content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import numpy as np from pytest import raises from numpy.testing import assert_allclose from menpo.shape import PointCloud from menpo.image import MaskedImage, BooleanImage
[ 11748, 299, 32152, 355, 45941, 198, 6738, 12972, 9288, 1330, 12073, 198, 6738, 299, 32152, 13, 33407, 1330, 6818, 62, 439, 19836, 198, 198, 6738, 1450, 7501, 13, 43358, 1330, 6252, 18839, 198, 6738, 1450, 7501, 13, 9060, 1330, 18007, 276, 5159, 11, 41146, 5159, 628, 628, 628, 628, 628, 628, 628, 628 ]
3.54717
53
# coding: utf-8 # # Project: Azimuthal integration # https://github.com/silx-kit/pyFAI # # Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Module containing utilities around shell""" from __future__ import absolute_import, print_function, division __author__ = "[email protected]" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "18/12/2017" __status__ = "development" __docformat__ = 'restructuredtext' import sys import codecs class ProgressBar: """ Progress bar in shell mode """ def __init__(self, title, max_value, bar_width): """ Create a progress bar using a title, a maximum value and a graphical size. The display is done with stdout using carriage return to to hide the previous progress. It is not possible to use stdout for something else whill a progress bar is in use. The result looks like: .. code-block:: none Title [■■■■■■ ] 50% Message :param title: Title displayed before the progress bar :type title: str :param max_value: The maximum value of the progress bar :type max_value: float :param bar_width: Size of the progressbar in the screen :type bar_width: int """ self.title = title self.max_value = max_value self.bar_width = bar_width self.last_size = 0 encoding = None if hasattr(sys.stdout, "encoding"): # sys.stdout.encoding can't be used in unittest context with some # configurations of TestRunner. It does not exists in Python2 # StringIO and is None in Python3 StringIO. encoding = sys.stdout.encoding if encoding is None: # We uses the safer aproch: a valid ASCII character. self.progress_char = '#' else: try: self.progress_char = u'\u25A0' _byte = codecs.encode(self.progress_char, encoding) except (ValueError, TypeError, LookupError): # In case the char is not supported by the encoding, # or if the encoding does not exists self.progress_char = '#' def clear(self): """ Remove the progress bar from the display and move the cursor at the beginning of the line using carriage return. """ sys.stdout.write('\r' + " " * self.last_size + "\r") sys.stdout.flush() def update(self, value, message=""): """ Update the progrss bar with the progress bar's current value. Set the progress bar's current value, compute the percentage of progress and update the screen with. Carriage return is used first and then the content of the progress bar. The cursor is at the begining of the line. :param value: progress bar's current value :type value: float :param message: message displayed after the progress bar :type message: str """ coef = (1.0 * value) / self.max_value percent = round(coef * 100) bar_position = int(coef * self.bar_width) if bar_position > self.bar_width: bar_position = self.bar_width # line to display line = '\r%15s [%s%s] % 3d%% %s' % (self.title, self.progress_char * bar_position, ' ' * (self.bar_width - bar_position), percent, message) # trailing to mask the previous message line_size = len(line) clean_size = self.last_size - line_size if clean_size < 0: clean_size = 0 self.last_size = line_size sys.stdout.write(line + " " * clean_size + "\r") sys.stdout.flush()
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 198, 2, 220, 220, 220, 4935, 25, 7578, 320, 1071, 282, 11812, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 18217, 87, 12, 15813, 14, 9078, 7708, 40, 198, 2, 198, 2, 220, 220, 220, 15069, 357, 34, 8, 1853, 12, 7908, 3427, 16065, 354, 10599, 1313, 47532, 29118, 11, 19674, 672, 293, 11, 4881, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 198, 37811, 26796, 7268, 20081, 1088, 7582, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 7297, 198, 198, 834, 9800, 834, 796, 366, 2100, 31371, 13, 85, 5691, 31, 274, 41871, 13, 12496, 1, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 22163, 4766, 834, 796, 366, 22030, 16065, 354, 10599, 1313, 47532, 29118, 11, 19674, 672, 293, 11, 4881, 1, 198, 834, 4475, 834, 796, 366, 1507, 14, 1065, 14, 5539, 1, 198, 834, 13376, 834, 796, 366, 31267, 1, 198, 834, 15390, 18982, 834, 796, 705, 2118, 1356, 1522, 5239, 6, 198, 198, 11748, 25064, 198, 11748, 40481, 82, 628, 198, 4871, 18387, 10374, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18387, 2318, 287, 7582, 4235, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3670, 11, 3509, 62, 8367, 11, 2318, 62, 10394, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 4371, 2318, 1262, 257, 3670, 11, 257, 5415, 1988, 290, 257, 27831, 2546, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 3359, 318, 1760, 351, 14367, 448, 1262, 25739, 1441, 284, 284, 7808, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2180, 4371, 13, 632, 318, 407, 1744, 284, 779, 14367, 448, 329, 1223, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 348, 359, 257, 4371, 2318, 318, 287, 779, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1255, 3073, 588, 25, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 4844, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11851, 685, 29316, 29316, 29316, 29316, 29316, 29316, 220, 220, 220, 220, 220, 2361, 220, 2026, 4, 220, 16000, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3670, 25, 11851, 9066, 878, 262, 4371, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3670, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3509, 62, 8367, 25, 383, 5415, 1988, 286, 262, 4371, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3509, 62, 8367, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2318, 62, 10394, 25, 12849, 286, 262, 4371, 5657, 287, 262, 3159, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2318, 62, 10394, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7839, 796, 3670, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9806, 62, 8367, 796, 3509, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5657, 62, 10394, 796, 2318, 62, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12957, 62, 7857, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 17597, 13, 19282, 448, 11, 366, 12685, 7656, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25064, 13, 19282, 448, 13, 12685, 7656, 460, 470, 307, 973, 287, 555, 715, 395, 4732, 351, 617, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25412, 286, 6208, 49493, 13, 632, 857, 407, 7160, 287, 11361, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10903, 9399, 290, 318, 6045, 287, 11361, 18, 10903, 9399, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 796, 25064, 13, 19282, 448, 13, 12685, 7656, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21004, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 3544, 262, 14178, 257, 1676, 354, 25, 257, 4938, 37101, 2095, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33723, 62, 10641, 796, 705, 2, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33723, 62, 10641, 796, 334, 6, 59, 84, 1495, 32, 15, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26327, 796, 40481, 82, 13, 268, 8189, 7, 944, 13, 33723, 62, 10641, 11, 21004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 11395, 12331, 11, 5994, 12331, 11, 6803, 929, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 554, 1339, 262, 1149, 318, 407, 4855, 416, 262, 21004, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 393, 611, 262, 21004, 857, 407, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33723, 62, 10641, 796, 705, 2, 6, 628, 220, 220, 220, 825, 1598, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17220, 262, 4371, 2318, 422, 262, 3359, 290, 1445, 262, 23493, 198, 220, 220, 220, 220, 220, 220, 220, 379, 262, 3726, 286, 262, 1627, 1262, 25739, 1441, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 10786, 59, 81, 6, 1343, 366, 366, 1635, 2116, 13, 12957, 62, 7857, 1343, 37082, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 1988, 11, 3275, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 262, 1172, 42216, 2318, 351, 262, 4371, 2318, 338, 1459, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 4371, 2318, 338, 1459, 1988, 11, 24061, 262, 5873, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4371, 290, 4296, 262, 3159, 351, 13, 1879, 4087, 1441, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 717, 290, 788, 262, 2695, 286, 262, 4371, 2318, 13, 383, 23493, 318, 198, 220, 220, 220, 220, 220, 220, 220, 379, 262, 2221, 278, 286, 262, 1627, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 4371, 2318, 338, 1459, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1988, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3275, 25, 3275, 9066, 706, 262, 4371, 2318, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3275, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 796, 357, 16, 13, 15, 1635, 1988, 8, 1220, 2116, 13, 9806, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 796, 2835, 7, 1073, 891, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 9150, 796, 493, 7, 1073, 891, 1635, 2116, 13, 5657, 62, 10394, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2318, 62, 9150, 1875, 2116, 13, 5657, 62, 10394, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2318, 62, 9150, 796, 2116, 13, 5657, 62, 10394, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1627, 284, 3359, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 705, 59, 81, 4, 1314, 82, 685, 4, 82, 4, 82, 60, 4064, 513, 67, 16626, 220, 4064, 82, 6, 4064, 357, 944, 13, 7839, 11, 2116, 13, 33723, 62, 10641, 1635, 2318, 62, 9150, 11, 705, 705, 1635, 357, 944, 13, 5657, 62, 10394, 532, 2318, 62, 9150, 828, 1411, 11, 3275, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 25462, 284, 9335, 262, 2180, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 7857, 796, 18896, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 7857, 796, 2116, 13, 12957, 62, 7857, 532, 1627, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 7857, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 7857, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12957, 62, 7857, 796, 1627, 62, 7857, 628, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 1370, 1343, 366, 366, 1635, 3424, 62, 7857, 1343, 37082, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198 ]
2.64837
1,840
aes_passphrase = "Palantir_is_the_best1337" aes_iv = b'wtf1sd1sw4t1sd1s'
[ 64, 274, 62, 6603, 34675, 796, 366, 11531, 415, 343, 62, 271, 62, 1169, 62, 13466, 1485, 2718, 1, 198, 64, 274, 62, 452, 796, 275, 6, 86, 27110, 16, 21282, 16, 2032, 19, 83, 16, 21282, 16, 82, 6, 198 ]
1.780488
41
import numpy as np import torch from lifelong_rl.policies.mpc.mpc import MPCPolicy class PolicyMPCController(MPCPolicy): """ Perform MPC planning over a policy that takes in an additional latent. """
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 198, 6738, 25837, 62, 45895, 13, 79, 4160, 444, 13, 3149, 66, 13, 3149, 66, 1330, 4904, 8697, 21424, 628, 198, 4871, 7820, 7378, 4093, 756, 10646, 7, 44, 5662, 36727, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 35006, 4904, 34, 5410, 625, 257, 2450, 326, 2753, 287, 281, 3224, 41270, 13, 198, 220, 220, 220, 37227, 198 ]
3.085714
70
from .main import ConstContextFilter, ContextVarFilter __all__ = ("ContextVarFilter", "ConstContextFilter")
[ 6738, 764, 12417, 1330, 4757, 21947, 22417, 11, 30532, 19852, 22417, 198, 198, 834, 439, 834, 796, 5855, 21947, 19852, 22417, 1600, 366, 34184, 21947, 22417, 4943, 198 ]
3.892857
28
import time import os from select import select import pyqrcode import subprocess import re from magic import Magic from audio_extract import convert2mkv from termcolor import colored import threading import itertools import sys def wait_until_error(f, timeout=0.5): """ Wait for timeout seconds until the function stops throwing any errors. """ return inner def send_until_writable(timeout=0.5): """ This will send a message to the socket only when it is writable and wait for timeout seconds for the socket to become writable, if the socket was busy. """ return inner def check_writable(socket): """ Checks whether the socket is writable """ _, writable, _ = select([], [socket], [], 60) return writable == [socket] def print_url(url): """ Makes a txt file with the URL that is received from the server for the GUI app. """ print(f"\n[{colored('$','blue')}] Please visit {colored(url,'cyan')}") f = open("invite_link.txt", "w") f.write(url) f.close() def print_qr(url): """ Prints a QR code using the URL that we received from the server. """ image = pyqrcode.create(url) image.svg("invite_link.svg", scale=1) print(image.terminal(quiet_zone=1))
[ 11748, 640, 198, 11748, 28686, 198, 6738, 2922, 1330, 2922, 198, 11748, 12972, 80, 6015, 1098, 198, 11748, 850, 14681, 198, 11748, 302, 198, 6738, 5536, 1330, 6139, 198, 6738, 6597, 62, 2302, 974, 1330, 10385, 17, 28015, 85, 198, 6738, 3381, 8043, 1330, 16396, 198, 11748, 4704, 278, 198, 11748, 340, 861, 10141, 198, 11748, 25064, 628, 198, 4299, 4043, 62, 28446, 62, 18224, 7, 69, 11, 26827, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 37227, 16314, 329, 26827, 4201, 1566, 262, 2163, 9911, 9644, 597, 8563, 13, 37227, 628, 220, 220, 220, 1441, 8434, 628, 198, 4299, 3758, 62, 28446, 62, 8933, 540, 7, 48678, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 37227, 770, 481, 3758, 257, 3275, 284, 262, 17802, 691, 618, 340, 318, 1991, 540, 290, 4043, 329, 26827, 4201, 198, 220, 220, 220, 329, 262, 17802, 284, 1716, 1991, 540, 11, 611, 262, 17802, 373, 8179, 13, 37227, 628, 220, 220, 220, 1441, 8434, 628, 198, 4299, 2198, 62, 8933, 540, 7, 44971, 2599, 198, 220, 220, 220, 37227, 47719, 1771, 262, 17802, 318, 1991, 540, 37227, 628, 220, 220, 220, 4808, 11, 1991, 540, 11, 4808, 796, 2922, 26933, 4357, 685, 44971, 4357, 685, 4357, 3126, 8, 198, 220, 220, 220, 1441, 1991, 540, 6624, 685, 44971, 60, 628, 198, 4299, 3601, 62, 6371, 7, 6371, 2599, 198, 220, 220, 220, 37227, 27433, 257, 256, 742, 2393, 351, 262, 10289, 326, 318, 2722, 422, 262, 4382, 329, 262, 25757, 598, 13, 37227, 628, 220, 220, 220, 3601, 7, 69, 1, 59, 77, 58, 90, 25717, 10786, 3, 41707, 17585, 11537, 92, 60, 4222, 3187, 1391, 25717, 7, 6371, 4032, 948, 272, 11537, 92, 4943, 198, 220, 220, 220, 277, 796, 1280, 7203, 16340, 578, 62, 8726, 13, 14116, 1600, 366, 86, 4943, 198, 220, 220, 220, 277, 13, 13564, 7, 6371, 8, 198, 220, 220, 220, 277, 13, 19836, 3419, 628, 198, 4299, 3601, 62, 80, 81, 7, 6371, 2599, 198, 220, 220, 220, 37227, 12578, 82, 257, 42137, 2438, 1262, 262, 10289, 326, 356, 2722, 422, 262, 4382, 13, 37227, 628, 220, 220, 220, 2939, 796, 12972, 80, 6015, 1098, 13, 17953, 7, 6371, 8, 198, 220, 220, 220, 2939, 13, 21370, 70, 7203, 16340, 578, 62, 8726, 13, 21370, 70, 1600, 5046, 28, 16, 8, 198, 220, 220, 220, 3601, 7, 9060, 13, 23705, 282, 7, 39624, 62, 11340, 28, 16, 4008, 628, 628, 198 ]
3.034398
407
"""Validate NZ bank account number. Refer to document: [RWT and NRWT Certificates / 2020 / Version 1.0](https://www.ird.govt.nz/-/media/project/ir/home/documents/income-tax/withholding-taxes/rwt-nrwt-withholding-tax-certificate/2020-rwt-and-nrwt-certificate-filing-specification.pdf) charpter 8. Bank account number validation """ __all__ = ['nz_bank_validate'] max_length = { 'bank': 2, 'branch': 4, 'base': 8, 'suffix': 4, } # The order of following data seems strange because it's copy/pasted from pdf file then manually modified branch_numbers = { '01': [('0001', '0999'), ('1100', '1199'), ('1800', '1899')], '20': [('4100', '4199')], '02': [('0001', '0999'), ('1200', '1299')], '21': [('4800', '4899')], '03': [('0001', '0999'), ('1300', '1399'), ('1500', '1599'), ('1700', '1799'), ('1900', '1999'), ('7350', '7399')], '22': [('4000', '4049')], '04': [('2020', '2024')], '06': [('0001', '0999'), ('1400', '1499')], '23': [('3700', '3799')], '08': [('6500', '6599')], '24': [('4300', '4349')], '09': [('0000', '0000')], '25': [('2500', '2599')], '10': [('5165', '5169')], '26': [('2600', '2699')], '11': [('5000', '6499'), ('6600', '8999')], '12': [('3000', '3299'), ('3400', '3499'), ('3600', '3699')], '27': [('3800', '3849')], '13': [('4900', '4999')], '28': [('2100', '2149')], '14': [('4700', '4799')], '29': [('2150', '2299')], '15': [('3900', '3999')], '30': [('2900', '2949')], '16': [('4400', '4499')], '31': [('2800', '2849')], '17': [('3300', '3399')], '33': [('6700', '6799')], '18': [('3500', '3599')], '35': [('2400', '2499')], '19': [('4600', '4649')], '38': [('9000', '9499')], } algorithms = { '01': 'See note', '20': 'See note', '02': 'See note', '21': 'See note', '03': 'See note', '22': 'See note', '04': 'See note', # possible missing in document '06': 'See note', '23': 'See note', '08': 'D', '24': 'See note', '09': 'E', '25': 'F', '10': 'See note', '26': 'G', '11': 'See note', '12': 'See note', '27': 'See note', '13': 'See note', '28': 'G', '14': 'See note', '29': 'G', '15': 'See note', '30': 'See note', '16': 'See note', '31': 'X', '17': 'See note', '33': 'F', '18': 'See note', '35': 'See note', '19': 'See note', '38': 'See note', } weights = { # Algorithm # .....Bank # .....v.....Branch # .....v.....v...........Account Base # .....v.....v...........v........................Suffix # .....v.....v...........v........................v............Modulo 'A': ((0, 0, 6, 3, 7, 9, 0, 0, 10, 5, 8, 4, 2, 1, 0, 0, 0, 0), 11), 'B': ((0, 0, 0, 0, 0, 0, 0, 0, 10, 5, 8, 4, 2, 1, 0, 0, 0, 0), 11), 'C': ((3, 7, 0, 0, 0, 0, 9, 1, 10, 5, 3, 4, 2, 1, 0, 0, 0, 0), 11), 'D': ((0, 0, 0, 0, 0, 0, 0, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0), 11), 'E': ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 3, 2, 0, 0, 0, 1), 11), 'F': ((0, 0, 0, 0, 0, 0, 0, 1, 7, 3, 1, 7, 3, 1, 0, 0, 0, 0), 10), 'G': ((0, 0, 0, 0, 0, 0, 0, 1, 3, 7, 1, 3, 7, 1, 0, 3, 7, 1), 10), 'X': ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1), } def nz_bank_validate(bank: str, branch: str, base: str, suffix: str, *, return_false_on_fail=False) -> bool: """Validate New Zealand bank account number, return True if valid, raise ValueError('invalid') if invalid or return False if invalid and option return_false_on_fail=True Example: ``nz_bank_validate(*'01-902-0068389-00'.split('-'))`` or ``nz_bank_validate('01', '902', '0068389', '00')`` """ bank = bank.zfill(max_length['bank']) branch = branch.zfill(max_length['branch']) base = base.zfill(max_length['base']) suffix = suffix.zfill(max_length['suffix']) for value, length in zip([bank, branch, base, suffix], max_length.values()): if len(value) != length: if return_false_on_fail: return False raise ValueError('invalid') if not check_branch_number(bank, branch): if return_false_on_fail: return False raise ValueError('invalid') algo = get_algorithm(bank, branch, base, suffix) if algo not in weights: if return_false_on_fail: return False raise ValueError('invalid') weight, modulo = weights[algo] number = ''.join((bank, branch, base, suffix)) sum_weight = sum( multiply(algo, int(digit), factor) for digit, factor in zip(number, weight) ) if (sum_weight % modulo) != 0: if return_false_on_fail: return False raise ValueError('invalid') return True from typing import Callable def nz_bank_validate2(bank: str, branch: str, base: str, suffix: str, *, return_false_on_fail=False) -> bool: """Validate New Zealand bank account number, return True if valid, raise ValueError('invalid') if invalid or return False if invalid and option return_false_on_fail=True Example: ``nz_bank_validate(*'01-902-0068389-00'.split('-'))`` or ``nz_bank_validate('01', '902', '0068389', '00')`` """ bank = bank.zfill(max_length['bank']) branch = branch.zfill(max_length['branch']) base = base.zfill(max_length['base']) suffix = suffix.zfill(max_length['suffix']) for value, length in zip([bank, branch, base, suffix], max_length.values()): if len(value) != length: if return_false_on_fail: return False raise ValueError('invalid') if not check_branch_number(bank, branch): if return_false_on_fail: return False raise ValueError('invalid') algo = get_algorithm(bank, branch, base, suffix) if algo not in weights: if return_false_on_fail: return False raise ValueError('invalid') weight, modulo = weights[algo] number = ''.join((bank, branch, base, suffix)) assert len(number) == len(weight) mul = get_multiply_by_algorithm(algo) sum_weight = sum( # mul(int(digit), factor) mul(ord(digit) - 48, factor) for digit, factor in zip(number, weight) ) if (sum_weight % modulo) != 0: if return_false_on_fail: return False raise ValueError('invalid') return True digit_factor1 = [ [f1(digit, factor) for factor in range(11)] for digit in range(10) ] digit_factor2 = [ [f2(digit, factor) for factor in range(11)] for digit in range(10) ] from typing import List def nz_bank_validate3(bank: str, branch: str, base: str, suffix: str, *, return_false_on_fail=False) -> bool: """Validate New Zealand bank account number, return True if valid, raise ValueError('invalid') if invalid or return False if invalid and option return_false_on_fail=True Example: ``nz_bank_validate(*'01-902-0068389-00'.split('-'))`` or ``nz_bank_validate('01', '902', '0068389', '00')`` """ bank = bank.zfill(max_length['bank']) branch = branch.zfill(max_length['branch']) base = base.zfill(max_length['base']) suffix = suffix.zfill(max_length['suffix']) for value, length in zip([bank, branch, base, suffix], max_length.values()): if len(value) != length: if return_false_on_fail: return False raise ValueError('invalid') if not check_branch_number(bank, branch): if return_false_on_fail: return False raise ValueError('invalid') algo = get_algorithm(bank, branch, base, suffix) if algo not in weights: if return_false_on_fail: return False raise ValueError('invalid') weight, modulo = weights[algo] number = ''.join((bank, branch, base, suffix)) assert len(number) == len(weight) matrix = get_matrix_by_algorithm(algo) sum_weight = sum( # mul(int(digit), factor) matrix[ord(digit) - 48][factor] for digit, factor in zip(number, weight) ) if (sum_weight % modulo) != 0: if return_false_on_fail: return False raise ValueError('invalid') return True
