 5678, 290, 4566, 2593, 7679, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 18206, 357, 30388, 2599, 10127, 284, 900, 2593, 11685, 284, 5418, 4235, 11, 14811, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16611, 2491, 9756, 357, 32604, 290, 1401, 737, 5740, 25, 7896, 319, 347, 963, 11220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 663, 17670, 691, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 62, 13155, 357, 30388, 2599, 5765, 26954, 393, 407, 13, 8554, 26954, 481, 3613, 617, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4088, 981, 21605, 866, 262, 3047, 2866, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6632, 62, 15003, 62, 411, 312, 723, 357, 30388, 2599, 1771, 284, 779, 6632, 2315, 329, 938, 2593, 7679, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 581, 27372, 284, 1309, 606, 17438, 355, 5369, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 3934, 62, 33692, 796, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1248, 25, 357, 26416, 12235, 11, 357, 17, 11, 362, 11, 362, 11, 362, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4974, 25, 357, 26416, 12235, 11, 357, 18, 11, 604, 11, 718, 11, 513, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2026, 25, 357, 28653, 43163, 11, 357, 18, 11, 604, 11, 718, 11, 513, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8949, 25, 357, 28653, 43163, 11, 357, 18, 11, 604, 11, 2242, 11, 513, 36911, 201, 198, 220, 220, 220, 220, 220, 220, 220, 24848, 25, 357, 28653, 43163, 11, 357, 18, 11, 807, 11, 4570, 11, 513, 4008, 201, 198, 220, 220, 220, 1782, 201, 198, 201, 198, 201, 198, 220, 220, 220, 2488, 26745, 201, 198, 201, 198, 220, 220, 220, 2488, 26745, 201, 198 ]
2.551451
1,137
#!/usr/bin/env python3 import pprint import collections if __name__ == '__main__': with open('day6_input.txt') as f: data = [line for line in f.read().split("\n") if line != ''] pprint.pprint(solve1(data)) pprint.pprint(solve2(data))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 279, 4798, 198, 11748, 17268, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 351, 1280, 10786, 820, 21, 62, 15414, 13, 14116, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 685, 1370, 329, 1627, 287, 277, 13, 961, 22446, 35312, 7203, 59, 77, 4943, 611, 1627, 14512, 10148, 60, 628, 220, 220, 220, 279, 4798, 13, 381, 22272, 7, 82, 6442, 16, 7, 7890, 4008, 198, 220, 220, 220, 279, 4798, 13, 381, 22272, 7, 82, 6442, 17, 7, 7890, 4008, 198 ]
2.376147
109
from typing import NamedTuple, Optional # =======================
[ 6738, 19720, 1330, 34441, 51, 29291, 11, 32233, 628, 198, 198, 2, 36658, 50155, 628 ]
4.666667
15
"""Custom type definitions""" import pathlib # noqa: F401 import typing PathOrString = typing.Union[str, pathlib.Path] OptionalString = typing.Optional[str] StringList = typing.List[str] AnyList = typing.List[typing.Any] OptionalStringList = typing.Union[OptionalString, StringList] DictOfAny = typing.Dict[str, typing.Any] DictOfFloat = typing.Dict[str, float]
[ 37811, 15022, 2099, 17336, 37811, 198, 11748, 3108, 8019, 220, 1303, 645, 20402, 25, 376, 21844, 198, 11748, 19720, 198, 198, 15235, 5574, 10100, 796, 19720, 13, 38176, 58, 2536, 11, 3108, 8019, 13, 15235, 60, 198, 30719, 10100, 796, 19720, 13, 30719, 58, 2536, 60, 198, 10100, 8053, 796, 19720, 13, 8053, 58, 2536, 60, 198, 7149, 8053, 796, 19720, 13, 8053, 58, 774, 13886, 13, 7149, 60, 198, 30719, 10100, 8053, 796, 19720, 13, 38176, 58, 30719, 10100, 11, 10903, 8053, 60, 198, 35, 713, 5189, 7149, 796, 19720, 13, 35, 713, 58, 2536, 11, 19720, 13, 7149, 60, 198, 35, 713, 5189, 43879, 796, 19720, 13, 35, 713, 58, 2536, 11, 12178, 60, 198 ]
3.111111
117
# -*- coding: utf-8 -*- """ Created on Tue Jul 6 16:53:38 2021 @author: keikei """ """ There are n children standing in a line. Each child is assigned a rating value given in the integer array ratings. You are giving candies to these children subjected to the following requirements: Each child must have at least one candy. Children with a higher rating get more candies than their neighbors. Return the minimum number of candies you need to have to distribute the candies to the children. """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 30030, 5979, 220, 718, 1467, 25, 4310, 25, 2548, 33448, 198, 198, 31, 9800, 25, 885, 522, 72, 198, 37811, 198, 198, 37811, 220, 198, 1858, 389, 299, 1751, 5055, 287, 257, 1627, 13, 220, 198, 10871, 1200, 318, 8686, 257, 7955, 1988, 1813, 287, 262, 18253, 7177, 10109, 13, 198, 198, 1639, 389, 3501, 2658, 444, 284, 777, 1751, 16164, 284, 262, 1708, 5359, 25, 198, 198, 10871, 1200, 1276, 423, 379, 1551, 530, 18550, 13, 198, 26829, 351, 257, 2440, 7955, 651, 517, 2658, 444, 621, 511, 12020, 13, 198, 13615, 262, 5288, 1271, 286, 2658, 444, 345, 761, 284, 423, 284, 14983, 262, 2658, 444, 284, 262, 1751, 13, 220, 198, 37811 ]
3.774436
133
from __future__ import annotations from .vector import T as vector from .point import T as point from .piece import T as piece from .plf import T as plf
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 6738, 764, 31364, 1330, 309, 355, 15879, 198, 6738, 764, 4122, 1330, 309, 355, 966, 198, 6738, 764, 12239, 1330, 309, 355, 3704, 198, 6738, 764, 489, 69, 1330, 309, 355, 458, 69, 198 ]
3.731707
41
################################################################################# # Copyright (c) 2018-2021, Texas Instruments Incorporated - http://www.ti.com # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################# ########################################################### # Approximate quantized floating point simulation with gradients. # Can be used for quantized training of models. ########################################################### import torch import numpy as np import copy import warnings from .. import layers from .. import utils from .quant_base_module import * warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) ########################################################### # ########################################################### ########################################################### # ########################################################### # ########################################################### # ########################################################### # ########################################################### # fake quantized PAct2 for training
[ 29113, 29113, 14468, 2, 198, 2, 15069, 357, 66, 8, 2864, 12, 1238, 2481, 11, 3936, 43953, 3457, 40132, 532, 2638, 1378, 2503, 13, 20259, 13, 785, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 428, 198, 2, 220, 220, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 198, 2, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 1635, 16126, 262, 1438, 286, 262, 6634, 15762, 4249, 262, 3891, 286, 663, 198, 2, 220, 220, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2, 220, 220, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 198, 2, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 198, 2, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 198, 2, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 198, 2, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 198, 2, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 198, 2, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 198, 2, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 198, 2, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 29113, 29113, 14468, 2, 198, 198, 29113, 14468, 7804, 21017, 198, 2, 2034, 13907, 1920, 5554, 1143, 12462, 966, 18640, 351, 3915, 2334, 13, 198, 2, 1680, 307, 973, 329, 5554, 1143, 3047, 286, 4981, 13, 198, 29113, 14468, 7804, 21017, 198, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4866, 198, 11748, 14601, 198, 198, 6738, 11485, 1330, 11685, 198, 6738, 11485, 1330, 3384, 4487, 198, 6738, 764, 40972, 62, 8692, 62, 21412, 1330, 1635, 198, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 3256, 6536, 28, 13165, 354, 13, 45051, 13, 2898, 11736, 20361, 8, 628, 198, 29113, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 628, 198, 29113, 14468, 7804, 21017, 628, 628, 198, 29113, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 628, 198, 29113, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 628, 198, 29113, 14468, 7804, 21017, 198, 220, 220, 220, 1303, 628, 198, 29113, 14468, 7804, 21017, 628, 220, 220, 220, 1303, 628, 198, 29113, 14468, 7804, 21017, 198, 2, 8390, 5554, 1143, 350, 6398, 17, 329, 3047, 628, 198 ]
4.31891
624
from typing import Tuple from ground.base import Relation from ground.hints import (Multisegment, Polygon) from hypothesis import given from orient.planar import (multisegment_in_polygon, segment_in_polygon) from tests.utils import (LINEAR_COMPOUND_RELATIONS, equivalence, implication, multisegment_pop_left, multisegment_rotations, polygon_to_multisegment, reverse_multisegment, reverse_multisegment_coordinates, reverse_polygon_border, reverse_polygon_coordinates, reverse_polygon_holes, reverse_polygon_holes_contours) from . import strategies @given(strategies.polygons_with_multisegments) @given(strategies.polygons) @given(strategies.polygons_with_with_size_three_or_more_multisegments) @given(strategies.polygons_with_multisegments) @given(strategies.polygons_with_multisegments)
[ 6738, 19720, 1330, 309, 29291, 198, 198, 6738, 2323, 13, 8692, 1330, 4718, 341, 198, 6738, 2323, 13, 71, 29503, 1330, 357, 15205, 786, 5154, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12280, 14520, 8, 198, 6738, 14078, 1330, 1813, 198, 198, 6738, 11367, 13, 11578, 283, 1330, 357, 16680, 786, 5154, 62, 259, 62, 35428, 14520, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10618, 62, 259, 62, 35428, 14520, 8, 198, 6738, 5254, 13, 26791, 1330, 357, 24027, 1503, 62, 9858, 47, 15919, 62, 16448, 18421, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6854, 594, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26863, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1963, 786, 5154, 62, 12924, 62, 9464, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1963, 786, 5154, 62, 10599, 602, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7514, 14520, 62, 1462, 62, 16680, 786, 5154, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 62, 16680, 786, 5154, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 62, 16680, 786, 5154, 62, 37652, 17540, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 62, 35428, 14520, 62, 20192, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 62, 35428, 14520, 62, 37652, 17540, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 62, 35428, 14520, 62, 28439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9575, 62, 35428, 14520, 62, 28439, 62, 3642, 4662, 8, 198, 6738, 764, 1330, 10064, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 35428, 70, 684, 62, 4480, 62, 16680, 786, 11726, 8, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 35428, 70, 684, 8, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 35428, 70, 684, 62, 4480, 62, 4480, 62, 7857, 62, 15542, 62, 273, 62, 3549, 62, 16680, 786, 11726, 8, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 35428, 70, 684, 62, 4480, 62, 16680, 786, 11726, 8, 628, 198, 31, 35569, 7, 2536, 2397, 444, 13, 35428, 70, 684, 62, 4480, 62, 16680, 786, 11726, 8, 198 ]
1.926496
585
import numpy as np from mountainlab_pytools import mdaio processor_name='ephys.synthesize_random_firings' processor_version='0.14' def synthesize_random_firings(*,firings_out,K=20,samplerate=30000,duration=60): """ Synthesize random waveforms for use in creating a synthetic timeseries dataset Parameters ---------- firings_out : OUTPUT Path to output firings mda file. 3xL, L is the number of events, second row are timestamps, third row are integer unit labels K : int (Optional) number of simulated units samplerate : double (Optional) sampling frequency in Hz duration : double (Optional) duration of the simulated acquisition in seconds """ firing_rates=3*np.ones((K)) refr=4 N=np.int64(duration*samplerate) # events/sec * sec/timepoint * N populations=np.ceil(firing_rates/samplerate*N).astype('int') times=np.zeros(0) labels=np.zeros(0) for k in range(1,K+1): refr_timepoints=refr/1000*samplerate times0=np.random.rand(populations[k-1])*(N-1)+1 ## make an interesting autocorrelogram shape times0=np.hstack((times0,times0+rand_distr2(refr_timepoints,refr_timepoints*20,times0.size))) times0=times0[np.random.choice(times0.size,int(times0.size/2))] times0=times0[np.where((0<=times0)&(times0<N))] times0=enforce_refractory_period(times0,refr_timepoints) times=np.hstack((times,times0)) labels=np.hstack((labels,k*np.ones(times0.shape))) sort_inds=np.argsort(times) times=times[sort_inds] labels=labels[sort_inds] firings=np.zeros((3,times.size),dtype=np.float64) firings[1,:]=times firings[2,:]=labels return mdaio.writemda64(firings,firings_out) synthesize_random_firings.test=test_synthesize_random_firings synthesize_random_firings.name = processor_name synthesize_random_firings.version = processor_version if __name__ == '__main__': print ('Running test') test_synthesize_random_firings()
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 8598, 23912, 62, 9078, 31391, 1330, 285, 6814, 952, 198, 198, 41341, 62, 3672, 11639, 27446, 893, 13, 1837, 429, 956, 1096, 62, 25120, 62, 69, 343, 654, 6, 198, 41341, 62, 9641, 11639, 15, 13, 1415, 6, 198, 4299, 24983, 1096, 62, 25120, 62, 69, 343, 654, 7, 25666, 69, 343, 654, 62, 448, 11, 42, 28, 1238, 11, 37687, 20053, 378, 28, 18, 2388, 11, 32257, 28, 1899, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26375, 956, 1096, 4738, 6769, 23914, 329, 779, 287, 4441, 257, 18512, 1661, 10640, 27039, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 37979, 654, 62, 448, 1058, 16289, 30076, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 5072, 37979, 654, 285, 6814, 2393, 13, 513, 87, 43, 11, 406, 318, 262, 1271, 286, 2995, 11, 1218, 5752, 389, 4628, 395, 9430, 11, 2368, 5752, 389, 18253, 4326, 14722, 198, 220, 220, 220, 220, 198, 220, 220, 220, 509, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 357, 30719, 8, 1271, 286, 28590, 4991, 198, 220, 220, 220, 6072, 20053, 378, 1058, 4274, 198, 220, 220, 220, 220, 220, 220, 220, 357, 30719, 8, 19232, 8373, 287, 26109, 198, 220, 220, 220, 9478, 1058, 4274, 198, 220, 220, 220, 220, 220, 220, 220, 357, 30719, 8, 9478, 286, 262, 28590, 12673, 287, 4201, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9645, 62, 9700, 28, 18, 9, 37659, 13, 1952, 19510, 42, 4008, 198, 220, 220, 220, 1006, 81, 28, 19, 198, 220, 220, 220, 220, 198, 220, 220, 220, 399, 28, 37659, 13, 600, 2414, 7, 32257, 9, 37687, 20053, 378, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2995, 14, 2363, 1635, 792, 14, 2435, 4122, 1635, 399, 198, 220, 220, 220, 9684, 28, 37659, 13, 344, 346, 7, 69, 3428, 62, 9700, 14, 37687, 20053, 378, 9, 45, 737, 459, 2981, 10786, 600, 11537, 198, 220, 220, 220, 1661, 28, 37659, 13, 9107, 418, 7, 15, 8, 198, 220, 220, 220, 14722, 28, 37659, 13, 9107, 418, 7, 15, 8, 198, 220, 220, 220, 329, 479, 287, 2837, 7, 16, 11, 42, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 81, 62, 2435, 13033, 28, 5420, 81, 14, 12825, 9, 37687, 20053, 378, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 15, 28, 37659, 13, 25120, 13, 25192, 7, 12924, 5768, 58, 74, 12, 16, 12962, 9, 7, 45, 12, 16, 47762, 16, 628, 220, 220, 220, 220, 220, 220, 220, 22492, 787, 281, 3499, 1960, 420, 273, 2411, 21857, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 15, 28, 37659, 13, 71, 25558, 19510, 22355, 15, 11, 22355, 15, 10, 25192, 62, 17080, 81, 17, 7, 5420, 81, 62, 2435, 13033, 11, 5420, 81, 62, 2435, 13033, 9, 1238, 11, 22355, 15, 13, 7857, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 15, 28, 22355, 15, 58, 37659, 13, 25120, 13, 25541, 7, 22355, 15, 13, 7857, 11, 600, 7, 22355, 15, 13, 7857, 14, 17, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 15, 28, 22355, 15, 58, 37659, 13, 3003, 19510, 15, 27, 28, 22355, 15, 8, 5, 7, 22355, 15, 27, 45, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 15, 28, 268, 3174, 62, 5420, 974, 652, 62, 41007, 7, 22355, 15, 11, 5420, 81, 62, 2435, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1661, 28, 37659, 13, 71, 25558, 19510, 22355, 11, 22355, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 37659, 13, 71, 25558, 19510, 23912, 1424, 11, 74, 9, 37659, 13, 1952, 7, 22355, 15, 13, 43358, 22305, 628, 220, 220, 220, 3297, 62, 521, 82, 28, 37659, 13, 22046, 419, 7, 22355, 8, 198, 220, 220, 220, 1661, 28, 22355, 58, 30619, 62, 521, 82, 60, 198, 220, 220, 220, 14722, 28, 23912, 1424, 58, 30619, 62, 521, 82, 60, 628, 220, 220, 220, 37979, 654, 28, 37659, 13, 9107, 418, 19510, 18, 11, 22355, 13, 7857, 828, 67, 4906, 28, 37659, 13, 22468, 2414, 8, 198, 220, 220, 220, 37979, 654, 58, 16, 11, 25, 22241, 22355, 198, 220, 220, 220, 37979, 654, 58, 17, 11, 25, 22241, 23912, 1424, 198, 220, 220, 220, 1441, 285, 6814, 952, 13, 8933, 368, 6814, 2414, 7, 69, 343, 654, 11, 69, 343, 654, 62, 448, 8, 198, 198, 1837, 429, 956, 1096, 62, 25120, 62, 69, 343, 654, 13, 9288, 28, 9288, 62, 1837, 429, 956, 1096, 62, 25120, 62, 69, 343, 654, 198, 1837, 429, 956, 1096, 62, 25120, 62, 69, 343, 654, 13, 3672, 796, 12649, 62, 3672, 198, 1837, 429, 956, 1096, 62, 25120, 62, 69, 343, 654, 13, 9641, 796, 12649, 62, 9641, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 19203, 28768, 1332, 11537, 198, 220, 220, 220, 1332, 62, 1837, 429, 956, 1096, 62, 25120, 62, 69, 343, 654, 3419, 198, 220, 220, 220, 220, 198 ]
2.320904
885
