content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import hashlib import os
[ 11748, 12234, 8019, 198, 11748, 28686, 198 ]
3.571429
7
# baleen.utils.timez # Utility functions for Baleen # # Author: Benjamin Bengfort <[email protected]> # Created: Mon Sep 22 10:14:57 2014 -0400 # # Copyright (C) 2014 Bengfort.com # For license information, see LICENSE.txt # # ID: utils.py [] [email protected] $ """ Utility functions for Baleenc """ ########################################################################## ## Imports ########################################################################## import re import time from dateutil.tz import tzlocal, tzutc from datetime import date, datetime, timedelta from dateutil.relativedelta import relativedelta ########################################################################## ## Format constants ########################################################################## HUMAN_DATETIME = "%a %b %d %H:%M:%S %Y %z" HUMAN_DATE = "%b %d, %Y" HUMAN_TIME = "%I:%M:%S %p" JSON_DATETIME = "%Y-%m-%dT%H:%M:%S.%fZ" # Must be UTC ISO8601_DATETIME = "%Y-%m-%dT%H:%M:%S%z" ISO8601_DATE = "%Y-%m-%d" ISO8601_TIME = "%H:%M:%S" COMMON_DATETIME = "%d/%b/%Y:%H:%M:%S %z" ########################################################################## ## Module helper function ########################################################################## zre = re.compile(r'([\-\+]\d{4})') def strptimez(dtstr, dtfmt): """ Helper function that performs the timezone calculation to correctly compute the '%z' format that is not added by default in Python 2.7. """ if '%z' not in dtfmt: return datetime.strptime(dtstr, dtfmt) dtfmt = dtfmt.replace('%z', '') offset = int(zre.search(dtstr).group(1)) dtstr = zre.sub('', dtstr) delta = timedelta(hours = offset/100) utctsp = datetime.strptime(dtstr, dtfmt) - delta return utctsp.replace(tzinfo=tzutc()) def humanizedelta(*args, **kwargs): """ Wrapper around dateutil.relativedelta (same construtor args) and returns a humanized string representing the detla in a meaningful way. """ if 'milliseconds' in kwargs: sec = kwargs.get('seconds', 0) msec = kwargs.pop('milliseconds') kwargs['seconds'] = sec + (float(msec) / 1000.0) delta = relativedelta(*args, **kwargs) attrs = ('years', 'months', 'days', 'hours', 'minutes', 'seconds') parts = [ '%d %s' % (getattr(delta, attr), getattr(delta, attr) > 1 and attr or attr[:-1]) for attr in attrs if getattr(delta, attr) ] return " ".join(parts) ########################################################################## ## Timer functions ########################################################################## class Timer(object): """ A context object timer. Usage: >>> with Timer() as timer: ... do_something() >>> print timer.elapsed """ def __init__(self, wall_clock=True): """ If wall_clock is True then use time.time() to get the number of actually elapsed seconds. If wall_clock is False, use time.clock to get the process time instead. """ self.wall_clock = wall_clock self.time = time.time if wall_clock else time.clock # Stubs for serializing an empty timer. self.started = None self.finished = None self.elapsed = 0.0
[ 2, 275, 1000, 268, 13, 26791, 13, 2435, 89, 198, 2, 34030, 5499, 329, 43248, 268, 198, 2, 198, 2, 6434, 25, 220, 220, 14533, 14964, 3319, 1279, 11722, 13337, 31, 65, 1516, 3319, 13, 785, 29, 198, 2, 15622, 25, 220, 2892, 8621, 2534, 838, 25, 1415, 25, 3553, 1946, 532, 3023, 405, 198, 2, 198, 2, 15069, 357, 34, 8, 1946, 14964, 3319, 13, 785, 198, 2, 1114, 5964, 1321, 11, 766, 38559, 24290, 13, 14116, 198, 2, 198, 2, 4522, 25, 3384, 4487, 13, 9078, 17635, 1888, 13337, 31, 65, 1516, 3319, 13, 785, 720, 198, 198, 37811, 198, 18274, 879, 5499, 329, 43248, 12685, 198, 37811, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 1846, 3742, 198, 29113, 29113, 7804, 2235, 198, 198, 11748, 302, 198, 11748, 640, 198, 198, 6738, 3128, 22602, 13, 22877, 1330, 256, 89, 12001, 11, 256, 89, 315, 66, 198, 6738, 4818, 8079, 1330, 3128, 11, 4818, 8079, 11, 28805, 12514, 198, 6738, 3128, 22602, 13, 2411, 265, 1572, 12514, 1330, 48993, 1572, 12514, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 18980, 38491, 198, 29113, 29113, 7804, 2235, 198, 198, 39, 5883, 1565, 62, 35, 1404, 2767, 12789, 220, 220, 796, 36521, 64, 4064, 65, 4064, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4064, 56, 4064, 89, 1, 198, 39, 5883, 1565, 62, 35, 6158, 220, 220, 220, 220, 220, 220, 796, 36521, 65, 4064, 67, 11, 4064, 56, 1, 198, 39, 5883, 1565, 62, 34694, 220, 220, 220, 220, 220, 220, 796, 36521, 40, 25, 4, 44, 25, 4, 50, 4064, 79, 1, 198, 40386, 62, 35, 1404, 2767, 12789, 220, 220, 220, 796, 36521, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 57, 1, 1303, 12039, 307, 18119, 198, 40734, 4521, 486, 62, 35, 1404, 2767, 12789, 796, 36521, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 4, 89, 1, 198, 40734, 4521, 486, 62, 35, 6158, 220, 220, 220, 220, 796, 36521, 56, 12, 4, 76, 12, 4, 67, 1, 198, 40734, 4521, 486, 62, 34694, 220, 220, 220, 220, 796, 36521, 39, 25, 4, 44, 25, 4, 50, 1, 198, 9858, 27857, 62, 35, 1404, 2767, 12789, 220, 796, 36521, 67, 14, 4, 65, 14, 4, 56, 25, 4, 39, 25, 4, 44, 25, 4, 50, 4064, 89, 1, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 19937, 31904, 2163, 198, 29113, 29113, 7804, 2235, 628, 198, 198, 89, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 26933, 41441, 59, 10, 60, 59, 67, 90, 19, 30072, 11537, 198, 4299, 965, 457, 524, 89, 7, 28664, 2536, 11, 288, 27110, 16762, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 326, 17706, 262, 640, 11340, 17952, 284, 9380, 198, 220, 220, 220, 24061, 262, 705, 4, 89, 6, 5794, 326, 318, 407, 2087, 416, 4277, 287, 11361, 362, 13, 22, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 705, 4, 89, 6, 407, 287, 288, 27110, 16762, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4818, 8079, 13, 2536, 457, 524, 7, 28664, 2536, 11, 288, 27110, 16762, 8, 628, 220, 220, 220, 288, 27110, 16762, 220, 796, 288, 27110, 16762, 13, 33491, 10786, 4, 89, 3256, 10148, 8, 198, 220, 220, 220, 11677, 796, 493, 7, 89, 260, 13, 12947, 7, 28664, 2536, 737, 8094, 7, 16, 4008, 198, 220, 220, 220, 288, 83, 2536, 220, 796, 1976, 260, 13, 7266, 10786, 3256, 288, 83, 2536, 8, 198, 220, 220, 220, 25979, 220, 796, 28805, 12514, 7, 24425, 796, 11677, 14, 3064, 8, 198, 220, 220, 220, 3384, 310, 2777, 796, 4818, 8079, 13, 2536, 457, 524, 7, 28664, 2536, 11, 288, 27110, 16762, 8, 532, 25979, 198, 220, 220, 220, 1441, 3384, 310, 2777, 13, 33491, 7, 22877, 10951, 28, 22877, 315, 66, 28955, 628, 198, 4299, 1692, 1143, 12514, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 2848, 1088, 3128, 22602, 13, 2411, 265, 1572, 12514, 357, 31642, 1500, 81, 38409, 26498, 8, 290, 5860, 198, 220, 220, 220, 257, 1692, 1143, 4731, 10200, 262, 1062, 5031, 287, 257, 11570, 835, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 705, 17805, 27866, 24764, 6, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 792, 220, 796, 479, 86, 22046, 13, 1136, 10786, 43012, 3256, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 43242, 796, 479, 86, 22046, 13, 12924, 10786, 17805, 27866, 24764, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 43012, 20520, 796, 792, 1343, 357, 22468, 7, 76, 2363, 8, 1220, 8576, 13, 15, 8, 628, 220, 220, 220, 25979, 796, 48993, 1572, 12514, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 708, 3808, 796, 19203, 19002, 3256, 705, 41537, 3256, 705, 12545, 3256, 705, 24425, 3256, 705, 1084, 1769, 3256, 705, 43012, 11537, 198, 220, 220, 220, 3354, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4, 67, 4064, 82, 6, 4064, 357, 1136, 35226, 7, 67, 12514, 11, 708, 81, 828, 651, 35226, 7, 67, 12514, 11, 708, 81, 8, 1875, 352, 290, 708, 81, 393, 708, 81, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 287, 708, 3808, 611, 651, 35226, 7, 67, 12514, 11, 708, 81, 8, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 1441, 366, 27071, 22179, 7, 42632, 8, 628, 198, 29113, 29113, 7804, 2235, 198, 2235, 5045, 263, 5499, 198, 29113, 29113, 7804, 2235, 628, 198, 4871, 5045, 263, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4732, 2134, 19781, 13, 29566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 351, 5045, 263, 3419, 355, 19781, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 466, 62, 18927, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 19781, 13, 417, 28361, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3355, 62, 15750, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 3355, 62, 15750, 318, 6407, 788, 779, 640, 13, 2435, 3419, 284, 651, 262, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1682, 42118, 4201, 13, 1002, 3355, 62, 15750, 318, 10352, 11, 779, 640, 13, 15750, 284, 198, 220, 220, 220, 220, 220, 220, 220, 651, 262, 1429, 640, 2427, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11930, 62, 15750, 796, 3355, 62, 15750, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2435, 796, 640, 13, 2435, 611, 3355, 62, 15750, 2073, 640, 13, 15750, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 520, 23161, 329, 11389, 2890, 281, 6565, 19781, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46981, 220, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43952, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 417, 28361, 220, 796, 657, 13, 15, 198 ]
2.705502
1,236
# 插入排序 if __name__ == '__main__': print(Solution().insertSort([1,8,3,2,6,9]))
[ 2, 10545, 237, 240, 17739, 98, 162, 236, 240, 41753, 237, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 7, 46344, 22446, 28463, 42758, 26933, 16, 11, 23, 11, 18, 11, 17, 11, 21, 11, 24, 60, 4008 ]
1.765957
47
""" Tests for the genetic maps management. """ import unittest from unittest import mock import tarfile import tempfile import os.path import shutil import urllib.request import pathlib import msprime import stdpopsim from stdpopsim import genetic_maps import tests # Infrastructure for keeping a local cache of the downloaded tarballs that # which we 'download' from when we're running tests below. def download_map_tarballs(destination): """ Download the tarballs for all genetic maps to the specified destination. Used mainly for testing, where we want to download the maps repeatedly to the cache and we wish to avoid the cost of downloading multiple times from the remote location. """ for key, genetic_map in genetic_maps.registered_maps.items(): local_file = destination / (key + ".tar.gz") if not local_file.exists(): cache_dir = local_file.parent cache_dir.mkdir(exist_ok=True) urllib.request.urlretrieve(genetic_map.url, local_file) saved_urls = {} # TODO add some parameters here to check different compression options, # number of chromosomes etc. def get_genetic_map_tarball(): """ Returns a genetic map in hapmap format in a tarball as a bytes object. """ with tempfile.TemporaryDirectory() as map_dir: for j in range(1, 10): # TODO Have a way to put in different maps?? with open(os.path.join(map_dir, "prefix_chr{}.txt".format(j)), "w") as f: print("Chromosome Position(bp) Rate(cM/Mb) Map(cM)", file=f) print("chr1 55550 2.981822 0.000000", file=f) print("chr1 82571 2.082414 0.080572", file=f) print("chr1 88169 0 0.092229", file=f) # For the tarfile to be in the right format, we must be in the right directory. with genetic_maps.cd(map_dir): # Now tar up this map_directory with tempfile.TemporaryFile('wb+') as tmp_file: with tarfile.open(fileobj=tmp_file, mode="w:gz") as tar_file: for filename in os.listdir("."): tar_file.add(filename) # Read back the tarball tmp_file.seek(0) tarball = tmp_file.read() return tarball class TestGeneticMapTarball(unittest.TestCase): """ Tests that we correctly encode a genetic map in the tarball test function. """ class TestGeneticMap(tests.CacheWritingTest): """ Tests for the basic functionality of the genetic map class. """ class TestGeneticMapDownload(tests.CacheWritingTest): """ Tests downloading code for the genetic maps. """ class TestAllGeneticMaps(tests.CacheReadingTest): """ Tests if the all_genetic_maps() function works correctly. """
[ 37811, 198, 51, 3558, 329, 262, 8513, 8739, 4542, 13, 198, 37811, 198, 11748, 555, 715, 395, 198, 6738, 555, 715, 395, 1330, 15290, 198, 11748, 13422, 7753, 198, 11748, 20218, 7753, 198, 11748, 28686, 13, 6978, 198, 11748, 4423, 346, 198, 11748, 2956, 297, 571, 13, 25927, 198, 11748, 3108, 8019, 198, 198, 11748, 13845, 35505, 198, 198, 11748, 14367, 79, 2840, 320, 198, 6738, 14367, 79, 2840, 320, 1330, 8513, 62, 31803, 198, 11748, 5254, 628, 198, 2, 33709, 329, 5291, 257, 1957, 12940, 286, 262, 15680, 13422, 21591, 326, 198, 2, 543, 356, 705, 15002, 6, 422, 618, 356, 821, 2491, 5254, 2174, 13, 198, 198, 4299, 4321, 62, 8899, 62, 18870, 21591, 7, 16520, 1883, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 262, 13422, 21591, 329, 477, 8513, 8739, 284, 262, 7368, 10965, 13, 198, 220, 220, 220, 16718, 8384, 329, 4856, 11, 810, 356, 765, 284, 4321, 262, 8739, 7830, 198, 220, 220, 220, 284, 262, 12940, 290, 356, 4601, 284, 3368, 262, 1575, 286, 22023, 3294, 1661, 198, 220, 220, 220, 422, 262, 6569, 4067, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1994, 11, 8513, 62, 8899, 287, 8513, 62, 31803, 13, 33736, 62, 31803, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7753, 796, 10965, 1220, 357, 2539, 1343, 27071, 18870, 13, 34586, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1957, 62, 7753, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 15908, 796, 1957, 62, 7753, 13, 8000, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 15908, 13, 28015, 15908, 7, 38476, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2956, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 5235, 5139, 62, 8899, 13, 6371, 11, 1957, 62, 7753, 8, 628, 198, 82, 9586, 62, 6371, 82, 796, 23884, 628, 628, 198, 198, 2, 16926, 46, 751, 617, 10007, 994, 284, 2198, 1180, 19794, 3689, 11, 198, 2, 1271, 286, 42742, 3503, 13, 198, 4299, 651, 62, 5235, 5139, 62, 8899, 62, 18870, 1894, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 8513, 3975, 287, 387, 4426, 499, 5794, 287, 257, 13422, 1894, 355, 257, 9881, 2134, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 20218, 7753, 13, 12966, 5551, 43055, 3419, 355, 3975, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 16, 11, 838, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 8192, 257, 835, 284, 1234, 287, 1180, 8739, 3548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 8899, 62, 15908, 11, 366, 40290, 62, 354, 81, 90, 27422, 14116, 1911, 18982, 7, 73, 36911, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1925, 398, 418, 462, 220, 23158, 7, 46583, 8, 220, 220, 220, 14806, 7, 66, 44, 14, 44, 65, 8, 220, 220, 220, 220, 9347, 7, 66, 44, 42501, 2393, 28, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 354, 81, 16, 220, 220, 220, 220, 220, 220, 220, 44717, 1120, 220, 220, 362, 13, 4089, 1507, 1828, 220, 220, 220, 220, 220, 220, 220, 657, 13, 10535, 1600, 2393, 28, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 354, 81, 16, 220, 220, 220, 220, 220, 220, 220, 807, 1495, 4869, 220, 220, 362, 13, 2919, 1731, 1415, 220, 220, 220, 220, 220, 220, 220, 657, 13, 33057, 48724, 1600, 2393, 28, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 354, 81, 16, 220, 220, 220, 220, 220, 220, 220, 9193, 22172, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2931, 1828, 1959, 1600, 2393, 28, 69, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 262, 13422, 7753, 284, 307, 287, 262, 826, 5794, 11, 356, 1276, 307, 287, 262, 826, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 8513, 62, 31803, 13, 10210, 7, 8899, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 13422, 510, 428, 3975, 62, 34945, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 20218, 7753, 13, 12966, 5551, 8979, 10786, 39346, 10, 11537, 355, 45218, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 13422, 7753, 13, 9654, 7, 7753, 26801, 28, 22065, 62, 7753, 11, 4235, 2625, 86, 25, 34586, 4943, 355, 13422, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 28686, 13, 4868, 15908, 7203, 526, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13422, 62, 7753, 13, 2860, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 736, 262, 13422, 1894, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 7753, 13, 36163, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13422, 1894, 796, 45218, 62, 7753, 13, 961, 3419, 198, 220, 220, 220, 1441, 13422, 1894, 628, 198, 4871, 6208, 13746, 5139, 13912, 47079, 1894, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 326, 356, 9380, 37773, 257, 8513, 3975, 287, 262, 13422, 1894, 1332, 2163, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 6208, 13746, 5139, 13912, 7, 41989, 13, 30562, 33874, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 262, 4096, 11244, 286, 262, 8513, 3975, 1398, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 6208, 13746, 5139, 13912, 10002, 7, 41989, 13, 30562, 33874, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 22023, 2438, 329, 262, 8513, 8739, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 6208, 3237, 13746, 5139, 47010, 7, 41989, 13, 30562, 36120, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 611, 262, 477, 62, 5235, 5139, 62, 31803, 3419, 2163, 2499, 9380, 13, 198, 220, 220, 220, 37227, 198 ]
2.479381
1,164
""" Copyright 2017 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ReportBase module, contains the base class for other report types. """ import os from datetime import timedelta import icetea_lib.LogManager as LogManager #pylint: disable=no-self-use class ReportBase(object): """ ReportBase is the baseclass of all other report types. It implements helpers related to reporting as well as the abstract generate-method. """ def get_latest_filename(self, extension, basename="../latest."): """ Generate filename with 'latest.' prefix. :param extension: Extension for file :param basename: Base file name :return: path to latest.basename.extension. """ return os.path.join(LogManager.get_base_dir(), basename+extension) def get_current_filename(self, extension, basename="result."): """ Generate filename for a report. :param extension: Extension for file name :param basename: Base file name :return: path to basename.extension """ return os.path.join(LogManager.get_base_dir(), basename+extension) def generate(self, *args, **kwargs): """ Abstract generate-method. """ raise NotImplementedError("generate function missing") def duration_to_string(self, seconds): """ Converts time in seconds to a timedelta and represents it as string. :param seconds: Time in seconds :return: str(datetime.timedelta) """ delta = timedelta(seconds=seconds) return str(delta)
[ 37811, 198, 15269, 2177, 20359, 15302, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 198, 19100, 14881, 8265, 11, 4909, 262, 2779, 1398, 329, 584, 989, 3858, 13, 198, 37811, 198, 198, 11748, 28686, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 11748, 14158, 14471, 64, 62, 8019, 13, 11187, 13511, 355, 5972, 13511, 198, 198, 2, 79, 2645, 600, 25, 15560, 28, 3919, 12, 944, 12, 1904, 628, 198, 4871, 6358, 14881, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6358, 14881, 318, 262, 2779, 4871, 286, 477, 584, 989, 3858, 13, 632, 23986, 49385, 3519, 284, 198, 220, 220, 220, 6447, 355, 880, 355, 262, 12531, 7716, 12, 24396, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 42861, 62, 34345, 7, 944, 11, 7552, 11, 1615, 12453, 2625, 40720, 42861, 526, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 378, 29472, 351, 705, 42861, 2637, 21231, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7552, 25, 27995, 329, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1615, 12453, 25, 7308, 2393, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3108, 284, 3452, 13, 12093, 12453, 13, 2302, 3004, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 11187, 13511, 13, 1136, 62, 8692, 62, 15908, 22784, 1615, 12453, 10, 2302, 3004, 8, 628, 220, 220, 220, 825, 651, 62, 14421, 62, 34345, 7, 944, 11, 7552, 11, 1615, 12453, 2625, 20274, 526, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 378, 29472, 329, 257, 989, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7552, 25, 27995, 329, 2393, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1615, 12453, 25, 7308, 2393, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 3108, 284, 1615, 12453, 13, 2302, 3004, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 11187, 13511, 13, 1136, 62, 8692, 62, 15908, 22784, 1615, 12453, 10, 2302, 3004, 8, 628, 220, 220, 220, 825, 7716, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27741, 7716, 12, 24396, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 8612, 378, 2163, 4814, 4943, 628, 220, 220, 220, 825, 9478, 62, 1462, 62, 8841, 7, 944, 11, 4201, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 640, 287, 4201, 284, 257, 28805, 12514, 290, 6870, 340, 355, 4731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4201, 25, 3862, 287, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 965, 7, 19608, 8079, 13, 16514, 276, 12514, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 28805, 12514, 7, 43012, 28, 43012, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 67, 12514, 8, 198 ]
2.947814
709
import dash_html_components as html import dash_core_components as dcc def simple_bubble_chart(id_, title): """Generates simple bubble chart component Args: id (str): Component id title (str): Component title Returns: obj: Html div object """ return html.Div( className="main-card mb-4", children=[ html.Div( title, className="title-bold title-centered", ), html.Hr(), dcc.Graph(id=id_), ], )
[ 11748, 14470, 62, 6494, 62, 5589, 3906, 355, 27711, 198, 11748, 14470, 62, 7295, 62, 5589, 3906, 355, 288, 535, 628, 198, 4299, 2829, 62, 46176, 903, 62, 40926, 7, 312, 62, 11, 3670, 2599, 198, 220, 220, 220, 37227, 8645, 689, 2829, 14310, 8262, 7515, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 357, 2536, 2599, 35100, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 357, 2536, 2599, 35100, 3670, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 25, 367, 20369, 2659, 2134, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 27711, 13, 24095, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 2625, 12417, 12, 9517, 285, 65, 12, 19, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1751, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 24095, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 2625, 7839, 12, 36575, 3670, 12, 38050, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 13, 39, 81, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 37065, 7, 312, 28, 312, 62, 828, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 198 ]
2.02952
271
# -*- coding:UTF-8 -*- #! /usr/bin/python3 print('''for循环使用格式: for <variable> in <sequence>: <statements> else: <statements>\n''') # 以下 for 实例中使用了 break 语句,break 语句用于跳出当前循环体 for a in [1,2,3,4,5,5,6,7,7,8,8,9,9,10,12,13,14,56,78]: if a == 8: print('a = 8 了') break # 直接结束循环 print('a:',a,end= ';') print( ) # continue语句被用来告诉Python跳过当前循环块中的剩余语句,然后继续进行下一轮循环。 for a in [1,2,3,4,5,5,6,7,7,8,8,9,9,10,12,13,14,56,78]: if a == 8: print('|a = 8| ',end=';') continue # 跳出本次循环 print('a:',a,end= ';') print( ) # 如果你需要遍历数字序列,可以使用内置range()函数。它会生成数列 for a in range(10): print(a,end=" ") print( ) for a in range(5,10): print(a,end=' ') print( ) for a in range(0,-15,-3): print(a,end=' ') # 第三个变量表示步长 print( ) list1 = list(range(10,1000,99)) # 可用于创建列表 print(list1) # 循环语句可以有 else 子句,它在穷尽列表(以for循环)或条件变为 false (以while循环)导致循环终止时被执行,但循环被break终止时不执行。 for a in range(6): print(a) else: print('here is the end') # 例如 for n in range(2, 20): for x in range(2, n): if n % x == 0: print(n, '=', x, '*', n//x) break else: # 循环中没有找到元素 print(n, '是质数') while a in range(5): pass # Python pass是空语句,是为了保持程序结构的完整性,pass不做任何事情,一般用做占位语句.
[ 2, 532, 9, 12, 19617, 25, 48504, 12, 23, 532, 9, 12, 201, 198, 2, 0, 1220, 14629, 14, 8800, 14, 29412, 18, 201, 198, 4798, 7, 7061, 6, 1640, 36181, 103, 163, 236, 107, 45635, 18796, 101, 43718, 120, 28156, 237, 171, 120, 248, 201, 198, 1640, 1279, 45286, 29, 287, 1279, 43167, 31175, 201, 198, 220, 220, 220, 1279, 14269, 3196, 29, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 1279, 14269, 3196, 29, 59, 77, 7061, 11537, 201, 198, 2, 220, 20015, 98, 10310, 233, 329, 10263, 106, 252, 160, 122, 233, 40792, 45635, 18796, 101, 12859, 228, 2270, 5525, 107, 255, 20998, 98, 171, 120, 234, 9032, 5525, 107, 255, 20998, 98, 18796, 101, 12859, 236, 164, 115, 111, 49035, 118, 37605, 241, 30298, 235, 36181, 103, 163, 236, 107, 19526, 241, 201, 198, 1640, 257, 287, 685, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 20, 11, 21, 11, 22, 11, 22, 11, 23, 11, 23, 11, 24, 11, 24, 11, 940, 11, 1065, 11, 1485, 11, 1415, 11, 3980, 11, 3695, 5974, 201, 198, 220, 220, 220, 611, 257, 6624, 807, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 64, 796, 807, 220, 12859, 228, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 1303, 13328, 249, 112, 162, 236, 98, 163, 119, 241, 30266, 253, 36181, 103, 163, 236, 107, 201, 198, 220, 220, 220, 3601, 10786, 64, 171, 120, 248, 3256, 64, 11, 437, 28, 705, 26, 11537, 201, 198, 4798, 7, 1267, 201, 198, 2, 2555, 46237, 255, 20998, 98, 164, 95, 104, 18796, 101, 30266, 98, 37772, 232, 46237, 231, 37906, 164, 115, 111, 32573, 229, 37605, 241, 30298, 235, 36181, 103, 163, 236, 107, 161, 251, 245, 40792, 21410, 30298, 102, 19526, 247, 46237, 255, 20998, 98, 171, 120, 234, 47078, 114, 28938, 236, 163, 119, 100, 163, 119, 255, 32573, 249, 26193, 234, 10310, 233, 31660, 164, 121, 106, 36181, 103, 163, 236, 107, 16764, 201, 198, 1640, 257, 287, 685, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 20, 11, 21, 11, 22, 11, 22, 11, 23, 11, 23, 11, 24, 11, 24, 11, 940, 11, 1065, 11, 1485, 11, 1415, 11, 3980, 11, 3695, 5974, 201, 198, 220, 220, 220, 611, 257, 6624, 807, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 91, 64, 796, 807, 91, 46083, 437, 11639, 26, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 1303, 5525, 115, 111, 49035, 118, 17312, 105, 162, 105, 94, 36181, 103, 163, 236, 107, 201, 198, 220, 220, 220, 3601, 10786, 64, 25, 3256, 64, 11, 437, 28, 705, 26, 11537, 201, 198, 4798, 7, 1267, 201, 198, 201, 198, 2, 10263, 99, 224, 162, 252, 250, 19526, 254, 165, 250, 222, 17358, 223, 34402, 235, 43889, 228, 46763, 108, 27764, 245, 41753, 237, 26344, 245, 171, 120, 234, 20998, 107, 20015, 98, 45635, 18796, 101, 37863, 227, 163, 121, 106, 9521, 3419, 49035, 121, 46763, 108, 16764, 22522, 225, 27670, 248, 37955, 22755, 238, 46763, 108, 26344, 245, 201, 198, 1640, 257, 287, 2837, 7, 940, 2599, 201, 198, 220, 220, 220, 3601, 7, 64, 11, 437, 2625, 366, 8, 201, 198, 4798, 7, 1267, 201, 198, 1640, 257, 287, 2837, 7, 20, 11, 940, 2599, 201, 198, 220, 220, 220, 3601, 7, 64, 11, 437, 11639, 705, 8, 201, 198, 4798, 7, 1267, 201, 198, 1640, 257, 287, 2837, 7, 15, 12095, 1314, 12095, 18, 2599, 201, 198, 220, 220, 220, 3601, 7, 64, 11, 437, 11639, 705, 8, 1303, 13328, 105, 105, 49011, 10310, 103, 20998, 246, 34932, 237, 26193, 101, 163, 97, 118, 29826, 98, 165, 243, 123, 201, 198, 201, 198, 4798, 7, 1267, 201, 198, 4868, 16, 796, 1351, 7, 9521, 7, 940, 11, 12825, 11, 2079, 4008, 1303, 10263, 237, 107, 18796, 101, 12859, 236, 26344, 249, 161, 119, 118, 26344, 245, 26193, 101, 201, 198, 4798, 7, 4868, 16, 8, 201, 198, 2, 10263, 122, 103, 163, 236, 107, 46237, 255, 20998, 98, 20998, 107, 20015, 98, 17312, 231, 2073, 10263, 255, 238, 20998, 98, 171, 120, 234, 22522, 225, 28839, 101, 163, 102, 115, 22887, 121, 26344, 245, 26193, 101, 7, 20015, 98, 1640, 36181, 103, 163, 236, 107, 8, 22755, 244, 30266, 94, 20015, 114, 20998, 246, 10310, 118, 3991, 357, 20015, 98, 4514, 36181, 103, 163, 236, 107, 8, 43380, 120, 164, 229, 112, 36181, 103, 163, 236, 107, 163, 119, 230, 29826, 95, 33768, 114, 164, 95, 104, 33699, 100, 26193, 234, 11, 19526, 228, 36181, 103, 163, 236, 107, 164, 95, 104, 9032, 163, 119, 230, 29826, 95, 33768, 114, 38834, 33699, 100, 26193, 234, 16764, 201, 198, 1640, 257, 287, 2837, 7, 21, 2599, 201, 198, 220, 220, 220, 3601, 7, 64, 8, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 3601, 10786, 1456, 318, 262, 886, 11537, 201, 198, 2, 220, 160, 122, 233, 36685, 224, 201, 198, 1640, 299, 287, 2837, 7, 17, 11, 1160, 2599, 201, 198, 220, 220, 220, 329, 2124, 287, 2837, 7, 17, 11, 299, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 4064, 2124, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 77, 11, 705, 28, 3256, 2124, 11, 705, 9, 3256, 299, 1003, 87, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 122, 103, 163, 236, 107, 40792, 162, 110, 94, 17312, 231, 33699, 122, 26344, 108, 17739, 225, 163, 112, 254, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 77, 11, 705, 42468, 164, 112, 101, 46763, 108, 11537, 201, 198, 4514, 257, 287, 2837, 7, 20, 2599, 201, 198, 220, 220, 220, 1208, 1303, 11361, 1208, 42468, 163, 102, 118, 46237, 255, 20998, 98, 171, 120, 234, 42468, 10310, 118, 12859, 228, 46479, 251, 162, 234, 223, 163, 101, 233, 41753, 237, 163, 119, 241, 162, 252, 226, 21410, 22522, 234, 46763, 112, 45250, 100, 171, 120, 234, 6603, 38834, 161, 223, 248, 20015, 119, 19526, 243, 12859, 233, 46349, 227, 171, 120, 234, 31660, 48958, 105, 18796, 101, 161, 223, 248, 39355, 254, 19526, 235, 46237, 255, 20998, 98, 13 ]
1.202614
1,071
# Copyright 2014 Google Inc. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import packaging.utils from caniuseonlywheels import pypi from test import skip_pypi_timeouts, unittest
[ 2, 15069, 1946, 3012, 3457, 13, 1439, 2489, 10395, 13, 198, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628, 198, 11748, 16846, 13, 26791, 198, 198, 6738, 460, 72, 1904, 8807, 12491, 1424, 1330, 279, 4464, 72, 198, 6738, 1332, 1330, 14267, 62, 79, 4464, 72, 62, 2435, 5269, 11, 555, 715, 395, 628, 628 ]
3.77957
186
import logging import socket import time from collections import defaultdict
[ 11748, 18931, 198, 11748, 17802, 198, 11748, 640, 198, 198, 6738, 17268, 1330, 4277, 11600, 628 ]
4.9375
16
import numpy as np import cv2 import matplotlib.pyplot as plt from pathlib import Path import glob2 as glob import os import sys savedir = "./output/" # Add main support to run file from terminal directly if __name__ == '__main__': args = sys.argv # args[0] = current file # args[1] = function name # args[2:] = function args : (*unpacked) globals()[args[1]](*args[2:])
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 15095, 17, 355, 15095, 198, 11748, 28686, 198, 11748, 25064, 198, 82, 9586, 343, 796, 366, 19571, 22915, 30487, 198, 220, 220, 220, 220, 628, 198, 2, 3060, 1388, 1104, 284, 1057, 2393, 422, 12094, 3264, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 26498, 796, 25064, 13, 853, 85, 198, 220, 220, 220, 1303, 26498, 58, 15, 60, 796, 1459, 2393, 198, 220, 220, 220, 1303, 26498, 58, 16, 60, 796, 2163, 1438, 198, 220, 220, 220, 1303, 26498, 58, 17, 47715, 796, 2163, 26498, 1058, 20789, 403, 34860, 8, 198, 220, 220, 220, 15095, 874, 3419, 58, 22046, 58, 16, 11907, 46491, 22046, 58, 17, 25, 12962 ]
2.731034
145
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- from datetime import datetime, timedelta import logging import pytest import sys import time from azure.servicebus import ServiceBusClient, AutoLockRenewer from azure.servicebus._common.constants import ReceiveMode from devtools_testutils import AzureMgmtTestCase, CachedResourceGroupPreparer from servicebus_preparer import ServiceBusNamespacePreparer, ServiceBusQueuePreparer from stress_tests.stress_test_base import StressTestRunner, ReceiveType LOGGING_ENABLE = False
[ 2, 10097, 45537, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 10097, 35937, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 18931, 198, 11748, 12972, 9288, 198, 11748, 25064, 198, 11748, 640, 198, 198, 6738, 35560, 495, 13, 15271, 10885, 1330, 4809, 16286, 11792, 11, 11160, 25392, 26764, 413, 263, 198, 6738, 35560, 495, 13, 15271, 10885, 13557, 11321, 13, 9979, 1187, 1330, 797, 15164, 19076, 198, 198, 6738, 1614, 31391, 62, 9288, 26791, 1330, 22134, 44, 70, 16762, 14402, 20448, 11, 327, 2317, 26198, 13247, 37534, 11258, 198, 198, 6738, 2139, 10885, 62, 46012, 11258, 1330, 4809, 16286, 36690, 10223, 37534, 11258, 11, 4809, 16286, 34991, 37534, 11258, 198, 6738, 5503, 62, 41989, 13, 41494, 62, 9288, 62, 8692, 1330, 36957, 14402, 49493, 11, 797, 15164, 6030, 198, 198, 25294, 38, 2751, 62, 1677, 17534, 796, 10352, 198 ]
4.543353
173
import logging from healthtools.scrapers.base_scraper import Scraper from healthtools.config import SITES from datetime import datetime class DoctorsScraper(Scraper): ''' Scraper for regular doctors on the medical board website ''' def elasticsearch_format(self, entry): """ Format entry into elasticsearch ready document :param entry: the data to be formatted :return: dictionaries of the entry's metadata and the formatted entry """ date_obj = self.parse_date(entry["reg_date"]) entry["reg_date"] = datetime.strftime(date_obj, "%Y-%m-%d") entry["facility"] = entry["practice_type"] = "-" entry["doctor_type"] = "local_doctor" # all bulk data need meta data describing the data meta_dict = { "index": { "_index": self.es_index, "_type": self.es_doc, "_id": entry["id"] } } return meta_dict, entry
[ 11748, 18931, 198, 198, 6738, 1535, 31391, 13, 1416, 2416, 364, 13, 8692, 62, 1416, 38545, 1330, 1446, 38545, 198, 6738, 1535, 31391, 13, 11250, 1330, 311, 2043, 1546, 198, 6738, 4818, 8079, 1330, 4818, 8079, 628, 198, 4871, 28274, 3351, 38545, 7, 3351, 38545, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1446, 38545, 329, 3218, 7519, 319, 262, 3315, 3096, 3052, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 27468, 12947, 62, 18982, 7, 944, 11, 5726, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18980, 5726, 656, 27468, 12947, 3492, 3188, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5726, 25, 262, 1366, 284, 307, 39559, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 48589, 3166, 286, 262, 5726, 338, 20150, 290, 262, 39559, 5726, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 26801, 796, 2116, 13, 29572, 62, 4475, 7, 13000, 14692, 2301, 62, 4475, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 14692, 2301, 62, 4475, 8973, 796, 4818, 8079, 13, 2536, 31387, 7, 4475, 62, 26801, 11, 36521, 56, 12, 4, 76, 12, 4, 67, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 14692, 38942, 879, 8973, 796, 5726, 14692, 39541, 62, 4906, 8973, 796, 366, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 14692, 35580, 62, 4906, 8973, 796, 366, 12001, 62, 35580, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 477, 11963, 1366, 761, 13634, 1366, 12059, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 13634, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9630, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 9630, 1298, 2116, 13, 274, 62, 9630, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 4906, 1298, 2116, 13, 274, 62, 15390, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 312, 1298, 5726, 14692, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13634, 62, 11600, 11, 5726, 198 ]
2.383693
417
from bisect import bisect def lis(seq, indices=False): '''longest increasing subsequence >>> lis([1, 2, 5, 3, 4]) [1, 2, 3, 4] ''' if not seq: return [] # prevs[i] is the index of the previous element in the longest subsequence # containing element i prevs = [None] * len(seq) # tails[i] is the pair (elem, index) of the lowest element of any # subsequence with length i + 1 tails = [(seq[0], 0)] for i, elem in enumerate(seq[1:], start=1): if elem > tails[-1][0]: prevs[i] = tails[-1][1] tails.append((elem, i)) continue # let's find a tail that we can extend k = bisect(tails, (elem, -1)) if tails[k][0] > elem: tails[k] = (elem, i) if k > 0: prevs[i] = tails[k - 1][1] _, i = tails[-1] subseq = [] while i is not None: subseq.append(i if indices else seq[i]) i = prevs[i] return subseq[::-1]
[ 6738, 47457, 478, 1330, 47457, 478, 628, 198, 4299, 300, 271, 7, 41068, 11, 36525, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 6511, 395, 3649, 6399, 594, 628, 220, 220, 220, 13163, 300, 271, 26933, 16, 11, 362, 11, 642, 11, 513, 11, 604, 12962, 198, 220, 220, 220, 685, 16, 11, 362, 11, 513, 11, 604, 60, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 407, 33756, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 1303, 8654, 82, 58, 72, 60, 318, 262, 6376, 286, 262, 2180, 5002, 287, 262, 14069, 6399, 594, 198, 220, 220, 220, 1303, 7268, 5002, 1312, 198, 220, 220, 220, 8654, 82, 796, 685, 14202, 60, 1635, 18896, 7, 41068, 8, 198, 220, 220, 220, 1303, 30514, 58, 72, 60, 318, 262, 5166, 357, 68, 10671, 11, 6376, 8, 286, 262, 9016, 5002, 286, 597, 198, 220, 220, 220, 1303, 6399, 594, 351, 4129, 1312, 1343, 352, 198, 220, 220, 220, 30514, 796, 47527, 41068, 58, 15, 4357, 657, 15437, 198, 220, 220, 220, 329, 1312, 11, 9766, 76, 287, 27056, 378, 7, 41068, 58, 16, 25, 4357, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9766, 76, 1875, 30514, 58, 12, 16, 7131, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 82, 58, 72, 60, 796, 30514, 58, 12, 16, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30514, 13, 33295, 19510, 68, 10671, 11, 1312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1309, 338, 1064, 257, 7894, 326, 356, 460, 9117, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 47457, 478, 7, 26404, 11, 357, 68, 10671, 11, 532, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30514, 58, 74, 7131, 15, 60, 1875, 9766, 76, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30514, 58, 74, 60, 796, 357, 68, 10671, 11, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8654, 82, 58, 72, 60, 796, 30514, 58, 74, 532, 352, 7131, 16, 60, 198, 220, 220, 220, 4808, 11, 1312, 796, 30514, 58, 12, 16, 60, 198, 220, 220, 220, 850, 41068, 796, 17635, 198, 220, 220, 220, 981, 1312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 850, 41068, 13, 33295, 7, 72, 611, 36525, 2073, 33756, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 8654, 82, 58, 72, 60, 198, 220, 220, 220, 1441, 850, 41068, 58, 3712, 12, 16, 60, 198 ]
2.041068
487
'''A collection of auxiliary functions that might be useful.''' from obscurator import Obscurator from common import Similarity def showcase(s): '''Showcase all tiers of characters on a given sentence.''' print(s) for tiers in [ [Similarity.HIGH], [Similarity.MEDIUM], [Similarity.LOW], ]: o = Obscurator(similarities=tiers) print(o.substitute(s, chance=1))
[ 7061, 6, 32, 4947, 286, 37419, 5499, 326, 1244, 307, 4465, 2637, 7061, 198, 6738, 10666, 333, 1352, 1330, 1835, 1416, 333, 1352, 198, 6738, 2219, 1330, 11014, 414, 198, 198, 4299, 21742, 7, 82, 2599, 198, 220, 220, 220, 705, 7061, 15307, 7442, 477, 33355, 286, 3435, 319, 257, 1813, 6827, 2637, 7061, 198, 220, 220, 220, 3601, 7, 82, 8, 198, 220, 220, 220, 329, 33355, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 685, 18925, 414, 13, 39, 18060, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 18925, 414, 13, 30733, 41796, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 685, 18925, 414, 13, 43, 3913, 4357, 198, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 267, 796, 1835, 1416, 333, 1352, 7, 38610, 871, 28, 83, 3183, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 78, 13, 7266, 301, 3678, 7, 82, 11, 2863, 28, 16, 4008, 198 ]
2.515152
165
from SmartAnno.utils.ConfigReader import ConfigReader from SmartAnno.gui.PreviousNextWidgets import PreviousNextHTML from SmartAnno.gui.Workflow import Workflow from SmartAnno.utils.IntroStep import IntroStep ConfigReader('../conf/smartanno_conf2.json') intro=IntroStep('<h2>Welcome to SmartAnno!</h2><h4>First, let&apos;s import txt data from a directory. </h4>', name='intro') wf = Workflow([intro, PreviousNextHTML(name='finish', description='<h3>Well done!</h3><h4>Now you have finished reviewing all the samples. ') ]) wf.start() intro.navigate(intro.branch_buttons[0])
[ 6738, 10880, 2025, 3919, 13, 26791, 13, 16934, 33634, 1330, 17056, 33634, 198, 6738, 10880, 2025, 3919, 13, 48317, 13, 21448, 10019, 54, 312, 11407, 1330, 21801, 10019, 28656, 198, 6738, 10880, 2025, 3919, 13, 48317, 13, 12468, 11125, 1330, 5521, 11125, 198, 6738, 10880, 2025, 3919, 13, 26791, 13, 5317, 305, 8600, 1330, 37219, 8600, 198, 16934, 33634, 10786, 40720, 10414, 14, 27004, 1236, 78, 62, 10414, 17, 13, 17752, 11537, 198, 600, 305, 28, 5317, 305, 8600, 10786, 27, 71, 17, 29, 14618, 284, 10880, 2025, 3919, 0, 3556, 71, 17, 6927, 71, 19, 29, 5962, 11, 1309, 5, 499, 418, 26, 82, 1330, 256, 742, 1366, 422, 257, 8619, 13, 7359, 71, 19, 29, 3256, 198, 197, 197, 197, 197, 197, 197, 197, 220, 220, 1438, 11639, 600, 305, 11537, 198, 86, 69, 796, 5521, 11125, 26933, 600, 305, 11, 198, 197, 197, 197, 197, 197, 21801, 10019, 28656, 7, 3672, 11639, 15643, 680, 3256, 198, 197, 197, 197, 197, 197, 197, 197, 197, 197, 220, 6764, 11639, 27, 71, 18, 29, 5779, 1760, 0, 3556, 71, 18, 6927, 71, 19, 29, 3844, 345, 423, 5201, 17217, 477, 262, 8405, 13, 705, 8, 198, 197, 197, 197, 197, 197, 33761, 198, 86, 69, 13, 9688, 3419, 198, 600, 305, 13, 28341, 10055, 7, 600, 305, 13, 1671, 3702, 62, 4360, 27288, 58, 15, 12962 ]
2.674009
227
import os, sys file = os.path.join(sys.path[0],"txt/2.txt") print(printText(file))
[ 11748, 28686, 11, 25064, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 17597, 13, 6978, 58, 15, 17241, 14116, 14, 17, 13, 14116, 4943, 201, 198, 201, 198, 4798, 7, 4798, 8206, 7, 7753, 4008, 201, 198 ]
1.960784
51
import aiomeasures import logging from functools import wraps log = logging.getLogger('discord')
[ 11748, 257, 72, 462, 13846, 198, 11748, 18931, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 10786, 15410, 585, 11537, 198 ]
3.37931
29
""" Copyright (c) 2015 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. Add arbitrary yum repo, specified by URL of repo file, to a list of repos which should be injected into built image by the inject_yum_repo plugin. This plugin has to run _BEFORE_ the inject_yum_repo plugin, which actually places the repo file in the build environment. Example configuration to add content of repo file at URL: { "name": "add_yum_repo_by_url", "args": { "repourls": ["http://example.com/myrepo/myrepo.repo"] } } """ from atomic_reactor.plugin import PreBuildPlugin from atomic_reactor.yum_util import YumRepo
[ 37811, 198, 15269, 357, 66, 8, 1853, 2297, 10983, 11, 3457, 198, 3237, 2489, 10395, 13, 198, 198, 1212, 3788, 743, 307, 9518, 290, 9387, 739, 262, 2846, 198, 1659, 262, 347, 10305, 5964, 13, 4091, 262, 38559, 24290, 2393, 329, 3307, 13, 628, 198, 4550, 14977, 331, 388, 29924, 11, 7368, 416, 10289, 286, 29924, 2393, 11, 284, 257, 1351, 286, 198, 260, 1930, 543, 815, 307, 25077, 656, 3170, 2939, 416, 262, 8677, 62, 88, 388, 62, 260, 7501, 198, 33803, 13, 198, 198, 1212, 13877, 468, 284, 1057, 4808, 12473, 30818, 62, 262, 8677, 62, 88, 388, 62, 260, 7501, 13877, 11, 543, 198, 37739, 4113, 262, 29924, 2393, 287, 262, 1382, 2858, 13, 198, 198, 16281, 8398, 284, 751, 2695, 286, 29924, 2393, 379, 10289, 25, 198, 198, 90, 198, 220, 220, 220, 366, 3672, 1298, 366, 2860, 62, 88, 388, 62, 260, 7501, 62, 1525, 62, 6371, 1600, 198, 220, 220, 220, 366, 22046, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7856, 454, 7278, 1298, 14631, 4023, 1378, 20688, 13, 785, 14, 1820, 260, 7501, 14, 1820, 260, 7501, 13, 260, 7501, 8973, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 37811, 198, 6738, 17226, 62, 260, 11218, 13, 33803, 1330, 3771, 15580, 37233, 198, 6738, 17226, 62, 260, 11218, 13, 88, 388, 62, 22602, 1330, 575, 388, 6207, 78, 628 ]
3.142857
231
import final_strategy_train import baseline_strategy import test import time import submissions from os import path TRAIN_START_NAME = submissions.STRATEGY_NAME TRAIN_EPOCH_NUM = submissions.EPOCH_NUM FILENAME = 'savedStrats/' + TRAIN_START_NAME + "_" + str(TRAIN_EPOCH_NUM) + ".pkl" if path.exists(FILENAME): print("Strategy File", FILENAME, "Already Exists!") exit() print("Loading Trainned Results to hit data") startTime = time.time() withHistWinningChanceFileName = TRAIN_START_NAME + "_historyChance.pkl" hitRateFileName = TRAIN_START_NAME + "_hitRate.pkl" final_strategy_train.readWinningChanceWithHistoryResults(withHistWinningChanceFileName) final_strategy_train.readWinnningHitResults(hitRateFileName) readFinishTime = time.time() print("it took",(readFinishTime - startTime),"to read from pre-trained data") final_strategy_train.final_strategy.producing_actual_result = True final_strategy_train.saveStrategy(FILENAME,final_strategy_train.final_strategy) endTime = time.time() timeDiff = endTime - startTime print("Generation Finished in",timeDiff,"seconds")
[ 11748, 2457, 62, 2536, 4338, 62, 27432, 198, 11748, 14805, 62, 2536, 4338, 198, 11748, 1332, 198, 11748, 640, 198, 11748, 22129, 198, 6738, 28686, 1330, 3108, 198, 198, 51, 3861, 1268, 62, 2257, 7227, 62, 20608, 796, 22129, 13, 18601, 6158, 31212, 62, 20608, 198, 51, 3861, 1268, 62, 8905, 46, 3398, 62, 41359, 796, 22129, 13, 8905, 46, 3398, 62, 41359, 198, 198, 46700, 1677, 10067, 796, 705, 82, 9586, 13290, 1381, 14, 6, 1343, 29125, 1268, 62, 2257, 7227, 62, 20608, 1343, 45434, 1, 1343, 965, 7, 51, 3861, 1268, 62, 8905, 46, 3398, 62, 41359, 8, 1343, 27071, 79, 41582, 1, 198, 198, 361, 3108, 13, 1069, 1023, 7, 46700, 1677, 10067, 2599, 198, 220, 220, 220, 3601, 7203, 13290, 4338, 9220, 1600, 34020, 1677, 10067, 11, 366, 37447, 1475, 1023, 2474, 8, 198, 220, 220, 220, 8420, 3419, 198, 198, 4798, 7203, 19031, 16835, 2817, 15691, 284, 2277, 1366, 4943, 198, 198, 9688, 7575, 796, 640, 13, 2435, 3419, 198, 198, 4480, 13749, 16643, 768, 43606, 8979, 5376, 796, 29125, 1268, 62, 2257, 7227, 62, 20608, 1343, 45434, 23569, 43606, 13, 79, 41582, 1, 198, 17945, 32184, 8979, 5376, 796, 29125, 1268, 62, 2257, 7227, 62, 20608, 1343, 45434, 17945, 32184, 13, 79, 41582, 1, 198, 198, 20311, 62, 2536, 4338, 62, 27432, 13, 961, 16643, 768, 43606, 3152, 18122, 25468, 7, 4480, 13749, 16643, 768, 43606, 8979, 5376, 8, 198, 20311, 62, 2536, 4338, 62, 27432, 13, 961, 54, 3732, 768, 17889, 25468, 7, 17945, 32184, 8979, 5376, 8, 198, 961, 48658, 7575, 796, 640, 13, 2435, 3419, 198, 4798, 7203, 270, 1718, 1600, 7, 961, 48658, 7575, 532, 923, 7575, 27267, 1462, 1100, 422, 662, 12, 35311, 1366, 4943, 628, 198, 20311, 62, 2536, 4338, 62, 27432, 13, 20311, 62, 2536, 4338, 13, 36866, 62, 50039, 62, 20274, 796, 6407, 198, 198, 20311, 62, 2536, 4338, 62, 27432, 13, 21928, 13290, 4338, 7, 46700, 1677, 10067, 11, 20311, 62, 2536, 4338, 62, 27432, 13, 20311, 62, 2536, 4338, 8, 628, 198, 437, 7575, 796, 640, 13, 2435, 3419, 198, 2435, 28813, 796, 886, 7575, 532, 923, 7575, 198, 198, 4798, 7203, 8645, 341, 42931, 287, 1600, 2435, 28813, 553, 43012, 4943 ]
2.961957
368
from ..base_internode import BaseInternode __all__ = ['NormCoor']
[ 6738, 11485, 8692, 62, 23124, 1098, 1330, 7308, 15865, 1098, 628, 198, 834, 439, 834, 796, 37250, 35393, 34, 2675, 20520, 628 ]
3.136364
22
#!/usr/bin/python2.7 import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) GPIO.setup(14, GPIO.OUT) GPIO.output(14, GPIO.HIGH)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 17, 13, 22, 198, 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198, 16960, 9399, 13, 2617, 14171, 7, 16960, 9399, 13, 2749, 44, 8, 198, 198, 16960, 9399, 13, 40406, 7, 1415, 11, 50143, 13, 12425, 8, 198, 198, 16960, 9399, 13, 22915, 7, 1415, 11, 50143, 13, 39, 18060, 8, 198 ]
2.033333
60
import pytest from txtble import IndeterminateWidthError, Txtble BAD_STRING = "\x01" ERRMSG = repr(BAD_STRING) + ": string has indeterminate width" @pytest.mark.parametrize( "s", [ "\x0E", "\x0F", # altcharset on/off "\033[17;23H", # move cursor "\a", # bell "\b", # backspace "!\b!", "_\bx", # overstruck printing "\x7F", # delete "\033[H\033[J", # clear screen "\033[?1049h", # altscreen on "\033[?1049l", # altscreen off ], )
[ 11748, 12972, 9288, 198, 6738, 256, 742, 903, 1330, 1423, 13221, 378, 30916, 12331, 11, 309, 742, 903, 198, 198, 33, 2885, 62, 18601, 2751, 796, 37082, 87, 486, 1, 198, 1137, 49, 5653, 38, 796, 41575, 7, 33, 2885, 62, 18601, 2751, 8, 1343, 366, 25, 4731, 468, 773, 13221, 378, 9647, 1, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 82, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 87, 15, 36, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 87, 15, 37, 1600, 220, 1303, 5988, 354, 945, 316, 319, 14, 2364, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 44427, 58, 1558, 26, 1954, 39, 1600, 220, 1303, 1445, 23493, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 64, 1600, 220, 1303, 8966, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 65, 1600, 220, 1303, 736, 13200, 198, 220, 220, 220, 220, 220, 220, 220, 366, 0, 59, 65, 40754, 198, 220, 220, 220, 220, 220, 220, 220, 45434, 59, 65, 87, 1600, 220, 1303, 625, 19554, 694, 13570, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 87, 22, 37, 1600, 220, 1303, 12233, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 44427, 58, 39, 59, 44427, 58, 41, 1600, 220, 1303, 1598, 3159, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 44427, 58, 30, 940, 2920, 71, 1600, 220, 1303, 435, 912, 32060, 319, 198, 220, 220, 220, 220, 220, 220, 220, 37082, 44427, 58, 30, 940, 2920, 75, 1600, 220, 1303, 435, 912, 32060, 572, 198, 220, 220, 220, 16589, 198, 8, 628, 628, 628 ]
1.909091
286
from flask import Flask, render_template, jsonify, redirect import pymongo import scrape_mars # Establish Flask app & mongodb connection app = Flask(__name__) conn = "mongodb://localhost:27017" client = pymongo.MongoClient(conn) # Connect to mongo db and mars_info collection db = client.mars collection = db.mars_info @app.route("/") @app.route("/scrape") if __name__ == "__main__": app.run(debug=True)
[ 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 33918, 1958, 11, 18941, 198, 11748, 279, 4948, 25162, 198, 11748, 42778, 62, 76, 945, 198, 198, 2, 10062, 17148, 46947, 598, 1222, 285, 506, 375, 65, 4637, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 37043, 796, 366, 31059, 375, 65, 1378, 36750, 25, 1983, 29326, 1, 198, 16366, 796, 279, 4948, 25162, 13, 44, 25162, 11792, 7, 37043, 8, 198, 198, 2, 8113, 284, 285, 25162, 20613, 290, 48962, 62, 10951, 4947, 198, 9945, 796, 5456, 13, 76, 945, 198, 43681, 796, 20613, 13, 76, 945, 62, 10951, 628, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 628, 198, 31, 1324, 13, 38629, 7203, 14, 1416, 13484, 4943, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.849315
146
import sys import os.path import re buttonFileName = 'Button/gpio-keys' print "Checking " + buttonFileName if os.path.isfile(buttonFileName): try: print "Setting proper permissions on " + buttonFileName os.chmod(buttonFileName, 0744) except: pass apikeysFileName = 'Clock/ApiKeys.py' wuapi_re = re.compile('\\s*wuapi\\s*=') dsapi_re = re.compile('\\s*dsapi\\s*=') print "Checking " + apikeysFileName if (os.path.isfile(apikeysFileName)): altered = False foundds = False newfile = '' apikeys = open(apikeysFileName, "r") for aline in apikeys: if dsapi_re.match(aline): foundds = True if wuapi_re.match(aline): print "Removing wuapi key from " + apikeysFileName altered = True else: newfile += aline apikeys.close() if not foundds: print "This version of PiClock requires a DarkSky api key." print "https://darksky.net/dev" print "Enter your DarkSky api key." print "key:", k = sys.stdin.readline() k = k.strip() if len(k) > 1: newfile += "dsapi = '" + k + "'" altered = True if altered: print "Writing Updated " + apikeysFileName apikeys = open(apikeysFileName, "w") apikeys.write(newfile) apikeys.close() else: print "No changes made to " + apikeysFileName
[ 11748, 25064, 198, 11748, 28686, 13, 6978, 198, 11748, 302, 198, 198, 16539, 8979, 5376, 796, 705, 21864, 14, 31197, 952, 12, 13083, 6, 198, 4798, 366, 9787, 278, 366, 1343, 4936, 8979, 5376, 198, 361, 28686, 13, 6978, 13, 4468, 576, 7, 16539, 8979, 5376, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 34149, 1774, 21627, 319, 366, 1343, 4936, 8979, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 4666, 7, 16539, 8979, 5376, 11, 8753, 2598, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 499, 522, 893, 8979, 5376, 796, 705, 44758, 14, 32, 14415, 40729, 13, 9078, 6, 198, 43812, 15042, 62, 260, 796, 302, 13, 5589, 576, 10786, 6852, 82, 9, 43812, 15042, 6852, 82, 9, 28, 11537, 198, 9310, 15042, 62, 260, 796, 302, 13, 5589, 576, 10786, 6852, 82, 9, 9310, 15042, 6852, 82, 9, 28, 11537, 198, 198, 4798, 366, 9787, 278, 366, 1343, 2471, 522, 893, 8979, 5376, 198, 361, 357, 418, 13, 6978, 13, 4468, 576, 7, 499, 522, 893, 8979, 5376, 8, 2599, 198, 220, 220, 220, 14294, 796, 10352, 198, 220, 220, 220, 1043, 9310, 796, 10352, 198, 220, 220, 220, 649, 7753, 796, 10148, 198, 220, 220, 220, 2471, 522, 893, 796, 1280, 7, 499, 522, 893, 8979, 5376, 11, 366, 81, 4943, 198, 220, 220, 220, 329, 435, 500, 287, 2471, 522, 893, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 82, 15042, 62, 260, 13, 15699, 7, 20663, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 9310, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 266, 84, 15042, 62, 260, 13, 15699, 7, 20663, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 8413, 5165, 266, 84, 15042, 1994, 422, 366, 1343, 2471, 522, 893, 8979, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14294, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 7753, 15853, 435, 500, 198, 220, 220, 220, 2471, 522, 893, 13, 19836, 3419, 628, 220, 220, 220, 611, 407, 1043, 9310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1212, 2196, 286, 13993, 44758, 4433, 257, 3801, 22308, 40391, 1994, 526, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5450, 1378, 67, 5558, 2584, 13, 3262, 14, 7959, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 17469, 534, 3801, 22308, 40391, 1994, 526, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 2539, 25, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 25064, 13, 19282, 259, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 74, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 7753, 15853, 366, 9310, 15042, 796, 705, 1, 1343, 479, 1343, 24018, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14294, 796, 6407, 628, 220, 220, 220, 611, 14294, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 33874, 19433, 366, 1343, 2471, 522, 893, 8979, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 2471, 522, 893, 796, 1280, 7, 499, 522, 893, 8979, 5376, 11, 366, 86, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2471, 522, 893, 13, 13564, 7, 3605, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2471, 522, 893, 13, 19836, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 2949, 2458, 925, 284, 366, 1343, 2471, 522, 893, 8979, 5376, 198 ]
2.148036
662
from typing import NamedTuple ## Security class ChallengeInfo(NamedTuple): """ Attributes: id (int): The id of the challenge challenge (str): The challenge to complete """ id: int challenge: str
[ 6738, 19720, 1330, 34441, 51, 29291, 628, 198, 2235, 4765, 198, 4871, 13879, 12360, 7, 45, 2434, 51, 29291, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 357, 600, 2599, 383, 4686, 286, 262, 4427, 198, 220, 220, 220, 220, 220, 220, 220, 4427, 357, 2536, 2599, 383, 4427, 284, 1844, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4686, 25, 493, 198, 220, 220, 220, 4427, 25, 965, 198 ]
2.785714
84
import prctl import signal import subprocess from .output import Output class FfmpegOutput(Output): """ The FfmpegOutput class allows an encoded video stream to be passed to FFmpeg for output, meaning we can take advantange of FFmpeg's wide support for different output formats. Optionally audio recording may be included, where this is handled entirely by FFmpeg. Because we are prepared to accept whatever parameters and values that FFmpeg supports, there is generally no checking up at this level. That may change over time as we develop better expectations as to what can and cannot work. For example, to record an mp4 file use FfmpegOutput("test.mp4") To include audio in the recording, use FfmpegOutput("test.mp4", audio=True) To record an MPEG2 transport stream, use FfmpegOutput("test.ts") In fact, the output filename may include any string of options and an output destination so long as these are meaningful to FFmpeg. So you might even try something like FfmpegOutput("-f mpegts udp://<ip-addr>:<port>"). When audio recording is enabled, the following optional parameters are available: audio_device - the name of the Pulse audio device ("default" is usually OK) audio_sync - time offset (in seconds) to add to the audio stream to ensure synchronisation with the video. So making this more negative will make the audio earlier. In general this may need tweaking depending on the hardware and configuration being used. audio_samplerate, audio_codec, audio_bitrate - the usual audio parameters. """
[ 11748, 778, 34168, 198, 11748, 6737, 198, 11748, 850, 14681, 198, 198, 6738, 764, 22915, 1330, 25235, 628, 198, 4871, 376, 38353, 22071, 26410, 7, 26410, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 376, 38353, 22071, 26410, 1398, 3578, 281, 30240, 2008, 4269, 284, 307, 3804, 284, 18402, 43913, 329, 5072, 11, 198, 220, 220, 220, 3616, 356, 460, 1011, 4026, 858, 286, 18402, 43913, 338, 3094, 1104, 329, 1180, 5072, 17519, 13, 198, 220, 220, 220, 16018, 453, 6597, 8296, 743, 307, 3017, 11, 810, 428, 318, 12118, 5000, 416, 18402, 43913, 13, 628, 220, 220, 220, 4362, 356, 389, 5597, 284, 2453, 4232, 10007, 290, 3815, 326, 18402, 43913, 6971, 11, 198, 220, 220, 220, 612, 318, 4143, 645, 10627, 510, 379, 428, 1241, 13, 1320, 743, 1487, 625, 640, 355, 356, 198, 220, 220, 220, 1205, 1365, 9027, 355, 284, 644, 460, 290, 2314, 670, 13, 628, 220, 220, 220, 1114, 1672, 11, 284, 1700, 281, 29034, 19, 2393, 779, 376, 38353, 22071, 26410, 7203, 9288, 13, 3149, 19, 4943, 198, 220, 220, 220, 1675, 2291, 6597, 287, 262, 8296, 11, 779, 376, 38353, 22071, 26410, 7203, 9288, 13, 3149, 19, 1600, 6597, 28, 17821, 8, 198, 220, 220, 220, 1675, 1700, 281, 41203, 17, 4839, 4269, 11, 779, 376, 38353, 22071, 26410, 7203, 9288, 13, 912, 4943, 198, 220, 220, 220, 554, 1109, 11, 262, 5072, 29472, 743, 2291, 597, 4731, 286, 3689, 290, 281, 5072, 198, 220, 220, 220, 10965, 523, 890, 355, 777, 389, 11570, 284, 18402, 43913, 13, 1406, 345, 1244, 772, 1949, 1223, 198, 220, 220, 220, 588, 376, 38353, 22071, 26410, 7203, 12, 69, 285, 22071, 912, 334, 26059, 1378, 27, 541, 12, 29851, 31175, 27, 634, 29, 11074, 628, 220, 220, 220, 1649, 6597, 8296, 318, 9343, 11, 262, 1708, 11902, 10007, 389, 1695, 25, 198, 220, 220, 220, 6597, 62, 25202, 532, 262, 1438, 286, 262, 25062, 6597, 3335, 5855, 12286, 1, 318, 3221, 7477, 8, 198, 220, 220, 220, 6597, 62, 27261, 532, 640, 11677, 357, 259, 4201, 8, 284, 751, 284, 262, 6597, 4269, 284, 4155, 198, 220, 220, 220, 220, 220, 220, 220, 18305, 5612, 351, 262, 2008, 13, 1406, 1642, 428, 517, 4633, 481, 787, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6597, 2961, 13, 554, 2276, 428, 743, 761, 39272, 6906, 319, 262, 6890, 198, 220, 220, 220, 220, 220, 220, 220, 290, 8398, 852, 973, 13, 198, 220, 220, 220, 6597, 62, 37687, 20053, 378, 11, 6597, 62, 19815, 721, 11, 6597, 62, 2545, 4873, 532, 262, 6678, 6597, 10007, 13, 628, 220, 220, 220, 37227, 198 ]
3.663636
440
from pathlib import Path from pytest import fixture from ..factset import Factset from ..jinja_renderer import JinjaRenderer @fixture @fixture
[ 6738, 3108, 8019, 1330, 10644, 198, 6738, 12972, 9288, 1330, 29220, 198, 6738, 11485, 22584, 2617, 1330, 19020, 2617, 198, 6738, 11485, 18594, 6592, 62, 10920, 11882, 1330, 17297, 6592, 49, 437, 11882, 628, 198, 31, 69, 9602, 628, 198, 31, 69, 9602, 628, 628 ]
3.333333
45
import numpy as np from sklearn.base import BaseEstimator, TransformerMixin
[ 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 8692, 1330, 7308, 22362, 320, 1352, 11, 3602, 16354, 35608, 259, 628, 198 ]
3.291667
24