[ 37811, 7762, 20540, 26905, 3331, 1848, 1271, 13, 198, 46238, 284, 3188, 25, 685, 49, 39386, 290, 23057, 39386, 14965, 811, 689, 1220, 12131, 1220, 10628, 352, 13, 15, 16151, 5450, 1378, 2503, 13, 1447, 13, 9567, 83, 13, 27305, 16327, 14, 11431, 14, 16302, 14, 343, 14, 11195, 14, 15390, 2886, 14, 12519, 12, 19290, 14, 4480, 19216, 12, 19290, 274, 14, 31653, 83, 12, 77, 31653, 83, 12, 4480, 19216, 12, 19290, 12, 22583, 22460, 14, 42334, 12, 31653, 83, 12, 392, 12, 77, 31653, 83, 12, 22583, 22460, 12, 69, 4386, 12, 16684, 2649, 13, 12315, 8, 1149, 42104, 807, 13, 5018, 1848, 1271, 21201, 198, 37811, 198, 198, 834, 439, 834, 796, 37250, 27305, 62, 17796, 62, 12102, 378, 20520, 198, 9806, 62, 13664, 796, 1391, 198, 220, 220, 220, 705, 17796, 10354, 362, 11, 198, 220, 220, 220, 705, 1671, 3702, 10354, 604, 11, 198, 220, 220, 220, 705, 8692, 10354, 807, 11, 198, 220, 220, 220, 705, 37333, 844, 10354, 604, 11, 198, 92, 198, 198, 2, 383, 1502, 286, 1708, 1366, 2331, 6283, 780, 340, 338, 4866, 14, 79, 8992, 422, 37124, 2393, 788, 14500, 9518, 198, 1671, 3702, 62, 77, 17024, 796, 1391, 198, 220, 220, 220, 705, 486, 10354, 685, 10786, 18005, 3256, 705, 15, 17032, 33809, 19203, 42060, 3256, 705, 16315, 24, 33809, 19203, 39188, 3256, 705, 1507, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1238, 10354, 685, 10786, 19, 3064, 3256, 705, 19, 19104, 11537, 4357, 198, 220, 220, 220, 705, 2999, 10354, 685, 10786, 18005, 3256, 705, 15, 17032, 33809, 19203, 27550, 3256, 705, 1065, 2079, 11537, 4357, 198, 220, 220, 220, 705, 2481, 10354, 685, 10786, 2780, 405, 3256, 705, 2780, 2079, 11537, 4357, 198, 220, 220, 220, 705, 3070, 10354, 685, 10786, 18005, 3256, 705, 15, 17032, 33809, 19203, 1485, 405, 3256, 705, 1485, 2079, 33809, 19203, 33698, 3256, 705, 1314, 2079, 33809, 19203, 1558, 405, 3256, 705, 1558, 2079, 33809, 19203, 48104, 3256, 705, 18946, 33809, 19203, 4790, 1120, 3256, 705, 4790, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1828, 10354, 685, 10786, 27559, 3256, 705, 1821, 2920, 11537, 4357, 198, 220, 220, 220, 705, 3023, 10354, 685, 10786, 42334, 3256, 705, 1238, 1731, 11537, 4357, 198, 220, 220, 220, 705, 3312, 10354, 685, 10786, 18005, 3256, 705, 15, 17032, 33809, 19203, 1415, 405, 3256, 705, 1415, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1954, 10354, 685, 10786, 2718, 405, 3256, 705, 2718, 2079, 11537, 4357, 198, 220, 220, 220, 705, 2919, 10354, 685, 10786, 2996, 405, 3256, 705, 2996, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1731, 10354, 685, 10786, 3559, 405, 3256, 705, 19, 27371, 11537, 4357, 198, 220, 220, 220, 705, 2931, 10354, 685, 10786, 2388, 3256, 705, 2388, 11537, 4357, 198, 220, 220, 220, 705, 1495, 10354, 685, 10786, 44688, 3256, 705, 1495, 2079, 11537, 4357, 198, 220, 220, 220, 705, 940, 10354, 685, 10786, 20, 20986, 3256, 705, 20, 22172, 11537, 4357, 198, 220, 220, 220, 705, 2075, 10354, 685, 10786, 2075, 405, 3256, 705, 2075, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1157, 10354, 685, 10786, 27641, 3256, 705, 2414, 2079, 33809, 19203, 2791, 405, 3256, 705, 23, 17032, 11537, 4357, 198, 220, 220, 220, 705, 1065, 10354, 685, 10786, 23924, 3256, 705, 18, 22579, 33809, 19203, 2682, 405, 3256, 705, 2682, 2079, 33809, 19203, 2623, 405, 3256, 705, 2623, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1983, 10354, 685, 10786, 2548, 405, 3256, 705, 2548, 2920, 11537, 4357, 198, 220, 220, 220, 705, 1485, 10354, 685, 10786, 2920, 405, 3256, 705, 19, 17032, 11537, 4357, 198, 220, 220, 220, 705, 2078, 10354, 685, 10786, 2481, 405, 3256, 705, 17, 19442, 11537, 4357, 198, 220, 220, 220, 705, 1415, 10354, 685, 10786, 2857, 405, 3256, 705, 2857, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1959, 10354, 685, 10786, 2481, 1120, 3256, 705, 1828, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1314, 10354, 685, 10786, 2670, 405, 3256, 705, 18, 17032, 11537, 4357, 198, 220, 220, 220, 705, 1270, 10354, 685, 10786, 1959, 405, 3256, 705, 1959, 2920, 11537, 4357, 198, 220, 220, 220, 705, 1433, 10354, 685, 10786, 2598, 405, 3256, 705, 2598, 2079, 11537, 4357, 198, 220, 220, 220, 705, 3132, 10354, 685, 10786, 2078, 405, 3256, 705, 2078, 2920, 11537, 4357, 198, 220, 220, 220, 705, 1558, 10354, 685, 10786, 2091, 405, 3256, 705, 2091, 2079, 11537, 4357, 198, 220, 220, 220, 705, 2091, 10354, 685, 10786, 3134, 405, 3256, 705, 3134, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1507, 10354, 685, 10786, 2327, 405, 3256, 705, 2327, 2079, 11537, 4357, 198, 220, 220, 220, 705, 2327, 10354, 685, 10786, 1731, 405, 3256, 705, 1731, 2079, 11537, 4357, 198, 220, 220, 220, 705, 1129, 10354, 685, 10786, 3510, 405, 3256, 705, 19, 33300, 11537, 4357, 198, 220, 220, 220, 705, 2548, 10354, 685, 10786, 24, 830, 3256, 705, 5824, 2079, 11537, 4357, 198, 92, 198, 198, 282, 7727, 907, 796, 1391, 198, 220, 220, 220, 705, 486, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1238, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2999, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2481, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 3070, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1828, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 3023, 10354, 705, 6214, 3465, 3256, 220, 1303, 1744, 4814, 287, 3188, 198, 220, 220, 220, 705, 3312, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1954, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2919, 10354, 705, 35, 3256, 198, 220, 220, 220, 705, 1731, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2931, 10354, 705, 36, 3256, 198, 220, 220, 220, 705, 1495, 10354, 705, 37, 3256, 198, 220, 220, 220, 705, 940, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2075, 10354, 705, 38, 3256, 198, 220, 220, 220, 705, 1157, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1065, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1983, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1485, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2078, 10354, 705, 38, 3256, 198, 220, 220, 220, 705, 1415, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1959, 10354, 705, 38, 3256, 198, 220, 220, 220, 705, 1314, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1270, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1433, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 3132, 10354, 705, 55, 3256, 198, 220, 220, 220, 705, 1558, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2091, 10354, 705, 37, 3256, 198, 220, 220, 220, 705, 1507, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2327, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 1129, 10354, 705, 6214, 3465, 3256, 198, 220, 220, 220, 705, 2548, 10354, 705, 6214, 3465, 3256, 198, 92, 198, 198, 43775, 796, 1391, 198, 220, 220, 220, 1303, 978, 42289, 198, 220, 220, 220, 1303, 11485, 986, 28650, 198, 220, 220, 220, 1303, 11485, 986, 85, 12359, 33, 25642, 198, 220, 220, 220, 1303, 11485, 986, 85, 12359, 85, 2109, 986, 30116, 7308, 198, 220, 220, 220, 1303, 11485, 986, 85, 12359, 85, 2109, 986, 85, 27754, 50, 1648, 844, 198, 220, 220, 220, 1303, 11485, 986, 85, 12359, 85, 2109, 986, 85, 27754, 85, 2109, 1106, 5841, 43348, 198, 220, 220, 220, 705, 32, 10354, 14808, 15, 11, 657, 11, 718, 11, 513, 11, 767, 11, 860, 11, 657, 11, 657, 11, 838, 11, 642, 11, 807, 11, 604, 11, 362, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 828, 1367, 828, 198, 220, 220, 220, 705, 33, 10354, 14808, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 838, 11, 642, 11, 807, 11, 604, 11, 362, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 828, 1367, 828, 198, 220, 220, 220, 705, 34, 10354, 14808, 18, 11, 767, 11, 657, 11, 657, 11, 657, 11, 657, 11, 860, 11, 352, 11, 838, 11, 642, 11, 513, 11, 604, 11, 362, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 828, 1367, 828, 198, 220, 220, 220, 705, 35, 10354, 14808, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 767, 11, 220, 718, 11, 642, 11, 604, 11, 513, 11, 362, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 828, 1367, 828, 198, 220, 220, 220, 705, 36, 10354, 14808, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 220, 657, 11, 657, 11, 642, 11, 604, 11, 513, 11, 362, 11, 657, 11, 657, 11, 657, 11, 352, 828, 1367, 828, 198, 220, 220, 220, 705, 37, 10354, 14808, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 220, 767, 11, 513, 11, 352, 11, 767, 11, 513, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 828, 838, 828, 198, 220, 220, 220, 705, 38, 10354, 14808, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 220, 513, 11, 767, 11, 352, 11, 513, 11, 767, 11, 352, 11, 657, 11, 513, 11, 767, 11, 352, 828, 838, 828, 198, 220, 220, 220, 705, 55, 10354, 14808, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 220, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 828, 352, 828, 198, 92, 628, 628, 198, 198, 4299, 299, 89, 62, 17796, 62, 12102, 378, 7, 17796, 25, 965, 11, 8478, 25, 965, 11, 2779, 25, 965, 11, 35488, 25, 965, 11, 1635, 11, 1441, 62, 9562, 62, 261, 62, 32165, 28, 25101, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 7762, 20540, 968, 8936, 3331, 1848, 1271, 11, 1441, 6407, 611, 4938, 11, 5298, 11052, 12331, 10786, 259, 12102, 11537, 611, 12515, 198, 220, 220, 220, 393, 1441, 10352, 611, 12515, 290, 3038, 1441, 62, 9562, 62, 261, 62, 32165, 28, 17821, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 7559, 27305, 62, 17796, 62, 12102, 378, 46491, 6, 486, 12, 24, 2999, 12, 405, 3104, 29769, 12, 405, 4458, 35312, 10786, 19355, 4008, 15506, 198, 220, 220, 220, 393, 198, 220, 220, 220, 7559, 27305, 62, 17796, 62, 12102, 378, 10786, 486, 3256, 705, 24, 2999, 3256, 705, 405, 3104, 29769, 3256, 705, 405, 11537, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3331, 796, 3331, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 17796, 6, 12962, 198, 220, 220, 220, 8478, 796, 8478, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 1671, 3702, 6, 12962, 198, 220, 220, 220, 2779, 796, 2779, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 8692, 6, 12962, 198, 220, 220, 220, 35488, 796, 35488, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 37333, 844, 6, 12962, 198, 220, 220, 220, 329, 1988, 11, 4129, 287, 19974, 26933, 17796, 11, 8478, 11, 2779, 11, 35488, 4357, 3509, 62, 13664, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8367, 8, 14512, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 611, 407, 2198, 62, 1671, 3702, 62, 17618, 7, 17796, 11, 8478, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 435, 2188, 796, 651, 62, 282, 42289, 7, 17796, 11, 8478, 11, 2779, 11, 35488, 8, 198, 220, 220, 220, 611, 435, 2188, 407, 287, 19590, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 3463, 11, 953, 43348, 796, 19590, 58, 282, 2188, 60, 198, 220, 220, 220, 1271, 796, 705, 4458, 22179, 19510, 17796, 11, 8478, 11, 2779, 11, 35488, 4008, 198, 220, 220, 220, 2160, 62, 6551, 796, 2160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 29162, 7, 282, 2188, 11, 493, 7, 27003, 828, 5766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16839, 11, 5766, 287, 19974, 7, 17618, 11, 3463, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 357, 16345, 62, 6551, 4064, 953, 43348, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 1441, 6407, 628, 198, 6738, 19720, 1330, 4889, 540, 628, 198, 4299, 299, 89, 62, 17796, 62, 12102, 378, 17, 7, 17796, 25, 965, 11, 8478, 25, 965, 11, 2779, 25, 965, 11, 35488, 25, 965, 11, 1635, 11, 1441, 62, 9562, 62, 261, 62, 32165, 28, 25101, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 7762, 20540, 968, 8936, 3331, 1848, 1271, 11, 1441, 6407, 611, 4938, 11, 5298, 11052, 12331, 10786, 259, 12102, 11537, 611, 12515, 198, 220, 220, 220, 393, 1441, 10352, 611, 12515, 290, 3038, 1441, 62, 9562, 62, 261, 62, 32165, 28, 17821, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 7559, 27305, 62, 17796, 62, 12102, 378, 46491, 6, 486, 12, 24, 2999, 12, 405, 3104, 29769, 12, 405, 4458, 35312, 10786, 19355, 4008, 15506, 198, 220, 220, 220, 393, 198, 220, 220, 220, 7559, 27305, 62, 17796, 62, 12102, 378, 10786, 486, 3256, 705, 24, 2999, 3256, 705, 405, 3104, 29769, 3256, 705, 405, 11537, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3331, 796, 3331, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 17796, 6, 12962, 198, 220, 220, 220, 8478, 796, 8478, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 1671, 3702, 6, 12962, 198, 220, 220, 220, 2779, 796, 2779, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 8692, 6, 12962, 198, 220, 220, 220, 35488, 796, 35488, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 37333, 844, 6, 12962, 198, 220, 220, 220, 329, 1988, 11, 4129, 287, 19974, 26933, 17796, 11, 8478, 11, 2779, 11, 35488, 4357, 3509, 62, 13664, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8367, 8, 14512, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 611, 407, 2198, 62, 1671, 3702, 62, 17618, 7, 17796, 11, 8478, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 435, 2188, 796, 651, 62, 282, 42289, 7, 17796, 11, 8478, 11, 2779, 11, 35488, 8, 198, 220, 220, 220, 611, 435, 2188, 407, 287, 19590, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 3463, 11, 953, 43348, 796, 19590, 58, 282, 2188, 60, 198, 220, 220, 220, 1271, 796, 705, 4458, 22179, 19510, 17796, 11, 8478, 11, 2779, 11, 35488, 4008, 198, 220, 220, 220, 6818, 18896, 7, 17618, 8, 6624, 18896, 7, 6551, 8, 198, 220, 220, 220, 35971, 796, 651, 62, 16680, 541, 306, 62, 1525, 62, 282, 42289, 7, 282, 2188, 8, 198, 220, 220, 220, 2160, 62, 6551, 796, 2160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35971, 7, 600, 7, 27003, 828, 5766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 35971, 7, 585, 7, 27003, 8, 532, 4764, 11, 5766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16839, 11, 5766, 287, 19974, 7, 17618, 11, 3463, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 357, 16345, 62, 6551, 4064, 953, 43348, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 1441, 6407, 628, 198, 27003, 62, 31412, 16, 796, 685, 198, 220, 220, 220, 685, 69, 16, 7, 27003, 11, 5766, 8, 329, 5766, 287, 2837, 7, 1157, 15437, 198, 220, 220, 220, 329, 16839, 287, 2837, 7, 940, 8, 198, 60, 198, 27003, 62, 31412, 17, 796, 685, 198, 220, 220, 220, 685, 69, 17, 7, 27003, 11, 5766, 8, 329, 5766, 287, 2837, 7, 1157, 15437, 198, 220, 220, 220, 329, 16839, 287, 2837, 7, 940, 8, 198, 60, 198, 6738, 19720, 1330, 7343, 198, 198, 4299, 299, 89, 62, 17796, 62, 12102, 378, 18, 7, 17796, 25, 965, 11, 8478, 25, 965, 11, 2779, 25, 965, 11, 35488, 25, 965, 11, 1635, 11, 1441, 62, 9562, 62, 261, 62, 32165, 28, 25101, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 7762, 20540, 968, 8936, 3331, 1848, 1271, 11, 1441, 6407, 611, 4938, 11, 5298, 11052, 12331, 10786, 259, 12102, 11537, 611, 12515, 198, 220, 220, 220, 393, 1441, 10352, 611, 12515, 290, 3038, 1441, 62, 9562, 62, 261, 62, 32165, 28, 17821, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 7559, 27305, 62, 17796, 62, 12102, 378, 46491, 6, 486, 12, 24, 2999, 12, 405, 3104, 29769, 12, 405, 4458, 35312, 10786, 19355, 4008, 15506, 198, 220, 220, 220, 393, 198, 220, 220, 220, 7559, 27305, 62, 17796, 62, 12102, 378, 10786, 486, 3256, 705, 24, 2999, 3256, 705, 405, 3104, 29769, 3256, 705, 405, 11537, 15506, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3331, 796, 3331, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 17796, 6, 12962, 198, 220, 220, 220, 8478, 796, 8478, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 1671, 3702, 6, 12962, 198, 220, 220, 220, 2779, 796, 2779, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 8692, 6, 12962, 198, 220, 220, 220, 35488, 796, 35488, 13, 89, 20797, 7, 9806, 62, 13664, 17816, 37333, 844, 6, 12962, 198, 220, 220, 220, 329, 1988, 11, 4129, 287, 19974, 26933, 17796, 11, 8478, 11, 2779, 11, 35488, 4357, 3509, 62, 13664, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8367, 8, 14512, 4129, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 611, 407, 2198, 62, 1671, 3702, 62, 17618, 7, 17796, 11, 8478, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 435, 2188, 796, 651, 62, 282, 42289, 7, 17796, 11, 8478, 11, 2779, 11, 35488, 8, 198, 220, 220, 220, 611, 435, 2188, 407, 287, 19590, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 3463, 11, 953, 43348, 796, 19590, 58, 282, 2188, 60, 198, 220, 220, 220, 1271, 796, 705, 4458, 22179, 19510, 17796, 11, 8478, 11, 2779, 11, 35488, 4008, 198, 220, 220, 220, 6818, 18896, 7, 17618, 8, 6624, 18896, 7, 6551, 8, 198, 220, 220, 220, 17593, 796, 651, 62, 6759, 8609, 62, 1525, 62, 282, 42289, 7, 282, 2188, 8, 198, 220, 220, 220, 2160, 62, 6551, 796, 2160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35971, 7, 600, 7, 27003, 828, 5766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 58, 585, 7, 27003, 8, 532, 4764, 7131, 31412, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16839, 11, 5766, 287, 19974, 7, 17618, 11, 3463, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 357, 16345, 62, 6551, 4064, 953, 43348, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 9562, 62, 261, 62, 32165, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 11537, 198, 220, 220, 220, 1441, 6407, 628 ]
2.210639
3,722
from __future__ import absolute_import, print_function from django.db import models from django.utils import timezone from sentry.db.models import FlexibleForeignKey, Model, sane_repr from sentry.models.search_common import SearchType DEFAULT_SAVED_SEARCHES = [ { 'name': 'Unresolved Issues', 'query': 'is:unresolved', 'is_default': True }, { 'name': 'Needs Triage', 'query': 'is:unresolved is:unassigned' }, { 'name': 'Assigned To Me', 'query': 'is:unresolved assigned:me' }, { 'name': 'My Bookmarks', 'query': 'is:unresolved bookmarks:me' }, { 'name': 'New Today', 'query': 'is:unresolved age:-24h' }, ] DEFAULT_SAVED_SEARCH_QUERIES = set(search['query'] for search in DEFAULT_SAVED_SEARCHES) class SavedSearch(Model): """ A saved search query. """ __core__ = True # TODO: Remove this column and rows where it's not null once we've # completely removed Sentry 9 project = FlexibleForeignKey('sentry.Project', null=True) organization = FlexibleForeignKey('sentry.Organization', null=True) type = models.PositiveSmallIntegerField(default=SearchType.ISSUE.value, null=True) name = models.CharField(max_length=128) query = models.TextField() date_added = models.DateTimeField(default=timezone.now) # TODO: Remove this column once we've completely removed Sentry 9 is_default = models.BooleanField(default=False) is_global = models.NullBooleanField(null=True, default=False, db_index=True) owner = FlexibleForeignKey('sentry.User', null=True) @property @is_pinned.setter @property __repr__ = sane_repr('project_id', 'name') # TODO: Remove once we've completely removed sentry 9 class SavedSearchUserDefault(Model): """ Indicates the default saved search for a given user """ __core__ = True savedsearch = FlexibleForeignKey('sentry.SavedSearch') project = FlexibleForeignKey('sentry.Project') user = FlexibleForeignKey('sentry.User')