import threading import logging import inspect from talon import cron, noise, Context from user.utils import context_active class _HandlerMapper(object): """Maps contexts to custom handlers. Workaround for contexts being unable to be added directly. """ def add(self, context, handler, priority=0): """Add a new handler. :param Context context: the context under which this mapping is active. :param handler: the handler this context should map to. :param int priority: the priority of this mapping. Only one handler can be returned. If more than one context in our mapping is active, the one with the _largest priority_ will win. If two contexts have the same priority, the one added _last_ will win. """ # Check now to prevent deferred errors. assert isinstance(context, Context) with self._lock: self._handlers.append((context, handler, priority)) def pick(self): """Select the best handler to use in the current context.""" best_handler = None best_priority = -1 for (context, handler, priority) in self._handlers: # FIXME: `context.enabled` has been removed if context_active(context) and priority >= best_priority: best_handler = handler best_priority = priority return best_handler class LongNoiseMapper(object): """Workaround to map long noises within contexts.""" def register(self, context, handler, priority=0, gap_tolerance=0): """Register a noise ``handler`` to be active in ``context``. Can optionally tolerate gaps in the noise. :param Context context: the context this handler should be active in. :param handler: will be called when the noise starts & stops. This should be an instantiated context manager - `__enter__` will be called when the noise starts, `__exit__` when it finishes. :param priority: Optional. Handlers are exclusive - only one will be active at a time. If multiple contexts match, the one with the largest ``priority`` wins (if there's a draw, the one registered last will win). Default is 0. :param float gap_tolerance: Optional. Maximum gap in the noise we will tolerate, in milliseconds. Gaps smaller than this value will be ignored. Note this will delay the `handler finishing` callback. Default is 0. """ self._handlers.add(context, _LongNoiseHandler(handler, gap_tolerance), priority) def _finish_old_handlers(self): """Call `_on_finish` for any remaining handlers.""" with self._active_handlers_lock: for handler in self._active_handlers: handler.on_finish() self._active_handlers.clear() class ShortNoiseMapper(object): """Workaround to map short noises within contexts.""" hiss_mapper = LongNoiseMapper("hiss") pop_mapper = ShortNoiseMapper("pop")
[ 11748, 4704, 278, 198, 11748, 18931, 198, 11748, 10104, 198, 198, 6738, 3305, 261, 1330, 1067, 261, 11, 7838, 11, 30532, 198, 6738, 2836, 13, 26791, 1330, 4732, 62, 5275, 628, 198, 198, 4871, 4808, 25060, 44, 11463, 7, 15252, 2599, 198, 220, 220, 220, 37227, 47010, 26307, 284, 2183, 32847, 13, 628, 220, 220, 220, 5521, 14145, 329, 26307, 852, 5906, 284, 307, 2087, 3264, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 751, 7, 944, 11, 4732, 11, 21360, 11, 8475, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 257, 649, 21360, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30532, 4732, 25, 262, 4732, 739, 543, 428, 16855, 318, 4075, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21360, 25, 262, 21360, 428, 4732, 815, 3975, 284, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 493, 8475, 25, 262, 8475, 286, 428, 16855, 13, 5514, 530, 21360, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 4504, 13, 1002, 517, 621, 530, 4732, 287, 674, 16855, 318, 4075, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 351, 262, 4808, 28209, 8475, 62, 481, 1592, 13, 1002, 734, 26307, 423, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 976, 8475, 11, 262, 530, 2087, 4808, 12957, 62, 481, 1592, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 783, 284, 2948, 28651, 8563, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 22866, 11, 30532, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4993, 8116, 13, 33295, 19510, 22866, 11, 21360, 11, 8475, 4008, 628, 220, 220, 220, 825, 2298, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17563, 262, 1266, 21360, 284, 779, 287, 262, 1459, 4732, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 30281, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 49336, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 22866, 11, 21360, 11, 8475, 8, 287, 2116, 13557, 4993, 8116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 4600, 22866, 13, 25616, 63, 468, 587, 4615, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4732, 62, 5275, 7, 22866, 8, 290, 8475, 18189, 1266, 62, 49336, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 30281, 796, 21360, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 49336, 796, 8475, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1266, 62, 30281, 628, 198, 4871, 5882, 2949, 786, 44, 11463, 7, 15252, 2599, 198, 220, 220, 220, 37227, 12468, 14145, 284, 3975, 890, 26782, 1626, 26307, 526, 15931, 628, 220, 220, 220, 825, 7881, 7, 944, 11, 4732, 11, 21360, 11, 8475, 28, 15, 11, 7625, 62, 83, 37668, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38804, 257, 7838, 7559, 30281, 15506, 284, 307, 4075, 287, 7559, 22866, 15506, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1680, 42976, 21923, 17332, 287, 262, 7838, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30532, 4732, 25, 262, 4732, 428, 21360, 815, 307, 4075, 287, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21360, 25, 481, 307, 1444, 618, 262, 7838, 4940, 1222, 9911, 13, 770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 307, 281, 9113, 12931, 4732, 4706, 532, 4600, 834, 9255, 834, 63, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1444, 618, 262, 7838, 4940, 11, 4600, 834, 37023, 834, 63, 618, 340, 20271, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8475, 25, 32233, 13, 7157, 8116, 389, 8568, 532, 691, 530, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 379, 257, 640, 13, 1002, 3294, 26307, 2872, 11, 262, 530, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4387, 7559, 49336, 15506, 7864, 357, 361, 612, 338, 257, 3197, 11, 262, 530, 6823, 938, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 1592, 737, 15161, 318, 657, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12178, 7625, 62, 83, 37668, 25, 32233, 13, 22246, 7625, 287, 262, 7838, 356, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21923, 11, 287, 38694, 13, 402, 1686, 4833, 621, 428, 1988, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9514, 13, 5740, 428, 481, 5711, 262, 4600, 30281, 12848, 63, 23838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 318, 657, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4993, 8116, 13, 2860, 7, 22866, 11, 4808, 14617, 2949, 786, 25060, 7, 30281, 11, 7625, 62, 83, 37668, 828, 8475, 8, 628, 220, 220, 220, 825, 4808, 15643, 680, 62, 727, 62, 4993, 8116, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14134, 4600, 62, 261, 62, 15643, 680, 63, 329, 597, 5637, 32847, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13557, 5275, 62, 4993, 8116, 62, 5354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 21360, 287, 2116, 13557, 5275, 62, 4993, 8116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 261, 62, 15643, 680, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5275, 62, 4993, 8116, 13, 20063, 3419, 628, 198, 4871, 10073, 2949, 786, 44, 11463, 7, 15252, 2599, 198, 220, 220, 220, 37227, 12468, 14145, 284, 3975, 1790, 26782, 1626, 26307, 526, 15931, 628, 198, 71, 747, 62, 76, 11463, 796, 5882, 2949, 786, 44, 11463, 7203, 71, 747, 4943, 198, 12924, 62, 76, 11463, 796, 10073, 2949, 786, 44, 11463, 7203, 12924, 4943, 198 ]
2.824561
1,083
# Return the first 10 surface indices of an UnstructuredGrid. # from pyvista import examples grid = examples.load_hexbeam() ind = grid.surface_indices() ind[:10] # doctest:+SKIP # Expected: ## pyvista_ndarray([ 0, 2, 36, 27, 7, 8, 81, 1, 18, 4])
[ 2, 8229, 262, 717, 838, 4417, 36525, 286, 281, 791, 7249, 1522, 41339, 13, 198, 2, 198, 6738, 12972, 85, 12523, 1330, 6096, 198, 25928, 796, 6096, 13, 2220, 62, 33095, 40045, 3419, 198, 521, 796, 10706, 13, 42029, 62, 521, 1063, 3419, 198, 521, 58, 25, 940, 60, 220, 1303, 10412, 395, 25, 10, 18831, 4061, 198, 2, 1475, 7254, 25, 198, 2235, 12972, 85, 12523, 62, 358, 18747, 26933, 657, 11, 220, 362, 11, 4570, 11, 2681, 11, 220, 767, 11, 220, 807, 11, 9773, 11, 220, 352, 11, 1248, 11, 220, 604, 12962, 198 ]
2.597938
97
from django import forms from .models import Temperature class TemperatureCreateForm(forms.ModelForm): """ Temperature create form """
[ 6738, 42625, 14208, 1330, 5107, 628, 198, 6738, 764, 27530, 1330, 34467, 628, 198, 4871, 34467, 16447, 8479, 7, 23914, 13, 17633, 8479, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 34467, 2251, 1296, 198, 220, 220, 220, 37227, 198 ]
3.595238
42
import cv2 import urllib2 import numpy as np import sys host = "192.168.1.85:8080" if len(sys.argv)>1: host = sys.argv[1] hoststr = 'http://' + host + '/?action=stream' print 'Streaming ' + hoststr print 'Print Esc to quit' stream=urllib2.urlopen(hoststr) bytes='' while True: bytes+=stream.read(1024) a = bytes.find('\xff\xd8') b = bytes.find('\xff\xd9') if a!=-1 and b!=-1: jpg = bytes[a:b+2] bytes= bytes[b+2:] #flags = 1 for color image i = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),flags=1) print i cv2.imshow("xiaorun",i) #if cv2.waitKey(1) & 0xFF == ord('q'): # exit(0)
[ 11748, 269, 85, 17, 198, 11748, 2956, 297, 571, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 4774, 796, 366, 17477, 13, 14656, 13, 16, 13, 5332, 25, 1795, 1795, 1, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 29, 16, 25, 198, 220, 220, 220, 2583, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 4774, 2536, 796, 705, 4023, 1378, 6, 1343, 2583, 1343, 705, 20924, 2673, 28, 5532, 6, 198, 4798, 705, 12124, 278, 705, 1343, 2583, 2536, 198, 198, 4798, 705, 18557, 16319, 284, 11238, 6, 198, 5532, 28, 333, 297, 571, 17, 13, 6371, 9654, 7, 4774, 2536, 8, 198, 33661, 28, 7061, 198, 4514, 6407, 25, 198, 220, 220, 220, 9881, 47932, 5532, 13, 961, 7, 35500, 8, 198, 220, 220, 220, 257, 796, 9881, 13, 19796, 10786, 59, 47596, 59, 24954, 23, 11537, 198, 220, 220, 220, 275, 796, 9881, 13, 19796, 10786, 59, 47596, 59, 24954, 24, 11537, 198, 220, 220, 220, 611, 257, 0, 10779, 16, 290, 275, 0, 10779, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 474, 6024, 796, 9881, 58, 64, 25, 65, 10, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9881, 28, 9881, 58, 65, 10, 17, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33152, 796, 352, 329, 3124, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 269, 85, 17, 13, 320, 12501, 1098, 7, 37659, 13, 6738, 8841, 7, 9479, 11, 288, 4906, 28, 37659, 13, 28611, 23, 828, 33152, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 36072, 273, 403, 1600, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 1222, 657, 87, 5777, 6624, 2760, 10786, 80, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 8420, 7, 15, 8 ]
1.982249
338
import sys input = sys.stdin.readline xmax, ymax = list(map(int, input().split())) x, y = list(map(int, input().split())) posx, posy = 0, 0 while(x != 0 or y != 0): posx += x posy += y if posx < 0: posx = 0 if posx > xmax: posx = xmax if posy < 0: posy = 0 if posy > ymax: posy = ymax print(posx, posy) x, y = list(map(int, input().split()))
[ 11748, 25064, 198, 15414, 796, 25064, 13, 19282, 259, 13, 961, 1370, 198, 198, 87, 9806, 11, 331, 9806, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 628, 198, 87, 11, 331, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 198, 198, 1930, 87, 11, 1426, 88, 796, 657, 11, 657, 198, 198, 4514, 7, 87, 14512, 657, 393, 331, 14512, 657, 2599, 198, 220, 220, 220, 1426, 87, 15853, 2124, 198, 220, 220, 220, 1426, 88, 15853, 331, 198, 220, 220, 220, 611, 1426, 87, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 87, 796, 657, 198, 220, 220, 220, 611, 1426, 87, 1875, 2124, 9806, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 87, 796, 2124, 9806, 198, 220, 220, 220, 611, 1426, 88, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 88, 796, 657, 198, 220, 220, 220, 611, 1426, 88, 1875, 331, 9806, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 88, 796, 331, 9806, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7, 1930, 87, 11, 1426, 88, 8, 198, 220, 220, 220, 2124, 11, 331, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008 ]
1.930233
215
## # Copyright (c) 2010-2017 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Tests for L{twext.enterprise.adbapi2}. """ import gc from zope.interface.verify import verifyObject from twisted.python.failure import Failure from twisted.trial.unittest import TestCase from twisted.internet.defer import Deferred, fail, succeed, inlineCallbacks from twisted.test.proto_helpers import StringTransport from twext.enterprise.ienterprise import ConnectionError from twext.enterprise.ienterprise import AlreadyFinishedError from twext.enterprise.adbapi2 import ConnectionPoolClient from twext.enterprise.adbapi2 import ConnectionPoolConnection from twext.enterprise.ienterprise import IAsyncTransaction from twext.enterprise.ienterprise import ICommandBlock from twext.enterprise.adbapi2 import FailsafeException from twext.enterprise.adbapi2 import ConnectionPool from twext.enterprise.fixtures import ConnectionPoolHelper from twext.enterprise.fixtures import resultOf from twext.enterprise.fixtures import ClockWithThreads from twext.enterprise.fixtures import FakeConnectionError from twext.enterprise.fixtures import RollbackFail from twext.enterprise.fixtures import CommitFail from twext.enterprise.adbapi2 import Commit from twext.enterprise.adbapi2 import _HookableOperation class TrashCollector(object): """ Test helper for monitoring gc.garbage. """ def checkTrash(self): """ Ensure that the test has added no additional garbage. """ gc.collect() newGarbage = gc.garbage[self.garbageStart:] if newGarbage: # Don't clean up twice. self.start() self.testCase.fail("New garbage: " + repr(newGarbage)) class AssertResultHelper(object): """ Mixin for asserting about synchronous Deferred results. """ def assertResultList(self, resultList, expected): """ Assert that a list created with L{resultOf} contais the expected result. @param resultList: The return value of L{resultOf}. @type resultList: L{list} @param expected: The expected value that should be present in the list; a L{Failure} if an exception is expected to be raised. """ if not resultList: self.fail("No result; Deferred didn't fire yet.") else: if isinstance(resultList[0], Failure): if isinstance(expected, Failure): resultList[0].trap(expected.type) else: resultList[0].raiseException() else: self.assertEqual(resultList, [expected]) class ConnectionPoolBootTests(TestCase): """ Tests for the start-up phase of L{ConnectionPool}. """ def test_threadCount(self): """ The reactor associated with a L{ConnectionPool} will have its maximum thread count adjusted when L{ConnectionPool.startService} is called, to accomodate for L{ConnectionPool.maxConnections} additional threads. Stopping the service should restore it to its original value, so that a repeatedly re-started L{ConnectionPool} will not cause the thread ceiling to grow without bound. """ defaultMax = 27 connsMax = 45 combinedMax = defaultMax + connsMax pool = ConnectionPool(None, maxConnections=connsMax) pool.reactor = ClockWithThreads() threadpool = pool.reactor.getThreadPool() pool.reactor.suggestThreadPoolSize(defaultMax) self.assertEquals(threadpool.max, defaultMax) pool.startService() self.assertEquals(threadpool.max, combinedMax) justChecking = [] pool.stopService().addCallback(justChecking.append) # No SQL run, so no threads started, so this deferred should fire # immediately. If not, we're in big trouble, so sanity check. self.assertEquals(justChecking, [None]) self.assertEquals(threadpool.max, defaultMax) def test_isRunning(self): """ L{ConnectionPool.startService} should set its C{running} attribute to true. """ pool = ConnectionPool(None) pool.reactor = ClockWithThreads() self.assertEquals(pool.running, False) pool.startService() self.assertEquals(pool.running, True) class ConnectionPoolNameTests(TestCase): """ Tests for L{ConnectionPool}'s C{name} attribute. """ def test_default(self): """ If no value is given for the C{name} parameter to L{ConnectionPool}'s initializer then L{ConnectionPool.name} is C{None}. """ pool = ConnectionPool(None) self.assertIs(None, pool.name) def test_specified(self): """ If a value is given for the C{name} parameter to L{ConnectionPool}'s initializer then it is used as the value for L{ConnectionPool.name}. """ name = "some test pool" pool = ConnectionPool(None, name=name) self.assertEqual(name, pool.name) class ConnectionPoolTests(ConnectionPoolHelper, TestCase, AssertResultHelper): """ Tests for L{ConnectionPool}. """ def test_tooManyConnections(self): """ When the number of outstanding busy transactions exceeds the number of slots specified by L{ConnectionPool.maxConnections}, L{ConnectionPool.connection} will return a pooled transaction that is not backed by any real database connection; this object will queue its SQL statements until an existing connection becomes available. """ a = self.createTransaction() alphaResult = self.resultOf(a.execSQL("alpha")) [[_ignore_counter, _ignore_echo]] = alphaResult[0] b = self.createTransaction() # "b" should have opened a connection. self.assertEquals(len(self.factory.connections), 2) betaResult = self.resultOf(b.execSQL("beta")) [[bcounter, _ignore_becho]] = betaResult[0] # both "a" and "b" are holding open a connection now; let's try to open # a third one. (The ordering will be deterministic even if this fails, # because those threads are already busy.) c = self.createTransaction() gammaResult = self.resultOf(c.execSQL("gamma")) # Did "c" open a connection? Let's hope not... self.assertEquals(len(self.factory.connections), 2) # SQL shouldn't be executed too soon... self.assertEquals(gammaResult, []) commitResult = self.resultOf(b.commit()) # Now that "b" has committed, "c" should be able to complete. [[ccounter, _ignore_cecho]] = gammaResult[0] # The connection for "a" ought to still be busy, so let's make sure # we're using the one for "c". self.assertEquals(ccounter, bcounter) # Sanity check: the commit should have succeeded! self.assertEquals(commitResult, [None]) def test_stopService(self): """ L{ConnectionPool.stopService} stops all the