# PATH interpreter # Copyright (c) 2003-04 Francis Rogers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys import os class Path: """Implementation of the PATH programming language in Python.""" # This class uses the following data attributes: # x: current x position # y: current y position # p: current memory cell pointer # d: current direction # s: whether the next cell is being skipped # mem: array of memory cells # prog: 2-dimensional array of characters that make up the program # plugins: array of plug-in objects for the interpreter to use # func_in: function to use for input # func_out: function to use for output # plug_lock: plugin the interpreter is locked on # verbose: if true, enable debug messages def __init__(self): """Initialize the class.""" self.PATH_DIRECTION_RIGHT = 1 self.PATH_DIRECTION_DOWN = 2 self.PATH_DIRECTION_LEFT = 3 self.PATH_DIRECTION_UP = 4 self.func_in = sys.stdin.read self.func_out = sys.stdout.write self.plug_lock = None self.plugins = [] def __add__(self, x): """Step thru x symbols. Return false if end of program encountered.""" ret = 0 for i in range(x): ret = self.step() if not ret: return ret return ret def addplugin(self, plugin): """This method is called internally by plugins. (To add a plugin to the interpreter: 'execfile(plugin, {"glob_path":prog})') """ self.plugins.append(plugin) def debug(self, msg): """Print a debug message.""" if self.verbose: self.errprint("({},{}) {}".format(self.x, self.y, msg)) def dir2string(self, d): """Get the string representation of a direction id.""" if d == self.PATH_DIRECTION_RIGHT: return "right" elif d == self.PATH_DIRECTION_DOWN: return "down" elif d == self.PATH_DIRECTION_LEFT: return "left" elif d == self.PATH_DIRECTION_UP: return "up" def errprint(self, msg): """Print a message to stderr.""" sys.stderr.write(os.path.basename(sys.argv[0]) + ": " + msg + "\n") def load_prog_file(self, filename): """Load a new program file into the interpreter.""" try: with open(filename) as f: self.prog = f.readlines() if self.prog[0].startswith("#!"): self.prog = self.prog[1:] self.normalize_line_length() except IOError: self.errprint("can't open file '{}'".format(filename)) sys.exit(1) self.reset() def load_prog_array(self, progarray): """Load a new program directly into the interpreter.""" self.prog = progarray self.normalize_line_length() self.reset() def lock(self, plugin): """Lock the interpreter on a specific plugin. (Use path.lock(None) to unlock.)""" self.plug_lock = plugin def redefine_io(self, infunc, outfunc): """Redefine the input and output functions used by the , and . symbols. (Defaults are sys.stdin.read for input and sys.stdout.write for output.""" self.func_in = infunc self.func_out = outfunc def reset(self): """Reset the program state and restart the program.""" self.x = 0 self.y = 0 self.p = 0 self.d = self.PATH_DIRECTION_RIGHT self.s = False self.mem = [0] self.verbose = False for ny in range(len(self.prog)): for nx in range(len(self.prog[ny])): if self.prog[ny][nx] == '$': self.y = ny self.x = nx def run(self): """Run the entire program.""" while not self.step(): pass def runplugins(self): """Run all the loaded plugins on the current symbol.""" for plugin in self.plugins: if not plugin.call(self): return False return True def step(self): """ Step through a single symbol of the program. Returns True if end of program encountered, False if another step should be executed. """ cursym = self.prog[self.y][self.x] if self.s: self.s = False elif self.plug_lock is not None: self.plug_lock.call(self) elif not self.runplugins(): pass elif cursym == '$': self.debug("Start") elif cursym == '#': self.debug("End") return True elif cursym == '!': self.s = True self.debug("Skip next symbol") elif cursym == '}': self.p += 1 if self.p > len(self.mem) - 1: self.mem.append(0) self.debug("New memory cell: {}".format(self.p)) elif cursym == '{': if self.p > 0: self.p -= 1 self.debug("New memory cell: {}".format(self.p)) elif cursym == '/': if self.d == self.PATH_DIRECTION_RIGHT: self.d = self.PATH_DIRECTION_UP elif self.d == self.PATH_DIRECTION_DOWN: self.d = self.PATH_DIRECTION_LEFT elif self.d == self.PATH_DIRECTION_LEFT: self.d = self.PATH_DIRECTION_DOWN elif self.d == self.PATH_DIRECTION_UP: self.d = self.PATH_DIRECTION_RIGHT self.debug("New direction: {}".format(self.dir2string(self.d))) elif cursym == '\\': if self.d == self.PATH_DIRECTION_RIGHT: self.d = self.PATH_DIRECTION_DOWN elif self.d == self.PATH_DIRECTION_DOWN: self.d = self.PATH_DIRECTION_RIGHT elif self.d == self.PATH_DIRECTION_LEFT: self.d = self.PATH_DIRECTION_UP elif self.d == self.PATH_DIRECTION_UP: self.d = self.PATH_DIRECTION_LEFT self.debug("New direction: {}".format(self.dir2string(self.d))) elif cursym == '>': if self.mem[self.p] != 0: self.d = self.PATH_DIRECTION_RIGHT self.debug("New direction: {}".format(self.dir2string(self.d))) elif cursym == 'v': if self.mem[self.p] != 0: self.d = self.PATH_DIRECTION_DOWN self.debug("New direction: {}".format(self.dir2string(self.d))) elif cursym == '<': if self.mem[self.p] != 0: self.d = self.PATH_DIRECTION_LEFT self.debug("New direction: {}".format(self.dir2string(self.d))) elif cursym == '^': if self.mem[self.p] != 0: self.d = self.PATH_DIRECTION_UP self.debug("New direction: {}".format(self.dir2string(self.d))) elif cursym == '+': self.mem[self.p] += 1 if self.mem[self.p] == 256: self.mem[self.p] = 0 self.debug("Incremented memory cell {} to {}".format(self.p, self.mem[self.p])) elif cursym == '-': self.mem[self.p] -= 1 if self.mem[self.p] == -1: self.mem[self.p] = 255 self.debug("Decremented memory cell {} to {}".format(self.p, self.mem[self.p])) elif cursym == ',': self.mem[self.p] = ord(self.func_in(1)) self.debug("Inputted {} to memory cell {}".format(self.mem[self.p], self.p)) elif cursym == '.': self.func_out(chr(self.mem[self.p])) self.debug("Outputted {} from memory cell {}".format(self.mem[self.p], self.p)) if self.d == self.PATH_DIRECTION_RIGHT: self.x += 1 elif self.d == self.PATH_DIRECTION_DOWN: self.y += 1 elif self.d == self.PATH_DIRECTION_LEFT: self.x -= 1 elif self.d == self.PATH_DIRECTION_UP: self.y -= 1 try: self.prog[self.y][self.x] if self.x < 0: raise IndexError if self.y < 0: raise IndexError except IndexError: self.debug("Ran off the side") return True return False
[ 2, 46490, 28846, 198, 2, 15069, 357, 66, 8, 5816, 12, 3023, 12155, 15372, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 220, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 4871, 10644, 25, 198, 220, 220, 220, 37227, 3546, 32851, 286, 262, 46490, 8300, 3303, 287, 11361, 526, 15931, 628, 220, 220, 220, 1303, 770, 1398, 3544, 262, 1708, 1366, 12608, 25, 198, 220, 220, 220, 1303, 2124, 25, 1459, 2124, 2292, 198, 220, 220, 220, 1303, 331, 25, 1459, 331, 2292, 198, 220, 220, 220, 1303, 279, 25, 1459, 4088, 2685, 17562, 198, 220, 220, 220, 1303, 288, 25, 1459, 4571, 198, 220, 220, 220, 1303, 264, 25, 1771, 262, 1306, 2685, 318, 852, 26684, 198, 220, 220, 220, 1303, 1066, 25, 7177, 286, 4088, 4778, 198, 220, 220, 220, 1303, 1172, 25, 362, 12, 19577, 7177, 286, 3435, 326, 787, 510, 262, 1430, 198, 220, 220, 220, 1303, 20652, 25, 7177, 286, 6107, 12, 259, 5563, 329, 262, 28846, 284, 779, 198, 220, 220, 220, 1303, 25439, 62, 259, 25, 2163, 284, 779, 329, 5128, 198, 220, 220, 220, 1303, 25439, 62, 448, 25, 2163, 284, 779, 329, 5072, 198, 220, 220, 220, 1303, 6107, 62, 5354, 25, 13877, 262, 28846, 318, 8970, 319, 198, 220, 220, 220, 1303, 15942, 577, 25, 611, 2081, 11, 7139, 14257, 6218, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 796, 604, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 259, 796, 25064, 13, 19282, 259, 13, 961, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 448, 796, 25064, 13, 19282, 448, 13, 13564, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16875, 62, 5354, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37390, 796, 17635, 628, 220, 220, 220, 825, 11593, 2860, 834, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8600, 33834, 2124, 14354, 13, 8229, 3991, 611, 886, 286, 1430, 12956, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 2116, 13, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1005, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 628, 220, 220, 220, 825, 751, 33803, 7, 944, 11, 13877, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1212, 2446, 318, 1444, 20947, 416, 20652, 13, 628, 220, 220, 220, 220, 220, 220, 220, 357, 2514, 751, 257, 13877, 284, 262, 28846, 25, 705, 18558, 7753, 7, 33803, 11, 19779, 4743, 672, 62, 6978, 1298, 1676, 70, 30072, 11537, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37390, 13, 33295, 7, 33803, 8, 628, 220, 220, 220, 825, 14257, 7, 944, 11, 31456, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18557, 257, 14257, 3275, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 19011, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8056, 4798, 7203, 15090, 5512, 90, 30072, 23884, 1911, 18982, 7, 944, 13, 87, 11, 2116, 13, 88, 11, 31456, 4008, 628, 220, 220, 220, 825, 26672, 17, 8841, 7, 944, 11, 288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 4731, 10552, 286, 257, 4571, 4686, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 3506, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 2902, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 9464, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 288, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 929, 1, 628, 220, 220, 220, 825, 11454, 4798, 7, 944, 11, 31456, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18557, 257, 3275, 284, 336, 1082, 81, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7, 418, 13, 6978, 13, 12093, 12453, 7, 17597, 13, 853, 85, 58, 15, 12962, 1343, 366, 25, 366, 1343, 31456, 1343, 37082, 77, 4943, 628, 220, 220, 220, 825, 3440, 62, 1676, 70, 62, 7753, 7, 944, 11, 29472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 257, 649, 1430, 2393, 656, 262, 28846, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 34345, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 70, 796, 277, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1676, 70, 58, 15, 4083, 9688, 2032, 342, 7203, 2, 2474, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 70, 796, 2116, 13, 1676, 70, 58, 16, 47715, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11265, 1096, 62, 1370, 62, 13664, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8056, 4798, 7203, 5171, 470, 1280, 2393, 705, 90, 92, 6, 1911, 18982, 7, 34345, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42503, 3419, 628, 220, 220, 220, 825, 3440, 62, 1676, 70, 62, 18747, 7, 944, 11, 1172, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8912, 257, 649, 1430, 3264, 656, 262, 28846, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 70, 796, 1172, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11265, 1096, 62, 1370, 62, 13664, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42503, 3419, 628, 220, 220, 220, 825, 5793, 7, 944, 11, 13877, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25392, 262, 28846, 319, 257, 2176, 13877, 13, 357, 11041, 3108, 13, 5354, 7, 14202, 8, 284, 12116, 2014, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16875, 62, 5354, 796, 13877, 628, 220, 220, 220, 825, 34087, 500, 62, 952, 7, 944, 11, 1167, 19524, 11, 503, 20786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7738, 891, 500, 262, 5128, 290, 5072, 5499, 973, 416, 262, 837, 290, 764, 14354, 13, 628, 220, 220, 220, 220, 220, 220, 220, 357, 7469, 13185, 389, 25064, 13, 19282, 259, 13, 961, 329, 5128, 290, 25064, 13, 19282, 448, 13, 13564, 329, 5072, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 259, 796, 1167, 19524, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 448, 796, 503, 20786, 628, 220, 220, 220, 825, 13259, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 262, 1430, 1181, 290, 15765, 262, 1430, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 796, 685, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19011, 577, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 88, 287, 2837, 7, 11925, 7, 944, 13, 1676, 70, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 87, 287, 2837, 7, 11925, 7, 944, 13, 1676, 70, 58, 3281, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1676, 70, 58, 3281, 7131, 77, 87, 60, 6624, 705, 3, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 796, 299, 88, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 796, 299, 87, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 262, 2104, 1430, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 981, 407, 2116, 13, 9662, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 1057, 37390, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 477, 262, 9639, 20652, 319, 262, 1459, 6194, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 329, 13877, 287, 2116, 13, 37390, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 13877, 13, 13345, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 2239, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5012, 832, 257, 2060, 6194, 286, 262, 1430, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 6407, 611, 886, 286, 1430, 12956, 11, 10352, 611, 198, 220, 220, 220, 220, 220, 220, 220, 1194, 2239, 815, 307, 10945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 37047, 796, 2116, 13, 1676, 70, 58, 944, 13, 88, 7131, 944, 13, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 16875, 62, 5354, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16875, 62, 5354, 13, 13345, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 2116, 13, 5143, 37390, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 3, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 10434, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 2, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 12915, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 0, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 50232, 1306, 6194, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 92, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 79, 1875, 18896, 7, 944, 13, 11883, 8, 532, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 13, 33295, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4088, 2685, 25, 23884, 1911, 18982, 7, 944, 13, 79, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 90, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 79, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4088, 2685, 25, 23884, 1911, 18982, 7, 944, 13, 79, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 31051, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4571, 25, 23884, 1911, 18982, 7, 944, 13, 15908, 17, 8841, 7, 944, 13, 67, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 6852, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4571, 25, 23884, 1911, 18982, 7, 944, 13, 15908, 17, 8841, 7, 944, 13, 67, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 29, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11883, 58, 944, 13, 79, 60, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4571, 25, 23884, 1911, 18982, 7, 944, 13, 15908, 17, 8841, 7, 944, 13, 67, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11883, 58, 944, 13, 79, 60, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4571, 25, 23884, 1911, 18982, 7, 944, 13, 15908, 17, 8841, 7, 944, 13, 67, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 27, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11883, 58, 944, 13, 79, 60, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4571, 25, 23884, 1911, 18982, 7, 944, 13, 15908, 17, 8841, 7, 944, 13, 67, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 61, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11883, 58, 944, 13, 79, 60, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 796, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 3791, 4571, 25, 23884, 1911, 18982, 7, 944, 13, 15908, 17, 8841, 7, 944, 13, 67, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 10, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 58, 944, 13, 79, 60, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11883, 58, 944, 13, 79, 60, 6624, 17759, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 58, 944, 13, 79, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 15562, 12061, 4088, 2685, 23884, 284, 23884, 1911, 18982, 7, 944, 13, 79, 11, 2116, 13, 11883, 58, 944, 13, 79, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 12, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 58, 944, 13, 79, 60, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11883, 58, 944, 13, 79, 60, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 58, 944, 13, 79, 60, 796, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 43198, 12061, 4088, 2685, 23884, 284, 23884, 1911, 18982, 7, 944, 13, 79, 11, 2116, 13, 11883, 58, 944, 13, 79, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 4032, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11883, 58, 944, 13, 79, 60, 796, 2760, 7, 944, 13, 20786, 62, 259, 7, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 20560, 1513, 23884, 284, 4088, 2685, 23884, 1911, 18982, 7, 944, 13, 11883, 58, 944, 13, 79, 4357, 2116, 13, 79, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1090, 37047, 6624, 705, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20786, 62, 448, 7, 354, 81, 7, 944, 13, 11883, 58, 944, 13, 79, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 26410, 1513, 23884, 422, 4088, 2685, 23884, 1911, 18982, 7, 944, 13, 11883, 58, 944, 13, 79, 4357, 2116, 13, 79, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 49, 9947, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 41925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 2538, 9792, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 67, 6624, 2116, 13, 34219, 62, 17931, 23988, 2849, 62, 8577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 70, 58, 944, 13, 88, 7131, 944, 13, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 87, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 88, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 49, 272, 572, 262, 1735, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198 ]
2.140331
4,354
# Generated by Django 3.0.6 on 2020-05-28 19:33 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 21, 319, 12131, 12, 2713, 12, 2078, 678, 25, 2091, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
"""Tests for 'layout' filters.""" from flask_extras.filters import layout class TestBs3Col: """All tests for bs3 col function.""" def test_returns_right_width(self): """Test the return value for a valid type.""" assert layout.bs3_cols(1) == 12 assert layout.bs3_cols(2) == 6 assert layout.bs3_cols(3) == 4 assert layout.bs3_cols(4) == 3 assert layout.bs3_cols(5) == 2 assert layout.bs3_cols(6) == 2 def test_returns_right_width_bad_data(self): """Test the return value for an invalid type.""" assert layout.bs3_cols(None) == 12 assert layout.bs3_cols('foo') == 12 assert layout.bs3_cols(dict()) == 12
[ 37811, 51, 3558, 329, 705, 39786, 6, 16628, 526, 15931, 198, 198, 6738, 42903, 62, 2302, 8847, 13, 10379, 1010, 1330, 12461, 628, 198, 4871, 6208, 37000, 18, 5216, 25, 198, 220, 220, 220, 37227, 3237, 5254, 329, 275, 82, 18, 951, 2163, 526, 15931, 628, 220, 220, 220, 825, 1332, 62, 7783, 82, 62, 3506, 62, 10394, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 1441, 1988, 329, 257, 4938, 2099, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 16, 8, 6624, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 17, 8, 6624, 718, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 18, 8, 6624, 604, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 19, 8, 6624, 513, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 20, 8, 6624, 362, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 21, 8, 6624, 362, 628, 220, 220, 220, 825, 1332, 62, 7783, 82, 62, 3506, 62, 10394, 62, 14774, 62, 7890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 1441, 1988, 329, 281, 12515, 2099, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 14202, 8, 6624, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 10786, 21943, 11537, 6624, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 12461, 13, 1443, 18, 62, 4033, 82, 7, 11600, 28955, 6624, 1105, 198 ]
2.28479
309
# -*- coding: utf-8 -*- from nose.tools import * import sys import logging from rainbow_logging_handler import RainbowLoggingHandler
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 9686, 13, 31391, 1330, 1635, 198, 11748, 25064, 198, 11748, 18931, 198, 6738, 27223, 62, 6404, 2667, 62, 30281, 1330, 19909, 11187, 2667, 25060, 628, 198 ]
3.292683
41
from Resources.required_modules import pymodules pymodules.install(pymodules.presets.modules("mailer")) from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import smtplib import ssl # Repeated mailing to a single address def mail_repeated_address(message_object, data_object, reciever_address, repeat_amount=1): """ :param message_object - mailman_message("test subject", "test body", Mailman.plain) :param data_object - mailman_data("[email protected]", "password", repeated_amount=5) :param reciever_address - The address to send the mail to :param repeat_amount - The amount of times the email will be sent """ mailer = Mailman(data_object.sender, data_object.password, data_object.content_type) for index in range(0, repeat_amount, 1): mailer.send(reciever_address, \ mailer.format_mail(message_object.subject, message_object.message, reciever_address, message_object.content_type))
[ 6738, 13864, 13, 35827, 62, 18170, 1330, 12972, 18170, 198, 9078, 18170, 13, 17350, 7, 9078, 18170, 13, 18302, 1039, 13, 18170, 7203, 4529, 263, 48774, 198, 198, 6738, 3053, 13, 76, 524, 13, 16680, 541, 433, 1330, 337, 3955, 3620, 586, 541, 433, 198, 6738, 3053, 13, 76, 524, 13, 5239, 1330, 337, 3955, 2767, 2302, 198, 11748, 895, 83, 489, 571, 198, 11748, 264, 6649, 198, 198, 2, 30558, 515, 21898, 284, 257, 2060, 2209, 198, 4299, 6920, 62, 45956, 515, 62, 21975, 7, 20500, 62, 15252, 11, 1366, 62, 15252, 11, 664, 47818, 62, 21975, 11, 9585, 62, 17287, 28, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 3275, 62, 15252, 532, 6920, 805, 62, 20500, 7203, 9288, 2426, 1600, 366, 9288, 1767, 1600, 11099, 805, 13, 25638, 8, 198, 220, 220, 220, 1058, 17143, 1366, 62, 15252, 532, 6920, 805, 62, 7890, 7203, 9288, 31, 14816, 13, 785, 1600, 366, 28712, 1600, 5100, 62, 17287, 28, 20, 8, 198, 220, 220, 220, 1058, 17143, 664, 47818, 62, 21975, 532, 383, 2209, 284, 3758, 262, 6920, 284, 198, 220, 220, 220, 1058, 17143, 9585, 62, 17287, 532, 383, 2033, 286, 1661, 262, 3053, 481, 307, 1908, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6920, 263, 796, 11099, 805, 7, 7890, 62, 15252, 13, 82, 2194, 11, 1366, 62, 15252, 13, 28712, 11, 1366, 62, 15252, 13, 11299, 62, 4906, 8, 198, 220, 220, 220, 329, 6376, 287, 2837, 7, 15, 11, 9585, 62, 17287, 11, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6920, 263, 13, 21280, 7, 8344, 47818, 62, 21975, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6920, 263, 13, 18982, 62, 4529, 7, 20500, 62, 15252, 13, 32796, 11, 3275, 62, 15252, 13, 20500, 11, 664, 47818, 62, 21975, 11, 3275, 62, 15252, 13, 11299, 62, 4906, 4008 ]
3.03125
320
from graphSearch import GraphSearch from DeepFeatures import DeepFeatures import os import glob import json <<<<<<< HEAD ======= <<<<<<< HEAD ======= >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 import argparse import numpy as np import scipy from skimage import transform <<<<<<< HEAD ======= >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 file_list_name = 'image_index_file.json' file_list_path = os.path.join(os.getcwd(), file_list_name) <<<<<<< HEAD # TODO convert this to argument and move defaults to the parameters # file. self.feature_gen = DeepFeatures(feature_type={ 'model': 'custom', 'input_layer': 'default', 'output_layer': 'fc2'}) ======= self.feature_gen = DeepFeatures(feature_type={ 'model': 'custom', 'input_layer': 'default', 'output_layer': 'fc2'}) >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 self.folder_name = image_folder_name self.files = glob.glob(os.path.join(self.folder_name, '**/*.jpg')) self.num_files = len(self.files) print("Number of files", len(self.files)) <<<<<<< HEAD ======= <<<<<<< HEAD self.index_file_generator(self.files, force_generation=True) self.feature_gen = DeepFeatures(feature_type={ 'model': 'custom', 'input_layer': 'default', 'output_layer': 'fc2'}) ======= >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 def create_index(self, create_new=False): """ Loads the image index from disk if it is available. Args - create_new : If True creates a new index using images in input folder. """ self.feature_store = [] if create_new: # Create the index file before creating the features and generating # the index. self.index_file_generator(self.files, force_generation=True) for idx, file_name in enumerate(self.files): image = self.feature_gen.read_image(file_name) feature = self.feature_gen.get_feature(image) self.feature_store.append(feature.ravel()) self.gs.create_index(np.array(feature_store, np.float32), np.arange(len(self.num_files))) self.gs.save_index() else: # Load index from disk if available. self.gs.load_index() def get_match(self, image_file): """ Retrieve closest matching image given an input image_file Args - image_file : Query image file. return - match_idx : Index id of matched image. self.files[match_idx[0]] : Filename of Matched image. """ image = self.feature_gen.read_image(image_file) feature = self.feature_gen.get_feature(image) <<<<<<< HEAD match_idx = self.gs.knn(feature.ravel())[0][0] print("Match id", match_idx) return match_idx, self.files[match_idx[0]] def index_file_loader(self): """ Loads the image file list index from disk. Image list index ensures that file modifications do not affect indexing. Index files need to be generated. """ with open(file_list_path) as file: self.file_list = json.loads(file.read()) ======= <<<<<<< HEAD return self.gs.knn(feature.ravel())[0][0] ======= match_idx = self.gs.knn(feature.ravel())[0][0] print("Match id", match_idx) return match_idx, self.files[match_idx[0]] >>>>>>> Adding changes <<<<<<< HEAD ======= >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 self.files = [os.path.join(self.folder_name, self.file_list['index'][ str(idx)]) for idx, i in enumerate(self.file_list['index'])] self.num_files = len(self.files) <<<<<<< HEAD ======= >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 ''' Function creates a json file to keep track of index keys that correspond to particular images that are indexed. This is nesseary to ensure that indexes created on one host can be reused on another where the file structure is modified or has been tampered with. As long as folder structure remains the same this indexing will hold. Missing files can then be restructured. This index can later be moved to a datbase entry. Args : filenames -> Names of the input files force_generation -> force a new index file creation even if an index file exists. ''' if os.path.isfile(file_list_path) and not force_generation: print('Index File found skipping file generation') exit() print('Generating file list.') <<<<<<< HEAD ======= <<<<<<< HEAD file_list = {} file_list['index'] = [] ======= >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 if filenames == None: filenames = self.files file_list = {} file_list['index'] = {} <<<<<<< HEAD ======= >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 for idx, i in enumerate(filenames): ''' Strip filepath to only classname and file id. This will keep things sane when working across multiple systems. As long as the file structure is maintained we should be good ''' <<<<<<< HEAD file_list['index'][str(idx)] = '/'.join(i.split('/')[-2:]) ======= <<<<<<< HEAD file_list['index'].append( "{'" + str(idx) + "':'" + '/'.join(i.split('/')[-2:]) + "'}") ======= file_list['index'][str(idx)] = '/'.join(i.split('/')[-2:]) >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 with open(file_list_path, 'w') as outfile: # save to Json file json.dump(file_list, outfile) print('File List saved to ' + file_list_path) <<<<<<< HEAD def batch_feature_store(self): """ Function performs batch feature generation for indexing. """ ======= <<<<<<< HEAD ======= >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 self.index_file_loader() gs = GraphSearch() # TODO Remove all hard links. print(len(self.files)) feature_store = [] # TODO Remove hardcoded value. file_indexes = np.random.choice(len(self.files), self.num_files) <<<<<<< HEAD ======= >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 print(file_indexes.size) # TODO Move batchsize to properties file. batch_size = 128 image_batch = [] for idx, filenumber in enumerate(file_indexes): print(idx) image_decoded = scipy.ndimage.imread( <<<<<<< HEAD self.files[filenumber], flatten=False, mode=None) ======= <<<<<<< HEAD files[filenumber], flatten=False, mode=None) ======= self.files[filenumber], flatten=False, mode=None) >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 # TODO Move hardcoded values to properties file. image_decoded = transform.resize(image_decoded, [224, 224, 3]) image_decoded = np.expand_dims(image_decoded, axis=0) if image_batch == []: image_batch = image_decoded else: image_batch = np.concatenate( (image_batch, image_decoded), axis=0) if (not (idx) % (batch_size)) or (idx >= len(file_indexes) - 1): print(image_batch.shape) feature_store.extend(self.feature_gen.get_feature(image_batch)) image_batch = [] print('feature_store shape', np.array(feature_store).shape) gs.create_index(np.array(feature_store, np.float32), file_indexes) gs.save_index() <<<<<<< HEAD ======= query = gs.knn(feature_store[0]) print(query) <<<<<<< HEAD ======= >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3 if __name__ == '__main__': parser = argparse.ArgumentParser( description='Split images from folder into test and validation') parser.add_argument('--dataset_folder', dest='folder_name', help='Folder with dataset') parser.add_argument( '--create_index_file', action='store_true', dest='create_index') parser.add_argument( '--generate_image_index', action='store_true', dest='generate_features') args = parser.parse_args() folder_name = args.folder_name print(folder_name) ig = ImageRetrieval(folder_name) if args.create_index: ig.index_file_generator(force_generation=True) if args.generate_features: ig.batch_feature_store() ig.index_file_loader() <<<<<<< HEAD ======= >>>>>>> Adding changes >>>>>>> c5b3a9dac6d0789cc8005df728bc69dff4b455b3
[ 198, 6738, 4823, 18243, 1330, 29681, 18243, 198, 6738, 10766, 23595, 1330, 10766, 23595, 198, 11748, 28686, 198, 11748, 15095, 198, 11748, 33918, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 198, 6738, 1341, 9060, 1330, 6121, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 198, 7753, 62, 4868, 62, 3672, 796, 705, 9060, 62, 9630, 62, 7753, 13, 17752, 6, 198, 7753, 62, 4868, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 2393, 62, 4868, 62, 3672, 8, 198, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 10385, 428, 284, 4578, 290, 1445, 26235, 284, 262, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 62, 5235, 796, 10766, 23595, 7, 30053, 62, 4906, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 10354, 705, 23144, 3256, 705, 15414, 62, 29289, 10354, 705, 12286, 3256, 705, 22915, 62, 29289, 10354, 705, 16072, 17, 6, 30072, 198, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 62, 5235, 796, 10766, 23595, 7, 30053, 62, 4906, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 10354, 705, 23144, 3256, 705, 15414, 62, 29289, 10354, 705, 12286, 3256, 705, 22915, 62, 29289, 10354, 705, 16072, 17, 6, 30072, 198, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43551, 62, 3672, 796, 2939, 62, 43551, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16624, 796, 15095, 13, 4743, 672, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 43551, 62, 3672, 11, 705, 1174, 15211, 13, 9479, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 16624, 796, 18896, 7, 944, 13, 16624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15057, 286, 3696, 1600, 18896, 7, 944, 13, 16624, 4008, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9630, 62, 7753, 62, 8612, 1352, 7, 944, 13, 16624, 11, 2700, 62, 20158, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 62, 5235, 796, 10766, 23595, 7, 30053, 62, 4906, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 10354, 705, 23144, 3256, 705, 15414, 62, 29289, 10354, 705, 12286, 3256, 705, 22915, 62, 29289, 10354, 705, 16072, 17, 6, 30072, 198, 1421, 18604, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 628, 220, 220, 220, 825, 2251, 62, 9630, 7, 944, 11, 2251, 62, 3605, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8778, 82, 262, 2939, 6376, 422, 11898, 611, 340, 318, 1695, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 532, 220, 2251, 62, 3605, 1058, 1002, 6407, 8075, 257, 649, 6376, 1262, 4263, 287, 5128, 9483, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 62, 8095, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2251, 62, 3605, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 6376, 2393, 878, 4441, 262, 3033, 290, 15453, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 6376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9630, 62, 7753, 62, 8612, 1352, 7, 944, 13, 16624, 11, 2700, 62, 20158, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 2393, 62, 3672, 287, 27056, 378, 7, 944, 13, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 30053, 62, 5235, 13, 961, 62, 9060, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 796, 2116, 13, 30053, 62, 5235, 13, 1136, 62, 30053, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30053, 62, 8095, 13, 33295, 7, 30053, 13, 25843, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14542, 13, 17953, 62, 9630, 7, 37659, 13, 18747, 7, 30053, 62, 8095, 11, 45941, 13, 22468, 2624, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 283, 858, 7, 11925, 7, 944, 13, 22510, 62, 16624, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14542, 13, 21928, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 6376, 422, 11898, 611, 1695, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14542, 13, 2220, 62, 9630, 3419, 628, 220, 220, 220, 825, 651, 62, 15699, 7, 944, 11, 2939, 62, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4990, 30227, 11706, 12336, 2939, 1813, 281, 5128, 2939, 62, 7753, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 532, 2939, 62, 7753, 1058, 43301, 2939, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 2872, 62, 312, 87, 1058, 12901, 4686, 286, 14451, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16624, 58, 15699, 62, 312, 87, 58, 15, 11907, 1058, 7066, 12453, 286, 6550, 1740, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 30053, 62, 5235, 13, 961, 62, 9060, 7, 9060, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 796, 2116, 13, 30053, 62, 5235, 13, 1136, 62, 30053, 7, 9060, 8, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 312, 87, 796, 2116, 13, 14542, 13, 15418, 77, 7, 30053, 13, 25843, 28955, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 23850, 4686, 1600, 2872, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2872, 62, 312, 87, 11, 2116, 13, 16624, 58, 15699, 62, 312, 87, 58, 15, 11907, 628, 220, 220, 220, 825, 6376, 62, 7753, 62, 29356, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8778, 82, 262, 2939, 2393, 1351, 6376, 422, 11898, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7412, 1351, 6376, 19047, 326, 2393, 19008, 466, 407, 2689, 6376, 278, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 3696, 761, 284, 307, 7560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 4868, 62, 6978, 8, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7753, 62, 4868, 796, 33918, 13, 46030, 7, 7753, 13, 961, 28955, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 14542, 13, 15418, 77, 7, 30053, 13, 25843, 28955, 58, 15, 7131, 15, 60, 198, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 312, 87, 796, 2116, 13, 14542, 13, 15418, 77, 7, 30053, 13, 25843, 28955, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 23850, 4686, 1600, 2872, 62, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2872, 62, 312, 87, 11, 2116, 13, 16624, 58, 15699, 62, 312, 87, 58, 15, 11907, 198, 16471, 33409, 220, 18247, 2458, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16624, 796, 685, 418, 13, 6978, 13, 22179, 7, 944, 13, 43551, 62, 3672, 11, 2116, 13, 7753, 62, 4868, 17816, 9630, 6, 7131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 312, 87, 8, 12962, 329, 4686, 87, 11, 1312, 287, 27056, 378, 7, 944, 13, 7753, 62, 4868, 17816, 9630, 6, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 16624, 796, 18896, 7, 944, 13, 16624, 8, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 15553, 8075, 257, 33918, 2393, 284, 1394, 2610, 286, 6376, 8251, 326, 198, 220, 220, 220, 220, 220, 220, 220, 6053, 284, 1948, 4263, 326, 389, 41497, 13, 770, 318, 299, 35270, 560, 198, 220, 220, 220, 220, 220, 220, 220, 284, 4155, 326, 39199, 2727, 319, 530, 2583, 460, 307, 46823, 319, 1194, 198, 220, 220, 220, 220, 220, 220, 220, 810, 262, 2393, 4645, 318, 9518, 393, 468, 587, 21885, 13653, 351, 13, 1081, 890, 198, 220, 220, 220, 220, 220, 220, 220, 355, 9483, 4645, 3793, 262, 976, 428, 6376, 278, 481, 1745, 13, 25639, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 460, 788, 307, 27596, 1522, 13, 770, 6376, 460, 1568, 307, 3888, 284, 257, 4818, 8692, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 4613, 28531, 286, 262, 5128, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 20158, 4613, 2700, 257, 649, 6376, 2393, 6282, 772, 611, 281, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 2393, 7160, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 7753, 62, 4868, 62, 6978, 8, 290, 407, 2700, 62, 20158, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15732, 9220, 1043, 31017, 2393, 5270, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 8645, 803, 2393, 1351, 2637, 8, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 17816, 9630, 20520, 796, 17635, 198, 1421, 18604, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1226, 268, 1047, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 796, 2116, 13, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 17816, 9630, 20520, 796, 23884, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 1312, 287, 27056, 378, 7, 10379, 268, 1047, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 18508, 2393, 6978, 284, 691, 1398, 3672, 290, 2393, 4686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 481, 1394, 1243, 33241, 618, 1762, 1973, 3294, 3341, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1081, 890, 355, 262, 2393, 4645, 318, 9456, 356, 815, 307, 922, 705, 7061, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 17816, 9630, 6, 7131, 2536, 7, 312, 87, 15437, 796, 31051, 4458, 22179, 7, 72, 13, 35312, 10786, 14, 11537, 58, 12, 17, 25, 12962, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 17816, 9630, 6, 4083, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 29653, 1343, 965, 7, 312, 87, 8, 1343, 366, 10354, 29653, 1343, 31051, 4458, 22179, 7, 72, 13, 35312, 10786, 14, 11537, 58, 12, 17, 25, 12962, 1343, 24018, 92, 4943, 198, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 4868, 17816, 9630, 6, 7131, 2536, 7, 312, 87, 15437, 796, 31051, 4458, 22179, 7, 72, 13, 35312, 10786, 14, 11537, 58, 12, 17, 25, 12962, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 4868, 62, 6978, 11, 705, 86, 11537, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 284, 449, 1559, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 7753, 62, 4868, 11, 503, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 8979, 7343, 7448, 284, 705, 1343, 2393, 62, 4868, 62, 6978, 8, 198, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 825, 15458, 62, 30053, 62, 8095, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15553, 17706, 15458, 3895, 5270, 329, 6376, 278, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9630, 62, 7753, 62, 29356, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 308, 82, 796, 29681, 18243, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 17220, 477, 1327, 6117, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11925, 7, 944, 13, 16624, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 8095, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 17220, 1327, 40976, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 9630, 274, 796, 45941, 13, 25120, 13, 25541, 7, 11925, 7, 944, 13, 16624, 828, 2116, 13, 22510, 62, 16624, 8, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7753, 62, 9630, 274, 13, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 10028, 15458, 7857, 284, 6608, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 13108, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43501, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 1226, 268, 4494, 287, 27056, 378, 7, 7753, 62, 9630, 274, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 12501, 9043, 796, 629, 541, 88, 13, 358, 9060, 13, 320, 961, 7, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16624, 58, 10379, 268, 4494, 4357, 27172, 268, 28, 25101, 11, 4235, 28, 14202, 8, 198, 1421, 18604, 198, 16791, 16791, 16791, 27, 39837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 58, 10379, 268, 4494, 4357, 27172, 268, 28, 25101, 11, 4235, 28, 14202, 8, 198, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16624, 58, 10379, 268, 4494, 4357, 27172, 268, 28, 25101, 11, 4235, 28, 14202, 8, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 10028, 1327, 40976, 3815, 284, 6608, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 12501, 9043, 796, 6121, 13, 411, 1096, 7, 9060, 62, 12501, 9043, 11, 685, 24137, 11, 26063, 11, 513, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 12501, 9043, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 9060, 62, 12501, 9043, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 62, 43501, 6624, 685, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43501, 796, 2939, 62, 12501, 9043, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43501, 796, 45941, 13, 1102, 9246, 268, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9060, 62, 43501, 11, 2939, 62, 12501, 9043, 828, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1662, 357, 312, 87, 8, 4064, 357, 43501, 62, 7857, 4008, 393, 357, 312, 87, 18189, 18896, 7, 7753, 62, 9630, 274, 8, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9060, 62, 43501, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 8095, 13, 2302, 437, 7, 944, 13, 30053, 62, 5235, 13, 1136, 62, 30053, 7, 9060, 62, 43501, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43501, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 30053, 62, 8095, 5485, 3256, 45941, 13, 18747, 7, 30053, 62, 8095, 737, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 82, 13, 17953, 62, 9630, 7, 37659, 13, 18747, 7, 30053, 62, 8095, 11, 45941, 13, 22468, 2624, 828, 2393, 62, 9630, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 82, 13, 21928, 62, 9630, 3419, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 308, 82, 13, 15418, 77, 7, 30053, 62, 8095, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22766, 8, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 41205, 4263, 422, 9483, 656, 1332, 290, 21201, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19608, 292, 316, 62, 43551, 3256, 2244, 11639, 43551, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 41092, 351, 27039, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 438, 17953, 62, 9630, 62, 7753, 3256, 2223, 11639, 8095, 62, 7942, 3256, 2244, 11639, 17953, 62, 9630, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 438, 8612, 378, 62, 9060, 62, 9630, 3256, 2223, 11639, 8095, 62, 7942, 3256, 2244, 11639, 8612, 378, 62, 40890, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 9483, 62, 3672, 796, 26498, 13, 43551, 62, 3672, 198, 220, 220, 220, 3601, 7, 43551, 62, 3672, 8, 198, 220, 220, 220, 45329, 796, 7412, 9781, 380, 18206, 7, 43551, 62, 3672, 8, 198, 220, 220, 220, 611, 26498, 13, 17953, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45329, 13, 9630, 62, 7753, 62, 8612, 1352, 7, 3174, 62, 20158, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 8612, 378, 62, 40890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45329, 13, 43501, 62, 30053, 62, 8095, 3419, 198, 220, 220, 220, 45329, 13, 9630, 62, 7753, 62, 29356, 3419, 198, 16791, 16791, 16791, 27, 39837, 198, 1421, 18604, 198, 16471, 33409, 220, 18247, 2458, 198, 16471, 33409, 269, 20, 65, 18, 64, 24, 67, 330, 21, 67, 2998, 4531, 535, 7410, 20, 7568, 48524, 15630, 3388, 67, 487, 19, 65, 30505, 65, 18, 198 ]
2.236683
3,980
import unittest from selenium.common.exceptions import TimeoutException from manga_py.base_classes.web_driver import make_driver, get_display
[ 11748, 555, 715, 395, 198, 198, 6738, 384, 11925, 1505, 13, 11321, 13, 1069, 11755, 1330, 3862, 448, 16922, 198, 198, 6738, 15911, 62, 9078, 13, 8692, 62, 37724, 13, 12384, 62, 26230, 1330, 787, 62, 26230, 11, 651, 62, 13812, 628 ]
3.452381
42
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'simple_threshold.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 5178, 7822, 7560, 422, 3555, 334, 72, 2393, 705, 36439, 62, 400, 10126, 13, 9019, 6, 198, 2, 198, 2, 15622, 416, 25, 9485, 48, 83, 20, 12454, 2438, 17301, 642, 13, 24, 13, 17, 198, 2, 198, 2, 39410, 0, 1439, 2458, 925, 287, 428, 2393, 481, 307, 2626, 0, 198, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 14055, 11, 33734, 8205, 72, 11, 33734, 54, 312, 11407, 628 ]
2.850575
87
import re
[ 11748, 302, 201, 198, 201, 198 ]
2.166667
6
import discord from discord.ext import commands from discord_slash import cog_ext from discord_slash.utils.manage_commands import create_option
[ 11748, 36446, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 6738, 36446, 62, 6649, 1077, 1330, 43072, 62, 2302, 198, 6738, 36446, 62, 6649, 1077, 13, 26791, 13, 805, 496, 62, 9503, 1746, 1330, 2251, 62, 18076 ]
3.864865
37
"""Auth command.""" from .base import Base from .. import settings, spotify import spotipy class Auth(Base): """Authenticate user"""
[ 37811, 30515, 3141, 526, 15931, 198, 6738, 764, 8692, 1330, 7308, 198, 6738, 11485, 1330, 6460, 11, 4136, 1958, 198, 198, 11748, 4136, 541, 88, 628, 198, 4871, 26828, 7, 14881, 2599, 198, 220, 220, 220, 37227, 47649, 5344, 2836, 37811, 198 ]
3.333333
42
import pysolr from django.conf import settings from django.template import Template, Context from django.test import TestCase from haystack import connections, connection_router from haystack import indexes from haystack.utils.loading import UnifiedIndex from core.models import MockModel from solr_tests.tests.solr_backend import clear_solr_index
[ 11748, 279, 893, 349, 81, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 28243, 1330, 37350, 11, 30532, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 27678, 25558, 1330, 8787, 11, 4637, 62, 472, 353, 198, 6738, 27678, 25558, 1330, 39199, 198, 6738, 27678, 25558, 13, 26791, 13, 25138, 1330, 42225, 15732, 198, 6738, 4755, 13, 27530, 1330, 44123, 17633, 198, 6738, 1540, 81, 62, 41989, 13, 41989, 13, 34453, 81, 62, 1891, 437, 1330, 1598, 62, 34453, 81, 62, 9630, 628, 198 ]
3.846154
91
import tensorflow as tf import numpy as np class PositionalEncoding(object): """ In https://rubikscode.net/2019/08/05/transformer-with-python-and-tensorflow-2-0-attention-layers/, he uses [sin(w*0), sin(w*1), ..., cos(w*0), cos(w*1), ...] but in tensorflow tutorial https://www.tensorflow.org/tutorials/text/transformer the vector is [sin(w*0), cos(w*0), sin(w*1), cos(w*1), ...] The both are equivalent but we choose the second one, because the original paper proposes in this way """ if __name__ == '__main__': positionalEncoding = PositionalEncoding(8,4) print(positionalEncoding.get_positional_encoding())
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 198, 4871, 18574, 1859, 27195, 7656, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 554, 3740, 1378, 25089, 72, 591, 8189, 13, 3262, 14, 23344, 14, 2919, 14, 2713, 14, 7645, 16354, 12, 4480, 12, 29412, 12, 392, 12, 83, 22854, 11125, 12, 17, 12, 15, 12, 1078, 1463, 12, 75, 6962, 47454, 198, 220, 220, 220, 220, 220, 220, 220, 339, 3544, 685, 31369, 7, 86, 9, 15, 828, 7813, 7, 86, 9, 16, 828, 2644, 11, 8615, 7, 86, 9, 15, 828, 8615, 7, 86, 9, 16, 828, 2644, 60, 198, 220, 220, 220, 220, 220, 220, 220, 475, 287, 11192, 273, 11125, 11808, 3740, 1378, 2503, 13, 83, 22854, 11125, 13, 2398, 14, 83, 44917, 82, 14, 5239, 14, 7645, 16354, 198, 220, 220, 220, 220, 220, 220, 220, 262, 15879, 318, 685, 31369, 7, 86, 9, 15, 828, 8615, 7, 86, 9, 15, 828, 7813, 7, 86, 9, 16, 828, 8615, 7, 86, 9, 16, 828, 2644, 60, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1111, 389, 7548, 475, 356, 3853, 262, 1218, 530, 11, 780, 262, 2656, 3348, 26017, 287, 428, 835, 198, 220, 220, 220, 37227, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 45203, 27195, 7656, 796, 18574, 1859, 27195, 7656, 7, 23, 11, 19, 8, 198, 220, 220, 220, 3601, 7, 1930, 1859, 27195, 7656, 13, 1136, 62, 1930, 1859, 62, 12685, 7656, 28955 ]
2.539924
263
# # Copyright (c) 2021-2022, Alden Torres # # Licensed under the terms of the MIT license. # Copy of the license at https://opensource.org/licenses/MIT # import json import re import subprocess ecc_headers = ["util", "hash", "mac", "kdf", "ed25519", "ristretto255", "bls12_381", "h2c", "oprf", "opaque", "sign", "pre"] ecc_ignore = ["ecc_memzero", "ecc_bin2hex", "ecc_hex2bin", "ecc_malloc", "ecc_free", "ecc_sign_bls12_381_Aggregate"] gen_code(ecc_headers, ecc_ignore)
[ 2, 198, 2, 15069, 357, 66, 8, 33448, 12, 1238, 1828, 11, 15586, 268, 27663, 198, 2, 198, 2, 49962, 739, 262, 2846, 286, 262, 17168, 5964, 13, 198, 2, 17393, 286, 262, 5964, 379, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 2, 198, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 850, 14681, 628, 628, 628, 628, 628, 198, 198, 68, 535, 62, 50145, 796, 14631, 22602, 1600, 366, 17831, 1600, 366, 20285, 1600, 366, 74, 7568, 1600, 366, 276, 13381, 1129, 1600, 366, 1585, 11489, 78, 13381, 1600, 366, 2436, 82, 1065, 62, 36626, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 71, 17, 66, 1600, 366, 404, 41871, 1600, 366, 404, 18251, 1600, 366, 12683, 1600, 366, 3866, 8973, 198, 68, 535, 62, 46430, 796, 14631, 68, 535, 62, 11883, 22570, 1600, 366, 68, 535, 62, 8800, 17, 33095, 1600, 366, 68, 535, 62, 33095, 17, 8800, 1600, 366, 68, 535, 62, 76, 32332, 1600, 366, 68, 535, 62, 5787, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 68, 535, 62, 12683, 62, 2436, 82, 1065, 62, 36626, 62, 46384, 49373, 8973, 628, 628, 628, 198, 5235, 62, 8189, 7, 68, 535, 62, 50145, 11, 21399, 62, 46430, 8, 198 ]
2.297778
225
from enum import Enum from typing import Dict, List, NewType from palantir.clock import Clock from palantir.types import Timestamp Metrics = NewType("Metrics", Dict[Metric, Dict[Timestamp, List[float]]])
[ 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 360, 713, 11, 7343, 11, 968, 6030, 198, 198, 6738, 6340, 415, 343, 13, 15750, 1330, 21328, 198, 6738, 6340, 415, 343, 13, 19199, 1330, 5045, 27823, 628, 198, 198, 9171, 10466, 796, 968, 6030, 7203, 9171, 10466, 1600, 360, 713, 58, 9171, 1173, 11, 360, 713, 58, 14967, 27823, 11, 7343, 58, 22468, 11907, 12962, 628, 628, 628, 628 ]
3.115942
69
# # ESnet Network Operating System (ENOS) Copyright (c) 2015, The Regents # of the University of California, through Lawrence Berkeley National # Laboratory (subject to receipt of any required approvals from the # U.S. Dept. of Energy). All rights reserved. # # If you have questions about your rights to use or distribute this # software, please contact Berkeley Lab's Innovation & Partnerships # Office at [email protected]. # # NOTICE. This Software was developed under funding from the # U.S. Department of Energy and the U.S. Government consequently retains # certain rights. As such, the U.S. Government has been granted for # itself and others acting on its behalf a paid-up, nonexclusive, # irrevocable, worldwide license in the Software to reproduce, # distribute copies to the public, prepare derivative works, and perform # publicly and display publicly, and to permit other to do so. # __author__ = 'lomax' """ This package provides generic type and basic implementation of OpenFlow support. Note tha it currently does not provide any level of security, nor it is thread safe. This will have to be addressed in the future. """ from array import array from layer2.common.utils import generateId from layer2.common.api import Properties, Node from layer2.common.mac import MACAddress from layer2.common.utils import Logger import binascii import sys debug = False class Match(Properties): """ This is the class defining an OpenFlow match. It is a wrapper of Properties. The base class defines the following key / values: Layer2: "in_port": Port ingress port on the swith "dl_dst" : array('B') destination MAC "vlan" : int VLAN Other layers are TBD """ class Action(Properties): """ This class is the class defining an OpenFlow action. It is a wrapper of Properties. The base class defines the following key / values: Layer 2: "dl_dst": array('B') rewrite the destination MAC with the provided MAC "vlan": int rewrite the VLAN with the provided vlan "out_port": Port egress ports Other layers are TBD """ class FlowEntry: """ A 3-tuple consisting of a MAC address, VLAN, and port. This data structure is used for various purposes such as indexing. It is similar to (but conceptually separate from) the Match data structure. """ @staticmethod class FlowMod(Properties): """ This class uniquely represent a flow mod. """ def __init__(self,scope,switch,match=None,name="",actions=[]): """ :param scope: Scope owner :param switch: common.api.Node :param match: Match :param actions: Action """ Properties.__init__(self,name) self.scope = scope self.scopeowner = scope.owner self.switch = switch self.actions = actions self.match = match self.props['priority'] = 1 # only configured in TapEntryWithSrcMac self.id = generateId() if not name: self.name = str(self.id) @staticmethod class Scope(Properties): """ This class is a Properties wrapper. The key/value pairs in the property is used to define the scope of control an application wishes to have on a given network element. """ def __init__(self,name,switch,owner,props={}): """ :param name: str human readable name of the scope :param switch: common.api.Node :param owner: ScopeController controller that owns this scope :param props: dict optional properties of the scope, such as ports, vlan, etc. See Layer2Scope for example. """ Properties.__init__(self,name,props) self.owner = owner self.id = generateId() self.switch = switch def overlaps(self, scope): """ Check if this scopes overlaps with the provided scope. It is expected that Scope implements will overwrite this method. :param scope: Scope :returns True if scopes overlap, False otherwise """ return True def isValidFlowMod(self, flowMod): """ Verifies if a flowMod is valid within the scope :param flowMod: FlowMod """ return False def includes(self,port): """ Returns True if the provided port is within the Scope. False otherwise :param port: Port :returns boolean """ return False class ScopeEvent(Properties): """ This class define an event related to a scope sent by the controller to the application. Scope implementation are responsible for implementing ScopeEvent as well. A ScopeEvent is a Properties, i.e. a dict of objects. For instance, an OpenFlow event could countain a key "packet-in" matching an object containing the relevant data. Implementing scopes freely define their own key/value pairs. All keys must be strings. This base class defines basic keys as well as their meaning. Value definition is let to the implementation. However the semantic of the key must be followed. This allow the consumer of the event to understand what the event means without understand the actual details, or the opposite. "closed": the scope has closed. If there is no "error" key/value in the event, the scope is gracefully closed. "error": the event is the result of an error that affected the scope. "changed": something has changed in the scope. """ def __init__(self,name,scope,props={}): """ :param name: str human readable name of the event :param scope: Scope scope that is generating the event :param props: properties of the event """ Properties.__init__(self,name,props={}) self.id = generateId() class PacketInEvent(ScopeEvent): """ This class defines a PACKET_IN event. It adds the following key / value's to the ScopeEvent "in_port": common.api.Port "payload": opaque type, payload of the packet (Ethernet payload, minus Ethernet and 802.1q headers) Layer 2 "dl_src": common.mac.MACAddress "dl_dst": common.mac.MACAddress "vlan" ": int VLAN Although the payload is an opaque object, it is (in the common case) an object of a subclass of org.opendaylight.controller.sal.packet.Packet or (if the higher layers cannot be parsed) an array of unsigned bytes. Other layers are TBD """ class PacketOut(Properties): """ This class implements a packet out. """ def __init__(self, scope, port, dl_src, dl_dst, etherType, vlan, payload, name=""): """ :param scope: Scope :param port: Port :param vlan: int :param payload: opaque type, contents starting from the Ethernet frame payload (not including Ethernet or 802.1q headers) In reality, payload is either an array of unsigned bytes or a subclass of org.opendaylight.controller.sal.packet.Packet. """ super(PacketOut, self).__init__(name) self.scope = scope self.port = port self.dl_src = dl_src self.dl_dst = dl_dst self.etherType = etherType self.vlan = vlan self.payload = payload class ScopeOwner(Properties): """ This class must be extended by any application that controls a scope. """ def eventListener(self,event): """ The implementation of this class is expected to overwrite this method if it desires to receive events from the controller such as PACKET_IN :param event: ScopeEvent """ class OpenFlowSwitch(Node): """ This class represents an OpenFlowSwitch. It contains the list of flowmods that is set on the switch. """ def __init__(self, name, dpid, controller = None, builder = None, props = {}): """ Creates an OpenFlowSwitch instance. :param controller (Controller) of this switch :return: """ Node.__init__(self, name, builder, props) self.dpid = dpid self.controller = controller self.props['controller'] = controller self.flowMods = {} self.scopes = {} class Controller(object): """ This class defined the generic API of the client of an OpenFlow controller. API for packet in and out not yet defined. """ def requestControl(self,scope): """ Request the control over the specified scope. :param scope: :return: True up success, False otherwise """ return False def send(selfs,packet): """ :param packet: PacketOut """ class SimpleController(Controller): """ This class implements a simple controller. It implements some basic controller function but does not implement the actual interaction with the switch or controller. IMPORTANT: this currentl implementation relies on having static state. In otherwords, only one controller extending SimpleController may run at the same time. This limitation should be fixed later. """ logger = Logger('SimpleController') scopes = None forbiddenScopes = None switches = None id = None instance = None def addSwitch(self,switch): """ Adds a switch to the list of switches this controller can manage :param switch: OpenFlowSwitch :return: """ SimpleController.switches[switch.dpid] = switch def addScope(self, scope): """ Adds the scopes to the authorized set of scopes. In order to be accepted, a scope must not overlap with any of the forbiden scopes, and not overlap with any of existing, authorized, scopes. :param scope: :return: """ for (x,s) in SimpleController.forbiddenScopes.items(): if s.overlaps(scope): print "addScope error: ", scope print "Overlaps with a forbidden port/vlan:" print s return False for s in self.scopes.values(): if s.overlaps(scope): print "addScope error: ", scope print "Overlaps with a port/vlan that is already in another scope:" print s return False if scope.id in self.scopes: print "addScope error: ", scope print "this scope has been already added" return False self.scopes[scope.id] = scope return True def addForbiddenScope(self,scope): """ Adds a scope that is forbidden to authorize any request :param scope: :return: """ print "not implemented yet" def removeForbiddenScope(self,scope): """ Adds a scope that is forbidden scope :param scope: :return: """ print "not implemented yet" def addFlowMod(self, flowMod): """ Implementation of SimpleController must implement this method :param flowMod: :return: """ return False def delFlowMod(self, flowMod): """ Implementation of SimpleController must implement this method :param flowMod: :return: """ return False def send(self,packet): """ Implementation of SimpleController must implement this method :param self: :param packet: :return: """ return False def getScope(self, port, vlan, mac): """ Here we hack by using (port, vid) instead of (port, vlan) as the index for some specific ports ('SrcToDst.WAN' ports on HwSwitch) to fix the issue that VPNs with different vids should have their own separated scopes but share the same port and vlan. """ if port.props['type'].endswith('.WAN'): key = '%s.%s.%d' % (port.props['node'].name, port.name, mac.getVid()) else: key = '%s.%s.%d' % (port.props['node'].name, port.name, vlan) if not key in self.scopeIndex: # try to check if the port includes all vlans key = port.name if not key in self.scopeIndex: SimpleController.logger.warning('(%s, %d, %r) not found in %r.scopeIndex' % (port.name, vlan, mac, self)) return None return self.scopeIndex[key] def dispatchPacketIn(self,packetIn): """ :param packetIn: PacketIn :return: """ port = packetIn.props['in_port'].props['enosPort'] vlan = packetIn.props['vlan'] dl_dst = packetIn.props['dl_dst'] if vlan == 0: SimpleController.logger.debug('vlan == 0 not interested...') return SimpleController.logger.info('recv packet %r' % packetIn) scope = self.getScope(port, vlan, dl_dst) print " prepare to dispatch to " + scope.name if scope and scope.switch == port.get('enosNode') and scope.includes(packetIn): scope.owner.eventListener(packetIn) else: SimpleController.logger.warning('No scope for %r', packetIn)
[ 2, 198, 2, 13380, 3262, 7311, 24850, 4482, 357, 1677, 2640, 8, 15069, 357, 66, 8, 1853, 11, 383, 3310, 658, 198, 2, 286, 262, 2059, 286, 3442, 11, 832, 13914, 14727, 2351, 198, 2, 18643, 357, 32796, 284, 14507, 286, 597, 2672, 45818, 422, 262, 198, 2, 471, 13, 50, 13, 28786, 13, 286, 6682, 737, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 1002, 345, 423, 2683, 546, 534, 2489, 284, 779, 393, 14983, 428, 198, 2, 3788, 11, 3387, 2800, 14727, 3498, 338, 27724, 1222, 14205, 5748, 198, 2, 4452, 379, 41805, 31, 75, 2436, 13, 9567, 13, 198, 2, 198, 2, 28536, 13, 220, 770, 10442, 373, 4166, 739, 4918, 422, 262, 198, 2, 471, 13, 50, 13, 2732, 286, 6682, 290, 262, 471, 13, 50, 13, 5070, 25578, 27452, 198, 2, 1728, 2489, 13, 1081, 884, 11, 262, 471, 13, 50, 13, 5070, 468, 587, 7520, 329, 198, 2, 2346, 290, 1854, 7205, 319, 663, 8378, 257, 3432, 12, 929, 11, 36196, 5731, 11, 198, 2, 11331, 18893, 540, 11, 8688, 5964, 287, 262, 10442, 284, 22919, 11, 198, 2, 14983, 9088, 284, 262, 1171, 11, 8335, 27255, 2499, 11, 290, 1620, 198, 2, 7271, 290, 3359, 7271, 11, 290, 284, 8749, 584, 284, 466, 523, 13, 198, 2, 198, 834, 9800, 834, 796, 705, 75, 296, 897, 6, 198, 37811, 198, 220, 220, 220, 770, 5301, 3769, 14276, 2099, 290, 4096, 7822, 286, 4946, 37535, 1104, 13, 5740, 28110, 340, 3058, 198, 220, 220, 220, 857, 407, 2148, 597, 1241, 286, 2324, 11, 4249, 340, 318, 4704, 3338, 13, 770, 481, 423, 284, 307, 9469, 287, 262, 2003, 13, 198, 37811, 198, 6738, 7177, 1330, 7177, 198, 198, 6738, 7679, 17, 13, 11321, 13, 26791, 1330, 7716, 7390, 198, 6738, 7679, 17, 13, 11321, 13, 15042, 1330, 24946, 11, 19081, 198, 198, 6738, 7679, 17, 13, 11321, 13, 20285, 1330, 20582, 20231, 198, 6738, 7679, 17, 13, 11321, 13, 26791, 1330, 5972, 1362, 198, 198, 11748, 9874, 292, 979, 72, 198, 11748, 25064, 628, 198, 24442, 796, 10352, 198, 198, 4871, 13225, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 262, 1398, 16215, 281, 4946, 37535, 2872, 13, 632, 318, 257, 29908, 286, 24946, 13, 198, 220, 220, 220, 383, 2779, 1398, 15738, 262, 1708, 1994, 1220, 3815, 25, 628, 220, 220, 220, 34398, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 62, 634, 1298, 4347, 5347, 601, 2493, 319, 262, 1509, 342, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25404, 62, 67, 301, 1, 1058, 7177, 10786, 33, 11537, 10965, 20582, 198, 220, 220, 220, 220, 220, 220, 220, 366, 85, 9620, 1, 220, 220, 1058, 493, 569, 25697, 628, 220, 220, 220, 3819, 11685, 389, 34343, 628, 220, 220, 220, 37227, 198, 198, 4871, 7561, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 318, 262, 1398, 16215, 281, 4946, 37535, 2223, 13, 632, 318, 257, 29908, 286, 24946, 13, 198, 220, 220, 220, 383, 2779, 1398, 15738, 262, 1708, 1994, 1220, 3815, 25, 628, 220, 220, 220, 34398, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25404, 62, 67, 301, 1298, 7177, 10786, 33, 11537, 28183, 262, 10965, 20582, 351, 262, 2810, 20582, 198, 220, 220, 220, 220, 220, 220, 220, 366, 85, 9620, 1298, 493, 28183, 262, 569, 25697, 351, 262, 2810, 410, 9620, 198, 220, 220, 220, 220, 220, 220, 220, 366, 448, 62, 634, 1298, 4347, 304, 5914, 14090, 628, 220, 220, 220, 3819, 11685, 389, 34343, 198, 220, 220, 220, 37227, 198, 198, 4871, 27782, 30150, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 513, 12, 83, 29291, 17747, 286, 257, 20582, 2209, 11, 569, 25697, 11, 290, 2493, 13, 220, 770, 1366, 4645, 318, 973, 329, 198, 220, 220, 220, 2972, 4959, 884, 355, 6376, 278, 13, 220, 632, 318, 2092, 284, 357, 4360, 3721, 935, 4553, 422, 8, 262, 198, 220, 220, 220, 13225, 1366, 4645, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 198, 4871, 27782, 5841, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 24139, 2380, 257, 5202, 953, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 29982, 11, 31943, 11, 15699, 28, 14202, 11, 3672, 2625, 1600, 4658, 28, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 41063, 4870, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5078, 25, 2219, 13, 15042, 13, 19667, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2872, 25, 13225, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4028, 25, 7561, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 24946, 13, 834, 15003, 834, 7, 944, 11, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29982, 796, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29982, 18403, 796, 8354, 13, 18403, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31943, 796, 5078, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4658, 796, 4028, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15699, 796, 2872, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 862, 17816, 49336, 20520, 796, 352, 1303, 691, 17839, 287, 16880, 30150, 3152, 50, 6015, 14155, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 7716, 7390, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 965, 7, 944, 13, 312, 8, 198, 220, 220, 220, 2488, 12708, 24396, 198, 198, 4871, 41063, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 318, 257, 24946, 29908, 13, 383, 1994, 14, 8367, 14729, 287, 262, 3119, 318, 973, 284, 8160, 262, 8354, 286, 1630, 198, 220, 220, 220, 281, 3586, 12802, 284, 423, 319, 257, 1813, 3127, 5002, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3672, 11, 31943, 11, 18403, 11, 1676, 862, 34758, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 965, 1692, 31744, 1438, 286, 262, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5078, 25, 2219, 13, 15042, 13, 19667, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4870, 25, 41063, 22130, 10444, 326, 12216, 428, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25744, 25, 8633, 11902, 6608, 286, 262, 8354, 11, 884, 355, 14090, 11, 410, 9620, 11, 3503, 13, 4091, 34398, 17, 43642, 329, 1672, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 24946, 13, 834, 15003, 834, 7, 944, 11, 3672, 11, 1676, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18403, 796, 4870, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 7716, 7390, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31943, 796, 5078, 628, 220, 220, 220, 825, 12893, 1686, 7, 944, 11, 8354, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 611, 428, 629, 13920, 12893, 1686, 351, 262, 2810, 8354, 13, 632, 318, 2938, 326, 41063, 23986, 481, 49312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 428, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 41063, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 6407, 611, 629, 13920, 21721, 11, 10352, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 318, 47139, 37535, 5841, 7, 944, 11, 5202, 5841, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4643, 6945, 611, 257, 5202, 5841, 318, 4938, 1626, 262, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5202, 5841, 25, 27782, 5841, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 3407, 7, 944, 11, 634, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 6407, 611, 262, 2810, 2493, 318, 1626, 262, 41063, 13, 10352, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2493, 25, 4347, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 628, 198, 4871, 41063, 9237, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 8160, 281, 1785, 3519, 284, 257, 8354, 1908, 416, 262, 10444, 284, 262, 3586, 13, 41063, 7822, 198, 220, 220, 220, 389, 4497, 329, 15427, 41063, 9237, 355, 880, 13, 317, 41063, 9237, 318, 257, 24946, 11, 1312, 13, 68, 13, 257, 8633, 286, 5563, 13, 198, 220, 220, 220, 1114, 4554, 11, 281, 4946, 37535, 1785, 714, 954, 391, 257, 1994, 366, 8002, 316, 12, 259, 1, 12336, 281, 2134, 7268, 262, 5981, 198, 220, 220, 220, 1366, 13, 48282, 278, 629, 13920, 12748, 8160, 511, 898, 1994, 14, 8367, 14729, 13, 1439, 8251, 1276, 307, 13042, 13, 628, 220, 220, 220, 770, 2779, 1398, 15738, 4096, 8251, 355, 880, 355, 511, 3616, 13, 11052, 6770, 318, 1309, 284, 262, 7822, 13, 198, 220, 220, 220, 2102, 262, 37865, 286, 262, 1994, 1276, 307, 3940, 13, 770, 1249, 262, 7172, 286, 262, 198, 220, 220, 220, 1785, 284, 1833, 644, 262, 1785, 1724, 1231, 1833, 262, 4036, 3307, 11, 393, 262, 6697, 13, 628, 220, 220, 220, 220, 220, 220, 220, 366, 20225, 1298, 262, 8354, 468, 4838, 13, 1002, 612, 318, 645, 366, 18224, 1, 1994, 14, 8367, 287, 262, 1785, 11, 262, 8354, 318, 11542, 2759, 4838, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18224, 1298, 262, 1785, 318, 262, 1255, 286, 281, 4049, 326, 5676, 262, 8354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 366, 40985, 1298, 1223, 468, 3421, 287, 262, 8354, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3672, 11, 29982, 11, 1676, 862, 34758, 92, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 965, 220, 1692, 31744, 1438, 286, 262, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 41063, 8354, 326, 318, 15453, 262, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25744, 25, 6608, 286, 262, 1785, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 24946, 13, 834, 15003, 834, 7, 944, 11, 3672, 11, 1676, 862, 34758, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 796, 7716, 7390, 3419, 198, 198, 4871, 6400, 316, 818, 9237, 7, 43642, 9237, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 257, 47035, 2767, 62, 1268, 1785, 13, 632, 6673, 262, 1708, 1994, 1220, 1988, 338, 284, 262, 41063, 9237, 628, 220, 220, 220, 220, 220, 220, 220, 366, 259, 62, 634, 1298, 2219, 13, 15042, 13, 13924, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15577, 2220, 1298, 32191, 2099, 11, 21437, 286, 262, 19638, 357, 36, 490, 3262, 21437, 11, 20208, 31903, 290, 33121, 13, 16, 80, 24697, 8, 198, 220, 220, 220, 34398, 362, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25404, 62, 10677, 1298, 2219, 13, 20285, 13, 44721, 20231, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25404, 62, 67, 301, 1298, 2219, 13, 20285, 13, 44721, 20231, 198, 220, 220, 220, 220, 220, 220, 220, 366, 85, 9620, 1, 366, 25, 493, 569, 25697, 628, 220, 220, 220, 4900, 262, 21437, 318, 281, 32191, 2134, 11, 340, 318, 357, 259, 262, 2219, 1339, 8, 281, 2134, 286, 257, 47611, 286, 198, 220, 220, 220, 8745, 13, 404, 437, 323, 2971, 13, 36500, 13, 21680, 13, 8002, 316, 13, 47, 8317, 393, 357, 361, 262, 2440, 11685, 2314, 307, 44267, 8, 281, 7177, 198, 220, 220, 220, 286, 22165, 9881, 13, 628, 220, 220, 220, 220, 3819, 11685, 389, 34343, 198, 220, 220, 220, 37227, 628, 198, 4871, 6400, 316, 7975, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 23986, 257, 19638, 503, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 8354, 11, 2493, 11, 288, 75, 62, 10677, 11, 288, 75, 62, 67, 301, 11, 28475, 6030, 11, 410, 9620, 11, 21437, 11, 1438, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 41063, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2493, 25, 4347, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 410, 9620, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21437, 25, 32191, 2099, 11, 10154, 3599, 422, 262, 31903, 5739, 21437, 357, 1662, 1390, 31903, 393, 33121, 13, 16, 80, 24697, 8, 628, 220, 220, 220, 220, 220, 220, 220, 554, 3950, 11, 21437, 318, 2035, 281, 7177, 286, 22165, 9881, 393, 257, 47611, 286, 198, 220, 220, 220, 220, 220, 220, 220, 8745, 13, 404, 437, 323, 2971, 13, 36500, 13, 21680, 13, 8002, 316, 13, 47, 8317, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 