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 198, 6738, 1908, 563, 13, 9945, 13, 27530, 1330, 26719, 856, 33616, 9218, 11, 9104, 11, 33241, 62, 260, 1050, 198, 6738, 1908, 563, 13, 27530, 13, 12947, 62, 11321, 1330, 11140, 6030, 628, 198, 7206, 38865, 62, 4090, 53, 1961, 62, 5188, 31315, 1546, 796, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3118, 411, 5634, 22852, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22766, 10354, 705, 271, 25, 403, 411, 5634, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 12286, 10354, 6407, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 23037, 82, 309, 4087, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22766, 10354, 705, 271, 25, 403, 411, 5634, 318, 25, 403, 562, 3916, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 8021, 3916, 1675, 2185, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22766, 10354, 705, 271, 25, 403, 411, 5634, 8686, 25, 1326, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3666, 4897, 14306, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22766, 10354, 705, 271, 25, 403, 411, 5634, 1492, 14306, 25, 1326, 6, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3791, 6288, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22766, 10354, 705, 271, 25, 403, 411, 5634, 2479, 21912, 1731, 71, 6, 198, 220, 220, 220, 8964, 198, 60, 198, 7206, 38865, 62, 4090, 53, 1961, 62, 5188, 31315, 62, 10917, 1137, 11015, 796, 900, 7, 12947, 17816, 22766, 20520, 329, 2989, 287, 5550, 38865, 62, 4090, 53, 1961, 62, 5188, 31315, 1546, 8, 628, 198, 4871, 8858, 276, 18243, 7, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 7448, 2989, 12405, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 7295, 834, 796, 6407, 198, 220, 220, 220, 1303, 16926, 46, 25, 17220, 428, 5721, 290, 15274, 810, 340, 338, 407, 9242, 1752, 356, 1053, 198, 220, 220, 220, 1303, 3190, 4615, 11352, 563, 860, 198, 220, 220, 220, 1628, 796, 26719, 856, 33616, 9218, 10786, 82, 13000, 13, 16775, 3256, 9242, 28, 17821, 8, 198, 220, 220, 220, 4009, 796, 26719, 856, 33616, 9218, 10786, 82, 13000, 13, 26121, 1634, 3256, 9242, 28, 17821, 8, 198, 220, 220, 220, 2099, 796, 4981, 13, 21604, 1800, 18712, 46541, 15878, 7, 12286, 28, 18243, 6030, 13, 16744, 8924, 13, 8367, 11, 9242, 28, 17821, 8, 198, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 12762, 8, 198, 220, 220, 220, 12405, 796, 4981, 13, 8206, 15878, 3419, 198, 220, 220, 220, 3128, 62, 29373, 796, 4981, 13, 10430, 7575, 15878, 7, 12286, 28, 2435, 11340, 13, 2197, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 17220, 428, 5721, 1752, 356, 1053, 3190, 4615, 11352, 563, 860, 198, 220, 220, 220, 318, 62, 12286, 796, 4981, 13, 46120, 13087, 15878, 7, 12286, 28, 25101, 8, 198, 220, 220, 220, 318, 62, 20541, 796, 4981, 13, 35067, 46120, 13087, 15878, 7, 8423, 28, 17821, 11, 4277, 28, 25101, 11, 20613, 62, 9630, 28, 17821, 8, 198, 220, 220, 220, 4870, 796, 26719, 856, 33616, 9218, 10786, 82, 13000, 13, 12982, 3256, 9242, 28, 17821, 8, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 271, 62, 11635, 2817, 13, 2617, 353, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 11593, 260, 1050, 834, 796, 33241, 62, 260, 1050, 10786, 16302, 62, 312, 3256, 705, 3672, 11537, 628, 198, 2, 16926, 46, 25, 17220, 1752, 356, 1053, 3190, 4615, 1908, 563, 860, 198, 4871, 8858, 276, 18243, 12982, 19463, 7, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1423, 16856, 262, 4277, 7448, 2989, 329, 257, 1813, 2836, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 7295, 834, 796, 6407, 628, 220, 220, 220, 7448, 12947, 796, 26719, 856, 33616, 9218, 10786, 82, 13000, 13, 50, 9586, 18243, 11537, 198, 220, 220, 220, 1628, 796, 26719, 856, 33616, 9218, 10786, 82, 13000, 13, 16775, 11537, 198, 220, 220, 220, 2836, 796, 26719, 856, 33616, 9218, 10786, 82, 13000, 13, 12982, 11537, 198 ]
2.619647
794
import itertools import time import h5py import sys import os import scipy.special import numpy as np sys.path.append('partools') sys.path.append('scitools') sys.path.append('util') import parallel as par from filters import boxFilter2D, upSample2D import tensorflow as tf import tensorflowUtils as tfu from tensorflow.keras.models import load_model from myProgressBar import printProgressBar par.printRoot('GENERATE TF RECORD WITH SUBFILTER SQUARED') # Filenames to read filenameTrain = 'data/Mom1kseTrain.tfrecord' filenameTest = 'data/Mom1kseTest.tfrecord' model = load_model('weight1KSE/WeightsSC_filt_4_blocks_2/best.h5') # Initialize the tf dataset to read dsTrain = tf.data.TFRecordDataset(filenameTrain) dsTrain = dsTrain.map(tfu._mom_parse_function) # parse the record dsTest = tf.data.TFRecordDataset(filenameTest) dsTest = dsTest.map(tfu._mom_parse_function) # parse the record # Filename to write dataPath = filenameTrain.split('/') dataPath[-1] = 'Mom2' + dataPath[-1] filenameToWriteTrain = os.path.join(*dataPath) dataPath = filenameTest.split('/') dataPath[-1] = 'Mom2' + dataPath[-1] filenameToWriteTest = os.path.join(*dataPath) nSnapTrain = 0 for _,_ in dsTrain: nSnapTrain += 1 nSnapTest = 0 for _,_ in dsTest: nSnapTest += 1 dsTrain = dsTrain.batch(4096) dsTest = dsTest.batch(4096) printProgressBar(0, nSnapTrain, prefix = 'Output snapshot Train ' + str(0) + ' / ' +str(nSnapTrain),suffix = 'Complete', length = 50) with tf.io.TFRecordWriter(filenameToWriteTrain) as writer: counter=0 for element in dsTrain: qoi = element[0] data = element[1] # ~~~~ Prepare the data n_batch = qoi.shape[0] n_qoi = qoi.shape[2] n_data = data.shape[2] # Create the subfilter field A = model.predict(np.reshape(qoi,(n_batch,n_qoi,1))) subfiltFieldSq = (data - np.reshape(A,(n_batch,1,n_data,1)))**2 # ~~~~ Write the data for idat in range(n_batch): tf_example = tfu.mom2_example(counter,n_data,n_qoi,bytes(qoi[idat]),bytes(subfiltFieldSq[idat])) writer.write(tf_example.SerializeToString()) counter += 1 printProgressBar(counter, nSnapTrain, prefix = 'Output snapshot Train ' + str(counter) + ' / ' +str(nSnapTrain),suffix = 'Complete', length = 50) printProgressBar(0, nSnapTest, prefix = 'Output snapshot Test ' + str(0) + ' / ' +str(nSnapTest),suffix = 'Complete', length = 50) with tf.io.TFRecordWriter(filenameToWriteTest) as writer: counter=0 for element in dsTest: qoi = element[0] data = element[1] # ~~~~ Prepare the data n_batch = qoi.shape[0] n_qoi = qoi.shape[2] n_data = data.shape[2] # Create the subfilter field A = model.predict(np.reshape(qoi,(n_batch,n_qoi,1))) subfiltFieldSq = (data - np.reshape(A,(n_batch,1,n_data,1)))**2 # ~~~~ Write the data for idat in range(n_batch): tf_example = tfu.mom2_example(counter,n_data,n_qoi,bytes(qoi[idat]),bytes(subfiltFieldSq[idat])) writer.write(tf_example.SerializeToString()) counter += 1 printProgressBar(counter, nSnapTest, prefix = 'Output snapshot Test ' + str(counter) + ' / ' +str(nSnapTest),suffix = 'Complete', length = 50)
[ 11748, 340, 861, 10141, 198, 11748, 640, 198, 11748, 289, 20, 9078, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 629, 541, 88, 13, 20887, 198, 11748, 299, 32152, 355, 45941, 198, 17597, 13, 6978, 13, 33295, 10786, 3911, 10141, 11537, 198, 17597, 13, 6978, 13, 33295, 10786, 1416, 270, 10141, 11537, 198, 17597, 13, 6978, 13, 33295, 10786, 22602, 11537, 198, 11748, 10730, 355, 1582, 198, 6738, 16628, 1330, 3091, 22417, 17, 35, 11, 510, 36674, 17, 35, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 11192, 273, 11125, 18274, 4487, 355, 256, 20942, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 3440, 62, 19849, 198, 6738, 616, 32577, 10374, 1330, 3601, 32577, 10374, 198, 198, 1845, 13, 4798, 30016, 10786, 35353, 1137, 6158, 24958, 19644, 12532, 13315, 28932, 46700, 5781, 45880, 1503, 1961, 11537, 198, 198, 2, 7066, 268, 1047, 284, 1100, 198, 34345, 44077, 796, 705, 7890, 14, 29252, 16, 74, 325, 44077, 13, 27110, 22105, 6, 198, 34345, 14402, 796, 705, 7890, 14, 29252, 16, 74, 325, 14402, 13, 27110, 22105, 6, 198, 19849, 796, 3440, 62, 19849, 10786, 6551, 16, 42, 5188, 14, 1135, 2337, 6173, 62, 69, 2326, 62, 19, 62, 27372, 62, 17, 14, 13466, 13, 71, 20, 11537, 198, 198, 2, 20768, 1096, 262, 48700, 27039, 284, 1100, 198, 9310, 44077, 796, 48700, 13, 7890, 13, 10234, 23739, 27354, 292, 316, 7, 34345, 44077, 8, 198, 9310, 44077, 796, 288, 82, 44077, 13, 8899, 7, 83, 20942, 13557, 32542, 62, 29572, 62, 8818, 8, 220, 1303, 21136, 262, 1700, 198, 9310, 14402, 796, 48700, 13, 7890, 13, 10234, 23739, 27354, 292, 316, 7, 34345, 14402, 8, 198, 9310, 14402, 796, 288, 82, 14402, 13, 8899, 7, 83, 20942, 13557, 32542, 62, 29572, 62, 8818, 8, 220, 1303, 21136, 262, 1700, 198, 198, 2, 7066, 12453, 284, 3551, 198, 7890, 15235, 796, 29472, 44077, 13, 35312, 10786, 14, 11537, 198, 7890, 15235, 58, 12, 16, 60, 796, 705, 29252, 17, 6, 1343, 1366, 15235, 58, 12, 16, 60, 198, 34345, 2514, 16594, 44077, 796, 28686, 13, 6978, 13, 22179, 46491, 7890, 15235, 8, 198, 198, 7890, 15235, 796, 29472, 14402, 13, 35312, 10786, 14, 11537, 198, 7890, 15235, 58, 12, 16, 60, 796, 705, 29252, 17, 6, 1343, 1366, 15235, 58, 12, 16, 60, 198, 34345, 2514, 16594, 14402, 796, 28686, 13, 6978, 13, 22179, 46491, 7890, 15235, 8, 198, 198, 77, 43826, 44077, 796, 657, 198, 1640, 4808, 11, 62, 287, 288, 82, 44077, 25, 198, 220, 220, 220, 299, 43826, 44077, 15853, 352, 198, 77, 43826, 14402, 796, 657, 198, 1640, 4808, 11, 62, 287, 288, 82, 14402, 25, 198, 220, 220, 220, 299, 43826, 14402, 15853, 352, 198, 198, 9310, 44077, 796, 288, 82, 44077, 13, 43501, 7, 1821, 4846, 8, 198, 9310, 14402, 796, 288, 82, 14402, 13, 43501, 7, 1821, 4846, 8, 198, 198, 4798, 32577, 10374, 7, 15, 11, 299, 43826, 44077, 11, 21231, 796, 705, 26410, 27479, 16835, 705, 1343, 965, 7, 15, 8, 1343, 705, 1220, 705, 1343, 2536, 7, 77, 43826, 44077, 828, 37333, 844, 796, 705, 20988, 3256, 4129, 796, 2026, 8, 198, 4480, 48700, 13, 952, 13, 10234, 23739, 34379, 7, 34345, 2514, 16594, 44077, 8, 355, 6260, 25, 198, 220, 220, 220, 3753, 28, 15, 198, 220, 220, 220, 329, 5002, 287, 288, 82, 44077, 25, 628, 220, 220, 220, 220, 220, 220, 220, 10662, 23013, 796, 5002, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 5002, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 8728, 43426, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43501, 796, 10662, 23013, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 80, 23013, 220, 796, 10662, 23013, 13, 43358, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 7890, 220, 796, 1366, 13, 43358, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 850, 24455, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 2746, 13, 79, 17407, 7, 37659, 13, 3447, 1758, 7, 80, 23013, 11, 7, 77, 62, 43501, 11, 77, 62, 80, 23013, 11, 16, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 850, 69, 2326, 15878, 50, 80, 796, 357, 7890, 532, 45941, 13, 3447, 1758, 7, 32, 11, 7, 77, 62, 43501, 11, 16, 11, 77, 62, 7890, 11, 16, 22305, 1174, 17, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 8728, 19430, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 265, 287, 2837, 7, 77, 62, 43501, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 62, 20688, 796, 256, 20942, 13, 32542, 17, 62, 20688, 7, 24588, 11, 77, 62, 7890, 11, 77, 62, 80, 23013, 11, 33661, 7, 80, 23013, 58, 312, 265, 46570, 33661, 7, 7266, 69, 2326, 15878, 50, 80, 58, 312, 265, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 7, 27110, 62, 20688, 13, 32634, 1096, 2514, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 32577, 10374, 7, 24588, 11, 299, 43826, 44077, 11, 21231, 796, 705, 26410, 27479, 16835, 705, 1343, 965, 7, 24588, 8, 1343, 705, 1220, 705, 1343, 2536, 7, 77, 43826, 44077, 828, 37333, 844, 796, 705, 20988, 3256, 4129, 796, 2026, 8, 198, 198, 4798, 32577, 10374, 7, 15, 11, 299, 43826, 14402, 11, 21231, 796, 705, 26410, 27479, 6208, 705, 1343, 965, 7, 15, 8, 1343, 705, 1220, 705, 1343, 2536, 7, 77, 43826, 14402, 828, 37333, 844, 796, 705, 20988, 3256, 4129, 796, 2026, 8, 198, 4480, 48700, 13, 952, 13, 10234, 23739, 34379, 7, 34345, 2514, 16594, 14402, 8, 355, 6260, 25, 198, 220, 220, 220, 3753, 28, 15, 198, 220, 220, 220, 329, 5002, 287, 288, 82, 14402, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 23013, 796, 5002, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 5002, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 8728, 43426, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 43501, 796, 10662, 23013, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 80, 23013, 220, 796, 10662, 23013, 13, 43358, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 7890, 220, 796, 1366, 13, 43358, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 850, 24455, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 2746, 13, 79, 17407, 7, 37659, 13, 3447, 1758, 7, 80, 23013, 11, 7, 77, 62, 43501, 11, 77, 62, 80, 23013, 11, 16, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 850, 69, 2326, 15878, 50, 80, 796, 357, 7890, 532, 45941, 13, 3447, 1758, 7, 32, 11, 7, 77, 62, 43501, 11, 16, 11, 77, 62, 7890, 11, 16, 22305, 1174, 17, 220, 198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 8728, 19430, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 265, 287, 2837, 7, 77, 62, 43501, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 62, 20688, 796, 256, 20942, 13, 32542, 17, 62, 20688, 7, 24588, 11, 77, 62, 7890, 11, 77, 62, 80, 23013, 11, 33661, 7, 80, 23013, 58, 312, 265, 46570, 33661, 7, 7266, 69, 2326, 15878, 50, 80, 58, 312, 265, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 7, 27110, 62, 20688, 13, 32634, 1096, 2514, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 32577, 10374, 7, 24588, 11, 299, 43826, 14402, 11, 21231, 796, 705, 26410, 27479, 6208, 705, 1343, 965, 7, 24588, 8, 1343, 705, 1220, 705, 1343, 2536, 7, 77, 43826, 14402, 828, 37333, 844, 796, 705, 20988, 3256, 4129, 796, 2026, 8, 628 ]
2.373039
1,402
from typing import List, Tuple, Optional import numpy as np from banditpylib.arms import PseudoArm from .utils import OrdinaryLearner class EpsGreedy(OrdinaryLearner): r"""Epsilon-Greedy policy With probability :math:`\frac{\epsilon}{t}` do uniform sampling and with the remaining probability play the arm with the maximum empirical mean. """ def __init__( self, arm_num: int, horizon: int, name: str = None, eps: float = 1.0): """ Args: arm_num: number of arms horizon: total number of time steps name: alias name eps: epsilon """ super().__init__(arm_num=arm_num, horizon=horizon, name=name) if eps <= 0: raise Exception('Epsilon %.2f in %s is no greater than 0!' % \ (eps, self.__name)) self.__eps = eps def _name(self) -> str: """ Returns: default learner name """ return 'epsilon_greedy' def reset(self): """Reset the learner .. warning:: This function should be called before the start of the game. """ self.__pseudo_arms = [PseudoArm() for arm_id in range(self.arm_num())] # current time step self.__time = 1 def actions(self, context=None) -> Optional[List[Tuple[int, int]]]: """ Args: context: context of the ordinary bandit which should be `None` Returns: arms to pull """ del context # pylint: disable=no-member if self.__time > self.horizon(): self.__last_actions = None elif self.__time <= self.arm_num(): self.__last_actions = [((self.__time - 1) % self.arm_num(), 1)] # with probability eps/t, randomly select an arm to pull elif np.random.random() <= self.__eps / self.__time: self.__last_actions = [(np.random.randint(0, self.arm_num()), 1)] else: self.__last_actions = [ (np.argmax(np.array([arm.em_mean for arm in self.__pseudo_arms])), 1) ] return self.__last_actions def update(self, feedback: List[Tuple[np.ndarray, None]]): """Learner update Args: feedback: feedback returned by the bandit environment by executing :func:`actions` """ self.__pseudo_arms[self.__last_actions[0][0]].update(feedback[0][0]) self.__time += 1
[ 6738, 19720, 1330, 7343, 11, 309, 29291, 11, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4097, 270, 79, 2645, 571, 13, 8357, 1330, 49693, 12003, 26560, 198, 6738, 764, 26791, 1330, 14230, 3219, 14961, 1008, 628, 198, 4871, 43427, 43887, 4716, 7, 35422, 3219, 14961, 1008, 2599, 198, 220, 374, 37811, 36, 862, 33576, 12, 43887, 4716, 2450, 628, 220, 2080, 12867, 1058, 11018, 25, 63, 59, 31944, 31478, 538, 18217, 261, 18477, 83, 92, 63, 466, 8187, 19232, 290, 351, 262, 198, 220, 5637, 12867, 711, 262, 3211, 351, 262, 5415, 21594, 1612, 13, 198, 220, 37227, 198, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 2116, 11, 3211, 62, 22510, 25, 493, 11, 17810, 25, 493, 11, 1438, 25, 965, 796, 6045, 11, 304, 862, 25, 12178, 796, 352, 13, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 3211, 62, 22510, 25, 1271, 286, 5101, 198, 220, 220, 220, 220, 220, 17810, 25, 2472, 1271, 286, 640, 4831, 198, 220, 220, 220, 220, 220, 1438, 25, 16144, 1438, 198, 220, 220, 220, 220, 220, 304, 862, 25, 304, 862, 33576, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 1670, 62, 22510, 28, 1670, 62, 22510, 11, 17810, 28, 17899, 8637, 11, 1438, 28, 3672, 8, 198, 220, 220, 220, 611, 304, 862, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 5298, 35528, 10786, 36, 862, 33576, 4064, 13, 17, 69, 287, 4064, 82, 318, 645, 3744, 621, 657, 13679, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 25386, 11, 2116, 13, 834, 3672, 4008, 198, 220, 220, 220, 2116, 13, 834, 25386, 796, 304, 862, 628, 220, 825, 4808, 3672, 7, 944, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 4277, 22454, 1008, 1438, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 705, 538, 18217, 261, 62, 16694, 4716, 6, 628, 220, 825, 13259, 7, 944, 2599, 198, 220, 220, 220, 37227, 4965, 316, 262, 22454, 1008, 628, 220, 220, 220, 11485, 6509, 3712, 198, 220, 220, 220, 220, 220, 770, 2163, 815, 307, 1444, 878, 262, 923, 286, 262, 983, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 834, 7752, 12003, 62, 8357, 796, 685, 47, 325, 12003, 26560, 3419, 329, 3211, 62, 312, 287, 2837, 7, 944, 13, 1670, 62, 22510, 3419, 15437, 198, 220, 220, 220, 1303, 1459, 640, 2239, 198, 220, 220, 220, 2116, 13, 834, 2435, 796, 352, 628, 220, 825, 4028, 7, 944, 11, 4732, 28, 14202, 8, 4613, 32233, 58, 8053, 58, 51, 29291, 58, 600, 11, 493, 11907, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 4732, 25, 4732, 286, 262, 8850, 4097, 270, 543, 815, 307, 4600, 14202, 63, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 5101, 284, 2834, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1619, 4732, 198, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 220, 220, 220, 611, 2116, 13, 834, 2435, 1875, 2116, 13, 17899, 8637, 33529, 198, 220, 220, 220, 220, 220, 2116, 13, 834, 12957, 62, 4658, 796, 6045, 198, 220, 220, 220, 1288, 361, 2116, 13, 834, 2435, 19841, 2116, 13, 1670, 62, 22510, 33529, 198, 220, 220, 220, 220, 220, 2116, 13, 834, 12957, 62, 4658, 796, 685, 19510, 944, 13, 834, 2435, 532, 352, 8, 4064, 2116, 13, 1670, 62, 22510, 22784, 352, 15437, 198, 220, 220, 220, 1303, 351, 12867, 304, 862, 14, 83, 11, 15456, 2922, 281, 3211, 284, 2834, 198, 220, 220, 220, 1288, 361, 45941, 13, 25120, 13, 25120, 3419, 19841, 2116, 13, 834, 25386, 1220, 2116, 13, 834, 2435, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 834, 12957, 62, 4658, 796, 47527, 37659, 13, 25120, 13, 25192, 600, 7, 15, 11, 2116, 13, 1670, 62, 22510, 3419, 828, 352, 15437, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 834, 12957, 62, 4658, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 37659, 13, 853, 9806, 7, 37659, 13, 18747, 26933, 1670, 13, 368, 62, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3211, 287, 2116, 13, 834, 7752, 12003, 62, 8357, 12962, 828, 352, 8, 198, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1441, 2116, 13, 834, 12957, 62, 4658, 628, 220, 825, 4296, 7, 944, 11, 7538, 25, 7343, 58, 51, 29291, 58, 37659, 13, 358, 18747, 11, 6045, 11907, 2599, 198, 220, 220, 220, 37227, 14961, 1008, 4296, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 7538, 25, 7538, 4504, 416, 262, 4097, 270, 2858, 416, 23710, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 4658, 63, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 834, 7752, 12003, 62, 8357, 58, 944, 13, 834, 12957, 62, 4658, 58, 15, 7131, 15, 60, 4083, 19119, 7, 12363, 1891, 58, 15, 7131, 15, 12962, 198, 220, 220, 220, 2116, 13, 834, 2435, 15853, 352, 198 ]
2.462963
918
from django.shortcuts import render from django.http import HttpResponseRedirect, HttpResponse from django.contrib.auth.models import User from django.shortcuts import get_object_or_404, render, redirect from .models import CarDealer, DealerReview, CarModel, CarMake from .restapis import get_dealers_from_cf,get_dealer_reviews_from_cf,post_request from django.contrib.auth import login, logout, authenticate from django.contrib import messages from datetime import datetime import logging import json # Get an instance of a logger logger = logging.getLogger(__name__) # Create your views here. # Update the `get_dealerships` view to render the index page with a list of dealerships # Create a `get_dealer_details` view to render the reviews of a dealer # def get_dealer_details(request, dealer_id): # Create a `add_review` view to submit a review # def add_review(request, dealer_id): # ...