associated L{ThreadHolder}s and thereby frees up the resources it is holding. """ a = self.createTransaction() alphaResult = self.resultOf(a.execSQL("alpha")) [[[_ignore_counter, _ignore_echo]]] = alphaResult self.assertEquals(len(self.factory.connections), 1) self.assertEquals(len(self.holders), 1) [holder] = self.holders self.assertEquals(holder.started, True) self.assertEquals(holder.stopped, False) self.pool.stopService() self.assertEquals(self.pool.running, False) self.assertEquals(len(self.holders), 1) self.assertEquals(holder.started, True) self.assertEquals(holder.stopped, True) # Closing fake connections removes them from the list. self.assertEquals(len(self.factory.connections), 1) self.assertEquals(self.factory.connections[0].closed, True) def test_retryAfterConnectError(self): """ When the C{connectionFactory} passed to L{ConnectionPool} raises an exception, the L{ConnectionPool} will log the exception and delay execution of a new connection's SQL methods until an attempt succeeds. """ self.factory.willFail() self.factory.willFail() self.factory.willConnect() c = self.createTransaction() checkOneFailure() d = c.execSQL("alpha") happened = [] d.addBoth(happened.append) self.assertEquals(happened, []) self.clock.advance(self.pool.RETRY_TIMEOUT + 0.01) checkOneFailure() self.assertEquals(happened, []) self.clock.advance(self.pool.RETRY_TIMEOUT + 0.01) self.flushHolders() self.assertEquals(happened, [[[1, "alpha"]]]) def test_shutdownDuringRetry(self): """ If a L{ConnectionPool} is attempting to shut down while it's in the process of re-trying a connection attempt that received an error, the connection attempt should be cancelled and the shutdown should complete as normal. """ self.factory.defaultFail() self.createTransaction() errors = self.flushLoggedErrors(FakeConnectionError) self.assertEquals(len(errors), 1) stopd = [] self.pool.stopService().addBoth(stopd.append) self.assertResultList(stopd, None) self.assertEquals(self.clock.calls, []) [holder] = self.holders self.assertEquals(holder.started, True) self.assertEquals(holder.stopped, True) def test_shutdownDuringAttemptSuccess(self): """ If L{ConnectionPool.stopService} is called while a connection attempt is outstanding, the resulting L{Deferred} won't be fired until the connection attempt has finished; in this case, succeeded. """ self.pauseHolders() self.createTransaction() stopd = [] self.pool.stopService().addBoth(stopd.append) self.assertEquals(stopd, []) self.flushHolders() self.assertResultList(stopd, None) [holder] = self.holders self.assertEquals(holder.started, True) self.assertEquals(holder.stopped, True) def test_shutdownDuringAttemptFailed(self): """ If L{ConnectionPool.stopService} is called while a connection attempt is outstanding, the resulting L{Deferred} won't be fired until the connection attempt has finished; in this case, failed. """ self.factory.defaultFail() self.pauseHolders() self.createTransaction() stopd = [] self.pool.stopService().addBoth(stopd.append) self.assertEquals(stopd, []) self.flushHolders() errors = self.flushLoggedErrors(FakeConnectionError) self.assertEquals(len(errors), 1) self.assertResultList(stopd, None) [holder] = self.holders self.assertEquals(holder.started, True) self.assertEquals(holder.stopped, True) def test_stopServicePseudoTxn(self): """ When L{ConnectionPool.stopService} is called with a pending L{_ConnectingPseudoTxn} active, the DB connection being created is closed. """ self.pauseHolders() self.createTransaction() stopResult = self.resultOf(self.pool.stopService()) self.assertEquals(stopResult, []) self.flushHolders() [holder] = self.holders self.assertEquals(holder.started, True) self.assertEquals(holder.stopped, True) self.assertEquals(len(self.factory.connections), 1) self.assertEquals(self.factory.connections[0].closed, True) def test_stopServiceMidAbort(self): """ When L{ConnectionPool.stopService} is called with deferreds from C{abort} still outstanding, it will wait for the currently-aborting transaction to fully abort before firing the L{Deferred} returned from C{stopService}. """ # TODO: commit() too? self.pauseHolders() c = self.createTransaction() abortResult = self.resultOf(c.abort()) # Should abort instantly, as it hasn't managed to unspool anything yet. # FIXME: kill all Deferreds associated with this thing, make sure that # any outstanding query callback chains get nuked. self.assertEquals(abortResult, [None]) stopResult = self.resultOf(self.pool.stopService()) self.assertEquals(stopResult, []) self.flushHolders() # self.assertEquals(abortResult, [None]) self.assertResultList(stopResult, None) def test_stopServiceWithSpooled(self): """ When L{ConnectionPool.stopService} is called when spooled transactions are outstanding, any pending L{Deferreds} returned by those transactions will be failed with L{ConnectionError}. """ # Use up the free slots so we have to spool. hold = [] hold.append(self.createTransaction()) hold.append(self.createTransaction()) c = self.createTransaction() se = self.resultOf(c.execSQL("alpha")) ce = self.resultOf(c.commit()) self.assertEquals(se, []) self.assertEquals(ce, []) self.resultOf(self.pool.stopService()) self.assertEquals(se[0].type, self.translateError(ConnectionError)) self.assertEquals(ce[0].type, self.translateError(ConnectionError)) def test_repoolSpooled(self): """ Regression test for a somewhat tricky-to-explain bug: when a spooled transaction which has already had commit() called on it before it's received a real connection to start executing on, it will not leave behind any detritus that prevents stopService from working. """ self.pauseHolders() c = self.createTransaction() c2 = self.createTransaction() c3 = self.createTransaction() c.commit() c2.commit() c3.commit() self.flushHolders() self.assertEquals(len(self.factory.connections), 2) stopResult = self.resultOf(self.pool.stopService()) self.assertEquals(stopResult, [None]) self.assertEquals(len(self.factory.connections), 2) self.assertEquals(self.factory.connections[0].closed, True) self.assertEquals(self.factory.connections[1].closed, True) def test_connectAfterStop(self): """ Calls to connection() after stopService() result in transactions which immediately fail all operations. """ stopResults = self.resultOf(self.pool.stopService()) self.assertEquals(stopResults, [None]) self.pauseHolders() postClose = self.createTransaction() queryResult = self.resultOf(postClose.execSQL("hello")) self.assertEquals(len(queryResult), 1) self.assertEquals(queryResult[0].type, self.translateError(ConnectionError)) def test_connectAfterStartedStopping(self): """ Calls to connection() after stopService() has been called but before it has completed will result in transactions which immediately fail all operations. """ self.pauseHolders() preClose = self.createTransaction() preCloseResult = self.resultOf(preClose.execSQL("statement")) stopResult = self.resultOf(self.pool.stopService()) postClose = self.createTransaction() queryResult = self.resultOf(postClose.execSQL("hello")) self.assertEquals(stopResult, []) self.assertEquals(len(queryResult), 1) self.assertEquals( queryResult[0].type, self.translateError(ConnectionError) ) self.assertEquals(len(preCloseResult), 1) self.assertEquals( preCloseResult[0].type, self.translateError(ConnectionError) ) def test_abortFailsDuringStopService(self): """ L{IAsyncTransaction.abort} might fail, most likely because the underlying database connection has already been disconnected. If this happens, shutdown should continue. """ txns = [] txns.append(self.createTransaction()) txns.append(self.createTransaction()) for txn in txns: # Make sure rollback will actually be executed. results = self.resultOf(txn.execSQL("maybe change something!")) [[[_ignore_counter, echo]]] = results self.assertEquals("maybe change something!", echo) # Fail one (and only one) call to rollback(). self.factory.rollbackFail = True stopResult = self.resultOf(self.pool.stopService()) self.assertEquals(stopResult, [None]) self.assertEquals(len(self.flushLoggedErrors(RollbackFail)), 1) self.assertEquals(self.factory.connections[0].closed, True) self.assertEquals(self.factory.connections[1].closed, True) def test_partialTxnFailsDuringStopService(self): """ Using the logic in L{ConnectionPool.stopService}, make sure that an L{_ConnectedTxn} cannot continue to process SQL after L{_ConnectedTxn.abort} is called and before L{_ConnectedTxn.reset} is called. """ txn = self.createTransaction() if hasattr(txn, "_baseTxn"): # Send initial statement txn.execSQL("maybe change something!") # Make it look like the service is stopping txn._baseTxn._connection.close() txn._baseTxn.terminate() # Try to send more SQL - must fail self.failUnlessRaises(RuntimeError, txn.execSQL, "maybe change something else!") def test_abortRecycledTransaction(self): """ L{ConnectionPool.stopService} will shut down if a recycled transaction is still pending. """ recycled = self.createTransaction() self.resultOf(recycled.commit()) remember = [] remember.append(self.createTransaction()) self.assertEquals(self.resultOf(self.pool.stopService()), [None]) def test_abortSpooled(self): """ Aborting a still-spooled transaction (one which has no statements being executed) will result in all of its Deferreds immediately failing and none of the queued statements being executed. """ active = [] # Use up the available connections ... for _ignore in xrange(self.pool.maxConnections): active.append(self.createTransaction()) # ... so that this one has to be spooled. spooled = self.createTransaction() result = self.resultOf(spooled.execSQL("alpha")) # sanity check, it would be bad if this actually executed. self.assertEqual(result, []) self.resultOf(spooled.abort()) self.assertEqual(result[0].type, self.translateError(ConnectionError)) def test_waitForAlreadyAbortedTransaction(self): """ L{ConnectionPool.stopService} will wait for all transactions to shut down before exiting, including those which have already been stopped. """ it = self.createTransaction() self.pauseHolders() abortResult = self.resultOf(it.abort()) # steal it from the queue so we can do it out of order d, _ignore_work = self.holders[0]._q.get() # that should be the only work unit so don't continue if something else # got in there self.assertEquals(list(self.holders[0]._q.queue), []) self.assertEquals(len(self.holders), 1) self.flushHolders() stopResult = self.resultOf(self.pool.stopService()) # Sanity check that we haven't actually stopped it yet self.assertEquals(abortResult, []) # We haven't fired it yet, so the service had better not have # stopped... self.assertEquals(stopResult, []) d.callback(None) self.flushHolders() self.assertEquals(abortResult, [None]) self.assertEquals(stopResult, [None]) def test_garbageCollectedTransactionAborts(self): """ When an L{IAsyncTransaction} is garbage collected, it ought to abort itself. """ t = self.createTransaction() self.resultOf(t.execSQL("echo", [])) conns = self.factory.connections self.assertEquals(len(conns), 1) self.assertEquals(conns[0]._rollbackCount, 0) del t gc.collect() self.flushHolders() self.assertEquals(len(conns), 1) self.assertEquals(conns[0]._rollbackCount, 1) self.assertEquals(conns[0]._commitCount, 0) def circularReferenceTest(self, finish, hook): """ Collecting a completed (committed or aborted) L{IAsyncTransaction} should not leak any circular references. """ tc = TrashCollector(self) commitExecuted = [] self.failIf(commitExecuted, "Commit hook executed.") carefullyManagedScope() tc.checkTrash() def test_noGarbageOnCommit(self): """ Committing a transaction does not cause gc garbage. """ self.circularReferenceTest( lambda txn: txn.commit(), lambda txn, hook: txn.preCommit(hook) ) def test_noGarbageOnCommitWithAbortHook(self): """ Committing a transaction does not cause gc garbage. """ self.circularReferenceTest( lambda txn: txn.commit(), lambda txn, hook: txn.postAbort(hook) ) def test_noGarbageOnAbort(self): """ Aborting a transaction does not cause gc garbage. """ self.circularReferenceTest( lambda txn: txn.abort(), lambda txn, hook: txn.preCommit(hook) ) def test_noGarbageOnAbortWithPostCommitHook(self): """ Aborting a transaction does not cause gc garbage. """ self.circularReferenceTest( lambda txn: txn.abort(), lambda txn, hook: txn.postCommit(hook) ) def test_tooManyConnectionsWhileOthersFinish(self): """ L{ConnectionPool.connection} will not spawn more than the maximum connections if there are finishing transactions outstanding. """ a = self.createTransaction() b = self.createTransaction() self.pauseHolders() a.abort() b.abort() # Remove the holders for the existing connections, so that the "extra" # connection() call wins the race and gets executed first. oldholders = list(self.holders) self.holders[:] = [] self.createTransaction() self.flushHolders() self.assertEquals(len(self.factory.connections), 2) self.holders = oldholders self.flushHolders() def setParamstyle(self, paramstyle): """ Change the paramstyle of the transaction under test. """ self.pool.dbtype = self.pool.dbtype.copyreplace(paramstyle=paramstyle) def test_propagateParamstyle(self): """ Each different type of L{ISQLExecutor} relays the C{paramstyle} attribute from the L{ConnectionPool}. """ TEST_PARAMSTYLE = "justtesting" self.setParamstyle(TEST_PARAMSTYLE) normaltxn = self.createTransaction() self.assertEquals(normaltxn.dbtype.paramstyle, TEST_PARAMSTYLE) self.assertEquals(normaltxn.commandBlock().dbtype.paramstyle, TEST_PARAMSTYLE) self.pauseHolders() extra = [] extra.append(self.createTransaction()) waitingtxn = self.createTransaction() self.assertEquals(waitingtxn.dbtype.paramstyle, TEST_PARAMSTYLE) self.flushHolders() self.pool.stopService() notxn = self.createTransaction() self.assertEquals(notxn.dbtype.paramstyle, TEST_PARAMSTYLE) def setDialect(self, dialect): """ Change the dialect of the transaction under test. """ self.pool.dbtype = self.pool.dbtype.copyreplace(dialect=dialect) def test_propagateDialect(self): """ Each different type of L{ISQLExecutor} relays the C{dialect} attribute from the L{ConnectionPool}. """ TEST_DIALECT = "otherdialect" self.setDialect(TEST_DIALECT) normaltxn = self.createTransaction() self.assertEquals(normaltxn.dbtype.dialect, TEST_DIALECT) self.assertEquals(normaltxn.commandBlock().dbtype.dialect, TEST_DIALECT) self.pauseHolders() extra = [] extra.append(self.createTransaction()) waitingtxn = self.createTransaction() self.assertEquals(waitingtxn.dbtype.dialect, TEST_DIALECT) self.flushHolders() self.pool.stopService() notxn = self.createTransaction() self.assertEquals(notxn.dbtype.dialect, TEST_DIALECT) def test_reConnectWhenFirstExecFails(self): """ Generally speaking, DB-API 2.0 adapters do not provide information about the cause of a failed C{execute} method; they definitely don't provide it in a way which can be identified as related to the syntax of the query, the state of the database itself, the state of the connection, etc. Therefore the best general heuristic for whether the connection to the database has been lost and needs to be re-established is to catch exceptions which are raised by the I{first} statement executed in a transaction. """ # Allow C{connect} to succeed. This should behave basically the same # whether connect() happened to succeed in some previous transaction # and it's recycling the underlying transaction, or connect() just # succeeded. Either way you just have a _SingleTxn wrapping a # _ConnectedTxn. txn = self.createTransaction() self.assertEquals(len(self.factory.connections), 1, "Sanity check failed.") class CustomExecuteFailed(Exception): """ Custom "execute-failed" exception. """ self.factory.connections[0].executeWillFail(CustomExecuteFailed) results = self.resultOf(txn.execSQL("hello, world!")) [[[_ignore_counter, echo]]] = results self.assertEquals("hello, world!", echo) # Two execution attempts should have been made, one on each connection. # The first failed with a RuntimeError, but that is deliberately # obscured, because then we tried again and it succeeded. self.assertEquals( len(self.factory.connections), 2, "No new connection opened." ) self.assertEquals(self.factory.connections[0].executions, 1) self.assertEquals(self.factory.connections[1].executions, 1) self.assertEquals(self.factory.connections[0].closed, True) self.assertEquals(self.factory.connections[1].closed, False) # Nevertheless, since there is currently no classification of "safe" # errors, we should probably log these messages when they occur. self.assertEquals(len(self.flushLoggedErrors(CustomExecuteFailed)), 1) def test_reConnectWhenFirstExecOnExistingConnectionFails( self, moreFailureSetup=lambda factory: None ): """ Another situation that might arise is that a connection will be successfully connected, executed and recycled into the connection pool; then, the database server will shut down and the connections will die, but we will be none the wiser until we try to use them. """ txn = self.createTransaction() moreFailureSetup(self.factory) self.assertEquals( len(self.factory.connections), 1, "Sanity check failed." ) results = self.resultOf(txn.execSQL("hello, world!")) txn.commit() [[[_ignore_counter, echo]]] = results self.assertEquals("hello, world!", echo) txn2 = self.createTransaction() self.assertEquals( len(self.factory.connections), 1, "Sanity check failed." ) class CustomExecFail(Exception): """ Custom C{execute()} failure. """ self.factory.connections[0].executeWillFail(CustomExecFail) results = self.resultOf(txn2.execSQL("second try!")) txn2.commit() [[[_ignore_counter, echo]]] = results self.assertEquals("second try!", echo) self.assertEquals(len(self.flushLoggedErrors(CustomExecFail)), 1) def test_closeExceptionDoesntHinderReconnection(self): """ In some database bindings, if the server closes the connection, C{close()} will fail. If C{close} fails, there's not much that could mean except that the connection is already closed, so similar to the condition described in L{test_reConnectWhenFirstExecOnExistingConnectionFails}, the failure should be logged, but