47, 8317, 7975, 11, 2116, 737, 834, 15003, 834, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29982, 796, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 634, 796, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25404, 62, 10677, 796, 288, 75, 62, 10677, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25404, 62, 67, 301, 796, 288, 75, 62, 67, 301, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6750, 6030, 796, 28475, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 85, 9620, 796, 410, 9620, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15577, 2220, 796, 21437, 198, 198, 4871, 41063, 42419, 7, 2964, 18200, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 1276, 307, 7083, 416, 597, 3586, 326, 6973, 257, 8354, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1785, 33252, 7, 944, 11, 15596, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7822, 286, 428, 1398, 318, 2938, 284, 49312, 428, 2446, 611, 340, 15997, 198, 220, 220, 220, 220, 220, 220, 220, 284, 3328, 2995, 422, 262, 10444, 884, 355, 47035, 2767, 62, 1268, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1785, 25, 41063, 9237, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 198, 4871, 4946, 37535, 38978, 7, 19667, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 6870, 281, 4946, 37535, 38978, 13, 632, 4909, 262, 1351, 286, 5202, 24122, 326, 318, 900, 319, 262, 5078, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 11, 288, 35317, 11, 10444, 796, 6045, 11, 27098, 796, 6045, 11, 25744, 796, 23884, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 281, 4946, 37535, 38978, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10444, 357, 22130, 8, 286, 428, 5078, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19081, 13, 834, 15003, 834, 7, 944, 11, 1438, 11, 27098, 11, 25744, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26059, 312, 796, 288, 35317, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36500, 796, 10444, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1676, 862, 17816, 36500, 20520, 796, 10444, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11125, 24239, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 13920, 796, 23884, 628, 198, 4871, 22741, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 5447, 262, 14276, 7824, 286, 262, 5456, 286, 281, 4946, 37535, 10444, 13, 198, 220, 220, 220, 7824, 329, 19638, 287, 290, 503, 407, 1865, 5447, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2581, 15988, 7, 944, 11, 29982, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19390, 262, 1630, 625, 262, 7368, 8354, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6407, 510, 1943, 11, 10352, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 3758, 7, 944, 82, 11, 8002, 316, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 19638, 25, 6400, 316, 7975, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 4871, 17427, 22130, 7, 22130, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 23986, 257, 2829, 10444, 13, 632, 23986, 617, 4096, 10444, 2163, 475, 857, 407, 198, 220, 220, 220, 3494, 262, 4036, 10375, 351, 262, 5078, 393, 10444, 13, 198, 220, 220, 220, 30023, 9863, 8643, 25, 428, 1459, 75, 7822, 16507, 319, 1719, 9037, 1181, 13, 554, 584, 10879, 11, 691, 530, 198, 220, 220, 220, 10444, 16610, 17427, 22130, 743, 1057, 379, 262, 976, 640, 13, 770, 17385, 815, 307, 5969, 1568, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 796, 5972, 1362, 10786, 26437, 22130, 11537, 198, 220, 220, 220, 629, 13920, 796, 6045, 198, 220, 220, 220, 19467, 3351, 13920, 796, 6045, 198, 220, 220, 220, 18225, 796, 6045, 198, 220, 220, 220, 4686, 796, 6045, 198, 220, 220, 220, 4554, 796, 6045, 628, 220, 220, 220, 825, 751, 38978, 7, 944, 11, 31943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 257, 5078, 284, 262, 1351, 286, 18225, 428, 10444, 460, 6687, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5078, 25, 4946, 37535, 38978, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17427, 22130, 13, 2032, 9249, 58, 31943, 13, 26059, 312, 60, 796, 5078, 628, 220, 220, 220, 825, 751, 43642, 7, 944, 11, 8354, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 262, 629, 13920, 284, 262, 10435, 900, 286, 629, 13920, 13, 554, 1502, 284, 307, 6292, 11, 257, 8354, 1276, 407, 21721, 198, 220, 220, 220, 220, 220, 220, 220, 351, 597, 286, 262, 11747, 14029, 629, 13920, 11, 290, 407, 21721, 351, 597, 286, 4683, 11, 10435, 11, 629, 13920, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 87, 11, 82, 8, 287, 17427, 22130, 13, 1640, 37978, 3351, 13920, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 264, 13, 2502, 75, 1686, 7, 29982, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 2860, 43642, 4049, 25, 220, 33172, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5886, 75, 1686, 351, 257, 19467, 2493, 14, 85, 9620, 11097, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 264, 287, 2116, 13, 1416, 13920, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 264, 13, 2502, 75, 1686, 7, 29982, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 2860, 43642, 4049, 25, 220, 33172, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5886, 75, 1686, 351, 257, 2493, 14, 85, 9620, 326, 318, 1541, 287, 1194, 8354, 11097, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 264, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8354, 13, 312, 287, 2116, 13, 1416, 13920, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 2860, 43642, 4049, 25, 220, 33172, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 5661, 8354, 468, 587, 1541, 2087, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 13920, 58, 29982, 13, 312, 60, 796, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 751, 1890, 37978, 43642, 7, 944, 11, 29982, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 257, 8354, 326, 318, 19467, 284, 29145, 597, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1662, 9177, 1865, 1, 628, 220, 220, 220, 825, 4781, 1890, 37978, 43642, 7, 944, 11, 29982, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 257, 8354, 326, 318, 19467, 8354, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1662, 9177, 1865, 1, 628, 220, 220, 220, 825, 751, 37535, 5841, 7, 944, 11, 5202, 5841, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 46333, 286, 17427, 22130, 1276, 3494, 428, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5202, 5841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 1619, 37535, 5841, 7, 944, 11, 5202, 5841, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 46333, 286, 17427, 22130, 1276, 3494, 428, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5202, 5841, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 3758, 7, 944, 11, 8002, 316, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 46333, 286, 17427, 22130, 1276, 3494, 428, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 19638, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 651, 43642, 7, 944, 11, 2493, 11, 410, 9620, 11, 8352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3423, 356, 8156, 416, 1262, 357, 634, 11, 410, 312, 8, 2427, 286, 357, 634, 11, 410, 9620, 8, 355, 262, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 329, 617, 2176, 14090, 19203, 50, 6015, 2514, 35, 301, 13, 54, 1565, 6, 14090, 319, 367, 86, 38978, 8, 284, 4259, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2071, 326, 21669, 82, 351, 1180, 410, 2340, 815, 423, 511, 898, 11266, 198, 220, 220, 220, 220, 220, 220, 220, 629, 13920, 475, 2648, 262, 976, 2493, 290, 410, 9620, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2493, 13, 1676, 862, 17816, 4906, 6, 4083, 437, 2032, 342, 7, 4458, 54, 1565, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 705, 4, 82, 13, 4, 82, 13, 4, 67, 6, 4064, 357, 634, 13, 1676, 862, 17816, 17440, 6, 4083, 3672, 11, 2493, 13, 3672, 11, 8352, 13, 1136, 53, 312, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 705, 4, 82, 13, 4, 82, 13, 4, 67, 6, 4064, 357, 634, 13, 1676, 862, 17816, 17440, 6, 4083, 3672, 11, 2493, 13, 3672, 11, 410, 9620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1994, 287, 2116, 13, 29982, 15732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 284, 2198, 611, 262, 2493, 3407, 477, 410, 75, 504, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 2493, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1994, 287, 2116, 13, 29982, 15732, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 22130, 13, 6404, 1362, 13, 43917, 10786, 7, 4, 82, 11, 4064, 67, 11, 4064, 81, 8, 407, 1043, 287, 4064, 81, 13, 29982, 15732, 6, 4064, 357, 634, 13, 3672, 11, 410, 9620, 11, 8352, 11, 2116, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 29982, 15732, 58, 2539, 60, 628, 220, 220, 220, 825, 27965, 47, 8317, 818, 7, 944, 11, 8002, 316, 818, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 19638, 818, 25, 220, 6400, 316, 818, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 796, 19638, 818, 13, 1676, 862, 17816, 259, 62, 634, 6, 4083, 1676, 862, 17816, 28380, 13924, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9620, 796, 19638, 818, 13, 1676, 862, 17816, 85, 9620, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 288, 75, 62, 67, 301, 796, 19638, 818, 13, 1676, 862, 17816, 25404, 62, 67, 301, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 410, 9620, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 22130, 13, 6404, 1362, 13, 24442, 10786, 85, 9620, 6624, 657, 407, 4609, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 17427, 22130, 13, 6404, 1362, 13, 10951, 10786, 8344, 85, 19638, 4064, 81, 6, 4064, 19638, 818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8354, 796, 2116, 13, 1136, 43642, 7, 634, 11, 410, 9620, 11, 288, 75, 62, 67, 301, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 220, 8335, 284, 27965, 284, 366, 1343, 8354, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8354, 290, 8354, 13, 31943, 6624, 2493, 13, 1136, 10786, 28380, 19667, 11537, 290, 8354, 13, 42813, 7, 8002, 316, 818, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 13, 18403, 13, 15596, 33252, 7, 8002, 316, 818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 22130, 13, 6404, 1362, 13, 43917, 10786, 2949, 8354, 329, 4064, 81, 3256, 19638, 818, 8, 628 ]
2.663033
4,953
from bme280 import Bme280 import busio try: import adafruit_dht except ImportError: print ("\033[91mError importing DHT code -- Are you running on an IoT device?\033[0m") try: import board except NotImplementedError: print ("\033[91mError importing board -- Are you running on an IoT device?\033[0m") from adafruit_seesaw.seesaw import Seesaw from gpiozero import LED from gpiozero.pins.pigpio import PiGPIOFactory from gpio_frequency import FrequencySignal from iotdevice import IotDevice from time import sleep # TODO Brian: Add attributes for light sensor. class RaspberryPi(IotDevice): """ Class to interface with Raspberry Pi for an Automated Irrigation System. This Raspberry Pi setup actuates a solenoid valve that is collecting a variety of sensor data (Moisture, Flow, Humidity, Temperature). Args: gpio_relay: Integer. Indicates GPIO pin on Raspberry Pi for relay to actuate solenoid valve or an LED for testing. gpio_flow: Integer. Indicates GPIO pin on Raspberry Pi for flow sensor. ip_address: Optional. A string. Indicates IP Address of Raspberry Pi. By default None. If provided, then use PiGPIOFactory package for remote GPIO control. use_dht_11: Optional. A boolean. When set to True a DHT11 will be used instead of the DHT22. By default False. moisture: Optional. A String. "I2C" or "SIM" (for simulated device). By default "I2C". Attributes: dht_sensor: DHT22 sensor to measure humidity and temperature. connected to pin 18 for now. moisture_sensor: connected to pin 3 and pin 2 for now """ def get_humidity_and_temperature(self): """ Function to retrieve humidity and temperature data and then update model. """ temperature_f, humidity = None, None while humidity is None and temperature_f is None: try: temperature_c = self.ht_sensor.temperature temperature_f = temperature_c * (9 / 5) + 32 humidity = self.ht_sensor.humidity except RuntimeError as err: # DHT's are hard to read, keep going sleep(2.0) continue except Exception as e: print('Encountered error while trying to retrieve humidity and temeperature data: {0}'.format(e)) return (None, None) # update model self.set_humidity_and_temperature(humidity, temperature_f) return super().get_humidity_and_temperature() def get_moisture(self): """ Function to retrieve moisture data and then update model """ try: moist_val = self.moisture_sensor.moisture_read() moist_val -= 300 moist_val *= 0.014 if moist_val < 0: moist_val = 0 if moist_val > 10: moist_val = 10 # upate model self.set_moisture(moist_val) except Exception as e: print('Encountered error while trying to retrieve moisture data: {0}'.format(e)) return super().get_moisture() def get_flow(self): """ Funtion to retrieve flow data and then update model """ try: # For our device you get 3.1Hz for each Liter/minute of water rate = 3.1 # Adjust this based on testing your device. self.set_flow(self.gpio_flow.measure_frequency() / rate) except Exception as e: print('Encountered error while trying to retrieve flow data: {0}'.format(e)) return super().get_flow() def turn_valve_on(self): """ Function to turn relay/LED on. """ try: self.gpio_relay.on() except Exception as e: print('Encountered error while trying to turn relay on: {0}'.format(e)) # update model super().turn_valve_on() def turn_valve_off(self): """ Function to turn relay/LED off. """ try: self.gpio_relay.off() except Exception as e: print('Encountered error while trying to turn relay off: {0}'.format(e)) # update model super().turn_valve_off()
[ 6738, 275, 1326, 21033, 1330, 347, 1326, 21033, 198, 11748, 1323, 952, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 512, 1878, 4872, 62, 67, 4352, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3601, 5855, 59, 44427, 58, 6420, 76, 12331, 33332, 360, 6535, 2438, 1377, 4231, 345, 2491, 319, 281, 38488, 3335, 30, 59, 44427, 58, 15, 76, 4943, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 3096, 198, 16341, 1892, 3546, 1154, 12061, 12331, 25, 198, 220, 220, 220, 3601, 5855, 59, 44427, 58, 6420, 76, 12331, 33332, 3096, 1377, 4231, 345, 2491, 319, 281, 38488, 3335, 30, 59, 44427, 58, 15, 76, 4943, 198, 198, 6738, 512, 1878, 4872, 62, 325, 274, 707, 13, 325, 274, 707, 1330, 1001, 274, 707, 198, 6738, 27809, 952, 22570, 1330, 12365, 198, 6738, 27809, 952, 22570, 13, 49556, 13, 79, 328, 79, 952, 1330, 13993, 16960, 9399, 22810, 198, 6738, 27809, 952, 62, 35324, 1330, 31902, 11712, 282, 198, 6738, 1312, 313, 25202, 1330, 314, 313, 24728, 198, 6738, 640, 1330, 3993, 198, 198, 2, 16926, 46, 8403, 25, 3060, 12608, 329, 1657, 12694, 13, 220, 198, 4871, 24244, 38729, 7, 40, 313, 24728, 2599, 198, 220, 220, 220, 37227, 5016, 284, 7071, 351, 24244, 13993, 329, 198, 220, 220, 220, 220, 220, 220, 220, 281, 17406, 515, 5686, 4359, 341, 4482, 13, 770, 24244, 13993, 198, 220, 220, 220, 220, 220, 220, 220, 9058, 719, 12632, 257, 1540, 268, 1868, 22580, 326, 318, 13157, 198, 220, 220, 220, 220, 220, 220, 220, 257, 4996, 286, 12694, 1366, 357, 16632, 396, 495, 11, 27782, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11054, 17995, 11, 34467, 737, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27809, 952, 62, 2411, 323, 25, 34142, 13, 1423, 16856, 50143, 6757, 319, 24244, 13993, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 24248, 284, 719, 4985, 1540, 268, 1868, 22580, 393, 281, 12365, 329, 4856, 13, 198, 220, 220, 220, 220, 220, 220, 220, 27809, 952, 62, 11125, 25, 34142, 13, 1423, 16856, 50143, 6757, 319, 24244, 13993, 329, 5202, 12694, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 21975, 25, 32233, 13, 317, 4731, 13, 1423, 16856, 6101, 17917, 286, 24244, 13993, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2750, 4277, 6045, 13, 1002, 2810, 11, 788, 779, 13993, 16960, 9399, 22810, 5301, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6569, 50143, 1630, 13, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 67, 4352, 62, 1157, 25, 32233, 13, 317, 25131, 13, 1649, 900, 284, 6407, 257, 360, 6535, 1157, 481, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2427, 286, 262, 360, 6535, 1828, 13, 220, 2750, 4277, 10352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20160, 25, 32233, 13, 317, 10903, 13, 366, 40, 17, 34, 1, 393, 366, 48913, 1, 357, 1640, 28590, 3335, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2750, 4277, 366, 40, 17, 34, 1911, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 4352, 62, 82, 22854, 25, 360, 6535, 1828, 12694, 284, 3953, 27716, 290, 5951, 13, 5884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 6757, 1248, 329, 783, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20160, 62, 82, 22854, 25, 5884, 284, 6757, 513, 290, 6757, 362, 329, 783, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 17047, 17995, 62, 392, 62, 11498, 21069, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15553, 284, 19818, 27716, 290, 5951, 1366, 290, 788, 4296, 2746, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5951, 62, 69, 11, 27716, 796, 6045, 11, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 981, 27716, 318, 6045, 290, 5951, 62, 69, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5951, 62, 66, 796, 2116, 13, 4352, 62, 82, 22854, 13, 11498, 21069, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5951, 62, 69, 796, 5951, 62, 66, 1635, 357, 24, 1220, 642, 8, 1343, 3933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27716, 796, 2116, 13, 4352, 62, 82, 22854, 13, 17047, 17995, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 43160, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 360, 6535, 338, 389, 1327, 284, 1100, 11, 1394, 1016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3993, 7, 17, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4834, 9127, 1068, 4049, 981, 2111, 284, 19818, 27716, 290, 2169, 5723, 1300, 1366, 25, 1391, 15, 92, 4458, 18982, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 14202, 11, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 17047, 17995, 62, 392, 62, 11498, 21069, 7, 17047, 17995, 11, 5951, 62, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2208, 22446, 1136, 62, 17047, 17995, 62, 392, 62, 11498, 21069, 3419, 628, 220, 220, 220, 825, 651, 62, 5908, 396, 495, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15553, 284, 19818, 20160, 1366, 290, 788, 4296, 2746, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13394, 62, 2100, 796, 2116, 13, 5908, 396, 495, 62, 82, 22854, 13, 5908, 396, 495, 62, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13394, 62, 2100, 48185, 5867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13394, 62, 2100, 1635, 28, 657, 13, 28645, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13394, 62, 2100, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13394, 62, 2100, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13394, 62, 2100, 1875, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13394, 62, 2100, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 510, 378, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 5908, 396, 495, 7, 5908, 396, 62, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4834, 9127, 1068, 4049, 981, 2111, 284, 19818, 20160, 1366, 25, 1391, 15, 92, 4458, 18982, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2208, 22446, 1136, 62, 5908, 396, 495, 3419, 628, 220, 220, 220, 825, 651, 62, 11125, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 376, 2797, 295, 284, 19818, 5202, 1366, 290, 788, 4296, 2746, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 674, 3335, 345, 651, 513, 13, 16, 7399, 329, 1123, 17667, 14, 11374, 286, 1660, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2494, 796, 513, 13, 16, 220, 1303, 20292, 428, 1912, 319, 4856, 534, 3335, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 11125, 7, 944, 13, 31197, 952, 62, 11125, 13, 1326, 5015, 62, 35324, 3419, 1220, 2494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4834, 9127, 1068, 4049, 981, 2111, 284, 19818, 5202, 1366, 25, 1391, 15, 92, 4458, 18982, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2208, 22446, 1136, 62, 11125, 3419, 628, 220, 220, 220, 825, 1210, 62, 2100, 303, 62, 261, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15553, 284, 1210, 24248, 14, 30465, 319, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31197, 952, 62, 2411, 323, 13, 261, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4834, 9127, 1068, 4049, 981, 2111, 284, 1210, 24248, 319, 25, 1391, 15, 92, 4458, 18982, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 15344, 62, 2100, 303, 62, 261, 3419, 628, 220, 220, 220, 825, 1210, 62, 2100, 303, 62, 2364, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15553, 284, 1210, 24248, 14, 30465, 572, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31197, 952, 62, 2411, 323, 13, 2364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4834, 9127, 1068, 4049, 981, 2111, 284, 1210, 24248, 572, 25, 1391, 15, 92, 4458, 18982, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 15344, 62, 2100, 303, 62, 2364, 3419, 198 ]
2.403608
1,774
from pyabc.transition import NotEnoughParticles, LocalTransition, Transition from pyabc import MultivariateNormalTransition import pandas as pd import numpy as np import pytest from pyabc import GridSearchCV @pytest.fixture(params=[LocalTransition, MultivariateNormalTransition]) def test_argument_order(transition: Transition): """ Dataframes passed to the transition kernels are generated from dicts. Order of parameter names is no guaranteed. The Transition kernel has to take care of the correct sorting. """ df, w = data(20) transition.fit(df, w) test = df.iloc[0] reversed_ = test[::-1] # works b/c of even nr of parameters assert (np.array(test) != np.array(reversed_)).all() assert transition.pdf(test) == transition.pdf(reversed_) def test_grid_search_two_samples_multivariate_normal(): """ Supposed to run into problems b/c nr splits > then nr_samples """ cv = 5 m = MultivariateNormalTransition() m_grid = GridSearchCV(m, {"scaling": np.logspace(-5, 1.5, 5)}, cv=cv, n_jobs=1) df, w = data(2) m_grid.fit(df, w) assert m_grid.cv == cv def test_grid_search_single_sample_multivariate_normal(): """ Supposed to run into problems b/c nr splits > then nr_samples """ cv = 5 m = MultivariateNormalTransition() m_grid = GridSearchCV(m, {"scaling": np.logspace(-5, 1.5, 5)}, cv=cv, n_jobs=1) df, w = data(1) m_grid.fit(df, w) assert m_grid.cv == cv def test_mean_coefficient_of_variation_sample_not_full_rank( transition: Transition): """ This is a test created after I encountered this kind of bug """ n = 13 df = pd.DataFrame({"a": np.ones(n) * 2, "b": np.ones(n)}) w = np.ones(len(df)) / len(df) transition.fit(df, w) transition.mean_cv()
[ 6738, 12972, 39305, 13, 7645, 653, 1330, 1892, 47323, 7841, 2983, 11, 10714, 8291, 653, 11, 40658, 198, 6738, 12972, 39305, 1330, 7854, 42524, 26447, 8291, 653, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 6738, 12972, 39305, 1330, 24846, 18243, 33538, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 37266, 41888, 14565, 8291, 653, 11, 7854, 42524, 26447, 8291, 653, 12962, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 4299, 1332, 62, 49140, 62, 2875, 7, 7645, 653, 25, 40658, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6060, 37805, 3804, 284, 262, 6801, 50207, 389, 7560, 422, 8633, 82, 13, 198, 220, 220, 220, 8284, 286, 11507, 3891, 318, 645, 11462, 13, 198, 220, 220, 220, 383, 40658, 9720, 468, 284, 1011, 1337, 286, 262, 3376, 29407, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47764, 11, 266, 796, 1366, 7, 1238, 8, 198, 220, 220, 220, 6801, 13, 11147, 7, 7568, 11, 266, 8, 198, 220, 220, 220, 1332, 796, 47764, 13, 346, 420, 58, 15, 60, 198, 220, 220, 220, 17687, 62, 796, 1332, 58, 3712, 12, 16, 60, 198, 220, 220, 220, 1303, 2499, 275, 14, 66, 286, 772, 299, 81, 286, 10007, 198, 220, 220, 220, 6818, 357, 37659, 13, 18747, 7, 9288, 8, 14512, 45941, 13, 18747, 7, 260, 690, 276, 62, 29720, 439, 3419, 198, 220, 220, 220, 6818, 6801, 13, 12315, 7, 9288, 8, 6624, 6801, 13, 12315, 7, 260, 690, 276, 62, 8, 628, 628, 198, 4299, 1332, 62, 25928, 62, 12947, 62, 11545, 62, 82, 12629, 62, 16680, 42524, 62, 11265, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8105, 1335, 284, 1057, 656, 2761, 275, 14, 66, 299, 81, 30778, 1875, 788, 299, 81, 62, 82, 12629, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 269, 85, 796, 642, 198, 220, 220, 220, 285, 796, 7854, 42524, 26447, 8291, 653, 3419, 198, 220, 220, 220, 285, 62, 25928, 796, 24846, 18243, 33538, 7, 76, 11, 19779, 1416, 4272, 1298, 45941, 13, 6404, 13200, 32590, 20, 11, 352, 13, 20, 11, 642, 8, 5512, 269, 85, 28, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 16, 8, 198, 220, 220, 220, 47764, 11, 266, 796, 1366, 7, 17, 8, 198, 220, 220, 220, 285, 62, 25928, 13, 11147, 7, 7568, 11, 266, 8, 198, 220, 220, 220, 6818, 285, 62, 25928, 13, 33967, 6624, 269, 85, 628, 198, 4299, 1332, 62, 25928, 62, 12947, 62, 29762, 62, 39873, 62, 16680, 42524, 62, 11265, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8105, 1335, 284, 1057, 656, 2761, 275, 14, 66, 299, 81, 30778, 1875, 788, 299, 81, 62, 82, 12629, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 269, 85, 796, 642, 198, 220, 220, 220, 285, 796, 7854, 42524, 26447, 8291, 653, 3419, 198, 220, 220, 220, 285, 62, 25928, 796, 24846, 18243, 33538, 7, 76, 11, 19779, 1416, 4272, 1298, 45941, 13, 6404, 13200, 32590, 20, 11, 352, 13, 20, 11, 642, 8, 5512, 269, 85, 28, 33967, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43863, 28, 16, 8, 198, 220, 220, 220, 47764, 11, 266, 796, 1366, 7, 16, 8, 198, 220, 220, 220, 285, 62, 25928, 13, 11147, 7, 7568, 11, 266, 8, 198, 220, 220, 220, 6818, 285, 62, 25928, 13, 33967, 6624, 269, 85, 628, 198, 4299, 1332, 62, 32604, 62, 1073, 16814, 62, 1659, 62, 25641, 341, 62, 39873, 62, 1662, 62, 12853, 62, 43027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6801, 25, 40658, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 1332, 2727, 706, 314, 12956, 428, 1611, 286, 5434, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 796, 1511, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 4895, 64, 1298, 45941, 13, 1952, 7, 77, 8, 1635, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 1298, 45941, 13, 1952, 7, 77, 8, 30072, 198, 220, 220, 220, 266, 796, 45941, 13, 1952, 7, 11925, 7, 7568, 4008, 1220, 18896, 7, 7568, 8, 198, 220, 220, 220, 6801, 13, 11147, 7, 7568, 11, 266, 8, 198, 220, 220, 220, 6801, 13, 32604, 62, 33967, 3419, 198 ]
2.424396
787
import pytest from sessionista.store import store MY_ACTION = 'my_action'
[ 11748, 12972, 9288, 198, 6738, 6246, 12523, 13, 8095, 1330, 3650, 198, 198, 26708, 62, 44710, 796, 705, 1820, 62, 2673, 6, 198 ]
3.26087
23
import torch def reg_loss_interaction(A, reg_lambda = 0.001, order=2): """ Regularization loss for the off-diag elements of interaction matrix A """ mask = ~torch.eye(A.shape[0], dtype=torch.bool) return reg_lambda * torch.linalg.norm(A[mask], order) def reg_loss_r(r, reg_lambda = 0.001, order=2): """ Regularization loss for the growth rate r """ return reg_lambda * torch.linalg.norm(r, order) def reg_loss_eps(eps, reg_lambda = 0.001, order=2): """ Regularization loss for the susceptibility eps """ return reg_lambda * torch.linalg.norm(eps, order)
[ 11748, 28034, 628, 198, 4299, 842, 62, 22462, 62, 3849, 2673, 7, 32, 11, 842, 62, 50033, 796, 657, 13, 8298, 11, 1502, 28, 17, 2599, 198, 220, 37227, 23603, 1634, 2994, 329, 262, 572, 12, 10989, 363, 4847, 286, 10375, 17593, 317, 37227, 198, 220, 9335, 796, 5299, 13165, 354, 13, 25379, 7, 32, 13, 43358, 58, 15, 4357, 288, 4906, 28, 13165, 354, 13, 30388, 8, 198, 220, 1441, 842, 62, 50033, 1635, 28034, 13, 75, 1292, 70, 13, 27237, 7, 32, 58, 27932, 4357, 1502, 8, 198, 198, 4299, 842, 62, 22462, 62, 81, 7, 81, 11, 842, 62, 50033, 796, 657, 13, 8298, 11, 1502, 28, 17, 2599, 198, 220, 37227, 23603, 1634, 2994, 329, 262, 3349, 2494, 374, 37227, 198, 220, 1441, 842, 62, 50033, 1635, 28034, 13, 75, 1292, 70, 13, 27237, 7, 81, 11, 1502, 8, 198, 198, 4299, 842, 62, 22462, 62, 25386, 7, 25386, 11, 842, 62, 50033, 796, 657, 13, 8298, 11, 1502, 28, 17, 2599, 198, 220, 37227, 23603, 1634, 2994, 329, 262, 43304, 304, 862, 37227, 198, 220, 1441, 842, 62, 50033, 1635, 28034, 13, 75, 1292, 70, 13, 27237, 7, 25386, 11, 1502, 8 ]
2.898477
197
raio = float(input()) area = (raio * raio) * 3.14159 print("A=%0.4f" %area)
[ 430, 952, 796, 12178, 7, 15414, 28955, 198, 198, 20337, 796, 357, 430, 952, 1635, 2179, 952, 8, 1635, 513, 13, 1415, 19707, 220, 198, 198, 4798, 7203, 32, 28, 4, 15, 13, 19, 69, 1, 4064, 20337, 8 ]
2
39
# Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. from datetime import datetime """ Develop an experiment that measures and combination of the following features: spatial_frequency temporal_frequency mean_luminance eccentricity field_angle orientation """ constants = dict( savefolder="./databases/", timestamp=datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), config_path="./config_8d.ini", seed=1, ) base_params = { "spatial_frequency": 2, "orientation": 0, "pedestal": 0.5, "contrast": 0.75, "temporal_frequency": 0, "size": 10, "angle_dist":0, "eccentricity": 0, } psychopy_vars = dict( setSizePix=[1680, 1050], setWidth=47.475, setDistance=57, pre_duration_s=0.0, stim_duration_s=5.0, post_duration_s=1, response_wait=2, iti=0, )
[ 2, 15069, 357, 66, 8, 30277, 19193, 82, 11, 3457, 13, 290, 29116, 13, 1439, 2489, 10395, 13, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 37811, 198, 19246, 281, 6306, 326, 5260, 290, 6087, 286, 262, 1708, 3033, 25, 198, 198, 2777, 34961, 62, 35324, 198, 11498, 35738, 62, 35324, 198, 32604, 62, 75, 7230, 590, 198, 68, 535, 22317, 414, 198, 3245, 62, 9248, 198, 13989, 341, 198, 37811, 628, 198, 9979, 1187, 796, 8633, 7, 198, 220, 220, 220, 3613, 43551, 28, 1911, 14, 19608, 18826, 14, 1600, 198, 220, 220, 220, 41033, 28, 19608, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 62, 4, 39, 12, 4, 44, 12, 4, 50, 12340, 198, 220, 220, 220, 4566, 62, 6978, 28, 1911, 14, 11250, 62, 23, 67, 13, 5362, 1600, 198, 220, 220, 220, 9403, 28, 16, 11, 198, 8, 198, 198, 8692, 62, 37266, 796, 1391, 198, 220, 220, 220, 366, 2777, 34961, 62, 35324, 1298, 362, 11, 198, 220, 220, 220, 366, 13989, 341, 1298, 657, 11, 198, 220, 220, 220, 366, 9124, 395, 282, 1298, 657, 13, 20, 11, 198, 220, 220, 220, 366, 3642, 5685, 1298, 657, 13, 2425, 11, 198, 220, 220, 220, 366, 11498, 35738, 62, 35324, 1298, 657, 11, 198, 220, 220, 220, 366, 7857, 1298, 838, 11, 198, 220, 220, 220, 366, 9248, 62, 17080, 1298, 15, 11, 198, 220, 220, 220, 366, 68, 535, 22317, 414, 1298, 657, 11, 198, 92, 628, 198, 23947, 11081, 62, 85, 945, 796, 8633, 7, 198, 220, 220, 220, 900, 10699, 47, 844, 41888, 1433, 1795, 11, 47235, 4357, 198, 220, 220, 220, 900, 30916, 28, 2857, 13, 32576, 11, 198, 220, 220, 220, 900, 45767, 28, 3553, 11, 198, 220, 220, 220, 662, 62, 32257, 62, 82, 28, 15, 13, 15, 11, 198, 220, 220, 220, 7132, 62, 32257, 62, 82, 28, 20, 13, 15, 11, 198, 220, 220, 220, 1281, 62, 32257, 62, 82, 28, 16, 11, 198, 220, 220, 220, 2882, 62, 17077, 28, 17, 11, 198, 220, 220, 220, 340, 72, 28, 15, 11, 198, 8, 198 ]
2.354749
358
from dataclasses import dataclass, field from typing import List __NAMESPACE__ = "urn:test" @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 19720, 1330, 7343, 198, 198, 834, 45, 29559, 47, 11598, 834, 796, 366, 700, 25, 9288, 1, 628, 198, 31, 19608, 330, 31172, 198 ]
2.944444
36
""" ******************************************************************************** * Name: model_file_database_connection_base.py * Author: nswain * Created On: June 05, 2018 * Copyright: (c) Aquaveo 2018 ******************************************************************************** """ class ModelDatabaseConnectionBase(object): """ Represents a Model Database. """ db_name = None db_dir = None db_id = None def get_id(self): """ DB id getter. """ return self.db_id def get_name(self): """ DB name getter. """ return self.db_name
[ 37811, 198, 17174, 17174, 8412, 198, 9, 6530, 25, 2746, 62, 7753, 62, 48806, 62, 38659, 62, 8692, 13, 9078, 198, 9, 6434, 25, 299, 2032, 391, 198, 9, 15622, 1550, 25, 2795, 8870, 11, 2864, 198, 9, 15069, 25, 357, 66, 8, 11446, 1015, 78, 2864, 198, 17174, 17174, 8412, 198, 37811, 628, 198, 4871, 9104, 38105, 32048, 14881, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1432, 6629, 257, 9104, 24047, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 20613, 62, 3672, 796, 6045, 198, 220, 220, 220, 20613, 62, 15908, 796, 6045, 198, 220, 220, 220, 20613, 62, 312, 796, 6045, 628, 220, 220, 220, 825, 651, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20137, 4686, 651, 353, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 9945, 62, 312, 628, 220, 220, 220, 825, 651, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20137, 1438, 651, 353, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 9945, 62, 3672, 198 ]
2.856502
223
from .selection import selection_counter
[ 6738, 764, 49283, 1330, 6356, 62, 24588, 198 ]
5.125
8
import anndata as ad import matplotlib.pyplot as plt import pandas as pd import numpy as np import random import warnings from warnings import warn def cluster_composition(adata, cluster, condition, xlabel='cell cluster', ylabel='cell count', title=None, save=False): """ Deprecated. Use epi.pl.cell_composition instead. """ warnings.warn("Deprecated. Use epi.pl.cell_composition instead.") contingency_table = pd.crosstab( adata.obs[condition], adata.obs[cluster], margins = True ) counts = [] p_part = [] index = 0 categories = sorted(list(set(adata.obs[cluster]))) for n in sorted(set(adata.obs[condition])): #counts.append() p_part.append(plt.bar(categories, contingency_table.iloc[index][0:-1].values)) index += 1 #Plots the bar chart #plt.figsize(figsize=[6.4, 4.8]) plt.legend(tuple([p[0] for p in p_part]), tuple(sorted(set(adata.obs[condition])))) plt.xlabel(xlabel, ) plt.ylabel(ylabel) plt.title(title) if save!=False: if (save==True) or (save.split('.')[-1] not in ['png', 'pdf']): plt.savefig('cluster_composition.png', dpi=300, bbox_inches="tight") else: plt.savefig('_'.join(['cluster_composition',save]), #format=save.split('.')[-1], dpi=300, bbox_inches="tight") plt.show() def cell_composition(adata, obs_1, obs_2, title='Cell composition per sample', xlabel="", ylabel="Number of cells", loc_legend = 'best', location_bbox=(1, 0, 0, 1), save=None): """ Bar plots displaying the cell composition division between two Anndata obs categories. adata : AnnData objct obs_1 : adata.obs key 1 obs_2 : adata.obs key 2 title : [optional] title of the plot loc_legend : location of the legend. Available are ``'upper left', 'upper right', 'lower left', 'lower right'`` or ``'upper center', 'lower center', 'center left', 'center right'`` bbox_to_anchor : tuple containing the location of the figure. Default (1, 0, 0, 1) save : if not None, str corresponding to the output file name """ # create dataframe df = pd.crosstab(adata.obs[obs_1], adata.obs[obs_2]) array = np.array(df) x = df.columns.tolist() y = df.index.tolist() #colors for the plot if obs_1+"_colors" in adata.uns.keys(): colors=adata.uns[obs_1+"_colors"] else: # select random colors no_of_colors=len(y) colors=["#"+''.join([random.choice('0123456789ABCDEF') for i in range(6)]) for j in range(no_of_colors)] # plot bars in stack manner previous_value = 0 index = 0 for n in range(len(y)): plt.bar(x, array[index], bottom=previous_value, color=colors[index]) previous_value += array[index] index += 1 # The strings # ``'upper left', 'upper right', 'lower left', 'lower right'`` # place the legend at the corresponding corner of the axes/figure. # The strings # ``'upper center', 'lower center', 'center left', 'center right'`` # place the legend at the center of the corresponding edge of the # axes/figure. plt.xticks(x, rotation=90) plt.legend(y, loc=loc_legend, bbox_to_anchor=location_bbox) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if save != None : plt.savefig(save, bbox_inches='tight') plt.show()
[ 11748, 281, 358, 1045, 355, 512, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 198, 11748, 14601, 198, 6738, 14601, 1330, 9828, 198, 198, 4299, 13946, 62, 785, 9150, 7, 14706, 11, 13946, 11, 4006, 11, 2124, 18242, 11639, 3846, 13946, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 11639, 3846, 954, 3256, 3670, 28, 14202, 11, 3613, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2129, 31023, 13, 5765, 2462, 72, 13, 489, 13, 3846, 62, 785, 9150, 2427, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14601, 13, 40539, 7203, 12156, 31023, 13, 5765, 2462, 72, 13, 489, 13, 3846, 62, 785, 9150, 2427, 19570, 628, 220, 220, 220, 38820, 62, 11487, 796, 279, 67, 13, 66, 4951, 39029, 7, 198, 220, 220, 220, 220, 220, 220, 220, 512, 1045, 13, 8158, 58, 31448, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 512, 1045, 13, 8158, 58, 565, 5819, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 20241, 796, 6407, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 9853, 796, 17635, 198, 220, 220, 220, 279, 62, 3911, 796, 17635, 198, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 9376, 796, 23243, 7, 4868, 7, 2617, 7, 14706, 13, 8158, 58, 565, 5819, 60, 22305, 198, 220, 220, 220, 329, 299, 287, 23243, 7, 2617, 7, 14706, 13, 8158, 58, 31448, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9127, 82, 13, 33295, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 279, 62, 3911, 13, 33295, 7, 489, 83, 13, 5657, 7, 66, 26129, 11, 38820, 62, 11487, 13, 346, 420, 58, 9630, 7131, 15, 21912, 16, 4083, 27160, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1303, 3646, 1747, 262, 2318, 8262, 198, 220, 220, 220, 1303, 489, 83, 13, 5647, 7857, 7, 5647, 7857, 41888, 21, 13, 19, 11, 604, 13, 23, 12962, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 83, 29291, 26933, 79, 58, 15, 60, 329, 279, 287, 279, 62, 3911, 46570, 46545, 7, 82, 9741, 7, 2617, 7, 14706, 13, 8158, 58, 31448, 60, 35514, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 87, 18242, 11, 1267, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 2645, 9608, 8, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 7839, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3613, 0, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 21928, 855, 17821, 8, 393, 357, 21928, 13, 35312, 10786, 2637, 38381, 12, 16, 60, 407, 287, 37250, 11134, 3256, 705, 12315, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 565, 5819, 62, 785, 9150, 13, 11134, 3256, 288, 14415, 28, 6200, 11, 275, 3524, 62, 45457, 2625, 33464, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 62, 4458, 22179, 7, 17816, 565, 5819, 62, 785, 9150, 3256, 21928, 46570, 1303, 18982, 28, 21928, 13, 35312, 10786, 2637, 38381, 12, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 28, 6200, 11, 275, 3524, 62, 45457, 2625, 33464, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 198, 4299, 2685, 62, 785, 9150, 7, 14706, 11, 10201, 62, 16, 11, 220, 10201, 62, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 28780, 11742, 583, 6291, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 18242, 2625, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 2625, 15057, 286, 4778, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1179, 62, 1455, 437, 796, 705, 13466, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 62, 65, 3524, 16193, 16, 11, 657, 11, 657, 11, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 28, 14202, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2409, 21528, 19407, 262, 2685, 11742, 7297, 1022, 734, 1052, 358, 1045, 10201, 9376, 13, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 512, 1045, 1058, 5506, 6601, 26181, 310, 198, 220, 220, 220, 10201, 62, 16, 1058, 512, 1045, 13, 8158, 1994, 352, 220, 198, 220, 220, 220, 10201, 62, 17, 1058, 512, 1045, 13, 8158, 1994, 362, 198, 220, 220, 220, 3670, 1058, 685, 25968, 60, 3670, 286, 262, 7110, 198, 220, 220, 220, 1179, 62, 1455, 437, 1058, 4067, 286, 262, 8177, 13, 14898, 389, 7559, 6, 45828, 1364, 3256, 705, 45828, 826, 3256, 705, 21037, 1364, 3256, 705, 21037, 826, 6, 15506, 198, 220, 220, 220, 393, 7559, 6, 45828, 3641, 3256, 705, 21037, 3641, 3256, 705, 16159, 1364, 3256, 705, 16159, 826, 6, 15506, 198, 220, 220, 220, 275, 3524, 62, 1462, 62, 3702, 273, 1058, 46545, 7268, 262, 4067, 286, 262, 3785, 13, 15161, 357, 16, 11, 657, 11, 657, 11, 352, 8, 198, 220, 220, 220, 3613, 1058, 611, 407, 6045, 11, 965, 11188, 284, 262, 5072, 2393, 1438, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 1366, 14535, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 66, 4951, 39029, 7, 14706, 13, 8158, 58, 8158, 62, 16, 4357, 512, 1045, 13, 8158, 58, 8158, 62, 17, 12962, 198, 220, 220, 220, 7177, 796, 45941, 13, 18747, 7, 7568, 8, 198, 220, 220, 220, 2124, 796, 47764, 13, 28665, 82, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 331, 796, 47764, 13, 9630, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 4033, 669, 329, 262, 7110, 198, 220, 220, 220, 611, 10201, 62, 16, 10, 1, 62, 4033, 669, 1, 287, 512, 1045, 13, 13271, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 7577, 28, 14706, 13, 13271, 58, 8158, 62, 16, 10, 1, 62, 4033, 669, 8973, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2922, 4738, 7577, 198, 220, 220, 220, 220, 220, 220, 220, 645, 62, 1659, 62, 4033, 669, 28, 11925, 7, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7577, 28, 14692, 2, 1, 10, 35384, 22179, 26933, 25120, 13, 25541, 10786, 486, 1954, 2231, 3134, 4531, 24694, 32988, 11537, 329, 1312, 287, 2837, 7, 21, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 3919, 62, 1659, 62, 4033, 669, 15437, 628, 220, 220, 220, 1303, 7110, 9210, 287, 8931, 5642, 198, 220, 220, 220, 2180, 62, 8367, 796, 657, 198, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 299, 287, 2837, 7, 11925, 7, 88, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 5657, 7, 87, 11, 7177, 58, 9630, 4357, 4220, 28, 3866, 1442, 62, 8367, 11, 3124, 28, 4033, 669, 58, 9630, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2180, 62, 8367, 15853, 7177, 58, 9630, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1303, 220, 220, 220, 383, 13042, 198, 220, 220, 220, 1303, 220, 220, 220, 7559, 6, 45828, 1364, 3256, 705, 45828, 826, 3256, 705, 21037, 1364, 3256, 705, 21037, 826, 6, 15506, 198, 220, 220, 220, 1303, 220, 220, 220, 1295, 262, 8177, 379, 262, 11188, 5228, 286, 262, 34197, 14, 26875, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 383, 13042, 198, 220, 220, 220, 1303, 220, 220, 220, 7559, 6, 45828, 3641, 3256, 705, 21037, 3641, 3256, 705, 16159, 1364, 3256, 705, 16159, 826, 6, 15506, 198, 220, 220, 220, 1303, 220, 220, 220, 1295, 262, 8177, 379, 262, 3641, 286, 262, 11188, 5743, 286, 262, 198, 220, 220, 220, 1303, 220, 220, 220, 34197, 14, 26875, 13, 198, 220, 220, 220, 458, 83, 13, 742, 3378, 7, 87, 11, 13179, 28, 3829, 8, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 88, 11, 1179, 28, 17946, 62, 1455, 437, 11, 275, 3524, 62, 1462, 62, 3702, 273, 28, 24886, 62, 65, 3524, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 87, 18242, 8, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 2645, 9608, 8, 198, 220, 220, 220, 458, 83, 13, 7839, 7, 7839, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 3613, 14512, 6045, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 21928, 11, 275, 3524, 62, 45457, 11639, 33464, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419 ]
2.227189
1,633
import sys import os import shutil import subprocess import multiprocessing from multiprocessing import Pool import pickle as pkl import itertools import numpy as np from scipy import stats import tensorflow as tf # mute tensorflow information os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # or any {DEBUG, INFO, WARN, ERROR, FATAL} if __name__ == '__main__': for jump_prior in [-10]: # Data specific variables # Options of `(vocab_size, dim)`: (30000, 100), (3000, 10), (10000, 20) MAX_VOCAB_SIZE = 30000 DIM = 100 DIFFUSION = 2 # RAND_VOCAB = False BEAM_SIZE = 1 # 8 JUMP_BIAS = jump_prior #-10 DATA_FOLDER = "./data-n-ckpt/gbooks" IN_DATAPATH_TEMPLATE = DATA_FOLDER + '/train/npos_year%4d.bin.gz' VAL_DATAPATH_TEMPLATE = DATA_FOLDER + '/test/npos_year%4d.bin.gz' CHECKPOINT_FOLDER = ( './v%d_d%d_b%d_p%d_diff%f_gbooks/' % (MAX_VOCAB_SIZE, DIM, BEAM_SIZE, JUMP_BIAS, DIFFUSION)) OUT_DIR_TEMPLATE = CHECKPOINT_FOLDER + 'gbooks%4d_b%s_s%s/' # year, beam_id, s_t PREV_PARAM_PATH_TEMPLATE = CHECKPOINT_FOLDER + '%s_%4d.npy' # beam_mu/beam_std, year BEAM_VAR_FOLDER = CHECKPOINT_FOLDER + '/beam_results/' CONTEXT_VECTOR_CKPT_PATH = ( './data-n-ckpt/gbooks' #### MODIFY '/gbooks_entire_timesteps_v%d_d%d_subsample/checkpoint-10000' % (MAX_VOCAB_SIZE, DIM)) FIRST_GPU = 0 MAX_GPU = 2 os.mkdir(CHECKPOINT_FOLDER) os.mkdir(BEAM_VAR_FOLDER) def test_procedure(year): '''Compute the predictive likelihood for each beam. ''' proc = multiprocessing.current_process() gpu_id = FIRST_GPU out_file_path = BEAM_VAR_FOLDER + 'likelihood.txt' mu_path = PREV_PARAM_PATH_TEMPLATE % ('beam_mu', year) log_s_path = BEAM_VAR_FOLDER + 'beam_log_s_v%d_d%d_b%d_y%d.npy' % (MAX_VOCAB_SIZE, DIM, BEAM_SIZE, year) context_vector_ckpt_path = CONTEXT_VECTOR_CKPT_PATH val_datapath = VAL_DATAPATH_TEMPLATE % year comargs = ['env', 'CUDA_VISIBLE_DEVICES=%d' % gpu_id, 'python', 'dsg_filtering_test.py', '--rng_seed=123', # '--rand_vocab', # '--norm_npos', '--vocab_size=%d' % MAX_VOCAB_SIZE, '--dim=%d' % DIM, '--context_vector_ckpt=%s' % context_vector_ckpt_path, '--mu_path=%s' % mu_path, '--log_s_path=%s' % log_s_path, val_datapath, out_file_path] rs = subprocess.run(comargs, check=True, stderr=subprocess.STDOUT) def find_optimal_beam(scores, beam_size, discard_fraction = 1.0 / 3.0): '''Return the indices of the `beam_size` optimal hypotheses. Args: scores: vector of scores (e.g., log probabilities or ELBOs) of each hypothesis. Must have an even length and the two hypotheses with the same parent always have to come together, i.e., scores = [ score of the first child of the first parent, score of the first child of the second parent, score of the first child of the third parent, score of the second child of the first parent, score of the second child of the second parent, score of the second child of the third parent, ] beam_size: the number of hyptheses that can be selected from candidates. discard fraction: fraction of the lowest scroed hypotheses that will be discarded before we even try to maximize diversity. More precisely, this is the fraction that will be discarded *in the steady state*, i.e., once `len(scores) == 2 * beam_size`. Must be between 0 and 0.5. Returns: An array of indices into argument `scores` that defines the optimal beam. ''' assert 0 < discard_fraction assert discard_fraction < 0.5 if beam_size >= len(scores): return np.arange(len(scores)) num_parents = len(scores) // 2 assert scores.shape == (2 * num_parents,) assert num_parents <= beam_size # Keep track of the hypotheses' parents parents = np.array(list(range(num_parents)) * 2).flatten() # Discard `discard_fraction` of the hypotheses (except that we don't have to discard # any hypothesis in the first few steps when there are only few hypotheses) # num_keep = min(len(scores), round((1.0 - discard_fraction) * (2 * beam_size))) num_keep = len(scores) - 2 candidate_indices = np.argsort(-scores)[:num_keep] candidate_scores = scores[candidate_indices] candidate_parents = parents[candidate_indices] # Find out how many different parents are among the candidates (but at most `beam_size`). max_num_parents = min(beam_size, len(set(candidate_parents))) # Out of all ways to choose `beam_size` candidates, consider only the ones with # `max_num_parents` different parents, and then take the one with maximum total score. best_indices = None best_score = float('-Inf') resulting_beam_size = min(beam_size, len(candidate_scores)) for indices in itertools.combinations(range(len(candidate_scores)), resulting_beam_size): indices = np.array(np.array(indices)) if len(set(candidate_parents[indices])) == max_num_parents: score = candidate_scores[indices].sum() if score > best_score: best_indices = indices best_score = score return candidate_indices[best_indices] def update_mu_std(ind, dir_1, dir_0, beam_mu, beam_std, beam_size): """dir_1 = ... # template with beam id as indicator dir_0 = ... """ mu_1, std_1 = [], [] mu_0, std_0 = [], [] for b in range(beam_size): checkpoint_path = tf.train.latest_checkpoint(dir_1 % b) reader = tf.train.NewCheckpointReader(checkpoint_path) _mean_1, _std_1 = reader.get_tensor('q/mean_u'), np.exp(reader.get_tensor('q/log_std_u')) mu_1.append(_mean_1) std_1.append(_std_1) checkpoint_path = tf.train.latest_checkpoint(dir_0 % b) reader = tf.train.NewCheckpointReader(checkpoint_path) _mean_0, _std_0 = reader.get_tensor('q/mean_u'), np.exp(reader.get_tensor('q/log_std_u')) mu_0.append(_mean_0) std_0.append(_std_0) mu_1, std_1 = np.asarray(mu_1, dtype=np.float32), np.asarray(std_1, dtype=np.float32) # (beam_size, vocab_size, emb_size) mu_0, std_0 = np.asarray(mu_0, dtype=np.float32), np.asarray(std_0, dtype=np.float32) extended_candidate_mu = np.concatenate((mu_1, mu_0), axis=0) # (2*beam_size, vocab_size, emb_size) extended_beam_mu = np.tile(beam_mu, (2, 1, 1, 1)) # (2*beam_size, vocab_size, emb_size, T-1) # process for each word _beam_mu = [] for (extended_beam_mu_i, extended_candidate_mu_i, ind_i) in zip(extended_beam_mu.transpose(1, 0, 2, 3), extended_candidate_mu.transpose(1, 0, 2), ind.transpose()): _beam_mu.append(np.expand_dims(np.concatenate((extended_beam_mu_i[ind_i, :, :], np.expand_dims(extended_candidate_mu_i[ind_i, :], axis=-1)), axis=-1), axis=1)) beam_mu = np.concatenate(_beam_mu, axis=1) extended_candidate_std = np.concatenate((std_1, std_0), axis=0) # (2*beam_size, vocab_size, emb_size) extended_beam_std = np.tile(beam_std, (2, 1, 1, 1)) # (2*beam_size, vocab_size, emb_size, T-1) # process for each word _beam_std = [] for (extended_beam_std_i, extended_candidate_std_i, ind_i) in zip(extended_beam_std.transpose(1, 0, 2, 3), extended_candidate_std.transpose(1, 0, 2), ind.transpose()): _beam_std.append(np.expand_dims(np.concatenate((extended_beam_std_i[ind_i, :, :], np.expand_dims(extended_candidate_std_i[ind_i, :], axis=-1)), axis=-1), axis=1)) beam_std = np.concatenate(_beam_std, axis=1) return beam_mu, beam_std year_list = range(1900, 2000 + 1) # Training _, _ = dsg_beam_search(year_list, s_dim=MAX_VOCAB_SIZE, beam_size=BEAM_SIZE, jump_bias=JUMP_BIAS) # Test procedure # for year in year_list: # print('Computing predictive likelihood for heldout data.') # test_args = [[year]] # with Pool(1) as p: # p.starmap(test_procedure, test_args) # p.close() # print('Year %d done.' % year) # sys.stdout.flush() # tools def delayed_update_procedure(beam_decision, beam_mu, num_years, update=True, beam_id=0, vocab_size=30000, emb_dim=100): '''`beam_decision` should be a numpy ndarray of shape `(beam_size, vocab_size, num_steps)`. `beam_mu` is the inferred embeddings of shape `(beam_size, vocab_size, emb_dim, num_steps)`. `num_years` is `num_steps`. It returns word embeddings of shape `(num_steps, vocab_size, emb_dim)`. ''' embs = beam_mu[beam_id, ...].transpose(0, 2, 1) if update: embeddings = np.zeros((vocab_size, num_years, emb_dim)) # process each word for i in range(vocab_size): beam_decision_i = beam_decision[beam_id, i, :] stay_start = 0 for j, d_i in enumerate(beam_decision_i): if d_i == 1 and j > 0: embeddings[i, stay_start:j, :] = np.tile(embs[i, j-1, :], (j - stay_start, 1)) stay_start = j embeddings[i, stay_start:, :] = np.tile(embs[i, -1, :], (num_years - stay_start, 1)) embeddings = np.transpose(embeddings, (1, 0, 2)) else: embeddings = embs return embeddings
[ 11748, 25064, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 18540, 305, 919, 278, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 11748, 2298, 293, 355, 279, 41582, 198, 11748, 340, 861, 10141, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 9756, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 2, 38723, 11192, 273, 11125, 1321, 198, 418, 13, 268, 2268, 17816, 10234, 62, 8697, 47, 62, 23678, 62, 25294, 62, 2538, 18697, 20520, 796, 705, 18, 6, 220, 1303, 393, 597, 1391, 6, 15, 3256, 705, 16, 3256, 705, 17, 6, 92, 198, 27110, 13, 5589, 265, 13, 85, 16, 13, 6404, 2667, 13, 2617, 62, 19011, 16579, 7, 27110, 13, 5589, 265, 13, 85, 16, 13, 6404, 2667, 13, 24908, 8, 220, 1303, 393, 597, 1391, 30531, 11, 24890, 11, 42660, 11, 33854, 11, 47200, 1847, 92, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 329, 4391, 62, 3448, 273, 287, 25915, 940, 5974, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6060, 2176, 9633, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18634, 286, 4600, 7, 18893, 397, 62, 7857, 11, 5391, 8, 63, 25, 357, 18, 2388, 11, 1802, 828, 357, 23924, 11, 838, 828, 357, 49388, 11, 1160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25882, 62, 53, 4503, 6242, 62, 33489, 796, 513, 2388, 220, 198, 220, 220, 220, 220, 220, 220, 220, 360, 3955, 796, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 360, 29267, 2937, 2849, 796, 362, 1303, 628, 220, 220, 220, 220, 220, 220, 220, 46920, 62, 53, 4503, 6242, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 9348, 2390, 62, 33489, 796, 352, 1303, 807, 198, 220, 220, 220, 220, 220, 220, 220, 449, 20476, 62, 3483, 1921, 796, 4391, 62, 3448, 273, 1303, 12, 940, 628, 220, 220, 220, 220, 220, 220, 220, 42865, 62, 37, 3535, 14418, 796, 366, 19571, 7890, 12, 77, 12, 694, 457, 14, 70, 12106, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3268, 62, 35, 1404, 2969, 12599, 62, 51, 3620, 6489, 6158, 796, 42865, 62, 37, 3535, 14418, 1343, 31051, 27432, 14, 77, 1930, 62, 1941, 4, 19, 67, 13, 8800, 13, 34586, 6, 198, 220, 220, 220, 220, 220, 220, 220, 26173, 62, 35, 1404, 2969, 12599, 62, 51, 3620, 6489, 6158, 796, 42865, 62, 37, 3535, 14418, 1343, 31051, 9288, 14, 77, 1930, 62, 1941, 4, 19, 67, 13, 8800, 13, 34586, 6, 198, 220, 220, 220, 220, 220, 220, 220, 5870, 25171, 16402, 12394, 62, 37, 3535, 14418, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19571, 85, 4, 67, 62, 67, 4, 67, 62, 65, 4, 67, 62, 79, 4, 67, 62, 26069, 4, 69, 62, 70, 12106, 14, 6, 4064, 357, 22921, 62, 53, 4503, 6242, 62, 33489, 11, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 3955, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9348, 2390, 62, 33489, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 449, 20476, 62, 3483, 1921, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 29267, 2937, 2849, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 16289, 62, 34720, 62, 51, 3620, 6489, 6158, 796, 5870, 25171, 16402, 12394, 62, 37, 3535, 14418, 1343, 705, 70, 12106, 4, 19, 67, 62, 65, 4, 82, 62, 82, 4, 82, 14, 6, 1303, 614, 11, 15584, 62, 312, 11, 264, 62, 83, 198, 220, 220, 220, 220, 220, 220, 220, 22814, 53, 62, 27082, 2390, 62, 34219, 62, 51, 3620, 6489, 6158, 796, 5870, 25171, 16402, 12394, 62, 37, 3535, 14418, 1343, 705, 4, 82, 62, 4, 19, 67, 13, 77, 9078, 6, 1303, 15584, 62, 30300, 14, 40045, 62, 19282, 11, 614, 198, 220, 220, 220, 220, 220, 220, 220, 9348, 2390, 62, 53, 1503, 62, 37, 3535, 14418, 796, 5870, 25171, 16402, 12394, 62, 37, 3535, 14418, 1343, 31051, 40045, 62, 43420, 14, 6, 198, 220, 220, 220, 220, 220, 220, 220, 22904, 13918, 62, 53, 9782, 1581, 62, 34, 42, 11571, 62, 34219, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19571, 7890, 12, 77, 12, 694, 457, 14, 70, 12106, 6, 1303, 21017, 19164, 5064, 56, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 70, 12106, 62, 298, 557, 62, 16514, 395, 25386, 62, 85, 4, 67, 62, 67, 4, 67, 62, 7266, 39873, 14, 9122, 4122, 12, 49388, 6, 4064, 357, 22921, 62, 53, 4503, 6242, 62, 33489, 11, 360, 3955, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 31328, 62, 33346, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 25882, 62, 33346, 796, 362, 628, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 50084, 16402, 12394, 62, 37, 3535, 14418, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 12473, 2390, 62, 53, 1503, 62, 37, 3535, 14418, 8, 628, 628, 220, 220, 220, 220, 220, 220, 220, 825, 1332, 62, 1676, 771, 495, 7, 1941, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 7293, 1133, 262, 33344, 14955, 329, 1123, 15584, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 796, 18540, 305, 919, 278, 13, 14421, 62, 14681, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19944, 62, 312, 796, 31328, 62, 33346, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 7753, 62, 6978, 796, 9348, 2390, 62, 53, 1503, 62, 37, 3535, 14418, 1343, 705, 2339, 11935, 13, 14116, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 6978, 796, 22814, 53, 62, 27082, 2390, 62, 34219, 62, 51, 3620, 6489, 6158, 4064, 19203, 40045, 62, 30300, 3256, 614, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 82, 62, 6978, 796, 9348, 2390, 62, 53, 1503, 62, 37, 3535, 14418, 1343, 705, 40045, 62, 6404, 62, 82, 62, 85, 4, 67, 62, 67, 4, 67, 62, 65, 4, 67, 62, 88, 4, 67, 13, 77, 9078, 6, 4064, 357, 22921, 62, 53, 4503, 6242, 62, 33489, 11, 360, 3955, 11, 9348, 2390, 62, 33489, 11, 614, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 31364, 62, 694, 457, 62, 6978, 796, 22904, 13918, 62, 53, 9782, 1581, 62, 34, 42, 11571, 62, 34219, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 19608, 499, 776, 796, 26173, 62, 35, 1404, 2969, 12599, 62, 51, 3620, 6489, 6158, 4064, 614, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 401, 22046, 796, 37250, 24330, 3256, 705, 43633, 5631, 62, 29817, 34563, 62, 39345, 34444, 28, 4, 67, 6, 4064, 308, 19944, 62, 312, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 3256, 705, 9310, 70, 62, 10379, 20212, 62, 9288, 13, 9078, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 81, 782, 62, 28826, 28, 10163, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 438, 25192, 62, 18893, 397, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 438, 27237, 62, 77, 1930, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 18893, 397, 62, 7857, 28, 4, 67, 6, 4064, 25882, 62, 53, 4503, 6242, 62, 33489, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 27740, 28, 4, 67, 6, 4064, 360, 3955, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 22866, 62, 31364, 62, 694, 457, 28, 4, 82, 6, 4064, 4732, 62, 31364, 62, 694, 457, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 30300, 62, 6978, 28, 4, 82, 6, 4064, 38779, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 438, 6404, 62, 82, 62, 6978, 28, 4, 82, 6, 4064, 2604, 62, 82, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 19608, 499, 776, 11, 503, 62, 7753, 62, 6978, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44608, 796, 850, 14681, 13, 5143, 7, 785, 22046, 11, 2198, 28, 17821, 11, 336, 1082, 81, 28, 7266, 14681, 13, 36886, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 825, 1064, 62, 8738, 4402, 62, 40045, 7, 1416, 2850, 11, 15584, 62, 7857, 11, 27537, 62, 69, 7861, 796, 352, 13, 15, 1220, 513, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 13615, 262, 36525, 286, 262, 4600, 40045, 62, 7857, 63, 16586, 35125, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 25, 15879, 286, 8198, 357, 68, 13, 70, 1539, 2604, 39522, 393, 17852, 8202, 82, 8, 286, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14078, 13, 12039, 423, 281, 772, 4129, 290, 262, 734, 35125, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 976, 2560, 1464, 423, 284, 1282, 1978, 11, 1312, 13, 68, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 262, 717, 1200, 286, 262, 717, 2560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 262, 717, 1200, 286, 262, 1218, 2560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 262, 717, 1200, 286, 262, 2368, 2560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 262, 1218, 1200, 286, 262, 717, 2560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 262, 1218, 1200, 286, 262, 1218, 2560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 286, 262, 1218, 1200, 286, 262, 2368, 2560, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15584, 62, 7857, 25, 262, 1271, 286, 2537, 457, 39815, 326, 460, 307, 6163, 422, 5871, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27537, 13390, 25, 13390, 286, 262, 9016, 629, 305, 276, 35125, 326, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25148, 878, 356, 772, 1949, 284, 20487, 9573, 13, 3125, 10582, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 318, 262, 13390, 326, 481, 307, 25148, 1635, 259, 262, 11831, 1181, 25666, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 13, 68, 1539, 1752, 4600, 11925, 7, 1416, 2850, 8, 6624, 362, 1635, 15584, 62, 7857, 44646, 12039, 307, 1022, 657, 290, 657, 13, 20, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1052, 7177, 286, 36525, 656, 4578, 4600, 1416, 2850, 63, 326, 15738, 262, 16586, 15584, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 657, 1279, 27537, 62, 69, 7861, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 27537, 62, 69, 7861, 1279, 657, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15584, 62, 7857, 18189, 18896, 7, 1416, 2850, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 283, 858, 7, 11925, 7, 1416, 2850, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 23743, 796, 18896, 7, 1416, 2850, 8, 3373, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 8198, 13, 43358, 6624, 357, 17, 1635, 997, 62, 23743, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 997, 62, 23743, 19841, 15584, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9175, 2610, 286, 262, 35125, 6, 3397, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3397, 796, 45941, 13, 18747, 7, 4868, 7, 9521, 7, 22510, 62, 23743, 4008, 1635, 362, 737, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8444, 446, 4600, 15410, 446, 62, 69, 7861, 63, 286, 262, 35125, 357, 16341, 326, 356, 836, 470, 423, 284, 27537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 597, 14078, 287, 262, 717, 1178, 4831, 618, 612, 389, 691, 1178, 35125, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 997, 62, 14894, 796, 949, 7, 11925, 7, 1416, 2850, 828, 2835, 19510, 16, 13, 15, 532, 27537, 62, 69, 7861, 8, 1635, 357, 17, 1635, 15584, 62, 7857, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 14894, 796, 18896, 7, 1416, 2850, 8, 532, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 521, 1063, 796, 45941, 13, 22046, 419, 32590, 1416, 2850, 38381, 25, 22510, 62, 14894, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 1416, 2850, 796, 8198, 58, 46188, 20540, 62, 521, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4540, 62, 23743, 796, 3397, 58, 46188, 20540, 62, 521, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 503, 703, 867, 1180, 3397, 389, 1871, 262, 5871, 357, 4360, 379, 749, 4600, 40045, 62, 7857, 63, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 22510, 62, 23743, 796, 949, 7, 40045, 62, 7857, 11, 18896, 7, 2617, 7, 46188, 20540, 62, 23743, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3806, 286, 477, 2842, 284, 3853, 4600, 40045, 62, 7857, 63, 5871, 11, 2074, 691, 262, 3392, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4600, 9806, 62, 22510, 62, 23743, 63, 1180, 3397, 11, 290, 788, 1011, 262, 530, 351, 5415, 2472, 4776, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 521, 1063, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 26675, 796, 12178, 10786, 12, 18943, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7186, 62, 40045, 62, 7857, 796, 949, 7, 40045, 62, 7857, 11, 18896, 7, 46188, 20540, 62, 1416, 2850, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 36525, 287, 340, 861, 10141, 13, 24011, 7352, 7, 9521, 7, 11925, 7, 46188, 20540, 62, 1416, 2850, 36911, 7186, 62, 40045, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36525, 796, 45941, 13, 18747, 7, 37659, 13, 18747, 7, 521, 1063, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2617, 7, 46188, 20540, 62, 23743, 58, 521, 1063, 60, 4008, 6624, 3509, 62, 22510, 62, 23743, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 796, 4540, 62, 1416, 2850, 58, 521, 1063, 4083, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4776, 1875, 1266, 62, 26675, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 521, 1063, 796, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 26675, 796, 4776, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4540, 62, 521, 1063, 58, 13466, 62, 521, 1063, 60, 628, 198, 220, 220, 220, 220, 220, 220, 220, 825, 4296, 62, 30300, 62, 19282, 7, 521, 11, 26672, 62, 16, 11, 26672, 62, 15, 11, 15584, 62, 30300, 11, 15584, 62, 19282, 11, 15584, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 15908, 62, 16, 796, 2644, 1303, 11055, 351, 15584, 4686, 355, 16916, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 62, 15, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 16, 11, 14367, 62, 16, 796, 685, 4357, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 15, 11, 14367, 62, 15, 796, 685, 4357, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 275, 287, 2837, 7, 40045, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 48700, 13, 27432, 13, 42861, 62, 9122, 4122, 7, 15908, 62, 16, 4064, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 48700, 13, 27432, 13, 3791, 9787, 4122, 33634, 7, 9122, 4122, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 32604, 62, 16, 11, 4808, 19282, 62, 16, 796, 9173, 13, 1136, 62, 83, 22854, 10786, 80, 14, 32604, 62, 84, 33809, 45941, 13, 11201, 7, 46862, 13, 1136, 62, 83, 22854, 10786, 80, 14, 6404, 62, 19282, 62, 84, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 16, 13, 33295, 28264, 32604, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 16, 13, 33295, 28264, 19282, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 6978, 796, 48700, 13, 27432, 13, 42861, 62, 9122, 4122, 7, 15908, 62, 15, 4064, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9173, 796, 48700, 13, 27432, 13, 3791, 9787, 4122, 33634, 7, 9122, 4122, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 32604, 62, 15, 11, 4808, 19282, 62, 15, 796, 9173, 13, 1136, 62, 83, 22854, 10786, 80, 14, 32604, 62, 84, 33809, 45941, 13, 11201, 7, 46862, 13, 1136, 62, 83, 22854, 10786, 80, 14, 6404, 62, 19282, 62, 84, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 15, 13, 33295, 28264, 32604, 62, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 15, 13, 33295, 28264, 19282, 62, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 16, 11, 14367, 62, 16, 796, 45941, 13, 292, 18747, 7, 30300, 62, 16, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 828, 45941, 13, 292, 18747, 7, 19282, 62, 16, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 1303, 357, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 4072, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 62, 15, 11, 14367, 62, 15, 796, 45941, 13, 292, 18747, 7, 30300, 62, 15, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 828, 45941, 13, 292, 18747, 7, 19282, 62, 15, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7083, 62, 46188, 20540, 62, 30300, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 30300, 62, 16, 11, 38779, 62, 15, 828, 16488, 28, 15, 8, 1303, 357, 17, 9, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 4072, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7083, 62, 40045, 62, 30300, 796, 45941, 13, 40927, 7, 40045, 62, 30300, 11, 357, 17, 11, 352, 11, 352, 11, 352, 4008, 1303, 357, 17, 9, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 4072, 62, 7857, 11, 309, 12, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1429, 329, 1123, 1573, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 40045, 62, 30300, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 2302, 1631, 62, 40045, 62, 30300, 62, 72, 11, 7083, 62, 46188, 20540, 62, 30300, 62, 72, 11, 773, 62, 72, 8, 287, 19974, 7, 2302, 1631, 62, 40045, 62, 30300, 13, 7645, 3455, 7, 16, 11, 657, 11, 362, 11, 513, 828, 7083, 62, 46188, 20540, 62, 30300, 13, 7645, 3455, 7, 16, 11, 657, 11, 362, 828, 773, 13, 7645, 3455, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 40045, 62, 30300, 13, 33295, 7, 37659, 13, 11201, 392, 62, 67, 12078, 7, 37659, 13, 1102, 9246, 268, 378, 19510, 2302, 1631, 62, 40045, 62, 30300, 62, 72, 58, 521, 62, 72, 11, 1058, 11, 1058, 4357, 45941, 13, 11201, 392, 62, 67, 12078, 7, 2302, 1631, 62, 46188, 20540, 62, 30300, 62, 72, 58, 521, 62, 72, 11, 1058, 4357, 16488, 10779, 16, 36911, 16488, 10779, 16, 828, 16488, 28, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15584, 62, 30300, 796, 45941, 13, 1102, 9246, 268, 378, 28264, 40045, 62, 30300, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7083, 62, 46188, 20540, 62, 19282, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 19282, 62, 16, 11, 14367, 62, 15, 828, 16488, 28, 15, 8, 1303, 357, 17, 9, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 4072, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7083, 62, 40045, 62, 19282, 796, 45941, 13, 40927, 7, 40045, 62, 19282, 11, 357, 17, 11, 352, 11, 352, 11, 352, 4008, 1303, 357, 17, 9, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 4072, 62, 7857, 11, 309, 12, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1429, 329, 1123, 1573, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 40045, 62, 19282, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 2302, 1631, 62, 40045, 62, 19282, 62, 72, 11, 7083, 62, 46188, 20540, 62, 19282, 62, 72, 11, 773, 62, 72, 8, 287, 19974, 7, 2302, 1631, 62, 40045, 62, 19282, 13, 7645, 3455, 7, 16, 11, 657, 11, 362, 11, 513, 828, 7083, 62, 46188, 20540, 62, 19282, 13, 7645, 3455, 7, 16, 11, 657, 11, 362, 828, 773, 13, 7645, 3455, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 40045, 62, 19282, 13, 33295, 7, 37659, 13, 11201, 392, 62, 67, 12078, 7, 37659, 13, 1102, 9246, 268, 378, 19510, 2302, 1631, 62, 40045, 62, 19282, 62, 72, 58, 521, 62, 72, 11, 1058, 11, 1058, 4357, 45941, 13, 11201, 392, 62, 67, 12078, 7, 2302, 1631, 62, 46188, 20540, 62, 19282, 62, 72, 58, 521, 62, 72, 11, 1058, 4357, 16488, 10779, 16, 36911, 16488, 10779, 16, 828, 16488, 28, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15584, 62, 19282, 796, 45941, 13, 1102, 9246, 268, 378, 28264, 40045, 62, 19282, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 15584, 62, 30300, 11, 15584, 62, 19282, 628, 198, 220, 220, 220, 220, 220, 220, 220, 614, 62, 4868, 796, 2837, 7, 48104, 11, 4751, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13614, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 4808, 796, 288, 45213, 62, 40045, 62, 12947, 7, 1941, 62, 4868, 11, 264, 62, 27740, 28, 22921, 62, 53, 4503, 6242, 62, 33489, 11, 15584, 62, 7857, 28, 12473, 2390, 62, 33489, 11, 4391, 62, 65, 4448, 28, 41, 20476, 62, 3483, 1921, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 8771, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 614, 287, 614, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 10786, 5377, 48074, 33344, 14955, 329, 2714, 448, 1366, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1332, 62, 22046, 796, 16410, 1941, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 351, 19850, 7, 16, 8, 355, 279, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 301, 1670, 499, 7, 9288, 62, 1676, 771, 495, 11, 1332, 62, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 10786, 17688, 4064, 67, 1760, 2637, 4064, 614, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 198, 2, 4899, 198, 4299, 11038, 62, 19119, 62, 1676, 771, 495, 7, 40045, 62, 12501, 1166, 11, 15584, 62, 30300, 11, 997, 62, 19002, 11, 4296, 28, 17821, 11, 15584, 62, 312, 28, 15, 11, 12776, 397, 62, 7857, 28, 18, 2388, 11, 4072, 62, 27740, 28, 3064, 2599, 198, 220, 220, 220, 705, 7061, 63, 40045, 62, 12501, 1166, 63, 815, 307, 257, 299, 32152, 299, 67, 18747, 286, 5485, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 7, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 997, 62, 20214, 8, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 4600, 40045, 62, 30300, 63, 318, 262, 41240, 11525, 67, 654, 286, 5485, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 7, 40045, 62, 7857, 11, 12776, 397, 62, 7857, 11, 4072, 62, 27740, 11, 997, 62, 20214, 8, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 4600, 22510, 62, 19002, 63, 318, 4600, 22510, 62, 20214, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 632, 5860, 1573, 11525, 67, 654, 286, 5485, 4600, 7, 22510, 62, 20214, 11, 12776, 397, 62, 7857, 11, 4072, 62, 27740, 8, 44646, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 795, 1443, 796, 15584, 62, 30300, 58, 40045, 62, 312, 11, 2644, 4083, 7645, 3455, 7, 15, 11, 362, 11, 352, 8, 198, 220, 220, 220, 611, 4296, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 796, 45941, 13, 9107, 418, 19510, 18893, 397, 62, 7857, 11, 997, 62, 19002, 11, 4072, 62, 27740, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1429, 1123, 1573, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18893, 397, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15584, 62, 12501, 1166, 62, 72, 796, 15584, 62, 12501, 1166, 58, 40045, 62, 312, 11, 1312, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2652, 62, 9688, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 288, 62, 72, 287, 27056, 378, 7, 40045, 62, 12501, 1166, 62, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 62, 72, 6624, 352, 290, 474, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 58, 72, 11, 2652, 62, 9688, 25, 73, 11, 1058, 60, 796, 45941, 13, 40927, 7, 368, 1443, 58, 72, 11, 474, 12, 16, 11, 1058, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 73, 532, 2652, 62, 9688, 11, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2652, 62, 9688, 796, 474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 58, 72, 11, 2652, 62, 9688, 45299, 1058, 60, 796, 45941, 13, 40927, 7, 368, 1443, 58, 72, 11, 532, 16, 11, 1058, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22510, 62, 19002, 532, 2652, 62, 9688, 11, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 796, 45941, 13, 7645, 3455, 7, 20521, 67, 654, 11, 357, 16, 11, 657, 11, 362, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 796, 795, 1443, 628, 220, 220, 220, 1441, 11525, 67, 654, 628 ]