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 7738, 1060, 11, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 11, 8543, 11, 18941, 198, 6738, 764, 27530, 1330, 1879, 45776, 263, 11, 44480, 14832, 11, 1879, 17633, 11, 1879, 12050, 198, 6738, 764, 2118, 499, 271, 1330, 651, 62, 31769, 364, 62, 6738, 62, 12993, 11, 1136, 62, 31769, 263, 62, 19023, 82, 62, 6738, 62, 12993, 11, 7353, 62, 25927, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 17594, 11, 2604, 448, 11, 8323, 5344, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 18931, 198, 11748, 33918, 198, 198, 2, 3497, 281, 4554, 286, 257, 49706, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 2, 13610, 534, 5009, 994, 13, 628, 628, 198, 198, 2, 10133, 262, 4600, 1136, 62, 31769, 364, 5748, 63, 1570, 284, 8543, 262, 6376, 2443, 351, 257, 1351, 286, 15737, 5748, 628, 198, 2, 13610, 257, 4600, 1136, 62, 31769, 263, 62, 36604, 63, 1570, 284, 8543, 262, 8088, 286, 257, 16456, 198, 2, 825, 651, 62, 31769, 263, 62, 36604, 7, 25927, 11, 16456, 62, 312, 2599, 198, 198, 2, 13610, 257, 4600, 2860, 62, 19023, 63, 1570, 284, 9199, 257, 2423, 198, 2, 825, 751, 62, 19023, 7, 25927, 11, 16456, 62, 312, 2599, 198, 2, 2644 ]
3.365672
268
from django.conf.urls import url from . import views from django.contrib.auth.views import LoginView,LogoutView app_name='accounts' urlpatterns = [ url(r'^$', views.home , name='home'), url(r'^login/$', LoginView.as_view(template_name='login.html'), name="login"), url(r'^logout$', LogoutView), url(r'^signup$', views.register, name='register'), url(r'^(?P<slug>[-\w]+)/$', views.profile, name='profile'), url(r'^(?P<slug>[-\w]+)/edit$', views.edit_profile, name='edit_profile'), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 764, 1330, 5009, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 33571, 1330, 23093, 7680, 11, 11187, 448, 7680, 198, 1324, 62, 3672, 11639, 23317, 82, 6, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 11195, 837, 1438, 11639, 11195, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 38235, 32624, 3256, 23093, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 11639, 38235, 13, 6494, 33809, 1438, 2625, 38235, 12340, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 6404, 448, 3, 3256, 5972, 448, 7680, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 12683, 929, 3, 3256, 5009, 13, 30238, 11, 1438, 11639, 30238, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 47, 27, 6649, 1018, 36937, 12, 59, 86, 48688, 20679, 3, 3256, 5009, 13, 13317, 11, 1438, 11639, 13317, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 7, 30, 47, 27, 6649, 1018, 36937, 12, 59, 86, 48688, 20679, 19312, 3, 3256, 5009, 13, 19312, 62, 13317, 11, 1438, 11639, 19312, 62, 13317, 33809, 628, 198, 60, 198 ]
2.458937
207
from unittest import TestCase from remoteappmanager.docker.container import Container from remoteappmanager.docker.docker_labels import ( SIMPHONY_NS, SIMPHONY_NS_RUNINFO) from remoteappmanager.tests.mocking.virtual.docker_client import \ VirtualDockerClient from remoteappmanager.tests.utils import assert_containers_equal
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 6569, 1324, 37153, 13, 45986, 13, 34924, 1330, 43101, 198, 6738, 6569, 1324, 37153, 13, 45986, 13, 45986, 62, 23912, 1424, 1330, 357, 198, 220, 220, 220, 23749, 11909, 40508, 62, 8035, 11, 23749, 11909, 40508, 62, 8035, 62, 49, 4944, 10778, 8, 198, 6738, 6569, 1324, 37153, 13, 41989, 13, 76, 8629, 13, 32844, 13, 45986, 62, 16366, 1330, 3467, 198, 220, 220, 220, 15595, 35, 12721, 11792, 198, 6738, 6569, 1324, 37153, 13, 41989, 13, 26791, 1330, 6818, 62, 3642, 50221, 62, 40496, 628 ]
3.479167
96
#!/usr/bin/env python # encoding: utf-8 import os import numpy as np import knn def valu_result(pre_y, real_y): """ 效果评估 """ pre_count = {} all_count = {} for pre, real in zip(pre_y, real_y): if real not in pre_count: pre_count[real] = {} all_count[real] = all_count.get(real, 0) + 1 if pre == real: pre_count[real]["t"] = pre_count[real].get("t", 0)+ 1 else: pre_count[real]['f'] = pre_count[real].get("f", 0) + 1 all_true = 0.0 for k, v in all_count.items(): all_true += pre_count[k].get("t") print("acc: %s, %f "%(k, pre_count[k]["t"]/v,)) print("all acc : %f"%(all_true/ sum(all_count.values()))) test_mnist() """ 最后的结果是k==1 反而是最好高的准确率?很奇怪 """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 638, 77, 198, 198, 4299, 1188, 84, 62, 20274, 7, 3866, 62, 88, 11, 1103, 62, 88, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 243, 230, 162, 252, 250, 46237, 226, 27670, 108, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 662, 62, 9127, 796, 23884, 198, 220, 220, 220, 477, 62, 9127, 796, 23884, 198, 220, 220, 220, 329, 662, 11, 1103, 287, 19974, 7, 3866, 62, 88, 11, 1103, 62, 88, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1103, 407, 287, 662, 62, 9127, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 62, 9127, 58, 5305, 60, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 9127, 58, 5305, 60, 796, 477, 62, 9127, 13, 1136, 7, 5305, 11, 657, 8, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 662, 6624, 1103, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 62, 9127, 58, 5305, 7131, 1, 83, 8973, 796, 220, 662, 62, 9127, 58, 5305, 4083, 1136, 7203, 83, 1600, 657, 47762, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 662, 62, 9127, 58, 5305, 7131, 6, 69, 20520, 796, 662, 62, 9127, 58, 5305, 4083, 1136, 7203, 69, 1600, 657, 8, 1343, 352, 198, 220, 220, 220, 477, 62, 7942, 796, 657, 13, 15, 198, 220, 220, 220, 329, 479, 11, 410, 287, 477, 62, 9127, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 7942, 15853, 662, 62, 9127, 58, 74, 4083, 1136, 7203, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4134, 25, 4064, 82, 11, 4064, 69, 36521, 7, 74, 11, 662, 62, 9127, 58, 74, 7131, 1, 83, 8973, 14, 85, 11, 4008, 198, 220, 220, 220, 3601, 7203, 439, 697, 1058, 4064, 69, 1, 4, 7, 439, 62, 7942, 14, 2160, 7, 439, 62, 9127, 13, 27160, 3419, 22305, 198, 198, 9288, 62, 10295, 396, 3419, 198, 37811, 198, 17312, 222, 28938, 236, 21410, 163, 119, 241, 162, 252, 250, 42468, 74, 855, 16, 10263, 237, 235, 32003, 234, 42468, 17312, 222, 25001, 121, 165, 45865, 21410, 49035, 228, 163, 94, 106, 163, 236, 229, 171, 120, 253, 36181, 230, 25001, 229, 45250, 103, 198, 37811, 198 ]
1.787037
432
import os import shutil import tempfile import uuid from collections.abc import AsyncIterator, Iterable, Iterator from pathlib import Path, PurePath from typing import Any, Callable, Coroutine from unittest import mock import pytest import pytest_asyncio from platform_storage_api.fs.local import ( FileStatus, FileStatusType, FileSystem, LocalFileSystem, StorageType, copy_streams, ) RemoveMethod = Callable[[FileSystem, PurePath, bool], Coroutine[Any, Any, None]]
[ 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 11748, 334, 27112, 198, 6738, 17268, 13, 39305, 1330, 1081, 13361, 37787, 11, 40806, 540, 11, 40806, 1352, 198, 6738, 3108, 8019, 1330, 10644, 11, 17129, 15235, 198, 6738, 19720, 1330, 4377, 11, 4889, 540, 11, 2744, 28399, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 11748, 12972, 9288, 198, 11748, 12972, 9288, 62, 292, 13361, 952, 198, 198, 6738, 3859, 62, 35350, 62, 15042, 13, 9501, 13, 12001, 1330, 357, 198, 220, 220, 220, 9220, 19580, 11, 198, 220, 220, 220, 9220, 19580, 6030, 11, 198, 220, 220, 220, 9220, 11964, 11, 198, 220, 220, 220, 10714, 8979, 11964, 11, 198, 220, 220, 220, 20514, 6030, 11, 198, 220, 220, 220, 4866, 62, 5532, 82, 11, 198, 8, 628, 628, 198, 198, 27914, 17410, 796, 4889, 540, 30109, 8979, 11964, 11, 17129, 15235, 11, 20512, 4357, 2744, 28399, 58, 7149, 11, 4377, 11, 6045, 11907, 628 ]
3.132075
159
#!python3 import os from algoliasearch.search_client import SearchClient from dotenv import load_dotenv, find_dotenv import json import requests load_dotenv(find_dotenv()) METADATA_URL = 'https://webhooks.mongodb-stitch.com/api/client/v2.0/app/covid-19-qppza/service/REST-API/incoming_webhook/metadata' REST_URL = 'https://webhooks.mongodb-stitch.com/api/client/v2.0/app/covid-19-qppza/service/REST-API/incoming_webhook/global_and_us' if __name__ == "__main__": main()
[ 2, 0, 29412, 18, 198, 11748, 28686, 198, 198, 6738, 435, 70, 349, 4448, 3679, 13, 12947, 62, 16366, 1330, 11140, 11792, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 11, 1064, 62, 26518, 24330, 198, 11748, 33918, 198, 11748, 7007, 198, 198, 2220, 62, 26518, 24330, 7, 19796, 62, 26518, 24330, 28955, 198, 198, 47123, 2885, 13563, 62, 21886, 796, 705, 5450, 1378, 12384, 25480, 82, 13, 31059, 375, 65, 12, 301, 2007, 13, 785, 14, 15042, 14, 16366, 14, 85, 17, 13, 15, 14, 1324, 14, 66, 709, 312, 12, 1129, 12, 80, 381, 4496, 14, 15271, 14, 49, 6465, 12, 17614, 14, 259, 4976, 62, 12384, 25480, 14, 38993, 6, 198, 49, 6465, 62, 21886, 796, 705, 5450, 1378, 12384, 25480, 82, 13, 31059, 375, 65, 12, 301, 2007, 13, 785, 14, 15042, 14, 16366, 14, 85, 17, 13, 15, 14, 1324, 14, 66, 709, 312, 12, 1129, 12, 80, 381, 4496, 14, 15271, 14, 49, 6465, 12, 17614, 14, 259, 4976, 62, 12384, 25480, 14, 20541, 62, 392, 62, 385, 6, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1388, 3419, 198 ]
2.45641
195
from pwn import * #context.log_level = 'debug' #http://4ngelboy.blogspot.com/2016/10/hitcon-ctf-qual-2016-house-of-orange.html #http://4ngelboy.blogspot.tw/2017/11/play-with-file-structure-yet-another.html p = remote('securewebinc.jet', 5555) #p = process('./membermanager') binary = ELF('./membermanager') libc = ELF('./libc6_2.23-0ubuntu10_amd64.so') #libc = ELF('/lib/x86_64-linux-gnu/libc-2.28.so'), won't work cause fucking tcachebins enterName('Mr. Fizz') #libc leak readLeak = leaklibc() log.info('Leaked read address: ' + hex(readLeak)) libcBase = readLeak - libc.symbols['read'] log.info('Leaked libc base: ' + hex(libcBase)) #make 4 chunks #chunk 0 -> we use this to overflow #chunk 1 -> this will be overflowed, make it at least 0x101 so we control 2 bytes #chunk 2 -> chunk to be messed with and freed into unsorted #chunk 3 -> prevent consolidation with top chunk alloc(0x88, 'A' * 0x88) #read fills it all up, when insecure edit, can overflow alloc(0x100, 'B' * 0x80) #0x100 plus 16 bytes of metadata -> 0x110 #this chunk will be forged to help in unsorted bin attack... there are checks involved to check valid sizes fakechunkpad = 'C' * 0x160 fakechunkpayload = p64(0) + p64(0x21) #fastbin size alloc(0x500, fakechunkpad + fakechunkpayload) #0x510 is real size alloc(0x88, 'D' * 0x80) #prevent top consolidation #now free lol, to help start the unsorted bin attack ban(2) log.info('Overflowing chunks') #now overflow edit(0, 2, 'A' * 0x88 + p64(0x110 + 0x10 + 0x160 + 0x1)) #so chunk 1 size + chunk metadata size + fakechunkpad size + 0x1 (for prev in use bit) #chunks successfully overlapped! log.info('Chunks overlapped') #now mess with IO_file structs to change something in vtable so when a file read/input/output function is called, triggers a shell #make it call something at like name perhaps changeName(p64(0) * 3 + p64(libcBase + libc.symbols['system'])) #padding + system #we can start crafting the fake _IO_FILE to satisfy the first part of the check within _IO_flush_all_lockup() function #condition to get: fp->_IO_write_ptr > fp->_IO_write_base log.info('Messing with IO vt table') nameLocation = 0x6020a0 #constant cause BSS and no PIE IO_list_all = 0x3c5520 payload = "B" * 8*32 # overflow to victim chunk using secure edit payload += 'cat f*\x00' # fake prev payload += p64(0x61) # fake shrinked size payload += p64(0) # fake FD payload += p64(libcBase + - 0x10) # fake BK payload += p64(2) # fp->_IO_write_base payload += p64(3) # fp->_IO_write_ptr payload += p64(0) * 21 # filling payload += p64(nameLocation) # fake *vtable edit(1, 1, payload) # use secure edit #/bin/sh in previous field because: prev_size (start of the chunk) was passed in RDI register, so say, an argument to system() later. log.info('Overrode vt table') log.info('Triggering unsorted bin attack') p.recvrepeat(0.1) p.sendline('1') p.recvrepeat(0.1) p.sendline(str(0x80)) p.interactive()
[ 6738, 279, 675, 1330, 1635, 198, 220, 198, 2, 22866, 13, 6404, 62, 5715, 796, 705, 24442, 6, 198, 2, 4023, 1378, 19, 782, 417, 7081, 13, 35217, 13, 785, 14, 5304, 14, 940, 14, 17945, 1102, 12, 310, 69, 12, 13255, 12, 5304, 12, 4803, 12, 1659, 12, 43745, 13, 6494, 198, 2, 4023, 1378, 19, 782, 417, 7081, 13, 35217, 13, 4246, 14, 5539, 14, 1157, 14, 1759, 12, 4480, 12, 7753, 12, 301, 5620, 12, 25907, 12, 29214, 13, 6494, 198, 220, 198, 79, 796, 6569, 10786, 22390, 12384, 1939, 13, 31173, 3256, 642, 31046, 8, 198, 2, 79, 796, 1429, 7, 4458, 14, 19522, 37153, 11537, 198, 39491, 796, 17852, 37, 7, 4458, 14, 19522, 37153, 11537, 198, 8019, 66, 796, 17852, 37, 7, 4458, 14, 8019, 66, 21, 62, 17, 13, 1954, 12, 15, 32230, 940, 62, 28745, 2414, 13, 568, 11537, 198, 2, 8019, 66, 796, 17852, 37, 10786, 14, 8019, 14, 87, 4521, 62, 2414, 12, 23289, 12, 41791, 14, 8019, 66, 12, 17, 13, 2078, 13, 568, 33809, 1839, 470, 670, 2728, 9372, 256, 23870, 65, 1040, 198, 220, 198, 9255, 5376, 10786, 5246, 13, 376, 6457, 11537, 198, 2, 8019, 66, 13044, 198, 961, 3123, 461, 796, 13044, 8019, 66, 3419, 198, 6404, 13, 10951, 10786, 3123, 4335, 1100, 2209, 25, 705, 1343, 17910, 7, 961, 3123, 461, 4008, 198, 8019, 66, 14881, 796, 1100, 3123, 461, 532, 9195, 66, 13, 1837, 2022, 10220, 17816, 961, 20520, 198, 6404, 13, 10951, 10786, 3123, 4335, 9195, 66, 2779, 25, 705, 1343, 17910, 7, 8019, 66, 14881, 4008, 198, 2, 15883, 604, 22716, 198, 2, 354, 2954, 657, 4613, 356, 779, 428, 284, 30343, 198, 2, 354, 2954, 352, 4613, 428, 481, 307, 32876, 6972, 11, 787, 340, 379, 1551, 657, 87, 8784, 523, 356, 1630, 362, 9881, 198, 2, 354, 2954, 362, 4613, 16058, 284, 307, 32621, 351, 290, 13459, 656, 5576, 9741, 198, 2, 354, 2954, 513, 4613, 2948, 31941, 351, 1353, 16058, 198, 32332, 7, 15, 87, 3459, 11, 705, 32, 6, 1635, 657, 87, 3459, 8, 1303, 961, 23816, 340, 477, 510, 11, 618, 31955, 4370, 11, 460, 30343, 198, 32332, 7, 15, 87, 3064, 11, 705, 33, 6, 1635, 657, 87, 1795, 8, 1303, 15, 87, 3064, 5556, 1467, 9881, 286, 20150, 4613, 657, 87, 11442, 198, 2, 5661, 16058, 481, 307, 24918, 284, 1037, 287, 5576, 9741, 9874, 1368, 986, 612, 389, 8794, 2950, 284, 2198, 4938, 10620, 198, 30706, 354, 2954, 15636, 796, 705, 34, 6, 1635, 657, 87, 14198, 198, 30706, 354, 2954, 15577, 2220, 796, 279, 2414, 7, 15, 8, 1343, 279, 2414, 7, 15, 87, 2481, 8, 1303, 7217, 8800, 2546, 198, 32332, 7, 15, 87, 4059, 11, 8390, 354, 2954, 15636, 1343, 8390, 354, 2954, 15577, 2220, 8, 1303, 15, 87, 33690, 318, 1103, 2546, 198, 32332, 7, 15, 87, 3459, 11, 705, 35, 6, 1635, 657, 87, 1795, 8, 1303, 3866, 1151, 1353, 31941, 198, 2, 2197, 1479, 19462, 11, 284, 1037, 923, 262, 5576, 9741, 9874, 1368, 198, 3820, 7, 17, 8, 198, 6404, 13, 10951, 10786, 5886, 2704, 7855, 22716, 11537, 198, 2, 2197, 30343, 198, 19312, 7, 15, 11, 362, 11, 705, 32, 6, 1635, 657, 87, 3459, 1343, 279, 2414, 7, 15, 87, 11442, 1343, 657, 87, 940, 1343, 657, 87, 14198, 1343, 657, 87, 16, 4008, 1303, 568, 16058, 352, 2546, 1343, 16058, 20150, 2546, 1343, 8390, 354, 2954, 15636, 2546, 1343, 657, 87, 16, 357, 1640, 8654, 287, 779, 1643, 8, 198, 2, 354, 14125, 7675, 12893, 6320, 0, 198, 6404, 13, 10951, 10786, 1925, 14125, 12893, 6320, 11537, 198, 2, 2197, 2085, 351, 24418, 62, 7753, 2878, 82, 284, 1487, 1223, 287, 410, 11487, 523, 618, 257, 2393, 1100, 14, 15414, 14, 22915, 2163, 318, 1444, 11, 20022, 257, 7582, 198, 2, 15883, 340, 869, 1223, 379, 588, 1438, 3737, 198, 3803, 5376, 7, 79, 2414, 7, 15, 8, 1635, 513, 1343, 279, 2414, 7, 8019, 66, 14881, 1343, 9195, 66, 13, 1837, 2022, 10220, 17816, 10057, 20520, 4008, 1303, 39231, 1343, 1080, 198, 2, 732, 460, 923, 21671, 262, 8390, 4808, 9399, 62, 25664, 284, 15959, 262, 717, 636, 286, 262, 2198, 1626, 4808, 9399, 62, 25925, 62, 439, 62, 5354, 929, 3419, 2163, 198, 2, 31448, 284, 651, 25, 220, 277, 79, 3784, 62, 9399, 62, 13564, 62, 20692, 1875, 277, 79, 3784, 62, 9399, 62, 13564, 62, 8692, 198, 6404, 13, 10951, 10786, 44, 27289, 351, 24418, 410, 83, 3084, 11537, 198, 3672, 14749, 796, 657, 87, 1899, 1238, 64, 15, 1303, 9979, 415, 2728, 347, 5432, 290, 645, 350, 10008, 198, 9399, 62, 4868, 62, 439, 796, 657, 87, 18, 66, 2816, 1238, 198, 15577, 2220, 796, 366, 33, 1, 1635, 807, 9, 2624, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30343, 284, 3117, 16058, 1262, 5713, 4370, 198, 15577, 2220, 15853, 705, 9246, 277, 9, 59, 87, 405, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8390, 8654, 198, 15577, 2220, 15853, 279, 2414, 7, 15, 87, 5333, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8390, 22085, 276, 2546, 198, 15577, 2220, 15853, 279, 2414, 7, 15, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8390, 30002, 198, 15577, 2220, 15853, 279, 2414, 7, 8019, 66, 14881, 1343, 220, 532, 657, 87, 940, 8, 1303, 8390, 347, 42, 198, 15577, 2220, 15853, 279, 2414, 7, 17, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 277, 79, 3784, 62, 9399, 62, 13564, 62, 8692, 198, 15577, 2220, 15853, 279, 2414, 7, 18, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 277, 79, 3784, 62, 9399, 62, 13564, 62, 20692, 198, 15577, 2220, 15853, 279, 2414, 7, 15, 8, 1635, 2310, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12591, 198, 15577, 2220, 15853, 279, 2414, 7, 3672, 14749, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8390, 1635, 85, 11487, 198, 19312, 7, 16, 11, 352, 11, 21437, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 5713, 4370, 198, 2, 14, 8800, 14, 1477, 287, 2180, 2214, 780, 25, 8654, 62, 7857, 357, 9688, 286, 262, 16058, 8, 373, 3804, 287, 371, 17931, 7881, 11, 523, 910, 11, 281, 4578, 284, 1080, 3419, 1568, 13, 198, 6404, 13, 10951, 10786, 5886, 305, 2934, 410, 83, 3084, 11537, 198, 6404, 13, 10951, 10786, 48344, 278, 5576, 9741, 9874, 1368, 11537, 198, 79, 13, 8344, 43933, 18267, 7, 15, 13, 16, 8, 198, 79, 13, 21280, 1370, 10786, 16, 11537, 198, 79, 13, 8344, 43933, 18267, 7, 15, 13, 16, 8, 198, 79, 13, 21280, 1370, 7, 2536, 7, 15, 87, 1795, 4008, 198, 79, 13, 3849, 5275, 3419 ]
2.554247
1,189