transparent to application code. """ class BindingSpecificException(Exception): """ Exception that's a placeholder for something that a database binding might raise. """ t = self.test_reConnectWhenFirstExecOnExistingConnectionFails( alsoFailClose ) errors = self.flushLoggedErrors(BindingSpecificException) self.assertEquals(len(errors), 1) return t def test_preCommitSuccess(self): """ Callables passed to L{IAsyncTransaction.preCommit} will be invoked upon commit. """ txn = self.createTransaction() simple.done = False txn.preCommit(simple) self.assertEquals(simple.done, False) result = self.resultOf(txn.commit()) self.assertEquals(len(result), 1) self.assertEquals(simple.done, True) def test_deferPreCommit(self): """ If callables passed to L{IAsyncTransaction.preCommit} return L{Deferred}s, they will defer the actual commit operation until it has fired. """ txn = self.createTransaction() d = Deferred() wait.started = False wait.sqlResult = None txn.preCommit(wait) result = self.resultOf(txn.commit()) self.flushHolders() self.assertEquals(wait.started, True) self.assertEquals(wait.sqlResult, None) self.assertEquals(result, []) d.callback(None) # allow network I/O for pooled / networked implementation; there should # be the commit message now. self.flushHolders() self.assertEquals(len(result), 1) self.assertEquals(wait.sqlResult, [[1, "some test sql"]]) def test_failPreCommit(self): """ If callables passed to L{IAsyncTransaction.preCommit} raise an exception or return a Failure, subsequent callables will not be run, and the transaction will be aborted. """ test(failer, ZeroDivisionError) test(raiser, EOFError) def test_noOpCommitDoesntHinderReconnection(self): """ Until you've executed a query or performed a statement on an ADBAPI connection, the connection is semantically idle (between transactions). A .commit() or .rollback() followed immediately by a .commit() is therefore pointless, and can be ignored. Furthermore, actually executing the commit and propagating a possible connection-oriented error causes clients to see errors, when, if those clients had actually executed any statements, the connection would have been recycled and the statement transparently re-executed by the logic tested by L{test_reConnectWhenFirstExecFails}. """ txn = self.createTransaction() self.factory.commitFail = True self.factory.rollbackFail = True [x] = self.resultOf(txn.commit()) # No statements have been executed, so C{commit} will *not* be # executed. self.assertEquals(self.factory.commitFail, True) self.assertIdentical(x, None) self.assertEquals(len(self.pool._free), 1) self.assertEquals(self.pool._finishing, []) self.assertEquals(len(self.factory.connections), 1) self.assertEquals(self.factory.connections[0].closed, False) def test_reConnectWhenSecondExecFailsThenFirstExecFails(self): """ Other connection-oriented errors might raise exceptions if they occur in the middle of a transaction, but that should cause the error to be caught, the transaction to be aborted, and the (closed) connection to be recycled, where the next transaction that attempts to do anything with it will encounter the error immediately and discover it needs to be recycled. It would be better if this behavior were invisible, but that could only be accomplished with more precise database exceptions. We may come up with support in the future for more precisely identifying exceptions, but I{unknown} exceptions should continue to be treated in this manner, relaying the exception back to application code but attempting a re-connection on the next try. """ txn = self.createTransaction() [[[_ignore_counter, _ignore_echo]]] = self.resultOf(txn.execSQL("hello, world!", [])) self.factory.connections[0].executeWillFail(ZeroDivisionError) [f] = self.resultOf(txn.execSQL("divide by zero", [])) f.trap(self.translateError(ZeroDivisionError)) self.assertEquals(self.factory.connections[0].executions, 2) # Reconnection should work exactly as before. self.assertEquals(self.factory.connections[0].closed, False) # Application code has to roll back its transaction at this point, # since it failed (and we don't necessarily know why it failed: not # enough information). self.resultOf(txn.abort()) self.factory.connections[0].executions = 0 # re-set for next test self.assertEquals(len(self.factory.connections), 1) self.test_reConnectWhenFirstExecFails() def test_disconnectOnFailedRollback(self): """ When C{rollback} fails for any reason on a connection object, then we don't know what state it's in. Most likely, it's already been disconnected, so the connection should be closed and the transaction de-pooled instead of recycled. Also, a new connection will immediately be established to keep the pool size the same. """ txn = self.createTransaction() results = self.resultOf(txn.execSQL("maybe change something!")) [[[_ignore_counter, echo]]] = results self.assertEquals("maybe change something!", echo) self.factory.rollbackFail = True [x] = self.resultOf(txn.abort()) # Abort does not propagate the error on, the transaction merely gets # disposed of. self.assertIdentical(x, None) self.assertEquals(len(self.pool._free), 1) self.assertEquals(self.pool._finishing, []) self.assertEquals(len(self.factory.connections), 2) self.assertEquals(self.factory.connections[0].closed, True) self.assertEquals(self.factory.connections[1].closed, False) self.assertEquals(len(self.flushLoggedErrors(RollbackFail)), 1) def test_exceptionPropagatesFailedCommit(self): """ A failed C{rollback} is fine (the premature death of the connection without C{commit} means that the changes are surely gone), but a failed C{commit} has to be relayed to client code, since that actually means some changes didn't hit the database. """ txn = self.createTransaction() self.factory.commitFail = True results = self.resultOf(txn.execSQL("maybe change something!")) [[[_ignore_counter, echo]]] = results self.assertEquals("maybe change something!", echo) [x] = self.resultOf(txn.commit()) x.trap(self.translateError(CommitFail)) self.assertEquals(len(self.pool._free), 1) self.assertEquals(self.pool._finishing, []) self.assertEquals(len(self.factory.connections), 2) self.assertEquals(self.factory.connections[0].closed, True) self.assertEquals(self.factory.connections[1].closed, False) def test_commandBlock(self): """ L{IAsyncTransaction.commandBlock} returns an L{IAsyncTransaction} provider which ensures that a block of commands are executed together. """ txn = self.createTransaction() a = self.resultOf(txn.execSQL("a")) cb = txn.commandBlock() verifyObject(ICommandBlock, cb) b = self.resultOf(cb.execSQL("b")) d = self.resultOf(txn.execSQL("d")) c = self.resultOf(cb.execSQL("c")) cb.end() e = self.resultOf(txn.execSQL("e")) self.assertEquals( self.factory.connections[0].cursors[0].allExecutions, [("a", []), ("b", []), ("c", []), ("d", []), ("e", [])] ) self.assertEquals(len(a), 1) self.assertEquals(len(b), 1) self.assertEquals(len(c), 1) self.assertEquals(len(d), 1) self.assertEquals(len(e), 1) def test_commandBlockWithLatency(self): """ A block returned by L{IAsyncTransaction.commandBlock} won't start executing until all SQL statements scheduled before it have completed. """ self.pauseHolders() txn = self.createTransaction() a = self.resultOf(txn.execSQL("a")) b = self.resultOf(txn.execSQL("b")) cb = txn.commandBlock() c = self.resultOf(cb.execSQL("c")) d = self.resultOf(cb.execSQL("d")) e = self.resultOf(txn.execSQL("e")) cb.end() self.flushHolders() self.assertEquals( self.factory.connections[0].cursors[0].allExecutions, [("a", []), ("b", []), ("c", []), ("d", []), ("e", [])] ) self.assertEquals(len(a), 1) self.assertEquals(len(b), 1) self.assertEquals(len(c), 1) self.assertEquals(len(d), 1) self.assertEquals(len(e), 1) def test_twoCommandBlocks(self, flush=lambda: None): """ When execution of one command block is complete, it will proceed to the next queued block, then to regular SQL executed on the transaction. """ txn = self.createTransaction() cb1 = txn.commandBlock() cb2 = txn.commandBlock() txn.execSQL("e") cb1.execSQL("a") cb2.execSQL("c") cb1.execSQL("b") cb2.execSQL("d") cb2.end() cb1.end() flush() self.flushHolders() self.assertEquals( self.factory.connections[0].cursors[0].allExecutions, [("a", []), ("b", []), ("c", []), ("d", []), ("e", [])] ) def test_twoCommandBlocksLatently(self): """ Same as L{test_twoCommandBlocks}, but with slower callbacks. """ self.pauseHolders() self.test_twoCommandBlocks(self.flushHolders) def test_commandBlockEndTwice(self): """ L{CommandBlock.end} will raise L{AlreadyFinishedError} when called more than once. """ txn = self.createTransaction() block = txn.commandBlock() block.end() self.assertRaises(AlreadyFinishedError, block.end) def test_commandBlockDelaysCommit(self): """ Some command blocks need to run asynchronously, without the overall transaction-managing code knowing how far they've progressed. Therefore when you call {IAsyncTransaction.commit}(), it should not actually take effect if there are any pending command blocks. """ txn = self.createTransaction() block = txn.commandBlock() commitResult = self.resultOf(txn.commit()) self.resultOf(block.execSQL("in block")) self.assertEquals(commitResult, []) self.assertEquals( self.factory.connections[0].cursors[0].allExecutions, [("in block", [])] ) block.end() self.flushHolders() self.assertEquals(commitResult, [None]) def test_commandBlockDoesntDelayAbort(self): """ A L{CommandBlock} can't possibly have anything interesting to say about a transaction that gets rolled back, so C{abort} applies immediately; all outstanding C{execSQL}s will fail immediately, on both command blocks and on the transaction itself. """ txn = self.createTransaction() block = txn.commandBlock() block2 = txn.commandBlock() abortResult = self.resultOf(txn.abort()) self.assertEquals(abortResult, [None]) self.assertRaises(AlreadyFinishedError, block2.execSQL, "bar") self.assertRaises(AlreadyFinishedError, block.execSQL, "foo") self.assertRaises(AlreadyFinishedError, txn.execSQL, "baz") self.assertEquals( self.factory.connections[0].cursors[0].allExecutions, [] ) # end() should _not_ raise an exception, because this is the sort of # thing that might be around a try/finally or try/except; it's just # putting the commandBlock itself into a state consistent with the # transaction. block.end() block2.end() def test_endedBlockDoesntExecuteMoreSQL(self): """ Attempting to execute SQL on a L{CommandBlock} which has had C{end} called on it will result in an L{AlreadyFinishedError}. """ txn = self.createTransaction() block = txn.commandBlock() block.end() self.assertRaises(AlreadyFinishedError, block.execSQL, "hello") self.assertEquals( self.factory.connections[0].cursors[0].allExecutions, [] ) def test_commandBlockAfterCommitRaises(self): """ Once an L{IAsyncTransaction} has been committed, L{commandBlock} raises an exception. """ txn = self.createTransaction() txn.commit() self.assertRaises(AlreadyFinishedError, txn.commandBlock) def test_commandBlockAfterAbortRaises(self): """ Once an L{IAsyncTransaction} has been committed, L{commandBlock} raises an exception. """ txn = self.createTransaction() self.resultOf(txn.abort()) self.assertRaises(AlreadyFinishedError, txn.commandBlock) def test_raiseOnZeroRowCount(self): """ L{IAsyncTransaction.execSQL} will return a L{Deferred} failing with the exception passed as its raiseOnZeroRowCount argument if the underlying query returns no rows. """ self.factory.hasResults = False txn = self.createTransaction() f = self.resultOf( txn.execSQL("hello", raiseOnZeroRowCount=ZeroDivisionError) )[0] self.assertRaises(ZeroDivisionError, f.raiseException) txn.commit() def test_raiseOnZeroRowCountWithUnreliableRowCount(self): """ As it turns out, some databases can't reliably tell you how many rows they're going to fetch via the C{rowcount} attribute before the rows have actually been fetched, so the C{raiseOnZeroRowCount} will I{not} raise an exception if C{rowcount} is zero but C{description} and C{fetchall} indicates the presence of some rows. """ self.factory.hasResults = True self.factory.shouldUpdateRowcount = False txn = self.createTransaction() r = self.resultOf( txn.execSQL("some-rows", raiseOnZeroRowCount=RuntimeError) ) [[[_ignore_counter, echo]]] = r self.assertEquals(echo, "some-rows") class IOPump(object): """ Connect a client and a server. @ivar client: a client protocol @ivar server: a server protocol """ def moveData(self, (outTransport, inProtocol)): """ Move data from a L{StringTransport} to an L{IProtocol}. @return: C{True} if any data was moved, C{False} if no data was moved. """ data = outTransport.io.getvalue() outTransport.io.seek(0) outTransport.io.truncate() if data: inProtocol.dataReceived(data) return True else: return False def pump(self): """ Deliver all input from the client to the server, then from the server to the client. """ a = self.moveData(self.c2s) b = self.moveData(self.s2c) return a or b def flush(self, maxTurns=100): """ Continue pumping until no more data is flowing. """ turns = 0 while self.pump(): turns += 1 if turns > maxTurns: raise RuntimeError("Ran too long!") class NetworkedPoolHelper(ConnectionPoolHelper): """ An extension of L{ConnectionPoolHelper} that can set up a L{ConnectionPoolClient} and L{ConnectionPoolConnection} attached to each other. """ def setUp(self): """ Do the same setup from L{ConnectionPoolBase}, but also establish a loopback connection between a L{ConnectionPoolConnection} and a L{ConnectionPoolClient}. """ super(NetworkedPoolHelper, self).setUp() self.pump = IOPump( ConnectionPoolClient( dbtype=self.dbtype, ), ConnectionPoolConnection(self.pool) ) def flushHolders(self): """ In addition to flushing the L{ThreadHolder} stubs, also flush any pending network I/O. """ self.pump.flush() super(NetworkedPoolHelper, self).flushHolders() self.pump.flush() def translateError(self, err): """ All errors raised locally will unfortunately be translated into UnknownRemoteError, since AMP requires specific enumeration of all of them. Flush the locally logged error of the given type and return L{UnknownRemoteError}. """ if err in Commit.errors: return err self.flushLoggedErrors(err) return FailsafeException class NetworkedConnectionPoolTests(NetworkedPoolHelper, ConnectionPoolTests): """ Tests for L{ConnectionPoolConnection} and L{ConnectionPoolClient} interacting with each other. """ def setParamstyle(self, paramstyle): """ Change the paramstyle on both the pool and the client. """ super(NetworkedConnectionPoolTests, self).setParamstyle(paramstyle) self.pump.client.dbtype = self.pump.client.dbtype.copyreplace(paramstyle=paramstyle) def setDialect(self, dialect): """ Change the dialect on both the pool and the client. """ super(NetworkedConnectionPoolTests, self).setDialect(dialect) self.pump.client.dbtype = self.pump.client.dbtype.copyreplace(dialect=dialect) def test_newTransaction(self): """ L{ConnectionPoolClient.newTransaction} returns a provider of L{IAsyncTransaction}, and creates a new transaction on the server side. """ txn = self.pump.client.newTransaction() verifyObject(IAsyncTransaction, txn) self.pump.flush() self.assertEquals(len(self.factory.connections), 1) class HookableOperationTests(TestCase): """ Tests for L{_HookableOperation}. """ @inlineCallbacks def test_clearPreventsSubsequentAddHook(self): """ After clear() or runHooks() are called, subsequent calls to addHook() are NO-OPs. """ hookOp = _HookableOperation() hookOp.addHook(hook) self.assertEquals(len(hookOp._hooks), 1) hookOp.clear() self.assertEquals(hookOp._hooks, None) hookOp = _HookableOperation() hookOp.addHook(hook) yield hookOp.runHooks() self.assertEquals(hookOp._hooks, None) hookOp.addHook(hook) self.assertEquals(hookOp._hooks, None)
[ 2235, 198, 2, 15069, 357, 66, 8, 3050, 12, 5539, 4196, 3457, 13, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2235, 198, 198, 37811, 198, 51, 3558, 329, 406, 90, 83, 732, 742, 13, 9255, 7919, 13, 324, 65, 15042, 17, 27422, 198, 37811, 198, 198, 11748, 308, 66, 198, 198, 6738, 1976, 3008, 13, 39994, 13, 332, 1958, 1330, 11767, 10267, 198, 198, 6738, 19074, 13, 29412, 13, 32165, 495, 1330, 25743, 198, 198, 6738, 19074, 13, 45994, 13, 403, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 19074, 13, 37675, 13, 4299, 263, 1330, 2896, 17436, 11, 2038, 11, 6758, 11, 26098, 14134, 10146, 198, 198, 6738, 19074, 13, 9288, 13, 1676, 1462, 62, 16794, 364, 1330, 10903, 8291, 634, 198, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 1153, 263, 7919, 1330, 26923, 12331, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 1153, 263, 7919, 1330, 27511, 18467, 1348, 12331, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 324, 65, 15042, 17, 1330, 26923, 27201, 11792, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 324, 65, 15042, 17, 1330, 26923, 27201, 32048, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 1153, 263, 7919, 1330, 314, 42367, 48720, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 1153, 263, 7919, 1330, 314, 21575, 12235, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 324, 65, 15042, 17, 1330, 376, 1768, 8635, 16922, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 324, 65, 15042, 17, 1330, 26923, 27201, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 69, 25506, 1330, 26923, 27201, 47429, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 69, 25506, 1330, 1255, 5189, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 69, 25506, 1330, 21328, 3152, 16818, 82, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 69, 25506, 1330, 33482, 32048, 12331, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 69, 25506, 1330, 8299, 1891, 39044, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 69, 25506, 1330, 35910, 39044, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 324, 65, 15042, 17, 1330, 35910, 198, 6738, 665, 2302, 13, 9255, 7919, 13, 324, 65, 15042, 17, 1330, 4808, 39, 566, 540, 32180, 628, 198, 4871, 48161, 31337, 273, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 31904, 329, 9904, 