1.91505
5,721
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import math import statistics from sktime.transformations.base import _PanelToPanelTransformer from sktime.datatypes._panel._convert import from_nested_to_2d_array from sktime.utils.validation.panel import check_X class SlopeTransformer(_PanelToPanelTransformer): """ Class to perform the Slope transformation on a time series dataframe. It splits a time series into num_intervals segments. Then within each segment, it performs a total least squares regression to extract the gradient of the segment. Parameters ---------- num_intervals : int, number of approx equal segments to split the time series into. """ def transform(self, X, y=None): """ Parameters ---------- X : a pandas dataframe of shape = [n_samples, num_dims] The training input samples. Returns ------- df: a pandas data frame of shape = [num_intervals, num_dims] """ # Check the data self.check_is_fitted() X = check_X(X, coerce_to_pandas=True) # Get information about the dataframe n_timepoints = len(X.iloc[0, 0]) num_instances = X.shape[0] col_names = X.columns self._check_parameters(n_timepoints) df = pd.DataFrame() for x in col_names: # Convert one of the columns in the dataframe to numpy array arr = from_nested_to_2d_array(pd.DataFrame(X[x]), return_numpy=True) # Calculate gradients transformedData = [] for y in range(num_instances): res = self._get_gradients_of_lines(arr[y]) transformedData.append(res) # Convert to Numpy array transformedData = np.asarray(transformedData) # Add it to the dataframe colToAdd = [] for i in range(len(transformedData)): inst = transformedData[i] colToAdd.append(pd.Series(inst)) df[x] = colToAdd return df def _get_gradients_of_lines(self, X): """ Function to get the gradients of the line of best fits given a time series. Parameters ---------- X : a numpy array of shape = [time_series_length] Returns ------- gradients : a numpy array of shape = [num_intervals]. It contains the gradients of the line of best fit for each interval in a time series. """ # Firstly, split the time series into approx equal length intervals splitTimeSeries = self._split_time_series(X) gradients = [] for x in range(len(splitTimeSeries)): gradients.append(self._get_gradient(splitTimeSeries[x])) return gradients def _get_gradient(self, Y): """ Function to get the gradient of the line of best fit given a section of a time series. Equation adopted from: real-statistics.com/regression/total-least-squares Parameters ---------- Y : a numpy array of shape = [interval_size] Returns ------- m : an int corresponding to the gradient of the best fit line. """ # Create a list that contains 1,2,3,4,...,len(Y) for the x coordinates. X = [(i + 1) for i in range(len(Y))] # Calculate the mean of both lists meanX = statistics.mean(X) meanY = statistics.mean(Y) # Calculate the list (yi-mean(y))^2 yminYbar = [(y - meanY) ** 2 for y in Y] # Calculate the list (xi-mean(x))^2 xminXbar = [(x - meanX) ** 2 for x in X] # Sum them to produce w. w = sum(yminYbar) - sum(xminXbar) # Calculate the list (xi-mean(x))*(yi-mean(y)) temp = [] for x in range(len(X)): temp.append((X[x] - meanX) * (Y[x] - meanY)) # Sum it and multiply by 2 to calculate r r = 2 * sum(temp) if r == 0: # remove nans m = 0 else: # Gradient is defined as (w+sqrt(w^2+r^2))/r m = (w + math.sqrt(w ** 2 + r ** 2)) / r return m def _split_time_series(self, X): """ Function to split a time series into approximately equal intervals. Adopted from = https://stackoverflow.com/questions/2130016/ splitting-a-list-into-n-parts-of-approximately -equal-length Parameters ---------- X : a numpy array of shape = [time_series_length] Returns ------- output : a numpy array of shape = [num_intervals,interval_size] """ avg = len(X) / float(self.num_intervals) output = [] beginning = 0.0 while beginning < len(X): output.append(X[int(beginning) : int(beginning + avg)]) beginning += avg return output def _check_parameters(self, n_timepoints): """ Function for checking the values of parameters inserted into Slope. Throws ------ ValueError or TypeError if a parameters input is invalid. """ if isinstance(self.num_intervals, int): if self.num_intervals <= 0: raise ValueError( "num_intervals must have the value \ of at least 1" ) if self.num_intervals > n_timepoints: raise ValueError( "num_intervals cannot be higher than \ subsequence_length" ) else: raise TypeError( "num_intervals must be an 'int'. Found '" + type(self.num_intervals).__name__ + "'instead." )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 10688, 198, 11748, 7869, 198, 6738, 1341, 2435, 13, 35636, 602, 13, 8692, 1330, 4808, 26639, 2514, 26639, 8291, 16354, 198, 6738, 1341, 2435, 13, 19608, 265, 9497, 13557, 35330, 13557, 1102, 1851, 1330, 422, 62, 77, 7287, 62, 1462, 62, 17, 67, 62, 18747, 198, 6738, 1341, 2435, 13, 26791, 13, 12102, 341, 13, 35330, 1330, 2198, 62, 55, 628, 198, 4871, 3454, 3008, 8291, 16354, 28264, 26639, 2514, 26639, 8291, 16354, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 284, 1620, 262, 3454, 3008, 13389, 319, 257, 640, 2168, 198, 220, 220, 220, 1366, 14535, 13, 632, 30778, 257, 640, 2168, 656, 997, 62, 3849, 12786, 17894, 13, 198, 220, 220, 220, 3244, 1626, 1123, 10618, 11, 340, 17706, 257, 2472, 1551, 198, 220, 220, 220, 24438, 20683, 284, 7925, 262, 31312, 286, 262, 10618, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 997, 62, 3849, 12786, 220, 220, 1058, 220, 220, 493, 11, 1271, 286, 5561, 4961, 17894, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 6626, 262, 640, 2168, 656, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 6121, 7, 944, 11, 1395, 11, 331, 28, 14202, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 1058, 257, 19798, 292, 1366, 14535, 286, 5485, 796, 685, 77, 62, 82, 12629, 11, 997, 62, 67, 12078, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3047, 5128, 8405, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 25, 257, 19798, 292, 1366, 5739, 286, 5485, 796, 685, 22510, 62, 3849, 12786, 11, 997, 62, 67, 12078, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 62, 271, 62, 38631, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 2198, 62, 55, 7, 55, 11, 31255, 344, 62, 1462, 62, 79, 392, 292, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 1321, 546, 262, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2435, 13033, 796, 18896, 7, 55, 13, 346, 420, 58, 15, 11, 657, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 8625, 1817, 796, 1395, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 14933, 796, 1395, 13, 28665, 82, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 17143, 7307, 7, 77, 62, 2435, 13033, 8, 628, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 951, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 530, 286, 262, 15180, 287, 262, 1366, 14535, 284, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 422, 62, 77, 7287, 62, 1462, 62, 17, 67, 62, 18747, 7, 30094, 13, 6601, 19778, 7, 55, 58, 87, 46570, 1441, 62, 77, 32152, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 3915, 2334, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14434, 6601, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 22510, 62, 8625, 1817, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13557, 1136, 62, 9744, 2334, 62, 1659, 62, 6615, 7, 3258, 58, 88, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14434, 6601, 13, 33295, 7, 411, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 284, 399, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14434, 6601, 796, 45941, 13, 292, 18747, 7, 7645, 12214, 6601, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 340, 284, 262, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 2514, 4550, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 7645, 12214, 6601, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 916, 796, 14434, 6601, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 2514, 4550, 13, 33295, 7, 30094, 13, 27996, 7, 8625, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 87, 60, 796, 951, 2514, 4550, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 628, 220, 220, 220, 825, 4808, 1136, 62, 9744, 2334, 62, 1659, 62, 6615, 7, 944, 11, 1395, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 651, 262, 3915, 2334, 286, 262, 1627, 286, 1266, 11414, 198, 220, 220, 220, 220, 220, 220, 220, 1813, 257, 640, 2168, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 1058, 257, 299, 32152, 7177, 286, 5485, 796, 685, 2435, 62, 25076, 62, 13664, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3915, 2334, 1058, 257, 299, 32152, 7177, 286, 5485, 796, 685, 22510, 62, 3849, 12786, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 632, 4909, 262, 3915, 2334, 286, 262, 1627, 286, 1266, 4197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 16654, 287, 257, 640, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 41039, 11, 6626, 262, 640, 2168, 656, 5561, 4961, 4129, 20016, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 7575, 27996, 796, 2116, 13557, 35312, 62, 2435, 62, 25076, 7, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3915, 2334, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 11925, 7, 35312, 7575, 27996, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3915, 2334, 13, 33295, 7, 944, 13557, 1136, 62, 49607, 7, 35312, 7575, 27996, 58, 87, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3915, 2334, 628, 220, 220, 220, 825, 4808, 1136, 62, 49607, 7, 944, 11, 575, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 651, 262, 31312, 286, 262, 1627, 286, 1266, 4197, 1813, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2665, 286, 257, 640, 2168, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7889, 341, 8197, 422, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1103, 12, 14269, 3969, 13, 785, 14, 2301, 2234, 14, 23350, 12, 293, 459, 12, 16485, 3565, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 575, 1058, 257, 299, 32152, 7177, 286, 5485, 796, 685, 3849, 2100, 62, 7857, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 285, 1058, 281, 493, 11188, 284, 262, 31312, 286, 262, 1266, 4197, 1627, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 257, 1351, 326, 4909, 352, 11, 17, 11, 18, 11, 19, 42303, 11, 11925, 7, 56, 8, 329, 262, 2124, 22715, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 47527, 72, 1343, 352, 8, 329, 1312, 287, 2837, 7, 11925, 7, 56, 4008, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 1612, 286, 1111, 8341, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 55, 796, 7869, 13, 32604, 7, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 56, 796, 7869, 13, 32604, 7, 56, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 1351, 357, 48111, 12, 32604, 7, 88, 4008, 61, 17, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1084, 56, 5657, 796, 47527, 88, 532, 1612, 56, 8, 12429, 362, 329, 331, 287, 575, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 1351, 357, 29992, 12, 32604, 7, 87, 4008, 61, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1084, 55, 5657, 796, 47527, 87, 532, 1612, 55, 8, 12429, 362, 329, 2124, 287, 1395, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5060, 606, 284, 4439, 266, 13, 198, 220, 220, 220, 220, 220, 220, 220, 266, 796, 2160, 7, 88, 1084, 56, 5657, 8, 532, 2160, 7, 87, 1084, 55, 5657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 1351, 357, 29992, 12, 32604, 7, 87, 4008, 9, 7, 48111, 12, 32604, 7, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 11925, 7, 55, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 13, 33295, 19510, 55, 58, 87, 60, 532, 1612, 55, 8, 1635, 357, 56, 58, 87, 60, 532, 1612, 56, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5060, 340, 290, 29162, 416, 362, 284, 15284, 374, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 362, 1635, 2160, 7, 29510, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 374, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4781, 299, 504, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17701, 1153, 318, 5447, 355, 357, 86, 10, 31166, 17034, 7, 86, 61, 17, 10, 81, 61, 17, 4008, 14, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 796, 357, 86, 1343, 10688, 13, 31166, 17034, 7, 86, 12429, 362, 1343, 374, 12429, 362, 4008, 1220, 374, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 285, 628, 220, 220, 220, 825, 4808, 35312, 62, 2435, 62, 25076, 7, 944, 11, 1395, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 6626, 257, 640, 2168, 656, 6702, 4961, 20016, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1215, 45256, 422, 796, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 26427, 405, 1433, 14, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26021, 12, 64, 12, 4868, 12, 20424, 12, 77, 12, 42632, 12, 1659, 12, 47498, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 40496, 12, 13664, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 1058, 257, 299, 32152, 7177, 286, 5485, 796, 685, 2435, 62, 25076, 62, 13664, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 1058, 257, 299, 32152, 7177, 286, 5485, 796, 685, 22510, 62, 3849, 12786, 11, 3849, 2100, 62, 7857, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42781, 796, 18896, 7, 55, 8, 1220, 12178, 7, 944, 13, 22510, 62, 3849, 12786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 3726, 796, 657, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 981, 3726, 1279, 18896, 7, 55, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 7, 55, 58, 600, 7, 27471, 768, 8, 1058, 493, 7, 27471, 768, 1343, 42781, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3726, 15853, 42781, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 628, 220, 220, 220, 825, 4808, 9122, 62, 17143, 7307, 7, 944, 11, 299, 62, 2435, 13033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 329, 10627, 262, 3815, 286, 10007, 18846, 656, 3454, 3008, 13, 628, 220, 220, 220, 220, 220, 220, 220, 536, 8516, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 393, 5994, 12331, 611, 257, 10007, 5128, 318, 12515, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 22510, 62, 3849, 12786, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22510, 62, 3849, 12786, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 3849, 12786, 1276, 423, 262, 1988, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 379, 1551, 352, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22510, 62, 3849, 12786, 1875, 299, 62, 2435, 13033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 3849, 12786, 2314, 307, 2440, 621, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6399, 594, 62, 13664, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 3849, 12786, 1276, 307, 281, 705, 600, 4458, 4062, 705, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2099, 7, 944, 13, 22510, 62, 3849, 12786, 737, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 24018, 38070, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.141472
2,785
from .tracc import * from .functions import *
[ 6738, 764, 2213, 4134, 1330, 1635, 198, 6738, 764, 12543, 2733, 1330, 1635, 198 ]
3.285714
14
#!/usr/bin/env python # TODO: description of this script # BOB = controller # CAB = cable # COM = misc # DEV = controller # GPS = sensor # LCD = actuator # ROB = actuator # SEN = sensor # TOL = tool # WRL = wireless # KIT = (drop) # LAB = (drop) # PRT = misc import flask_sqlalchemy from iot_lab_inventory import db from iot_lab_inventory.models import Part sku_category = {'BOB': 'controller',\ 'CAB': 'cable',\ 'COM': 'misc',\ 'DEV': 'controller',\ 'GPS': 'sensor',\ 'LCD': 'actuator',\ 'KIT': 'kit', 'PRT': 'misc',\ 'ROB': 'actuator',\ 'SEN': 'sensor',\ 'TOL': 'tool',\ 'WRL': 'wireless'} parts = Part.query.all() for part in parts: sku = part.sparkfun_id.split('-')[0] if sku == 'LAB': print('ignoring ' + part.name) else: print(part.name + ': ' + sku_category[sku]) part.category = sku_category[sku] db.session.commit() #sku = 'KIT' or 'LAB', drop from table
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 16926, 46, 25, 6764, 286, 428, 4226, 198, 2, 347, 9864, 796, 10444, 198, 2, 327, 6242, 796, 7862, 198, 2, 9440, 796, 12747, 198, 2, 5550, 53, 796, 10444, 198, 2, 15472, 796, 12694, 198, 2, 23598, 796, 43840, 1352, 198, 2, 36449, 796, 43840, 1352, 198, 2, 44738, 796, 12694, 198, 2, 309, 3535, 796, 2891, 198, 2, 370, 7836, 796, 12521, 198, 2, 509, 2043, 796, 357, 14781, 8, 198, 2, 406, 6242, 796, 357, 14781, 8, 198, 2, 4810, 51, 796, 12747, 198, 198, 11748, 42903, 62, 25410, 282, 26599, 198, 6738, 1312, 313, 62, 23912, 62, 24807, 1330, 20613, 198, 6738, 1312, 313, 62, 23912, 62, 24807, 13, 27530, 1330, 2142, 198, 198, 8135, 84, 62, 22872, 796, 1391, 6, 8202, 33, 10354, 705, 36500, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34, 6242, 10354, 705, 66, 540, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9858, 10354, 705, 44374, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39345, 10354, 705, 36500, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38, 3705, 10354, 705, 82, 22854, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5639, 35, 10354, 705, 529, 84, 1352, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 42, 2043, 10354, 705, 15813, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4805, 51, 10354, 705, 44374, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 49, 9864, 10354, 705, 529, 84, 1352, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 1677, 10354, 705, 82, 22854, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 51, 3535, 10354, 705, 25981, 3256, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 54, 7836, 10354, 705, 21809, 1203, 6, 92, 198, 198, 42632, 796, 2142, 13, 22766, 13, 439, 3419, 198, 1640, 636, 287, 3354, 25, 198, 220, 220, 220, 1341, 84, 796, 636, 13, 2777, 668, 12543, 62, 312, 13, 35312, 10786, 12, 11537, 58, 15, 60, 198, 220, 220, 220, 611, 1341, 84, 6624, 705, 48780, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 570, 3255, 705, 1343, 636, 13, 3672, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3911, 13, 3672, 1343, 705, 25, 705, 1343, 1341, 84, 62, 22872, 58, 8135, 84, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 636, 13, 22872, 796, 1341, 84, 62, 22872, 58, 8135, 84, 60, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 29891, 13, 41509, 3419, 198, 220, 220, 220, 1303, 8135, 84, 796, 705, 42, 2043, 6, 393, 705, 48780, 3256, 4268, 422, 3084, 198 ]
1.93617
564
__title__ = "stockist" __description__ = "" __version__ = "0.1.1" __author__ = "Maina Nick" __license__ = "DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE 2.0" __copyright__ = "Copyright (C) 2018-Present Maina Nick"
[ 834, 7839, 834, 796, 366, 13578, 396, 1, 198, 834, 11213, 834, 796, 13538, 198, 834, 9641, 834, 796, 366, 15, 13, 16, 13, 16, 1, 198, 834, 9800, 834, 796, 366, 13383, 64, 8047, 1, 198, 834, 43085, 834, 796, 366, 18227, 25003, 3336, 30998, 7013, 41300, 5390, 44731, 38559, 24290, 362, 13, 15, 1, 198, 834, 22163, 4766, 834, 796, 366, 15269, 357, 34, 8, 2864, 12, 34695, 8774, 64, 8047, 1, 198 ]
2.826667
75
# coding: utf-8 # flake8: noqa """ Sunshine Conversations API The version of the OpenAPI document: 9.4.5 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import __version__ = "9.4.6" # import apis into sdk package from sunshine_conversations_client.api.activities_api import ActivitiesApi from sunshine_conversations_client.api.app_keys_api import AppKeysApi from sunshine_conversations_client.api.apps_api import AppsApi from sunshine_conversations_client.api.attachments_api import AttachmentsApi from sunshine_conversations_client.api.clients_api import ClientsApi from sunshine_conversations_client.api.conversations_api import ConversationsApi from sunshine_conversations_client.api.custom_integration_api_keys_api import CustomIntegrationApiKeysApi from sunshine_conversations_client.api.integrations_api import IntegrationsApi from sunshine_conversations_client.api.messages_api import MessagesApi from sunshine_conversations_client.api.o_auth_endpoints_api import OAuthEndpointsApi from sunshine_conversations_client.api.participants_api import ParticipantsApi from sunshine_conversations_client.api.switchboard_actions_api import SwitchboardActionsApi from sunshine_conversations_client.api.switchboard_integrations_api import SwitchboardIntegrationsApi from sunshine_conversations_client.api.switchboards_api import SwitchboardsApi from sunshine_conversations_client.api.users_api import UsersApi from sunshine_conversations_client.api.webhooks_api import WebhooksApi # import ApiClient from sunshine_conversations_client.api_client import ApiClient from sunshine_conversations_client.configuration import Configuration from sunshine_conversations_client.exceptions import OpenApiException from sunshine_conversations_client.exceptions import ApiTypeError from sunshine_conversations_client.exceptions import ApiValueError from sunshine_conversations_client.exceptions import ApiKeyError from sunshine_conversations_client.exceptions import ApiException # import models into sdk package from sunshine_conversations_client.model.accept_control_body import AcceptControlBody from sunshine_conversations_client.model.action import Action from sunshine_conversations_client.model.action_subset import ActionSubset from sunshine_conversations_client.model.activity import Activity from sunshine_conversations_client.model.activity_all_of import ActivityAllOf from sunshine_conversations_client.model.activity_post import ActivityPost from sunshine_conversations_client.model.activity_post_all_of import ActivityPostAllOf from sunshine_conversations_client.model.activity_types import ActivityTypes from sunshine_conversations_client.model.android import Android from sunshine_conversations_client.model.android_all_of import AndroidAllOf from sunshine_conversations_client.model.android_update import AndroidUpdate from sunshine_conversations_client.model.android_update_all_of import AndroidUpdateAllOf from sunshine_conversations_client.model.api_key import ApiKey from sunshine_conversations_client.model.app import App from sunshine_conversations_client.model.app_create_body import AppCreateBody from sunshine_conversations_client.model.app_key import AppKey from sunshine_conversations_client.model.app_key_create_body import AppKeyCreateBody from sunshine_conversations_client.model.app_key_list_response import AppKeyListResponse from sunshine_conversations_client.model.app_key_response import AppKeyResponse from sunshine_conversations_client.model.app_list_filter import AppListFilter from sunshine_conversations_client.model.app_list_response import AppListResponse from sunshine_conversations_client.model.app_response import AppResponse from sunshine_conversations_client.model.app_settings import AppSettings from sunshine_conversations_client.model.app_sub_schema import AppSubSchema from sunshine_conversations_client.model.app_update_body import AppUpdateBody from sunshine_conversations_client.model.apple import Apple from sunshine_conversations_client.model.apple_all_of import AppleAllOf from sunshine_conversations_client.model.apple_update import AppleUpdate from sunshine_conversations_client.model.attachment_delete_body import AttachmentDeleteBody from sunshine_conversations_client.model.attachment_media_token_body import AttachmentMediaTokenBody from sunshine_conversations_client.model.attachment_media_token_response import AttachmentMediaTokenResponse from sunshine_conversations_client.model.attachment_response import AttachmentResponse from sunshine_conversations_client.model.attachment_schema import AttachmentSchema from sunshine_conversations_client.model.attachment_upload_body import AttachmentUploadBody from sunshine_conversations_client.model.author import Author from sunshine_conversations_client.model.author_webhook import AuthorWebhook from sunshine_conversations_client.model.buy import Buy from sunshine_conversations_client.model.carousel_message import CarouselMessage from sunshine_conversations_client.model.carousel_message_display_settings import CarouselMessageDisplaySettings from sunshine_conversations_client.model.client import Client from sunshine_conversations_client.model.client_add_event import ClientAddEvent from sunshine_conversations_client.model.client_add_event_all_of import ClientAddEventAllOf from sunshine_conversations_client.model.client_add_event_all_of_payload import ClientAddEventAllOfPayload from sunshine_conversations_client.model.client_association import ClientAssociation from sunshine_conversations_client.model.client_create import ClientCreate from sunshine_conversations_client.model.client_list_response import ClientListResponse from sunshine_conversations_client.model.client_remove_event import ClientRemoveEvent from sunshine_conversations_client.model.client_remove_event_all_of import ClientRemoveEventAllOf from sunshine_conversations_client.model.client_remove_event_all_of_payload import ClientRemoveEventAllOfPayload from sunshine_conversations_client.model.client_response import ClientResponse from sunshine_conversations_client.model.client_type import ClientType from sunshine_conversations_client.model.client_update_event import ClientUpdateEvent from sunshine_conversations_client.model.client_update_event_all_of import ClientUpdateEventAllOf from sunshine_conversations_client.model.client_update_event_all_of_payload import ClientUpdateEventAllOfPayload from sunshine_conversations_client.model.confirmation import Confirmation from sunshine_conversations_client.model.content import Content from sunshine_conversations_client.model.conversation import Conversation from sunshine_conversations_client.model.conversation_all_of import ConversationAllOf from sunshine_conversations_client.model.conversation_create_body import ConversationCreateBody from sunshine_conversations_client.model.conversation_create_event import ConversationCreateEvent from sunshine_conversations_client.model.conversation_create_event_all_of import ConversationCreateEventAllOf from sunshine_conversations_client.model.conversation_create_event_all_of_payload import ConversationCreateEventAllOfPayload from sunshine_conversations_client.model.conversation_join_event import ConversationJoinEvent from sunshine_conversations_client.model.conversation_join_event_all_of import ConversationJoinEventAllOf from sunshine_conversations_client.model.conversation_join_event_all_of_payload import ConversationJoinEventAllOfPayload from sunshine_conversations_client.model.conversation_leave_event import ConversationLeaveEvent from sunshine_conversations_client.model.conversation_leave_event_all_of import ConversationLeaveEventAllOf from sunshine_conversations_client.model.conversation_leave_event_all_of_payload import ConversationLeaveEventAllOfPayload from sunshine_conversations_client.model.conversation_list_filter import ConversationListFilter from sunshine_conversations_client.model.conversation_list_response import ConversationListResponse from sunshine_conversations_client.model.conversation_message_delivery_channel_event import ConversationMessageDeliveryChannelEvent from sunshine_conversations_client.model.conversation_message_delivery_channel_event_all_of import ConversationMessageDeliveryChannelEventAllOf from sunshine_conversations_client.model.conversation_message_delivery_failure_event import ConversationMessageDeliveryFailureEvent from sunshine_conversations_client.model.conversation_message_delivery_failure_event_all_of import ConversationMessageDeliveryFailureEventAllOf from sunshine_conversations_client.model.conversation_message_delivery_payload import ConversationMessageDeliveryPayload from sunshine_conversations_client.model.conversation_message_delivery_payload_destination import ConversationMessageDeliveryPayloadDestination from sunshine_conversations_client.model.conversation_message_delivery_payload_external_messages import ConversationMessageDeliveryPayloadExternalMessages from sunshine_conversations_client.model.conversation_message_delivery_payload_message import ConversationMessageDeliveryPayloadMessage from sunshine_conversations_client.model.conversation_message_delivery_user_event import ConversationMessageDeliveryUserEvent from sunshine_conversations_client.model.conversation_message_event import ConversationMessageEvent from sunshine_conversations_client.model.conversation_message_event_all_of import ConversationMessageEventAllOf from sunshine_conversations_client.model.conversation_message_event_all_of_payload import ConversationMessageEventAllOfPayload from sunshine_conversations_client.model.conversation_postback_event import ConversationPostbackEvent from sunshine_conversations_client.model.conversation_postback_event_all_of import ConversationPostbackEventAllOf from sunshine_conversations_client.model.conversation_postback_event_all_of_payload import ConversationPostbackEventAllOfPayload from sunshine_conversations_client.model.conversation_read_event import ConversationReadEvent from sunshine_conversations_client.model.conversation_read_event_all_of import ConversationReadEventAllOf from sunshine_conversations_client.model.conversation_read_event_all_of_payload import ConversationReadEventAllOfPayload from sunshine_conversations_client.model.conversation_remove_event import ConversationRemoveEvent from sunshine_conversations_client.model.conversation_remove_event_all_of import ConversationRemoveEventAllOf from sunshine_conversations_client.model.conversation_remove_event_all_of_payload import ConversationRemoveEventAllOfPayload from sunshine_conversations_client.model.conversation_response import ConversationResponse from sunshine_conversations_client.model.conversation_truncated import ConversationTruncated from sunshine_conversations_client.model.conversation_type import ConversationType from sunshine_conversations_client.model.conversation_typing_event import ConversationTypingEvent from sunshine_conversations_client.model.conversation_typing_event_all_of import ConversationTypingEventAllOf from sunshine_conversations_client.model.conversation_typing_event_all_of_payload import ConversationTypingEventAllOfPayload from sunshine_conversations_client.model.conversation_update_body import ConversationUpdateBody from sunshine_conversations_client.model.custom import Custom from sunshine_conversations_client.model.custom_all_of import CustomAllOf from sunshine_conversations_client.model.custom_update import CustomUpdate from sunshine_conversations_client.model.destination import Destination from sunshine_conversations_client.model.device import Device from sunshine_conversations_client.model.event_sub_schema import EventSubSchema from sunshine_conversations_client.model.extra_channel_options import ExtraChannelOptions from sunshine_conversations_client.model.extra_channel_options_messenger import ExtraChannelOptionsMessenger from sunshine_conversations_client.model.field import Field from sunshine_conversations_client.model.file_message import FileMessage from sunshine_conversations_client.model.form_message import FormMessage from sunshine_conversations_client.model.form_response_message import FormResponseMessage from sunshine_conversations_client.model.image_message import ImageMessage from sunshine_conversations_client.model.inline_object import InlineObject from sunshine_conversations_client.model.instagram import Instagram from sunshine_conversations_client.model.instagram_all_of import InstagramAllOf from sunshine_conversations_client.model.instagram_update import InstagramUpdate from sunshine_conversations_client.model.instagram_update_all_of import InstagramUpdateAllOf from sunshine_conversations_client.model.integration import Integration from sunshine_conversations_client.model.integration_api_key import IntegrationApiKey from sunshine_conversations_client.model.integration_api_key_list_response import IntegrationApiKeyListResponse from sunshine_conversations_client.model.integration_api_key_response import IntegrationApiKeyResponse from sunshine_conversations_client.model.integration_id import IntegrationId from sunshine_conversations_client.model.integration_list_filter import IntegrationListFilter from sunshine_conversations_client.model.integration_list_response import IntegrationListResponse from sunshine_conversations_client.model.integration_response import IntegrationResponse from sunshine_conversations_client.model.integration_type import IntegrationType from sunshine_conversations_client.model.integration_update import IntegrationUpdate from sunshine_conversations_client.model.integration_update_base import IntegrationUpdateBase from sunshine_conversations_client.model.ios import Ios from sunshine_conversations_client.model.ios_all_of import IosAllOf from sunshine_conversations_client.model.ios_update import IosUpdate from sunshine_conversations_client.model.ios_update_all_of import IosUpdateAllOf from sunshine_conversations_client.model.item import Item from sunshine_conversations_client.model.line import Line from sunshine_conversations_client.model.line_all_of import LineAllOf from sunshine_conversations_client.model.line_update import LineUpdate from sunshine_conversations_client.model.link import Link from sunshine_conversations_client.model.links import Links from sunshine_conversations_client.model.list_message import ListMessage from sunshine_conversations_client.model.location_message import LocationMessage from sunshine_conversations_client.model.location_message_coordinates import LocationMessageCoordinates from sunshine_conversations_client.model.location_message_location import LocationMessageLocation from sunshine_conversations_client.model.location_request import LocationRequest from sunshine_conversations_client.model.mailgun import Mailgun from sunshine_conversations_client.model.mailgun_all_of import MailgunAllOf from sunshine_conversations_client.model.mailgun_update import MailgunUpdate from sunshine_conversations_client.model.mailgun_update_all_of import MailgunUpdateAllOf from sunshine_conversations_client.model.match_criteria import MatchCriteria from sunshine_conversations_client.model.match_criteria_base import MatchCriteriaBase from sunshine_conversations_client.model.match_criteria_mailgun import MatchCriteriaMailgun from sunshine_conversations_client.model.match_criteria_mailgun_all_of import MatchCriteriaMailgunAllOf from sunshine_conversations_client.model.match_criteria_messagebird import MatchCriteriaMessagebird from sunshine_conversations_client.model.match_criteria_messagebird_all_of import MatchCriteriaMessagebirdAllOf from sunshine_conversations_client.model.match_criteria_twilio import MatchCriteriaTwilio from sunshine_conversations_client.model.match_criteria_twilio_all_of import MatchCriteriaTwilioAllOf from sunshine_conversations_client.model.match_criteria_whatsapp import MatchCriteriaWhatsapp from sunshine_conversations_client.model.match_criteria_whatsapp_all_of import MatchCriteriaWhatsappAllOf from sunshine_conversations_client.model.message import Message from sunshine_conversations_client.model.message_bird_update import MessageBirdUpdate from sunshine_conversations_client.model.message_list_response import MessageListResponse from sunshine_conversations_client.model.message_override import MessageOverride from sunshine_conversations_client.model.message_override_apple import MessageOverrideApple from sunshine_conversations_client.model.message_override_line import MessageOverrideLine from sunshine_conversations_client.model.message_override_messenger import MessageOverrideMessenger from sunshine_conversations_client.model.message_override_payload import MessageOverridePayload from sunshine_conversations_client.model.message_override_whatsapp import MessageOverrideWhatsapp from sunshine_conversations_client.model.message_post import MessagePost from sunshine_conversations_client.model.message_post_response import MessagePostResponse from sunshine_conversations_client.model.message_webhook import MessageWebhook from sunshine_conversations_client.model.messagebird import Messagebird from sunshine_conversations_client.model.messagebird_all_of import MessagebirdAllOf from sunshine_conversations_client.model.messenger import Messenger from sunshine_conversations_client.model.messenger_all_of import MessengerAllOf from sunshine_conversations_client.model.messenger_update import MessengerUpdate from sunshine_conversations_client.model.meta import Meta from sunshine_conversations_client.model.offer_control_body import OfferControlBody from sunshine_conversations_client.model.page import Page from sunshine_conversations_client.model.participant import Participant from sunshine_conversations_client.model.participant_join_body import ParticipantJoinBody from sunshine_conversations_client.model.participant_leave_body import ParticipantLeaveBody from sunshine_conversations_client.model.participant_leave_body_participant_id import ParticipantLeaveBodyParticipantId from sunshine_conversations_client.model.participant_leave_body_user_external_id import ParticipantLeaveBodyUserExternalId from sunshine_conversations_client.model.participant_leave_body_user_id import ParticipantLeaveBodyUserId from sunshine_conversations_client.model.participant_list_response import ParticipantListResponse from sunshine_conversations_client.model.participant_response import ParticipantResponse from sunshine_conversations_client.model.participant_sub_schema import ParticipantSubSchema from sunshine_conversations_client.model.participant_with_user_external_id import ParticipantWithUserExternalId from sunshine_conversations_client.model.participant_with_user_id import ParticipantWithUserId from sunshine_conversations_client.model.pass_control_body import PassControlBody from sunshine_conversations_client.model.postback import Postback from sunshine_conversations_client.model.postback_webhook import PostbackWebhook from sunshine_conversations_client.model.prechat_capture import PrechatCapture from sunshine_conversations_client.model.profile import Profile from sunshine_conversations_client.model.quoted_message import QuotedMessage from sunshine_conversations_client.model.quoted_message_external_message_id import QuotedMessageExternalMessageId from sunshine_conversations_client.model.quoted_message_message import QuotedMessageMessage from sunshine_conversations_client.model.referral import Referral from sunshine_conversations_client.model.referral_details import ReferralDetails from sunshine_conversations_client.model.reply import Reply from sunshine_conversations_client.model.source import Source from sunshine_conversations_client.model.source_webhook import SourceWebhook from sunshine_conversations_client.model.status import Status from sunshine_conversations_client.model.switchboard import Switchboard from sunshine_conversations_client.model.switchboard_accept_control import SwitchboardAcceptControl from sunshine_conversations_client.model.switchboard_accept_control_all_of import SwitchboardAcceptControlAllOf from sunshine_conversations_client.model.switchboard_accept_control_all_of_payload import SwitchboardAcceptControlAllOfPayload from sunshine_conversations_client.model.switchboard_accept_control_failure import SwitchboardAcceptControlFailure from sunshine_conversations_client.model.switchboard_accept_control_failure_all_of import SwitchboardAcceptControlFailureAllOf from sunshine_conversations_client.model.switchboard_accept_control_failure_all_of_payload import SwitchboardAcceptControlFailureAllOfPayload from sunshine_conversations_client.model.switchboard_integration import SwitchboardIntegration from sunshine_conversations_client.model.switchboard_integration_create_body import SwitchboardIntegrationCreateBody from sunshine_conversations_client.model.switchboard_integration_list_response import SwitchboardIntegrationListResponse from sunshine_conversations_client.model.switchboard_integration_response import SwitchboardIntegrationResponse from sunshine_conversations_client.model.switchboard_integration_update_body import SwitchboardIntegrationUpdateBody from sunshine_conversations_client.model.switchboard_integration_webhook import SwitchboardIntegrationWebhook from sunshine_conversations_client.model.switchboard_list_response import SwitchboardListResponse from sunshine_conversations_client.model.switchboard_offer_control import SwitchboardOfferControl from sunshine_conversations_client.model.switchboard_offer_control_all_of import SwitchboardOfferControlAllOf from sunshine_conversations_client.model.switchboard_offer_control_all_of_payload import SwitchboardOfferControlAllOfPayload from sunshine_conversations_client.model.switchboard_offer_control_failure import SwitchboardOfferControlFailure from sunshine_conversations_client.model.switchboard_pass_control import SwitchboardPassControl from sunshine_conversations_client.model.switchboard_pass_control_all_of import SwitchboardPassControlAllOf from sunshine_conversations_client.model.switchboard_pass_control_all_of_payload import SwitchboardPassControlAllOfPayload from sunshine_conversations_client.model.switchboard_pass_control_failure import SwitchboardPassControlFailure from sunshine_conversations_client.model.switchboard_response import SwitchboardResponse from sunshine_conversations_client.model.switchboard_update_body import SwitchboardUpdateBody from sunshine_conversations_client.model.target import Target from sunshine_conversations_client.model.telegram import Telegram from sunshine_conversations_client.model.telegram_all_of import TelegramAllOf from sunshine_conversations_client.model.telegram_update import TelegramUpdate from sunshine_conversations_client.model.template_message import TemplateMessage from sunshine_conversations_client.model.text_message import TextMessage from sunshine_conversations_client.model.twilio import Twilio from sunshine_conversations_client.model.twilio_all_of import TwilioAllOf from sunshine_conversations_client.model.twilio_update import TwilioUpdate from sunshine_conversations_client.model.twitter import Twitter from sunshine_conversations_client.model.twitter_all_of import TwitterAllOf from sunshine_conversations_client.model.twitter_update import TwitterUpdate from sunshine_conversations_client.model.user import User from sunshine_conversations_client.model.user_all_of import UserAllOf from sunshine_conversations_client.model.user_create_body import UserCreateBody from sunshine_conversations_client.model.user_merge_event import UserMergeEvent from sunshine_conversations_client.model.user_merge_event_all_of import UserMergeEventAllOf from sunshine_conversations_client.model.user_merge_event_all_of_payload import UserMergeEventAllOfPayload from sunshine_conversations_client.model.user_merge_event_all_of_payload_merged_clients import UserMergeEventAllOfPayloadMergedClients from sunshine_conversations_client.model.user_merge_event_all_of_payload_merged_conversations import UserMergeEventAllOfPayloadMergedConversations from sunshine_conversations_client.model.user_merge_event_all_of_payload_merged_users import UserMergeEventAllOfPayloadMergedUsers from sunshine_conversations_client.model.user_response import UserResponse from sunshine_conversations_client.model.user_truncated import UserTruncated from sunshine_conversations_client.model.user_update_body import UserUpdateBody from sunshine_conversations_client.model.viber import Viber from sunshine_conversations_client.model.viber_all_of import ViberAllOf from sunshine_conversations_client.model.viber_update import ViberUpdate from sunshine_conversations_client.model.web import Web from sunshine_conversations_client.model.web_all_of import WebAllOf from sunshine_conversations_client.model.web_update import WebUpdate from sunshine_conversations_client.model.web_update_all_of import WebUpdateAllOf from sunshine_conversations_client.model.webhook import Webhook from sunshine_conversations_client.model.webhook_body import WebhookBody from sunshine_conversations_client.model.webhook_create_body import WebhookCreateBody from sunshine_conversations_client.model.webhook_list_response import WebhookListResponse from sunshine_conversations_client.model.webhook_response import WebhookResponse from sunshine_conversations_client.model.webhook_sub_schema import WebhookSubSchema from sunshine_conversations_client.model.webview import Webview from sunshine_conversations_client.model.whats_app_update import WhatsAppUpdate from sunshine_conversations_client.model.whats_app_update_all_of import WhatsAppUpdateAllOf from sunshine_conversations_client.model.whatsapp import Whatsapp from sunshine_conversations_client.model.whatsapp_all_of import WhatsappAllOf
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 781, 539, 23, 25, 645, 20402, 198, 198, 37811, 198, 220, 220, 220, 32210, 32200, 602, 7824, 628, 220, 220, 220, 383, 2196, 286, 262, 4946, 17614, 3188, 25, 860, 13, 19, 13, 20, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 834, 9641, 834, 796, 366, 24, 13, 19, 13, 21, 1, 198, 198, 2, 1330, 2471, 271, 656, 264, 34388, 5301, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 15791, 871, 62, 15042, 1330, 36270, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 1324, 62, 13083, 62, 15042, 1330, 2034, 40729, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 18211, 62, 15042, 1330, 27710, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 47348, 902, 62, 15042, 1330, 3460, 620, 902, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 565, 2334, 62, 15042, 1330, 1012, 2334, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 1102, 690, 602, 62, 15042, 1330, 32200, 602, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 23144, 62, 18908, 1358, 62, 15042, 62, 13083, 62, 15042, 1330, 8562, 34500, 1358, 32, 14415, 40729, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 18908, 9143, 62, 15042, 1330, 15995, 9143, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 37348, 1095, 62, 15042, 1330, 43534, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 78, 62, 18439, 62, 437, 13033, 62, 15042, 1330, 440, 30515, 12915, 13033, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 48013, 1187, 62, 15042, 1330, 26122, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 31943, 3526, 62, 4658, 62, 15042, 1330, 14645, 3526, 32, 2733, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 31943, 3526, 62, 18908, 9143, 62, 15042, 1330, 14645, 3526, 34500, 9143, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 31943, 12821, 62, 15042, 1330, 14645, 12821, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 18417, 62, 15042, 1330, 18987, 32, 14415, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 13, 12384, 25480, 82, 62, 15042, 1330, 5313, 25480, 82, 32, 14415, 198, 198, 2, 1330, 5949, 72, 11792, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 15042, 62, 16366, 1330, 5949, 72, 11792, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 11250, 3924, 1330, 28373, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 1069, 11755, 1330, 4946, 32, 14415, 16922, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 1069, 11755, 1330, 5949, 72, 6030, 12331, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 1069, 11755, 1330, 5949, 72, 11395, 12331, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 1069, 11755, 1330, 5949, 72, 9218, 12331, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 1069, 11755, 1330, 5949, 72, 16922, 198, 2, 1330, 4981, 656, 264, 34388, 5301, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 13635, 62, 13716, 62, 2618, 1330, 21699, 15988, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 2673, 1330, 7561, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 2673, 62, 7266, 2617, 1330, 7561, 7004, 2617, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 21797, 1330, 24641, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 21797, 62, 439, 62, 1659, 1330, 24641, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 21797, 62, 7353, 1330, 24641, 6307, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 21797, 62, 7353, 62, 439, 62, 1659, 1330, 24641, 6307, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 21797, 62, 19199, 1330, 24641, 31431, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 19411, 1330, 5565, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 19411, 62, 439, 62, 1659, 1330, 5565, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 19411, 62, 19119, 1330, 5565, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 19411, 62, 19119, 62, 439, 62, 1659, 1330, 5565, 10260, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15042, 62, 2539, 1330, 5949, 72, 9218, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 1330, 2034, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 17953, 62, 2618, 1330, 2034, 16447, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 2539, 1330, 2034, 9218, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 2539, 62, 17953, 62, 2618, 1330, 2034, 9218, 16447, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 2539, 62, 4868, 62, 26209, 1330, 2034, 9218, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 2539, 62, 26209, 1330, 2034, 9218, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 4868, 62, 24455, 1330, 2034, 8053, 22417, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 4868, 62, 26209, 1330, 2034, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 26209, 1330, 2034, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 33692, 1330, 2034, 26232, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 7266, 62, 15952, 2611, 1330, 2034, 7004, 27054, 2611, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1324, 62, 19119, 62, 2618, 1330, 2034, 10260, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18040, 1330, 4196, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18040, 62, 439, 62, 1659, 1330, 4196, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18040, 62, 19119, 1330, 4196, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1078, 15520, 62, 33678, 62, 2618, 1330, 3460, 15520, 38727, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1078, 15520, 62, 11431, 62, 30001, 62, 2618, 1330, 3460, 15520, 13152, 30642, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1078, 15520, 62, 11431, 62, 30001, 62, 26209, 1330, 3460, 15520, 13152, 30642, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1078, 15520, 62, 26209, 1330, 3460, 15520, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1078, 15520, 62, 15952, 2611, 1330, 3460, 15520, 27054, 2611, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1078, 15520, 62, 25850, 62, 2618, 1330, 3460, 15520, 41592, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 9800, 1330, 6434, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 9800, 62, 12384, 25480, 1330, 6434, 13908, 25480, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 17846, 1330, 11763, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7718, 48355, 62, 20500, 1330, 1879, 48355, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7718, 48355, 62, 20500, 62, 13812, 62, 33692, 1330, 1879, 48355, 12837, 23114, 26232, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 1330, 20985, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 2860, 62, 15596, 1330, 20985, 4550, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 2860, 62, 15596, 62, 439, 62, 1659, 1330, 20985, 4550, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 2860, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 20985, 4550, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 562, 41003, 1330, 20985, 8021, 41003, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 17953, 1330, 20985, 16447, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 4868, 62, 26209, 1330, 20985, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 28956, 62, 15596, 1330, 20985, 27914, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 28956, 62, 15596, 62, 439, 62, 1659, 1330, 20985, 27914, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 28956, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 20985, 27914, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 26209, 1330, 20985, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 4906, 1330, 20985, 6030, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 19119, 62, 15596, 1330, 20985, 10260, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 19119, 62, 15596, 62, 439, 62, 1659, 1330, 20985, 10260, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16366, 62, 19119, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 20985, 10260, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 10414, 36241, 1330, 7326, 36241, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 11299, 1330, 14041, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 1330, 42427, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 439, 62, 1659, 1330, 42427, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 17953, 62, 2618, 1330, 42427, 16447, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 17953, 62, 15596, 1330, 42427, 16447, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 17953, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 16447, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 17953, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 16447, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 22179, 62, 15596, 1330, 42427, 18234, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 22179, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 18234, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 22179, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 18234, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 47408, 62, 15596, 1330, 42427, 35087, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 47408, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 35087, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 47408, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 35087, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 4868, 62, 24455, 1330, 42427, 8053, 22417, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 4868, 62, 26209, 1330, 42427, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 17620, 62, 15596, 1330, 42427, 12837, 33129, 29239, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 17620, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 12837, 33129, 29239, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 32165, 495, 62, 15596, 1330, 42427, 12837, 33129, 50015, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 32165, 495, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 12837, 33129, 50015, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 15577, 2220, 1330, 42427, 12837, 33129, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 15577, 2220, 62, 16520, 1883, 1330, 42427, 12837, 33129, 19197, 2220, 24159, 1883, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 15577, 2220, 62, 22615, 62, 37348, 1095, 1330, 42427, 12837, 33129, 19197, 2220, 41506, 36479, 1095, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 15577, 2220, 62, 20500, 1330, 42427, 12837, 33129, 19197, 2220, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 12381, 6315, 62, 7220, 62, 15596, 1330, 42427, 12837, 33129, 12982, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 15596, 1330, 42427, 12837, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 12837, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 20500, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 12837, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 7353, 1891, 62, 15596, 1330, 42427, 6307, 1891, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 7353, 1891, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 6307, 1891, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 7353, 1891, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 6307, 1891, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 961, 62, 15596, 1330, 42427, 5569, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 961, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 5569, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 961, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 5569, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 28956, 62, 15596, 1330, 42427, 27914, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 28956, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 27914, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 28956, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 27914, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 26209, 1330, 42427, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 2213, 19524, 515, 1330, 42427, 2898, 19524, 515, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 4906, 1330, 42427, 6030, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 774, 13886, 62, 15596, 1330, 42427, 31467, 278, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 774, 13886, 62, 15596, 62, 439, 62, 1659, 1330, 42427, 31467, 278, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 774, 13886, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 42427, 31467, 278, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1102, 690, 341, 62, 19119, 62, 2618, 1330, 42427, 10260, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 23144, 1330, 8562, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 23144, 62, 439, 62, 1659, 1330, 8562, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 23144, 62, 19119, 1330, 8562, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16520, 1883, 1330, 45657, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 25202, 1330, 16232, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15596, 62, 7266, 62, 15952, 2611, 1330, 8558, 7004, 27054, 2611, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 26086, 62, 17620, 62, 25811, 1330, 17221, 29239, 29046, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 26086, 62, 17620, 62, 25811, 62, 37348, 6540, 1330, 17221, 29239, 29046, 36479, 6540, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 3245, 1330, 7663, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7753, 62, 20500, 1330, 9220, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 687, 62, 20500, 1330, 5178, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 687, 62, 26209, 62, 20500, 1330, 5178, 31077, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 9060, 62, 20500, 1330, 7412, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 45145, 62, 15252, 1330, 554, 1370, 10267, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 8625, 6713, 1330, 10767, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 8625, 6713, 62, 439, 62, 1659, 1330, 10767, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 8625, 6713, 62, 19119, 1330, 10767, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 8625, 6713, 62, 19119, 62, 439, 62, 1659, 1330, 10767, 10260, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 1330, 38410, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 15042, 62, 2539, 1330, 38410, 32, 14415, 9218, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 15042, 62, 2539, 62, 4868, 62, 26209, 1330, 38410, 32, 14415, 9218, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 15042, 62, 2539, 62, 26209, 1330, 