#!/usr/bin/env python # coding: utf-8 ############################################# # File Name: setup.py # Author: whzcorcd # Mail: [email protected] # Created Time: 2020-06-08 ############################################# from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="sentry-wechat", version='0.0.3', author='whzcorcd', author_email='[email protected]', url='https://github.com/corcd/sentry-wechat', description='A sentry extension which share information to Wechat Work', long_description=long_description, long_description_content_type="text/markdown", license='MIT', keywords='sentry wechat', include_package_data=True, zip_safe=False, package_dir={'': 'src'}, packages=find_packages('src'), install_requires=[ 'sentry>=9.0.0', 'requests', ], entry_points={ 'sentry.plugins': [ 'sentry_wechat = sentry_wechat.plugin:WechatPlugin' ] }, classifiers=[ 'Programming Language :: Python :: 2.7', "License :: OSI Approved :: MIT License", ] )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 29113, 7804, 4242, 2, 198, 2, 9220, 6530, 25, 9058, 13, 9078, 198, 2, 6434, 25, 348, 89, 10215, 10210, 198, 2, 11099, 25, 348, 89, 10215, 10210, 31, 14816, 13, 785, 198, 2, 15622, 3862, 25, 220, 12131, 12, 3312, 12, 2919, 198, 29113, 7804, 4242, 2, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 82, 13000, 12, 732, 17006, 1600, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 18, 3256, 198, 220, 220, 220, 1772, 11639, 1929, 89, 10215, 10210, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 1929, 89, 10215, 10210, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 10215, 10210, 14, 82, 13000, 12, 732, 17006, 3256, 198, 220, 220, 220, 6764, 11639, 32, 1908, 563, 7552, 543, 2648, 1321, 284, 775, 17006, 5521, 3256, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 26286, 11639, 82, 13000, 356, 17006, 3256, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 5301, 62, 15908, 34758, 7061, 25, 705, 10677, 6, 5512, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 10786, 10677, 33809, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 13000, 29, 28, 24, 13, 15, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 13000, 13, 37390, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 13000, 62, 732, 17006, 796, 1908, 563, 62, 732, 17006, 13, 33803, 25, 1135, 17006, 37233, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 2361, 198, 8, 198 ]
2.515086
464
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2012 Jérémie DECOCK (http://www.jdhp.org) # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ This module does blah blah. Here is the description of the module. See PEP 257 (http://legacy.python.org/dev/peps/pep-0257/) for more details. See also http://stackoverflow.com/questions/2557110/what-to-put-in-a-python-module-docstring. See also PEP 8 (http://legacy.python.org/dev/peps/pep-0008/) for Python's good practices. """ import sys, os def main(): """ This function does blah blah. Here is the description of the function. See PEP 257 (http://legacy.python.org/dev/peps/pep-0257/) for more details. See also PEP 8 (http://legacy.python.org/dev/peps/pep-0008/) for Python's good practices. """ # Print the python version # The follow syntax only works with Python 3.x: a, b, *rest = sequence # This script can't be executed with Python 2.x (not even with Python 2.7) version, *rest = sys.version.split(' ') print("Hello from Python", version, os.linesep) print("Hello!") print("¡Buenos días!") print("Bonjour!") print("你好!") if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 357, 66, 8, 2321, 449, 2634, 29350, 44871, 27196, 11290, 357, 4023, 1378, 2503, 13, 73, 67, 24831, 13, 2398, 8, 198, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 2, 3336, 47466, 13, 198, 198, 37811, 198, 1212, 8265, 857, 33367, 33367, 13, 198, 198, 4342, 318, 262, 6764, 286, 262, 8265, 13, 198, 6214, 350, 8905, 36100, 357, 4023, 1378, 1455, 1590, 13, 29412, 13, 2398, 14, 7959, 14, 431, 862, 14, 431, 79, 12, 15, 28676, 34729, 329, 517, 3307, 13, 198, 6214, 635, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 1495, 3553, 11442, 14, 10919, 12, 1462, 12, 1996, 12, 259, 12, 64, 12, 29412, 12, 21412, 12, 15390, 8841, 13, 198, 198, 6214, 635, 350, 8905, 807, 357, 4023, 1378, 1455, 1590, 13, 29412, 13, 2398, 14, 7959, 14, 431, 862, 14, 431, 79, 12, 830, 23, 34729, 329, 11361, 338, 922, 6593, 13, 198, 37811, 198, 198, 11748, 25064, 11, 28686, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 857, 33367, 33367, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3423, 318, 262, 6764, 286, 262, 2163, 13, 198, 220, 220, 220, 4091, 350, 8905, 36100, 357, 4023, 1378, 1455, 1590, 13, 29412, 13, 2398, 14, 7959, 14, 431, 862, 14, 431, 79, 12, 15, 28676, 34729, 329, 517, 3307, 13, 628, 220, 220, 220, 4091, 635, 350, 8905, 807, 357, 4023, 1378, 1455, 1590, 13, 29412, 13, 2398, 14, 7959, 14, 431, 862, 14, 431, 79, 12, 830, 23, 34729, 329, 11361, 338, 922, 6593, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 12578, 262, 21015, 2196, 198, 220, 220, 220, 1303, 383, 1061, 15582, 691, 2499, 351, 11361, 513, 13, 87, 25, 257, 11, 275, 11, 1635, 2118, 796, 8379, 198, 220, 220, 220, 1303, 770, 4226, 460, 470, 307, 10945, 351, 11361, 362, 13, 87, 357, 1662, 772, 351, 11361, 362, 13, 22, 8, 198, 220, 220, 220, 2196, 11, 1635, 2118, 796, 25064, 13, 9641, 13, 35312, 10786, 705, 8, 198, 220, 220, 220, 3601, 7203, 15496, 422, 11361, 1600, 2196, 11, 28686, 13, 6615, 538, 8, 628, 220, 220, 220, 3601, 7203, 15496, 2474, 8, 198, 220, 220, 220, 3601, 7203, 126, 94, 38374, 28380, 288, 8836, 292, 2474, 8, 198, 220, 220, 220, 3601, 7203, 20682, 73, 454, 2474, 8, 198, 220, 220, 220, 3601, 7203, 19526, 254, 25001, 121, 171, 120, 223, 4943, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.090909
715
#!/usr/bin/python3 -d # Copyright (c) 2020 Johannes Findeisen <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF # OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import argparse import calendar import json import logging import logging.handlers import pymysql import socket import time try: from fritzconnection.fritzconnection.lib.fritzstatus import FritzStatus except ImportError: from fritzconnection.lib.fritzstatus import FritzStatus from threading import Thread from uplink.daemon import Daemon # Version format: MAJOR.FEATURE.FIXES __version__ = "0.3.0" # logger = logging.getLogger(__name__) # PURPLE = "\033[95m" # BLUE = "\033[94m" # YELLOW = "\033[93m" # GRAY = "\033[90m" # END = "\033[0m" if __name__ == "__main__": args = parse_args() # root_logger = logging.getLogger() # if args.stdout: # formatter = logging.Formatter( # PURPLE + "%(asctime)s" + END + ":" + BLUE + "%(levelname)s" + END + ":" + YELLOW + "%(name)s" + END + ":" + GRAY + "%(message)s" + END) # handler1 = logging.StreamHandler(sys.stdout) # handler1.setFormatter(formatter) # root_logger.addHandler(handler1) # if args.logfile: # logfile = path.expanduser(args.logfile) # if not path.exists(path.dirname(logfile)): # os.makedirs(path.dirname(logfile)) # formatter = logging.Formatter("%(asctime)s:%(levelname)s:%(name)s:%(message)s") # handler2 = logging.handlers.RotatingFileHandler(args.logfile, maxBytes=args.logsize, backupCount=args.logcount) # handler2.setFormatter(formatter) # root_logger.addHandler(handler2) # root_logger.setLevel(args.loglevel) config_path = args.config try: with open(config_path, 'r') as configfile: config_data = configfile.read() _config = json.loads(config_data) except Exception as err: # logger.error("Reading configuration file '" + config_path + "' failed: " + str(err)) print(str("Uplink: Configuration Error!")) exit(1) # try: # run(_config) # except KeyboardInterrupt: # logger.info("Program terminated!") # exit(0) Uplink = Uplink("/tmp/uplink.pid", _config) Uplink.start()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 532, 67, 198, 198, 2, 15069, 357, 66, 8, 12131, 38579, 9938, 68, 13254, 1279, 5832, 31, 71, 1531, 89, 13, 2398, 29, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 30760, 198, 2, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 357, 8201, 262, 1306, 198, 2, 7322, 8, 2236, 307, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 198, 2, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 198, 2, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 198, 2, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 198, 2, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 47466, 13, 198, 198, 11748, 1822, 29572, 198, 11748, 11845, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 18931, 13, 4993, 8116, 198, 11748, 279, 4948, 893, 13976, 198, 11748, 17802, 198, 11748, 640, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 277, 29574, 38659, 13, 69, 29574, 38659, 13, 8019, 13, 69, 29574, 13376, 1330, 45954, 19580, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 277, 29574, 38659, 13, 8019, 13, 69, 29574, 13376, 1330, 45954, 19580, 198, 198, 6738, 4704, 278, 1330, 14122, 198, 6738, 28996, 676, 13, 6814, 7966, 1330, 9637, 7966, 198, 198, 2, 10628, 5794, 25, 8779, 41, 1581, 13, 15112, 40086, 13, 47084, 1546, 198, 834, 9641, 834, 796, 366, 15, 13, 18, 13, 15, 1, 198, 198, 2, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 2, 33079, 16437, 796, 37082, 44427, 58, 3865, 76, 1, 198, 2, 9878, 8924, 796, 37082, 44427, 58, 5824, 76, 1, 198, 2, 575, 23304, 3913, 796, 37082, 44427, 58, 6052, 76, 1, 198, 2, 402, 30631, 796, 37082, 44427, 58, 3829, 76, 1, 198, 2, 23578, 796, 37082, 44427, 58, 15, 76, 1, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 26498, 796, 21136, 62, 22046, 3419, 628, 220, 220, 220, 1303, 6808, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 628, 220, 220, 220, 1303, 611, 26498, 13, 19282, 448, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 33079, 16437, 1343, 36521, 7, 292, 310, 524, 8, 82, 1, 1343, 23578, 1343, 366, 11097, 1343, 9878, 8924, 1343, 36521, 7, 5715, 3672, 8, 82, 1, 1343, 23578, 1343, 366, 11097, 1343, 575, 23304, 3913, 1343, 36521, 7, 3672, 8, 82, 1, 1343, 23578, 1343, 366, 11097, 1343, 402, 30631, 1343, 36521, 7, 20500, 8, 82, 1, 1343, 23578, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 21360, 16, 796, 18931, 13, 12124, 25060, 7, 17597, 13, 19282, 448, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 21360, 16, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 6808, 62, 6404, 1362, 13, 2860, 25060, 7, 30281, 16, 8, 628, 220, 220, 220, 1303, 611, 26498, 13, 6404, 7753, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2604, 7753, 796, 3108, 13, 11201, 392, 7220, 7, 22046, 13, 6404, 7753, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 407, 3108, 13, 1069, 1023, 7, 6978, 13, 15908, 3672, 7, 6404, 7753, 8, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 13, 15908, 3672, 7, 6404, 7753, 4008, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 7203, 4, 7, 292, 310, 524, 8, 82, 25, 4, 7, 5715, 3672, 8, 82, 25, 4, 7, 3672, 8, 82, 25, 4, 7, 20500, 8, 82, 4943, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 21360, 17, 796, 18931, 13, 4993, 8116, 13, 24864, 803, 8979, 25060, 7, 22046, 13, 6404, 7753, 11, 3509, 45992, 28, 22046, 13, 6404, 7857, 11, 11559, 12332, 28, 22046, 13, 6404, 9127, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 21360, 17, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 6808, 62, 6404, 1362, 13, 2860, 25060, 7, 30281, 17, 8, 628, 220, 220, 220, 1303, 6808, 62, 6404, 1362, 13, 2617, 4971, 7, 22046, 13, 75, 2467, 626, 8, 628, 220, 220, 220, 4566, 62, 6978, 796, 26498, 13, 11250, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 11250, 62, 6978, 11, 705, 81, 11537, 355, 4566, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 62, 7890, 796, 4566, 7753, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11250, 796, 33918, 13, 46030, 7, 11250, 62, 7890, 8, 198, 220, 220, 220, 2845, 35528, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 18224, 7203, 36120, 8398, 2393, 705, 1, 1343, 4566, 62, 6978, 1343, 24018, 4054, 25, 366, 1343, 965, 7, 8056, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 7203, 52, 489, 676, 25, 28373, 13047, 2474, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 1303, 1949, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1057, 28264, 11250, 8, 198, 220, 220, 220, 1303, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 49706, 13, 10951, 7203, 15167, 23083, 2474, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 8420, 7, 15, 8, 628, 220, 220, 220, 471, 489, 676, 796, 471, 489, 676, 7203, 14, 22065, 14, 84, 489, 676, 13, 35317, 1600, 4808, 11250, 8, 198, 220, 220, 220, 471, 489, 676, 13, 9688, 3419, 198 ]
2.751479
1,183
# -*- coding: utf-8 -*- """ Funkcije na grafih. V ocenah časovne zahtevnosti je n število vozlišč v grafu, m število povezav v grafu, d(u) pa število sosedov vozlišča u. Pri tem predpostavljamo, da velja n = O(m) (graf ima O(1) povezanih komponent). Podane časovne zahtevnosti veljajo za predstavitev grafa s seznami sosedov. """ def topoloskaUreditev(G): """ Topološko urejanje usmerjenega acikličnega grafa z odstranjevanjem izvorov. Časovna zahtevnost: O(m) """ stopnje = {u: 0 for u in G.vozlisca()} for u in stopnje: for v in G.izhodniSosedi(u): stopnje[v] += 1 s = [] for u, d in stopnje.items(): if d == 0: s.append(u) topord = [] while len(s) > 0: v = s.pop() topord.append(v) for u in G.izhodniSosedi(v): stopnje[u] -= 1 if stopnje[u] == 0: s.append(u) if len(topord) < len(stopnje): raise ValueError("Graf ima cikle!") return topord def najkrajsaPotDAG(G, s, t): """ Poišče najkrajšo pot od s do t v usmerjenem acikličnem grafu G. Časovna zahtevnost: O(m) """ topord = topoloskaUreditev(G) d = {u: None for u in G.vozlisca()} p = {u: None for u in G.vozlisca()} d[s] = 0 for i in range(topord.index(s), topord.index(t)): u = topord[i] l = d[u] for v, r in G.utezeniIzhodniSosedi(u).items(): if d[v] is None or d[v] > l+r: d[v] = l+r p[v] = u pot = [] u = t while u is not None: pot.append(u) u = p[u] return (d[t], list(reversed(pot))) def najdaljsaPotDAG(G, s, t): """ Poišče najdaljšo pot od s do t v usmerjenem acikličnem grafu G. Časovna zahtevnost: O(m) """ topord = topoloskaUreditev(G) d = {u: None for u in G.vozlisca()} p = {u: None for u in G.vozlisca()} d[s] = 0 for i in range(topord.index(s), topord.index(t)): u = topord[i] l = d[u] for v, r in G.utezeniIzhodniSosedi(u).items(): if d[v] is None or d[v] < l+r: d[v] = l+r p[v] = u pot = [] u = t while u is not None: pot.append(u) u = p[u] return (d[t], list(reversed(pot))) def steviloPoti(G, s, t): """ Za usmerjen acikličen graf G z utežmi, ki predstavljajo število načinov, kako lahko sledimo povezavi, določi število načinov, kako lahko pridemo od vozlišča s do vozlišča t. Časovna zahtevnost: O(m) """ st = {u: 1 if u == s else 0 for u in G.vozlisca()} for u in topoloskaUreditev(G): for v, d in G.utezeniIzhodniSosedi(u).items(): st[v] += st[u] * d return st[t] def vecTopoUreditev(G): """ Ugotovi, ali ima usmerjen acikličen graf več kot eno topološko ureditev. Časovna zahtevnost: O(m) """ stopnje = {u: 0 for u in G.vozlisca()} for u in stopnje: for v in G.izhodniSosedi(u): stopnje[v] += 1 s = [] for u, d in stopnje.items(): if d == 0: s.append(u) out = False n = len(G) for i in range(n): if len(s) == i: return False if len(s) > i+1: out = True for u in G.izhodniSosedi(s[i]): stopnje[u] -= 1 if stopnje[u] == 0: s.append(u) return out
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 37, 2954, 979, 18015, 12385, 7933, 69, 4449, 13, 198, 198, 53, 267, 66, 268, 993, 34754, 235, 292, 709, 710, 1976, 993, 660, 85, 77, 455, 72, 11223, 299, 25370, 94, 660, 2991, 78, 7608, 89, 4528, 32790, 46195, 410, 7933, 20942, 11, 198, 76, 25370, 94, 660, 2991, 78, 279, 659, 89, 615, 410, 7933, 20942, 11, 288, 7, 84, 8, 14187, 25370, 94, 660, 2991, 78, 264, 1335, 709, 7608, 89, 4528, 32790, 46195, 64, 334, 13, 198, 34487, 2169, 2747, 7353, 615, 75, 73, 18811, 11, 12379, 11555, 6592, 299, 796, 440, 7, 76, 8, 198, 7, 70, 32188, 545, 64, 440, 7, 16, 8, 279, 659, 89, 3216, 71, 479, 3361, 3471, 737, 198, 41565, 1531, 34754, 235, 292, 709, 710, 1976, 993, 660, 85, 77, 455, 72, 11555, 73, 34944, 1976, 64, 2747, 301, 615, 578, 85, 7933, 13331, 264, 384, 47347, 6277, 264, 1335, 709, 13, 198, 37811, 198, 198, 4299, 1353, 349, 418, 4914, 52, 445, 578, 85, 7, 38, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5849, 14057, 32790, 7204, 334, 260, 13881, 18015, 514, 647, 48796, 26470, 936, 1134, 4528, 46195, 710, 4908, 7933, 13331, 1976, 16298, 2536, 272, 73, 1990, 272, 73, 368, 220, 528, 20867, 709, 13, 628, 220, 220, 220, 34754, 234, 292, 709, 2616, 1976, 993, 660, 85, 77, 455, 25, 440, 7, 76, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2245, 77, 18015, 796, 1391, 84, 25, 657, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 329, 334, 287, 2245, 77, 18015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 402, 13, 528, 2065, 8461, 50, 1335, 72, 7, 84, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 77, 18015, 58, 85, 60, 15853, 352, 198, 220, 220, 220, 264, 796, 17635, 198, 220, 220, 220, 329, 334, 11, 288, 287, 2245, 77, 18015, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 33295, 7, 84, 8, 198, 220, 220, 220, 1353, 585, 796, 17635, 198, 220, 220, 220, 981, 18896, 7, 82, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 264, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 585, 13, 33295, 7, 85, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 334, 287, 402, 13, 528, 2065, 8461, 50, 1335, 72, 7, 85, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 77, 18015, 58, 84, 60, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2245, 77, 18015, 58, 84, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 33295, 7, 84, 8, 198, 220, 220, 220, 611, 18896, 7, 4852, 585, 8, 1279, 18896, 7, 11338, 77, 18015, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 38, 32188, 545, 64, 269, 1134, 293, 2474, 8, 198, 220, 220, 220, 1441, 1353, 585, 198, 198, 4299, 299, 1228, 74, 430, 8457, 64, 25396, 35, 4760, 7, 38, 11, 264, 11, 256, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7695, 72, 32790, 46195, 68, 299, 1228, 74, 430, 73, 32790, 78, 1787, 16298, 264, 466, 256, 410, 514, 647, 48796, 368, 936, 1134, 4528, 46195, 77, 368, 7933, 20942, 402, 13, 628, 220, 220, 220, 34754, 234, 292, 709, 2616, 1976, 993, 660, 85, 77, 455, 25, 440, 7, 76, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1353, 585, 796, 1353, 349, 418, 4914, 52, 445, 578, 85, 7, 38, 8, 198, 220, 220, 220, 288, 796, 1391, 84, 25, 6045, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 279, 796, 1391, 84, 25, 6045, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 288, 58, 82, 60, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 4852, 585, 13, 9630, 7, 82, 828, 1353, 585, 13, 9630, 7, 83, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 334, 796, 1353, 585, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 288, 