308, 66, 13, 4563, 13866, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2198, 2898, 1077, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48987, 326, 262, 1332, 468, 2087, 645, 3224, 15413, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 308, 66, 13, 33327, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 27676, 13866, 796, 308, 66, 13, 4563, 13866, 58, 944, 13, 4563, 13866, 10434, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 611, 649, 27676, 13866, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2094, 470, 3424, 510, 5403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9288, 20448, 13, 32165, 7203, 3791, 15413, 25, 366, 1343, 41575, 7, 3605, 27676, 13866, 4008, 628, 198, 4871, 2195, 861, 23004, 47429, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15561, 259, 329, 33183, 546, 18305, 516, 2896, 17436, 2482, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 6818, 23004, 8053, 7, 944, 11, 1255, 8053, 11, 2938, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2195, 861, 326, 257, 1351, 2727, 351, 406, 90, 20274, 5189, 92, 542, 15152, 262, 2938, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 1255, 8053, 25, 383, 1441, 1988, 286, 406, 90, 20274, 5189, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 4906, 1255, 8053, 25, 406, 90, 4868, 92, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 17143, 2938, 25, 383, 2938, 1988, 326, 815, 307, 1944, 287, 262, 1351, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 406, 90, 50015, 92, 611, 281, 6631, 318, 2938, 284, 307, 4376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1255, 8053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 7203, 2949, 1255, 26, 2896, 17436, 1422, 470, 2046, 1865, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 20274, 8053, 58, 15, 4357, 25743, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 40319, 11, 25743, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 8053, 58, 15, 4083, 46670, 7, 40319, 13, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 8053, 58, 15, 4083, 40225, 16922, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 20274, 8053, 11, 685, 40319, 12962, 628, 198, 4871, 26923, 27201, 36476, 51, 3558, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 262, 923, 12, 929, 7108, 286, 406, 90, 32048, 27201, 27422, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 16663, 12332, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 21905, 3917, 351, 257, 406, 90, 32048, 27201, 92, 481, 423, 663, 5415, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 954, 12328, 618, 406, 90, 32048, 27201, 13, 9688, 16177, 92, 318, 1444, 11, 284, 198, 220, 220, 220, 220, 220, 220, 220, 697, 296, 375, 378, 329, 406, 90, 32048, 27201, 13, 9806, 13313, 507, 92, 3224, 14390, 13, 628, 220, 220, 220, 220, 220, 220, 220, 22025, 2105, 262, 2139, 815, 11169, 340, 284, 663, 2656, 1988, 11, 523, 326, 257, 198, 220, 220, 220, 220, 220, 220, 220, 7830, 302, 12, 46981, 406, 90, 32048, 27201, 92, 481, 407, 2728, 262, 4704, 198, 220, 220, 220, 220, 220, 220, 220, 13387, 284, 1663, 1231, 5421, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 11518, 796, 2681, 198, 220, 220, 220, 220, 220, 220, 220, 369, 5907, 11518, 796, 4153, 198, 220, 220, 220, 220, 220, 220, 220, 5929, 11518, 796, 4277, 11518, 1343, 369, 5907, 11518, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 796, 26923, 27201, 7, 14202, 11, 3509, 13313, 507, 28, 1102, 5907, 11518, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 13, 260, 11218, 796, 21328, 3152, 16818, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 7742, 796, 5933, 13, 260, 11218, 13, 1136, 16818, 27201, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 13, 260, 11218, 13, 47811, 16818, 27201, 10699, 7, 12286, 11518, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 16663, 7742, 13, 9806, 11, 4277, 11518, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 13, 9688, 16177, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 16663, 7742, 13, 9806, 11, 5929, 11518, 8, 198, 220, 220, 220, 220, 220, 220, 220, 655, 9787, 278, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 13, 11338, 16177, 22446, 2860, 47258, 7, 3137, 9787, 278, 13, 33295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 16363, 1057, 11, 523, 645, 14390, 2067, 11, 523, 428, 28651, 815, 2046, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3393, 13, 220, 1002, 407, 11, 356, 821, 287, 1263, 5876, 11, 523, 34182, 2198, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 3137, 9787, 278, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 16663, 7742, 13, 9806, 11, 4277, 11518, 8, 628, 220, 220, 220, 825, 1332, 62, 271, 28768, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 13, 9688, 16177, 92, 815, 900, 663, 327, 90, 20270, 92, 11688, 284, 198, 220, 220, 220, 220, 220, 220, 220, 2081, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 796, 26923, 27201, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 13, 260, 11218, 796, 21328, 3152, 16818, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 7742, 13, 20270, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 13, 9688, 16177, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 7742, 13, 20270, 11, 6407, 8, 628, 198, 4871, 26923, 27201, 5376, 51, 3558, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 406, 90, 32048, 27201, 92, 6, 82, 327, 90, 3672, 92, 11688, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 12286, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 645, 1988, 318, 1813, 329, 262, 327, 90, 3672, 92, 11507, 284, 406, 90, 32048, 27201, 92, 6, 82, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 788, 406, 90, 32048, 27201, 13, 3672, 92, 318, 327, 90, 14202, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 796, 26923, 27201, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3792, 7, 14202, 11, 5933, 13, 3672, 8, 628, 220, 220, 220, 825, 1332, 62, 23599, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 257, 1988, 318, 1813, 329, 262, 327, 90, 3672, 92, 11507, 284, 406, 90, 32048, 27201, 92, 6, 82, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 7509, 788, 340, 318, 973, 355, 262, 1988, 329, 406, 90, 32048, 27201, 13, 3672, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 366, 11246, 1332, 5933, 1, 198, 220, 220, 220, 220, 220, 220, 220, 5933, 796, 26923, 27201, 7, 14202, 11, 1438, 28, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 5933, 13, 3672, 8, 628, 198, 4871, 26923, 27201, 51, 3558, 7, 32048, 27201, 47429, 11, 6208, 20448, 11, 2195, 861, 23004, 47429, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 406, 90, 32048, 27201, 27422, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 18820, 7085, 13313, 507, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 262, 1271, 286, 11660, 8179, 8945, 21695, 262, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 17314, 7368, 416, 406, 90, 32048, 27201, 13, 9806, 13313, 507, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 13, 38659, 92, 481, 1441, 257, 44762, 8611, 326, 318, 198, 220, 220, 220, 220, 220, 220, 220, 407, 9763, 416, 597, 1103, 6831, 4637, 26, 428, 2134, 481, 16834, 663, 198, 220, 220, 220, 220, 220, 220, 220, 16363, 6299, 1566, 281, 4683, 4637, 4329, 1695, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 2116, 13, 17953, 48720, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 17130, 23004, 796, 2116, 13, 20274, 5189, 7, 64, 13, 18558, 17861, 7203, 26591, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 62, 46430, 62, 24588, 11, 4808, 46430, 62, 30328, 11907, 796, 17130, 23004, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 65, 1, 815, 423, 4721, 257, 4637, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12159, 23004, 796, 2116, 13, 20274, 5189, 7, 65, 13, 18558, 17861, 7203, 31361, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 15630, 6828, 11, 4808, 46430, 62, 1350, 6679, 11907, 796, 12159, 23004, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1111, 366, 64, 1, 290, 366, 65, 1, 389, 4769, 1280, 257, 4637, 783, 26, 1309, 338, 1949, 284, 1280, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 2368, 530, 13, 220, 357, 464, 16216, 481, 307, 2206, 49228, 772, 611, 428, 10143, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 780, 883, 14390, 389, 1541, 8179, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 23004, 796, 2116, 13, 20274, 5189, 7, 66, 13, 18558, 17861, 7203, 28483, 2611, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7731, 366, 66, 1, 1280, 257, 4637, 30, 220, 3914, 338, 2911, 407, 986, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16363, 6584, 470, 307, 10945, 1165, 2582, 986, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 28483, 2611, 23004, 11, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 4589, 23004, 796, 2116, 13, 20274, 5189, 7, 65, 13, 41509, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 326, 366, 65, 1, 468, 5364, 11, 366, 66, 1, 815, 307, 1498, 284, 1844, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 535, 6828, 11, 4808, 46430, 62, 344, 6679, 11907, 796, 34236, 23004, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 4637, 329, 366, 64, 1, 10783, 284, 991, 307, 8179, 11, 523, 1309, 338, 787, 1654, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 821, 1262, 262, 530, 329, 366, 66, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 535, 6828, 11, 275, 24588, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2986, 414, 2198, 25, 262, 4589, 815, 423, 14131, 0, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 41509, 23004, 11, 685, 14202, 12962, 628, 220, 220, 220, 825, 1332, 62, 11338, 16177, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 9911, 477, 262, 3917, 406, 90, 16818, 39, 19892, 92, 82, 198, 220, 220, 220, 220, 220, 220, 220, 290, 12839, 2030, 274, 510, 262, 4133, 340, 318, 4769, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 23004, 796, 2116, 13, 20274, 5189, 7, 64, 13, 18558, 17861, 7203, 26591, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 4808, 46430, 62, 30328, 11907, 60, 796, 17130, 23004, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 10476, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 13829, 60, 796, 2116, 13, 10476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 301, 38333, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 11338, 16177, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 7742, 13, 20270, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 10476, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 301, 38333, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47055, 8390, 8787, 20694, 606, 422, 262, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 1186, 563, 3260, 13313, 12331, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 262, 327, 90, 38659, 22810, 92, 3804, 284, 406, 90, 32048, 27201, 92, 12073, 281, 198, 220, 220, 220, 220, 220, 220, 220, 6631, 11, 262, 406, 90, 32048, 27201, 92, 481, 2604, 262, 6631, 290, 5711, 198, 220, 220, 220, 220, 220, 220, 220, 9706, 286, 257, 649, 4637, 338, 16363, 5050, 1566, 281, 2230, 31137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 10594, 39044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 10594, 39044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 10594, 13313, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 17953, 48720, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2198, 3198, 50015, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 269, 13, 18558, 17861, 7203, 26591, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3022, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 288, 13, 2860, 10265, 7, 71, 1324, 2945, 13, 33295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 71, 1324, 2945, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15750, 13, 324, 19259, 7, 944, 13, 7742, 13, 2200, 40405, 62, 34694, 12425, 1343, 657, 13, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 3198, 50015, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 71, 1324, 2945, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15750, 13, 324, 19259, 7, 944, 13, 7742, 13, 2200, 40405, 62, 34694, 12425, 1343, 657, 13, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 71, 1324, 2945, 11, 16410, 58, 16, 11, 366, 26591, 8973, 11907, 8, 628, 220, 220, 220, 825, 1332, 62, 49625, 2902, 7191, 9781, 563, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 257, 406, 90, 32048, 27201, 92, 318, 9361, 284, 4423, 866, 981, 340, 338, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 286, 302, 12, 83, 14992, 257, 4637, 2230, 326, 2722, 281, 4049, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 2230, 815, 307, 16769, 290, 262, 18325, 815, 1844, 198, 220, 220, 220, 220, 220, 220, 220, 355, 3487, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 12286, 39044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8563, 796, 2116, 13, 25925, 11187, 2004, 9139, 5965, 7, 49233, 32048, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 48277, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 67, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 11338, 16177, 22446, 2860, 10265, 7, 11338, 67, 13, 33295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23004, 8053, 7, 11338, 67, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 15750, 13, 66, 5691, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 685, 13829, 60, 796, 2116, 13, 10476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 301, 38333, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 49625, 2902, 7191, 37177, 33244, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 318, 1444, 981, 257, 4637, 2230, 198, 220, 220, 220, 220, 220, 220, 220, 318, 11660, 11, 262, 7186, 406, 90, 7469, 17436, 92, 1839, 470, 307, 6294, 1566, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 2230, 468, 5201, 26, 287, 428, 1339, 11, 14131, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 67, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 11338, 16177, 22446, 2860, 10265, 7, 11338, 67, 13, 33295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 67, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23004, 8053, 7, 11338, 67, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 13829, 60, 796, 2116, 13, 10476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 301, 38333, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 49625, 2902, 7191, 37177, 37, 6255, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 318, 1444, 981, 257, 4637, 2230, 198, 220, 220, 220, 220, 220, 220, 220, 318, 11660, 11, 262, 7186, 406, 90, 7469, 17436, 92, 1839, 470, 307, 6294, 1566, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 2230, 468, 5201, 26, 287, 428, 1339, 11, 4054, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 12286, 39044, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 67, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 11338, 16177, 22446, 2860, 10265, 7, 11338, 67, 13, 33295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 67, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8563, 796, 2116, 13, 25925, 11187, 2004, 9139, 5965, 7, 49233, 32048, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 48277, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23004, 8053, 7, 11338, 67, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 13829, 60, 796, 2116, 13, 10476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 301, 38333, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 11338, 16177, 47, 325, 12003, 46047, 77, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 318, 1444, 351, 257, 13310, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 62, 13313, 278, 47, 325, 12003, 46047, 77, 92, 4075, 11, 262, 20137, 4637, 852, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 318, 4838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 23004, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 685, 13829, 60, 796, 2116, 13, 10476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 13829, 13, 301, 38333, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 11338, 16177, 22622, 4826, 419, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 318, 1444, 351, 28651, 82, 422, 198, 220, 220, 220, 220, 220, 220, 220, 327, 90, 397, 419, 92, 991, 11660, 11, 340, 481, 4043, 329, 262, 3058, 12, 397, 24707, 198, 220, 220, 220, 220, 220, 220, 220, 8611, 284, 3938, 15614, 878, 9645, 262, 406, 90, 7469, 17436, 92, 4504, 422, 198, 220, 220, 220, 220, 220, 220, 220, 327, 90, 11338, 16177, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 4589, 3419, 1165, 30, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 23004, 796, 2116, 13, 20274, 5189, 7, 66, 13, 397, 419, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10358, 15614, 11101, 11, 355, 340, 5818, 470, 5257, 284, 555, 2777, 970, 1997, 1865, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 1494, 477, 2896, 17436, 82, 3917, 351, 428, 1517, 11, 787, 1654, 326, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 597, 11660, 12405, 23838, 14659, 651, 299, 48809, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 397, 419, 23004, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 23004, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 30493, 23588, 874, 7, 397, 419, 23004, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23004, 8053, 7, 11338, 23004, 11, 6045, 8, 628, 220, 220, 220, 825, 1332, 62, 11338, 16177, 3152, 4561, 970, 276, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 318, 1444, 618, 599, 970, 276, 8945, 198, 220, 220, 220, 220, 220, 220, 220, 389, 11660, 11, 597, 13310, 406, 90, 7469, 17436, 82, 92, 4504, 416, 883, 198, 220, 220, 220, 220, 220, 220, 220, 8945, 481, 307, 4054, 351, 406, 90, 32048, 12331, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 510, 262, 1479, 17314, 523, 356, 423, 284, 599, 970, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1745, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1745, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1745, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 