38410, 32, 14415, 9218, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 312, 1330, 38410, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 4868, 62, 24455, 1330, 38410, 8053, 22417, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 4868, 62, 26209, 1330, 38410, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 26209, 1330, 38410, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 4906, 1330, 38410, 6030, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 19119, 1330, 38410, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 18908, 1358, 62, 19119, 62, 8692, 1330, 38410, 10260, 14881, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4267, 1330, 314, 418, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4267, 62, 439, 62, 1659, 1330, 314, 418, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4267, 62, 19119, 1330, 314, 418, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4267, 62, 19119, 62, 439, 62, 1659, 1330, 314, 418, 10260, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 9186, 1330, 9097, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1370, 1330, 6910, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1370, 62, 439, 62, 1659, 1330, 6910, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1370, 62, 19119, 1330, 6910, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 8726, 1330, 7502, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 28751, 1330, 21691, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4868, 62, 20500, 1330, 7343, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 24886, 62, 20500, 1330, 13397, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 24886, 62, 20500, 62, 37652, 17540, 1330, 13397, 12837, 7222, 585, 17540, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 24886, 62, 20500, 62, 24886, 1330, 13397, 12837, 14749, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 24886, 62, 25927, 1330, 13397, 18453, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4529, 7145, 1330, 11099, 7145, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4529, 7145, 62, 439, 62, 1659, 1330, 11099, 7145, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4529, 7145, 62, 19119, 1330, 11099, 7145, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4529, 7145, 62, 19119, 62, 439, 62, 1659, 1330, 11099, 7145, 10260, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 1330, 13225, 18559, 5142, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 8692, 1330, 13225, 18559, 5142, 14881, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 4529, 7145, 1330, 13225, 18559, 5142, 25804, 7145, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 4529, 7145, 62, 439, 62, 1659, 1330, 13225, 18559, 5142, 25804, 7145, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 20500, 16944, 1330, 13225, 18559, 5142, 12837, 16944, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 20500, 16944, 62, 439, 62, 1659, 1330, 13225, 18559, 5142, 12837, 16944, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 4246, 346, 952, 1330, 13225, 18559, 5142, 5080, 346, 952, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 4246, 346, 952, 62, 439, 62, 1659, 1330, 13225, 18559, 5142, 5080, 346, 952, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 1929, 1381, 1324, 1330, 13225, 18559, 5142, 1199, 1381, 1324, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 15699, 62, 22213, 5142, 62, 1929, 1381, 1324, 62, 439, 62, 1659, 1330, 13225, 18559, 5142, 1199, 1381, 1324, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 1330, 16000, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 16944, 62, 19119, 1330, 16000, 42562, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 4868, 62, 26209, 1330, 16000, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 2502, 13154, 1330, 16000, 37961, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 2502, 13154, 62, 18040, 1330, 16000, 37961, 16108, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 2502, 13154, 62, 1370, 1330, 16000, 37961, 13949, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 2502, 13154, 62, 37348, 6540, 1330, 16000, 37961, 36479, 6540, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 2502, 13154, 62, 15577, 2220, 1330, 16000, 37961, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 2502, 13154, 62, 1929, 1381, 1324, 1330, 16000, 37961, 1199, 1381, 1324, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 7353, 1330, 16000, 6307, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 7353, 62, 26209, 1330, 16000, 6307, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 62, 12384, 25480, 1330, 16000, 13908, 25480, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 16944, 1330, 16000, 16944, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 20500, 16944, 62, 439, 62, 1659, 1330, 16000, 16944, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 37348, 6540, 1330, 24306, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 37348, 6540, 62, 439, 62, 1659, 1330, 24306, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 37348, 6540, 62, 19119, 1330, 24306, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 28961, 1330, 30277, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 47895, 62, 13716, 62, 2618, 1330, 33085, 15988, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7700, 1330, 7873, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 1330, 29880, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 22179, 62, 2618, 1330, 29880, 18234, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 47408, 62, 2618, 1330, 29880, 35087, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 47408, 62, 2618, 62, 48013, 415, 62, 312, 1330, 29880, 35087, 25842, 34363, 415, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 47408, 62, 2618, 62, 7220, 62, 22615, 62, 312, 1330, 29880, 35087, 25842, 12982, 41506, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 47408, 62, 2618, 62, 7220, 62, 312, 1330, 29880, 35087, 25842, 12982, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 4868, 62, 26209, 1330, 29880, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 26209, 1330, 29880, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 7266, 62, 15952, 2611, 1330, 29880, 7004, 27054, 2611, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 4480, 62, 7220, 62, 22615, 62, 312, 1330, 29880, 3152, 12982, 41506, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 48013, 415, 62, 4480, 62, 7220, 62, 312, 1330, 29880, 3152, 12982, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 6603, 62, 13716, 62, 2618, 1330, 6251, 15988, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7353, 1891, 1330, 2947, 1891, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7353, 1891, 62, 12384, 25480, 1330, 2947, 1891, 13908, 25480, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 3866, 17006, 62, 27144, 495, 1330, 3771, 17006, 49630, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 13317, 1330, 13118, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 421, 5191, 62, 20500, 1330, 2264, 5191, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 421, 5191, 62, 20500, 62, 22615, 62, 20500, 62, 312, 1330, 2264, 5191, 12837, 41506, 12837, 7390, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 421, 5191, 62, 20500, 62, 20500, 1330, 2264, 5191, 12837, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 260, 2232, 1373, 1330, 33973, 1373, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 260, 2232, 1373, 62, 36604, 1330, 33973, 1373, 24259, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 47768, 1330, 14883, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 10459, 1330, 8090, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 10459, 62, 12384, 25480, 1330, 8090, 13908, 25480, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 13376, 1330, 12678, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 1330, 14645, 3526, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 13635, 62, 13716, 1330, 14645, 3526, 38855, 15988, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 13635, 62, 13716, 62, 439, 62, 1659, 1330, 14645, 3526, 38855, 15988, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 13635, 62, 13716, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 14645, 3526, 38855, 15988, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 13635, 62, 13716, 62, 32165, 495, 1330, 14645, 3526, 38855, 15988, 50015, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 13635, 62, 13716, 62, 32165, 495, 62, 439, 62, 1659, 1330, 14645, 3526, 38855, 15988, 50015, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 13635, 62, 13716, 62, 32165, 495, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 14645, 3526, 38855, 15988, 50015, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 18908, 1358, 1330, 14645, 3526, 34500, 1358, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 18908, 1358, 62, 17953, 62, 2618, 1330, 14645, 3526, 34500, 1358, 16447, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 18908, 1358, 62, 4868, 62, 26209, 1330, 14645, 3526, 34500, 1358, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 18908, 1358, 62, 26209, 1330, 14645, 3526, 34500, 1358, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 18908, 1358, 62, 19119, 62, 2618, 1330, 14645, 3526, 34500, 1358, 10260, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 18908, 1358, 62, 12384, 25480, 1330, 14645, 3526, 34500, 1358, 13908, 25480, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 4868, 62, 26209, 1330, 14645, 3526, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 47895, 62, 13716, 1330, 14645, 3526, 9362, 263, 15988, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 47895, 62, 13716, 62, 439, 62, 1659, 1330, 14645, 3526, 9362, 263, 15988, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 47895, 62, 13716, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 14645, 3526, 9362, 263, 15988, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 47895, 62, 13716, 62, 32165, 495, 1330, 14645, 3526, 9362, 263, 15988, 50015, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 6603, 62, 13716, 1330, 14645, 3526, 14478, 15988, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 6603, 62, 13716, 62, 439, 62, 1659, 1330, 14645, 3526, 14478, 15988, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 6603, 62, 13716, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 14645, 3526, 14478, 15988, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 6603, 62, 13716, 62, 32165, 495, 1330, 14645, 3526, 14478, 15988, 50015, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 26209, 1330, 14645, 3526, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 31943, 3526, 62, 19119, 62, 2618, 1330, 14645, 3526, 10260, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 16793, 1330, 12744, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 660, 30536, 1330, 50203, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 660, 30536, 62, 439, 62, 1659, 1330, 50203, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 660, 30536, 62, 19119, 1330, 50203, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 28243, 62, 20500, 1330, 37350, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 5239, 62, 20500, 1330, 8255, 12837, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4246, 346, 952, 1330, 1815, 346, 952, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4246, 346, 952, 62, 439, 62, 1659, 1330, 1815, 346, 952, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 4246, 346, 952, 62, 19119, 1330, 1815, 346, 952, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 6956, 1330, 3009, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 6956, 62, 439, 62, 1659, 1330, 3009, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 6956, 62, 19119, 1330, 3009, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 1330, 11787, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 439, 62, 1659, 1330, 11787, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 17953, 62, 2618, 1330, 11787, 16447, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 647, 469, 62, 15596, 1330, 11787, 13102, 469, 9237, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 647, 469, 62, 15596, 62, 439, 62, 1659, 1330, 11787, 13102, 469, 9237, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 647, 469, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 1330, 11787, 13102, 469, 9237, 3237, 5189, 19197, 2220, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 647, 469, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 62, 647, 2004, 62, 565, 2334, 1330, 11787, 13102, 469, 9237, 3237, 5189, 19197, 2220, 13102, 2004, 2601, 2334, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 647, 469, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 62, 647, 2004, 62, 1102, 690, 602, 1330, 11787, 13102, 469, 9237, 3237, 5189, 19197, 2220, 13102, 2004, 3103, 690, 602, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 647, 469, 62, 15596, 62, 439, 62, 1659, 62, 15577, 2220, 62, 647, 2004, 62, 18417, 1330, 11787, 13102, 469, 9237, 3237, 5189, 19197, 2220, 13102, 2004, 14490, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 26209, 1330, 11787, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 2213, 19524, 515, 1330, 11787, 2898, 19524, 515, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 7220, 62, 19119, 62, 2618, 1330, 11787, 10260, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 85, 1856, 1330, 569, 1856, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 85, 1856, 62, 439, 62, 1659, 1330, 569, 1856, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 85, 1856, 62, 19119, 1330, 569, 1856, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 1330, 5313, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 62, 439, 62, 1659, 1330, 5313, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 62, 19119, 1330, 5313, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 62, 19119, 62, 439, 62, 1659, 1330, 5313, 10260, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 25480, 1330, 5313, 25480, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 25480, 62, 2618, 1330, 5313, 25480, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 25480, 62, 17953, 62, 2618, 1330, 5313, 25480, 16447, 25842, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 25480, 62, 4868, 62, 26209, 1330, 5313, 25480, 8053, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 25480, 62, 26209, 1330, 5313, 25480, 31077, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 25480, 62, 7266, 62, 15952, 2611, 1330, 5313, 25480, 7004, 27054, 2611, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 12384, 1177, 1330, 5313, 1177, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1929, 1381, 62, 1324, 62, 19119, 1330, 37666, 10260, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1929, 1381, 62, 1324, 62, 19119, 62, 439, 62, 1659, 1330, 37666, 10260, 3237, 5189, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1929, 1381, 1324, 1330, 28556, 1324, 198, 6738, 34488, 62, 1102, 690, 602, 62, 16366, 13, 19849, 13, 1929, 1381, 1324, 62, 439, 62, 1659, 1330, 28556, 1324, 3237, 5189, 628 ]
3.843559
6,699
__version__ = "1.021" try: from .client import Client from .order import Order except ImportError: pass # OANDA API URLS SANDBOX = ( "http://api-sandbox.oanda.com", "http://stream-sandbox.oanda.com" ) PRACTICE = ( "https://api-fxpractice.oanda.com", "https://stream-fxpractice.oanda.com" ) TRADE = ( "https://api-fxtrade.oanda.com", "https://stream-fxtrade.oanda.com" )
[ 834, 9641, 834, 796, 366, 16, 13, 46821, 1, 628, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 16366, 1330, 20985, 198, 220, 220, 220, 422, 764, 2875, 1330, 8284, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 628, 198, 2, 440, 1565, 5631, 7824, 37902, 6561, 198, 50, 6981, 39758, 796, 357, 198, 220, 220, 220, 366, 4023, 1378, 15042, 12, 38142, 3524, 13, 78, 5282, 13, 785, 1600, 198, 220, 220, 220, 366, 4023, 1378, 5532, 12, 38142, 3524, 13, 78, 5282, 13, 785, 1, 198, 8, 198, 4805, 10659, 8476, 796, 357, 198, 220, 220, 220, 366, 5450, 1378, 15042, 12, 21373, 39541, 13, 78, 5282, 13, 785, 1600, 198, 220, 220, 220, 366, 5450, 1378, 5532, 12, 21373, 39541, 13, 78, 5282, 13, 785, 1, 198, 8, 198, 5446, 19266, 796, 357, 198, 220, 220, 220, 366, 5450, 1378, 15042, 12, 69, 742, 27585, 13, 78, 5282, 13, 785, 1600, 198, 220, 220, 220, 366, 5450, 1378, 5532, 12, 69, 742, 27585, 13, 78, 5282, 13, 785, 1, 198, 8, 198 ]
2.303371
178
import sys if __name__ == "__main__": if len(sys.argv) == 2: print(max_number(n=sys.argv[1])) else: sys.exit(1)
[ 11748, 25064, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9806, 62, 17618, 7, 77, 28, 17597, 13, 853, 85, 58, 16, 60, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8 ]
1.864865
74
import random import re import pandas as pd from sklearn.model_selection import train_test_split """ Translate txt into json """ # Lowercase, trim, and remove non-letter characters if __name__ == "__main__": src_path, trg_path = 'data/hard_pc_src.txt', 'data/hard_pc_tar.txt' raw_data = processData(src_path, trg_path, 'ISO-8859-1') df = pd.DataFrame(raw_data, columns=['Src', 'Trg']) # split train and test # In 2019, using 20% for test, using 80% for 5 fold cross-validation train_data, test_data = train_test_split(df, test_size=0.2) # save the data in json type train_data.to_json('data/train.json', orient='records', lines=True) test_data.to_json('data/test.json', orient='records', lines=True)
[ 11748, 4738, 198, 11748, 302, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 37811, 198, 8291, 17660, 256, 742, 656, 33918, 198, 37811, 198, 198, 2, 16048, 7442, 11, 15797, 11, 290, 4781, 1729, 12, 9291, 3435, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 12351, 62, 6978, 11, 491, 70, 62, 6978, 796, 705, 7890, 14, 10424, 62, 14751, 62, 10677, 13, 14116, 3256, 705, 7890, 14, 10424, 62, 14751, 62, 18870, 13, 14116, 6, 628, 220, 220, 220, 8246, 62, 7890, 796, 1429, 6601, 7, 10677, 62, 6978, 11, 491, 70, 62, 6978, 11, 705, 40734, 12, 3459, 3270, 12, 16, 11537, 628, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 1831, 62, 7890, 11, 15180, 28, 17816, 50, 6015, 3256, 705, 2898, 70, 6, 12962, 628, 220, 220, 220, 1303, 6626, 4512, 290, 1332, 198, 220, 220, 220, 1303, 554, 13130, 11, 1262, 1160, 4, 329, 1332, 11, 1262, 4019, 4, 329, 642, 5591, 3272, 12, 12102, 341, 220, 220, 198, 220, 220, 220, 4512, 62, 7890, 11, 1332, 62, 7890, 796, 4512, 62, 9288, 62, 35312, 7, 7568, 11, 1332, 62, 7857, 28, 15, 13, 17, 8, 628, 220, 220, 220, 1303, 3613, 262, 1366, 287, 33918, 2099, 198, 220, 220, 220, 4512, 62, 7890, 13, 1462, 62, 17752, 10786, 7890, 14, 27432, 13, 17752, 3256, 11367, 11639, 8344, 3669, 3256, 3951, 28, 17821, 8, 198, 220, 220, 220, 1332, 62, 7890, 13, 1462, 62, 17752, 10786, 7890, 14, 9288, 13, 17752, 3256, 11367, 11639, 8344, 3669, 3256, 3951, 28, 17821, 8, 198 ]
2.62807
285
from custom.ilsgateway.comparison_reports import ProductsCompareReport, LocationsCompareReport, \ WebUsersCompareReport, SMSUsersCompareReport from custom.ilsgateway.tanzania.reports.alerts import AlertReport from custom.ilsgateway.tanzania.reports.dashboard_report import DashboardReport from custom.ilsgateway.tanzania.reports.delivery import DeliveryReport from custom.ilsgateway.tanzania.reports.randr import RRreport from custom.ilsgateway.tanzania.reports.facility_details import FacilityDetailsReport from custom.ilsgateway.tanzania.reports.stock_on_hand import StockOnHandReport from custom.ilsgateway.tanzania.reports.supervision import SupervisionReport CUSTOM_REPORTS = ( ('Custom reports', ( DashboardReport, AlertReport, StockOnHandReport, RRreport, FacilityDetailsReport, DeliveryReport, SupervisionReport, ProductsCompareReport, LocationsCompareReport, WebUsersCompareReport, SMSUsersCompareReport )), ) # For QA purposes it should be set to true. TEST = True
[ 6738, 2183, 13, 4487, 10494, 1014, 13, 785, 1845, 1653, 62, 48922, 1330, 18675, 41488, 19100, 11, 41277, 41488, 19100, 11, 3467, 198, 220, 220, 220, 5313, 14490, 41488, 19100, 11, 29287, 14490, 41488, 19100, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 44598, 82, 1330, 23276, 19100, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 42460, 3526, 62, 13116, 1330, 16189, 3526, 19100, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 12381, 6315, 1330, 28682, 19100, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 25192, 81, 1330, 26067, 13116, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 38942, 879, 62, 36604, 1330, 29118, 24259, 19100, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 13578, 62, 261, 62, 4993, 1330, 10500, 2202, 12885, 19100, 198, 6738, 2183, 13, 4487, 10494, 1014, 13, 83, 35410, 5411, 13, 48922, 13, 16668, 10178, 1330, 3115, 10178, 19100, 628, 198, 34, 7759, 2662, 62, 35316, 33002, 796, 357, 198, 220, 220, 220, 19203, 15022, 3136, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 16189, 3526, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 23276, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10500, 2202, 12885, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26067, 13116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29118, 24259, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 28682, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3115, 10178, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 18675, 41488, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 41277, 41488, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5313, 14490, 41488, 19100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29287, 14490, 41488, 19100, 198, 220, 220, 220, 1267, 828, 198, 8, 198, 198, 2, 1114, 1195, 32, 4959, 340, 815, 307, 900, 284, 2081, 13, 198, 51, 6465, 796, 6407, 198 ]
3.011173
358
import sys import pickle from tqdm import tqdm sys.path.append(sys.path[0].rsplit('/', 1)[0]) from elementary_step_om.chem import Fragment from elementary_step_om.external_calculation.xtb_calculations import xTBCalculator from elementary_step_om.external_calculation.gaussian_calculations import GaussianCalculator if __name__ == "__main__": exteral_xtb_in_g16 = "/home/koerstz/github/elementary_step_om/scripts/gaussian_xtb_external.py" ts_calc = GaussianCalculator( kwds="opt=(ts,calcall,noeigentest) pm3", properties=['structure', 'energy', 'frequencies'], external_script=None, charge=0, spin=1 ) irc_calc = GaussianCalculator( kwds="irc=(calcfc, recalc=10, maxpoints=50, stepsize=5) pm3", properties=['irc_structure', 'energy'], external_script=None, charge=0, spin=1 ) refine_calc = xTBCalculator( xtb_kwds="--opt loose", charge=0, spin=1 ) input_file = sys.argv[1] with open(input_file, "rb") as f: reactions = pickle.load(f) print(f"Total number of reactions: {len(reactions)} \n") for reaction in tqdm(reactions): #print("new") reaction.irc_check_ts(ts_calc, irc_calc, refine_calc) #print(reaction.__dict__) #print() #print() with open(input_file.split('.')[0] + "_output.pkl", 'wb') as f: pickle.dump(reactions, f)
[ 11748, 25064, 198, 11748, 2298, 293, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 220, 198, 198, 17597, 13, 6978, 13, 33295, 7, 17597, 13, 6978, 58, 15, 4083, 3808, 489, 270, 10786, 14, 3256, 352, 38381, 15, 12962, 198, 6738, 19823, 62, 9662, 62, 296, 13, 15245, 1330, 24229, 434, 198, 6738, 19823, 62, 9662, 62, 296, 13, 22615, 62, 9948, 14902, 13, 742, 65, 62, 9948, 3129, 602, 1330, 2124, 51, 2749, 282, 3129, 1352, 198, 6738, 19823, 62, 9662, 62, 296, 13, 22615, 62, 9948, 14902, 13, 4908, 31562, 62, 9948, 3129, 602, 1330, 12822, 31562, 9771, 3129, 1352, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 220, 198, 220, 220, 220, 409, 353, 282, 62, 742, 65, 62, 259, 62, 70, 1433, 796, 12813, 11195, 14, 7204, 263, 301, 89, 14, 12567, 14, 30854, 560, 62, 9662, 62, 296, 14, 46521, 14, 4908, 31562, 62, 742, 65, 62, 22615, 13, 9078, 1, 628, 220, 220, 220, 40379, 62, 9948, 66, 796, 12822, 31562, 9771, 3129, 1352, 7, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 9310, 2625, 8738, 16193, 912, 11, 9948, 13345, 11, 77, 2577, 47096, 395, 8, 9114, 18, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 6608, 28, 17816, 301, 5620, 3256, 705, 22554, 3256, 705, 69, 8897, 3976, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 7097, 62, 12048, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3877, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7906, 28, 16, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 1980, 62, 9948, 66, 796, 12822, 31562, 9771, 3129, 1352, 7, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 9310, 2625, 1980, 16193, 9948, 12993, 66, 11, 42653, 66, 28, 940, 11, 3509, 13033, 28, 1120, 11, 4831, 1096, 28, 20, 8, 9114, 18, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 6608, 28, 17816, 1980, 62, 301, 5620, 3256, 705, 22554, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 7097, 62, 12048, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3877, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7906, 28, 16, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 35139, 62, 9948, 66, 796, 2124, 51, 2749, 282, 3129, 1352, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 742, 65, 62, 46265, 9310, 2625, 438, 8738, 9155, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3877, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7906, 28, 16, 198, 220, 220, 220, 1267, 220, 628, 198, 220, 220, 220, 5128, 62, 7753, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 351, 1280, 7, 15414, 62, 7753, 11, 366, 26145, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12737, 796, 2298, 293, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7, 69, 1, 14957, 1271, 286, 12737, 25, 1391, 11925, 7, 260, 4658, 38165, 3467, 77, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 6317, 287, 256, 80, 36020, 7, 260, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 3605, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 6317, 13, 1980, 62, 9122, 62, 912, 7, 912, 62, 9948, 66, 11, 220, 1980, 62, 9948, 66, 11, 35139, 62, 9948, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 260, 2673, 13, 834, 11600, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 3419, 198, 220, 220, 220, 351, 1280, 7, 15414, 62, 7753, 13, 35312, 10786, 2637, 38381, 15, 60, 1343, 45434, 22915, 13, 79, 41582, 1600, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 260, 4658, 11, 277, 8, 198 ]
2.109843
701
# Copyright (c) 2021 Microsoft # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import json import logging import os import tempfile from enum import Enum from pathlib import Path from typing import Literal, Tuple, Union import lightgbm import mlflow import numpy as np import pandas as pd import typer from azureml.core import Model, Run, Workspace from azureml.exceptions import ModelNotFoundException, WebserviceException from sklearn import metrics METADATA_JSON = "metadata.json" RESOURCE_DOES_NOT_EXIST = "RESOURCE_DOES_NOT_EXIST" logger = logging.getLogger("evaluate.py") logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) def read_dataframe(input_path: Path) -> pd.DataFrame: """ Read a file (CSV or Parquet) and return a dataframe. If a directory is passed, look for parquet, if not available, look for CSV (Based on file extension) """ if input_path.is_dir(): parquet_files = list(input_path.glob("*.parquet")) csv_files = list(input_path.glob("*.csv")) if len(parquet_files) > 0: input_path = parquet_files[0] elif len(csv_files) > 0: input_path = csv_files[0] else: raise FileNotFoundError("No CSV or Parquet files found") file_suffix = input_path.suffix if file_suffix == ".parquet": df = pd.read_parquet(input_path) elif file_suffix == ".csv": df = pd.read_csv(input_path) else: raise FileNotFoundError("File is not CSV or Parquet") return df def write_indicator_file( output_folder: str, register_model: bool ) -> None: """Write an empty file in the output path to indicated if the model should be registered""" output_path = Path(output_folder) filename = "REGISTER" if register_model else "SKIP" (output_path / filename).touch() def get_model_metrics(model: lightgbm.Booster, data: lightgbm.Dataset, model_name: str) -> dict: """Construct a dictionary of metrics for the model""" predictions = model.predict(data.data) fpr, tpr, thresholds = metrics.roc_curve(data.label, predictions) best_threshold = predict_best_threshold(fpr, tpr, thresholds) f1_score = metrics.f1_score(data.label, np.where( predictions < best_threshold, 0, 1)) model_metrics = {"auc": metrics.auc(fpr, tpr), "f1-score": f1_score} logger.info(f"{model_name} Metrics {model_metrics}") return model_metrics def compare_models( champion_model: lightgbm.Booster, challenger_model: lightgbm.Booster, valid_df: pd.DataFrame, comparison_metric: Literal["any", "all", "f1_score", "auc"] = "any" ) -> bool: """ A function to compare the performance of the Champion and Challenger models on the validation dataset comparison metrics """ comparison_metrics_directions = {"f1-score": ModelDirection.HIGHER_BETTER, "auc": ModelDirection.HIGHER_BETTER, "accuracy": ModelDirection.HIGHER_BETTER} # Prep datasets features = valid_df.drop(['target', 'id'], axis=1, errors="ignore") labels = np.array(valid_df['target']) valid_dataset = lightgbm.Dataset(data=features, label=labels) # Calculate Champion and Challenger metrics for each champion_metrics = get_model_metrics(champion_model, valid_dataset, "Champion") challenger_metrics = get_model_metrics(challenger_model, valid_dataset, "Challenger") if comparison_metric not in ['any', 'all']: logger.info(f"Champion performance for {comparison_metric}: {champion_metrics[comparison_metric]}") logger.info(f"Challenger performance for {comparison_metric}: {challenger_metrics[comparison_metric]}") register_model = challenger_metric_better(champ_metrics=champion_metrics, challenger_metrics=challenger_metrics, metric_name=comparison_metric, direction=comparison_metrics_directions[comparison_metric]) else: comparison_results = {metric: challenger_metric_better(champ_metrics=champion_metrics, challenger_metrics=challenger_metrics, metric_name=metric, direction=comparison_metrics_directions[metric]) for metric in champion_metrics.keys()} if comparison_metric == "any": register_model = any(comparison_results.values()) if register_model: positive_results = [metric for metric, result in comparison_results.items() if result] for metric in positive_results: logger.info(f"Challenger Model performed better for '{metric}' on validation data") else: logger.info("Champion model performed better for all metrics on validation data") else: register_model = all(comparison_results.values()) if register_model: logger.info("Challenger model performed better on all metrics on validation data") else: negative_ressults = [metric for metric, result in comparison_results.items() if not result] for metric in negative_ressults: logger.info(f"Champion Model performed better for '{metric}' on validation data") return register_model def load_champion_model( model_name: str, register_model: bool ) -> Tuple[Union[lightgbm.Booster, None], bool]: """ Load the champion model as the currently registered model of 'model_name' and the highest version number """ run = Run.get_context() ws: Workspace = run.experiment.workspace # Load Champion Model # If the champion model doesn't exist, recommend register model try: champ_temp_dir = tempfile.mkdtemp() champion_model = Model(ws, model_name) champion_model.download(target_dir=champ_temp_dir) champion_model = mlflow.lightgbm.load_model(os.path.join(champ_temp_dir, "model")) except (WebserviceException, ModelNotFoundException) as exp: logger.info(f"No model named '{model_name}' currently in registry - recommending model registration") logger.info(f"Exception Raised: {exp.message}") register_model = True champion_model = None return champion_model, register_model def load_challenger_model( model_name: str, run_id: str ) -> lightgbm.Booster: """Load challenger model from this Pipeline""" challenger_model_uri = f"runs:/{run_id}/model" challenger_model = mlflow.lightgbm.load_model(challenger_model_uri) return challenger_model def main( model_metadata: Path = typer.Option(..., exists=True, dir_okay=True, file_okay=False), recommendation_folder: Path = typer.Option(..., exists=False, dir_okay=True, file_okay=False), validation_data_path: Path = typer.Option(..., exists=True, dir_okay=True, file_okay=True), ): """ Download the currently registered model from AML Model Registry and compare the model performance on a standard dataset. The "Champion" model - is the model currently registered and in production. The "Challenger" model is the model currently If the challenger model wins, then promote the model to production. Otherwise, keep the champion model in production. """ # TODO: Implement OpenCensus and Shell logging recommendation_folder.mkdir(parents=True, exist_ok=True) register_model = False # Load the RunID and Model name from the model training step run_id, model_name = load_model_metadata(model_metadata) # Load champion model from the Model Registry champion_model, register_model = load_champion_model(model_name, register_model) # Load the challenger model from 'Train Model' step challenger_model = load_challenger_model(model_name, run_id) valid_df = read_dataframe(validation_data_path) # If the champion model exists, then run the compare model function if champion_model is not None: register_model = compare_models(champion_model=champion_model, challenger_model=challenger_model, valid_df=valid_df, comparison_metric="all") logger.info(f"Is Model Registration Recommended?: {register_model}") # Write the indicator file to pass along to the "Register Model" step. # The folder will either contain an empty file that says "REGISTER" or an empty file that says "SKIP" write_indicator_file(output_folder=recommendation_folder, register_model=register_model) if __name__ == "__main__": typer.run(main)
[ 2, 15069, 357, 66, 8, 33448, 5413, 198, 2, 198, 2, 770, 3788, 318, 2716, 739, 262, 17168, 13789, 13, 198, 2, 3740, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 20218, 7753, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 25659, 1691, 11, 309, 29291, 11, 4479, 198, 198, 11748, 1657, 70, 20475, 198, 11748, 285, 1652, 9319, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 1259, 525, 198, 6738, 35560, 495, 4029, 13, 7295, 1330, 9104, 11, 5660, 11, 10933, 10223, 198, 6738, 35560, 495, 4029, 13, 1069, 11755, 1330, 9104, 3673, 21077, 16922, 11, 47736, 712, 501, 16922, 198, 198, 6738, 1341, 35720, 1330, 20731, 198, 198, 47123, 2885, 13563, 62, 40386, 796, 366, 38993, 13, 17752, 1, 198, 19535, 31033, 62, 18227, 1546, 62, 11929, 62, 6369, 8808, 796, 366, 19535, 31033, 62, 18227, 1546, 62, 11929, 62, 6369, 8808, 1, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 49786, 13, 9078, 4943, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 6404, 1362, 13, 2860, 25060, 7, 6404, 2667, 13, 12124, 25060, 28955, 628, 198, 198, 4299, 1100, 62, 7890, 14535, 7, 15414, 62, 6978, 25, 10644, 8, 4613, 279, 67, 13, 6601, 19778, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 257, 2393, 357, 7902, 53, 393, 2547, 21108, 8, 290, 1441, 257, 1366, 14535, 13, 198, 220, 220, 220, 1002, 257, 8619, 318, 3804, 11, 804, 329, 1582, 21108, 11, 611, 407, 1695, 11, 804, 329, 44189, 198, 220, 220, 220, 357, 15001, 319, 2393, 7552, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5128, 62, 6978, 13, 271, 62, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 21108, 62, 16624, 796, 1351, 7, 15414, 62, 6978, 13, 4743, 672, 7203, 24620, 1845, 21108, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 16624, 796, 1351, 7, 15414, 62, 6978, 13, 4743, 672, 7203, 24620, 40664, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1845, 21108, 62, 16624, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 6978, 796, 1582, 21108, 62, 16624, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 40664, 62, 16624, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 6978, 796, 269, 21370, 62, 16624, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 9220, 3673, 21077, 12331, 7203, 2949, 44189, 393, 2547, 21108, 3696, 1043, 4943, 628, 220, 220, 220, 2393, 62, 37333, 844, 796, 5128, 62, 6978, 13, 37333, 844, 198, 220, 220, 220, 611, 2393, 62, 37333, 844, 6624, 27071, 1845, 21108, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 1845, 21108, 7, 15414, 62, 6978, 8, 198, 220, 220, 220, 1288, 361, 2393, 62, 37333, 844, 6624, 27071, 40664, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 15414, 62, 6978, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 9220, 3673, 21077, 12331, 7203, 8979, 318, 407, 44189, 393, 2547, 21108, 4943, 198, 220, 220, 220, 1441, 47764, 628, 198, 198, 4299, 3551, 62, 521, 26407, 62, 7753, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 43551, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 25, 20512, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 16594, 281, 6565, 2393, 287, 262, 5072, 3108, 284, 8203, 611, 262, 2746, 815, 307, 6823, 37811, 198, 220, 220, 220, 5072, 62, 6978, 796, 10644, 7, 22915, 62, 43551, 8, 198, 220, 220, 220, 29472, 796, 366, 31553, 41517, 1, 611, 7881, 62, 19849, 2073, 366, 18831, 4061, 1, 628, 220, 220, 220, 357, 22915, 62, 6978, 1220, 29472, 737, 29332, 3419, 628, 198, 4299, 651, 62, 19849, 62, 4164, 10466, 7, 19849, 25, 1657, 70, 20475, 13, 16635, 6197, 11, 1366, 25, 1657, 70, 20475, 13, 27354, 292, 316, 11, 2746, 62, 3672, 25, 965, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 42316, 257, 22155, 286, 20731, 329, 262, 2746, 37811, 628, 220, 220, 220, 16277, 796, 2746, 13, 79, 17407, 7, 7890, 13, 7890, 8, 198, 220, 220, 220, 277, 1050, 11, 256, 1050, 11, 40885, 796, 20731, 13, 12204, 62, 22019, 303, 7, 7890, 13, 18242, 11, 16277, 8, 628, 220, 220, 220, 1266, 62, 400, 10126, 796, 4331, 62, 13466, 62, 400, 10126, 7, 69, 1050, 11, 256, 1050, 11, 40885, 8, 198, 220, 220, 220, 277, 16, 62, 26675, 796, 20731, 13, 69, 16, 62, 26675, 7, 7890, 13, 18242, 11, 45941, 13, 3003, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16277, 1279, 1266, 62, 400, 10126, 11, 657, 11, 352, 4008, 628, 220, 220, 220, 2746, 62, 4164, 10466, 796, 19779, 14272, 1298, 20731, 13, 14272, 7, 69, 1050, 11, 256, 1050, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 69, 16, 12, 26675, 1298, 277, 16, 62, 26675, 92, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 90, 19849, 62, 3672, 92, 3395, 10466, 1391, 19849, 62, 4164, 10466, 92, 4943, 628, 220, 220, 220, 1441, 2746, 62, 4164, 10466, 628, 628, 198, 4299, 8996, 62, 27530, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8783, 62, 19849, 25, 1657, 70, 20475, 13, 16635, 6197, 11, 198, 220, 220, 220, 220, 220, 220, 220, 32127, 62, 19849, 25, 1657, 70, 20475, 13, 16635, 6197, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 7568, 25, 279, 67, 13, 6601, 19778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7208, 62, 4164, 1173, 25, 25659, 1691, 14692, 1092, 1600, 366, 439, 1600, 366, 69, 16, 62, 26675, 1600, 366, 14272, 8973, 796, 366, 1092, 1, 198, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2163, 284, 8996, 262, 2854, 286, 262, 15869, 290, 39221, 4981, 198, 220, 220, 220, 319, 262, 21201, 27039, 7208, 20731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7208, 62, 4164, 10466, 62, 12942, 507, 796, 19779, 69, 16, 12, 26675, 1298, 9104, 35, 4154, 13, 39, 3528, 16879, 62, 33, 2767, 5781, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14272, 1298, 9104, 35, 4154, 13, 39, 3528, 16879, 62, 33, 2767, 5781, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4134, 23843, 1298, 9104, 35, 4154, 13, 39, 3528, 16879, 62, 33, 2767, 5781, 92, 628, 220, 220, 220, 1303, 19141, 40522, 198, 220, 220, 220, 3033, 796, 4938, 62, 7568, 13, 14781, 7, 17816, 16793, 3256, 705, 312, 6, 4357, 16488, 28, 16, 11, 8563, 2625, 46430, 4943, 198, 220, 220, 220, 14722, 796, 45941, 13, 18747, 7, 12102, 62, 7568, 17816, 16793, 6, 12962, 198, 220, 220, 220, 4938, 62, 19608, 292, 316, 796, 1657, 70, 20475, 13, 27354, 292, 316, 7, 7890, 28, 40890, 11, 6167, 28, 23912, 1424, 8, 628, 220, 220, 220, 1303, 27131, 378, 15869, 290, 39221, 20731, 329, 1123, 198, 220, 220, 220, 8783, 62, 4164, 10466, 796, 651, 62, 19849, 62, 4164, 10466, 7, 354, 6734, 62, 19849, 11, 4938, 62, 19608, 292, 316, 11, 366, 1925, 6734, 4943, 198, 220, 220, 220, 32127, 62, 4164, 10466, 796, 651, 62, 19849, 62, 4164, 10466, 7, 36747, 6540, 62, 19849, 11, 4938, 62, 19608, 292, 316, 11, 366, 41812, 6540, 4943, 628, 220, 220, 220, 611, 7208, 62, 4164, 1173, 407, 287, 37250, 1092, 3256, 705, 439, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 1925, 6734, 2854, 329, 1391, 785, 1845, 1653, 62, 4164, 1173, 38362, 1391, 354, 6734, 62, 4164, 10466, 58, 785, 1845, 1653, 62, 4164, 1173, 48999, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 41812, 6540, 2854, 329, 1391, 785, 1845, 1653, 62, 4164, 1173, 38362, 1391, 36747, 6540, 62, 4164, 10466, 58, 785, 1845, 1653, 62, 4164, 1173, 48999, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 796, 32127, 62, 4164, 1173, 62, 27903, 7, 354, 696, 62, 4164, 10466, 28, 354, 6734, 62, 4164, 10466, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32127, 62, 4164, 10466, 28, 36747, 6540, 62, 4164, 10466, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 3672, 28, 785, 1845, 1653, 62, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4571, 28, 785, 1845, 1653, 62, 4164, 10466, 62, 12942, 507, 58, 785, 1845, 1653, 62, 4164, 1173, 12962, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7208, 62, 43420, 796, 1391, 4164, 1173, 25, 32127, 62, 4164, 1173, 62, 27903, 7, 354, 696, 62, 4164, 10466, 28, 354, 6734, 62, 4164, 10466, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32127, 62, 4164, 10466, 28, 36747, 6540, 62, 4164, 10466, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 3672, 28, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4571, 28, 785, 1845, 1653, 62, 4164, 10466, 62, 12942, 507, 58, 4164, 1173, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 18663, 287, 8783, 62, 4164, 10466, 13, 13083, 3419, 92, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7208, 62, 4164, 1173, 6624, 366, 1092, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 796, 597, 7, 785, 1845, 1653, 62, 43420, 13, 27160, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7881, 62, 19849, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3967, 62, 43420, 796, 685, 4164, 1173, 329, 18663, 11, 1255, 287, 7208, 62, 43420, 13, 23814, 3419, 611, 1255, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 18663, 287, 3967, 62, 43420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 41812, 6540, 9104, 6157, 1365, 329, 705, 90, 4164, 1173, 92, 6, 319, 21201, 1366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 1925, 6734, 2746, 6157, 1365, 329, 477, 20731, 319, 21201, 1366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 796, 477, 7, 785, 1845, 1653, 62, 43420, 13, 27160, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7881, 62, 19849, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 41812, 6540, 2746, 6157, 1365, 319, 477, 20731, 319, 21201, 1366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4633, 62, 601, 8376, 796, 685, 4164, 1173, 329, 18663, 11, 1255, 287, 7208, 62, 43420, 13, 23814, 3419, 611, 407, 1255, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 18663, 287, 4633, 62, 601, 8376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 1925, 6734, 9104, 6157, 1365, 329, 705, 90, 4164, 1173, 92, 6, 319, 21201, 1366, 4943, 628, 220, 220, 220, 1441, 7881, 62, 19849, 628, 198, 4299, 3440, 62, 354, 6734, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 25, 20512, 198, 8, 4613, 309, 29291, 58, 38176, 58, 2971, 70, 20475, 13, 16635, 6197, 11, 6045, 4357, 20512, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8778, 262, 8783, 2746, 355, 262, 3058, 6823, 2746, 286, 705, 19849, 62, 3672, 6, 290, 262, 4511, 2196, 1271, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1057, 796, 5660, 13, 1136, 62, 22866, 3419, 198, 220, 220, 220, 266, 82, 25, 10933, 10223, 796, 1057, 13, 23100, 3681, 13, 5225, 10223, 628, 220, 220, 220, 1303, 8778, 15869, 9104, 198, 220, 220, 220, 1303, 1002, 262, 8783, 2746, 1595, 470, 2152, 11, 4313, 7881, 2746, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 24092, 62, 29510, 62, 15908, 796, 20218, 7753, 13, 28015, 67, 29510, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8783, 62, 19849, 796, 9104, 7, 18504, 11, 2746, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8783, 62, 19849, 13, 15002, 7, 16793, 62, 15908, 28, 354, 696, 62, 29510, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8783, 62, 19849, 796, 285, 1652, 9319, 13, 2971, 70, 20475, 13, 2220, 62, 19849, 7, 418, 13, 6978, 13, 22179, 7, 354, 696, 62, 29510, 62, 15908, 11, 366, 19849, 48774, 628, 220, 220, 220, 2845, 357, 1135, 1443, 712, 501, 16922, 11, 9104, 3673, 21077, 16922, 8, 355, 1033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 2949, 2746, 3706, 705, 90, 19849, 62, 3672, 92, 6, 3058, 287, 20478, 532, 34639, 2746, 9352, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 16922, 7567, 1417, 25, 1391, 11201, 13, 20500, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 8783, 62, 19849, 796, 6045, 628, 220, 220, 220, 1441, 8783, 62, 19849, 11, 7881, 62, 19849, 628, 198, 4299, 3440, 62, 36747, 6540, 62, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 312, 25, 965, 198, 8, 4613, 1657, 70, 20475, 13, 16635, 6197, 25, 198, 220, 220, 220, 37227, 8912, 32127, 2746, 422, 428, 37709, 37811, 198, 220, 220, 220, 32127, 62, 19849, 62, 9900, 796, 277, 1, 48381, 14079, 90, 5143, 62, 312, 92, 14, 19849, 1, 198, 220, 220, 220, 32127, 62, 19849, 796, 285, 1652, 9319, 13, 2971, 70, 20475, 13, 2220, 62, 19849, 7, 36747, 6540, 62, 19849, 62, 9900, 8, 198, 220, 220, 220, 1441, 32127, 62, 19849, 628, 198, 4299, 1388, 7, 198, 220, 220, 220, 2746, 62, 38993, 25, 10644, 796, 1259, 525, 13, 19722, 7, 986, 11, 7160, 28, 17821, 11, 26672, 62, 482, 323, 28, 17821, 11, 2393, 62, 482, 323, 28, 25101, 828, 198, 220, 220, 220, 15602, 62, 43551, 25, 10644, 796, 1259, 525, 13, 19722, 7, 986, 11, 7160, 28, 25101, 11, 26672, 62, 482, 323, 28, 17821, 11, 2393, 62, 482, 323, 28, 25101, 828, 198, 220, 220, 220, 21201, 62, 7890, 62, 6978, 25, 10644, 796, 1259, 525, 13, 19722, 7, 986, 11, 7160, 28, 17821, 11, 26672, 62, 482, 323, 28, 17821, 11, 2393, 62, 482, 323, 28, 17821, 828, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 262, 3058, 6823, 2746, 422, 3001, 43, 9104, 33432, 290, 8996, 262, 2746, 2854, 198, 220, 220, 220, 319, 257, 3210, 27039, 13, 628, 220, 220, 220, 383, 366, 1925, 6734, 1, 2746, 532, 318, 262, 2746, 3058, 6823, 290, 287, 3227, 13, 383, 366, 41812, 6540, 1, 2746, 318, 262, 2746, 198, 220, 220, 220, 3058, 628, 220, 220, 220, 1002, 262, 32127, 2746, 7864, 11, 788, 7719, 262, 2746, 284, 3227, 13, 198, 220, 220, 220, 15323, 11, 1394, 262, 8783, 2746, 287, 3227, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 16926, 46, 25, 48282, 4946, 34, 7314, 290, 17537, 18931, 628, 220, 220, 220, 15602, 62, 43551, 13, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 7881, 62, 19849, 796, 10352, 628, 220, 220, 220, 1303, 8778, 262, 5660, 2389, 290, 9104, 1438, 422, 262, 2746, 3047, 2239, 198, 220, 220, 220, 1057, 62, 312, 11, 2746, 62, 3672, 796, 3440, 62, 19849, 62, 38993, 7, 19849, 62, 38993, 8, 628, 220, 220, 220, 1303, 8778, 8783, 2746, 422, 262, 9104, 33432, 198, 220, 220, 220, 8783, 62, 19849, 11, 7881, 62, 19849, 796, 3440, 62, 354, 6734, 62, 19849, 7, 19849, 62, 3672, 11, 7881, 62, 19849, 8, 628, 220, 220, 220, 1303, 8778, 262, 32127, 2746, 422, 705, 44077, 9104, 6, 2239, 198, 220, 220, 220, 32127, 62, 19849, 796, 3440, 62, 36747, 6540, 62, 19849, 7, 19849, 62, 3672, 11, 1057, 62, 312, 8, 628, 220, 220, 220, 4938, 62, 7568, 796, 1100, 62, 7890, 14535, 7, 12102, 341, 62, 7890, 62, 6978, 8, 628, 220, 220, 220, 1303, 1002, 262, 8783, 2746, 7160, 11, 788, 1057, 262, 8996, 2746, 2163, 198, 220, 220, 220, 611, 8783, 62, 19849, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7881, 62, 19849, 796, 8996, 62, 27530, 7, 354, 6734, 62, 19849, 28, 354, 6734, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32127, 62, 19849, 28, 36747, 6540, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 7568, 28, 12102, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7208, 62, 4164, 1173, 2625, 439, 4943, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 3792, 9104, 24610, 31117, 27514, 1391, 30238, 62, 19849, 92, 4943, 198, 220, 220, 220, 1303, 19430, 262, 16916, 2393, 284, 1208, 1863, 284, 262, 366, 38804, 9104, 1, 2239, 13, 198, 220, 220, 220, 1303, 383, 9483, 481, 2035, 3994, 281, 6565, 2393, 326, 1139, 366, 31553, 41517, 1, 393, 281, 6565, 2393, 326, 1139, 366, 18831, 4061, 1, 198, 220, 220, 220, 3551, 62, 521, 26407, 62, 7753, 7, 22915, 62, 43551, 28, 47335, 437, 341, 62, 43551, 11, 7881, 62, 19849, 28, 30238, 62, 19849, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1259, 525, 13, 5143, 7, 12417, 8, 198 ]
2.484873
3,636
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import asyncio import importlib.resources import logging import os import shlex import subprocess import sys import tempfile from contextlib import asynccontextmanager, contextmanager from dataclasses import dataclass from itertools import chain from pathlib import Path from typing import AsyncContextManager, ContextManager, Iterable, Optional, Union from fs_image.vm.guest_agent import QemuError, QemuGuestAgent from fs_image.vm.share import Share, process_shares logger = logging.getLogger("vm") @dataclass(frozen=True) @contextmanager @asynccontextmanager
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 11748, 30351, 952, 198, 11748, 1330, 8019, 13, 37540, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 427, 2588, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 20218, 7753, 198, 6738, 4732, 8019, 1330, 355, 2047, 535, 261, 5239, 37153, 11, 4732, 37153, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 340, 861, 10141, 1330, 6333, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 1081, 13361, 21947, 13511, 11, 30532, 13511, 11, 40806, 540, 11, 32233, 11, 4479, 198, 198, 6738, 43458, 62, 9060, 13, 14761, 13, 5162, 395, 62, 25781, 1330, 1195, 368, 84, 12331, 11, 1195, 368, 84, 42481, 36772, 198, 6738, 43458, 62, 9060, 13, 14761, 13, 20077, 1330, 8734, 11, 1429, 62, 1477, 3565, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 14761, 4943, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 22866, 37153, 628, 198, 31, 292, 2047, 535, 261, 5239, 37153, 628 ]
3.525114
219
## All icons in Laelaps package. __all__ = [ 'BotBwdIcon.png', 'BotFwdIcon.png', 'BotLeftIcon.png', 'BotRightIcon.png', 'BotStopIcon.png', 'LaelapsAlarmsIcon.png', 'LaelapsCamIcon.png', 'LaelapsImuIcon.png', 'LaelapsPanelIcon.png', 'LaelapsRangeIcon.png', 'LaelapsTwistIcon.png', 'ROSIcon.png', 'icon_alarm.png', 'icon_camera.png', 'icon_close.png', 'icon_close_32.png', 'icon_bot_back.png', 'icon_bot_brake.png', 'icon_bot_forward.png', 'icon_bot_range.png', 'icon_bot_spin_left.png', 'icon_bot_spin_right.png', 'icon_bot_twist.png', 'icon_estop.png', 'icon_estop_reset.png', 'icon_exit.png', 'icon_info.png', 'icon_laelaps_logo.png', 'icon_led_dark_16.png', 'icon_led_green_16.png', 'icon_led_red_16.png', 'icon_led_yellow_16.png', 'icon_pause.png', 'icon_settings.png', ]
[ 2235, 1439, 17149, 287, 406, 3010, 1686, 5301, 13, 198, 834, 439, 834, 796, 685, 198, 220, 705, 20630, 33, 16993, 19578, 13, 11134, 3256, 198, 220, 705, 20630, 37, 16993, 19578, 13, 11134, 3256, 198, 220, 705, 20630, 18819, 19578, 13, 11134, 3256, 198, 220, 705, 20630, 11028, 19578, 13, 11134, 3256, 198, 220, 705, 20630, 19485, 19578, 13, 11134, 3256, 628, 220, 705, 43, 3010, 1686, 2348, 8357, 19578, 13, 11134, 3256, 198, 220, 705, 43, 3010, 1686, 21701, 19578, 13, 11134, 3256, 198, 220, 705, 43, 3010, 1686, 3546, 84, 19578, 13, 11134, 3256, 198, 220, 705, 43, 3010, 1686, 26639, 19578, 13, 11134, 3256, 198, 220, 705, 43, 3010, 1686, 17257, 19578, 13, 11134, 3256, 198, 220, 705, 43, 3010, 1686, 5080, 396, 19578, 13, 11134, 3256, 628, 220, 705, 49, 2640, 19578, 13, 11134, 3256, 628, 220, 705, 4749, 62, 282, 1670, 13, 11134, 3256, 198, 220, 705, 4749, 62, 25695, 13, 11134, 3256, 198, 220, 705, 4749, 62, 19836, 13, 11134, 3256, 198, 220, 705, 4749, 62, 19836, 62, 2624, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 1891, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 16057, 365, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 11813, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 9521, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 39706, 62, 9464, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 39706, 62, 3506, 13, 11134, 3256, 198, 220, 705, 4749, 62, 13645, 62, 4246, 396, 13, 11134, 3256, 198, 220, 705, 4749, 62, 395, 404, 13, 11134, 3256, 198, 220, 705, 4749, 62, 395, 404, 62, 42503, 13, 11134, 3256, 198, 220, 705, 4749, 62, 37023, 13, 11134, 3256, 198, 220, 705, 4749, 62, 10951, 13, 11134, 3256, 198, 220, 705, 4749, 62, 75, 3010, 1686, 62, 6404, 78, 13, 11134, 3256, 198, 220, 705, 4749, 62, 992, 62, 21953, 62, 1433, 13, 11134, 3256, 198, 220, 705, 4749, 62, 992, 62, 14809, 62, 1433, 13, 11134, 3256, 198, 220, 705, 4749, 62, 992, 62, 445, 62, 1433, 13, 11134, 3256, 198, 220, 705, 4749, 62, 992, 62, 36022, 62, 1433, 13, 11134, 3256, 198, 220, 705, 4749, 62, 32125, 13, 11134, 3256, 198, 220, 705, 4749, 62, 33692, 13, 11134, 3256, 198, 60, 198 ]
2.174807
389
from flask import Flask from flask import render_template from api.user_api import user_api from api.audit_api import audit_api from api.sns_api import sns_api from errors import ParameterError, DataError from utilities import response from constants import APIStatus from batch.notification import apns_push app = Flask(__name__) app.config.from_pyfile('settings.cfg') app.register_blueprint(user_api) app.register_blueprint(audit_api) app.register_blueprint(sns_api) @app.route('/') @app.route('/policy') @app.route('/terms') @app.route('/api/version/') @app.route('/api/notification/') @app.errorhandler(404) @app.errorhandler(ParameterError) @app.errorhandler(DataError)
[ 6738, 42903, 1330, 46947, 198, 6738, 42903, 1330, 8543, 62, 28243, 198, 6738, 40391, 13, 7220, 62, 15042, 1330, 2836, 62, 15042, 198, 6738, 40391, 13, 3885, 270, 62, 15042, 1330, 14984, 62, 15042, 198, 6738, 40391, 13, 82, 5907, 62, 15042, 1330, 3013, 82, 62, 15042, 198, 6738, 8563, 1330, 25139, 2357, 12331, 11, 6060, 12331, 198, 6738, 20081, 1330, 2882, 198, 6738, 38491, 1330, 7824, 19580, 198, 6738, 15458, 13, 1662, 2649, 1330, 2471, 5907, 62, 14689, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 6738, 62, 9078, 7753, 10786, 33692, 13, 37581, 11537, 198, 1324, 13, 30238, 62, 17585, 4798, 7, 7220, 62, 15042, 8, 198, 1324, 13, 30238, 62, 17585, 4798, 7, 3885, 270, 62, 15042, 8, 198, 1324, 13, 30238, 62, 17585, 4798, 7, 82, 5907, 62, 15042, 8, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 30586, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 38707, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 14, 9641, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 14, 1662, 2649, 14, 11537, 628, 198, 31, 1324, 13, 18224, 30281, 7, 26429, 8, 628, 198, 31, 1324, 13, 18224, 30281, 7, 36301, 12331, 8, 628, 198, 31, 1324, 13, 18224, 30281, 7, 6601, 12331, 8 ]
3.017467
229
from doubles import InstanceDouble, allow from pytest import fixture from staticpy.category import Category @fixture @fixture
[ 6738, 21938, 1330, 2262, 590, 25628, 11, 1249, 198, 6738, 12972, 9288, 1330, 29220, 198, 198, 6738, 9037, 9078, 13, 22872, 1330, 21743, 628, 628, 198, 31, 69, 9602, 628, 198, 31, 69, 9602, 628, 628, 628 ]
3.72973
37
# liste methotları listelerimiz üzerine methotlar sayesinde işlemler yapmamızı sağlar numbers = [5,2,1,7,4] # listeye öğe eklemek için append methodundan yararlanırız numbers.append(20) print(numbers) # listeye indeks numarasına göre öge eklemek numbers.insert(2,10) print(numbers) # listemizde bir öğeyi silmek için remove methodundan yararlanırız numbers.remove(5) print(numbers) # listemizdeki tüm ögeleri silmek için clear() methodundan yararlanırız numbers.clear() print(numbers) # [] number = [1,2,3,4,3,5] # listenin son ögesini silmek için pop() methoundan yararlanırız number.pop() print(number) # [1,2,3,4] # listedeki ögelerin varlığını ögrenmek için methotlardan yararlanabiliriz # index() methodu sayesinde öğenin listedeki indeks sayısını öğrenmiş olduk print(number.index(2)) #1 # index() methoduna listede bulunmayan bir öğeyi yazarsak ValueError hatası alırız # bir değerin listede bulunup bulunmadığını in kelimesini kullanarak bulabiliriz print(2 in number) # 2 değeri number listesinde bulunduğu için değer True oldu print(100 in number) # 100 değeri number listesinde bulunduğu için değer False oldu # bir değerin listenin içinde kaç tane bulunduğunu kontrol etmek için count() methodunu kullanırız print(number.count(3)) #2 print(number.count(4)) # 1 print(number.count(40)) # bulunmadığı için 0 # listeleri küçükten büyüğe sıralamak için sort() methodundan yararlanabiliriz number.sort() print(number) # [1,2,3,3,4] # listeleri büyükten küçüğe sıralamak için reverse() methodundan yararlanırız number.reverse() print(number) # [4,3,3,2,1] # listemizin bir kopyasını almak için copy() methodundan yararlanırız number2 = number.copy() number.append(10) print(number) # [4,3,3,2,1,10] print(number2) # [4,3,3,2,1] # listemizin bir kopyasını almak, listeye sonradan ekleyeceğimiz, çıkartacağımız vb. # gibi değişikliklerden etkilenmemesi için en doğru yoldur """ EGZERSİZ """ # bir listemiz var bu listenin içinde aynı değere sahip 1 den fazla öge var # bu ögelerin kopyalarını nasıl silebiliriz numbersOne = [2,2,4,6,3,4,6,1] uniques = [] # boş bir liste for numberTwo in numbersOne: # numbersOne listesindeki her bir ögeye numberTwo adını verdik: if numberTwo not in uniques: # eğer öge uniques listesinde yok ise: uniques.append(numberTwo) # uniques listesine o ögeyi ekle print(uniques) # [2,4,6,3,1] # uniques listesini yazdır """ numbersOne adlı değişkenin içinde kopyalarıda bulunan karışık değerli bir listemiz var bu listedeki kopyalardan arınmış halini uniques listesinde toplayacağız bu yüzden boş bir liste yarattık numberOne daki her bir ögeyi ele aldık eğer dedik numberTwo ögeleri uniques içinde yok ise bu listeye ögeyi ekle dedik not in dememizin sebebi eğer 1 uniques in içinde ise bir daha birin yazılmasını engellemek bu sayede listenin kopyalardan arınmış halini oluşturduk """
[ 2, 1351, 68, 1138, 8940, 21681, 30102, 1351, 417, 263, 320, 528, 6184, 120, 9107, 500, 1138, 8940, 21681, 910, 274, 521, 68, 1312, 46481, 10671, 1754, 331, 499, 76, 321, 30102, 89, 30102, 473, 33133, 21681, 198, 77, 17024, 796, 685, 20, 11, 17, 11, 16, 11, 22, 11, 19, 60, 198, 2, 1351, 25379, 6184, 114, 33133, 68, 304, 74, 10671, 988, 1312, 16175, 259, 24443, 2446, 917, 272, 331, 283, 7063, 272, 30102, 81, 30102, 89, 198, 77, 17024, 13, 33295, 7, 1238, 8, 198, 4798, 7, 77, 17024, 8, 198, 198, 2, 1351, 25379, 773, 2573, 997, 283, 292, 30102, 2616, 308, 9101, 260, 6184, 114, 469, 304, 74, 10671, 988, 198, 77, 17024, 13, 28463, 7, 17, 11, 940, 8, 198, 4798, 7, 77, 17024, 8, 198, 198, 2, 1351, 368, 528, 2934, 35122, 6184, 114, 33133, 2959, 72, 3313, 76, 988, 1312, 16175, 259, 4781, 2446, 917, 272, 331, 283, 7063, 272, 30102, 81, 30102, 89, 198, 77, 17024, 13, 28956, 7, 20, 8, 198, 4798, 7, 77, 17024, 8, 198, 198, 2, 1351, 368, 528, 67, 39548, 256, 9116, 76, 6184, 114, 25280, 33442, 3313, 76, 988, 1312, 16175, 259, 1598, 3419, 2446, 917, 272, 331, 283, 7063, 272, 30102, 81, 30102, 89, 198, 77, 17024, 13, 20063, 3419, 198, 4798, 7, 77, 17024, 8, 1303, 17635, 198, 198, 17618, 796, 685, 16, 11, 17, 11, 18, 11, 19, 11, 18, 11, 20, 60, 198, 198, 2, 6004, 259, 3367, 6184, 114, 3212, 5362, 3313, 76, 988, 1312, 16175, 259, 1461, 3419, 11248, 633, 272, 331, 283, 7063, 272, 30102, 81, 30102, 89, 198, 17618, 13, 12924, 3419, 198, 4798, 7, 17618, 8, 1303, 685, 16, 11, 17, 11, 18, 11, 19, 60, 198, 198, 2, 5610, 39548, 6184, 114, 25280, 263, 259, 1401, 75, 30102, 33133, 30102, 77, 30102, 6184, 114, 32762, 76, 988, 1312, 16175, 259, 1138, 8940, 75, 446, 272, 331, 283, 7063, 272, 14991, 343, 528, 198, 198, 2, 6376, 3419, 2446, 84, 910, 274, 521, 68, 6184, 114, 33133, 268, 259, 5610, 39548, 773, 2573, 910, 30102, 82, 30102, 77, 30102, 6184, 114, 33133, 918, 11632, 46481, 1468, 2724, 198, 4798, 7, 17618, 13, 9630, 7, 17, 4008, 1303, 16, 198, 198, 2, 6376, 3419, 2446, 9613, 5610, 68, 4807, 403, 11261, 272, 35122, 6184, 114, 33133, 2959, 72, 331, 1031, 945, 461, 11052, 12331, 6877, 292, 30102, 435, 30102, 81, 30102, 89, 198, 198, 2, 35122, 390, 33133, 263, 259, 5610, 68, 4807, 403, 929, 4807, 403, 9937, 30102, 33133, 30102, 77, 30102, 287, 885, 75, 999, 5362, 479, 724, 272, 30447, 4807, 14991, 343, 528, 198, 198, 4798, 7, 17, 287, 1271, 8, 1303, 362, 390, 33133, 33442, 1271, 1351, 274, 521, 68, 4807, 917, 84, 33133, 84, 1312, 16175, 259, 390, 33133, 263, 6407, 1468, 84, 198, 4798, 7, 3064, 287, 1271, 8, 1303, 1802, 390, 33133, 33442, 1271, 1351, 274, 521, 68, 4807, 917, 84, 33133, 84, 1312, 16175, 259, 390, 33133, 263, 10352, 1468, 84, 198, 198, 2, 35122, 390, 33133, 263, 259, 6004, 259, 1312, 16175, 521, 68, 38387, 16175, 256, 1531, 4807, 917, 84, 33133, 403, 84, 479, 756, 3225, 2123, 76, 988, 1312, 16175, 259, 954, 3419, 2446, 403, 84, 479, 724, 272, 30102, 81, 30102, 89, 198, 4798, 7, 17618, 13, 9127, 7, 18, 4008, 1303, 17, 198, 4798, 7, 17618, 13, 9127, 7, 19, 4008, 1303, 352, 198, 4798, 7, 17618, 13, 9127, 7, 1821, 4008, 1303, 4807, 403, 9937, 30102, 33133, 30102, 1312, 16175, 259, 657, 198, 198, 2, 1351, 417, 33442, 479, 9116, 16175, 9116, 74, 1452, 275, 9116, 88, 9116, 33133, 68, 264, 30102, 1373, 321, 461, 1312, 16175, 259, 3297, 3419, 2446, 917, 272, 331, 283, 7063, 272, 14991, 343, 528, 198, 17618, 13, 30619, 3419, 198, 4798, 7, 17618, 8, 1303, 685, 16, 11, 17, 11, 18, 11, 18, 11, 19, 60, 198, 198, 2, 1351, 417, 33442, 275, 9116, 88, 9116, 74, 1452, 479, 9116, 16175, 9116, 33133, 68, 264, 30102, 1373, 321, 461, 1312, 16175, 259, 9575, 3419, 2446, 917, 272, 331, 283, 7063, 272, 30102, 81, 30102, 89, 198, 17618, 13, 50188, 3419, 198, 4798, 7, 17618, 8, 1303, 685, 19, 11, 18, 11, 18, 11, 17, 11, 16, 60, 198, 198, 2, 1351, 368, 528, 259, 35122, 479, 11081, 292, 30102, 77, 30102, 435, 76, 461, 1312, 16175, 259, 4866, 3419, 2446, 917, 272, 331, 283, 7063, 272, 30102, 81, 30102, 89, 198, 17618, 17, 796, 1271, 13, 30073, 3419, 198, 17618, 13, 33295, 7, 940, 8, 198, 4798, 7, 17618, 8, 1303, 685, 19, 11, 18, 11, 18, 11, 17, 11, 16, 11, 940, 60, 198, 4798, 7, 17618, 17, 8, 1303, 685, 19, 11, 18, 11, 18, 11, 17, 11, 16, 60, 198, 198, 2, 1351, 368, 528, 259, 35122, 479, 11081, 292, 30102, 77, 30102, 435, 76, 461, 11, 1351, 25379, 3367, 6335, 272, 304, 74, 1636, 68, 344, 33133, 320, 528, 11, 6184, 100, 30102, 74, 433, 22260, 33133, 30102, 76, 30102, 89, 410, 65, 13, 198, 2, 308, 27567, 390, 33133, 72, 46481, 1134, 46965, 1754, 6559, 2123, 34553, 268, 11883, 46551, 1312, 16175, 259, 551, 466, 33133, 622, 331, 727, 333, 628, 198, 37811, 198, 7156, 57, 4877, 128, 108, 57, 198, 37811, 198, 198, 2, 35122, 1351, 368, 528, 1401, 809, 6004, 259, 1312, 16175, 521, 68, 257, 2047, 30102, 390, 33133, 567, 473, 1056, 352, 2853, 277, 1031, 5031, 6184, 114, 469, 1401, 198, 2, 809, 6184, 114, 25280, 263, 259, 479, 11081, 282, 283, 30102, 77, 30102, 25221, 30102, 75, 264, 576, 33473, 343, 528, 198, 198, 77, 17024, 3198, 796, 685, 17, 11, 17, 11, 19, 11, 21, 11, 18, 11, 19, 11, 21, 11, 16, 60, 220, 198, 403, 6368, 796, 17635, 1303, 1489, 46481, 35122, 1351, 68, 198, 1640, 1271, 7571, 287, 3146, 3198, 25, 1303, 3146, 3198, 1351, 274, 521, 39548, 607, 35122, 6184, 114, 469, 5948, 1271, 7571, 512, 30102, 77, 30102, 3326, 67, 1134, 25, 198, 220, 220, 220, 611, 1271, 7571, 407, 287, 555, 6368, 25, 1303, 304, 33133, 263, 6184, 114, 469, 555, 6368, 1351, 274, 521, 68, 331, 482, 318, 68, 25, 198, 220, 220, 220, 220, 220, 220, 220, 555, 6368, 13, 33295, 7, 17618, 7571, 8, 1303, 555, 6368, 1351, 274, 500, 267, 6184, 114, 39608, 72, 304, 74, 293, 198, 4798, 7, 403, 6368, 8, 1303, 685, 17, 11, 19, 11, 21, 11, 18, 11, 16, 60, 1303, 555, 6368, 1351, 274, 5362, 331, 1031, 67, 30102, 81, 198, 198, 37811, 198, 77, 17024, 3198, 512, 75, 30102, 390, 33133, 72, 46481, 3464, 259, 1312, 16175, 521, 68, 479, 11081, 282, 283, 30102, 6814, 4807, 403, 272, 479, 283, 30102, 46481, 30102, 74, 390, 33133, 263, 4528, 35122, 1351, 368, 528, 1401, 198, 11110, 5610, 39548, 479, 11081, 282, 446, 272, 610, 30102, 21533, 30102, 46481, 10284, 5362, 555, 6368, 1351, 274, 521, 68, 284, 1759, 22260, 33133, 30102, 89, 198, 11110, 331, 9116, 89, 6559, 1489, 46481, 35122, 1351, 68, 331, 283, 1078, 30102, 74, 198, 17618, 3198, 288, 8182, 607, 35122, 6184, 114, 39608, 72, 9766, 257, 335, 30102, 74, 198, 68, 33133, 263, 4648, 1134, 1271, 7571, 6184, 114, 25280, 33442, 555, 6368, 1312, 16175, 521, 68, 331, 482, 318, 68, 809, 1351, 25379, 6184, 114, 39608, 72, 304, 74, 293, 4648, 1134, 198, 1662, 287, 1357, 368, 528, 259, 384, 1350, 8482, 304, 33133, 263, 352, 555, 6368, 287, 1312, 16175, 521, 68, 318, 68, 35122, 288, 12236, 35122, 259, 331, 1031, 30102, 75, 5356, 30102, 77, 30102, 1786, 417, 10671, 988, 198, 11110, 910, 18654, 6004, 259, 479, 11081, 282, 446, 272, 610, 30102, 21533, 30102, 46481, 10284, 5362, 267, 2290, 46481, 36590, 646, 74, 198, 37811, 628, 628 ]
2.20216
1,296
from PIL import Image from pdf2image import convert_from_bytes import os import math import random #
[ 6738, 350, 4146, 1330, 7412, 201, 198, 6738, 37124, 17, 9060, 1330, 10385, 62, 6738, 62, 33661, 201, 198, 11748, 28686, 201, 198, 11748, 10688, 201, 198, 11748, 4738, 201, 198, 2 ]
3.28125
32
import cv2 import numpy as np import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import ImageGrid from numpy import pi from utils import stripes, get_gradation_2d,\ get_gradation_3d, checkerboard, radial_gradient from utils.filters import gau_kern, circ_mask from skimage.color import rgb2gray from skimage import img_as_float if __name__ == "__main__": cmask = circ_mask(70, (35, 35), 35, 0) im1 = stripes(32, 45, 256, 256, horizontal=False) im2 = get_gradation_2d(256, 256, 0, 255, is_horizontal=False) im3 = checkerboard(256, 64) im4 = stripes(32, 45, 256, 256, horizontal=True) im5 = rgb2gray(radial_gradient(70, 70)) fig = plt.figure() grid = ImageGrid(fig, 111, # similar to subplot(111) nrows_ncols=(1, 5), # creates 2x2 grid of axes axes_pad=0.1, # pad between axes in inch. ) for ax, im in zip(grid, [im1, im2, im3, im4, im5]): # Iterating over the grid returns the Axes. ax.imshow(im, cmap='gray') ax.set_axis_off() plt.imsave('vstripes.tiff', im1) plt.imsave('gradient_2d.tiff', im2) plt.imsave('checkerboard.tiff', im3) plt.imsave('hstripes.tiff', im4) plt.imsave('gradient_3d.tiff', im5) plt.show()