58, 84, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 11, 374, 287, 402, 13, 1133, 4801, 72, 40, 89, 2065, 8461, 50, 1335, 72, 7, 84, 737, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 58, 85, 60, 318, 6045, 393, 288, 58, 85, 60, 1875, 300, 10, 81, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 85, 60, 796, 300, 10, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 85, 60, 796, 334, 198, 220, 220, 220, 1787, 796, 17635, 198, 220, 220, 220, 334, 796, 256, 198, 220, 220, 220, 981, 334, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1787, 13, 33295, 7, 84, 8, 198, 220, 220, 220, 220, 220, 220, 220, 334, 796, 279, 58, 84, 60, 198, 220, 220, 220, 1441, 357, 67, 58, 83, 4357, 1351, 7, 260, 690, 276, 7, 13059, 22305, 198, 198, 4299, 299, 1228, 31748, 8457, 64, 25396, 35, 4760, 7, 38, 11, 264, 11, 256, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7695, 72, 32790, 46195, 68, 299, 1228, 31748, 73, 32790, 78, 1787, 16298, 264, 466, 256, 410, 514, 647, 48796, 368, 936, 1134, 4528, 46195, 77, 368, 7933, 20942, 402, 13, 628, 220, 220, 220, 34754, 234, 292, 709, 2616, 1976, 993, 660, 85, 77, 455, 25, 440, 7, 76, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1353, 585, 796, 1353, 349, 418, 4914, 52, 445, 578, 85, 7, 38, 8, 198, 220, 220, 220, 288, 796, 1391, 84, 25, 6045, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 279, 796, 1391, 84, 25, 6045, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 288, 58, 82, 60, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 4852, 585, 13, 9630, 7, 82, 828, 1353, 585, 13, 9630, 7, 83, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 334, 796, 1353, 585, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 288, 58, 84, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 11, 374, 287, 402, 13, 1133, 4801, 72, 40, 89, 2065, 8461, 50, 1335, 72, 7, 84, 737, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 58, 85, 60, 318, 6045, 393, 288, 58, 85, 60, 1279, 300, 10, 81, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 85, 60, 796, 300, 10, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 85, 60, 796, 334, 198, 220, 220, 220, 1787, 796, 17635, 198, 220, 220, 220, 334, 796, 256, 198, 220, 220, 220, 981, 334, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1787, 13, 33295, 7, 84, 8, 198, 220, 220, 220, 220, 220, 220, 220, 334, 796, 279, 58, 84, 60, 198, 220, 220, 220, 1441, 357, 67, 58, 83, 4357, 1351, 7, 260, 690, 276, 7, 13059, 22305, 198, 198, 4299, 336, 1990, 18526, 47, 5092, 7, 38, 11, 264, 11, 256, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44210, 514, 647, 48796, 936, 1134, 4528, 46195, 268, 7933, 69, 402, 1976, 220, 1133, 129, 122, 11632, 11, 198, 220, 220, 220, 47748, 2747, 301, 615, 75, 73, 34944, 25370, 94, 660, 2991, 78, 12385, 46195, 259, 709, 11, 479, 25496, 300, 993, 7204, 46822, 25147, 279, 659, 89, 15820, 11, 198, 220, 220, 220, 288, 14057, 46195, 72, 25370, 94, 660, 2991, 78, 12385, 46195, 259, 709, 11, 479, 25496, 300, 993, 7204, 778, 28913, 78, 16298, 7608, 89, 4528, 32790, 46195, 64, 264, 466, 7608, 89, 4528, 32790, 46195, 64, 256, 13, 628, 220, 220, 220, 34754, 234, 292, 709, 2616, 1976, 993, 660, 85, 77, 455, 25, 440, 7, 76, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 336, 796, 1391, 84, 25, 352, 611, 334, 6624, 264, 2073, 657, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 329, 334, 287, 1353, 349, 418, 4914, 52, 445, 578, 85, 7, 38, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 11, 288, 287, 402, 13, 1133, 4801, 72, 40, 89, 2065, 8461, 50, 1335, 72, 7, 84, 737, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 58, 85, 60, 15853, 336, 58, 84, 60, 1635, 288, 198, 220, 220, 220, 1441, 336, 58, 83, 60, 198, 198, 4299, 43030, 9126, 78, 52, 445, 578, 85, 7, 38, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 471, 23442, 47297, 11, 34965, 545, 64, 514, 647, 48796, 936, 1134, 4528, 46195, 268, 7933, 69, 1569, 46195, 479, 313, 551, 78, 1353, 14057, 32790, 7204, 334, 445, 578, 85, 13, 628, 220, 220, 220, 34754, 234, 292, 709, 2616, 1976, 993, 660, 85, 77, 455, 25, 440, 7, 76, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2245, 77, 18015, 796, 1391, 84, 25, 657, 329, 334, 287, 402, 13, 85, 8590, 75, 2304, 64, 3419, 92, 198, 220, 220, 220, 329, 334, 287, 2245, 77, 18015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 410, 287, 402, 13, 528, 2065, 8461, 50, 1335, 72, 7, 84, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 77, 18015, 58, 85, 60, 15853, 352, 198, 220, 220, 220, 264, 796, 17635, 198, 220, 220, 220, 329, 334, 11, 288, 287, 2245, 77, 18015, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 33295, 7, 84, 8, 198, 220, 220, 220, 503, 796, 10352, 198, 220, 220, 220, 299, 796, 18896, 7, 38, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 82, 8, 6624, 1312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 82, 8, 1875, 1312, 10, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 329, 334, 287, 402, 13, 528, 2065, 8461, 50, 1335, 72, 7, 82, 58, 72, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 77, 18015, 58, 84, 60, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2245, 77, 18015, 58, 84, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13, 33295, 7, 84, 8, 198, 220, 220, 220, 1441, 503, 198 ]
1.717534
1,979
import os.path as osp import yaml import logging log = logging.getLogger("discordbot") features_path = "features.yml" def get_extensions() -> list: """ Gets extensions from the `features.yml` to be loaded into the bot :return: list """ log.info("Getting extensions...") exts = [] if osp.isfile(features_path): with open(features_path, 'r') as file: data = yaml.full_load(file) extensions = data["extensions"] for e in extensions: e_name = e["extension"] if "directory" in e: e_name = f"{e['directory']}.{e_name}" e_enabled = e["enabled"] if "enabled" in e else True if e_enabled: e_external = e["external"] if "external" in e else False if e_external: exts.append(e_name) log.debug(f"Extension Found | External | {e_name}") else: exts.append(f"cogs.{e_name}") log.debug(f"Extension Found | Internal | {e_name}") # else: # exts.append(f"cogs.{category}.{e_name}") # log.debug(f"Extension Found | Cog | {category}.{e_name}") log.info(f"Found *{len(exts)}* extensions.") # log.debug(exts) return exts def get_commands_blacklist() -> list: """ Get commands from `features.yml` to blacklist, preventing them from being added to the bot :returns: list """ log.info("Getting commands blacklist...") cmds = [] if osp.isfile(features_path): with open(features_path, 'r') as file: data = yaml.full_load(file) if not "commands" in data: log.warn("Commands blacklist object not found in features.yml file") return list() # Return empty list commands = data["commands"] if not commands or len(commands) == 0: log.debug("Empty blacklist commands data, returning...") return list() # Return empty list for c in commands: c_name = c["command"] e_enabled = c["enabled"] if "enabled" in c else True if not e_enabled: cmds.append(c_name) log.debug(f"Command Found | Blacklist | {c_name}") log.info(f"Found *{len(cmds)}* commands to blacklist.") return cmds
[ 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 331, 43695, 198, 11748, 18931, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7203, 15410, 585, 13645, 4943, 628, 198, 40890, 62, 6978, 796, 366, 40890, 13, 88, 4029, 1, 198, 198, 4299, 651, 62, 2302, 5736, 3419, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 18366, 422, 262, 4600, 40890, 13, 88, 4029, 63, 198, 220, 220, 220, 284, 307, 9639, 656, 262, 10214, 628, 220, 220, 220, 1058, 7783, 25, 1351, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2604, 13, 10951, 7203, 20570, 18366, 9313, 8, 628, 220, 220, 220, 409, 912, 796, 17635, 628, 220, 220, 220, 611, 267, 2777, 13, 4468, 576, 7, 40890, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 40890, 62, 6978, 11, 705, 81, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 331, 43695, 13, 12853, 62, 2220, 7, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 796, 1366, 14692, 2302, 5736, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 304, 287, 18366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 62, 3672, 796, 304, 14692, 2302, 3004, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 34945, 1, 287, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 62, 3672, 796, 277, 1, 90, 68, 17816, 34945, 20520, 27422, 90, 68, 62, 3672, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 62, 25616, 796, 304, 14692, 25616, 8973, 611, 366, 25616, 1, 287, 304, 2073, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 62, 25616, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 62, 22615, 796, 304, 14692, 22615, 8973, 611, 366, 22615, 1, 287, 304, 2073, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 62, 22615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 912, 13, 33295, 7, 68, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 69, 1, 11627, 3004, 4062, 930, 34579, 930, 1391, 68, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 912, 13, 33295, 7, 69, 1, 66, 18463, 13, 90, 68, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 69, 1, 11627, 3004, 4062, 930, 18628, 930, 1391, 68, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 409, 912, 13, 33295, 7, 69, 1, 66, 18463, 13, 90, 22872, 27422, 90, 68, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2604, 13, 24442, 7, 69, 1, 11627, 3004, 4062, 930, 327, 519, 930, 1391, 22872, 27422, 90, 68, 62, 3672, 92, 4943, 628, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 21077, 1635, 90, 11925, 7, 2302, 82, 38165, 9, 18366, 19570, 198, 220, 220, 220, 1303, 2604, 13, 24442, 7, 2302, 82, 8, 628, 220, 220, 220, 1441, 409, 912, 198, 198, 4299, 651, 62, 9503, 1746, 62, 13424, 4868, 3419, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 9729, 422, 4600, 40890, 13, 88, 4029, 63, 284, 38810, 11, 198, 220, 220, 220, 12174, 606, 422, 852, 2087, 284, 262, 10214, 628, 220, 220, 220, 1058, 7783, 82, 25, 1351, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2604, 13, 10951, 7203, 20570, 9729, 38810, 9313, 8, 628, 220, 220, 220, 23991, 82, 796, 17635, 628, 220, 220, 220, 611, 267, 2777, 13, 4468, 576, 7, 40890, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 40890, 62, 6978, 11, 705, 81, 11537, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 331, 43695, 13, 12853, 62, 2220, 7, 7753, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 366, 9503, 1746, 1, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 40539, 7203, 6935, 1746, 38810, 2134, 407, 1043, 287, 3033, 13, 88, 4029, 2393, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 3419, 1303, 8229, 6565, 1351, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9729, 796, 1366, 14692, 9503, 1746, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9729, 393, 18896, 7, 9503, 1746, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 40613, 38810, 9729, 1366, 11, 8024, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 3419, 1303, 8229, 6565, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 9729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 62, 3672, 796, 269, 14692, 21812, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 62, 25616, 796, 269, 14692, 25616, 8973, 611, 366, 25616, 1, 287, 269, 2073, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 304, 62, 25616, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 82, 13, 33295, 7, 66, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 69, 1, 21575, 4062, 930, 2619, 4868, 930, 1391, 66, 62, 3672, 92, 4943, 628, 220, 220, 220, 2604, 13, 10951, 7, 69, 1, 21077, 1635, 90, 11925, 7, 28758, 82, 38165, 9, 9729, 284, 38810, 19570, 628, 220, 220, 220, 1441, 23991, 82, 198 ]
1.944321
1,347
# coding:utf-8 import sys reload(sys) sys.setdefaultencoding( "utf-8" ) from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string('data_dir', './', 'Directory for storing data') mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x,W) + b) y_ = tf.placeholder("float", [None,10]) cross_entropy = -tf.reduce_sum(y_*tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) init = tf.initialize_all_variables() sess = tf.InteractiveSession() sess.run(init) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))
[ 2, 19617, 25, 40477, 12, 23, 198, 198, 11748, 25064, 198, 260, 2220, 7, 17597, 8, 198, 17597, 13, 2617, 12286, 12685, 7656, 7, 366, 40477, 12, 23, 1, 1267, 198, 198, 6738, 11192, 273, 11125, 13, 1069, 12629, 13, 83, 44917, 82, 13, 10295, 396, 1330, 5128, 62, 7890, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 33152, 796, 48700, 13, 1324, 13, 33152, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 33152, 13, 7206, 29940, 62, 8841, 10786, 7890, 62, 15908, 3256, 705, 19571, 3256, 705, 43055, 329, 23069, 1366, 11537, 198, 198, 10295, 396, 796, 5128, 62, 7890, 13, 961, 62, 7890, 62, 28709, 7, 38948, 50, 13, 7890, 62, 15908, 11, 530, 62, 8940, 28, 17821, 8, 628, 198, 87, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 685, 14202, 11, 767, 5705, 12962, 198, 54, 796, 48700, 13, 43015, 7, 27110, 13, 9107, 418, 26933, 37688, 11, 940, 60, 4008, 198, 65, 796, 48700, 13, 43015, 7, 27110, 13, 9107, 418, 26933, 940, 60, 4008, 198, 88, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 27110, 13, 6759, 76, 377, 7, 87, 11, 54, 8, 1343, 275, 8, 198, 88, 62, 796, 48700, 13, 5372, 13829, 7203, 22468, 1600, 685, 14202, 11, 940, 12962, 198, 19692, 62, 298, 28338, 796, 532, 27110, 13, 445, 7234, 62, 16345, 7, 88, 62, 9, 27110, 13, 6404, 7, 88, 4008, 198, 27432, 62, 9662, 796, 48700, 13, 27432, 13, 42731, 1153, 5960, 1087, 27871, 320, 7509, 7, 15, 13, 486, 737, 1084, 48439, 7, 19692, 62, 298, 28338, 8, 198, 198, 15003, 796, 48700, 13, 36733, 1096, 62, 439, 62, 25641, 2977, 3419, 198, 82, 408, 796, 48700, 13, 9492, 5275, 36044, 3419, 198, 82, 408, 13, 5143, 7, 15003, 8, 198, 1640, 1312, 287, 2837, 7, 12825, 2599, 198, 220, 220, 220, 15458, 62, 34223, 11, 15458, 62, 893, 796, 285, 77, 396, 13, 27432, 13, 19545, 62, 43501, 7, 3064, 8, 198, 220, 220, 220, 264, 408, 13, 5143, 7, 27432, 62, 9662, 11, 3745, 62, 11600, 34758, 87, 25, 15458, 62, 34223, 11, 331, 62, 25, 15458, 62, 893, 30072, 198, 198, 30283, 62, 28764, 2867, 796, 48700, 13, 40496, 7, 27110, 13, 853, 9806, 7, 88, 11, 352, 828, 48700, 13, 853, 9806, 7, 88, 62, 11, 352, 4008, 198, 4134, 23843, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 2701, 7, 30283, 62, 28764, 2867, 11, 48700, 13, 22468, 2624, 4008, 198, 4798, 7, 4134, 23843, 13, 18206, 15090, 87, 25, 285, 77, 396, 13, 9288, 13, 17566, 11, 331, 62, 25, 285, 77, 396, 13, 9288, 13, 23912, 1424, 92, 4008, 198 ]
2.393736
447
import random f1 = random.uniform(1.0, 100.0) f2 = random.uniform(1.0, 100-f1) f3 = random.uniform(1.0, 100-f1-f2) f4 = random.uniform(1.0, 100-f1-f2-f3) f5 = random.uniform(1.0, 100-f1-f2-f3-f4) print(f1, f2, f3, f4, f5)
[ 198, 11748, 4738, 198, 198, 69, 16, 796, 4738, 13, 403, 6933, 7, 16, 13, 15, 11, 1802, 13, 15, 8, 198, 69, 17, 796, 4738, 13, 403, 6933, 7, 16, 13, 15, 11, 1802, 12, 69, 16, 8, 198, 69, 18, 796, 4738, 13, 403, 6933, 7, 16, 13, 15, 11, 1802, 12, 69, 16, 12, 69, 17, 8, 198, 69, 19, 796, 4738, 13, 403, 6933, 7, 16, 13, 15, 11, 1802, 12, 69, 16, 12, 69, 17, 12, 69, 18, 8, 198, 69, 20, 796, 4738, 13, 403, 6933, 7, 16, 13, 15, 11, 1802, 12, 69, 16, 12, 69, 17, 12, 69, 18, 12, 69, 19, 8, 198, 198, 4798, 7, 69, 16, 11, 277, 17, 11, 277, 18, 11, 277, 19, 11, 277, 20, 8, 198 ]
1.717557
131
from django.shortcuts import render,redirect,get_object_or_404 from django.views import View # models import from user.models import MovementReason,MovementPass, TimeSpend,\ MoveType from admin.models import IDtype, Gender, PassUser,District # essential imports from django.http import HttpResponseRedirect from django.contrib.auth.decorators import login_required from django.contrib.auth import authenticate, login,logout from django.utils.decorators import method_decorator from django.contrib import messages from django.contrib.auth.models import User from django.contrib.auth.hashers import make_password # forms import from user.forms import PassApplyForm # Dashboard for Movement Pass # Apply for Movement Pass # Collect Pass View # View pass
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 445, 1060, 11, 1136, 62, 15252, 62, 273, 62, 26429, 198, 6738, 42625, 14208, 13, 33571, 1330, 3582, 198, 2, 4981, 1330, 220, 198, 6738, 2836, 13, 27530, 1330, 15477, 45008, 11, 21774, 434, 14478, 11, 3862, 4561, 437, 11, 59, 198, 220, 220, 220, 10028, 6030, 198, 6738, 13169, 13, 27530, 1330, 4522, 4906, 11, 20247, 11, 6251, 12982, 11, 44857, 198, 2, 6393, 17944, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 7738, 1060, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 11, 17594, 11, 6404, 448, 198, 6738, 42625, 14208, 13, 26791, 13, 12501, 273, 2024, 1330, 2446, 62, 12501, 273, 1352, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 10134, 7084, 1330, 787, 62, 28712, 198, 2, 5107, 1330, 220, 198, 6738, 2836, 13, 23914, 1330, 6251, 44836, 8479, 628, 198, 2, 16189, 3526, 329, 15477, 6251, 628, 198, 2, 27967, 329, 15477, 6251, 198, 2, 9745, 6251, 3582, 198, 198, 2, 3582, 1208, 220, 628 ]
3.537037
216
FLAG = 'flag{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}'
[ 38948, 796, 705, 32109, 90, 24223, 24223, 24223, 24223, 5324, 92, 6 ]
4.083333
12