384, 796, 2116, 13, 20274, 5189, 7, 66, 13, 18558, 17861, 7203, 26591, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2906, 796, 2116, 13, 20274, 5189, 7, 66, 13, 41509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 325, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 344, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 325, 58, 15, 4083, 4906, 11, 2116, 13, 7645, 17660, 12331, 7, 32048, 12331, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 344, 58, 15, 4083, 4906, 11, 2116, 13, 7645, 17660, 12331, 7, 32048, 12331, 4008, 628, 220, 220, 220, 825, 1332, 62, 260, 7742, 4561, 970, 276, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 329, 257, 6454, 17198, 12, 1462, 12, 20676, 391, 5434, 25, 618, 257, 599, 970, 276, 198, 220, 220, 220, 220, 220, 220, 220, 8611, 543, 468, 1541, 550, 4589, 3419, 1444, 319, 340, 878, 340, 338, 198, 220, 220, 220, 220, 220, 220, 220, 2722, 257, 1103, 4637, 284, 923, 23710, 319, 11, 340, 481, 407, 2666, 198, 220, 220, 220, 220, 220, 220, 220, 2157, 597, 1062, 799, 385, 326, 15174, 2245, 16177, 422, 1762, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 18, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 18, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 23004, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 16, 4083, 20225, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 8443, 3260, 19485, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27592, 284, 4637, 3419, 706, 2245, 16177, 3419, 1255, 287, 8945, 543, 198, 220, 220, 220, 220, 220, 220, 220, 3393, 2038, 477, 4560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 25468, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 25468, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 26125, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 23004, 796, 2116, 13, 20274, 5189, 7, 7353, 26125, 13, 18558, 17861, 7203, 31373, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 22766, 23004, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 22766, 23004, 58, 15, 4083, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 17660, 12331, 7, 32048, 12331, 4008, 628, 220, 220, 220, 825, 1332, 62, 8443, 3260, 10434, 276, 1273, 33307, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27592, 284, 4637, 3419, 706, 2245, 16177, 3419, 468, 587, 1444, 475, 878, 340, 198, 220, 220, 220, 220, 220, 220, 220, 468, 5668, 481, 1255, 287, 8945, 543, 3393, 2038, 477, 198, 220, 220, 220, 220, 220, 220, 220, 4560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 662, 26125, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 662, 26125, 23004, 796, 2116, 13, 20274, 5189, 7, 3866, 26125, 13, 18558, 17861, 7203, 26090, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 23004, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 26125, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 23004, 796, 2116, 13, 20274, 5189, 7, 7353, 26125, 13, 18558, 17861, 7203, 31373, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 22766, 23004, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 23004, 58, 15, 4083, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 17660, 12331, 7, 32048, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 3866, 26125, 23004, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 26125, 23004, 58, 15, 4083, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 17660, 12331, 7, 32048, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 397, 419, 37, 1768, 7191, 19485, 16177, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 40, 42367, 48720, 13, 397, 419, 92, 1244, 2038, 11, 749, 1884, 780, 262, 198, 220, 220, 220, 220, 220, 220, 220, 10238, 6831, 4637, 468, 1541, 587, 28597, 13, 220, 1002, 428, 198, 220, 220, 220, 220, 220, 220, 220, 4325, 11, 18325, 815, 2555, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 5907, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 5907, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 5907, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 329, 27765, 77, 287, 27765, 5907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 1654, 4836, 1891, 481, 1682, 307, 10945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 25991, 1487, 1223, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7203, 25991, 1487, 1223, 40754, 9809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18448, 530, 357, 392, 691, 530, 8, 869, 284, 4836, 1891, 22446, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 2487, 1891, 39044, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 23004, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 25925, 11187, 2004, 9139, 5965, 7, 26869, 1891, 39044, 36911, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 16, 4083, 20225, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 47172, 46047, 77, 37, 1768, 7191, 19485, 16177, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8554, 262, 9156, 287, 406, 90, 32048, 27201, 13, 11338, 16177, 5512, 787, 1654, 326, 281, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 62, 13313, 276, 46047, 77, 92, 2314, 2555, 284, 1429, 16363, 706, 406, 90, 62, 13313, 276, 46047, 77, 13, 397, 419, 92, 198, 220, 220, 220, 220, 220, 220, 220, 318, 1444, 290, 878, 406, 90, 62, 13313, 276, 46047, 77, 13, 42503, 92, 318, 1444, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 17602, 77, 11, 45434, 8692, 46047, 77, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16290, 4238, 2643, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 18558, 17861, 7203, 25991, 1487, 1223, 2474, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 340, 804, 588, 262, 2139, 318, 12225, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13557, 8692, 46047, 77, 13557, 38659, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13557, 8692, 46047, 77, 13, 23705, 378, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9993, 284, 3758, 517, 16363, 532, 1276, 2038, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 28042, 21762, 2696, 7, 41006, 12331, 11, 27765, 77, 13, 18558, 17861, 11, 366, 25991, 1487, 1223, 2073, 2474, 8, 628, 220, 220, 220, 825, 1332, 62, 397, 419, 6690, 88, 20095, 48720, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 481, 4423, 866, 611, 257, 32099, 8611, 198, 220, 220, 220, 220, 220, 220, 220, 318, 991, 13310, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32099, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 260, 15539, 276, 13, 41509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3505, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3505, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 3419, 828, 685, 14202, 12962, 628, 220, 220, 220, 825, 1332, 62, 397, 419, 4561, 970, 276, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2275, 24707, 257, 991, 12, 2777, 970, 276, 8611, 357, 505, 543, 468, 645, 6299, 852, 198, 220, 220, 220, 220, 220, 220, 220, 10945, 8, 481, 1255, 287, 477, 286, 663, 2896, 17436, 82, 3393, 9894, 290, 198, 220, 220, 220, 220, 220, 220, 220, 4844, 286, 262, 8358, 1739, 6299, 852, 10945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4075, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 510, 262, 1695, 8787, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 46430, 287, 2124, 9521, 7, 944, 13, 7742, 13, 9806, 13313, 507, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4075, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2644, 523, 326, 428, 530, 468, 284, 307, 599, 970, 276, 13, 198, 220, 220, 220, 220, 220, 220, 220, 599, 970, 276, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 20274, 5189, 7, 2777, 970, 276, 13, 18558, 17861, 7203, 26591, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 34182, 2198, 11, 340, 561, 307, 2089, 611, 428, 1682, 10945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 20274, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 2777, 970, 276, 13, 397, 419, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 20274, 58, 15, 4083, 4906, 11, 2116, 13, 7645, 17660, 12331, 7, 32048, 12331, 4008, 628, 220, 220, 220, 825, 1332, 62, 17077, 1890, 37447, 4826, 9741, 48720, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 13, 11338, 16177, 92, 481, 4043, 329, 477, 8945, 284, 4423, 198, 220, 220, 220, 220, 220, 220, 220, 866, 878, 33895, 11, 1390, 883, 543, 423, 1541, 587, 5025, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 340, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 23004, 796, 2116, 13, 20274, 5189, 7, 270, 13, 397, 419, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8711, 340, 422, 262, 16834, 523, 356, 460, 466, 340, 503, 286, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 288, 11, 4808, 46430, 62, 1818, 796, 2116, 13, 10476, 58, 15, 4083, 62, 80, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 326, 815, 307, 262, 691, 670, 4326, 523, 836, 470, 2555, 611, 1223, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1392, 287, 612, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 4868, 7, 944, 13, 10476, 58, 15, 4083, 62, 80, 13, 36560, 828, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 10476, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 23004, 796, 2116, 13, 20274, 5189, 7, 944, 13, 7742, 13, 11338, 16177, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2986, 414, 2198, 326, 356, 4398, 470, 1682, 5025, 340, 1865, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 397, 419, 23004, 11, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 4398, 470, 6294, 340, 1865, 11, 523, 262, 2139, 550, 1365, 407, 423, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5025, 986, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 288, 13, 47423, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 397, 419, 23004, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11338, 23004, 11, 685, 14202, 12962, 628, 220, 220, 220, 825, 1332, 62, 4563, 13866, 5216, 12609, 48720, 4826, 2096, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 281, 406, 90, 40, 42367, 48720, 92, 318, 15413, 7723, 11, 340, 10783, 284, 15614, 198, 220, 220, 220, 220, 220, 220, 220, 2346, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 83, 13, 18558, 17861, 7203, 30328, 1600, 17635, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 369, 5907, 796, 2116, 13, 69, 9548, 13, 8443, 507, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 1102, 5907, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 1102, 5907, 58, 15, 4083, 62, 2487, 1891, 12332, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 256, 198, 220, 220, 220, 220, 220, 220, 220, 308, 66, 13, 33327, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 1102, 5907, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 1102, 5907, 58, 15, 4083, 62, 2487, 1891, 12332, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 1102, 5907, 58, 15, 4083, 62, 41509, 12332, 11, 657, 8, 628, 220, 220, 220, 825, 18620, 26687, 14402, 7, 944, 11, 5461, 11, 8011, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9745, 278, 257, 5668, 357, 785, 3291, 393, 46847, 8, 406, 90, 40, 42367, 48720, 92, 198, 220, 220, 220, 220, 220, 220, 220, 815, 407, 13044, 597, 18620, 10288, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37096, 796, 48161, 31337, 273, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 23002, 7241, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 1532, 7, 41509, 23002, 7241, 11, 366, 6935, 270, 8011, 10945, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 7773, 5124, 1886, 43642, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 37096, 13, 9122, 2898, 1077, 3419, 628, 220, 220, 220, 825, 1332, 62, 3919, 27676, 13866, 2202, 6935, 270, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1520, 2535, 257, 8611, 857, 407, 2728, 308, 66, 15413, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21170, 934, 26687, 14402, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 25, 27765, 77, 13, 41509, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 11, 8011, 25, 27765, 77, 13, 3866, 6935, 270, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 3919, 27676, 13866, 2202, 6935, 270, 3152, 4826, 419, 39, 566, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1520, 2535, 257, 8611, 857, 407, 2728, 308, 66, 15413, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21170, 934, 26687, 14402, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 25, 27765, 77, 13, 41509, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 11, 8011, 25, 27765, 77, 13, 7353, 4826, 419, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 3919, 27676, 13866, 2202, 4826, 419, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2275, 24707, 257, 8611, 857, 407, 2728, 308, 66, 15413, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21170, 934, 26687, 14402, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 25, 27765, 77, 13, 397, 419, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 11, 8011, 25, 27765, 77, 13, 3866, 6935, 270, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 3919, 27676, 13866, 2202, 4826, 419, 3152, 6307, 6935, 270, 39, 566, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2275, 24707, 257, 8611, 857, 407, 2728, 308, 66, 15413, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21170, 934, 26687, 14402, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 25, 27765, 77, 13, 397, 419, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 27765, 77, 11, 8011, 25, 27765, 77, 13, 7353, 6935, 270, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 18820, 7085, 13313, 507, 3633, 25599, 48658, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 13, 38659, 92, 481, 407, 10922, 517, 621, 262, 5415, 198, 220, 220, 220, 220, 220, 220, 220, 8787, 611, 612, 389, 12848, 8945, 11660, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 397, 419, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 275, 13, 397, 419, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 262, 16392, 329, 262, 4683, 8787, 11, 523, 326, 262, 366, 26086, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4637, 3419, 869, 7864, 262, 3234, 290, 3011, 10945, 717, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 10476, 796, 1351, 7, 944, 13, 10476, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10476, 58, 47715, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10476, 796, 1468, 10476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 628, 220, 220, 220, 825, 900, 22973, 7635, 7, 944, 11, 5772, 7635, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9794, 262, 5772, 7635, 286, 262, 8611, 739, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 9945, 4906, 796, 2116, 13, 7742, 13, 9945, 4906, 13, 30073, 33491, 7, 17143, 7635, 28, 17143, 7635, 8, 628, 220, 220, 220, 825, 1332, 62, 22930, 37861, 22973, 7635, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 1180, 2099, 286, 406, 90, 1797, 48, 2538, 87, 721, 38409, 92, 823, 592, 262, 327, 90, 17143, 7635, 92, 198, 220, 220, 220, 220, 220, 220, 220, 11688, 422, 262, 406, 90, 32048, 27201, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43001, 62, 27082, 2390, 2257, 56, 2538, 796, 366, 3137, 33407, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 22973, 7635, 7, 51, 6465, 62, 27082, 2390, 2257, 56, 2538, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 2501, 87, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 27237, 2501, 87, 77, 13, 9945, 4906, 13, 17143, 7635, 11, 43001, 62, 27082, 2390, 2257, 56, 2538, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 27237, 2501, 87, 77, 13, 21812, 12235, 22446, 9945, 4906, 13, 17143, 7635, 11, 43001, 62, 27082, 2390, 2257, 56, 2538, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 4953, 17602, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 10247, 1780, 17602, 77, 13, 9945, 4906, 13, 17143, 7635, 11, 43001, 62, 27082, 2390, 2257, 56, 2538, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 11338, 16177, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 407, 87, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 1662, 87, 77, 13, 9945, 4906, 13, 17143, 7635, 11, 43001, 62, 27082, 2390, 2257, 56, 2538, 8, 628, 220, 220, 220, 825, 900, 24400, 478, 7, 944, 11, 23637, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9794, 262, 23637, 286, 262, 8611, 739, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 9945, 4906, 796, 2116, 13, 7742, 13, 9945, 4906, 13, 30073, 33491, 7, 38969, 478, 28, 38969, 478, 8, 628, 220, 220, 220, 825, 1332, 62, 22930, 37861, 24400, 478, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 1180, 2099, 286, 406, 90, 1797, 48, 2538, 87, 721, 38409, 92, 823, 592, 262, 327, 90, 38969, 478, 92, 198, 220, 220, 220, 220, 220, 220, 220, 11688, 422, 262, 406, 90, 32048, 27201, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43001, 62, 35, 12576, 9782, 796, 366, 847, 38969, 478, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 24400, 478, 7, 51, 6465, 62, 35, 12576, 9782, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 2501, 87, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 27237, 2501, 87, 77, 13, 9945, 4906, 13, 38969, 478, 11, 43001, 62, 35, 12576, 9782, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 27237, 2501, 87, 77, 13, 21812, 12235, 22446, 9945, 4906, 13, 38969, 478, 11, 43001, 62, 35, 12576, 9782, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 13, 33295, 7, 944, 13, 17953, 48720, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 4953, 17602, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 10247, 1780, 17602, 77, 13, 9945, 4906, 13, 38969, 478, 11, 43001, 62, 35, 12576, 9782, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7742, 13, 11338, 16177, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 407, 87, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 1662, 87, 77, 13, 9945, 4906, 13, 38969, 478, 11, 43001, 62, 35, 12576, 9782, 8, 628, 220, 220, 220, 825, 1332, 62, 260, 13313, 2215, 5962, 23002, 37, 1768, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23904, 5486, 11, 20137, 12, 17614, 362, 13, 15, 46363, 466, 407, 