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 897, 274, 62, 25928, 16, 1330, 7412, 41339, 198, 198, 6738, 299, 32152, 1330, 31028, 198, 6738, 3384, 4487, 1330, 28806, 11, 651, 62, 26317, 62, 17, 67, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 26317, 62, 18, 67, 11, 2198, 263, 3526, 11, 44503, 62, 49607, 198, 6738, 3384, 4487, 13, 10379, 1010, 1330, 14885, 62, 74, 1142, 11, 2498, 62, 27932, 198, 6738, 1341, 9060, 13, 8043, 1330, 46140, 17, 44605, 198, 6738, 1341, 9060, 1330, 33705, 62, 292, 62, 22468, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 12067, 2093, 796, 2498, 62, 27932, 7, 2154, 11, 357, 2327, 11, 3439, 828, 3439, 11, 657, 8, 198, 220, 220, 220, 545, 16, 796, 28806, 7, 2624, 11, 4153, 11, 17759, 11, 17759, 11, 16021, 28, 25101, 8, 198, 220, 220, 220, 545, 17, 796, 651, 62, 26317, 62, 17, 67, 7, 11645, 11, 17759, 11, 657, 11, 14280, 11, 318, 62, 17899, 38342, 28, 25101, 8, 198, 220, 220, 220, 545, 18, 796, 2198, 263, 3526, 7, 11645, 11, 5598, 8, 198, 220, 220, 220, 545, 19, 796, 28806, 7, 2624, 11, 4153, 11, 17759, 11, 17759, 11, 16021, 28, 17821, 8, 198, 220, 220, 220, 545, 20, 796, 46140, 17, 44605, 7, 6335, 498, 62, 49607, 7, 2154, 11, 4317, 4008, 628, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 10706, 796, 7412, 41339, 7, 5647, 11, 13374, 11, 220, 1303, 2092, 284, 850, 29487, 7, 16243, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 8516, 62, 77, 4033, 82, 16193, 16, 11, 642, 828, 220, 1303, 8075, 362, 87, 17, 10706, 286, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 62, 15636, 28, 15, 13, 16, 11, 220, 1303, 14841, 1022, 34197, 287, 11111, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 329, 7877, 11, 545, 287, 19974, 7, 25928, 11, 685, 320, 16, 11, 545, 17, 11, 545, 18, 11, 545, 19, 11, 545, 20, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 40806, 803, 625, 262, 10706, 5860, 262, 12176, 274, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 320, 12860, 7, 320, 11, 269, 8899, 11639, 44605, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 22704, 62, 2364, 3419, 628, 220, 220, 220, 458, 83, 13, 12078, 1015, 10786, 85, 36311, 274, 13, 83, 733, 3256, 545, 16, 8, 198, 220, 220, 220, 458, 83, 13, 12078, 1015, 10786, 49607, 62, 17, 67, 13, 83, 733, 3256, 545, 17, 8, 198, 220, 220, 220, 458, 83, 13, 12078, 1015, 10786, 9122, 263, 3526, 13, 83, 733, 3256, 545, 18, 8, 198, 220, 220, 220, 458, 83, 13, 12078, 1015, 10786, 71, 36311, 274, 13, 83, 733, 3256, 545, 19, 8, 198, 220, 220, 220, 458, 83, 13, 12078, 1015, 10786, 49607, 62, 18, 67, 13, 83, 733, 3256, 545, 20, 8, 628, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.205085
590
import os import pprint import argparse import time import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) import lib.models as models from lib.config import config, update_config from lib.utils import utils from lib.datasets import get_dataset from lib.core import function test_files = { "WFLW":None, "300W":None, "AFLW":None, "COFW":None } test_files["WFLW"] = [ "data/wflw/face_landmarks_wflw_test.csv", "data/wflw/face_landmarks_wflw_test_blur.csv", "data/wflw/face_landmarks_wflw_test_expression.csv", "data/wflw/face_landmarks_wflw_test_illumination.csv", "data/wflw/face_landmarks_wflw_test_largepose.csv", "data/wflw/face_landmarks_wflw_test_makeup.csv", "data/wflw/face_landmarks_wflw_test_occlusion.csv" ] test_files["300W"] = [ "data/300w/face_landmarks_300w_valid_challenge.csv", "data/300w/face_landmarks_300w_valid_common.csv", "data/300w/face_landmarks_300w_valid.csv", "data/300w/face_landmarks_300w_test.csv" ] test_files["AFLW"] = [ "data/aflw/face_landmarks_aflw_test.csv", "data/aflw/face_landmarks_aflw_test_frontal.csv" ] test_files["COFW"] = [ "data/cofw/COFW_test_color.mat" ] if __name__ == '__main__': main()
[ 11748, 28686, 198, 11748, 279, 4798, 198, 11748, 1822, 29572, 198, 11748, 640, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 1891, 2412, 13, 66, 463, 20471, 355, 269, 463, 20471, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 6, 4008, 198, 11748, 9195, 13, 27530, 355, 4981, 198, 6738, 9195, 13, 11250, 1330, 4566, 11, 4296, 62, 11250, 198, 6738, 9195, 13, 26791, 1330, 3384, 4487, 198, 6738, 9195, 13, 19608, 292, 1039, 1330, 651, 62, 19608, 292, 316, 198, 6738, 9195, 13, 7295, 1330, 2163, 628, 198, 9288, 62, 16624, 796, 1391, 198, 220, 220, 220, 366, 54, 3697, 54, 1298, 14202, 11, 198, 220, 220, 220, 366, 6200, 54, 1298, 14202, 11, 198, 220, 220, 220, 366, 32, 3697, 54, 1298, 14202, 11, 198, 220, 220, 220, 366, 8220, 24160, 1298, 14202, 198, 92, 198, 198, 9288, 62, 16624, 14692, 54, 3697, 54, 8973, 796, 685, 220, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 62, 2436, 333, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 62, 38011, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 62, 359, 388, 1883, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 62, 11664, 3455, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 62, 15883, 929, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 86, 2704, 86, 14, 2550, 62, 1044, 14306, 62, 86, 2704, 86, 62, 9288, 62, 420, 4717, 13, 40664, 1, 198, 220, 220, 220, 2361, 198, 198, 9288, 62, 16624, 14692, 6200, 54, 8973, 796, 685, 198, 220, 220, 220, 366, 7890, 14, 6200, 86, 14, 2550, 62, 1044, 14306, 62, 6200, 86, 62, 12102, 62, 36747, 3540, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 6200, 86, 14, 2550, 62, 1044, 14306, 62, 6200, 86, 62, 12102, 62, 11321, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 6200, 86, 14, 2550, 62, 1044, 14306, 62, 6200, 86, 62, 12102, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 6200, 86, 14, 2550, 62, 1044, 14306, 62, 6200, 86, 62, 9288, 13, 40664, 1, 198, 220, 220, 220, 2361, 198, 198, 9288, 62, 16624, 14692, 32, 3697, 54, 8973, 796, 685, 198, 220, 220, 220, 366, 7890, 14, 1878, 75, 86, 14, 2550, 62, 1044, 14306, 62, 1878, 75, 86, 62, 9288, 13, 40664, 1600, 198, 220, 220, 220, 366, 7890, 14, 1878, 75, 86, 14, 2550, 62, 1044, 14306, 62, 1878, 75, 86, 62, 9288, 62, 8534, 282, 13, 40664, 1, 198, 60, 198, 198, 9288, 62, 16624, 14692, 8220, 24160, 8973, 796, 685, 198, 220, 220, 220, 366, 7890, 14, 1073, 44482, 14, 8220, 24160, 62, 9288, 62, 8043, 13, 6759, 1, 198, 60, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 628 ]
2.250412
607
#!/bin/env python2 """ Script for running annotation on the document files. """ from sys import argv as _argv import logging from ConfigParser import ConfigParser from os import path, listdir from typing import List from srl_nlp.framenet.adapter import PARSERS_AVAILABLE, DocumentAdapter from srl_nlp.framenet.corpus import Paragraph, Document from srl_nlp.fsparsing import Annotator, SemaforAnnotator from srl_nlp.rule_utils import list_doc_files logger = logging.getLogger(__name__) config = ConfigParser() _package_directory = path.dirname(__file__) config.read(path.join(_package_directory, "external.conf")) if __name__ == '__main__': import argparse from logger_config import add_logger_args as _add_logger_args, config_logger, timeit @timeit try: main(_argv) except KeyboardInterrupt: logger.info('Halted by the user') except OSError as e: logger.critical('Problem reading/writing files') logger.critical(e) raise e
[ 2, 48443, 8800, 14, 24330, 21015, 17, 198, 198, 37811, 198, 7391, 329, 2491, 23025, 319, 262, 3188, 3696, 13, 198, 37811, 198, 198, 6738, 25064, 1330, 1822, 85, 355, 4808, 853, 85, 198, 198, 11748, 18931, 198, 6738, 17056, 46677, 1330, 17056, 46677, 198, 6738, 28686, 1330, 3108, 11, 1351, 15908, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 19677, 75, 62, 21283, 79, 13, 19298, 268, 316, 13, 324, 3429, 1330, 350, 27415, 4877, 62, 10116, 32, 4146, 17534, 11, 16854, 47307, 198, 6738, 19677, 75, 62, 21283, 79, 13, 19298, 268, 316, 13, 10215, 79, 385, 1330, 2547, 6111, 11, 16854, 198, 6738, 19677, 75, 62, 21283, 79, 13, 69, 2777, 945, 278, 1330, 1052, 1662, 1352, 11, 12449, 64, 1640, 2025, 1662, 1352, 198, 6738, 19677, 75, 62, 21283, 79, 13, 25135, 62, 26791, 1330, 1351, 62, 15390, 62, 16624, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 11250, 796, 17056, 46677, 3419, 198, 62, 26495, 62, 34945, 796, 3108, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 198, 11250, 13, 961, 7, 6978, 13, 22179, 28264, 26495, 62, 34945, 11, 366, 22615, 13, 10414, 48774, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 1822, 29572, 198, 220, 220, 220, 422, 49706, 62, 11250, 1330, 751, 62, 6404, 1362, 62, 22046, 355, 4808, 2860, 62, 6404, 1362, 62, 22046, 11, 4566, 62, 6404, 1362, 11, 640, 270, 628, 628, 220, 220, 220, 2488, 2435, 270, 628, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 28264, 853, 85, 8, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 10786, 39, 29590, 416, 262, 2836, 11537, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 34666, 10786, 40781, 3555, 14, 16502, 3696, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 34666, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 198 ]
2.775623
361
# This script takes a list of project directories and find the owner info from "_infra/project.yml" import os import sys import yaml if __name__ == '__main__': main()
[ 2, 770, 4226, 2753, 257, 1351, 286, 1628, 29196, 290, 1064, 262, 4870, 7508, 422, 45434, 10745, 430, 14, 16302, 13, 88, 4029, 1, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 331, 43695, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.240741
54
from __future__ import absolute_import import logging import argparse import apache_beam as beam import apache_beam.transforms.window as window '''Normalize pubsub string to json object''' # Lines look like this: # {'datetime': '2017-07-13T21:15:02Z', 'mac': 'FC:FC:48:AE:F6:94', 'status': 1} def run(argv=None): """Build and run the pipeline.""" parser = argparse.ArgumentParser() parser.add_argument( '--input_topic', required=True, help='Input PubSub topic of the form "/topics/<PROJECT>/<TOPIC>".') parser.add_argument( '--output_table', required=True, help= ('Output BigQuery table for results specified as: PROJECT:DATASET.TABLE ' 'or DATASET.TABLE.')) known_args, pipeline_args = parser.parse_known_args(argv) with beam.Pipeline(argv=pipeline_args) as p: # Read the pubsub topic into a PCollection. lines = ( p | beam.io.ReadStringsFromPubSub(known_args.input_topic) | beam.Map(parse_pubsub) | beam.Map(lambda (mac_bq, status_bq, datetime_bq): {'mac': mac_bq, 'status': status_bq, 'datetime': datetime_bq}) | beam.io.WriteToBigQuery( known_args.output_table, schema=' mac:STRING, status:INTEGER, datetime:TIMESTAMP', create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED, write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND) ) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 18931, 198, 11748, 1822, 29572, 198, 11748, 2471, 4891, 62, 40045, 355, 15584, 198, 11748, 2471, 4891, 62, 40045, 13, 7645, 23914, 13, 17497, 355, 4324, 198, 198, 7061, 6, 26447, 1096, 2240, 7266, 4731, 284, 33918, 2134, 7061, 6, 198, 2, 26299, 804, 588, 428, 25, 198, 220, 1303, 1391, 6, 19608, 8079, 10354, 705, 5539, 12, 2998, 12, 1485, 51, 2481, 25, 1314, 25, 2999, 57, 3256, 705, 20285, 10354, 705, 4851, 25, 4851, 25, 2780, 25, 14242, 25, 37, 21, 25, 5824, 3256, 705, 13376, 10354, 352, 92, 198, 198, 4299, 1057, 7, 853, 85, 28, 14202, 2599, 198, 220, 37227, 15580, 290, 1057, 262, 11523, 526, 15931, 628, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 705, 438, 15414, 62, 26652, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 1037, 11639, 20560, 8525, 7004, 7243, 286, 262, 1296, 12813, 4852, 873, 14, 27, 31190, 23680, 29, 14, 27, 35222, 2149, 29, 1911, 11537, 198, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 705, 438, 22915, 62, 11487, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 1037, 28, 198, 220, 220, 220, 220, 220, 19203, 26410, 4403, 20746, 3084, 329, 2482, 7368, 355, 25, 21965, 23680, 25, 35, 1404, 1921, 2767, 13, 38148, 705, 198, 220, 220, 220, 220, 220, 220, 705, 273, 360, 1404, 1921, 2767, 13, 38148, 2637, 4008, 198, 220, 1900, 62, 22046, 11, 11523, 62, 22046, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 7, 853, 85, 8, 628, 220, 351, 15584, 13, 47, 541, 4470, 7, 853, 85, 28, 79, 541, 4470, 62, 22046, 8, 355, 279, 25, 198, 220, 220, 220, 1303, 4149, 262, 2240, 7266, 7243, 656, 257, 4217, 349, 1564, 13, 198, 220, 220, 220, 3951, 796, 357, 279, 930, 15584, 13, 952, 13, 5569, 13290, 654, 4863, 14876, 7004, 7, 4002, 62, 22046, 13, 15414, 62, 26652, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 15584, 13, 13912, 7, 29572, 62, 12984, 7266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 15584, 13, 13912, 7, 50033, 357, 20285, 62, 65, 80, 11, 3722, 62, 65, 80, 11, 4818, 8079, 62, 65, 80, 2599, 1391, 6, 20285, 10354, 8352, 62, 65, 80, 11, 705, 13376, 10354, 3722, 62, 65, 80, 11, 705, 19608, 8079, 10354, 4818, 8079, 62, 65, 80, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 15584, 13, 952, 13, 16594, 2514, 12804, 20746, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1900, 62, 22046, 13, 22915, 62, 11487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32815, 11639, 8352, 25, 18601, 2751, 11, 3722, 25, 12394, 7156, 1137, 11, 4818, 8079, 25, 51, 3955, 6465, 23518, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 6381, 9150, 28, 40045, 13, 952, 13, 12804, 20746, 7279, 9150, 13, 43387, 6158, 62, 5064, 62, 12161, 1961, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 6381, 9150, 28, 40045, 13, 952, 13, 12804, 20746, 7279, 9150, 13, 18564, 12709, 62, 24805, 10619, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 18931, 13, 1136, 11187, 1362, 22446, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 1057, 3419 ]
2.315234
663
#!/usr/bin/python """Simple VLAN topology example Linear Topology, Switch1-----Switch2 Switch1-----a1, a2, b1, b2 Switch2-----a3, a4 ,b3, b4 objective: 1. a1,a2,a3,a4, belongs to VLAN 100 2. b1, b2, b3, b4 belongs to VLAN 200 Switch1 to Switch2 connected with 802.1Q TRUNK Links """ from mininet.topo import Topo from mininet.net import Mininet from mininet.log import setLogLevel from mininet.cli import CLI from mininet.node import OVSSwitch, Controller, RemoteController from time import sleep class SingleSwitchTopo(Topo): "Single switch connected to n hosts." if __name__ == '__main__': setLogLevel('info') topo = SingleSwitchTopo() c1 = RemoteController('c1', ip='127.0.0.1') net = Mininet(topo=topo, controller=c1) net.start() CLI(net) net.stop()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 628, 198, 37811, 26437, 569, 25697, 1353, 1435, 1672, 198, 198, 14993, 451, 5849, 1435, 11, 198, 198, 38978, 16, 30934, 38978, 17, 198, 198, 38978, 16, 30934, 64, 16, 11, 257, 17, 11, 275, 16, 11, 275, 17, 198, 38978, 17, 30934, 64, 18, 11, 257, 19, 837, 65, 18, 11, 275, 19, 198, 198, 15252, 425, 25, 198, 16, 13, 257, 16, 11, 64, 17, 11, 64, 18, 11, 64, 19, 11, 14448, 284, 569, 25697, 1802, 198, 17, 13, 275, 16, 11, 275, 17, 11, 275, 18, 11, 275, 19, 14448, 284, 569, 25697, 939, 198, 198, 38978, 16, 284, 14645, 17, 5884, 351, 33121, 13, 16, 48, 7579, 4944, 42, 21691, 198, 198, 37811, 198, 198, 6738, 949, 42504, 13, 4852, 78, 1330, 5849, 78, 198, 6738, 949, 42504, 13, 3262, 1330, 1855, 42504, 198, 6738, 949, 42504, 13, 6404, 1330, 900, 11187, 4971, 198, 6738, 949, 42504, 13, 44506, 1330, 43749, 198, 6738, 949, 42504, 13, 17440, 1330, 440, 53, 5432, 42248, 11, 22741, 11, 21520, 22130, 198, 6738, 640, 1330, 3993, 628, 198, 4871, 14206, 38978, 9126, 78, 7, 9126, 78, 2599, 198, 220, 220, 220, 366, 28008, 5078, 5884, 284, 299, 11453, 526, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 900, 11187, 4971, 10786, 10951, 11537, 198, 220, 220, 220, 1353, 78, 796, 14206, 38978, 9126, 78, 3419, 198, 220, 220, 220, 269, 16, 796, 21520, 22130, 10786, 66, 16, 3256, 20966, 11639, 16799, 13, 15, 13, 15, 13, 16, 11537, 198, 220, 220, 220, 2010, 796, 1855, 42504, 7, 4852, 78, 28, 4852, 78, 11, 10444, 28, 66, 16, 8, 198, 220, 220, 220, 2010, 13, 9688, 3419, 198, 220, 220, 220, 43749, 7, 3262, 8, 198, 220, 220, 220, 2010, 13, 11338, 3419, 198 ]
2.580645
310
# web.responder.strategy.base import json """ Base class for strategies returning JSON responses """
[ 2, 3992, 13, 5546, 263, 13, 2536, 4338, 13, 8692, 198, 198, 11748, 33918, 198, 198, 37811, 198, 14881, 1398, 329, 10064, 8024, 19449, 9109, 198, 37811, 198 ]
3.678571
28
import keras # import tensorflow.keras as keras # from keras.models import Sequential from keras.layers import LSTM,Dense,Activation,SimpleRNN,Conv1D,MaxPool1D,Flatten,Reshape,Dropout,MaxPooling1D,Masking from keras.metrics import categorical_accuracy # from keras.callbacks import EarlyStopping # from keras.metrics import categorical_accuracy # from keras.optimizers import RMSprop
[ 11748, 41927, 292, 198, 2, 1330, 11192, 273, 11125, 13, 6122, 292, 355, 41927, 292, 198, 2, 422, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 406, 2257, 44, 11, 35, 1072, 11, 25526, 341, 11, 26437, 49, 6144, 11, 3103, 85, 16, 35, 11, 11518, 27201, 16, 35, 11, 7414, 41769, 11, 4965, 71, 1758, 11, 26932, 448, 11, 11518, 27201, 278, 16, 35, 11, 44, 30463, 198, 6738, 41927, 292, 13, 4164, 10466, 1330, 4253, 12409, 62, 4134, 23843, 198, 2, 422, 41927, 292, 13, 13345, 10146, 1330, 12556, 1273, 33307, 198, 2, 422, 41927, 292, 13, 4164, 10466, 1330, 4253, 12409, 62, 4134, 23843, 198, 2, 422, 41927, 292, 13, 40085, 11341, 1330, 371, 5653, 22930, 628, 628, 628 ]
3.015504
129
# -*- coding: utf-8 -*- import numpy as np import math import cv2 __all__ = ['_energy', '_entropy', '_next_power_of_two', '_pad_image_power_2', 'pad_image', '_zero_runs']
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 10688, 201, 198, 11748, 269, 85, 17, 201, 198, 201, 198, 834, 439, 834, 796, 37250, 62, 22554, 3256, 705, 62, 298, 28338, 3256, 705, 62, 19545, 62, 6477, 62, 1659, 62, 11545, 3256, 705, 62, 15636, 62, 9060, 62, 6477, 62, 17, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15636, 62, 9060, 3256, 705, 62, 22570, 62, 48381, 20520, 201 ]
2.053763
93
import math import torch from torch.optim import Optimizer
[ 11748, 10688, 201, 198, 11748, 28034, 201, 198, 6738, 28034, 13, 40085, 1330, 30011, 7509, 201, 198 ]
3.647059
17
""" * Written by the Trapdoor-NX team, May 8, 2018. * Licensing information can found in the 'LICENSE' file. * Injector based on reswitched/fusee-launcher. """ CURR_VERSION = '0.1'
[ 37811, 198, 1635, 22503, 416, 262, 21914, 9424, 12, 45, 55, 1074, 11, 1737, 807, 11, 2864, 13, 198, 1635, 10483, 26426, 1321, 460, 1043, 287, 262, 705, 43, 2149, 24290, 6, 2393, 13, 198, 1635, 554, 752, 273, 1912, 319, 581, 86, 10981, 14, 69, 1904, 68, 12, 38722, 2044, 13, 198, 37811, 198, 198, 34, 31302, 62, 43717, 796, 705, 15, 13, 16, 6 ]
2.787879
66
from docs_snippets_crag.intro_tutorial.basics.connecting_solids.complex_pipeline import diamond from docs_snippets_crag.intro_tutorial.test_util import patch_cereal_requests @patch_cereal_requests
[ 6738, 34165, 62, 16184, 3974, 1039, 62, 6098, 363, 13, 600, 305, 62, 83, 44917, 13, 12093, 873, 13, 8443, 278, 62, 34453, 2340, 13, 41887, 62, 79, 541, 4470, 1330, 15291, 198, 6738, 34165, 62, 16184, 3974, 1039, 62, 6098, 363, 13, 600, 305, 62, 83, 44917, 13, 9288, 62, 22602, 1330, 8529, 62, 344, 5305, 62, 8897, 3558, 628, 198, 31, 17147, 62, 344, 5305, 62, 8897, 3558, 198 ]
2.802817
71
from pysh import pysh a = 1 b = 2 pysh(s['echo $HOME {a} {b}'])
[ 6738, 279, 893, 71, 1330, 279, 893, 71, 198, 198, 64, 796, 352, 198, 65, 796, 362, 198, 79, 893, 71, 7, 82, 17816, 30328, 720, 39069, 1391, 64, 92, 1391, 65, 92, 6, 12962 ]
1.828571
35
from setuptools import find_packages, setup requirements = ["slackclient==2.5.0"] setup( name="slackhermes", version="1.0.0", description="A message notifier for Slack", author="mdcg", url="https://github.com/mdcg/slack-hermes", packages=find_packages(exclude=["tests"]), install_requires=requirements, include_package_data=True, zip_safe=False, )
[ 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 8897, 18883, 796, 14631, 6649, 441, 16366, 855, 17, 13, 20, 13, 15, 8973, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 6649, 441, 372, 6880, 1600, 198, 220, 220, 220, 2196, 2625, 16, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 6764, 2625, 32, 3275, 407, 7483, 329, 36256, 1600, 198, 220, 220, 220, 1772, 2625, 9132, 66, 70, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 9132, 66, 70, 14, 6649, 441, 12, 372, 6880, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 1069, 9152, 28, 14692, 41989, 8973, 828, 198, 220, 220, 220, 2721, 62, 47911, 28, 8897, 18883, 11, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 8, 198 ]
2.556291
151
import re from typing import Any import pendulum from timezonefinder import TimezoneFinder from crimsobot.exceptions import LocationNotFound from crimsobot.utils.astronomy import where_are_you from crimsobot.utils.tools import clib_path_join # This any param is a bummer but it's the only way I can see to make make mypy work the way we want. # Everything is terrible.
[ 11748, 302, 198, 6738, 19720, 1330, 4377, 198, 198, 11748, 44017, 14452, 198, 6738, 640, 11340, 22805, 1330, 3862, 11340, 37, 5540, 198, 198, 6738, 3606, 568, 13645, 13, 1069, 11755, 1330, 13397, 3673, 21077, 198, 6738, 3606, 568, 13645, 13, 26791, 13, 459, 1313, 9145, 1330, 810, 62, 533, 62, 5832, 198, 6738, 3606, 568, 13645, 13, 26791, 13, 31391, 1330, 537, 571, 62, 6978, 62, 22179, 628, 628, 628, 198, 2, 770, 597, 5772, 318, 257, 275, 31647, 475, 340, 338, 262, 691, 835, 314, 460, 766, 284, 787, 787, 616, 9078, 670, 262, 835, 356, 765, 13, 198, 2, 11391, 318, 7818, 13, 198 ]
3.523364
107
""" Lambda, let, let* Examples: (let ( (a 6)) (* a 1)) """ from typing import List import copy import concurrent.futures from mplisp.structures import env, tree from mplisp import evaluator def lambda_expression(args: List, node): """Return lambda expression""" if len(args) != 2: evaluator.error("(special_forms.lambda_expression.lambda) 2 parameters expected, {} given".format(len(args)), node) return create_lambda(args, node) def let_expression(args: List, node): """Return let expression""" with concurrent.futures.ThreadPoolExecutor() as executor: for name, value in executor.map(set_env, args[0].children): node.getenv().symbols[name.children[0].value] = value return evaluator.evaluate_node(args[1]) def let_star_expression(args: List, node): """Return let expression""" for param in args[0].children: node.getenv().symbols[param.children[0].value] = evaluator.evaluate_node( param.children[1]) return evaluator.evaluate_node(args[1]) def create_lambda(args, node: tree.SyntaxTreeNode): """Generate lambda function""" params = [arg.value for arg in args[0].children] def func(local_args: List, _): """Callable object""" new_node = copy.copy(node.children[2]) if new_node.local_env is None: new_node.local_env = env.EnvNode({}) for arg, value in zip(params, local_args): new_node.local_env.symbols[arg] = evaluator.evaluate_node(value) return evaluator.evaluate_node(new_node) return func
[ 37811, 21114, 6814, 11, 1309, 11, 1309, 9, 198, 198, 27730, 25, 198, 7, 1616, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 357, 64, 718, 4008, 198, 220, 220, 220, 20789, 257, 352, 4008, 198, 37811, 198, 6738, 19720, 1330, 7343, 198, 11748, 4866, 198, 11748, 24580, 13, 69, 315, 942, 198, 6738, 285, 489, 8802, 13, 7249, 942, 1330, 17365, 11, 5509, 198, 6738, 285, 489, 8802, 1330, 5418, 84, 1352, 628, 198, 4299, 37456, 62, 38011, 7, 22046, 25, 7343, 11, 10139, 2599, 198, 220, 220, 220, 37227, 13615, 37456, 5408, 37811, 198, 220, 220, 220, 611, 18896, 7, 22046, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 84, 1352, 13, 18224, 7203, 7, 20887, 62, 23914, 13, 50033, 62, 38011, 13, 50033, 8, 362, 10007, 2938, 11, 23884, 1813, 1911, 18982, 7, 11925, 7, 22046, 36911, 10139, 8, 628, 220, 220, 220, 1441, 2251, 62, 50033, 7, 22046, 11, 10139, 8, 628, 198, 4299, 1309, 62, 38011, 7, 22046, 25, 7343, 11, 10139, 2599, 198, 220, 220, 220, 37227, 13615, 1309, 5408, 37811, 198, 220, 220, 220, 351, 24580, 13, 69, 315, 942, 13, 16818, 27201, 23002, 38409, 3419, 355, 3121, 273, 25, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 11, 1988, 287, 3121, 273, 13, 8899, 7, 2617, 62, 24330, 11, 26498, 58, 15, 4083, 17197, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 1136, 24330, 22446, 1837, 2022, 10220, 58, 3672, 13, 17197, 58, 15, 4083, 8367, 60, 796, 1988, 628, 220, 220, 220, 1441, 5418, 84, 1352, 13, 49786, 62, 17440, 7, 22046, 58, 16, 12962, 628, 198, 4299, 1309, 62, 7364, 62, 38011, 7, 22046, 25, 7343, 11, 10139, 2599, 198, 220, 220, 220, 37227, 13615, 1309, 5408, 37811, 198, 220, 220, 220, 329, 5772, 287, 26498, 58, 15, 4083, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 1136, 24330, 22446, 1837, 2022, 10220, 58, 17143, 13, 17197, 58, 15, 4083, 8367, 60, 796, 5418, 84, 1352, 13, 49786, 62, 17440, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 13, 17197, 58, 16, 12962, 628, 220, 220, 220, 1441, 5418, 84, 1352, 13, 49786, 62, 17440, 7, 22046, 58, 16, 12962, 628, 198, 4299, 2251, 62, 50033, 7, 22046, 11, 10139, 25, 5509, 13, 13940, 41641, 27660, 19667, 2599, 198, 220, 220, 220, 37227, 8645, 378, 37456, 2163, 37811, 198, 220, 220, 220, 42287, 796, 685, 853, 13, 8367, 329, 1822, 287, 26498, 58, 15, 4083, 17197, 60, 628, 220, 220, 220, 825, 25439, 7, 12001, 62, 22046, 25, 7343, 11, 4808, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14134, 540, 2134, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 796, 4866, 13, 30073, 7, 17440, 13, 17197, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 17440, 13, 12001, 62, 24330, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 13, 12001, 62, 24330, 796, 17365, 13, 4834, 85, 19667, 15090, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1822, 11, 1988, 287, 19974, 7, 37266, 11, 1957, 62, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 17440, 13, 12001, 62, 24330, 13, 1837, 2022, 10220, 58, 853, 60, 796, 5418, 84, 1352, 13, 49786, 62, 17440, 7, 8367, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 5418, 84, 1352, 13, 49786, 62, 17440, 7, 3605, 62, 17440, 8, 628, 220, 220, 220, 1441, 25439, 198 ]
2.57767
618
#!/usr/bin/env python3 import glob from PIL import Image for file in glob.glob("./rgb/*.jpg"): im1 = Image.open(file) try: im2 = Image.open(file.replace('rgb', 'averaged')) except: im2 = Image.open(file.replace('rgb', 'depth')) get_concat_v(im1, im2).save(file.replace('rgb', 'merged')) #print("Merged: " + file) print('Done.')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 15095, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 1640, 2393, 287, 15095, 13, 4743, 672, 7, 1911, 14, 81, 22296, 15211, 13, 9479, 1, 2599, 198, 197, 320, 16, 796, 7412, 13, 9654, 7, 7753, 8, 198, 197, 28311, 25, 198, 197, 197, 320, 17, 796, 7412, 13, 9654, 7, 7753, 13, 33491, 10786, 81, 22296, 3256, 705, 8770, 1886, 6, 4008, 198, 197, 16341, 25, 198, 197, 197, 320, 17, 796, 7412, 13, 9654, 7, 7753, 13, 33491, 10786, 81, 22296, 3256, 705, 18053, 6, 4008, 198, 197, 1136, 62, 1102, 9246, 62, 85, 7, 320, 16, 11, 545, 17, 737, 21928, 7, 7753, 13, 33491, 10786, 81, 22296, 3256, 705, 647, 2004, 6, 4008, 198, 197, 2, 4798, 7203, 13102, 2004, 25, 366, 1343, 2393, 8, 198, 4798, 10786, 45677, 2637, 8 ]
2.29932
147
#!/usr/bin/env python3 import sys, time, colorsys, threading from enum import Enum try: import numpy except ImportError: sys.exit("This script requires the numpy module\nInstall with: sudo pip3 install numpy") from lib.logger import Level, Logger from lib.feature import Feature from lib.enums import Color from rgbmatrix5x5 import RGBMatrix5x5 # .............................................................................. # .............................................................................. class RgbMatrix(Feature): ''' This class provides access to a pair of Pimoroni 5x5 RGB LED Matrix displays, labeled port and starboard. It also includes several canned demonstrations, which can be used to indicate behaviours in progress. ''' # .......................................................................... # .......................................................................... # .......................................................................... # .......................................................................... # .......................................................................... # .......................................................................... # .......................................................................... def _rainbow(self, rgbmatrix5x5): ''' Display a rainbow pattern. ''' global enabled self._log.info('starting rainbow...') _spacing = 360.0 / 5.0 _hue = 0 while enabled: for x in range(self._width): for y in range(self._height): _hue = int(time.time() * 100) % 360 offset = (x * y) / 25.0 * _spacing h = ((_hue + offset) % 360) / 360.0 r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h, 1.0, 1.0)] rgbmatrix5x5.set_pixel(x, y, r, g, b) # r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(h + 0.5, 1.0, 1.0)] # rainbow2.set_pixel(x, y, r, g, b) if not enabled: break rgbmatrix5x5.show() # rainbow2.show() time.sleep(0.0001) self._clear(rgbmatrix5x5) self._log.info('rainbow ended.') # .......................................................................... def _sworl(self, rgbmatrix5x5): ''' Display a sworl pattern, whatever that is. ''' global enabled self._log.info('starting sworl...') target = Color.LIGHT_BLUE self.set_color(target) # for r in numpy.arange(0.0, target.red): # for g in numpy.arange(0.0, target.green): # for b in numpy.arange(0.0, target.blue): # rgbmatrix5x5.set_all(r, g, b) # rgbmatrix5x5.show() # time.sleep(0.01) # if not enabled: # break # for r in numpy.arange(target.red, 0.0, -1.0): # for g in numpy.arange(target.green, 0.0, -1.0): # for b in numpy.arange(target.blue, 0.0, -1.0): # rgbmatrix5x5.set_all(r, g, b) # rgbmatrix5x5.show() # time.sleep(0.01) # if not enabled: # break self._clear(rgbmatrix5x5) self._log.info('sworl ended.') # .......................................................................... def _dark(self, rgbmatrix5x5): ''' Display a dark static color. ''' global enabled self._log.info('starting dark...') self.set_color(Color.BLACK) while enabled: time.sleep(0.2) # .......................................................................... @staticmethod # .......................................................................... def _blinky(self, rgbmatrix5x5): ''' Display a pair of blinky spots. ''' global enabled self._log.info('starting blinky...') if self._height == self._width: _delta = 0 else: _delta = 2 while enabled: for i in range(3): for z in list(range(1, 10)[::-1]) + list(range(1, 10)): fwhm = 5.0/z gauss = RgbMatrix.make_gaussian(fwhm) start = time.time() for y in range(self._height): for x in range(self._width): h = 0.5 s = 0.8 if self._height <= self._width: v = gauss[x, y] # v = gauss[x, y + _delta] else: v = gauss[x, y] # v = gauss[x + _delta, y] rgb = colorsys.hsv_to_rgb(h, s, v) r = int(rgb[0]*255.0) g = int(rgb[1]*255.0) b = int(rgb[2]*255.0) rgbmatrix5x5.set_pixel(x, y, r, g, b) rgbmatrix5x5.show() end = time.time() t = end - start if t < 0.04: time.sleep(0.04 - t) pass if not enabled: break self._clear(rgbmatrix5x5) self._log.info('blinky ended.') # .......................................................................... def _scan(self, rgbmatrix5x5): ''' KITT- or Cylon-like eyeball scanning. ''' global enabled self._log.info('starting scan...') r = int(255.0) g = int(64.0) b = int(0.0) # start = time.time() # for x in range(self._width): x = 2 _delay = 0.25 while enabled: # for i in range(count): for y in range(0,self._height): rgbmatrix5x5.clear() rgbmatrix5x5.set_pixel(x, y, r, g, b) rgbmatrix5x5.show() time.sleep(_delay) for y in range(self._height-1,0,-1): rgbmatrix5x5.clear() rgbmatrix5x5.set_pixel(x, y, r, g, b) rgbmatrix5x5.show() time.sleep(_delay) if not enabled: break self._clear(rgbmatrix5x5) self._log.debug('scan ended.') # .......................................................................... def _random(self, rgbmatrix5x5): ''' Display an ever-changing random pattern. ''' global enabled self._log.info('starting random...') count = 0 while enabled: rand_hue = numpy.random.uniform(0.1, 0.9) rand_mat = numpy.random.rand(self._width,self._height) for y in range(self._height): for x in range(self._width): # h = 0.1 * rand_mat[x, y] h = rand_hue * rand_mat[x, y] s = 0.8 v = rand_mat[x, y] rgb = colorsys.hsv_to_rgb(h, s, v) r = int(rgb[0]*255.0) g = int(rgb[1]*255.0) b = int(rgb[2]*255.0) rgbmatrix5x5.set_pixel(x, y, r, g, b) if not enabled: break rgbmatrix5x5.show() time.sleep(0.01) self._clear(rgbmatrix5x5) self._log.info('random ended.') # .......................................................................... def set_color(self, color): ''' Set the color of both RGB Matrix displays. ''' self._set_color(self._rgbmatrix5x5_PORT, color) self._set_color(self._rgbmatrix5x5_STBD, color) # .......................................................................... def _set_color(self, rgbmatrix5x5, color): ''' Set the color of the RGB Matrix. ''' rgbmatrix5x5.set_all(color.red, color.green, color.blue) rgbmatrix5x5.show() # .......................................................................... def _clear(self, rgbmatrix5x5): ''' Clears the RGB Matrix by setting its color to black. ''' self._set_color(rgbmatrix5x5, Color.BLACK) # .......................................................................... # .......................................................................... #EOF
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 25064, 11, 640, 11, 7577, 893, 11, 4704, 278, 198, 6738, 33829, 1330, 2039, 388, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 299, 32152, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 25064, 13, 37023, 7203, 1212, 4226, 4433, 262, 299, 32152, 8265, 59, 77, 15798, 351, 25, 21061, 7347, 18, 2721, 299, 32152, 4943, 198, 198, 6738, 9195, 13, 6404, 1362, 1330, 5684, 11, 5972, 1362, 198, 6738, 9195, 13, 30053, 1330, 27018, 198, 6738, 9195, 13, 268, 5700, 1330, 5315, 198, 6738, 46140, 6759, 8609, 20, 87, 20, 1330, 25228, 46912, 20, 87, 20, 628, 198, 2, 220, 23193, 2109, 16317, 628, 198, 2, 220, 23193, 2109, 16317, 198, 4871, 371, 22296, 46912, 7, 38816, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 770, 1398, 3769, 1895, 284, 257, 5166, 286, 350, 320, 273, 14651, 642, 87, 20, 25228, 12365, 24936, 11298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15494, 2493, 290, 3491, 3526, 13, 632, 635, 3407, 1811, 32530, 18721, 11, 198, 220, 220, 220, 220, 220, 220, 220, 543, 460, 307, 973, 284, 7603, 38975, 287, 4371, 13, 198, 220, 220, 220, 705, 7061, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 3201, 8176, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16531, 257, 27223, 3912, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 38690, 27223, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 2777, 4092, 796, 11470, 13, 15, 1220, 642, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 71, 518, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 944, 13557, 10394, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 944, 13557, 17015, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 71, 518, 796, 493, 7, 2435, 13, 2435, 3419, 1635, 1802, 8, 4064, 11470, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 357, 87, 1635, 331, 8, 1220, 1679, 13, 15, 1635, 4808, 2777, 4092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 14808, 62, 71, 518, 1343, 11677, 8, 4064, 11470, 8, 1220, 11470, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 11, 308, 11, 275, 796, 685, 600, 7, 66, 1635, 14280, 8, 329, 269, 287, 7577, 893, 13, 11994, 85, 62, 1462, 62, 81, 22296, 7, 71, 11, 352, 13, 15, 11, 352, 13, 15, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 32515, 7, 87, 11, 331, 11, 374, 11, 308, 11, 275, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 11, 308, 11, 275, 796, 685, 600, 7, 66, 1635, 14280, 8, 329, 269, 287, 7577, 893, 13, 11994, 85, 62, 1462, 62, 81, 22296, 7, 71, 1343, 657, 13, 20, 11, 352, 13, 15, 11, 352, 13, 15, 15437, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27223, 17, 13, 2617, 62, 32515, 7, 87, 11, 331, 11, 374, 11, 308, 11, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27223, 17, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 18005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20063, 7, 81, 22296, 6759, 8609, 20, 87, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 3201, 8176, 4444, 2637, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 2032, 273, 75, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16531, 257, 1509, 273, 75, 3912, 11, 4232, 326, 318, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 38690, 1509, 273, 75, 986, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 5315, 13, 43, 9947, 62, 9148, 8924, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 8043, 7, 16793, 8, 198, 198, 2, 220, 220, 220, 220, 220, 220, 329, 374, 287, 299, 32152, 13, 283, 858, 7, 15, 13, 15, 11, 2496, 13, 445, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 287, 299, 32152, 13, 283, 858, 7, 15, 13, 15, 11, 2496, 13, 14809, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 275, 287, 299, 32152, 13, 283, 858, 7, 15, 13, 15, 11, 2496, 13, 17585, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 439, 7, 81, 11, 308, 11, 275, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9343, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 2, 220, 220, 220, 220, 220, 220, 329, 374, 287, 299, 32152, 13, 283, 858, 7, 16793, 13, 445, 11, 657, 13, 15, 11, 532, 16, 13, 15, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 308, 287, 299, 32152, 13, 283, 858, 7, 16793, 13, 14809, 11, 657, 13, 15, 11, 532, 16, 13, 15, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 275, 287, 299, 32152, 13, 283, 858, 7, 16793, 13, 17585, 11, 657, 13, 15, 11, 532, 16, 13, 15, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 439, 7, 81, 11, 308, 11, 275, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9343, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20063, 7, 81, 22296, 6759, 8609, 20, 87, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 2032, 273, 75, 4444, 2637, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 21953, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16531, 257, 3223, 9037, 3124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 38690, 3223, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 8043, 7, 10258, 13, 9148, 8120, 8, 198, 220, 220, 220, 220, 220, 220, 220, 981, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 17, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 2488, 12708, 24396, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 2436, 29246, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16531, 257, 5166, 286, 21019, 88, 10222, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 38690, 21019, 88, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 17015, 6624, 2116, 13557, 10394, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 67, 12514, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 67, 12514, 796, 362, 628, 220, 220, 220, 220, 220, 220, 220, 981, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1976, 287, 1351, 7, 9521, 7, 16, 11, 838, 38381, 3712, 12, 16, 12962, 1343, 1351, 7, 9521, 7, 16, 11, 838, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1929, 76, 796, 642, 13, 15, 14, 89, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31986, 1046, 796, 371, 22296, 46912, 13, 15883, 62, 4908, 31562, 7, 69, 1929, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 944, 13557, 17015, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 944, 13557, 10394, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 657, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 657, 13, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 17015, 19841, 2116, 13557, 10394, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 31986, 1046, 58, 87, 11, 331, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 31986, 1046, 58, 87, 11, 331, 1343, 4808, 67, 12514, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 31986, 1046, 58, 87, 11, 331, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 31986, 1046, 58, 87, 1343, 4808, 67, 12514, 11, 331, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 796, 7577, 893, 13, 11994, 85, 62, 1462, 62, 81, 22296, 7, 71, 11, 264, 11, 410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 493, 7, 81, 22296, 58, 15, 60, 9, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 796, 493, 7, 81, 22296, 58, 16, 60, 9, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 493, 7, 81, 22296, 58, 17, 60, 9, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 32515, 7, 87, 11, 331, 11, 374, 11, 308, 11, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 886, 532, 923, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 1279, 657, 13, 3023, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 3023, 532, 256, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20063, 7, 81, 22296, 6759, 8609, 20, 87, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 2436, 29246, 4444, 2637, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 35836, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 22470, 12, 393, 327, 15158, 12, 2339, 16067, 439, 21976, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 38690, 9367, 986, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 374, 796, 493, 7, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 796, 493, 7, 2414, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 493, 7, 15, 13, 15, 8, 198, 2, 220, 220, 220, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 944, 13557, 10394, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 40850, 796, 657, 13, 1495, 628, 220, 220, 220, 220, 220, 220, 220, 981, 9343, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 9127, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 15, 11, 944, 13557, 17015, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 32515, 7, 87, 11, 331, 11, 374, 11, 308, 11, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 28264, 40850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 944, 13557, 17015, 12, 16, 11, 15, 12095, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 20063, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 32515, 7, 87, 11, 331, 11, 374, 11, 308, 11, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 28264, 40850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20063, 7, 81, 22296, 6759, 8609, 20, 87, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 24442, 10786, 35836, 4444, 2637, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 25120, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16531, 281, 1683, 12, 22954, 4738, 3912, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 38690, 4738, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43720, 62, 71, 518, 796, 299, 32152, 13, 25120, 13, 403, 6933, 7, 15, 13, 16, 11, 657, 13, 24, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43720, 62, 6759, 796, 299, 32152, 13, 25120, 13, 25192, 7, 944, 13557, 10394, 11, 944, 13557, 17015, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 944, 13557, 17015, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 944, 13557, 10394, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 657, 13, 16, 1635, 43720, 62, 6759, 58, 87, 11, 331, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 43720, 62, 71, 518, 1635, 43720, 62, 6759, 58, 87, 11, 331, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 657, 13, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 43720, 62, 6759, 58, 87, 11, 331, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 796, 7577, 893, 13, 11994, 85, 62, 1462, 62, 81, 22296, 7, 71, 11, 264, 11, 410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 796, 493, 7, 81, 22296, 58, 15, 60, 9, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 796, 493, 7, 81, 22296, 58, 16, 60, 9, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 796, 493, 7, 81, 22296, 58, 17, 60, 9, 13381, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 32515, 7, 87, 11, 331, 11, 374, 11, 308, 11, 275, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20063, 7, 81, 22296, 6759, 8609, 20, 87, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 10951, 10786, 25120, 4444, 2637, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 900, 62, 8043, 7, 944, 11, 3124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3124, 286, 1111, 25228, 24936, 11298, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2617, 62, 8043, 7, 944, 13557, 81, 22296, 6759, 8609, 20, 87, 20, 62, 15490, 11, 3124, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2617, 62, 8043, 7, 944, 13557, 81, 22296, 6759, 8609, 20, 87, 20, 62, 2257, 14529, 11, 3124, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 2617, 62, 8043, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 11, 3124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 3124, 286, 262, 25228, 24936, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 2617, 62, 439, 7, 8043, 13, 445, 11, 3124, 13, 14809, 11, 3124, 13, 17585, 8, 198, 220, 220, 220, 220, 220, 220, 220, 46140, 6759, 8609, 20, 87, 20, 13, 12860, 3419, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 220, 220, 220, 825, 4808, 20063, 7, 944, 11, 46140, 6759, 8609, 20, 87, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3779, 945, 262, 25228, 24936, 416, 4634, 663, 3124, 284, 2042, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2617, 62, 8043, 7, 81, 22296, 6759, 8609, 20, 87, 20, 11, 5315, 13, 9148, 8120, 8, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 628, 198, 220, 220, 220, 1303, 220, 23193, 2109, 492, 198, 198, 2, 4720, 37, 198 ]
1.995692
4,410
from djchoices import ChoiceItem, DjangoChoices
[ 6738, 42625, 6679, 1063, 1330, 18502, 7449, 11, 37770, 22164, 1063, 628 ]
4.083333
12
# flake8: noqa __all__ = []
[ 2, 781, 539, 23, 25, 645, 20402, 198, 834, 439, 834, 796, 17635, 198 ]
2
14
from os import system
[ 6738, 28686, 1330, 1080, 220, 198 ]
3.833333
6
""" vaenet.py PyTorch implementation of a Convolutional Neural Network Variational Autoencoder ( VaeNet ) Author : Abhishek . """ # PyTorch Imports import torch.nn as nn # VaeNet class # Initializer for the ConvNetVAE model # Method for the forward pass # Method for the encoder layers # Method for the reparameterization # Method for the decoder layers
[ 37811, 198, 6862, 268, 316, 13, 9078, 198, 198, 20519, 15884, 354, 7822, 286, 257, 34872, 2122, 282, 47986, 7311, 15965, 864, 5231, 6571, 66, 12342, 357, 569, 3609, 7934, 1267, 198, 198, 13838, 1058, 2275, 14363, 258, 74, 764, 198, 37811, 198, 198, 2, 9485, 15884, 354, 1846, 3742, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 198, 2, 569, 3609, 7934, 1398, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 20768, 7509, 329, 262, 34872, 7934, 11731, 36, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 11789, 329, 262, 2651, 1208, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 11789, 329, 262, 2207, 12342, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 11789, 329, 262, 1128, 41158, 2357, 1634, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 11789, 329, 262, 875, 12342, 11685 ]
2.5875
160
# Import di flask e degli operatori di templating from flask import Flask, render_template from flask_mail import Mail # Definizione oggetto WSGI app = Flask(__name__) mail = Mail(app) # Configurazioni app.config.from_object('config') app.secret_key = app.config['CSRF_SESSION_KEY'] # HTTP error handling @app.errorhandler(404) # Import a module / component using its blueprint handler variable (mod_auth) from app.main.controller import main # Register blueprint(s) app.register_blueprint(main)
[ 2, 17267, 2566, 42903, 304, 3396, 4528, 10088, 72, 2566, 2169, 489, 803, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 198, 6738, 42903, 62, 4529, 1330, 11099, 628, 198, 2, 29589, 528, 7935, 267, 1130, 316, 1462, 25290, 18878, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 4529, 796, 11099, 7, 1324, 8, 198, 198, 2, 17056, 333, 1031, 295, 72, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 10786, 11250, 11537, 198, 1324, 13, 21078, 62, 2539, 796, 598, 13, 11250, 17816, 7902, 32754, 62, 50, 47621, 62, 20373, 20520, 198, 198, 2, 14626, 4049, 9041, 198, 31, 1324, 13, 18224, 30281, 7, 26429, 8, 628, 198, 2, 17267, 257, 8265, 1220, 7515, 1262, 663, 30881, 21360, 7885, 357, 4666, 62, 18439, 8, 198, 6738, 598, 13, 12417, 13, 36500, 1330, 1388, 198, 2, 17296, 30881, 7, 82, 8, 198, 1324, 13, 30238, 62, 17585, 4798, 7, 12417, 8, 198 ]
3.23871
155
""" PyOO - Pythonic interface to Apache OpenOffice API (UNO) Copyright (c) 2016-2017 Seznam.cz, a.s. Copyright (c) 2017-2019 Miloslav Pojman """ from __future__ import division import datetime import functools import itertools import numbers import os import sys import uno # Filters used when saving document. FILTER_PDF_EXPORT = 'writer_pdf_Export' FILTER_WRITER_PDF_EXPORT = 'writer_pdf_Export' FILTER_CALC_PDF_EXPORT = 'calc_pdf_Export' FILTER_EXCEL_97 = 'MS Excel 97' FILTER_EXCEL_2007 = 'Calc MS Excel 2007 XML' # Number format choices FORMAT_TEXT = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.TEXT') FORMAT_INT = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.NUMBER_INT') FORMAT_FLOAT = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.NUMBER_DEC2') FORMAT_INT_SEP = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.NUMBER_1000INT') FORMAT_FLOAT_SEP = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.NUMBER_1000DEC2') FORMAT_PERCENT_INT = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.PERCENT_INT') FORMAT_PERCENT_FLOAT = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.PERCENT_DEC2') FORMAT_DATE = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.DATE_SYSTEM_SHORT') FORMAT_TIME = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.TIME_HHMM') FORMAT_DATETIME = uno.getConstantByName('com.sun.star.i18n.NumberFormatIndex.DATETIME_SYSTEM_SHORT_HHMM') # Font weight choices FONT_WEIGHT_DONTKNOW = uno.getConstantByName('com.sun.star.awt.FontWeight.DONTKNOW') FONT_WEIGHT_THIN = uno.getConstantByName('com.sun.star.awt.FontWeight.THIN') FONT_WEIGHT_ULTRALIGHT = uno.getConstantByName('com.sun.star.awt.FontWeight.ULTRALIGHT') FONT_WEIGHT_LIGHT = uno.getConstantByName('com.sun.star.awt.FontWeight.LIGHT') FONT_WEIGHT_SEMILIGHT = uno.getConstantByName('com.sun.star.awt.FontWeight.SEMILIGHT') FONT_WEIGHT_NORMAL = uno.getConstantByName('com.sun.star.awt.FontWeight.NORMAL') FONT_WEIGHT_SEMIBOLD = uno.getConstantByName('com.sun.star.awt.FontWeight.SEMIBOLD') FONT_WEIGHT_BOLD = uno.getConstantByName('com.sun.star.awt.FontWeight.BOLD') FONT_WEIGHT_ULTRABOLD = uno.getConstantByName('com.sun.star.awt.FontWeight.ULTRABOLD') FONT_WEIGHT_BLACK = uno.getConstantByName('com.sun.star.awt.FontWeight.BLACK') # Text underline choices (only first three are present here) UNDERLINE_NONE = uno.getConstantByName('com.sun.star.awt.FontUnderline.NONE') UNDERLINE_SINGLE = uno.getConstantByName('com.sun.star.awt.FontUnderline.SINGLE') UNDERLINE_DOUBLE = uno.getConstantByName('com.sun.star.awt.FontUnderline.DOUBLE') # Text alignment choices TEXT_ALIGN_STANDARD = 'STANDARD' TEXT_ALIGN_LEFT = 'LEFT' TEXT_ALIGN_CENTER = 'CENTER' TEXT_ALIGN_RIGHT = 'RIGHT' TEXT_ALIGN_BLOCK = 'BLOCK' TEXT_ALIGN_REPEAT = 'REPEAT' # Axis choices AXIS_PRIMARY = uno.getConstantByName('com.sun.star.chart.ChartAxisAssign.PRIMARY_Y') AXIS_SECONDARY = uno.getConstantByName('com.sun.star.chart.ChartAxisAssign.SECONDARY_Y') # Exceptions thrown by UNO. # We try to catch them and re-throw Python standard exceptions. _IndexOutOfBoundsException = uno.getClass('com.sun.star.lang.IndexOutOfBoundsException') _NoSuchElementException = uno.getClass('com.sun.star.container.NoSuchElementException') _IOException = uno.getClass('com.sun.star.io.IOException') _NoConnectException = uno.getClass('com.sun.star.connection.NoConnectException') _ConnectionSetupException = uno.getClass('com.sun.star.connection.ConnectionSetupException') UnoException = uno.getClass('com.sun.star.uno.Exception') PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 if PY3: string_types = str, integer_types = int, text_type = str else: string_types = basestring, integer_types = (int, long) text_type = unicode range = xrange def str_repr(klass): """ Implements string conversion methods for the given class. The given class must implement the __str__ method. This decorat will add __repr__ and __unicode__ (for Python 2). """ if PY2: klass.__unicode__ = klass.__str__ klass.__str__ = lambda self: self.__unicode__().encode('utf-8') klass.__repr__ = lambda self: '<%s: %r>' % (self.__class__.__name__, str(self)) return klass def _clean_slice(key, length): """ Validates and normalizes a cell range slice. >>> _clean_slice(slice(None, None), 10) (0, 10) >>> _clean_slice(slice(-10, 10), 10) (0, 10) >>> _clean_slice(slice(-11, 11), 10) (0, 10) >>> _clean_slice(slice('x', 'y'), 10) Traceback (most recent call last): ... TypeError: Cell indices must be integers, str given. >>> _clean_slice(slice(0, 10, 2), 10) Traceback (most recent call last): ... NotImplementedError: Cell slice with step is not supported. >>> _clean_slice(slice(5, 5), 10) Traceback (most recent call last): ... ValueError: Cell slice can not be empty. """ if key.step is not None: raise NotImplementedError('Cell slice with step is not supported.') start, stop = key.start, key.stop if start is None: start = 0 if stop is None: stop = length if not isinstance(start, integer_types): raise TypeError('Cell indices must be integers, %s given.' % type(start).__name__) if not isinstance(stop, integer_types): raise TypeError('Cell indices must be integers, %s given.' % type(stop).__name__) if start < 0: start = start + length if stop < 0: stop = stop + length start, stop = max(0, start), min(length, stop) if start == stop: raise ValueError('Cell slice can not be empty.') return start, stop def _clean_index(key, length): """ Validates and normalizes a cell range index. >>> _clean_index(0, 10) 0 >>> _clean_index(-10, 10) 0 >>> _clean_index(10, 10) Traceback (most recent call last): ... IndexError: Cell index out of range. >>> _clean_index(-11, 10) Traceback (most recent call last): ... IndexError: Cell index out of range. >>> _clean_index(None, 10) Traceback (most recent call last): ... TypeError: Cell indices must be integers, NoneType given. """ if not isinstance(key, integer_types): raise TypeError('Cell indices must be integers, %s given.' % type(key).__name__) if -length <= key < 0: return key + length elif 0 <= key < length: return key else: raise IndexError('Cell index out of range.') def _row_name(index): """ Converts a row index to a row name. >>> _row_name(0) '1' >>> _row_name(10) '11' """ return '%d' % (index + 1) def _col_name(index): """ Converts a column index to a column name. >>> _col_name(0) 'A' >>> _col_name(26) 'AA' """ for exp in itertools.count(1): limit = 26 ** exp if index < limit: return ''.join(chr(ord('A') + index // (26 ** i) % 26) for i in range(exp-1, -1, -1)) index -= limit @str_repr class SheetPosition(object): """ Position of a rectangular are in a spreadsheet. This class represent physical position in 100/th mm, see SheetAddress class for a logical address of cells. >>> position = SheetPosition(1000, 2000) >>> print position x=1000, y=2000 >>> position = SheetPosition(1000, 2000, 3000, 4000) >>> print position x=1000, y=2000, width=3000, height=4000 """ __slots__ = ('x', 'y', 'width', 'height') @classmethod @str_repr class SheetAddress(object): """ Address of a cell or a rectangular range of cells in a spreadsheet. This class represent logical address of cells, see SheetPosition class for physical location. >>> address = SheetAddress(1, 2) >>> print address $C$2 >>> address = SheetAddress(1, 2, 3, 4) >>> print address $C$2:$F$4 """ __slots__ = ('row', 'col', 'row_count', 'col_count') @property @property def formula(self, row_abs=False, col_abs=False): """ Returns this address as a string to be used in formulas. """ if row_abs and col_abs: fmt = u'$%s$%s' elif row_abs: fmt = u'%s$%s' elif col_abs: fmt = u'$%s%s' else: fmt = u'%s%s' start = fmt % (_col_name(self.col), _row_name(self.row)) if self.row_count == self.col_count == 1: return start end = fmt % (_col_name(self.col_end), _row_name(self.row_end)) return '%s:%s' % (start, end) def replace(self, row=None, col=None, row_count=None, col_count=None): """ Returns a new address which the specified fields replaced. """ row = row if row is not None else self.row col = col if col is not None else self.col row_count = row_count if row_count is not None else self.row_count col_count = col_count if col_count is not None else self.col_count return self.__class__(row, col, row_count, col_count) @classmethod class _UnoProxy(object): """ Abstract base class for objects which act as a proxy to UNO objects. """ __slots__ = ('_target',) class NamedCollection(_UnoProxy): """ Base class for collections accessible by both index and name. """ # Target must implement both of: # http://www.openoffice.org/api/docs/common/ref/com/sun/star/container/XIndexAccess.html # http://www.openoffice.org/api/docs/common/ref/com/sun/star/container/XNameAccess.html __slots__ = () # Internal: class DiagramSeries(_UnoProxy): """ Diagram series. This class allows to control how one sequence of values (typically one table column) is displayed in a chart (for example appearance of one line). """ __slots__ = () def __get_axis(self): """ Gets to which axis this series are assigned. """ return self._target.getPropertyValue('Axis') def __set_axis(self, value): """ Sets to which axis this series are assigned. """ self._target.setPropertyValue('Axis', value) axis = property(__get_axis, __set_axis) def __get_line_color(self): """ Gets line color. """ return self._target.getPropertyValue('LineColor') def __set_line_color(self, value): """ Sets line color. Be aware that this call is sometimes ignored by OpenOffice. """ self._target.setPropertyValue('LineColor', value) line_color = property(__get_line_color, __set_line_color) def __get_fill_color(self): """ Gets fill color. """ return self._target.getPropertyValue('FillColor') def __set_fill_color(self, value): """ Sets fill color. """ self._target.setPropertyValue('FillColor', value) fill_color = property(__get_fill_color, __set_fill_color) class DiagramSeriesCollection(_UnoProxy): """ Provides access to individual diagram series. Instance of this class is returned when series property of the Diagram class is accessed. """ __slots__ = () # It seems that length of series can not be easily determined so # here is no __len__ method. class Axis(_UnoProxy): """ Chart axis """ __slots__ = () def __get_visible(self): """ Gets whether this axis is visible. """ # Getting target.HasXAxis is a lot of faster then accessing # target.XAxis.Visible property. return self._target.getPropertyValue(self._has_axis_property) def __set_visible(self, value): """ Sets whether this axis is visible. """ return self._target.setPropertyValue(self._has_axis_property, value) visible = property(__get_visible, __set_visible) def __get_title(self): """ Gets title of this axis. """ target = self._get_title_target() return target.getPropertyValue('String') def __set_title(self, value): """ Sets title of this axis. """ # OpenOffice on Debian "squeeze" ignore value of target.XAxis.String # unless target.HasXAxisTitle is set to True first. (Despite the # fact that target.HasXAxisTitle is reported to be False until # target.XAxis.String is set to non empty value.) self._target.setPropertyValue(self._has_axis_title_property, True) target = self._get_title_target() target.setPropertyValue('String', text_type(value)) title = property(__get_title, __set_title) def __get_logarithmic(self): """ Gets whether this axis has an logarithmic scale. """ target = self._get_axis_target() return target.getPropertyValue('Logarithmic') def __set_logarithmic(self, value): """ Sets whether this axis has an logarithmic scale. """ target = self._get_axis_target() target.setPropertyValue('Logarithmic', value) logarithmic = property(__get_logarithmic, __set_logarithmic) def __get_reversed(self): """ Gets whether this axis is reversed """ target = self._get_axis_target() return target.getPropertyValue('ReverseDirection') def __set_reversed(self, value): """ Sets whether this axis is reversed """ target = self._get_axis_target() return target.setPropertyValue('ReverseDirection', value) reversed = property(__get_reversed, __set_reversed) # The _target property of this class does not hold the axis itself but # the owner diagram instance. So following methods and properties has # to be overridden in order to access appropriate UNO objects. _has_axis_property = None _has_axis_title_property = None class Diagram(_UnoProxy): """ Diagram - inner content of a chart. Each chart has a diagram which specifies how data are rendered. The inner diagram can be changed or replaced while the the outer chart instance is still the same. """ __slots__ = () @property def series(self): """ Collection of diagram series. """ return DiagramSeriesCollection(self._target) # Following code is specific to 2D diagrams. If support for another # diagram types is added (e.g. pie) then a new class should # be probably introduced. @property def x_axis(self): """ X (bottom) axis """ return XAxis(self._target) @property def y_axis(self): """ Y (left) axis """ return YAxis(self._target) @property def secondary_x_axis(self): """ Secondary X (top) axis """ return SecondaryXAxis(self._target) @property def secondary_y_axis(self): """ Secondary Y (right) axis """ return SecondaryYAxis(self._target) def __get_is_stacked(self): """ Gets whether series of the diagram are stacked. """ return self._target.getPropertyValue('Stacked') def __set_is_stacked(self, value): """ Sets whether series of the diagram are stacked. """ self._target.setPropertyValue('Stacked', value) is_stacked = property(__get_is_stacked, __set_is_stacked) class BarDiagram(Diagram): """ Bar or column diagram. Type of diagram can be changed using Chart.change_type method. """ __slots__ = () _type = 'com.sun.star.chart.BarDiagram' def __get_lines(self): """ Gets count of series which are rendered as lines instead of lines. """ return self._target.getPropertyValue('NumberOfLines') def __set_lines(self, value): """ Sets count of series which are rendered as lines instead of lines """ return self._target.setPropertyValue('NumberOfLines', value) lines = property(__get_lines, __set_lines) def __get_is_horizontal(self): """ Gets whether this diagram is rendered with horizontal bars. If value is False then you get vertical columns. """ # Be aware - this call is translated to UNO "Vertical" property. # # UNO API claims that if vertical is false then we get a column chart # rather than a bar chart -- which describes OpenOffice behavior. # # But the words "horizontal" and "vertical" simply mean opposite # of the UNO semantics. If you don't believe me then try to google # for "horizontal bar chart" and "vertical bar chart" images. return self._target.getPropertyValue('Vertical') def __set_is_horizontal(self, value): """ Sets whether this diagram is rendered with horizontal bars. """ return self._target.setPropertyValue('Vertical', value) is_horizontal = property(__get_is_horizontal, __set_is_horizontal) def __get_is_grouped(self): """ Gets whether to group columns attached to different axis. If bars of a bar or column chart are attached to different axis, this property determines how to display those. If true, the bars are grouped together in one block for each axis, thus they are painted one group over the other. """ return self._target.getPropertyValue('GroupBarsPerAxis') def __set_is_grouped(self, value): """ Sets whether to group columns attached to different axis. """ return self._target.setPropertyValue('GroupBarsPerAxis', value) is_grouped = property(__get_is_grouped, __set_is_grouped) class LineDiagram(Diagram): """ Line, spline or symbol diagram. Type of diagram can be changed using Chart.change_type method. """ __slots__ = () _type = 'com.sun.star.chart.LineDiagram' spline = property(__get_spline, __set_spline) # Registry of supported diagram types. _DIAGRAM_TYPES = { BarDiagram._type: BarDiagram, LineDiagram._type: LineDiagram, } class Chart(_UnoProxy): """ Chart """ __slots__ = ('sheet', '_embedded') @property def name(self): """ Chart name which can be used as a key for accessing this chart. """ return self._target.getName() @property def has_row_header(self): """ Returns whether the first row is used for header """ return self._target.getHasRowHeaders() @property def has_col_header(self): """ Returns whether the first column is used for header """ return self._target.getHasColumnHeaders() @property def ranges(self): """ Returns a list of addresses with source data. """ ranges = self._target.getRanges() return map(SheetAddress._from_uno, ranges) @property def diagram(self): """ Diagram - inner content of this chart. The diagram can be replaced by another type using change_type method. """ target = self._embedded.getDiagram() target_type = target.getDiagramType() cls = _DIAGRAM_TYPES.get(target_type, Diagram) return cls(target) def change_type(self, cls): """ Change type of diagram in this chart. Accepts one of classes which extend Diagram. """ target_type = cls._type target = self._embedded.createInstance(target_type) self._embedded.setDiagram(target) return cls(target) class ChartCollection(NamedCollection): """ Collection of charts in one sheet. """ __slots__ = ('sheet',) def create(self, name, position, ranges=(), col_header=False, row_header=False): """ Creates and inserts a new chart. """ rect = self._uno_rect(position) ranges = self._uno_ranges(ranges) self._create(name, rect, ranges, col_header, row_header) return self[name] # Internal: class SheetCursor(_UnoProxy): """ Cursor in spreadsheet sheet. Most of spreadsheet operations are done using this cursor because cursor movement is much faster then cell range selection. """ __slots__ = ('row', 'col', 'row_count', 'col_count', 'max_row_count', 'max_col_count') def get_target(self, row, col, row_count, col_count): """ Moves cursor to the specified position and returns in. """ # This method is called for almost any operation so it should # be maximally optimized. # # Any comparison here is negligible compared to UNO call. So we do all # possible checks which can prevent an unnecessary cursor movement. # # Generally we need to expand or collapse selection to the desired # size and move it to the desired position. But both of these actions # can fail if there is not enough space. For this reason we must # determine which of the actions has to be done first. In some cases # we must even