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Interface Class # this is a auto generated file generated by Cheetah # Libre Office Version: 7.3 # Namespace: com.sun.star.awt import typing from abc import abstractmethod from ..uno.x_interface import XInterface as XInterface_8f010a43 if typing.TYPE_CHECKING: from .x_window import XWindow as XWindow_713b0924 from .x_window_peer import XWindowPeer as XWindowPeer_99760ab0 class XContainerWindowProvider(XInterface_8f010a43): """ provides container windows implementing the com.sun.star.awt.XWindow interface. See Also: `API XContainerWindowProvider <https://api.libreoffice.org/docs/idl/ref/interfacecom_1_1sun_1_1star_1_1awt_1_1XContainerWindowProvider.html>`_ """ __ooo_ns__: str = 'com.sun.star.awt' __ooo_full_ns__: str = 'com.sun.star.awt.XContainerWindowProvider' __ooo_type_name__: str = 'interface' __pyunointerface__: str = 'com.sun.star.awt.XContainerWindowProvider' @abstractmethod def createContainerWindow(self, URL: str, WindowType: str, xParent: 'XWindowPeer_99760ab0', xHandler: 'XInterface_8f010a43') -> 'XWindow_713b0924': """ creates a window for the given URL xHandler can handle events in two different ways: If XContainerWindowEventHandler is supported XContainerWindowEventHandler.callHandlerMethod() is always called first to handle the event. Only if the event cannot be handled by XContainerWindowEventHandler (callHandlerMethod() then has to return false) or if XContainerWindowEventHandler is not supported at all the Introspection based access will be used. The Introspection based access tries to call a method named according to the HandlerMethodName specified by a vnd.sun.star.UNO:HandlerMethodName URL. First a method void HandlerMethodName( [in] com.sun.star.awt.XWindow xWindow, [in] any aEvent ) will be searched. The signature is similar to XContainerWindowEventHandler. callHandlerMethod except for MethodName itself that isn't needed here. For more information about these parameters, see com.sun.star.awt.XContainerWindowEventHandler. If this method is found, it will be called, otherwise a method void HandlerMethodName( void ) will be searched and called. Raises: com.sun.star.lang.IllegalArgumentException: ``IllegalArgumentException`` """ __all__ = ['XContainerWindowProvider']
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 198, 2, 15069, 33160, 1058, 33, 6532, 12, 22405, 12, 12041, 25, 19935, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 4943, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 25, 3373, 7324, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 26491, 5016, 198, 2, 428, 318, 257, 8295, 7560, 2393, 7560, 416, 2580, 316, 993, 198, 2, 44384, 4452, 10628, 25, 767, 13, 18, 198, 2, 28531, 10223, 25, 401, 13, 19155, 13, 7364, 13, 707, 83, 198, 11748, 19720, 198, 6738, 450, 66, 1330, 12531, 24396, 198, 6738, 11485, 36909, 13, 87, 62, 39994, 1330, 1395, 39317, 355, 1395, 39317, 62, 23, 69, 20943, 64, 3559, 198, 361, 19720, 13, 25216, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 764, 87, 62, 17497, 1330, 1395, 27703, 355, 1395, 27703, 62, 50055, 65, 2931, 1731, 198, 220, 220, 220, 422, 764, 87, 62, 17497, 62, 33350, 1330, 1395, 27703, 6435, 263, 355, 1395, 27703, 6435, 263, 62, 39647, 1899, 397, 15, 198, 198, 4871, 1395, 29869, 27703, 29495, 7, 55, 39317, 62, 23, 69, 20943, 64, 3559, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3769, 9290, 9168, 15427, 262, 401, 13, 19155, 13, 7364, 13, 707, 83, 13, 55, 27703, 7071, 13, 628, 220, 220, 220, 4091, 4418, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 17614, 1395, 29869, 27703, 29495, 1279, 5450, 1378, 15042, 13, 8019, 260, 31810, 13, 2398, 14, 31628, 14, 312, 75, 14, 5420, 14, 39994, 785, 62, 16, 62, 16, 19155, 62, 16, 62, 16, 7364, 62, 16, 62, 16, 707, 83, 62, 16, 62, 16, 55, 29869, 27703, 29495, 13, 6494, 29, 63, 62, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 34160, 62, 5907, 834, 25, 965, 796, 705, 785, 13, 19155, 13, 7364, 13, 707, 83, 6, 198, 220, 220, 220, 11593, 34160, 62, 12853, 62, 5907, 834, 25, 965, 796, 705, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 55, 29869, 27703, 29495, 6, 198, 220, 220, 220, 11593, 34160, 62, 4906, 62, 3672, 834, 25, 965, 796, 705, 39994, 6, 198, 220, 220, 220, 11593, 9078, 36909, 39994, 834, 25, 965, 796, 705, 785, 13, 19155, 13, 7364, 13, 707, 83, 13, 55, 29869, 27703, 29495, 6, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 2251, 29869, 27703, 7, 944, 11, 10289, 25, 965, 11, 26580, 6030, 25, 965, 11, 2124, 24546, 25, 705, 55, 27703, 6435, 263, 62, 39647, 1899, 397, 15, 3256, 2124, 25060, 25, 705, 55, 39317, 62, 23, 69, 20943, 64, 3559, 11537, 4613, 705, 55, 27703, 62, 50055, 65, 2931, 1731, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8075, 257, 4324, 329, 262, 1813, 10289, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 25060, 460, 5412, 2995, 287, 734, 1180, 2842, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 1395, 29869, 27703, 9237, 25060, 318, 4855, 1395, 29869, 27703, 9237, 25060, 13, 13345, 25060, 17410, 3419, 318, 1464, 1444, 717, 284, 5412, 262, 1785, 13, 5514, 611, 262, 1785, 2314, 307, 12118, 416, 1395, 29869, 27703, 9237, 25060, 357, 13345, 25060, 17410, 3419, 788, 468, 284, 1441, 3991, 8, 393, 611, 1395, 29869, 27703, 9237, 25060, 318, 407, 4855, 379, 477, 262, 37219, 31308, 1912, 1895, 481, 307, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 383, 37219, 31308, 1912, 1895, 8404, 284, 869, 257, 2446, 3706, 1864, 284, 262, 32412, 17410, 5376, 7368, 416, 257, 410, 358, 13, 19155, 13, 7364, 13, 4944, 46, 25, 25060, 17410, 5376, 10289, 13, 3274, 257, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7951, 32412, 17410, 5376, 7, 685, 259, 60, 401, 13, 19155, 13, 7364, 13, 707, 83, 13, 55, 27703, 2124, 27703, 11, 685, 259, 60, 597, 257, 9237, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 16499, 13, 383, 9877, 318, 2092, 284, 1395, 29869, 27703, 9237, 25060, 13, 869, 25060, 17410, 2845, 329, 11789, 5376, 2346, 326, 2125, 470, 2622, 994, 13, 1114, 517, 1321, 546, 777, 10007, 11, 766, 401, 13, 19155, 13, 7364, 13, 707, 83, 13, 55, 29869, 27703, 9237, 25060, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 428, 2446, 318, 1043, 11, 340, 481, 307, 1444, 11, 4306, 257, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7951, 32412, 17410, 5376, 7, 7951, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 16499, 290, 1444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 401, 13, 19155, 13, 7364, 13, 17204, 13, 33666, 18011, 28100, 1713, 16922, 25, 7559, 33666, 18011, 28100, 1713, 16922, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 198, 834, 439, 834, 796, 37250, 55, 29869, 27703, 29495, 20520, 628 ]
3.005859
1,024
# we use the normal Web Interface to logg in and execute our tests # alternative would be: https://www.home-assistant.io/integrations/rest/ from selenium import webdriver from selenium.webdriver.common.keys import Keys import time LOVELACE_USERNAME='user' LOVELACE_PASSWORD='1234' # This should be the nginx-docker container name, see docker-compose file. LOGIN_URL='http://nginx' HASS_STARTUP_TIME=5 def setup(): """Start headless Chrome in docker container.""" options = webdriver.ChromeOptions() options.add_argument('--no-sandbox') options.add_argument('--headless') options.add_argument('--disable-gpu') driver = webdriver.Chrome(options=options) driver.implicitly_wait(5) return driver def expand_shadow_element(driver, element): """Small workaround to get the shadowRoot element using JS.""" return driver.execute_script('return arguments[0].shadowRoot', element) def login(driver, user=LOVELACE_USERNAME, passwd=LOVELACE_PASSWORD): """execute login on main page.""" for i in range(10): driver.get(LOGIN_URL) if driver.title != '502 Bad Gateway': break time.sleep(HASS_STARTUP_TIME) if i >= 9: assert False, 'can not start home assistant: Bad Gateway, check nginx' qry = [ 'ha-authorize', 'ha-auth-flow', 'ha-form' ] ha_form = get_from_shadow(driver, driver, qry) inner_forms = ha_form.find_elements_by_tag_name('ha-form') assert len(inner_forms) == 2 user_form, pw_form = inner_forms qry = ['ha-form-string'] user_form = expand_shadow_element(driver, user_form) user_input = get_from_shadow(driver, user_form, qry) user_input = user_input.find_element_by_css_selector('paper-input') user_input.send_keys(LOVELACE_USERNAME) pw_form = expand_shadow_element(driver, pw_form) pass_input = get_from_shadow(driver, pw_form, qry) pass_input = pass_input.find_element_by_css_selector('paper-input') pass_input.send_keys(LOVELACE_PASSWORD) pass_input.send_keys(Keys.RETURN) # wait for the sensor to actually send some data
[ 2, 356, 779, 262, 3487, 5313, 26491, 284, 2604, 70, 287, 290, 12260, 674, 5254, 198, 2, 5559, 561, 307, 25, 3740, 1378, 2503, 13, 11195, 12, 562, 10167, 13, 952, 14, 18908, 9143, 14, 2118, 14, 198, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 11748, 640, 628, 198, 43, 8874, 3698, 11598, 62, 29904, 20608, 11639, 7220, 6, 198, 43, 8874, 3698, 11598, 62, 47924, 54, 12532, 11639, 1065, 2682, 6, 198, 2, 770, 815, 307, 262, 299, 42822, 12, 45986, 9290, 1438, 11, 766, 36253, 12, 785, 3455, 2393, 13, 198, 25294, 1268, 62, 21886, 11639, 4023, 1378, 782, 28413, 6, 198, 39, 10705, 62, 2257, 7227, 8577, 62, 34694, 28, 20, 628, 198, 4299, 9058, 33529, 198, 220, 220, 220, 37227, 10434, 1182, 1203, 13282, 287, 36253, 9290, 526, 15931, 198, 220, 220, 220, 3689, 796, 3992, 26230, 13, 1925, 5998, 29046, 3419, 198, 220, 220, 220, 3689, 13, 2860, 62, 49140, 10786, 438, 3919, 12, 38142, 3524, 11537, 198, 220, 220, 220, 3689, 13, 2860, 62, 49140, 10786, 438, 2256, 1203, 11537, 198, 220, 220, 220, 3689, 13, 2860, 62, 49140, 10786, 438, 40223, 12, 46999, 11537, 198, 220, 220, 220, 4639, 796, 3992, 26230, 13, 1925, 5998, 7, 25811, 28, 25811, 8, 198, 220, 220, 220, 4639, 13, 23928, 3628, 306, 62, 17077, 7, 20, 8, 198, 220, 220, 220, 1441, 4639, 628, 198, 4299, 4292, 62, 19106, 62, 30854, 7, 26230, 11, 5002, 2599, 198, 220, 220, 220, 37227, 18712, 46513, 284, 651, 262, 9082, 30016, 5002, 1262, 26755, 526, 15931, 198, 220, 220, 220, 1441, 4639, 13, 41049, 62, 12048, 10786, 7783, 7159, 58, 15, 4083, 19106, 30016, 3256, 5002, 8, 628, 198, 198, 4299, 17594, 7, 26230, 11, 2836, 28, 43, 8874, 3698, 11598, 62, 29904, 20608, 11, 1208, 16993, 28, 43, 8874, 3698, 11598, 62, 47924, 54, 12532, 2599, 198, 220, 220, 220, 37227, 41049, 17594, 319, 1388, 2443, 526, 15931, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 1136, 7, 25294, 1268, 62, 21886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4639, 13, 7839, 14512, 705, 35126, 7772, 29916, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 39, 10705, 62, 2257, 7227, 8577, 62, 34694, 8, 198, 220, 220, 220, 611, 1312, 18189, 860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10352, 11, 705, 5171, 407, 923, 1363, 8796, 25, 7772, 29916, 11, 2198, 299, 42822, 6, 198, 220, 220, 220, 10662, 563, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3099, 12, 9800, 1096, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3099, 12, 18439, 12, 11125, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3099, 12, 687, 6, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 387, 62, 687, 796, 651, 62, 6738, 62, 19106, 7, 26230, 11, 4639, 11, 10662, 563, 8, 628, 220, 220, 220, 8434, 62, 23914, 796, 387, 62, 687, 13, 19796, 62, 68, 3639, 62, 1525, 62, 12985, 62, 3672, 10786, 3099, 12, 687, 11537, 198, 220, 220, 220, 6818, 18896, 7, 5083, 62, 23914, 8, 6624, 362, 198, 220, 220, 220, 2836, 62, 687, 11, 279, 86, 62, 687, 796, 8434, 62, 23914, 628, 220, 220, 220, 10662, 563, 796, 37250, 3099, 12, 687, 12, 8841, 20520, 198, 220, 220, 220, 2836, 62, 687, 796, 4292, 62, 19106, 62, 30854, 7, 26230, 11, 2836, 62, 687, 8, 198, 220, 220, 220, 2836, 62, 15414, 796, 651, 62, 6738, 62, 19106, 7, 26230, 11, 2836, 62, 687, 11, 10662, 563, 8, 198, 220, 220, 220, 2836, 62, 15414, 796, 2836, 62, 15414, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 20189, 12, 15414, 11537, 198, 220, 220, 220, 2836, 62, 15414, 13, 21280, 62, 13083, 7, 43, 8874, 3698, 11598, 62, 29904, 20608, 8, 628, 220, 220, 220, 279, 86, 62, 687, 796, 4292, 62, 19106, 62, 30854, 7, 26230, 11, 279, 86, 62, 687, 8, 198, 220, 220, 220, 1208, 62, 15414, 796, 651, 62, 6738, 62, 19106, 7, 26230, 11, 279, 86, 62, 687, 11, 10662, 563, 8, 198, 220, 220, 220, 1208, 62, 15414, 796, 1208, 62, 15414, 13, 19796, 62, 30854, 62, 1525, 62, 25471, 62, 19738, 273, 10786, 20189, 12, 15414, 11537, 198, 220, 220, 220, 1208, 62, 15414, 13, 21280, 62, 13083, 7, 43, 8874, 3698, 11598, 62, 47924, 54, 12532, 8, 628, 220, 220, 220, 1208, 62, 15414, 13, 21280, 62, 13083, 7, 40729, 13, 26087, 27064, 8, 628, 220, 220, 220, 1303, 4043, 329, 262, 12694, 284, 1682, 3758, 617, 1366, 628, 220, 220, 220, 220, 628 ]
2.609547
817
#/usr/bin/python3 # -*- coding: utf-8 -*- # Copyright (c) 2016 Red Hat, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Written by Petr Šabata <[email protected]> import unittest import os import sys DIR = os.path.dirname(__file__) sys.path.insert(0, os.path.join(DIR, "..")) import modulemd if __name__ == "__main__": unittest.main()
[ 2, 14, 14629, 14, 8800, 14, 29412, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 2, 15069, 357, 66, 8, 1584, 220, 2297, 10983, 11, 3457, 13, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 198, 2, 198, 2, 22503, 416, 47377, 25370, 254, 397, 1045, 1279, 3642, 48361, 31, 445, 5183, 13, 785, 29, 198, 198, 11748, 555, 715, 395, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 22179, 7, 34720, 11, 366, 492, 48774, 198, 198, 11748, 8265, 9132, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.378713
404
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import json import unittest import httpretty from pynodebb import Client
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 33918, 198, 11748, 555, 715, 395, 198, 11748, 2638, 16100, 198, 198, 6738, 279, 2047, 1098, 11848, 1330, 20985, 628 ]
2.892857
56
# matchball + Выигрышные номера нескольких тиражей
[ 2, 2872, 1894, 1343, 12466, 240, 45035, 18849, 140, 111, 21169, 45035, 141, 230, 22177, 45035, 16843, 12466, 121, 25443, 120, 16843, 21169, 16142, 12466, 121, 16843, 21727, 31583, 25443, 119, 45367, 31583, 18849, 141, 227, 220, 20375, 18849, 21169, 16142, 140, 114, 16843, 140, 117, 628 ]
1.106383
47
import os
[ 11748, 28686, 628 ]
3.666667
3
import argparse import pprint import time from pathlib import Path import torch import random import numpy as np from tag2pix import tag2pix root_path = Path(__file__).resolve().parent dataset_path = root_path / "dataset" tag_dump_path = root_path / "loader" / "tag_dump.pkl" pretrain_path = root_path / "model.pth" if __name__ == "__main__": main()
[ 11748, 1822, 29572, 198, 11748, 279, 4798, 198, 11748, 640, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 28034, 198, 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 7621, 17, 79, 844, 1330, 7621, 17, 79, 844, 198, 198, 15763, 62, 6978, 796, 10644, 7, 834, 7753, 834, 737, 411, 6442, 22446, 8000, 198, 19608, 292, 316, 62, 6978, 796, 6808, 62, 6978, 1220, 366, 19608, 292, 316, 1, 198, 12985, 62, 39455, 62, 6978, 796, 6808, 62, 6978, 1220, 366, 29356, 1, 1220, 366, 12985, 62, 39455, 13, 79, 41582, 1, 198, 5310, 3201, 62, 6978, 796, 6808, 62, 6978, 1220, 366, 19849, 13, 79, 400, 1, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.721805
133
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.argmax_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test if __name__ == "__main__": test.main()
[ 2, 15069, 1853, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 51, 3558, 329, 11192, 273, 11125, 13, 2840, 13, 853, 9806, 62, 404, 526, 15931, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 1257, 310, 10141, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 288, 19199, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 1332, 62, 22602, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7177, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 10688, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 1332, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1332, 13, 12417, 3419, 198 ]
3.862416
298
#05-Aug-2016 # Script to specifically parse Wan et al 2015 http://www.nature.com/nature/journal/v525/n7569/full/nature14877.html supplementary table 4, # formatting the table for insertion into RAINET DB. workingFolder = "/home/diogo/Documents/RAINET_data/macromolecular_complex_datasets/Wan2015/" inputFile = workingFolder + "/supp_table4.txt" conversionFile = workingFolder + "/uniprot-yourlist%3AM20160805325D09DDFD8B5D0CFB8A8926E064CD7EB15F2BQ.tab" conversionFileGene = workingFolder + "/uniprot-ensembl_gene_id_mapping.tsv" outputFile = open( workingFolder + "/Wan2015_s4_complexes_annotation.txt", "w" ) outputFileList = open( workingFolder + "/Wan2015_s4_complexes_list.txt", "w" ) ### ### read conversion file between ENSG and uniprotAC conversionDictGene = {} # key -> ID from Wan, val -> list of uniprotAC with open( conversionFileGene) as inFile: header = inFile.readline() for line in inFile: line = line.strip() spl = line.split("\t") uniprotAC = spl[0] otherIDs = spl[1].split(" ") for ID in otherIDs: if ID not in conversionDictGene: conversionDictGene[ ID] = [] conversionDictGene[ ID].append( uniprotAC) ### read conversion file between Protein name and uniprotAC conversionDict = {} # key -> ID from Wan, val -> list of uniprotAC with open( conversionFile) as inFile: header = inFile.readline() for line in inFile: line = line.strip() spl = line.split("\t") uniprotAC = spl[0] otherIDs = spl[1].split(" ") for ID in otherIDs: if ID not in conversionDict: conversionDict[ ID] = [] conversionDict[ ID].append( uniprotAC) ### read annotation file ## ID mapping approach # Map using protein names, as they map to a large number of uniprotACs. # When there is same protein name mapping to several uniprotACs, try to use ENSG mapping to make them unique found = set() complexProteinPair = set() # store complex-protein pairs to write to file, avoiding duplicate entries with open(inputFile) as inFile: header = inFile.readline() setComplexes = set() for line in inFile: line = line.strip() spl = line.split("\t") complexID = int( spl[0]) numberItems = int( spl[1]) ensgs = spl[2] ensgSpl = ensgs.split(";") assert len( ensgSpl) == numberItems # get list of uniprotACs found with the ENSG genePool = set() for ensg in ensgSpl: if ensg in conversionDictGene: uniIDs = conversionDictGene[ ensg] for uni in uniIDs: genePool.add( uni) symbols = spl[3] symbolSpl = symbols.split(";") assert len(symbolSpl) == numberItems setComplexes.add( complexID) symbolsPool = set() for symbol in symbolSpl: if symbol in conversionDict: found.add( symbol) uniprotACs = conversionDict[ symbol] added = 0 # if there are duplicate mappings, include only the ones also present with the ENSG ID if len( uniprotACs) > 1: for uniprotAC in uniprotACs: if uniprotAC in genePool: added +=1 tag = str(complexID) + "|" + uniprotAC complexProteinPair.add( tag) if added > 1: print "Duplicate in both protein name and ENSG", complexID, symbol, uniprotACs else: # there is only one, loop just because item is a list for uniprotAC in uniprotACs: tag = str(complexID) + "|" + uniprotAC complexProteinPair.add( tag) # Write to file for complexPair in sorted( complexProteinPair): complexPairSpl = complexPair.split("|") outputFile.write( "%s\t%s\n" % (complexPairSpl[0], complexPairSpl[1])) for complexID in sorted( setComplexes): outputFileList.write( "%s\n" % (complexID)) print "Found mapping for %s IDs" % len( found) print "FINISHED!"