2148, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 546, 262, 2728, 286, 257, 4054, 327, 90, 41049, 92, 2446, 26, 484, 4753, 836, 470, 198, 220, 220, 220, 220, 220, 220, 220, 2148, 340, 287, 257, 835, 543, 460, 307, 5174, 355, 3519, 284, 262, 15582, 286, 198, 220, 220, 220, 220, 220, 220, 220, 262, 12405, 11, 262, 1181, 286, 262, 6831, 2346, 11, 262, 1181, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 11, 3503, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8447, 262, 1266, 2276, 339, 27915, 329, 1771, 262, 4637, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6831, 468, 587, 2626, 290, 2476, 284, 307, 302, 12, 27718, 318, 284, 4929, 198, 220, 220, 220, 220, 220, 220, 220, 13269, 543, 389, 4376, 416, 262, 314, 90, 11085, 92, 2643, 10945, 287, 257, 198, 220, 220, 220, 220, 220, 220, 220, 8611, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 22507, 327, 90, 8443, 92, 284, 6758, 13, 220, 770, 815, 17438, 6209, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1771, 2018, 3419, 3022, 284, 6758, 287, 617, 2180, 8611, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 340, 338, 25914, 262, 10238, 8611, 11, 393, 2018, 3419, 655, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14131, 13, 220, 15467, 835, 345, 655, 423, 257, 4808, 28008, 46047, 77, 27074, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4808, 13313, 276, 46047, 77, 13, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15017, 414, 2198, 4054, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 8562, 23002, 1133, 37, 6255, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8562, 366, 41049, 12, 47904, 1, 6631, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 41049, 8743, 39044, 7, 15022, 23002, 1133, 37, 6255, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 31373, 11, 995, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7203, 31373, 11, 995, 40754, 9809, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4930, 9706, 6370, 815, 423, 587, 925, 11, 530, 319, 1123, 4637, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 717, 4054, 351, 257, 43160, 12331, 11, 475, 326, 318, 14593, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 40157, 11, 780, 788, 356, 3088, 757, 290, 340, 14131, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 649, 4637, 4721, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 18558, 3508, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 16, 4083, 18558, 3508, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 16, 4083, 20225, 11, 10352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15933, 11, 1201, 612, 318, 3058, 645, 17923, 286, 366, 21230, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8563, 11, 356, 815, 2192, 2604, 777, 6218, 618, 484, 3051, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 25925, 11187, 2004, 9139, 5965, 7, 15022, 23002, 1133, 37, 6255, 36911, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 260, 13313, 2215, 5962, 23002, 2202, 3109, 9665, 32048, 37, 1768, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 517, 50015, 40786, 28, 50033, 8860, 25, 6045, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6023, 3074, 326, 1244, 15058, 318, 326, 257, 4637, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 7675, 5884, 11, 10945, 290, 32099, 656, 262, 4637, 5933, 26, 198, 220, 220, 220, 220, 220, 220, 220, 788, 11, 262, 6831, 4382, 481, 4423, 866, 290, 262, 8787, 481, 4656, 11, 198, 220, 220, 220, 220, 220, 220, 220, 475, 356, 481, 307, 4844, 262, 47897, 1566, 356, 1949, 284, 779, 606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 517, 50015, 40786, 7, 944, 13, 69, 9548, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 11, 366, 15017, 414, 2198, 4054, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 31373, 11, 995, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7203, 31373, 11, 995, 40754, 9809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 17, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 11, 366, 15017, 414, 2198, 4054, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 8562, 23002, 39044, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8562, 327, 90, 41049, 3419, 92, 5287, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 41049, 8743, 39044, 7, 15022, 23002, 39044, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 17, 13, 18558, 17861, 7203, 12227, 1949, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 17, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7203, 12227, 1949, 40754, 9809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 25925, 11187, 2004, 9139, 5965, 7, 15022, 23002, 39044, 36911, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 19836, 16922, 13921, 429, 39, 5540, 6690, 261, 1606, 295, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 554, 617, 6831, 34111, 11, 611, 262, 4382, 20612, 262, 4637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 327, 90, 19836, 3419, 92, 481, 2038, 13, 220, 1002, 327, 90, 19836, 92, 10143, 11, 612, 338, 407, 881, 326, 714, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 2845, 326, 262, 4637, 318, 1541, 4838, 11, 523, 2092, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4006, 3417, 287, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 9288, 62, 260, 13313, 2215, 5962, 23002, 2202, 3109, 9665, 32048, 37, 1768, 5512, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5287, 815, 307, 18832, 11, 475, 13245, 284, 3586, 2438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 38904, 32419, 16922, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35528, 326, 338, 257, 46076, 329, 1223, 326, 257, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12765, 1244, 5298, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 256, 796, 2116, 13, 9288, 62, 260, 13313, 2215, 5962, 23002, 2202, 3109, 9665, 32048, 37, 1768, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 635, 39044, 26125, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8563, 796, 2116, 13, 25925, 11187, 2004, 9139, 5965, 7, 33, 6020, 32419, 16922, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 48277, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 256, 628, 220, 220, 220, 825, 1332, 62, 3866, 6935, 270, 33244, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 2977, 3804, 284, 406, 90, 40, 42367, 48720, 13, 3866, 6935, 270, 92, 481, 307, 24399, 2402, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2829, 13, 28060, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 3866, 6935, 270, 7, 36439, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 36439, 13, 28060, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 41509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 20274, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 36439, 13, 28060, 11, 6407, 8, 628, 220, 220, 220, 825, 1332, 62, 4299, 263, 6719, 6935, 270, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 869, 2977, 3804, 284, 406, 90, 40, 42367, 48720, 13, 3866, 6935, 270, 92, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 7469, 17436, 92, 82, 11, 484, 481, 29135, 262, 4036, 4589, 4905, 1566, 340, 468, 198, 220, 220, 220, 220, 220, 220, 220, 6294, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 2896, 17436, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 4043, 13, 46981, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 4043, 13, 25410, 23004, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 3866, 6935, 270, 7, 17077, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 41509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 17077, 13, 46981, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 17077, 13, 25410, 23004, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 20274, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 288, 13, 47423, 7, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1249, 3127, 314, 14, 46, 329, 44762, 1220, 3127, 276, 7822, 26, 612, 815, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 307, 262, 4589, 3275, 783, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 20274, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 17077, 13, 25410, 23004, 11, 16410, 16, 11, 366, 11246, 1332, 44161, 8973, 12962, 628, 220, 220, 220, 825, 1332, 62, 32165, 6719, 6935, 270, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 869, 2977, 3804, 284, 406, 90, 40, 42367, 48720, 13, 3866, 6935, 270, 92, 5298, 281, 198, 220, 220, 220, 220, 220, 220, 220, 6631, 393, 1441, 257, 25743, 11, 8840, 869, 2977, 481, 407, 307, 1057, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 8611, 481, 307, 46847, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 7, 32165, 263, 11, 12169, 24095, 1166, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 7, 430, 5847, 11, 412, 19238, 12331, 8, 628, 220, 220, 220, 825, 1332, 62, 3919, 18257, 6935, 270, 13921, 429, 39, 5540, 6690, 261, 1606, 295, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14303, 345, 1053, 10945, 257, 12405, 393, 6157, 257, 2643, 319, 281, 5984, 33, 17614, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 11, 262, 4637, 318, 5026, 31589, 21696, 357, 23395, 8945, 737, 198, 220, 220, 220, 220, 220, 220, 220, 317, 764, 41509, 3419, 393, 764, 2487, 1891, 3419, 3940, 3393, 416, 257, 764, 41509, 3419, 318, 198, 220, 220, 220, 220, 220, 220, 220, 4361, 27158, 11, 290, 460, 307, 9514, 13, 220, 11399, 11, 1682, 198, 220, 220, 220, 220, 220, 220, 220, 23710, 262, 4589, 290, 8928, 803, 257, 1744, 4637, 12, 17107, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 5640, 7534, 284, 766, 8563, 11, 618, 11, 611, 883, 7534, 550, 1682, 198, 220, 220, 220, 220, 220, 220, 220, 10945, 597, 6299, 11, 262, 4637, 561, 423, 587, 32099, 290, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2643, 13245, 306, 302, 12, 18558, 7241, 416, 262, 9156, 6789, 416, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 9288, 62, 260, 13313, 2215, 5962, 23002, 37, 1768, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 41509, 39044, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 2487, 1891, 39044, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 685, 87, 60, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 41509, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1400, 6299, 423, 587, 10945, 11, 523, 327, 90, 41509, 92, 481, 1635, 1662, 9, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 41509, 39044, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 33234, 605, 7, 87, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 7742, 13557, 5787, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 7742, 13557, 15643, 3929, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 10352, 8, 628, 220, 220, 220, 825, 1332, 62, 260, 13313, 2215, 12211, 23002, 37, 1768, 6423, 5962, 23002, 37, 1768, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3819, 4637, 12, 17107, 8563, 1244, 5298, 13269, 611, 484, 3051, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 3504, 286, 257, 8611, 11, 475, 326, 815, 2728, 262, 4049, 284, 307, 198, 220, 220, 220, 220, 220, 220, 220, 4978, 11, 262, 8611, 284, 307, 46847, 11, 290, 262, 357, 20225, 8, 4637, 284, 198, 220, 220, 220, 220, 220, 220, 220, 307, 32099, 11, 810, 262, 1306, 8611, 326, 6370, 284, 466, 1997, 198, 220, 220, 220, 220, 220, 220, 220, 351, 340, 481, 8791, 262, 4049, 3393, 290, 7073, 340, 2476, 284, 198, 220, 220, 220, 220, 220, 220, 220, 307, 32099, 13, 628, 220, 220, 220, 220, 220, 220, 220, 632, 561, 307, 1365, 611, 428, 4069, 547, 14836, 11, 475, 326, 714, 691, 198, 220, 220, 220, 220, 220, 220, 220, 307, 13013, 351, 517, 7141, 6831, 13269, 13, 220, 775, 743, 1282, 510, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1104, 287, 262, 2003, 329, 517, 10582, 13720, 13269, 11, 198, 220, 220, 220, 220, 220, 220, 220, 475, 314, 90, 34680, 92, 13269, 815, 2555, 284, 307, 5716, 287, 428, 5642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 823, 8369, 262, 6631, 736, 284, 3586, 2438, 475, 9361, 257, 198, 220, 220, 220, 220, 220, 220, 220, 302, 12, 38659, 319, 262, 1306, 1949, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 4808, 46430, 62, 30328, 11907, 60, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 31373, 11, 995, 40754, 17635, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 41049, 8743, 39044, 7, 28667, 24095, 1166, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 69, 60, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 7146, 485, 416, 6632, 1600, 17635, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 46670, 7, 944, 13, 7645, 17660, 12331, 7, 28667, 24095, 1166, 12331, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 18558, 3508, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23419, 1606, 295, 815, 670, 3446, 355, 878, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 10352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15678, 2438, 468, 284, 4836, 736, 663, 8611, 379, 428, 966, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1201, 340, 4054, 357, 392, 356, 836, 470, 6646, 760, 1521, 340, 4054, 25, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1576, 1321, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 397, 419, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 18558, 3508, 796, 657, 220, 1303, 302, 12, 2617, 329, 1306, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9288, 62, 260, 13313, 2215, 5962, 23002, 37, 1768, 3419, 628, 220, 220, 220, 825, 1332, 62, 6381, 8443, 2202, 37, 6255, 26869, 1891, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 327, 90, 2487, 1891, 92, 10143, 329, 597, 1738, 319, 257, 4637, 2134, 11, 788, 356, 198, 220, 220, 220, 220, 220, 220, 220, 836, 470, 760, 644, 1181, 340, 338, 287, 13, 220, 4042, 1884, 11, 340, 338, 1541, 587, 198, 220, 220, 220, 220, 220, 220, 220, 28597, 11, 523, 262, 4637, 815, 307, 4838, 290, 262, 8611, 198, 220, 220, 220, 220, 220, 220, 220, 390, 12, 7742, 276, 2427, 286, 32099, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4418, 11, 257, 649, 4637, 481, 3393, 307, 4920, 284, 1394, 262, 5933, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 262, 976, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 25991, 1487, 1223, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7203, 25991, 1487, 1223, 40754, 9809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 2487, 1891, 39044, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 685, 87, 60, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 397, 419, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2275, 419, 857, 407, 47933, 262, 4049, 319, 11, 262, 8611, 6974, 3011, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29947, 286, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 33234, 605, 7, 87, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 7742, 13557, 5787, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 7742, 13557, 15643, 3929, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 16, 4083, 20225, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 25925, 11187, 2004, 9139, 5965, 7, 26869, 1891, 39044, 36911, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 1069, 4516, 24331, 363, 689, 37, 6255, 6935, 270, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 4054, 327, 90, 2487, 1891, 92, 318, 3734, 357, 1169, 19905, 1918, 286, 262, 4637, 198, 220, 220, 220, 220, 220, 220, 220, 1231, 327, 90, 41509, 92, 1724, 326, 262, 2458, 389, 10403, 3750, 828, 475, 257, 4054, 198, 220, 220, 220, 220, 220, 220, 220, 327, 90, 41509, 92, 468, 284, 307, 47968, 284, 5456, 2438, 11, 1201, 326, 1682, 1724, 198, 220, 220, 220, 220, 220, 220, 220, 617, 2458, 1422, 470, 2277, 262, 6831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 41509, 39044, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 25991, 1487, 1223, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 2482, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7203, 25991, 1487, 1223, 40754, 9809, 8, 198, 220, 220, 220, 220, 220, 220, 220, 685, 87, 60, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 41509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 46670, 7, 944, 13, 7645, 17660, 12331, 7, 6935, 270, 39044, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 7742, 13557, 5787, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 7742, 13557, 15643, 3929, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 20225, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 944, 13, 69, 9548, 13, 8443, 507, 58, 16, 4083, 20225, 11, 10352, 8, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 40, 42367, 48720, 13, 21812, 12235, 92, 5860, 281, 406, 90, 40, 42367, 48720, 92, 198, 220, 220, 220, 220, 220, 220, 220, 10131, 543, 19047, 326, 257, 2512, 286, 9729, 389, 10945, 1978, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 64, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 11767, 10267, 7, 2149, 2002, 392, 12235, 11, 269, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2116, 13, 20274, 5189, 7, 21101, 13, 18558, 17861, 7203, 65, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 67, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 20274, 5189, 7, 21101, 13, 18558, 17861, 7203, 66, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 304, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 68, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 66, 1834, 669, 58, 15, 4083, 439, 23002, 3508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7203, 64, 1600, 17635, 828, 5855, 65, 1600, 17635, 828, 5855, 66, 1600, 17635, 828, 5855, 67, 1600, 17635, 828, 5855, 68, 1600, 685, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 64, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 65, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 66, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 67, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 68, 828, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 3152, 24220, 1387, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 2512, 4504, 416, 406, 90, 40, 42367, 48720, 13, 21812, 12235, 92, 1839, 470, 923, 198, 220, 220, 220, 220, 220, 220, 220, 23710, 1566, 