move the cursor twice (cursor movement is faster than # selection change). # target = self._target # If we cannot resize selection now then we must move cursor first. if self.row + row_count > self.max_row_count or self.col + col_count > self.max_col_count: # Move cursor to the desired position if possible. row_delta = row - self.row if row + self.row_count <= self.max_row_count else 0 col_delta = col - self.col if col + self.col_count <= self.max_col_count else 0 target.gotoOffset(col_delta, row_delta) self.row += row_delta self.col += col_delta # Resize selection if (row_count, col_count) != (self.row_count, self.col_count): target.collapseToSize(col_count, row_count) self.row_count = row_count self.col_count = col_count # Move cursor to the desired position if (row, col) != (self.row, self.col): target.gotoOffset(col - self.col, row - self.row) self.row = row self.col = col return target @str_repr class CellRange(object): """ Range of cells in one sheet. This is an abstract base class implements cell manipulation functionality. """ # Does not extend _UnoProxy because it uses sheet cursor internally # instead of direct reference to UNO object. __slots__ = ('sheet', 'address') @property def position(self): """ Physical position of this cells. """ target = self._get_target() position, size = target.getPropertyValues(('Position', 'Size')) return SheetPosition._from_uno(position, size) def __get_is_merged(self): """ Gets whether cells are merged. """ return self._get_target().getIsMerged() def __set_is_merged(self, value): """ Sets whether cells are merged. """ self._get_target().merge(value) is_merged = property(__get_is_merged, __set_is_merged) def __get_number_format(self): """ Gets format of numbers in this cells. """ return self._get_target().getPropertyValue('NumberFormat') def __set_number_format(self, value): """ Sets format of numbers in this cells. """ self._get_target().setPropertyValue('NumberFormat', value) number_format = property(__get_number_format, __set_number_format) def __get_text_align(self): """ Gets horizontal alignment. Returns one of TEXT_ALIGN_* constants. """ return self._get_target().getPropertyValue('HoriJustify').value def __set_text_align(self, value): """ Sets horizontal alignment. Accepts TEXT_ALIGN_* constants. """ # The HoriJustify property contains is a struct. # We need to get it, update value and then set it back. target = self._get_target() struct = target.getPropertyValue('HoriJustify') struct.value = value target.setPropertyValue('HoriJustify', struct) text_align = property(__get_text_align, __set_text_align) def __get_font_size(self): """ Gets font size. """ return self._get_target().getPropertyValue('CharHeight') def __set_font_size(self, value): """ Sets font size. """ return self._get_target().setPropertyValue('CharHeight', value) font_size = property(__get_font_size, __set_font_size) def __get_font_weight(self): """ Gets font weight. """ return self._get_target().getPropertyValue('CharWeight') def __set_font_weight(self, value): """ Sets font weight. """ return self._get_target().setPropertyValue('CharWeight', value) font_weight = property(__get_font_weight, __set_font_weight) def __get_underline(self): """ Gets text underline. Returns UNDERLINE_* constants. """ return self._get_target().getPropertyValue('CharUnderline') def __set_underline(self, value): """ Sets text weight. Accepts UNDERLINE_* constants. """ return self._get_target().setPropertyValue('CharUnderline', value) underline = property(__get_underline, __set_underline) def __get_text_color(self): """ Gets text color. Color is returned as integer in format 0xAARRGGBB. Returns None if no the text color is not set. """ value = self._get_target().getPropertyValue('CharColor') if value == -1: value = None return value def __set_text_color(self, value): """ Sets text color. Color should be given as an integer in format 0xAARRGGBB. Unsets the text color if None value is given. """ if value is None: value = -1 return self._get_target().setPropertyValue('CharColor', value) text_color = property(__get_text_color, __set_text_color) def __get_background_color(self): """ Gets cell background color. Color is returned as integer in format 0xAARRGGBB. Returns None if the background color is not set. """ value = self._get_target().getPropertyValue('CellBackColor') if value == -1: value = None return value def __set_background_color(self, value): """ Sets cell background color. Color should be given as an integer in format 0xAARRGGBB. Unsets the background color if None value is given. """ if value is None: value = -1 return self._get_target().setPropertyValue('CellBackColor', value) background_color = property(__get_background_color, __set_background_color) def __get_border_width(self): """ Gets width of all cell borders (in 1/100 mm). Returns 0 if cell borders are different. """ target = self._get_target() # Get four borders and test if all of them have same width. keys = ('TopBorder', 'RightBorder', 'BottomBorder', 'LeftBorder') lines = target.getPropertyValues(keys) values = [line.OuterLineWidth for line in lines] if any(value != values[0] for value in values): return 0 return values[0] def __set_border_width(self, value): """ Sets width of all cell borders (in 1/100 mm). """ target = self._get_target() line = uno.createUnoStruct('com.sun.star.table.BorderLine2') line.OuterLineWidth = value # Set all four borders using one call - this can save even a few seconds keys = ('TopBorder', 'RightBorder', 'BottomBorder', 'LeftBorder') lines = (line, line, line, line) target.setPropertyValues(keys, lines) border_width = property(__get_border_width, __set_border_width) def __get_one_border_width(self, key): """ Gets width of one border. """ target = self._get_target() line = target.getPropertyValue(key) return line.OuterLineWidth def __set_one_border_width(self, value, key): """ Sets width of one border. """ target = self._get_target() line = uno.createUnoStruct('com.sun.star.table.BorderLine2') line.OuterLineWidth = value target.setPropertyValue(key, line) border_left_width = property(functools.partial(__get_one_border_width, key='LeftBorder'), functools.partial(__set_one_border_width, key='LeftBorder')) border_right_width = property(functools.partial(__get_one_border_width, key='RightBorder'), functools.partial(__set_one_border_width, key='RightBorder')) border_top_width = property(functools.partial(__get_one_border_width, key='TopBorder'), functools.partial(__set_one_border_width, key='TopBorder')) border_bottom_width = property(functools.partial(__get_one_border_width, key='BottomBorder'), functools.partial(__set_one_border_width, key='BottomBorder')) def __get_border_color(self): """ Gets color of all cell borders Returns 0 if cell borders are different. """ target = self._get_target() # Get four borders and test if all of them have same color. keys = ('TopBorder', 'RightBorder', 'BottomBorder', 'LeftBorder') lines = target.getPropertyValues(keys) values = [line.Color for line in lines] if any(value != values[0] for value in values): return 0 return values[0] def __set_border_color(self, value): """ Sets color of all cell borders """ target = self._get_target() keys = ('TopBorder', 'RightBorder', 'BottomBorder', 'LeftBorder') #Get current values of lines - required to save width oldLines = target.getPropertyValues(keys) #Change colour of all lines to value - Value is hex value of colour 0xFF00FF for line in oldLines: line.Color = value lines = (oldLines[0], oldLines[1], oldLines[2], oldLines[3]) target.setPropertyValues(keys, lines) border_color = property(__get_border_color, __set_border_color) def __get_inner_border_width(self): """ Gets with of inner border between cells (in 1/100 mm). Returns 0 if cell borders are different. """ target = self._get_target() tb = target.getPropertyValue('TableBorder') horizontal = tb.HorizontalLine.OuterLineWidth vertical = tb.VerticalLine.OuterLineWidth if horizontal != vertical: return 0 return horizontal def __set_inner_border_width(self, value): """ Sets with of inner border between cells (in 1/100 mm). """ target = self._get_target() # Inner borders are saved in a TableBorder struct. line = uno.createUnoStruct('com.sun.star.table.BorderLine2') line.OuterLineWidth = value tb = target.getPropertyValue('TableBorder') tb.HorizontalLine = tb.VerticalLine = line target.setPropertyValue('TableBorder', tb) inner_border_width = property(__get_inner_border_width, __set_inner_border_width) # Internal methods: def _get_target(self): """ Returns cursor which can be used for most of operations. """ address = self.address cursor = self.sheet.cursor return cursor.get_target(address.row, address.col, address.row_count, address.col_count) def _clean_value(self, value): """ Validates and converts value before assigning it to a cell. """ if value is None: return value return self._convert(value) def _clean_formula(self, value): """ Validates and converts formula before assigning it to a cell. """ if value is None: return '' return self._convert(value) class Cell(CellRange): """ One cell in a spreadsheet. Cells are returned when a sheet (or any other tabular cell range) is indexed by two integer numbers. """ __slots__ = () def __get_value(self): """ Gets cell value with as a string or number based on cell type. """ array = self._get_target().getDataArray() return array[0][0] def __set_value(self, value): """ Sets cell value to a string or number based on the given value. """ array = ((self._clean_value(value),),) return self._get_target().setDataArray(array) value = property(__get_value, __set_value) def __get_formula(self): """ Gets a formula in this cell. If this cell contains actual formula then the returned value starts with an equal sign but any cell value is returned. """ array = self._get_target().getFormulaArray() return array[0][0] def __set_formula(self, formula): """ Sets a formula in this cell. Any cell value can be set using this method. Actual formulas must start with an equal sign. """ array = ((self._clean_formula(formula),),) return self._get_target().setFormulaArray(array) formula = property(__get_formula, __set_formula) @property def date(self): """ Returns date value in this cell. Converts value from number to datetime.datetime instance. """ return self.sheet.document.date_from_number(self.value) @property def time(self): """ Returns time value in this cell. Converts value from number to datetime.time instance. """ return self.sheet.document.time_from_number(self.value) class TabularCellRange(CellRange): """ Tabular range of cells. Individual cells can be accessed by (row, column) index and slice notation can be used for retrieval of sub ranges. Instances of this class are returned when a sheet (or any other tabular cell range) is sliced in both axes. """ __slots__ = () def __get_values(self): """ Gets values in this cell range as a tuple of tuples. """ array = self._get_target().getDataArray() return array def __set_values(self, values): """ Sets values in this cell range from an iterable of iterables. """ # Tuple of tuples is required array = tuple(tuple(self._clean_value(col) for col in row) for row in values) self._get_target().setDataArray(array) values = property(__get_values, __set_values) def __get_formulas(self): """ Gets formulas in this cell range as a tuple of tuples. If cells contain actual formulas then the returned values start with an equal sign but all values are returned. """ return self._get_target().getFormulaArray() def __set_formulas(self, formulas): """ Sets formulas in this cell range from an iterable of iterables. Any cell values can be set using this method. Actual formulas must start with an equal sign. """ # Tuple of tuples is required array = tuple(tuple(self._clean_formula(col) for col in row) for row in formulas) self._get_target().setFormulaArray(array) formulas = property(__get_formulas, __set_formulas) class HorizontalCellRange(CellRange): """ Range of cells in one row. Individual cells can be accessed by integer index or subranges can be retrieved using slice notation. Instances of this class are returned if a sheet (or any other tabular cell range) is indexed by a row number but columns are sliced. """ __slots__ = () def __get_values(self): """ Gets values in this cell range as a tuple. """ array = self._get_target().getDataArray() return array[0] def __set_values(self, values): """ Sets values in this cell range from an iterable. """ array = (tuple(self._clean_value(v) for v in values),) self._get_target().setDataArray(array) values = property(__get_values, __set_values) def __get_formulas(self): """ Gets formulas in this cell range as a tuple. If cells contain actual formulas then the returned values start with an equal sign but all values are returned. """ array = self._get_target().getFormulaArray() return array[0] def __set_formulas(self, formulas): """ Sets formulas in this cell range from an iterable. Any cell values can be set using this method. Actual formulas must start with an equal sign. """ array = (tuple(self._clean_formula(v) for v in formulas),) return self._get_target().setFormulaArray(array) formulas = property(__get_formulas, __set_formulas) class VerticalCellRange(CellRange): """ Range of cells in one column. Individual cells can be accessed by integer index or or subranges can be retrieved using slice notation. Instances of this class are returned if a sheet (or any other tabular cell range) is indexed by a column number but rows are sliced. """ __slots__ = () def __get_values(self): """ Gets values in this cell range as a tuple. This is much more effective than reading cell values one by one. """ array = self._get_target().getDataArray() return tuple(itertools.chain.from_iterable(array)) def __set_values(self, values): """ Sets values in this cell range from an iterable. This is much more effective than writing cell values one by one. """ array = tuple((self._clean_value(v),) for v in values) self._get_target().setDataArray(array) values = property(__get_values, __set_values) def __get_formulas(self): """ Gets formulas in this cell range as a tuple. If cells contain actual formulas then the returned values start with an equal sign but all values are returned. """ array = self._get_target().getFormulaArray() return tuple(itertools.chain.from_iterable(array)) def __set_formulas(self, formulas): """ Sets formulas in this cell range from an iterable. Any cell values can be set using this method. Actual formulas must start with an equal sign. """ array = tuple((self._clean_formula(v),) for v in formulas) self._get_target().setFormulaArray(array) formulas = property(__get_formulas, __set_formulas) @str_repr class Sheet(TabularCellRange): """ One sheet in a spreadsheet document. This class extends TabularCellRange which means that cells can be accessed using index or slice notation. Sheet instances can be accessed using sheets property of a SpreadsheetDocument class. """ __slots__ = ('document', '_target', 'cursor') @property def index(self): """ Index of this sheet in the document. """ # This should be cached if used more often. return self._target.getRangeAddress().Sheet def __get_name(self): """ Gets a name of this sheet. """ # This should be cached if used more often. return self._target.getName(); def __set_name(self, value): """ Sets a name of this sheet. """ return self._target.setName(value); name = property(__get_name, __set_name) @property class SpreadsheetCollection(NamedCollection): """ Collection of spreadsheets in a spreadsheet document. Instance of this class is returned via sheets property of the SpreadsheetDocument class. """ __slots__ = ('document',) def create(self, name, index=None): """ Creates a new sheet with the given name. If an optional index argument is not provided then the created sheet is appended at the end. Returns the new sheet. """ if index is None: index = len(self) self._create(name, index) return self[name] def copy(self, old_name, new_name, index=None): """ Copies an old sheet with the old_name to a new sheet with new_name. If an optional index argument is not provided then the created sheet is appended at the end. Returns the new sheet. """ if index is None: index = len(self) self._copy(old_name, new_name, index) return self[new_name] # Internal: class Locale(object): """ Document locale. Provides locale number formats. Instances of this class can be retrieved from SpreadsheetDocument using get_locale method. """ __slots__ = ('_locale', '_formats') def format(self, code): """ Returns one of predefined formats. Accepts FORMAT_* constants. """ # http://www.openoffice.org/api/docs/common/ref/com/sun/star/util/XNumberFormatTypes.html#getFormatIndex return self._formats.getFormatIndex(code, self._locale) class SpreadsheetDocument(_UnoProxy): """ Spreadsheet document. """ def save(self, path=None, filter_name=None): """ Saves this document to a local file system. The optional first argument defaults to the document's path. Accept optional second argument which defines type of the saved file. Use one of FILTER_* constants or see list of available filters at http://wakka.net/archives/7 or http://www.oooforum.org/forum/viewtopic.phtml?t=71294. """ if path is None: try: self._target.store() except _IOException as e: raise IOError(e.Message) return # UNO requires absolute paths url = uno.systemPathToFileUrl(os.path.abspath(path)) if filter_name: format_filter = uno.createUnoStruct('com.sun.star.beans.PropertyValue') format_filter.Name = 'FilterName' format_filter.Value = filter_name filters = (format_filter,) else: filters = () # http://www.openoffice.org/api/docs/common/ref/com/sun/star/frame/XStorable.html#storeToURL try: self._target.storeToURL(url, filters) except _IOException as e: raise IOError(e.Message) def close(self): """ Closes this document. """ # http://www.openoffice.org/api/docs/common/ref/com/sun/star/util/XCloseable.html#close self._target.close(True) def get_locale(self, language=None, country=None, variant=None): """ Returns locale which can be used for access to number formats. """ # http://www.openoffice.org/api/docs/common/ref/com/sun/star/lang/Locale.html locale = uno.createUnoStruct('com.sun.star.lang.Locale') if language: locale.Language = language if country: locale.Country = country if variant: locale.Variant = variant formats = self._target.getNumberFormats() return Locale(locale, formats) @property def sheets(self): """ Collection of sheets in this document. """ # http://www.openoffice.org/api/docs/common/ref/com/sun/star/sheet/XSpreadsheetDocument.html#getSheets try: return self._sheets except AttributeError: target = self._target.getSheets() self._sheets = SpreadsheetCollection(self, target) return self._sheets def date_from_number(self, value): """ Converts a float value to corresponding datetime instance. """ if not isinstance(value, numbers.Real): return None delta = datetime.timedelta(days=value) return self._null_date + delta def date_to_number(self, date): """ Converts a date or datetime instance to a corresponding float value. """ if isinstance(date, datetime.datetime): delta = date - self._null_date elif isinstance(date, datetime.date): delta = date - self._null_date.date() else: raise TypeError(date) return delta.days + delta.seconds / (24.0 * 60 * 60) def time_from_number(self, value): """ Converts a float value to corresponding time instance. """ if not isinstance(value, numbers.Real): return None delta = datetime.timedelta(days=value) minutes, second = divmod(delta.seconds, 60) hour, minute = divmod(minutes, 60) return datetime.time(hour, minute, second) def time_to_number(self, time): """ Converts a time instance to a corresponding float value. """ if not isinstance(time, datetime.time): raise TypeError(time) return ((time.second / 60.0 + time.minute) / 60.0 + time.hour) / 24.0 # Internal: @property def _null_date(self): """ Returns date which is represented by a integer 0. """ # http://www.openoffice.org/api/docs/common/ref/com/sun/star/util/NumberFormatSettings.html#NullDate try: return self.__null_date except AttributeError: number_settings = self._target.getNumberFormatSettings() d = number_settings.getPropertyValue('NullDate') self.__null_date = datetime.datetime(d.Year, d.Month, d.Day) return self.__null_date class Desktop(_UnoProxy): """ Access to a running to an OpenOffice.org program. Allows to create and open of spreadsheet documents. Opens a connection to a running OpenOffice.org program when Desktop instance is initialized. If the program OpenOffice.org is restarted then the connection is lost all subsequent method calls will fail. """ def create_spreadsheet(self): """ Creates a new spreadsheet document. """ url = 'private:factory/scalc' document = self._open_url(url) return SpreadsheetDocument(document) def open_spreadsheet(self, path, as_template=False, read_only=False): """ Opens an exiting spreadsheet document on the local file system. """ extra = () if as_template: pv = uno.createUnoStruct('com.sun.star.beans.PropertyValue') pv.Name = 'AsTemplate' pv.Value = True extra += (pv,) if read_only: pv = uno.createUnoStruct('com.sun.star.beans.PropertyValue') pv.Name = 'ReadOnly' pv.Value = True extra += (pv,) # UNO requires absolute paths url = uno.systemPathToFileUrl(os.path.abspath(path)) document = self._open_url(url, extra) return SpreadsheetDocument(document) class LazyDesktop(object): """ Lazy access to a running to Open Office program. Provides same interface as a Desktop class but creates connection to OpenOffice program when necessary. The advantage of this approach is that a LazyDesktop instance can recover from a restart of the OpenOffice.org program. """ cls = Desktop def create_spreadsheet(self): """ Creates a new spreadsheet document. """ desktop = self.cls(self.hostname, self.port, self.pipe) return desktop.create_spreadsheet() def open_spreadsheet(self, path, as_template=False): """ Opens an exiting spreadsheet document on the local file system. """ desktop = self.cls(self.hostname, self.port) return desktop.open_spreadsheet(path, as_template=as_template) class NameGenerator(object): """ Generates valid names for Open Office. Keeps track of used names and does not return one value twice. Names must not contain characters []*?:\/. Names (in older versions of OO) must have length of 31 chars maximum. Names must be unique (case insensitive). """ max_length = 31
[ 37811, 198, 20519, 6684, 532, 11361, 291, 7071, 284, 24843, 4946, 27743, 7824, 357, 4944, 46, 8, 198, 198, 15269, 357, 66, 8, 1584, 12, 5539, 1001, 89, 7402, 13, 26691, 11, 257, 13, 82, 13, 198, 15269, 357, 66, 8, 2177, 12, 23344, 4460, 26388, 7695, 73, 805, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 198, 11748, 4818, 8079, 198, 11748, 1257, 310, 10141, 198, 11748, 340, 861, 10141, 198, 11748, 3146, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 555, 78, 628, 198, 2, 7066, 1010, 973, 618, 8914, 3188, 13, 198, 46700, 5781, 62, 20456, 62, 6369, 15490, 796, 705, 16002, 62, 12315, 62, 43834, 6, 198, 46700, 5781, 62, 18564, 2043, 1137, 62, 20456, 62, 6369, 15490, 796, 705, 16002, 62, 12315, 62, 43834, 6, 198, 46700, 5781, 62, 34, 1847, 34, 62, 20456, 62, 6369, 15490, 796, 705, 9948, 66, 62, 12315, 62, 43834, 6, 198, 46700, 5781, 62, 6369, 34, 3698, 62, 5607, 796, 705, 5653, 24134, 10111, 6, 198, 46700, 5781, 62, 6369, 34, 3698, 62, 12726, 796, 705, 9771, 66, 6579, 24134, 4343, 23735, 6, 198, 198, 2, 7913, 5794, 7747, 198, 21389, 1404, 62, 32541, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 32541, 11537, 198, 21389, 1404, 62, 12394, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 41359, 13246, 62, 12394, 11537, 198, 21389, 1404, 62, 3697, 46, 1404, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 41359, 13246, 62, 41374, 17, 11537, 198, 21389, 1404, 62, 12394, 62, 5188, 47, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 41359, 13246, 62, 12825, 12394, 11537, 198, 21389, 1404, 62, 3697, 46, 1404, 62, 5188, 47, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 41359, 13246, 62, 12825, 41374, 17, 11537, 198, 21389, 1404, 62, 18973, 43960, 62, 12394, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 18973, 43960, 62, 12394, 11537, 198, 21389, 1404, 62, 18973, 43960, 62, 3697, 46, 1404, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 18973, 43960, 62, 41374, 17, 11537, 198, 21389, 1404, 62, 35, 6158, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 35, 6158, 62, 23060, 25361, 62, 9693, 9863, 11537, 198, 21389, 1404, 62, 34694, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 34694, 62, 16768, 12038, 11537, 198, 21389, 1404, 62, 35, 1404, 2767, 12789, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 72, 1507, 77, 13, 15057, 26227, 15732, 13, 35, 1404, 2767, 12789, 62, 23060, 25361, 62, 9693, 9863, 62, 16768, 12038, 11537, 198, 198, 2, 24060, 3463, 7747, 198, 37, 35830, 62, 8845, 9947, 62, 35, 35830, 29132, 3913, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 35, 35830, 29132, 3913, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 4221, 1268, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 4221, 1268, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 6239, 5446, 1847, 9947, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 6239, 5446, 1847, 9947, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 43, 9947, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 43, 9947, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 50, 3620, 4146, 9947, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 50, 3620, 4146, 9947, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 35510, 42126, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 35510, 42126, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 50, 3620, 9865, 15173, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 50, 3620, 9865, 15173, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 33, 15173, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 33, 15173, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 16724, 3861, 33, 15173, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 16724, 3861, 33, 15173, 11537, 198, 37, 35830, 62, 8845, 9947, 62, 9148, 8120, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 25844, 13, 9148, 8120, 11537, 198, 198, 2, 8255, 739, 1370, 7747, 357, 8807, 717, 1115, 389, 1944, 994, 8, 198, 4944, 14418, 24027, 62, 45, 11651, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 9203, 1370, 13, 45, 11651, 11537, 198, 4944, 14418, 24027, 62, 50, 2751, 2538, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 9203, 1370, 13, 50, 2751, 2538, 11537, 198, 4944, 14418, 24027, 62, 35, 2606, 19146, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 23252, 9203, 1370, 13, 35, 2606, 19146, 11537, 628, 198, 2, 8255, 19114, 7747, 198, 32541, 62, 1847, 16284, 62, 2257, 6981, 9795, 796, 705, 2257, 6981, 9795, 6, 198, 32541, 62, 1847, 16284, 62, 2538, 9792, 796, 705, 2538, 9792, 6, 198, 32541, 62, 1847, 16284, 62, 43960, 1137, 796, 705, 43960, 1137, 6, 198, 32541, 62, 1847, 16284, 62, 49, 9947, 796, 705, 49, 9947, 6, 198, 32541, 62, 1847, 16284, 62, 9148, 11290, 796, 705, 9148, 11290, 6, 198, 32541, 62, 1847, 16284, 62, 2200, 11401, 1404, 796, 705, 2200, 11401, 1404, 6, 198, 198, 2, 38349, 7747, 198, 25922, 1797, 62, 4805, 3955, 13153, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 40926, 13, 45488, 31554, 271, 8021, 570, 13, 4805, 3955, 13153, 62, 56, 11537, 198, 25922, 1797, 62, 23683, 18672, 13153, 796, 555, 78, 13, 1136, 3103, 18797, 3886, 5376, 10786, 785, 13, 19155, 13, 7364, 13, 40926, 13, 45488, 31554, 271, 8021, 570, 13, 23683, 18672, 13153, 62, 56, 11537, 198, 198, 2, 1475, 11755, 8754, 416, 4725, 46, 13, 198, 2, 775, 1949, 284, 4929, 606, 290, 302, 12, 16939, 11361, 3210, 13269, 13, 198, 62, 15732, 7975, 5189, 33, 3733, 16922, 796, 555, 78, 13, 1136, 9487, 10786, 785, 13, 19155, 13, 7364, 13, 17204, 13, 15732, 7975, 5189, 33, 3733, 16922, 11537, 198, 62, 2949, 16678, 20180, 16922, 796, 555, 78, 13, 1136, 9487, 10786, 785, 13, 19155, 13, 7364, 13, 34924, 13, 2949, 16678, 20180, 16922, 11537, 198, 62, 9399, 16922, 796, 555, 78, 13, 1136, 9487, 10786, 785, 13, 19155, 13, 7364, 13, 952, 13, 9399, 16922, 11537, 198, 198, 62, 2949, 13313, 16922, 796, 555, 78, 13, 1136, 9487, 10786, 785, 13, 19155, 13, 7364, 13, 38659, 13, 2949, 13313, 16922, 11537, 198, 62, 32048, 40786, 16922, 796, 555, 78, 13, 1136, 9487, 10786, 785, 13, 19155, 13, 7364, 13, 38659, 13, 32048, 40786, 16922, 11537, 628, 198, 3118, 78, 16922, 796, 555, 78, 13, 1136, 9487, 10786, 785, 13, 19155, 13, 7364, 13, 36909, 13, 16922, 11537, 628, 198, 47, 56, 17, 796, 25064, 13, 9641, 62, 10951, 58, 15, 60, 6624, 362, 198, 47, 56, 18, 796, 25064, 13, 9641, 62, 10951, 58, 15, 60, 6624, 513, 198, 198, 361, 350, 56, 18, 25, 198, 220, 220, 220, 4731, 62, 19199, 796, 965, 11, 198, 220, 220, 220, 18253, 62, 19199, 796, 493, 11, 198, 220, 220, 220, 2420, 62, 4906, 796, 965, 198, 17772, 25, 198, 220, 220, 220, 4731, 62, 19199, 796, 1615, 395, 1806, 11, 198, 220, 220, 220, 18253, 62, 19199, 796, 357, 600, 11, 890, 8, 198, 220, 220, 220, 2420, 62, 4906, 796, 28000, 1098, 198, 220, 220, 220, 2837, 796, 2124, 9521, 628, 198, 4299, 965, 62, 260, 1050, 7, 74, 31172, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1846, 1154, 902, 4731, 11315, 5050, 329, 262, 1813, 1398, 13, 628, 220, 220, 220, 383, 1813, 1398, 1276, 3494, 262, 11593, 2536, 834, 2446, 13, 770, 11705, 265, 198, 220, 220, 220, 481, 751, 11593, 260, 1050, 834, 290, 11593, 46903, 1098, 834, 357, 1640, 11361, 362, 737, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 350, 56, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 31172, 13, 834, 46903, 1098, 834, 796, 479, 31172, 13, 834, 2536, 834, 198, 220, 220, 220, 220, 220, 220, 220, 479, 31172, 13, 834, 2536, 834, 796, 37456, 2116, 25, 2116, 13, 834, 46903, 1098, 834, 22446, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 479, 31172, 13, 834, 260, 1050, 834, 796, 37456, 2116, 25, 705, 27, 4, 82, 25, 4064, 81, 29, 6, 4064, 357, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 11, 965, 7, 944, 4008, 198, 220, 220, 220, 1441, 479, 31172, 628, 198, 4299, 4808, 27773, 62, 48369, 7, 2539, 11, 4129, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3254, 37051, 290, 3487, 4340, 257, 2685, 2837, 16416, 13, 628, 220, 220, 220, 13163, 4808, 27773, 62, 48369, 7, 48369, 7, 14202, 11, 6045, 828, 838, 8, 198, 220, 220, 220, 357, 15, 11, 838, 8, 198, 220, 220, 220, 13163, 4808, 27773, 62, 48369, 7, 48369, 32590, 940, 11, 838, 828, 838, 8, 198, 220, 220, 220, 357, 15, 11, 838, 8, 198, 220, 220, 220, 13163, 4808, 27773, 62, 48369, 7, 48369, 32590, 1157, 11, 1367, 828, 838, 8, 198, 220, 220, 220, 357, 15, 11, 838, 8, 198, 220, 220, 220, 13163, 4808, 27773, 62, 48369, 7, 48369, 10786, 87, 3256, 705, 88, 33809, 838, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 5994, 12331, 25, 12440, 36525, 1276, 307, 37014, 11, 965, 1813, 13, 198, 220, 220, 220, 13163, 4808, 27773, 62, 48369, 7, 48369, 7, 15, 11, 838, 11, 362, 828, 838, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 1892, 3546, 1154, 12061, 12331, 25, 12440, 16416, 351, 2239, 318, 407, 4855, 13, 198, 220, 220, 220, 13163, 4808, 27773, 62, 48369, 7, 48369, 7, 20, 11, 642, 828, 838, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 11052, 12331, 25, 12440, 16416, 460, 407, 307, 6565, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1994, 13, 9662, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 28780, 16416, 351, 2239, 318, 407, 4855, 2637, 8, 198, 220, 220, 220, 923, 11, 2245, 796, 1994, 13, 9688, 11, 1994, 13, 11338, 198, 220, 220, 220, 611, 923, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 657, 198, 220, 220, 220, 611, 2245, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 796, 4129, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 9688, 11, 18253, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 28780, 36525, 1276, 307, 37014, 11, 4064, 82, 1813, 2637, 4064, 2099, 7, 9688, 737, 834, 3672, 834, 8, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 11338, 11, 18253, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 28780, 36525, 1276, 307, 37014, 11, 4064, 82, 1813, 2637, 4064, 2099, 7, 11338, 737, 834, 3672, 834, 8, 198, 220, 220, 220, 611, 923, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 923, 1343, 4129, 198, 220, 220, 220, 611, 2245, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 796, 2245, 1343, 4129, 198, 220, 220, 220, 923, 11, 2245, 796, 3509, 7, 15, 11, 923, 828, 949, 7, 13664, 11, 2245, 8, 198, 220, 220, 220, 611, 923, 6624, 2245, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 28780, 16416, 460, 407, 307, 6565, 2637, 8, 198, 220, 220, 220, 1441, 923, 11, 2245, 628, 198, 4299, 4808, 27773, 62, 9630, 7, 2539, 11, 4129, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3254, 37051, 290, 3487, 4340, 257, 2685, 2837, 6376, 13, 628, 220, 220, 220, 13163, 4808, 27773, 62, 9630, 7, 15, 11, 838, 8, 198, 220, 220, 220, 657, 198, 220, 220, 220, 13163, 4808, 27773, 62, 9630, 32590, 940, 11, 838, 8, 198, 220, 220, 220, 657, 198, 220, 220, 220, 13163, 4808, 27773, 62, 9630, 7, 940, 11, 838, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 12901, 12331, 25, 12440, 6376, 503, 286, 2837, 13, 198, 220, 220, 220, 13163, 4808, 27773, 62, 9630, 32590, 1157, 11, 838, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 12901, 12331, 25, 12440, 6376, 503, 286, 2837, 13, 198, 220, 220, 220, 13163, 4808, 27773, 62, 9630, 7, 14202, 11, 838, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 5994, 12331, 25, 12440, 36525, 1276, 307, 37014, 11, 6045, 6030, 1813, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 2539, 11, 18253, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 28780, 36525, 1276, 307, 37014, 11, 4064, 82, 1813, 2637, 4064, 2099, 7, 2539, 737, 834, 3672, 834, 8, 198, 220, 220, 220, 611, 532, 13664, 19841, 1994, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1994, 1343, 4129, 198, 220, 220, 220, 1288, 361, 657, 19841, 1994, 1279, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1994, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 10786, 28780, 6376, 503, 286, 2837, 2637, 8, 628, 198, 4299, 4808, 808, 62, 3672, 7, 9630, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 5752, 6376, 284, 257, 5752, 1438, 13, 628, 220, 220, 220, 13163, 4808, 808, 62, 3672, 7, 15, 8, 198, 220, 220, 220, 705, 16, 6, 198, 220, 220, 220, 13163, 4808, 808, 62, 3672, 7, 940, 8, 198, 220, 220, 220, 705, 1157, 6, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 705, 4, 67, 6, 4064, 357, 9630, 1343, 352, 8, 628, 198, 4299, 4808, 4033, 62, 3672, 7, 9630, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 257, 5721, 6376, 284, 257, 5721, 1438, 13, 628, 220, 220, 220, 13163, 4808, 4033, 62, 3672, 7, 15, 8, 198, 220, 220, 220, 705, 32, 6, 198, 220, 220, 220, 13163, 4808, 4033, 62, 3672, 7, 2075, 8, 198, 220, 220, 220, 705, 3838, 6, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1033, 287, 340, 861, 10141, 13, 9127, 7, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4179, 796, 2608, 12429, 1033, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 1279, 4179, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4458, 22179, 7, 354, 81, 7, 585, 10786, 32, 11537, 1343, 6376, 3373, 357, 2075, 12429, 1312, 8, 4064, 2608, 8, 329, 1312, 287, 2837, 7, 11201, 12, 16, 11, 532, 16, 11, 532, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 48185, 4179, 628, 198, 31, 2536, 62, 260, 1050, 198, 4871, 21616, 26545, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23158, 286, 257, 36954, 389, 287, 257, 30117, 13, 628, 220, 220, 220, 770, 1398, 2380, 3518, 2292, 287, 1802, 14, 400, 8085, 11, 198, 220, 220, 220, 766, 21616, 20231, 1398, 329, 257, 12219, 2209, 286, 4778, 13, 628, 220, 220, 220, 13163, 2292, 796, 21616, 26545, 7, 12825, 11, 4751, 8, 198, 220, 220, 220, 13163, 3601, 2292, 198, 220, 220, 220, 2124, 28, 12825, 11, 331, 28, 11024, 198, 220, 220, 220, 13163, 2292, 796, 21616, 26545, 7, 12825, 11, 4751, 11, 20343, 11, 30123, 8, 198, 220, 220, 220, 13163, 3601, 2292, 198, 220, 220, 220, 2124, 28, 12825, 11, 331, 28, 11024, 11, 9647, 28, 23924, 11, 6001, 28, 27559, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 87, 3256, 705, 88, 3256, 705, 10394, 3256, 705, 17015, 11537, 628, 220, 220, 220, 2488, 4871, 24396, 198, 198, 31, 2536, 62, 260, 1050, 198, 4871, 21616, 20231, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17917, 286, 257, 2685, 393, 257, 36954, 2837, 286, 4778, 287, 257, 30117, 13, 628, 220, 220, 220, 770, 1398, 2380, 12219, 2209, 286, 4778, 11, 766, 21616, 26545, 198, 220, 220, 220, 1398, 329, 3518, 4067, 13, 628, 220, 220, 220, 13163, 2209, 796, 21616, 20231, 7, 16, 11, 362, 8, 198, 220, 220, 220, 13163, 3601, 2209, 198, 220, 220, 220, 720, 34, 3, 17, 198, 220, 220, 220, 13163, 2209, 796, 21616, 20231, 7, 16, 11, 362, 11, 513, 11, 604, 8, 198, 220, 220, 220, 13163, 3601, 2209, 198, 220, 220, 220, 720, 34, 3, 17, 25, 3, 37, 3, 19, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 808, 3256, 705, 4033, 3256, 705, 808, 62, 9127, 3256, 705, 4033, 62, 9127, 11537, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 825, 10451, 7, 944, 11, 5752, 62, 8937, 28, 25101, 11, 951, 62, 8937, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 428, 2209, 355, 257, 4731, 284, 307, 973, 287, 32126, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5752, 62, 8937, 290, 951, 62, 8937, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 334, 6, 3, 4, 82, 3, 4, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5752, 62, 8937, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 334, 6, 4, 82, 3, 4, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 951, 62, 8937, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 334, 6, 3, 4, 82, 4, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 334, 6, 4, 82, 4, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 46996, 4064, 44104, 4033, 62, 3672, 7, 944, 13, 4033, 828, 4808, 808, 62, 3672, 7, 944, 13, 808, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 808, 62, 9127, 6624, 2116, 13, 4033, 62, 9127, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 923, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 46996, 4064, 44104, 4033, 62, 3672, 7, 944, 13, 4033, 62, 437, 828, 4808, 808, 62, 3672, 7, 944, 13, 808, 62, 437, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4, 82, 25, 4, 82, 6, 4064, 357, 9688, 11, 886, 8, 628, 220, 220, 220, 825, 6330, 7, 944, 11, 5752, 28, 14202, 11, 951, 28, 14202, 11, 5752, 62, 9127, 28, 14202, 11, 951, 62, 9127, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 649, 2209, 543, 262, 7368, 7032, 6928, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 5752, 611, 5752, 318, 407, 6045, 2073, 2116, 13, 808, 198, 220, 220, 220, 220, 220, 220, 220, 951, 796, 951, 611, 951, 318, 407, 6045, 2073, 2116, 13, 4033, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 9127, 796, 5752, 62, 9127, 611, 5752, 62, 9127, 318, 407, 6045, 2073, 2116, 13, 808, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 951, 62, 9127, 796, 951, 62, 9127, 611, 951, 62, 9127, 318, 407, 6045, 2073, 2116, 13, 4033, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 4871, 834, 7, 808, 11, 951, 11, 5752, 62, 9127, 11, 951, 62, 9127, 8, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 4871, 4808, 3118, 78, 44148, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 2779, 1398, 329, 5563, 543, 719, 355, 257, 15741, 284, 4725, 46, 5563, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 62, 16793, 3256, 8, 628, 198, 4871, 34441, 36307, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 1398, 329, 17268, 9857, 416, 1111, 6376, 290, 1438, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 12744, 1276, 3494, 1111, 286, 25, 198, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 34924, 14, 55, 15732, 15457, 13, 6494, 198, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 34924, 14, 55, 5376, 15457, 13, 6494, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 1303, 18628, 25, 628, 198, 4871, 6031, 6713, 27996, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6031, 6713, 2168, 13, 628, 220, 220, 220, 770, 1398, 3578, 284, 1630, 703, 530, 8379, 286, 3815, 357, 48126, 198, 220, 220, 220, 530, 3084, 5721, 8, 318, 9066, 287, 257, 8262, 357, 1640, 1672, 5585, 198, 220, 220, 220, 286, 530, 1627, 737, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 825, 11593, 1136, 62, 22704, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 284, 543, 16488, 428, 2168, 389, 8686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 31554, 271, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 22704, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 284, 543, 16488, 428, 2168, 389, 8686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 31554, 271, 3256, 1988, 8, 198, 220, 220, 220, 16488, 796, 3119, 7, 834, 1136, 62, 22704, 11, 11593, 2617, 62, 22704, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 1370, 62, 8043, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1627, 3124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 13949, 10258, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 1370, 62, 8043, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1627, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1355, 3910, 326, 428, 869, 318, 3360, 9514, 416, 4946, 27743, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 13949, 10258, 3256, 1988, 8, 198, 220, 220, 220, 1627, 62, 8043, 796, 3119, 7, 834, 1136, 62, 1370, 62, 8043, 11, 11593, 2617, 62, 1370, 62, 8043, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 20797, 62, 8043, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 6070, 3124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 33762, 10258, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 20797, 62, 8043, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 6070, 3124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 33762, 10258, 3256, 1988, 8, 198, 220, 220, 220, 6070, 62, 8043, 796, 3119, 7, 834, 1136, 62, 20797, 62, 8043, 11, 11593, 2617, 62, 20797, 62, 8043, 8, 628, 198, 4871, 6031, 6713, 27996, 36307, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47081, 1895, 284, 1981, 16362, 2168, 13, 628, 220, 220, 220, 2262, 590, 286, 428, 1398, 318, 4504, 618, 2168, 3119, 286, 198, 220, 220, 220, 262, 6031, 6713, 1398, 318, 17535, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 1303, 632, 2331, 326, 4129, 286, 2168, 460, 407, 307, 3538, 5295, 523, 198, 220, 220, 220, 1303, 994, 318, 645, 11593, 11925, 834, 2446, 13, 628, 198, 4871, 38349, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22086, 16488, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 825, 11593, 1136, 62, 23504, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 428, 16488, 318, 7424, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18067, 2496, 13, 19242, 55, 31554, 271, 318, 257, 1256, 286, 5443, 788, 22534, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2496, 13, 55, 31554, 271, 13, 53, 12843, 3119, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 7, 944, 13557, 10134, 62, 22704, 62, 26745, 8, 198, 220, 220, 220, 825, 11593, 2617, 62, 23504, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 428, 16488, 318, 7424, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 2617, 21746, 11395, 7, 944, 13557, 10134, 62, 22704, 62, 26745, 11, 1988, 8, 198, 220, 220, 220, 7424, 796, 3119, 7, 834, 1136, 62, 23504, 11, 11593, 2617, 62, 23504, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 7839, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 3670, 286, 428, 16488, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 7839, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 13, 1136, 21746, 11395, 10786, 10100, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 7839, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 3670, 286, 428, 16488, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 27743, 319, 26062, 366, 16485, 1453, 2736, 1, 8856, 1988, 286, 2496, 13, 55, 31554, 271, 13, 10100, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4556, 2496, 13, 19242, 55, 31554, 271, 19160, 318, 900, 284, 6407, 717, 13, 357, 8332, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1109, 326, 2496, 13, 19242, 55, 31554, 271, 19160, 318, 2098, 284, 307, 10352, 1566, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2496, 13, 55, 31554, 271, 13, 10100, 318, 900, 284, 1729, 6565, 1988, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 2617, 21746, 11395, 7, 944, 13557, 10134, 62, 22704, 62, 7839, 62, 26745, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 7839, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 11395, 10786, 10100, 3256, 2420, 62, 4906, 7, 8367, 4008, 198, 220, 220, 220, 3670, 796, 3119, 7, 834, 1136, 62, 7839, 11, 11593, 2617, 62, 7839, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 6404, 283, 342, 9383, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 428, 16488, 468, 281, 2604, 283, 342, 9383, 5046, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 22704, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 13, 1136, 21746, 11395, 10786, 11187, 283, 342, 9383, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 6404, 283, 342, 9383, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 428, 16488, 468, 281, 2604, 283, 342, 9383, 5046, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 22704, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 11395, 10786, 11187, 283, 342, 9383, 3256, 1988, 8, 198, 220, 220, 220, 2604, 283, 342, 9383, 796, 3119, 7, 834, 1136, 62, 6404, 283, 342, 9383, 11, 11593, 2617, 62, 6404, 283, 342, 9383, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 260, 690, 276, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 428, 16488, 318, 17687, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 22704, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 13, 1136, 21746, 11395, 10786, 49, 964, 325, 35, 4154, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 260, 690, 276, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 428, 16488, 318, 17687, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 22704, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 13, 2617, 21746, 11395, 10786, 49, 964, 325, 35, 4154, 3256, 1988, 8, 198, 220, 220, 220, 17687, 796, 3119, 7, 834, 1136, 62, 260, 690, 276, 11, 11593, 2617, 62, 260, 690, 276, 8, 628, 198, 220, 220, 220, 1303, 383, 4808, 16793, 3119, 286, 428, 1398, 857, 407, 1745, 262, 16488, 2346, 475, 198, 220, 220, 220, 1303, 262, 4870, 16362, 4554, 13, 1406, 1708, 5050, 290, 6608, 468, 198, 220, 220, 220, 1303, 284, 307, 23170, 4651, 287, 1502, 284, 1895, 5035, 4725, 46, 5563, 13, 628, 220, 220, 220, 4808, 10134, 62, 22704, 62, 26745, 796, 6045, 198, 220, 220, 220, 4808, 10134, 62, 22704, 62, 7839, 62, 26745, 796, 6045, 628, 628, 628, 198, 4871, 6031, 6713, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6031, 6713, 532, 8434, 2695, 286, 257, 8262, 13, 628, 220, 220, 220, 5501, 8262, 468, 257, 16362, 543, 26052, 703, 1366, 389, 15111, 13, 198, 220, 220, 220, 383, 8434, 16362, 460, 307, 3421, 393, 6928, 981, 262, 198, 220, 220, 220, 262, 12076, 8262, 4554, 318, 991, 262, 976, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2168, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12251, 286, 16362, 2168, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6031, 6713, 27996, 36307, 7, 944, 13557, 16793, 8, 628, 220, 220, 220, 1303, 14207, 2438, 318, 2176, 284, 362, 35, 37067, 13, 1002, 1104, 329, 1194, 198, 220, 220, 220, 1303, 16362, 3858, 318, 2087, 357, 68, 13, 70, 13, 2508, 8, 788, 257, 649, 1398, 815, 198, 220, 220, 220, 1303, 307, 2192, 5495, 13, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2124, 62, 22704, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 357, 22487, 8, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1395, 31554, 271, 7, 944, 13557, 16793, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 331, 62, 22704, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 575, 357, 9464, 8, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 575, 31554, 271, 7, 944, 13557, 16793, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9233, 62, 87, 62, 22704, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29521, 1395, 357, 4852, 8, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29521, 55, 31554, 271, 7, 944, 13557, 16793, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9233, 62, 88, 62, 22704, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29521, 575, 357, 3506, 8, 16488, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29521, 56, 31554, 271, 7, 944, 13557, 16793, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 271, 62, 301, 6021, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 2168, 286, 262, 16362, 389, 24167, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 1273, 6021, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 271, 62, 301, 6021, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 2168, 286, 262, 16362, 389, 24167, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 1273, 6021, 3256, 1988, 8, 198, 220, 220, 220, 318, 62, 301, 6021, 796, 3119, 7, 834, 1136, 62, 271, 62, 301, 6021, 11, 11593, 2617, 62, 271, 62, 301, 6021, 8, 628, 198, 4871, 2409, 18683, 6713, 7, 18683, 6713, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2409, 393, 5721, 16362, 13, 628, 220, 220, 220, 5994, 286, 16362, 460, 307, 3421, 1262, 22086, 13, 3803, 62, 4906, 2446, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 4808, 4906, 796, 705, 785, 13, 19155, 13, 7364, 13, 40926, 13, 10374, 18683, 6713, 6, 628, 220, 220, 220, 825, 11593, 1136, 62, 6615, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 954, 286, 2168, 543, 389, 15111, 355, 3951, 2427, 286, 3951, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 15057, 5189, 43, 1127, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 6615, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 954, 286, 2168, 543, 389, 15111, 355, 3951, 2427, 286, 3951, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 15057, 5189, 43, 1127, 3256, 1988, 8, 198, 220, 220, 220, 3951, 796, 3119, 7, 834, 1136, 62, 6615, 11, 11593, 2617, 62, 6615, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 271, 62, 17899, 38342, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 428, 16362, 318, 15111, 351, 16021, 9210, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 1988, 318, 10352, 788, 345, 651, 11723, 15180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1355, 3910, 532, 428, 869, 318, 14251, 284, 4725, 46, 366, 42369, 605, 1, 3119, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4725, 46, 7824, 3667, 326, 611, 11723, 318, 3991, 788, 356, 651, 257, 5721, 8262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2138, 621, 257, 2318, 8262, 1377, 543, 8477, 4946, 27743, 4069, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 887, 262, 2456, 366, 17899, 38342, 1, 290, 366, 1851, 605, 1, 2391, 1612, 6697, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 286, 262, 4725, 46, 33815, 13, 1002, 345, 836, 470, 1975, 502, 788, 1949, 284, 23645, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 366, 17899, 38342, 2318, 8262, 1, 290, 366, 1851, 605, 2318, 8262, 1, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 42369, 605, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 271, 62, 17899, 38342, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 428, 16362, 318, 15111, 351, 16021, 9210, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 42369, 605, 3256, 1988, 8, 198, 220, 220, 220, 318, 62, 17899, 38342, 796, 3119, 7, 834, 1136, 62, 271, 62, 17899, 38342, 11, 11593, 2617, 62, 271, 62, 17899, 38342, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 271, 62, 8094, 276, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 284, 1448, 15180, 7223, 284, 1180, 16488, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 9210, 286, 257, 2318, 393, 5721, 8262, 389, 7223, 284, 1180, 16488, 11, 198, 220, 220, 220, 220, 220, 220, 220, 428, 3119, 15947, 703, 284, 3359, 883, 13, 1002, 2081, 11, 262, 9210, 198, 220, 220, 220, 220, 220, 220, 220, 389, 32824, 1978, 287, 530, 2512, 329, 1123, 16488, 11, 4145, 484, 389, 198, 220, 220, 220, 220, 220, 220, 220, 13055, 530, 1448, 625, 262, 584, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 21746, 11395, 10786, 13247, 33, 945, 5990, 31554, 271, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 271, 62, 8094, 276, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 284, 1448, 15180, 7223, 284, 1180, 16488, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 2617, 21746, 11395, 10786, 13247, 33, 945, 5990, 31554, 271, 3256, 1988, 8, 198, 220, 220, 220, 318, 62, 8094, 276, 796, 3119, 7, 834, 1136, 62, 271, 62, 8094, 276, 11, 11593, 2617, 62, 271, 62, 8094, 276, 8, 628, 198, 4871, 6910, 18683, 6713, 7, 18683, 6713, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6910, 11, 4328, 500, 393, 6194, 16362, 13, 628, 220, 220, 220, 5994, 286, 16362, 460, 307, 3421, 1262, 22086, 13, 3803, 62, 4906, 2446, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 4808, 4906, 796, 705, 785, 13, 19155, 13, 7364, 13, 40926, 13, 13949, 18683, 6713, 6, 198, 220, 220, 220, 4328, 500, 796, 3119, 7, 834, 1136, 62, 22018, 500, 11, 11593, 2617, 62, 22018, 500, 8, 628, 198, 2, 33432, 286, 4855, 16362, 3858, 13, 198, 62, 35, 3539, 10761, 2390, 62, 9936, 47, 1546, 796, 1391, 198, 220, 220, 220, 2409, 18683, 6713, 13557, 4906, 25, 2409, 18683, 6713, 11, 198, 220, 220, 220, 6910, 18683, 6713, 13557, 4906, 25, 6910, 18683, 6713, 11, 198, 92, 628, 198, 4871, 22086, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 22086, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 21760, 3256, 705, 62, 20521, 9395, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 22086, 1438, 543, 460, 307, 973, 355, 257, 1994, 329, 22534, 428, 8262, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 5376, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 468, 62, 808, 62, 25677, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 1771, 262, 717, 5752, 318, 973, 329, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 19242, 25166, 13847, 364, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 468, 62, 4033, 62, 25677, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 1771, 262, 717, 5721, 318, 973, 329, 13639, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 19242, 39470, 13847, 364, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 16069, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 1351, 286, 9405, 351, 2723, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16069, 796, 2116, 13557, 16793, 13, 1136, 49, 6231, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3975, 7, 3347, 316, 20231, 13557, 6738, 62, 36909, 11, 16069, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 16362, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6031, 6713, 532, 8434, 2695, 286, 428, 8262, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 16362, 460, 307, 6928, 416, 1194, 2099, 1262, 1487, 62, 4906, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 20521, 9395, 13, 1136, 18683, 6713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 4906, 796, 2496, 13, 1136, 18683, 6713, 6030, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 796, 4808, 35, 3539, 10761, 2390, 62, 9936, 47, 1546, 13, 1136, 7, 16793, 62, 4906, 11, 6031, 6713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 16793, 8, 628, 220, 220, 220, 825, 1487, 62, 4906, 7, 944, 11, 537, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9794, 2099, 286, 16362, 287, 428, 8262, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21699, 82, 530, 286, 6097, 543, 9117, 6031, 6713, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 4906, 796, 537, 82, 13557, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 20521, 9395, 13, 17953, 33384, 7, 16793, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 20521, 9395, 13, 2617, 18683, 6713, 7, 16793, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 7, 16793, 8, 628, 198, 4871, 22086, 36307, 7, 45, 2434, 36307, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12251, 286, 15907, 287, 530, 9629, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 21760, 3256, 8, 628, 220, 220, 220, 825, 2251, 7, 944, 11, 1438, 11, 2292, 11, 16069, 16193, 828, 951, 62, 25677, 28, 25101, 11, 5752, 62, 25677, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 290, 42220, 257, 649, 8262, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13621, 796, 2116, 13557, 36909, 62, 2554, 7, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16069, 796, 2116, 13557, 36909, 62, 81, 6231, 7, 81, 6231, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 17953, 7, 3672, 11, 13621, 11, 16069, 11, 951, 62, 25677, 11, 5752, 62, 25677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 58, 3672, 60, 628, 220, 220, 220, 1303, 18628, 25, 628, 198, 4871, 21616, 34, 21471, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 327, 21471, 287, 30117, 9629, 13, 628, 220, 220, 220, 4042, 286, 30117, 4560, 389, 1760, 1262, 428, 23493, 198, 220, 220, 220, 780, 23493, 3356, 318, 881, 5443, 788, 2685, 2837, 6356, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 808, 3256, 705, 4033, 3256, 705, 808, 62, 9127, 3256, 705, 4033, 62, 9127, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 808, 62, 9127, 3256, 705, 9806, 62, 4033, 62, 9127, 11537, 628, 220, 220, 220, 825, 651, 62, 16793, 7, 944, 11, 5752, 11, 951, 11, 5752, 62, 9127, 11, 951, 62, 9127, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38213, 23493, 284, 262, 7368, 2292, 290, 5860, 287, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 2446, 318, 1444, 329, 2048, 597, 4905, 523, 340, 815, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 307, 12991, 453, 23392, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4377, 7208, 994, 318, 36480, 3688, 284, 4725, 46, 869, 13, 1406, 356, 466, 477, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1744, 8794, 543, 460, 2948, 281, 13114, 23493, 3356, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23904, 356, 761, 284, 4292, 393, 9807, 6356, 284, 262, 10348, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2546, 290, 1445, 340, 284, 262, 10348, 2292, 13, 887, 1111, 286, 777, 4028, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 460, 2038, 611, 612, 318, 407, 1576, 2272, 13, 1114, 428, 1738, 356, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 543, 286, 262, 4028, 468, 284, 307, 1760, 717, 13, 554, 617, 2663, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 1276, 772, 1445, 262, 23493, 5403, 357, 66, 21471, 3356, 318, 5443, 621, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6356, 1487, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 16793, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 2314, 47558, 6356, 783, 788, 356, 1276, 1445, 23493, 717, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 808, 1343, 5752, 62, 9127, 1875, 2116, 13, 9806, 62, 808, 62, 9127, 393, 2116, 13, 4033, 1343, 951, 62, 9127, 1875, 2116, 13, 9806, 62, 4033, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10028, 23493, 284, 262, 10348, 2292, 611, 1744, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 62, 67, 12514, 796, 5752, 532, 2116, 13, 808, 611, 5752, 1343, 2116, 13, 808, 62, 9127, 19841, 2116, 13, 9806, 62, 808, 62, 9127, 2073, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 62, 67, 12514, 796, 951, 532, 2116, 13, 4033, 611, 951, 1343, 2116, 13, 4033, 62, 9127, 19841, 2116, 13, 9806, 62, 4033, 62, 9127, 2073, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 70, 2069, 34519, 7, 4033, 62, 67, 12514, 11, 5752, 62, 67, 12514, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 808, 15853, 5752, 62, 67, 12514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4033, 15853, 951, 62, 67, 12514, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 1096, 6356, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 62, 9127, 11, 951, 62, 9127, 8, 14512, 357, 944, 13, 808, 62, 9127, 11, 2116, 13, 4033, 62, 9127, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 26000, 7512, 2514, 10699, 7, 4033, 62, 9127, 11, 5752, 62, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 808, 62, 9127, 796, 5752, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4033, 62, 9127, 796, 951, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10028, 23493, 284, 262, 10348, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 808, 11, 951, 8, 14512, 357, 944, 13, 808, 11, 2116, 13, 4033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 70, 2069, 34519, 7, 4033, 532, 2116, 13, 4033, 11, 5752, 532, 2116, 13, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 808, 796, 5752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4033, 796, 951, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2496, 628, 198, 31, 2536, 62, 260, 1050, 198, 4871, 12440, 17257, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13667, 286, 4778, 287, 530, 9629, 13, 628, 220, 220, 220, 770, 318, 281, 12531, 2779, 1398, 23986, 2685, 17512, 11244, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 8314, 407, 9117, 4808, 3118, 78, 44148, 780, 340, 3544, 9629, 23493, 20947, 198, 220, 220, 220, 1303, 2427, 286, 1277, 4941, 284, 4725, 46, 2134, 13, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 21760, 3256, 705, 21975, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2292, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16331, 2292, 286, 428, 4778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 11, 2546, 796, 2496, 13, 1136, 21746, 40161, 7, 10786, 26545, 3256, 705, 10699, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21616, 26545, 13557, 6738, 62, 36909, 7, 9150, 11, 2546, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 271, 62, 647, 2004, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 1771, 4778, 389, 23791, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 3792, 13102, 2004, 3419, 198, 220, 220, 220, 825, 11593, 2617, 62, 271, 62, 647, 2004, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 1771, 4778, 389, 23791, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 647, 469, 7, 8367, 8, 198, 220, 220, 220, 318, 62, 647, 2004, 796, 3119, 7, 834, 1136, 62, 271, 62, 647, 2004, 11, 11593, 2617, 62, 271, 62, 647, 2004, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 17618, 62, 18982, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 5794, 286, 3146, 287, 428, 4778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 15057, 26227, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 17618, 62, 18982, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 5794, 286, 3146, 287, 428, 4778, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 2617, 21746, 11395, 10786, 15057, 26227, 3256, 1988, 8, 198, 220, 220, 220, 1271, 62, 18982, 796, 3119, 7, 834, 1136, 62, 17618, 62, 18982, 11, 11593, 2617, 62, 17618, 62, 18982, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 5239, 62, 31494, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 16021, 19114, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 530, 286, 40383, 62, 1847, 16284, 62, 9, 38491, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 39, 10145, 5703, 1958, 27691, 8367, 198, 220, 220, 220, 825, 11593, 2617, 62, 5239, 62, 31494, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 16021, 19114, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21699, 82, 40383, 62, 1847, 16284, 62, 9, 38491, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 6075, 72, 5703, 1958, 3119, 4909, 318, 257, 2878, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 761, 284, 651, 340, 11, 4296, 1988, 290, 788, 900, 340, 736, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2878, 796, 2496, 13, 1136, 21746, 11395, 10786, 39, 10145, 5703, 1958, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2878, 13, 8367, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 11395, 10786, 39, 10145, 5703, 1958, 3256, 2878, 8, 198, 220, 220, 220, 2420, 62, 31494, 796, 3119, 7, 834, 1136, 62, 5239, 62, 31494, 11, 11593, 2617, 62, 5239, 62, 31494, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 10331, 62, 7857, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 10369, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 12441, 23106, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 10331, 62, 7857, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 10369, 2546, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 21746, 11395, 10786, 12441, 23106, 3256, 1988, 8, 198, 220, 220, 220, 10369, 62, 7857, 796, 3119, 7, 834, 1136, 62, 10331, 62, 7857, 11, 11593, 2617, 62, 10331, 62, 7857, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 10331, 62, 6551, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 10369, 3463, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 12441, 25844, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 10331, 62, 6551, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 10369, 3463, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 21746, 11395, 10786, 12441, 25844, 3256, 1988, 8, 198, 220, 220, 220, 10369, 62, 6551, 796, 3119, 7, 834, 1136, 62, 10331, 62, 6551, 11, 11593, 2617, 62, 10331, 62, 6551, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 4625, 1370, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 2420, 739, 1370, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 35219, 24027, 62, 9, 38491, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 12441, 9203, 1370, 11537, 198, 220, 220, 220, 825, 11593, 2617, 62, 4625, 1370, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 2420, 3463, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21699, 82, 35219, 24027, 62, 9, 38491, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 21746, 11395, 10786, 12441, 9203, 1370, 3256, 1988, 8, 198, 220, 220, 220, 739, 1370, 796, 3119, 7, 834, 1136, 62, 4625, 1370, 11, 11593, 2617, 62, 4625, 1370, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 5239, 62, 8043, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 2420, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5315, 318, 4504, 355, 18253, 287, 5794, 657, 87, 32, 26465, 38, 4579, 33, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 6045, 611, 645, 262, 2420, 3124, 318, 407, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 12441, 10258, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 825, 11593, 2617, 62, 5239, 62, 8043, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 2420, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5315, 815, 307, 1813, 355, 281, 18253, 287, 5794, 657, 87, 32, 26465, 38, 4579, 33, 13, 198, 220, 220, 220, 220, 220, 220, 220, 791, 28709, 262, 2420, 3124, 611, 6045, 1988, 318, 1813, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 21746, 11395, 10786, 12441, 10258, 3256, 1988, 8, 198, 220, 220, 220, 2420, 62, 8043, 796, 3119, 7, 834, 1136, 62, 5239, 62, 8043, 11, 11593, 2617, 62, 5239, 62, 8043, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 25249, 62, 8043, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 2685, 4469, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5315, 318, 4504, 355, 18253, 287, 5794, 657, 87, 32, 26465, 38, 4579, 33, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 6045, 611, 262, 4469, 3124, 318, 407, 900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 21746, 11395, 10786, 28780, 7282, 10258, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 825, 11593, 2617, 62, 25249, 62, 8043, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 2685, 4469, 3124, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5315, 815, 307, 1813, 355, 281, 18253, 287, 5794, 657, 87, 32, 26465, 38, 4579, 33, 13, 198, 220, 220, 220, 220, 220, 220, 220, 791, 28709, 262, 4469, 3124, 611, 6045, 1988, 318, 1813, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 21746, 11395, 10786, 28780, 7282, 10258, 3256, 1988, 8, 198, 220, 220, 220, 4469, 62, 8043, 796, 3119, 7, 834, 1136, 62, 25249, 62, 8043, 11, 11593, 2617, 62, 25249, 62, 8043, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 20192, 62, 10394, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 9647, 286, 477, 2685, 11637, 357, 259, 352, 14, 3064, 8085, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 657, 611, 2685, 11637, 389, 1180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 1440, 11637, 290, 1332, 611, 477, 286, 606, 423, 976, 9647, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 19203, 9126, 34189, 3256, 705, 11028, 34189, 3256, 705, 34104, 34189, 3256, 705, 18819, 34189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 2496, 13, 1136, 21746, 40161, 7, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 685, 1370, 13, 7975, 263, 13949, 30916, 329, 1627, 287, 3951, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 8367, 14512, 3815, 58, 15, 60, 329, 1988, 287, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3815, 58, 15, 60, 198, 220, 220, 220, 825, 11593, 2617, 62, 20192, 62, 10394, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 9647, 286, 477, 2685, 11637, 357, 259, 352, 14, 3064, 8085, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 11487, 13, 34189, 13949, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 7975, 263, 13949, 30916, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 477, 1440, 11637, 1262, 530, 869, 532, 428, 460, 3613, 772, 257, 1178, 4201, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 19203, 9126, 34189, 3256, 705, 11028, 34189, 3256, 705, 34104, 34189, 3256, 705, 18819, 34189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 357, 1370, 11, 1627, 11, 1627, 11, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 40161, 7, 13083, 11, 3951, 8, 198, 220, 220, 220, 4865, 62, 10394, 796, 3119, 7, 834, 1136, 62, 20192, 62, 10394, 11, 11593, 2617, 62, 20192, 62, 10394, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 505, 62, 20192, 62, 10394, 7, 944, 11, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 9647, 286, 530, 4865, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 2496, 13, 1136, 21746, 11395, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1627, 13, 7975, 263, 13949, 30916, 198, 220, 220, 220, 825, 11593, 2617, 62, 505, 62, 20192, 62, 10394, 7, 944, 11, 1988, 11, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 9647, 286, 530, 4865, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 11487, 13, 34189, 13949, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 7975, 263, 13949, 30916, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 11395, 7, 2539, 11, 1627, 8, 628, 220, 220, 220, 4865, 62, 9464, 62, 10394, 796, 3119, 7, 12543, 310, 10141, 13, 47172, 7, 834, 1136, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 18819, 34189, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1257, 310, 10141, 13, 47172, 7, 834, 2617, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 18819, 34189, 6, 4008, 198, 220, 220, 220, 4865, 62, 3506, 62, 10394, 796, 3119, 7, 12543, 310, 10141, 13, 47172, 7, 834, 1136, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 11028, 34189, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1257, 310, 10141, 13, 47172, 7, 834, 2617, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 11028, 34189, 6, 4008, 198, 220, 220, 220, 4865, 62, 4852, 62, 10394, 796, 3119, 7, 12543, 310, 10141, 13, 47172, 7, 834, 1136, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 9126, 34189, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1257, 310, 10141, 13, 47172, 7, 834, 2617, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 9126, 34189, 6, 4008, 198, 220, 220, 220, 4865, 62, 22487, 62, 10394, 796, 3119, 7, 12543, 310, 10141, 13, 47172, 7, 834, 1136, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 34104, 34189, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1257, 310, 10141, 13, 47172, 7, 834, 2617, 62, 505, 62, 20192, 62, 10394, 11, 1994, 11639, 34104, 34189, 6, 4008, 628, 220, 220, 220, 825, 11593, 1136, 62, 20192, 62, 8043, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 3124, 286, 477, 2685, 11637, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 657, 611, 2685, 11637, 389, 1180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 1440, 11637, 290, 1332, 611, 477, 286, 606, 423, 976, 3124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 19203, 9126, 34189, 3256, 705, 11028, 34189, 3256, 705, 34104, 34189, 3256, 705, 18819, 34189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 2496, 13, 1136, 21746, 40161, 7, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 685, 1370, 13, 10258, 329, 1627, 287, 3951, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 8367, 14512, 3815, 58, 15, 60, 329, 1988, 287, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3815, 58, 15, 60, 628, 220, 220, 220, 825, 11593, 2617, 62, 20192, 62, 8043, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 3124, 286, 477, 2685, 11637, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 19203, 9126, 34189, 3256, 705, 11028, 34189, 3256, 705, 34104, 34189, 3256, 705, 18819, 34189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3855, 1459, 3815, 286, 3951, 532, 2672, 284, 3613, 9647, 198, 220, 220, 220, 220, 220, 220, 220, 1468, 43, 1127, 796, 2496, 13, 1136, 21746, 40161, 7, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19400, 9568, 286, 477, 3951, 284, 1988, 532, 11052, 318, 17910, 1988, 286, 9568, 657, 87, 5777, 405, 5777, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 1468, 43, 1127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 10258, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 357, 727, 43, 1127, 58, 15, 4357, 1468, 43, 1127, 58, 16, 4357, 1468, 43, 1127, 58, 17, 4357, 1468, 43, 1127, 58, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 40161, 7, 13083, 11, 3951, 8, 198, 220, 220, 220, 4865, 62, 8043, 796, 3119, 7, 834, 1136, 62, 20192, 62, 8043, 11, 11593, 2617, 62, 20192, 62, 8043, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 5083, 62, 20192, 62, 10394, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 351, 286, 8434, 4865, 1022, 4778, 357, 259, 352, 14, 3064, 8085, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 657, 611, 2685, 11637, 389, 1180, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 256, 65, 796, 2496, 13, 1136, 21746, 11395, 10786, 10962, 34189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 16021, 796, 256, 65, 13, 27991, 38342, 13949, 13, 7975, 263, 13949, 30916, 198, 220, 220, 220, 220, 220, 220, 220, 11723, 796, 256, 65, 13, 42369, 605, 13949, 13, 7975, 263, 13949, 30916, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16021, 14512, 11723, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 16021, 198, 220, 220, 220, 825, 11593, 2617, 62, 5083, 62, 20192, 62, 10394, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 351, 286, 8434, 4865, 1022, 4778, 357, 259, 352, 14, 3064, 8085, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 1136, 62, 16793, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24877, 11637, 389, 7448, 287, 257, 8655, 34189, 2878, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 11487, 13, 34189, 13949, 17, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 13, 7975, 263, 13949, 30916, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 256, 65, 796, 2496, 13, 1136, 21746, 11395, 10786, 10962, 34189, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 256, 65, 13, 27991, 38342, 13949, 796, 256, 65, 13, 42369, 605, 13949, 796, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 13, 2617, 21746, 11395, 10786, 10962, 34189, 3256, 256, 65, 8, 198, 220, 220, 220, 8434, 62, 20192, 62, 10394, 796, 3119, 7, 834, 1136, 62, 5083, 62, 20192, 62, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 2617, 62, 5083, 62, 20192, 62, 10394, 8, 628, 220, 220, 220, 1303, 18628, 5050, 25, 628, 220, 220, 220, 825, 4808, 1136, 62, 16793, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 23493, 543, 460, 307, 973, 329, 749, 286, 4560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2209, 796, 2116, 13, 21975, 198, 220, 220, 220, 220, 220, 220, 220, 23493, 796, 2116, 13, 21760, 13, 66, 21471, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23493, 13, 1136, 62, 16793, 7, 21975, 13, 808, 11, 2209, 13, 4033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 13, 808, 62, 9127, 11, 2209, 13, 4033, 62, 9127, 8, 628, 220, 220, 220, 825, 4808, 27773, 62, 8367, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3254, 37051, 290, 26161, 1988, 878, 38875, 340, 284, 257, 2685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1102, 1851, 7, 8367, 8, 628, 220, 220, 220, 825, 4808, 27773, 62, 687, 4712, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3254, 37051, 290, 26161, 10451, 878, 38875, 340, 284, 257, 2685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1102, 1851, 7, 8367, 8, 628, 198, 4871, 12440, 7, 28780, 17257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1881, 2685, 287, 257, 30117, 13, 628, 220, 220, 220, 39794, 389, 4504, 618, 257, 9629, 357, 273, 597, 584, 7400, 934, 2685, 2837, 8, 198, 220, 220, 220, 318, 41497, 416, 734, 18253, 3146, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 825, 11593, 1136, 62, 8367, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 2685, 1988, 351, 355, 257, 4731, 393, 1271, 1912, 319, 2685, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 6601, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7177, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 825, 11593, 2617, 62, 8367, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 2685, 1988, 284, 257, 4731, 393, 1271, 1912, 319, 262, 1813, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 14808, 944, 13557, 27773, 62, 8367, 7, 8367, 828, 828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 6601, 19182, 7, 18747, 8, 198, 220, 220, 220, 1988, 796, 3119, 7, 834, 1136, 62, 8367, 11, 11593, 2617, 62, 8367, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 687, 4712, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 257, 10451, 287, 428, 2685, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 428, 2685, 4909, 4036, 10451, 788, 262, 4504, 1988, 4940, 198, 220, 220, 220, 220, 220, 220, 220, 351, 281, 4961, 1051, 475, 597, 2685, 1988, 318, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 8479, 4712, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7177, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 825, 11593, 2617, 62, 687, 4712, 7, 944, 11, 10451, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 257, 10451, 287, 428, 2685, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4377, 2685, 1988, 460, 307, 900, 1262, 428, 2446, 13, 33520, 32126, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 923, 351, 281, 4961, 1051, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 14808, 944, 13557, 27773, 62, 687, 4712, 7, 687, 4712, 828, 828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 8479, 4712, 19182, 7, 18747, 8, 198, 220, 220, 220, 10451, 796, 3119, 7, 834, 1136, 62, 687, 4712, 11, 11593, 2617, 62, 687, 4712, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3128, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3128, 1988, 287, 428, 2685, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 1988, 422, 1271, 284, 4818, 8079, 13, 19608, 8079, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 21760, 13, 22897, 13, 4475, 62, 6738, 62, 17618, 7, 944, 13, 8367, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 640, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 640, 1988, 287, 428, 2685, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 1988, 422, 1271, 284, 4818, 8079, 13, 2435, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 21760, 13, 22897, 13, 2435, 62, 6738, 62, 17618, 7, 944, 13, 8367, 8, 628, 198, 4871, 16904, 934, 28780, 17257, 7, 28780, 17257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16904, 934, 2837, 286, 4778, 13, 628, 220, 220, 220, 18629, 4778, 460, 307, 17535, 416, 357, 808, 11, 5721, 8, 6376, 290, 198, 220, 220, 220, 16416, 33274, 460, 307, 973, 329, 45069, 286, 850, 16069, 13, 628, 220, 220, 220, 2262, 1817, 286, 428, 1398, 389, 4504, 618, 257, 9629, 357, 273, 597, 584, 7400, 934, 198, 220, 220, 220, 2685, 2837, 8, 318, 26790, 287, 1111, 34197, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 825, 11593, 1136, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 3815, 287, 428, 2685, 2837, 355, 257, 46545, 286, 12777, 2374, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 6601, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7177, 198, 220, 220, 220, 825, 11593, 2617, 62, 27160, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 3815, 287, 428, 2685, 2837, 422, 281, 11629, 540, 286, 11629, 2977, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 309, 29291, 286, 12777, 2374, 318, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 46545, 7, 83, 29291, 7, 944, 13557, 27773, 62, 8367, 7, 4033, 8, 329, 951, 287, 5752, 8, 329, 5752, 287, 3815, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 2617, 6601, 19182, 7, 18747, 8, 198, 220, 220, 220, 3815, 796, 3119, 7, 834, 1136, 62, 27160, 11, 11593, 2617, 62, 27160, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 687, 25283, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 32126, 287, 428, 2685, 2837, 355, 257, 46545, 286, 12777, 2374, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 4778, 3994, 4036, 32126, 788, 262, 4504, 3815, 923, 198, 220, 220, 220, 220, 220, 220, 220, 351, 281, 4961, 1051, 220, 475, 477, 3815, 389, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 1136, 8479, 4712, 19182, 3419, 198, 220, 220, 220, 825, 11593, 2617, 62, 687, 25283, 7, 944, 11, 32126, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 32126, 287, 428, 2685, 2837, 422, 281, 11629, 540, 286, 11629, 2977, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4377, 2685, 3815, 460, 307, 900, 1262, 428, 2446, 13, 33520, 32126, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 923, 351, 281, 4961, 1051, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 309, 29291, 286, 12777, 2374, 318, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 46545, 7, 83, 29291, 7, 944, 13557, 27773, 62, 687, 4712, 7, 4033, 8, 329, 951, 287, 5752, 8, 329, 5752, 287, 32126, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 2617, 8479, 4712, 19182, 7, 18747, 8, 198, 220, 220, 220, 32126, 796, 3119, 7, 834, 1136, 62, 687, 25283, 11, 11593, 2617, 62, 687, 25283, 8, 628, 198, 4871, 6075, 38342, 28780, 17257, 7, 28780, 17257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13667, 286, 4778, 287, 530, 5752, 13, 628, 220, 220, 220, 18629, 4778, 460, 307, 17535, 416, 18253, 6376, 393, 850, 81, 6231, 198, 220, 220, 220, 460, 307, 29517, 1262, 16416, 33274, 13, 628, 220, 220, 220, 2262, 1817, 286, 428, 1398, 389, 4504, 611, 257, 9629, 357, 273, 597, 584, 7400, 934, 198, 220, 220, 220, 2685, 2837, 8, 318, 41497, 416, 257, 5752, 1271, 475, 15180, 389, 26790, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 825, 11593, 1136, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 3815, 287, 428, 2685, 2837, 355, 257, 46545, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 6601, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7177, 58, 15, 60, 198, 220, 220, 220, 825, 11593, 2617, 62, 27160, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 3815, 287, 428, 2685, 2837, 422, 281, 11629, 540, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 357, 83, 29291, 7, 944, 13557, 27773, 62, 8367, 7, 85, 8, 329, 410, 287, 3815, 828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 2617, 6601, 19182, 7, 18747, 8, 198, 220, 220, 220, 3815, 796, 3119, 7, 834, 1136, 62, 27160, 11, 11593, 2617, 62, 27160, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 687, 25283, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 32126, 287, 428, 2685, 2837, 355, 257, 46545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 4778, 3994, 4036, 32126, 788, 262, 4504, 3815, 923, 198, 220, 220, 220, 220, 220, 220, 220, 351, 281, 4961, 1051, 220, 475, 477, 3815, 389, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 8479, 4712, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7177, 58, 15, 60, 198, 220, 220, 220, 825, 11593, 2617, 62, 687, 25283, 7, 944, 11, 32126, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 32126, 287, 428, 2685, 2837, 422, 281, 11629, 540, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4377, 2685, 3815, 460, 307, 900, 1262, 428, 2446, 13, 33520, 32126, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 923, 351, 281, 4961, 1051, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 357, 83, 29291, 7, 944, 13557, 27773, 62, 687, 4712, 7, 85, 8, 329, 410, 287, 32126, 828, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 1136, 62, 16793, 22446, 2617, 8479, 4712, 19182, 7, 18747, 8, 198, 220, 220, 220, 32126, 796, 3119, 7, 834, 1136, 62, 687, 25283, 11, 11593, 2617, 62, 687, 25283, 8, 628, 198, 4871, 38937, 28780, 17257, 7, 28780, 17257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13667, 286, 4778, 287, 530, 5721, 13, 628, 220, 220, 220, 18629, 4778, 460, 307, 17535, 416, 18253, 6376, 393, 393, 850, 81, 6231, 198, 220, 220, 220, 460, 307, 29517, 1262, 16416, 33274, 13, 628, 220, 220, 220, 2262, 1817, 286, 428, 1398, 389, 4504, 611, 257, 9629, 357, 273, 597, 584, 7400, 934, 198, 220, 220, 220, 2685, 2837, 8, 318, 41497, 416, 257, 5721, 1271, 475, 15274, 389, 26790, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 7499, 628, 220, 220, 220, 825, 11593, 1136, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 3815, 287, 428, 2685, 2837, 355, 257, 46545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 881, 517, 4050, 621, 3555, 2685, 3815, 530, 416, 530, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 6601, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46545, 7, 270, 861, 10141, 13, 7983, 13, 6738, 62, 2676, 540, 7, 18747, 4008, 198, 220, 220, 220, 825, 11593, 2617, 62, 27160, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 3815, 287, 428, 2685, 2837, 422, 281, 11629, 540, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 881, 517, 4050, 621, 3597, 2685, 3815, 530, 416, 530, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 46545, 19510, 944, 13557, 27773, 62, 8367, 7, 85, 828, 8, 329, 410, 287, 3815, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 2617, 6601, 19182, 7, 18747, 8, 198, 220, 220, 220, 3815, 796, 3119, 7, 834, 1136, 62, 27160, 11, 11593, 2617, 62, 27160, 8, 628, 220, 220, 220, 825, 11593, 1136, 62, 687, 25283, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 32126, 287, 428, 2685, 2837, 355, 257, 46545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 4778, 3994, 4036, 32126, 788, 262, 4504, 3815, 923, 198, 220, 220, 220, 220, 220, 220, 220, 351, 281, 4961, 1051, 220, 475, 477, 3815, 389, 4504, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 2116, 13557, 1136, 62, 16793, 22446, 1136, 8479, 4712, 19182, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46545, 7, 270, 861, 10141, 13, 7983, 13, 6738, 62, 2676, 540, 7, 18747, 4008, 198, 220, 220, 220, 825, 11593, 2617, 62, 687, 25283, 7, 944, 11, 32126, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 32126, 287, 428, 2685, 2837, 422, 281, 11629, 540, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4377, 2685, 3815, 460, 307, 900, 1262, 428, 2446, 13, 33520, 32126, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 923, 351, 281, 4961, 1051, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 46545, 19510, 944, 13557, 27773, 62, 687, 4712, 7, 85, 828, 8, 329, 410, 287, 32126, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 16793, 22446, 2617, 8479, 4712, 19182, 7, 18747, 8, 198, 220, 220, 220, 32126, 796, 3119, 7, 834, 1136, 62, 687, 25283, 11, 11593, 2617, 62, 687, 25283, 8, 628, 198, 31, 2536, 62, 260, 1050, 198, 4871, 21616, 7, 33349, 934, 28780, 17257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1881, 9629, 287, 257, 30117, 3188, 13, 628, 220, 220, 220, 770, 1398, 14582, 16904, 934, 28780, 17257, 543, 1724, 326, 4778, 460, 198, 220, 220, 220, 307, 17535, 1262, 6376, 393, 16416, 33274, 13, 628, 220, 220, 220, 21616, 10245, 460, 307, 17535, 1262, 15747, 3119, 198, 220, 220, 220, 286, 257, 31843, 21760, 24941, 1398, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 22897, 3256, 705, 62, 16793, 3256, 705, 66, 21471, 11537, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6376, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12901, 286, 428, 9629, 287, 262, 3188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 815, 307, 39986, 611, 973, 517, 1690, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 17257, 20231, 22446, 3347, 316, 628, 220, 220, 220, 825, 11593, 1136, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 257, 1438, 286, 428, 9629, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 815, 307, 39986, 611, 973, 517, 1690, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 1136, 5376, 9783, 198, 220, 220, 220, 825, 11593, 2617, 62, 3672, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 257, 1438, 286, 428, 9629, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 16793, 13, 2617, 5376, 7, 8367, 1776, 198, 220, 220, 220, 1438, 796, 3119, 7, 834, 1136, 62, 3672, 11, 11593, 2617, 62, 3672, 8, 628, 220, 220, 220, 2488, 26745, 628, 198, 198, 4871, 31843, 21760, 36307, 7, 45, 2434, 36307, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12251, 286, 4104, 42011, 287, 257, 30117, 3188, 13, 628, 220, 220, 220, 2262, 590, 286, 428, 1398, 318, 4504, 2884, 15747, 3119, 286, 198, 220, 220, 220, 262, 31843, 21760, 24941, 1398, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 22897, 3256, 8, 628, 220, 220, 220, 825, 2251, 7, 944, 11, 1438, 11, 6376, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 257, 649, 9629, 351, 262, 1813, 1438, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 281, 11902, 6376, 4578, 318, 407, 2810, 788, 262, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 9629, 318, 598, 1631, 379, 262, 886, 13, 16409, 262, 649, 9629, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 18896, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 17953, 7, 3672, 11, 6376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 58, 3672, 60, 628, 220, 220, 220, 825, 4866, 7, 944, 11, 1468, 62, 3672, 11, 649, 62, 3672, 11, 6376, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6955, 444, 281, 1468, 9629, 351, 262, 1468, 62, 3672, 284, 257, 649, 9629, 351, 649, 62, 3672, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 281, 11902, 6376, 4578, 318, 407, 2810, 788, 262, 2727, 198, 220, 220, 220, 220, 220, 220, 220, 9629, 318, 598, 1631, 379, 262, 886, 13, 16409, 262, 649, 9629, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 18896, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 30073, 7, 727, 62, 3672, 11, 649, 62, 3672, 11, 6376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 58, 3605, 62, 3672, 60, 628, 220, 220, 220, 1303, 18628, 25, 628, 198, 4871, 15181, 1000, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16854, 36693, 13, 628, 220, 220, 220, 47081, 36693, 1271, 17519, 13, 2262, 1817, 286, 428, 1398, 460, 307, 198, 220, 220, 220, 29517, 422, 31843, 21760, 24941, 1262, 651, 62, 17946, 1000, 2446, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 62, 17946, 1000, 3256, 705, 62, 687, 1381, 11537, 628, 220, 220, 220, 825, 5794, 7, 944, 11, 2438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 530, 286, 2747, 18156, 17519, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21699, 82, 7473, 41636, 62, 9, 38491, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 22602, 14, 55, 15057, 26227, 31431, 13, 6494, 2, 1136, 26227, 15732, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 687, 1381, 13, 1136, 26227, 15732, 7, 8189, 11, 2116, 13557, 17946, 1000, 8, 628, 198, 4871, 31843, 21760, 24941, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31843, 21760, 3188, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3613, 7, 944, 11, 3108, 28, 14202, 11, 8106, 62, 3672, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 311, 3080, 428, 3188, 284, 257, 1957, 2393, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 11902, 717, 4578, 26235, 284, 262, 3188, 338, 3108, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21699, 11902, 1218, 220, 4578, 543, 15738, 2099, 286, 198, 220, 220, 220, 220, 220, 220, 220, 262, 7448, 2393, 13, 5765, 530, 286, 34020, 5781, 62, 9, 38491, 393, 766, 1351, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1695, 16628, 379, 2638, 1378, 86, 461, 4914, 13, 3262, 14, 48814, 14, 22, 393, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 34160, 27302, 13, 2398, 14, 27302, 14, 1177, 26652, 13, 746, 20369, 30, 83, 28, 49517, 5824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3108, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 8095, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 4808, 9399, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 24418, 12331, 7, 68, 13, 12837, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4725, 46, 4433, 4112, 13532, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 555, 78, 13, 10057, 15235, 2514, 8979, 28165, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8106, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 24455, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 44749, 13, 21746, 11395, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 24455, 13, 5376, 796, 705, 22417, 5376, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 24455, 13, 11395, 796, 8106, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 796, 357, 18982, 62, 24455, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 14535, 14, 55, 1273, 10475, 13, 6494, 2, 8095, 2514, 21886, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 8095, 2514, 21886, 7, 6371, 11, 16628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 4808, 9399, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 24418, 12331, 7, 68, 13, 12837, 8, 628, 220, 220, 220, 825, 1969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1012, 4629, 428, 3188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 22602, 14, 55, 26125, 540, 13, 6494, 2, 19836, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 19836, 7, 17821, 8, 628, 220, 220, 220, 825, 651, 62, 17946, 1000, 7, 944, 11, 3303, 28, 14202, 11, 1499, 28, 14202, 11, 15304, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 36693, 543, 460, 307, 973, 329, 1895, 284, 1271, 17519, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 17204, 14, 33711, 1000, 13, 6494, 198, 220, 220, 220, 220, 220, 220, 220, 36693, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 17204, 13, 33711, 1000, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3303, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36693, 13, 32065, 796, 3303, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36693, 13, 33921, 796, 1499, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36693, 13, 23907, 415, 796, 15304, 198, 220, 220, 220, 220, 220, 220, 220, 17519, 796, 2116, 13557, 16793, 13, 1136, 15057, 8479, 1381, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15181, 1000, 7, 17946, 1000, 11, 17519, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 15747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12251, 286, 15747, 287, 428, 3188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 21760, 14, 55, 44458, 21760, 24941, 13, 6494, 2, 1136, 3347, 1039, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 42011, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 796, 2116, 13557, 16793, 13, 1136, 3347, 1039, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 42011, 796, 31843, 21760, 36307, 7, 944, 11, 2496, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 42011, 628, 220, 220, 220, 825, 3128, 62, 6738, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 257, 12178, 1988, 284, 11188, 4818, 8079, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 3146, 13, 15633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 8423, 62, 4475, 1343, 25979, 628, 220, 220, 220, 825, 3128, 62, 1462, 62, 17618, 7, 944, 11, 3128, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 257, 3128, 393, 4818, 8079, 4554, 284, 257, 11188, 12178, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 4475, 11, 4818, 8079, 13, 19608, 8079, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 3128, 532, 2116, 13557, 8423, 62, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 4475, 11, 4818, 8079, 13, 4475, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 3128, 532, 2116, 13557, 8423, 62, 4475, 13, 4475, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 25979, 13, 12545, 1343, 25979, 13, 43012, 1220, 357, 1731, 13, 15, 1635, 3126, 1635, 3126, 8, 628, 220, 220, 220, 825, 640, 62, 6738, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 257, 12178, 1988, 284, 11188, 640, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 3146, 13, 15633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 25979, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2431, 11, 1218, 796, 2659, 4666, 7, 67, 12514, 13, 43012, 11, 3126, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1711, 11, 5664, 796, 2659, 4666, 7, 1084, 1769, 11, 3126, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4818, 8079, 13, 2435, 7, 9769, 11, 5664, 11, 1218, 8, 628, 220, 220, 220, 825, 640, 62, 1462, 62, 17618, 7, 944, 11, 640, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 257, 640, 4554, 284, 257, 11188, 12178, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 2435, 11, 4818, 8079, 13, 2435, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14808, 2435, 13, 12227, 1220, 3126, 13, 15, 1343, 640, 13, 11374, 8, 1220, 3126, 13, 15, 1343, 640, 13, 9769, 8, 1220, 1987, 13, 15, 628, 220, 220, 220, 1303, 18628, 25, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 8423, 62, 4475, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3128, 543, 318, 7997, 416, 257, 18253, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 9654, 31810, 13, 2398, 14, 15042, 14, 31628, 14, 11321, 14, 5420, 14, 785, 14, 19155, 14, 7364, 14, 22602, 14, 15057, 26227, 26232, 13, 6494, 2, 35067, 10430, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 8423, 62, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 33692, 796, 2116, 13557, 16793, 13, 1136, 15057, 26227, 26232, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 1271, 62, 33692, 13, 1136, 21746, 11395, 10786, 35067, 10430, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 8423, 62, 4475, 796, 4818, 8079, 13, 19608, 8079, 7, 67, 13, 17688, 11, 288, 13, 31948, 11, 288, 13, 12393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 8423, 62, 4475, 628, 198, 4871, 27850, 28264, 3118, 78, 44148, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8798, 284, 257, 2491, 284, 281, 4946, 27743, 13, 2398, 1430, 13, 628, 220, 220, 220, 40402, 284, 2251, 290, 1280, 286, 30117, 4963, 13, 628, 220, 220, 220, 8670, 641, 257, 4637, 284, 257, 2491, 4946, 27743, 13, 2398, 1430, 618, 27850, 198, 220, 220, 220, 4554, 318, 23224, 13, 1002, 262, 1430, 4946, 27743, 13, 2398, 318, 15765, 276, 198, 220, 220, 220, 788, 262, 4637, 318, 2626, 477, 8840, 2446, 3848, 481, 2038, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2251, 62, 43639, 21760, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 257, 649, 30117, 3188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 705, 19734, 25, 69, 9548, 14, 1416, 282, 66, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 796, 2116, 13557, 9654, 62, 6371, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 31843, 21760, 24941, 7, 22897, 8, 628, 220, 220, 220, 825, 1280, 62, 43639, 21760, 7, 944, 11, 3108, 11, 355, 62, 28243, 28, 25101, 11, 1100, 62, 8807, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8670, 641, 281, 33895, 30117, 3188, 319, 262, 1957, 2393, 1080, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3131, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 611, 355, 62, 28243, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 85, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 44749, 13, 21746, 11395, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 85, 13, 5376, 796, 705, 1722, 30800, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 85, 13, 11395, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 15853, 357, 79, 85, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1100, 62, 8807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 85, 796, 555, 78, 13, 17953, 3118, 78, 44909, 10786, 785, 13, 19155, 13, 7364, 13, 44749, 13, 21746, 11395, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 85, 13, 5376, 796, 705, 5569, 10049, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 85, 13, 11395, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3131, 15853, 357, 79, 85, 35751, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4725, 46, 4433, 4112, 13532, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 555, 78, 13, 10057, 15235, 2514, 8979, 28165, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 796, 2116, 13557, 9654, 62, 6371, 7, 6371, 11, 3131, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 31843, 21760, 24941, 7, 22897, 8, 628, 198, 4871, 406, 12582, 36881, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 406, 12582, 1895, 284, 257, 2491, 284, 4946, 4452, 1430, 13, 628, 220, 220, 220, 47081, 976, 7071, 355, 257, 27850, 1398, 475, 8075, 4637, 198, 220, 220, 220, 284, 4946, 27743, 1430, 618, 3306, 13, 383, 4621, 286, 428, 3164, 198, 220, 220, 220, 318, 326, 257, 406, 12582, 36881, 4554, 460, 8551, 422, 257, 15765, 286, 198, 220, 220, 220, 262, 4946, 27743, 13, 2398, 1430, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 537, 82, 796, 27850, 628, 220, 220, 220, 825, 2251, 62, 43639, 21760, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 257, 649, 30117, 3188, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11364, 796, 2116, 13, 565, 82, 7, 944, 13, 4774, 3672, 11, 2116, 13, 634, 11, 2116, 13, 34360, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11364, 13, 17953, 62, 43639, 21760, 3419, 628, 220, 220, 220, 825, 1280, 62, 43639, 21760, 7, 944, 11, 3108, 11, 355, 62, 28243, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8670, 641, 281, 33895, 30117, 3188, 319, 262, 1957, 2393, 1080, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11364, 796, 2116, 13, 565, 82, 7, 944, 13, 4774, 3672, 11, 2116, 13, 634, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11364, 13, 9654, 62, 43639, 21760, 7, 6978, 11, 355, 62, 28243, 28, 292, 62, 28243, 8, 628, 198, 4871, 6530, 8645, 1352, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 689, 4938, 3891, 329, 4946, 4452, 13, 628, 220, 220, 220, 9175, 82, 2610, 286, 973, 3891, 290, 857, 407, 1441, 530, 1988, 5403, 13, 628, 220, 220, 220, 28531, 1276, 407, 3994, 3435, 17635, 9, 30, 7479, 11757, 198, 220, 220, 220, 28531, 357, 259, 4697, 6300, 286, 440, 46, 8, 1276, 423, 4129, 286, 3261, 34534, 5415, 13, 198, 220, 220, 220, 28531, 1276, 307, 3748, 357, 7442, 41246, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3509, 62, 13664, 796, 3261, 198 ]
2.485603
19,691
# Author: Zi Wang import cPickle as pickle import os import active_learners.helper as helper from active_learners.active_learner import run_ActiveLearner def gen_data(expid, exp, n_data, save_fnm): ''' Generate initial data for a function associated the experiment. Args: expid: ID of the experiment; e.g. 0, 1, 2, ... exp: name of the experiment; e.g. 'pour', 'scoop'. n_data: number of data points to generate. save_fnm: a file name string where the initial data will be saved. ''' print('Generating data...') func = helper.get_func_from_exp(exp) xx, yy = helper.gen_data(func, n_data) pickle.dump((xx, yy), open(save_fnm, 'wb')) def run_exp(expid, exp, method, n_init_data, iters): ''' Run the active learning experiment. Args: expid: ID of the experiment; e.g. 0, 1, 2, ... exp: name of the experiment; e.g. 'pour', 'scoop'. method: learning method, including 'nn_classification': a classification neural network based learning algorithm that queries the input that has the largest output. 'nn_regression': a regression neural network based learning algorithm that queries the input that has the largest output. 'gp_best_prob': a Gaussian process based learning algorithm that queries the input that has the highest probability of having a positive function value. 'gp_lse': a Gaussian process based learning algorithm called straddle algorithm. See B. Bryan, R. C. Nichol, C. R. Genovese, J. Schneider, C. J. Miller, and L. Wasserman, "Active learning for identifying function threshold boundaries," in NIPS, 2006. 'random': an algorithm that query uniformly random samples. n_data: number of data points to generate. save_fnm: a file name string where the initial data will be saved. ''' dirnm = 'data/' if not os.path.isdir(dirnm): os.mkdir(dirnm) init_fnm = os.path.join( dirnm, '{}_init_data_{}.pk'.format(exp, expid)) gen_data(expid, exp, n_init_data, init_fnm) initx, inity = pickle.load(open(init_fnm, 'rb')) func = helper.get_func_from_exp(exp) active_learner = helper.get_learner_from_method(method, initx, inity, func) # file name for saving the learning results learn_fnm = os.path.join( dirnm, '{}_{}_{}.pk'.format(exp, method, expid)) # get a context context = helper.gen_context(func) # start running the learner print('Start running the learning experiment...') run_ActiveLearner(active_learner, context, learn_fnm, iters) def sample_exp(expid, exp, method): ''' Sample from the learned model. Args: expid: ID of the experiment; e.g. 0, 1, 2, ... exp: name of the experiment; e.g. 'pour', 'scoop'. method: see run_exp. ''' func = helper.get_func_from_exp(exp) xx, yy, c = helper.get_xx_yy(expid, method, exp=exp) active_learner = helper.get_learner_from_method(method, xx, yy, func) active_learner.retrain() # Enable gui func.do_gui = True while raw_input('Continue? [y/n]') == 'y': x = active_learner.sample(c) func(x) if __name__ == '__main__': exp = 'scoop' method = 'gp_lse' expid = 0 n_init_data = 10 iters = 50 run_exp(expid, exp, method, n_init_data, iters) sample_exp(expid, exp, method)
[ 2, 6434, 25, 45643, 15233, 198, 11748, 269, 31686, 293, 355, 2298, 293, 198, 11748, 28686, 198, 11748, 4075, 62, 35720, 364, 13, 2978, 525, 355, 31904, 198, 6738, 4075, 62, 35720, 364, 13, 5275, 62, 3238, 1008, 1330, 1057, 62, 13739, 14961, 1008, 628, 198, 4299, 2429, 62, 7890, 7, 11201, 312, 11, 1033, 11, 299, 62, 7890, 11, 3613, 62, 69, 21533, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2980, 378, 4238, 1366, 329, 257, 2163, 3917, 262, 6306, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 312, 25, 4522, 286, 262, 6306, 26, 304, 13, 70, 13, 657, 11, 352, 11, 362, 11, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 25, 1438, 286, 262, 6306, 26, 304, 13, 70, 13, 705, 48681, 3256, 705, 82, 1073, 404, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 7890, 25, 1271, 286, 1366, 2173, 284, 7716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 69, 21533, 25, 257, 2393, 1438, 4731, 810, 262, 4238, 1366, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 7448, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 10786, 8645, 803, 1366, 986, 11537, 198, 220, 220, 220, 25439, 796, 31904, 13, 1136, 62, 20786, 62, 6738, 62, 11201, 7, 11201, 8, 198, 220, 220, 220, 31383, 11, 331, 88, 796, 31904, 13, 5235, 62, 7890, 7, 20786, 11, 299, 62, 7890, 8, 198, 220, 220, 220, 2298, 293, 13, 39455, 19510, 5324, 11, 331, 88, 828, 1280, 7, 21928, 62, 69, 21533, 11, 705, 39346, 6, 4008, 198, 198, 4299, 1057, 62, 11201, 7, 11201, 312, 11, 1033, 11, 2446, 11, 299, 62, 15003, 62, 7890, 11, 340, 364, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5660, 262, 4075, 4673, 6306, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 312, 25, 4522, 286, 262, 6306, 26, 304, 13, 70, 13, 657, 11, 352, 11, 362, 11, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 25, 1438, 286, 262, 6306, 26, 304, 13, 70, 13, 705, 48681, 3256, 705, 82, 1073, 404, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 25, 4673, 2446, 11, 1390, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20471, 62, 4871, 2649, 10354, 257, 17923, 17019, 3127, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1912, 4673, 11862, 326, 20743, 262, 5128, 326, 468, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4387, 5072, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20471, 62, 2301, 2234, 10354, 257, 20683, 17019, 3127, 1912, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4673, 11862, 326, 20743, 262, 5128, 326, 468, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4387, 5072, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31197, 62, 13466, 62, 1676, 65, 10354, 257, 12822, 31562, 1429, 1912, 4673, 11862, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 20743, 262, 5128, 326, 468, 262, 4511, 12867, 286, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1719, 257, 3967, 2163, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31197, 62, 75, 325, 10354, 257, 12822, 31562, 1429, 1912, 4673, 11862, 1444, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 37382, 11862, 13, 4091, 347, 13, 17857, 11, 371, 13, 327, 13, 12760, 349, 11, 327, 13, 371, 13, 5215, 709, 2771, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 449, 13, 26039, 11, 327, 13, 449, 13, 7920, 11, 290, 406, 13, 38997, 11, 366, 13739, 4673, 329, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13720, 2163, 11387, 13215, 553, 287, 24947, 3705, 11, 4793, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25120, 10354, 281, 11862, 326, 12405, 42096, 4738, 8405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 7890, 25, 1271, 286, 1366, 2173, 284, 7716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 69, 21533, 25, 257, 2393, 1438, 4731, 810, 262, 4238, 1366, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 7448, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 26672, 21533, 796, 705, 7890, 14, 6, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 15908, 21533, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 15908, 21533, 8, 198, 220, 220, 220, 2315, 62, 69, 21533, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 21533, 11, 705, 90, 92, 62, 15003, 62, 7890, 23330, 27422, 79, 74, 4458, 18982, 7, 11201, 11, 1033, 312, 4008, 198, 220, 220, 220, 2429, 62, 7890, 7, 11201, 312, 11, 1033, 11, 299, 62, 15003, 62, 7890, 11, 2315, 62, 69, 21533, 8, 628, 220, 220, 220, 2315, 87, 11, 287, 414, 796, 2298, 293, 13, 2220, 7, 9654, 7, 15003, 62, 69, 21533, 11, 705, 26145, 6, 4008, 628, 220, 220, 220, 25439, 796, 31904, 13, 1136, 62, 20786, 62, 6738, 62, 11201, 7, 11201, 8, 628, 220, 220, 220, 4075, 62, 3238, 1008, 796, 31904, 13, 1136, 62, 3238, 1008, 62, 6738, 62, 24396, 7, 24396, 11, 2315, 87, 11, 287, 414, 11, 25439, 8, 628, 220, 220, 220, 1303, 2393, 1438, 329, 8914, 262, 4673, 2482, 198, 220, 220, 220, 2193, 62, 69, 21533, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 21533, 11, 705, 90, 92, 23330, 92, 23330, 27422, 79, 74, 4458, 18982, 7, 11201, 11, 2446, 11, 1033, 312, 4008, 628, 220, 220, 220, 1303, 651, 257, 4732, 198, 220, 220, 220, 4732, 796, 31904, 13, 5235, 62, 22866, 7, 20786, 8, 628, 220, 220, 220, 1303, 923, 2491, 262, 22454, 1008, 198, 220, 220, 220, 3601, 10786, 10434, 2491, 262, 4673, 6306, 986, 11537, 198, 220, 220, 220, 1057, 62, 13739, 14961, 1008, 7, 5275, 62, 3238, 1008, 11, 4732, 11, 2193, 62, 69, 21533, 11, 340, 364, 8, 198, 198, 4299, 6291, 62, 11201, 7, 11201, 312, 11, 1033, 11, 2446, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27565, 422, 262, 4499, 2746, 13, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 312, 25, 4522, 286, 262, 6306, 26, 304, 13, 70, 13, 657, 11, 352, 11, 362, 11, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 25, 1438, 286, 262, 6306, 26, 304, 13, 70, 13, 705, 48681, 3256, 705, 82, 1073, 404, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 25, 766, 1057, 62, 11201, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 25439, 796, 31904, 13, 1136, 62, 20786, 62, 6738, 62, 11201, 7, 11201, 8, 198, 220, 220, 220, 31383, 11, 331, 88, 11, 269, 796, 31904, 13, 1136, 62, 5324, 62, 22556, 7, 11201, 312, 11, 2446, 11, 1033, 28, 11201, 8, 198, 220, 220, 220, 4075, 62, 3238, 1008, 796, 31904, 13, 1136, 62, 3238, 1008, 62, 6738, 62, 24396, 7, 24396, 11, 31383, 11, 331, 88, 11, 25439, 8, 198, 220, 220, 220, 4075, 62, 3238, 1008, 13, 1186, 3201, 3419, 198, 220, 220, 220, 1303, 27882, 11774, 198, 220, 220, 220, 25439, 13, 4598, 62, 48317, 796, 6407, 198, 220, 220, 220, 981, 8246, 62, 15414, 10786, 29453, 30, 685, 88, 14, 77, 60, 11537, 6624, 705, 88, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 4075, 62, 3238, 1008, 13, 39873, 7, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 7, 87, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1033, 796, 705, 82, 1073, 404, 6, 198, 220, 220, 220, 2446, 796, 705, 31197, 62, 75, 325, 6, 198, 220, 220, 220, 1033, 312, 796, 657, 198, 220, 220, 220, 299, 62, 15003, 62, 7890, 796, 838, 198, 220, 220, 220, 340, 364, 796, 2026, 198, 220, 220, 220, 1057, 62, 11201, 7, 11201, 312, 11, 1033, 11, 2446, 11, 299, 62, 15003, 62, 7890, 11, 340, 364, 8, 198, 220, 220, 220, 6291, 62, 11201, 7, 11201, 312, 11, 1033, 11, 2446, 8, 198 ]
2.364418
1,512
import pybullet as p import time import pybullet_data from math import sin, cos import random physicsClient= p.connect(p.GUI)#or p.DIRECTfor non-graphical version p.setAdditionalSearchPath(pybullet_data.getDataPath()) #optionally p.setGravity(0,0,-10) planeId= p.loadURDF("plane.urdf") robotStartPos= [0,0,1] robotStartOrientation= p.getQuaternionFromEuler([0,0,0]) robotId= p.loadURDF("dumbo_color.urdf", robotStartPos, robotStartOrientation) mode = p.POSITION_CONTROL jointIndex = [i for i in range(8)] jointIndex= 0 # 2 motor leg thigh (1) jointIndex1= 1 # 2 motor leg calf (1) jointIndex2= 2 # 2 motor leg thigh (2) jointIndex3= 3 # 2 motor leg calf (2) jointIndex4= 4 # 1 motor leg calf (1) jointIndex5= 5 # 1 motor leg calf (2) jointIndex6= 6 # 1 motor leg calf (3) jointIndex7= 7 # 1 motor leg calf (4) # original test parameters w = 0.1 # beat parameter chould increase/decrease with 1% based on picked up beat a = 0.4 b = 0.8 c = 0.6 # # our first walking parameters # w = 0.02 # 2/100 # beat parameter chould increase/decrease with 1% based on picked up beat # a = 0.5 # 120/240 # b = 0.2 # 50/240 # c = 0 # 0/240 # random.seed(8) # assume a, c # print(a) # print(c) # w = 0.2 # beat parameter chould increase/decrease with 1% based on picked up beat # a = 0 # b = 1 #1 # c = 0 # change phase # other continuous functions for i in range (10000): p.stepSimulation() # if (i % 10 == 0): # a = [random.random() for j in range(8)] # b = [random.random() for j in range(8)] # c = [random.random() for j in range(8)] # if i >= 200: # num_motors = random.randrange(1,8) # motors = random.sample(range(8), num_motors) # print(num_motors, motors) # for n in motors: # p.setJointMotorControl2(robotId, jointIndex[n], controlMode=mode, targetPosition=(a[n]+b[n]*sin(i*w+c[n]))) # time.sleep(1./20.) # 2 motor leg thigh (1) # p.setJointMotorControl2(robotId, jointIndex, controlMode=mode, targetPosition=0.4+0.8*sin(i*0.01+0.6)) # p.setJointMotorControl2(robotId, jointIndex1, controlMode=mode, targetPosition=(a+b*sin(i*w+c))) # 2 motor leg calf (1) # p.setJointMotorControl2(robotId, jointIndex2, controlMode=mode, targetPosition=(a+b*cos(i*w+c))) # 2 motor leg thigh (2) # p.setJointMotorControl2(robotId, jointIndex3, controlMode=mode, targetPosition=(a+b*cos(i*w+c))) # 2 motor leg calf (2) p.setJointMotorControl2(robotId, jointIndex4, controlMode=mode, targetPosition=(a+b*sin(i*w+c))) # 1 motor leg calf (1) p.setJointMotorControl2(robotId, jointIndex5, controlMode=mode, targetPosition=(a+b*cos(i*w+c))) # 1 motor leg calf (2) p.setJointMotorControl2(robotId, jointIndex6, controlMode=mode, targetPosition=(a+b*sin(i*w+c))) # 1 motor leg calf (3) p.setJointMotorControl2(robotId, jointIndex7, controlMode=mode, targetPosition=(a+b*cos(i*w+c))) # 1 motor leg calf (4) time.sleep(1./100.) # make this dependent on song # change dance speed with the beat #time.sleep(w) robotPos, robotOrn= p.getBasePositionAndOrientation(robotId) print(robotPos, robotOrn) p.disconnect() # print(p.getNumJoints(robotId))
[ 11748, 12972, 15065, 1616, 355, 279, 198, 11748, 640, 198, 11748, 12972, 15065, 1616, 62, 7890, 198, 6738, 10688, 1330, 7813, 11, 8615, 198, 11748, 4738, 220, 198, 198, 746, 23154, 11792, 28, 279, 13, 8443, 7, 79, 13, 40156, 8, 2, 273, 279, 13, 17931, 23988, 1640, 1729, 12, 34960, 605, 2196, 198, 79, 13, 2617, 17699, 18243, 15235, 7, 9078, 15065, 1616, 62, 7890, 13, 1136, 6601, 15235, 28955, 1303, 18076, 453, 198, 79, 13, 2617, 38, 16995, 7, 15, 11, 15, 12095, 940, 8, 198, 14382, 7390, 28, 279, 13, 2220, 4261, 8068, 7203, 14382, 13, 2799, 69, 4943, 198, 305, 13645, 10434, 21604, 28, 685, 15, 11, 15, 11, 16, 60, 198, 305, 13645, 10434, 46, 8289, 341, 28, 279, 13, 1136, 4507, 9205, 295, 4863, 36, 18173, 26933, 15, 11, 15, 11, 15, 12962, 198, 305, 13645, 7390, 28, 279, 13, 2220, 4261, 8068, 7203, 67, 29309, 62, 8043, 13, 2799, 69, 1600, 9379, 10434, 21604, 11, 9379, 10434, 46, 8289, 341, 8, 198, 14171, 796, 279, 13, 37997, 17941, 62, 10943, 5446, 3535, 198, 73, 1563, 15732, 796, 685, 72, 329, 1312, 287, 2837, 7, 23, 15437, 198, 73, 1563, 15732, 28, 657, 1303, 362, 5584, 1232, 19341, 357, 16, 8, 198, 73, 1563, 15732, 16, 28, 352, 1303, 362, 5584, 1232, 31134, 357, 16, 8, 198, 73, 1563, 15732, 17, 28, 362, 1303, 362, 5584, 1232, 19341, 357, 17, 8, 198, 73, 1563, 15732, 18, 28, 513, 1303, 362, 5584, 1232, 31134, 357, 17, 8, 198, 73, 1563, 15732, 19, 28, 604, 1303, 352, 5584, 1232, 31134, 357, 16, 8, 198, 73, 1563, 15732, 20, 28, 642, 1303, 352, 5584, 1232, 31134, 357, 17, 8, 198, 73, 1563, 15732, 21, 28, 718, 1303, 352, 5584, 1232, 31134, 357, 18, 8, 198, 73, 1563, 15732, 22, 28, 767, 1303, 352, 5584, 1232, 31134, 357, 19, 8, 198, 198, 2, 2656, 1332, 10007, 198, 86, 796, 657, 13, 16, 197, 2, 4405, 11507, 442, 426, 2620, 14, 12501, 260, 589, 351, 352, 4, 1912, 319, 6497, 510, 4405, 198, 64, 796, 657, 13, 19, 197, 197, 198, 65, 796, 657, 13, 23, 198, 66, 796, 657, 13, 21, 198, 198, 2, 1303, 674, 717, 6155, 10007, 198, 2, 266, 796, 657, 13, 2999, 197, 197, 2, 362, 14, 3064, 220, 197, 2, 4405, 11507, 442, 426, 2620, 14, 12501, 260, 589, 351, 352, 4, 1912, 319, 6497, 510, 4405, 198, 2, 257, 796, 657, 13, 20, 197, 197, 2, 7982, 14, 16102, 197, 198, 2, 275, 796, 657, 13, 17, 197, 197, 2, 2026, 14, 16102, 198, 2, 269, 796, 657, 197, 197, 2, 657, 14, 16102, 198, 198, 2, 4738, 13, 28826, 7, 23, 8, 198, 2, 7048, 257, 11, 269, 220, 198, 2, 3601, 7, 64, 8, 198, 2, 3601, 7, 66, 8, 628, 198, 2, 266, 796, 657, 13, 17, 197, 2, 4405, 11507, 442, 426, 2620, 14, 12501, 260, 589, 351, 352, 4, 1912, 319, 6497, 510, 4405, 198, 2, 257, 796, 657, 198, 2, 275, 796, 352, 1303, 16, 198, 2, 269, 796, 657, 1303, 1487, 7108, 198, 2, 584, 12948, 5499, 198, 198, 1640, 1312, 287, 2837, 357, 49388, 2599, 198, 220, 220, 220, 279, 13, 9662, 8890, 1741, 3419, 628, 220, 220, 220, 1303, 611, 357, 72, 4064, 838, 6624, 657, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 257, 796, 685, 25120, 13, 25120, 3419, 329, 474, 287, 2837, 7, 23, 15437, 198, 220, 220, 220, 1303, 220, 220, 220, 275, 796, 685, 25120, 13, 25120, 3419, 329, 474, 287, 2837, 7, 23, 15437, 198, 220, 220, 220, 1303, 220, 220, 220, 269, 796, 685, 25120, 13, 25120, 3419, 329, 474, 287, 2837, 7, 23, 15437, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 611, 1312, 18189, 939, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 997, 62, 27926, 669, 796, 4738, 13, 25192, 9521, 7, 16, 11, 23, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 24699, 796, 4738, 13, 39873, 7, 9521, 7, 23, 828, 997, 62, 27926, 669, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7, 22510, 62, 27926, 669, 11, 24699, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 299, 287, 24699, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 58, 77, 4357, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 58, 77, 48688, 65, 58, 77, 60, 9, 31369, 7, 72, 9, 86, 10, 66, 58, 77, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 640, 13, 42832, 7, 16, 19571, 1238, 2014, 628, 197, 2, 362, 5584, 1232, 19341, 357, 16, 8, 198, 197, 2, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 28, 15, 13, 19, 10, 15, 13, 23, 9, 31369, 7, 72, 9, 15, 13, 486, 10, 15, 13, 21, 4008, 198, 197, 2, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 16, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 31369, 7, 72, 9, 86, 10, 66, 22305, 197, 2, 362, 5584, 1232, 31134, 357, 16, 8, 198, 197, 2, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 17, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 6966, 7, 72, 9, 86, 10, 66, 22305, 197, 2, 362, 5584, 1232, 19341, 357, 17, 8, 198, 197, 2, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 18, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 6966, 7, 72, 9, 86, 10, 66, 22305, 197, 2, 362, 5584, 1232, 31134, 357, 17, 8, 198, 220, 220, 220, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 19, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 31369, 7, 72, 9, 86, 10, 66, 22305, 1303, 352, 5584, 1232, 31134, 357, 16, 8, 198, 220, 220, 220, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 20, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 6966, 7, 72, 9, 86, 10, 66, 22305, 1303, 352, 5584, 1232, 31134, 357, 17, 8, 198, 220, 220, 220, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 21, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 31369, 7, 72, 9, 86, 10, 66, 22305, 1303, 352, 5584, 1232, 31134, 357, 18, 8, 198, 220, 220, 220, 279, 13, 2617, 41, 1563, 34919, 15988, 17, 7, 305, 13645, 7390, 11, 6466, 15732, 22, 11, 1630, 19076, 28, 14171, 11, 2496, 26545, 16193, 64, 10, 65, 9, 6966, 7, 72, 9, 86, 10, 66, 22305, 1303, 352, 5584, 1232, 31134, 357, 19, 8, 628, 220, 220, 220, 640, 13, 42832, 7, 16, 19571, 3064, 2014, 1303, 787, 428, 10795, 319, 3496, 198, 197, 2, 1487, 9280, 2866, 351, 262, 4405, 198, 197, 2, 2435, 13, 42832, 7, 86, 8, 198, 198, 305, 13645, 21604, 11, 9379, 5574, 77, 28, 279, 13, 1136, 14881, 26545, 1870, 46, 8289, 341, 7, 305, 13645, 7390, 8, 198, 4798, 7, 305, 13645, 21604, 11, 9379, 5574, 77, 8, 198, 79, 13, 6381, 8443, 3419, 198, 198, 2, 3601, 7, 79, 13, 1136, 33111, 41, 1563, 82, 7, 305, 13645, 7390, 4008 ]
2.446429
1,288
# -*- coding: utf-8 -*- # # Dell EMC OpenManage Ansible Modules # Version 2.1.3 # Copyright (C) 2020 Dell Inc. or its subsidiaries. All Rights Reserved. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # from __future__ import (absolute_import, division, print_function) __metaclass__ = type import pytest import json from ansible_collections.dellemc.openmanage.plugins.modules import ome_network_vlan_info from ansible_collections.dellemc.openmanage.tests.unit.plugins.modules.common import FakeAnsibleModule, Constants from ansible.module_utils.six.moves.urllib.error import URLError, HTTPError from ansible.module_utils.urls import ConnectionError, SSLValidationError from io import StringIO from ansible.module_utils._text import to_text MODULE_PATH = 'ansible_collections.dellemc.openmanage.plugins.modules.' response = { '@odata.context': '/api/$metadata#Collection(NetworkConfigurationService.Network)', '@odata.count': 1, 'value': [ { '@odata.type': '#NetworkConfigurationService.Network', '@odata.id': '/api/NetworkConfigurationService/Networks(20057)', 'Id': 20057, 'Name': 'Logical Network - 1', 'Description': 'Description of Logical Network - 1', 'VlanMaximum': 111, 'VlanMinimum': 111, "Type": 1, 'CreatedBy': 'admin', 'CreationTime': '2020-09-02 18:48:42.129', 'UpdatedBy': None, 'UpdatedTime': '2020-09-02 18:48:42.129', 'InternalRefNWUUId': '42b9903d-93f8-4184-adcf-0772e4492f71' } ] } network_type_qos_type_dict_reponse = {1: {'Id': 1, 'Name': 'General Purpose (Bronze)', 'Description': 'This is the network for general purpose traffic. QOS Priority : Bronze.', 'VendorCode': 'GeneralPurpose', 'NetworkTrafficType': 'Ethernet', 'QosType': {'Id': 4, 'Name': 'Bronze'}}} network_type_dict_response = {1: {'Id': 1, 'Name': 'General Purpose (Bronze)', 'Description': 'This is the network for general purpose traffic. QOS Priority : Bronze.', 'VendorCode': 'GeneralPurpose', 'NetworkTrafficType': 'Ethernet', 'QosType': 4}} qos_type_dict_response = {4: {'Id': 4, 'Name': 'Bronze'}} type_dict_ome_reponse = {'@odata.context': '/api/$metadata#Collection(NetworkConfigurationService.Network)', '@odata.count': 1, 'value': [ {'@odata.type': '#NetworkConfigurationService.NetworkType', '@odata.id': '/api/NetworkConfigurationService/NetworkTypes(1)', 'Id': 1, 'Name': 'General Purpose (Bronze)', 'Description': 'This is the network for general purpose traffic. QOS Priority : Bronze.', 'VendorCode': 'GeneralPurpose', 'NetworkTrafficType': 'Ethernet', 'QosType': 4}]} class TestOmeNetworkVlanInfo(FakeAnsibleModule): """Pytest class for ome_network_vlan_info module.""" module = ome_network_vlan_info @pytest.fixture @pytest.mark.parametrize("exc_type", [URLError, HTTPError, SSLValidationError, ConnectionError, TypeError, ValueError])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 198, 2, 23617, 412, 9655, 4946, 5124, 496, 28038, 856, 3401, 5028, 198, 2, 10628, 362, 13, 16, 13, 18, 198, 2, 15069, 357, 34, 8, 12131, 23617, 3457, 13, 393, 663, 34943, 13, 1439, 6923, 33876, 13, 198, 198, 2, 22961, 3611, 5094, 13789, 410, 18, 13, 15, 10, 357, 3826, 27975, 45761, 393, 3740, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 70, 489, 12, 18, 13, 15, 13, 14116, 8, 198, 2, 198, 198, 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 8, 198, 198, 834, 4164, 330, 31172, 834, 796, 2099, 198, 198, 11748, 12972, 9288, 198, 11748, 33918, 198, 6738, 9093, 856, 62, 4033, 26448, 13, 12381, 10671, 66, 13, 9654, 805, 496, 13, 37390, 13, 18170, 1330, 267, 1326, 62, 27349, 62, 85, 9620, 62, 10951, 198, 6738, 9093, 856, 62, 4033, 26448, 13, 12381, 10671, 66, 13, 9654, 805, 496, 13, 41989, 13, 20850, 13, 37390, 13, 18170, 13, 11321, 1330, 33482, 2025, 82, 856, 26796, 11, 4757, 1187, 198, 6738, 9093, 856, 13, 21412, 62, 26791, 13, 19412, 13, 76, 5241, 13, 333, 297, 571, 13, 18224, 1330, 37902, 2538, 81, 1472, 11, 14626, 12331, 198, 6738, 9093, 856, 13, 21412, 62, 26791, 13, 6371, 82, 1330, 26923, 12331, 11, 25952, 7762, 24765, 12331, 198, 6738, 33245, 1330, 10903, 9399, 198, 6738, 9093, 856, 13, 21412, 62, 26791, 13557, 5239, 1330, 284, 62, 5239, 198, 198, 33365, 24212, 62, 34219, 796, 705, 504, 856, 62, 4033, 26448, 13, 12381, 10671, 66, 13, 9654, 805, 496, 13, 37390, 13, 18170, 2637, 198, 198, 26209, 796, 1391, 198, 220, 220, 220, 705, 31, 375, 1045, 13, 22866, 10354, 31051, 15042, 32624, 38993, 2, 36307, 7, 26245, 38149, 16177, 13, 26245, 8, 3256, 198, 220, 220, 220, 705, 31, 375, 1045, 13, 9127, 10354, 352, 11, 198, 220, 220, 220, 705, 8367, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 375, 1045, 13, 4906, 10354, 705, 2, 26245, 38149, 16177, 13, 26245, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 375, 1045, 13, 312, 10354, 31051, 15042, 14, 26245, 38149, 16177, 14, 7934, 5225, 7, 2167, 3553, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7390, 10354, 939, 3553, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5376, 10354, 705, 11187, 605, 7311, 532, 352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11828, 10354, 705, 11828, 286, 5972, 605, 7311, 532, 352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 9620, 40541, 10354, 13374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 9620, 44046, 10354, 13374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6030, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41972, 3886, 10354, 705, 28482, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12443, 341, 7575, 10354, 705, 42334, 12, 2931, 12, 2999, 1248, 25, 2780, 25, 3682, 13, 18741, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17354, 3886, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17354, 7575, 10354, 705, 42334, 12, 2931, 12, 2999, 1248, 25, 2780, 25, 3682, 13, 18741, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 37693, 8134, 27605, 30100, 7390, 10354, 705, 3682, 65, 2079, 3070, 67, 12, 6052, 69, 23, 12, 19, 22883, 12, 324, 12993, 12, 2998, 4761, 68, 2598, 5892, 69, 4869, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2361, 198, 92, 198, 198, 27349, 62, 4906, 62, 80, 418, 62, 4906, 62, 11600, 62, 7856, 2591, 796, 1391, 16, 25, 1391, 6, 7390, 10354, 352, 11, 705, 5376, 10354, 705, 12218, 32039, 357, 18760, 2736, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11828, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1212, 318, 262, 3127, 329, 2276, 4007, 4979, 13, 1195, 2640, 34416, 1058, 19461, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 18738, 10669, 10354, 705, 12218, 30026, 3455, 3256, 705, 26245, 15721, 2108, 6030, 10354, 705, 36, 490, 3262, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48, 418, 6030, 10354, 1391, 6, 7390, 10354, 604, 11, 705, 5376, 10354, 705, 18760, 2736, 6, 42535, 198, 198, 27349, 62, 4906, 62, 11600, 62, 26209, 796, 1391, 16, 25, 1391, 6, 7390, 10354, 352, 11, 705, 5376, 10354, 705, 12218, 32039, 357, 18760, 2736, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11828, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1212, 318, 262, 3127, 329, 2276, 4007, 4979, 13, 1195, 2640, 34416, 1058, 19461, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 18738, 10669, 10354, 705, 12218, 30026, 3455, 3256, 705, 26245, 15721, 2108, 6030, 10354, 705, 36, 490, 3262, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48, 418, 6030, 10354, 604, 11709, 198, 198, 80, 418, 62, 4906, 62, 11600, 62, 26209, 796, 1391, 19, 25, 1391, 6, 7390, 10354, 604, 11, 705, 5376, 10354, 705, 18760, 2736, 6, 11709, 198, 198, 4906, 62, 11600, 62, 462, 62, 7856, 2591, 796, 1391, 6, 31, 375, 1045, 13, 22866, 10354, 31051, 15042, 32624, 38993, 2, 36307, 7, 26245, 38149, 16177, 13, 26245, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 375, 1045, 13, 9127, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 31, 375, 1045, 13, 4906, 10354, 705, 2, 26245, 38149, 16177, 13, 26245, 6030, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31, 375, 1045, 13, 312, 10354, 31051, 15042, 14, 26245, 38149, 16177, 14, 26245, 31431, 7, 16, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7390, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5376, 10354, 705, 12218, 32039, 357, 18760, 2736, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11828, 10354, 705, 1212, 318, 262, 3127, 329, 2276, 4007, 4979, 13, 1195, 2640, 34416, 1058, 19461, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 18738, 10669, 10354, 705, 12218, 30026, 3455, 3256, 705, 26245, 15721, 2108, 6030, 10354, 705, 36, 490, 3262, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48, 418, 6030, 10354, 604, 92, 48999, 628, 198, 4871, 6208, 46, 1326, 26245, 53, 9620, 12360, 7, 49233, 2025, 82, 856, 26796, 2599, 198, 220, 220, 220, 37227, 20519, 9288, 1398, 329, 267, 1326, 62, 27349, 62, 85, 9620, 62, 10951, 8265, 526, 15931, 198, 220, 220, 220, 8265, 796, 267, 1326, 62, 27349, 62, 85, 9620, 62, 10951, 628, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 41194, 62, 4906, 1600, 685, 4261, 2538, 81, 1472, 11, 14626, 12331, 11, 25952, 7762, 24765, 12331, 11, 26923, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 11, 11052, 12331, 12962, 198 ]
2.070326
1,749
# <<BEGIN-copyright>> # Copyright 2021, Lawrence Livermore National Security, LLC. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: BSD-3-Clause # <<END-copyright>> from math import sqrt from brownies.legacy.toENDF6 import endfFormats as endfFormatsModule from brownies.legacy.converting.ENDFToGNDS import ENDF_ITYPE_4 from PoPs.decays import decayData as decayDataModule from PoPs.decays import spectrum as spectrumModule RTYPdict = {} for key, value in ENDF_ITYPE_4.decayType.items(): RTYPdict[value] = key STYPdict = {} for key, value in ENDF_ITYPE_4.STYPProduct.items(): STYPdict[value] = key decayDataModule.decayData.toENDF6 = toENDF6
[ 2, 9959, 33, 43312, 12, 22163, 4766, 4211, 198, 2, 15069, 33448, 11, 13914, 45036, 3549, 2351, 4765, 11, 11419, 13, 198, 2, 4091, 262, 1353, 12, 5715, 27975, 38162, 9947, 2393, 329, 3307, 13, 198, 2, 220, 198, 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 347, 10305, 12, 18, 12, 2601, 682, 198, 2, 9959, 10619, 12, 22163, 4766, 4211, 198, 198, 6738, 10688, 1330, 19862, 17034, 198, 198, 6738, 7586, 444, 13, 1455, 1590, 13, 1462, 1677, 8068, 21, 1330, 886, 69, 8479, 1381, 355, 886, 69, 8479, 1381, 26796, 198, 6738, 7586, 444, 13, 1455, 1590, 13, 1102, 48820, 13, 1677, 8068, 2514, 16630, 5258, 1330, 12964, 8068, 62, 9050, 11401, 62, 19, 198, 198, 6738, 7695, 12016, 13, 12501, 592, 1330, 22119, 6601, 355, 22119, 6601, 26796, 198, 6738, 7695, 12016, 13, 12501, 592, 1330, 10958, 355, 10958, 26796, 198, 198, 49, 9936, 47, 11600, 796, 23884, 198, 1640, 1994, 11, 1988, 287, 12964, 8068, 62, 9050, 11401, 62, 19, 13, 12501, 323, 6030, 13, 23814, 33529, 198, 220, 220, 220, 371, 9936, 47, 11600, 58, 8367, 60, 796, 1994, 198, 198, 2257, 48232, 11600, 796, 23884, 198, 1640, 1994, 11, 1988, 287, 12964, 8068, 62, 9050, 11401, 62, 19, 13, 2257, 56, 10246, 2076, 310, 13, 23814, 33529, 198, 220, 220, 220, 3563, 48232, 11600, 58, 8367, 60, 796, 1994, 628, 198, 12501, 323, 6601, 26796, 13, 12501, 323, 6601, 13, 1462, 1677, 8068, 21, 796, 284, 1677, 8068, 21, 198 ]
2.762097
248