477, 16363, 6299, 7530, 878, 340, 423, 5668, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 64, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 65, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13, 20274, 5189, 7, 21101, 13, 18558, 17861, 7203, 66, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 2116, 13, 20274, 5189, 7, 21101, 13, 18558, 17861, 7203, 67, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 304, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 18558, 17861, 7203, 68, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 66, 1834, 669, 58, 15, 4083, 439, 23002, 3508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7203, 64, 1600, 17635, 828, 5855, 65, 1600, 17635, 828, 5855, 66, 1600, 17635, 828, 5855, 67, 1600, 17635, 828, 5855, 68, 1600, 685, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 64, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 65, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 66, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 67, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 68, 828, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 11545, 21575, 45356, 7, 944, 11, 24773, 28, 50033, 25, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 9706, 286, 530, 3141, 2512, 318, 1844, 11, 340, 481, 5120, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 8358, 1739, 2512, 11, 788, 284, 3218, 16363, 10945, 319, 262, 8611, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 16, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 17, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 18558, 17861, 7203, 68, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 16, 13, 18558, 17861, 7203, 64, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 17, 13, 18558, 17861, 7203, 66, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 16, 13, 18558, 17861, 7203, 65, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 17, 13, 18558, 17861, 7203, 67, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 17, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 269, 65, 16, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 24773, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 66, 1834, 669, 58, 15, 4083, 439, 23002, 3508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7203, 64, 1600, 17635, 828, 5855, 65, 1600, 17635, 828, 5855, 66, 1600, 17635, 828, 5855, 67, 1600, 17635, 828, 5855, 68, 1600, 685, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 11545, 21575, 45356, 24220, 1473, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16766, 355, 406, 90, 9288, 62, 11545, 21575, 45356, 5512, 475, 351, 13611, 869, 10146, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32125, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9288, 62, 11545, 21575, 45356, 7, 944, 13, 25925, 26807, 364, 8, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 12915, 5080, 501, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 21575, 12235, 13, 437, 92, 481, 5298, 406, 90, 37447, 18467, 1348, 12331, 92, 618, 1444, 517, 198, 220, 220, 220, 220, 220, 220, 220, 621, 1752, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 2512, 13, 437, 8, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 13856, 592, 6935, 270, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2773, 3141, 7021, 761, 284, 1057, 355, 24871, 3481, 11, 1231, 262, 4045, 198, 220, 220, 220, 220, 220, 220, 220, 8611, 12, 805, 3039, 2438, 6970, 703, 1290, 484, 1053, 28775, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8447, 618, 345, 869, 1391, 40, 42367, 48720, 13, 41509, 92, 22784, 340, 815, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1682, 1011, 1245, 611, 612, 389, 597, 13310, 3141, 7021, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4589, 23004, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 41509, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 9967, 13, 18558, 17861, 7203, 259, 2512, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 41509, 23004, 11, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 66, 1834, 669, 58, 15, 4083, 439, 23002, 3508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7203, 259, 2512, 1600, 685, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 41509, 23004, 11, 685, 14202, 12962, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 13921, 429, 13856, 323, 4826, 419, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 406, 90, 21575, 12235, 92, 460, 470, 5457, 423, 1997, 3499, 284, 910, 546, 198, 220, 220, 220, 220, 220, 220, 220, 257, 8611, 326, 3011, 11686, 736, 11, 523, 327, 90, 397, 419, 92, 8991, 3393, 26, 198, 220, 220, 220, 220, 220, 220, 220, 477, 11660, 327, 90, 18558, 17861, 92, 82, 481, 2038, 3393, 11, 319, 1111, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 7021, 290, 319, 262, 8611, 2346, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 17, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 23004, 796, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 397, 419, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 397, 419, 23004, 11, 685, 14202, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 2512, 17, 13, 18558, 17861, 11, 366, 5657, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 2512, 13, 18558, 17861, 11, 366, 21943, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 27765, 77, 13, 18558, 17861, 11, 366, 65, 1031, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 66, 1834, 669, 58, 15, 4083, 439, 23002, 3508, 11, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 886, 3419, 815, 4808, 1662, 62, 5298, 281, 6631, 11, 780, 428, 318, 262, 3297, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1517, 326, 1244, 307, 1088, 257, 1949, 14, 69, 3289, 393, 1949, 14, 16341, 26, 340, 338, 655, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5137, 262, 3141, 12235, 2346, 656, 257, 1181, 6414, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8611, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 17, 13, 437, 3419, 628, 220, 220, 220, 825, 1332, 62, 1631, 12235, 13921, 429, 23002, 1133, 5167, 17861, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25770, 278, 284, 12260, 16363, 319, 257, 406, 90, 21575, 12235, 92, 543, 468, 550, 327, 90, 437, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1444, 319, 340, 481, 1255, 287, 281, 406, 90, 37447, 18467, 1348, 12331, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 27765, 77, 13, 21812, 12235, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 13, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 2512, 13, 18558, 17861, 11, 366, 31373, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 8443, 507, 58, 15, 4083, 66, 1834, 669, 58, 15, 4083, 439, 23002, 3508, 11, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 3260, 6935, 270, 21762, 2696, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4874, 281, 406, 90, 40, 42367, 48720, 92, 468, 587, 5364, 11, 406, 90, 21812, 12235, 92, 12073, 198, 220, 220, 220, 220, 220, 220, 220, 281, 6631, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 27765, 77, 13, 21812, 12235, 8, 628, 220, 220, 220, 825, 1332, 62, 21812, 12235, 3260, 4826, 419, 21762, 2696, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4874, 281, 406, 90, 40, 42367, 48720, 92, 468, 587, 5364, 11, 406, 90, 21812, 12235, 92, 12073, 198, 220, 220, 220, 220, 220, 220, 220, 281, 6631, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 5189, 7, 17602, 77, 13, 397, 419, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 37447, 18467, 1348, 12331, 11, 27765, 77, 13, 21812, 12235, 8, 628, 220, 220, 220, 825, 1332, 62, 40225, 2202, 28667, 25166, 12332, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 40, 42367, 48720, 13, 18558, 17861, 92, 481, 1441, 257, 406, 90, 7469, 17436, 92, 9894, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6631, 3804, 355, 663, 5298, 2202, 28667, 25166, 12332, 4578, 611, 262, 10238, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 5860, 645, 15274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 10134, 25468, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2116, 13, 20274, 5189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 18558, 17861, 7203, 31373, 1600, 5298, 2202, 28667, 25166, 12332, 28, 28667, 24095, 1166, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 28667, 24095, 1166, 12331, 11, 277, 13, 40225, 16922, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 41509, 3419, 628, 220, 220, 220, 825, 1332, 62, 40225, 2202, 28667, 25166, 12332, 3152, 3118, 2411, 3379, 25166, 12332, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1081, 340, 4962, 503, 11, 617, 20083, 460, 470, 26995, 1560, 345, 703, 867, 15274, 198, 220, 220, 220, 220, 220, 220, 220, 484, 821, 1016, 284, 21207, 2884, 262, 327, 90, 808, 9127, 92, 11688, 878, 262, 15274, 198, 220, 220, 220, 220, 220, 220, 220, 423, 1682, 587, 11351, 1740, 11, 523, 262, 327, 90, 40225, 2202, 28667, 25166, 12332, 92, 481, 314, 90, 1662, 92, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 281, 6631, 611, 327, 90, 808, 9127, 92, 318, 6632, 475, 327, 90, 11213, 92, 290, 198, 220, 220, 220, 220, 220, 220, 220, 327, 90, 69, 7569, 439, 92, 9217, 262, 4931, 286, 617, 15274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 10134, 25468, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 9548, 13, 21754, 10260, 25166, 9127, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 17953, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 2116, 13, 20274, 5189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 13, 18558, 17861, 7203, 11246, 12, 8516, 1600, 5298, 2202, 28667, 25166, 12332, 28, 41006, 12331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 29795, 46430, 62, 24588, 11, 9809, 11907, 60, 796, 374, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 30328, 11, 366, 11246, 12, 8516, 4943, 628, 198, 4871, 314, 3185, 931, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8113, 257, 5456, 290, 257, 4382, 13, 628, 220, 220, 220, 2488, 452, 283, 5456, 25, 257, 5456, 8435, 628, 220, 220, 220, 2488, 452, 283, 4382, 25, 257, 4382, 8435, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1445, 6601, 7, 944, 11, 357, 448, 8291, 634, 11, 287, 19703, 4668, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10028, 1366, 422, 257, 406, 90, 10100, 8291, 634, 92, 284, 281, 406, 90, 40, 19703, 4668, 27422, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 25, 327, 90, 17821, 92, 611, 597, 1366, 373, 3888, 11, 327, 90, 25101, 92, 611, 645, 1366, 373, 3888, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 503, 8291, 634, 13, 952, 13, 1136, 8367, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 503, 8291, 634, 13, 952, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 503, 8291, 634, 13, 952, 13, 2213, 19524, 378, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 19703, 4668, 13, 7890, 3041, 6471, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 8901, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43371, 477, 5128, 422, 262, 5456, 284, 262, 4382, 11, 788, 422, 262, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 284, 262, 5456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 2116, 13, 21084, 6601, 7, 944, 13, 66, 17, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2116, 13, 21084, 6601, 7, 944, 13, 82, 17, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 393, 275, 628, 220, 220, 220, 825, 24773, 7, 944, 11, 3509, 17278, 82, 28, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10054, 26916, 1566, 645, 517, 1366, 318, 17609, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4962, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 79, 931, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4962, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4962, 1875, 3509, 17278, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 49, 272, 1165, 890, 2474, 8, 628, 198, 4871, 7311, 276, 27201, 47429, 7, 32048, 27201, 47429, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 7552, 286, 406, 90, 32048, 27201, 47429, 92, 326, 460, 900, 510, 257, 198, 220, 220, 220, 406, 90, 32048, 27201, 11792, 92, 290, 406, 90, 32048, 27201, 32048, 92, 7223, 284, 1123, 198, 220, 220, 220, 584, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 262, 976, 9058, 422, 406, 90, 32048, 27201, 14881, 5512, 475, 635, 4474, 257, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 1891, 4637, 1022, 257, 406, 90, 32048, 27201, 32048, 92, 290, 257, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 11792, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 26245, 276, 27201, 47429, 11, 2116, 737, 2617, 4933, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 931, 796, 314, 3185, 931, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26923, 27201, 11792, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 4906, 28, 944, 13, 9945, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26923, 27201, 32048, 7, 944, 13, 7742, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 24773, 26807, 364, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 554, 3090, 284, 781, 8023, 262, 406, 90, 16818, 39, 19892, 92, 17071, 82, 11, 635, 24773, 597, 198, 220, 220, 220, 220, 220, 220, 220, 13310, 3127, 314, 14, 46, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 931, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 26245, 276, 27201, 47429, 11, 2116, 737, 25925, 26807, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 931, 13, 25925, 3419, 628, 220, 220, 220, 825, 15772, 12331, 7, 944, 11, 11454, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1439, 8563, 4376, 15726, 481, 12716, 307, 14251, 656, 198, 220, 220, 220, 220, 220, 220, 220, 16185, 36510, 12331, 11, 1201, 3001, 47, 4433, 2176, 27056, 341, 286, 477, 286, 198, 220, 220, 220, 220, 220, 220, 220, 606, 13, 220, 1610, 1530, 262, 15726, 18832, 4049, 286, 262, 1813, 2099, 290, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 20035, 36510, 12331, 27422, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11454, 287, 35910, 13, 48277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 11454, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25925, 11187, 2004, 9139, 5965, 7, 8056, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 376, 1768, 8635, 16922, 628, 198, 4871, 7311, 276, 32048, 27201, 51, 3558, 7, 26245, 276, 27201, 47429, 11, 26923, 27201, 51, 3558, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 406, 90, 32048, 27201, 32048, 92, 290, 406, 90, 32048, 27201, 11792, 92, 198, 220, 220, 220, 24986, 351, 1123, 584, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 900, 22973, 7635, 7, 944, 11, 5772, 7635, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9794, 262, 5772, 7635, 319, 1111, 262, 5933, 290, 262, 5456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 26245, 276, 32048, 27201, 51, 3558, 11, 2116, 737, 2617, 22973, 7635, 7, 17143, 7635, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 931, 13, 16366, 13, 9945, 4906, 796, 2116, 13, 79, 931, 13, 16366, 13, 9945, 4906, 13, 30073, 33491, 7, 17143, 7635, 28, 17143, 7635, 8, 628, 220, 220, 220, 825, 900, 24400, 478, 7, 944, 11, 23637, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9794, 262, 23637, 319, 1111, 262, 5933, 290, 262, 5456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 26245, 276, 32048, 27201, 51, 3558, 11, 2116, 737, 2617, 24400, 478, 7, 38969, 478, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 931, 13, 16366, 13, 9945, 4906, 796, 2116, 13, 79, 931, 13, 16366, 13, 9945, 4906, 13, 30073, 33491, 7, 38969, 478, 28, 38969, 478, 8, 628, 220, 220, 220, 825, 1332, 62, 3605, 48720, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 32048, 27201, 11792, 13, 3605, 48720, 92, 5860, 257, 10131, 286, 198, 220, 220, 220, 220, 220, 220, 220, 406, 90, 40, 42367, 48720, 5512, 290, 8075, 257, 649, 8611, 319, 262, 4382, 1735, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27765, 77, 796, 2116, 13, 79, 931, 13, 16366, 13, 3605, 48720, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 11767, 10267, 7, 40, 42367, 48720, 11, 27765, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 931, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 944, 13, 69, 9548, 13, 8443, 507, 828, 352, 8, 628, 198, 4871, 18531, 540, 32180, 51, 3558, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 406, 90, 62, 39, 566, 540, 32180, 27422, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 45145, 14134, 10146, 198, 220, 220, 220, 825, 1332, 62, 20063, 36854, 658, 7004, 44399, 4550, 39, 566, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2293, 1598, 3419, 393, 1057, 39, 31085, 3419, 389, 1444, 11, 8840, 3848, 284, 751, 39, 566, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 389, 8005, 12, 3185, 82, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 8011, 18257, 796, 4808, 39, 566, 540, 32180, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 18257, 13, 2860, 39, 566, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 25480, 18257, 13557, 25480, 82, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 18257, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 25480, 18257, 13557, 25480, 82, 11, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 8011, 18257, 796, 4808, 39, 566, 540, 32180, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 18257, 13, 2860, 39, 566, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 8011, 18257, 13, 5143, 39, 31085, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 25480, 18257, 13557, 25480, 82, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 18257, 13, 2860, 39, 566, 7, 25480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 25480, 18257, 13557, 25480, 82, 11, 6045, 8, 198 ]
2.466543
19,891
from .sensitivity import solve_sensitivity from .monte_carlo import solve_monte_carlo from ..model_parser import ModelParser
[ 6738, 764, 82, 40545, 1330, 8494, 62, 82, 40545, 198, 6738, 764, 2144, 660, 62, 7718, 5439, 1330, 8494, 62, 2144, 660, 62, 7718, 5439, 198, 198, 6738, 11485, 19849, 62, 48610, 1330, 9104, 46677 ]
3.571429
35