[ 198, 2, 2713, 12, 12512, 12, 5304, 198, 2, 12327, 284, 5734, 21136, 33242, 2123, 435, 1853, 2638, 1378, 2503, 13, 21353, 13, 785, 14, 21353, 14, 24891, 14, 85, 39088, 14, 77, 2425, 3388, 14, 12853, 14, 21353, 18294, 3324, 13, 6494, 43871, 3084, 604, 11, 198, 2, 33313, 262, 3084, 329, 36075, 656, 17926, 1268, 2767, 20137, 13, 198, 198, 16090, 41092, 796, 12813, 11195, 14, 10989, 24076, 14, 38354, 14, 3861, 1268, 2767, 62, 7890, 14, 20285, 398, 2305, 10440, 62, 41887, 62, 19608, 292, 1039, 14, 45681, 4626, 30487, 198, 198, 15414, 8979, 796, 1762, 41092, 1343, 12813, 18608, 62, 11487, 19, 13, 14116, 1, 198, 1102, 9641, 8979, 796, 1762, 41092, 1343, 12813, 403, 541, 10599, 12, 14108, 4868, 4, 18, 2390, 1264, 1899, 1795, 4310, 1495, 35, 2931, 35, 8068, 35, 23, 33, 20, 35, 15, 22495, 33, 23, 32, 4531, 2075, 36, 15, 2414, 8610, 22, 30195, 1314, 37, 17, 33, 48, 13, 8658, 1, 198, 1102, 9641, 8979, 39358, 796, 1762, 41092, 1343, 12813, 403, 541, 10599, 12, 1072, 2022, 75, 62, 70, 1734, 62, 312, 62, 76, 5912, 13, 912, 85, 1, 198, 198, 22915, 8979, 796, 1280, 7, 1762, 41092, 1343, 12813, 45681, 4626, 62, 82, 19, 62, 41887, 274, 62, 1236, 14221, 13, 14116, 1600, 366, 86, 1, 1267, 198, 22915, 8979, 8053, 796, 1280, 7, 1762, 41092, 1343, 12813, 45681, 4626, 62, 82, 19, 62, 41887, 274, 62, 4868, 13, 14116, 1600, 366, 86, 1, 1267, 198, 198, 21017, 628, 198, 21017, 1100, 11315, 2393, 1022, 412, 8035, 38, 290, 555, 541, 10599, 2246, 198, 198, 1102, 9641, 35, 713, 39358, 796, 23884, 1303, 1994, 4613, 4522, 422, 33242, 11, 1188, 4613, 1351, 286, 555, 541, 10599, 2246, 198, 198, 4480, 1280, 7, 11315, 8979, 39358, 8, 355, 287, 8979, 25, 198, 220, 220, 220, 13639, 796, 287, 8979, 13, 961, 1370, 3419, 198, 220, 220, 220, 329, 1627, 287, 287, 8979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4328, 796, 1627, 13, 35312, 7203, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 555, 541, 10599, 2246, 796, 4328, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 584, 47954, 796, 4328, 58, 16, 4083, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4522, 287, 584, 47954, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4522, 407, 287, 11315, 35, 713, 39358, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11315, 35, 713, 39358, 58, 4522, 60, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11315, 35, 713, 39358, 58, 4522, 4083, 33295, 7, 555, 541, 10599, 2246, 8, 628, 198, 21017, 1100, 11315, 2393, 1022, 31702, 1438, 290, 555, 541, 10599, 2246, 198, 198, 1102, 9641, 35, 713, 796, 23884, 1303, 1994, 4613, 4522, 422, 33242, 11, 1188, 4613, 1351, 286, 555, 541, 10599, 2246, 198, 198, 4480, 1280, 7, 11315, 8979, 8, 355, 287, 8979, 25, 198, 220, 220, 220, 13639, 796, 287, 8979, 13, 961, 1370, 3419, 198, 220, 220, 220, 329, 1627, 287, 287, 8979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4328, 796, 1627, 13, 35312, 7203, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 555, 541, 10599, 2246, 796, 4328, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 584, 47954, 796, 4328, 58, 16, 4083, 35312, 7203, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4522, 287, 584, 47954, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4522, 407, 287, 11315, 35, 713, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11315, 35, 713, 58, 4522, 60, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11315, 35, 713, 58, 4522, 4083, 33295, 7, 555, 541, 10599, 2246, 8, 628, 198, 21017, 1100, 23025, 2393, 198, 2235, 4522, 16855, 3164, 198, 2, 9347, 1262, 7532, 3891, 11, 355, 484, 3975, 284, 257, 1588, 1271, 286, 555, 541, 10599, 2246, 82, 13, 198, 2, 1649, 612, 318, 976, 7532, 1438, 16855, 284, 1811, 555, 541, 10599, 2246, 82, 11, 1949, 284, 779, 412, 8035, 38, 16855, 284, 787, 606, 3748, 198, 220, 198, 9275, 796, 900, 3419, 198, 41887, 47, 35574, 47, 958, 796, 900, 3419, 1303, 3650, 3716, 12, 48693, 14729, 284, 3551, 284, 2393, 11, 14928, 23418, 12784, 198, 198, 4480, 1280, 7, 15414, 8979, 8, 355, 287, 8979, 25, 198, 220, 220, 220, 13639, 796, 287, 8979, 13, 961, 1370, 3419, 198, 220, 220, 220, 900, 5377, 11141, 274, 796, 900, 3419, 198, 220, 220, 220, 329, 1627, 287, 287, 8979, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4328, 796, 1627, 13, 35312, 7203, 59, 83, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3716, 2389, 796, 493, 7, 4328, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 23022, 796, 493, 7, 4328, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3140, 14542, 796, 4328, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3140, 70, 26568, 796, 220, 3140, 14542, 13, 35312, 7203, 26, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 3140, 70, 26568, 8, 6624, 1271, 23022, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 1351, 286, 555, 541, 10599, 2246, 82, 1043, 351, 262, 412, 8035, 38, 198, 220, 220, 220, 220, 220, 220, 220, 9779, 27201, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3140, 70, 287, 3140, 70, 26568, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3140, 70, 287, 11315, 35, 713, 39358, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 72, 47954, 796, 11315, 35, 713, 39358, 58, 3140, 70, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 555, 72, 287, 555, 72, 47954, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9779, 27201, 13, 2860, 7, 555, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 14354, 796, 4328, 58, 18, 60, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6194, 26568, 796, 14354, 13, 35312, 7203, 26, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 1837, 23650, 26568, 8, 6624, 1271, 23022, 198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 900, 5377, 11141, 274, 13, 2860, 7, 3716, 2389, 8, 628, 220, 220, 220, 220, 220, 220, 220, 14354, 27201, 796, 900, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6194, 287, 6194, 26568, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 287, 11315, 35, 713, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1043, 13, 2860, 7, 6194, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 541, 10599, 2246, 82, 796, 11315, 35, 713, 58, 6194, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 612, 389, 23418, 285, 39242, 11, 2291, 691, 262, 3392, 635, 1944, 351, 262, 412, 8035, 38, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 555, 541, 10599, 2246, 82, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 555, 541, 10599, 2246, 287, 555, 541, 10599, 2246, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 555, 541, 10599, 2246, 287, 9779, 27201, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 15853, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 965, 7, 41887, 2389, 8, 1343, 366, 91, 1, 1343, 555, 541, 10599, 2246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3716, 47, 35574, 47, 958, 13, 2860, 7, 7621, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2087, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 35660, 489, 5344, 287, 1111, 7532, 1438, 290, 412, 8035, 38, 1600, 3716, 2389, 11, 6194, 11, 555, 541, 10599, 2246, 82, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 612, 318, 691, 530, 11, 9052, 655, 780, 2378, 318, 257, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 555, 541, 10599, 2246, 287, 555, 541, 10599, 2246, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 965, 7, 41887, 2389, 8, 1343, 366, 91, 1, 1343, 555, 541, 10599, 2246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3716, 47, 35574, 47, 958, 13, 2860, 7, 7621, 8, 628, 220, 220, 220, 1303, 19430, 284, 2393, 198, 220, 220, 220, 329, 3716, 47, 958, 287, 23243, 7, 3716, 47, 35574, 47, 958, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3716, 47, 958, 26568, 796, 3716, 47, 958, 13, 35312, 7203, 91, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 8979, 13, 13564, 7, 36521, 82, 59, 83, 4, 82, 59, 77, 1, 4064, 357, 41887, 47, 958, 26568, 58, 15, 4357, 3716, 47, 958, 26568, 58, 16, 60, 4008, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 329, 3716, 2389, 287, 23243, 7, 900, 5377, 11141, 274, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 8979, 8053, 13, 13564, 7, 36521, 82, 59, 77, 1, 4064, 357, 41887, 2389, 4008, 198, 220, 198, 4798, 366, 21077, 16855, 329, 4064, 82, 32373, 1, 4064, 18896, 7, 1043, 8, 198, 198, 4798, 366, 20032, 18422, 1961, 2474, 198 ]
2.10856
2,091
from config import * import matplotlib.pyplot as plt import numpy as np import math from scripts import * if __name__ == '__main__': main()
[ 6738, 4566, 1330, 1635, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 10688, 201, 198, 6738, 14750, 1330, 1635, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.672414
58
# -*- coding: utf-8 -*- """ @brief test log(time=50s) """ import sys import unittest import warnings from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder, add_missing_development_version from pyquickhelper.pycode import fix_tkinter_issues_virtualenv from pyquickhelper.ipythonhelper import execute_notebook_list_finalize_ut import actuariat_python if __name__ == "__main__": unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 31, 65, 3796, 220, 220, 220, 220, 220, 1332, 2604, 7, 2435, 28, 1120, 82, 8, 198, 37811, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 11748, 14601, 198, 6738, 12972, 24209, 2978, 525, 13, 6404, 2978, 525, 1330, 277, 25294, 198, 6738, 12972, 24209, 2978, 525, 13, 9078, 8189, 1330, 651, 62, 29510, 62, 43551, 11, 751, 62, 45688, 62, 31267, 62, 9641, 198, 6738, 12972, 24209, 2978, 525, 13, 9078, 8189, 1330, 4259, 62, 30488, 3849, 62, 37165, 62, 32844, 24330, 198, 6738, 12972, 24209, 2978, 525, 13, 541, 7535, 2978, 525, 1330, 12260, 62, 11295, 2070, 62, 4868, 62, 20311, 1096, 62, 315, 198, 11748, 43840, 21621, 62, 29412, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.875817
153
import sys import os import pandas as pd import numpy as np import datetime from shutil import copy from yahoo_earnings_calendar import YahooEarningsCalendar from zipline.data import bundles as bundles_module from zipline.data.bundles.core import load, bundles import imp ext = imp.load_source('ext', '/root/.zipline/extension.py') def get_tickers_from_bundle(bundle_name): """Gets a list of tickers from a given bundle courtesy PBHARRIN""" bundle_data = load(bundle_name, os.environ, None) # get a list of all sids lifetimes = bundle_data.asset_finder._compute_asset_lifetimes() all_sids = lifetimes.sid # retreive all assets in the bundle all_assets = bundle_data.asset_finder.retrieve_all(all_sids) # return only tickers return map(lambda x: (x.symbol, x.sid), all_assets) def get_ticker_sid_dict_from_bundle(bundle_name): """Packs the (ticker,sid) tuples into a dict.""" all_equities = get_tickers_from_bundle(bundle_name) return dict(all_equities)
[ 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4818, 8079, 198, 6738, 4423, 346, 1330, 4866, 198, 6738, 331, 12992, 62, 451, 23400, 62, 9948, 9239, 1330, 16551, 49725, 654, 9771, 9239, 198, 6738, 1976, 24705, 500, 13, 7890, 1330, 36344, 355, 36344, 62, 21412, 198, 6738, 1976, 24705, 500, 13, 7890, 13, 65, 917, 829, 13, 7295, 1330, 3440, 11, 36344, 198, 11748, 848, 198, 2302, 796, 848, 13, 2220, 62, 10459, 10786, 2302, 3256, 31051, 15763, 11757, 17027, 489, 500, 14, 2302, 3004, 13, 9078, 11537, 628, 198, 4299, 651, 62, 83, 21630, 62, 6738, 62, 65, 31249, 7, 65, 31249, 62, 3672, 2599, 198, 220, 220, 220, 37227, 38, 1039, 257, 1351, 286, 4378, 364, 422, 257, 1813, 18537, 12537, 30524, 39, 26465, 1268, 37811, 198, 220, 220, 220, 18537, 62, 7890, 796, 3440, 7, 65, 31249, 62, 3672, 11, 28686, 13, 268, 2268, 11, 6045, 8, 628, 220, 220, 220, 1303, 651, 257, 1351, 286, 477, 264, 2340, 198, 220, 220, 220, 3868, 46874, 796, 18537, 62, 7890, 13, 562, 316, 62, 22805, 13557, 5589, 1133, 62, 562, 316, 62, 36195, 46874, 3419, 198, 220, 220, 220, 477, 62, 82, 2340, 796, 3868, 46874, 13, 30255, 628, 220, 220, 220, 1303, 1005, 260, 425, 477, 6798, 287, 262, 18537, 198, 220, 220, 220, 477, 62, 19668, 796, 18537, 62, 7890, 13, 562, 316, 62, 22805, 13, 1186, 30227, 62, 439, 7, 439, 62, 82, 2340, 8, 628, 220, 220, 220, 1303, 1441, 691, 4378, 364, 198, 220, 220, 220, 1441, 3975, 7, 50033, 2124, 25, 357, 87, 13, 1837, 23650, 11, 2124, 13, 30255, 828, 477, 62, 19668, 8, 628, 198, 4299, 651, 62, 83, 15799, 62, 30255, 62, 11600, 62, 6738, 62, 65, 31249, 7, 65, 31249, 62, 3672, 2599, 198, 220, 220, 220, 37227, 47, 4595, 262, 357, 83, 15799, 11, 30255, 8, 12777, 2374, 656, 257, 8633, 526, 15931, 198, 220, 220, 220, 477, 62, 4853, 871, 796, 651, 62, 83, 21630, 62, 6738, 62, 65, 31249, 7, 65, 31249, 62, 3672, 8, 198, 220, 220, 220, 1441, 8633, 7, 439, 62, 4853, 871, 8, 220, 198 ]
2.752044
367
# Copyright 2020 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test TBRMMScore. """ from matched_markets.methodology import tbrmatchedmarkets from matched_markets.methodology import tbrmmdata from matched_markets.methodology import tbrmmdesignparameters from matched_markets.methodology import tbrmmdiagnostics from matched_markets.methodology import tbrmmscore import numpy as np import unittest TBRMatchedMarkets = tbrmatchedmarkets.TBRMatchedMarkets TBRMMDiagnostics = tbrmmdiagnostics.TBRMMDiagnostics TBRMMDesignParameters = tbrmmdesignparameters.TBRMMDesignParameters TBRMMData = tbrmmdata.TBRMMData TBRMMScore = tbrmmscore.TBRMMScore class ExhaustiveSearch(unittest.TestCase): """Test class TBRMMScore.""" def testCorrectInitialization(self): """Check the correct initialization of the class.""" self.diag.x = self.x score = TBRMMScore(self.diag) self.assertEqual(score.diag.corr, self.corr) self.assertTrue(all(score.diag.y == self.y)) self.assertTrue(all(score.diag.x == self.x)) self.assertIsNone(score._score) def testScorePropertySetter(self): """The score property setter works.""" self.diag.x = self.x score = TBRMMScore(self.diag) score.score = (1, 1, 1, 1, 0.5, 2.0) # Change value. self.assertTupleEqual(score._score, (1, 1, 1, 1, 0.5, 2.0)) def testNoControlGroup(self): """An error is raised if the control group is not specified.""" with self.assertRaisesRegex( ValueError, r'No Control time series was specified'): TBRMMScore(self.diag) def testCorrectScore(self): """The score is as expected for a valid design.""" self.diag.x = self.x score = TBRMMScore(self.diag) self.assertTupleEqual( score.score, (1, 1, 1, 1, round(self.corr, 2), 1 / self.diag.required_impact)) def testScoreWhenTestFails(self): """The score is as expected for a design which fails a test.""" # use as control a time series which has low correlation (-0.1227604) self.diag.x = [10 + 1 * i for i in range(len(self.y))] score = TBRMMScore(self.diag) self.assertTupleEqual( score.score, (0, 1, 1, 1, round(-0.12, 2), 1 / self.diag.required_impact)) def testCorrectSortingOfMultipleDesigns(self): """Check the <= function for the class.""" self.diag.x = self.x # this design pass all tests and has high correlation score_optimal = TBRMMScore(self.diag) # The pair below implies a failure for the D-W test only. x = np.array([132.5, 87.8, 89.4, 78.5, 117.3, 54.0, 134.9, 84.8, 106.4, 95.0, 129.2, 58.8, 93.6, 92.3, 122.7, 78.0, 96.6, 82.4, 100.8, 111.7, 78.0]) y = np.array([487.9, 393.6, 388.8, 375.0, 420.9, 305.5, 451.1, 364.2, 423.4, 376.2, 450.5, 303.9, 370.3, 371.2, 445.1, 333.7, 397.9, 398.0, 416.4, 419.6, 338.2]) diag_suboptimal = TBRMMDiagnostics(y, self.par) diag_suboptimal.x = x score_suboptimal = TBRMMScore(diag_suboptimal) # this design fails the correlation test diag_worst = TBRMMDiagnostics(self.y, self.par) diag_worst.x = [10 + 1 * i for i in range(len(self.y))] score_worst = TBRMMScore(diag_worst) # the scores should be (from best to worst): score_optimal, score_suboptimal # and score_worst self.assertGreater(score_optimal, score_suboptimal) self.assertGreater(score_optimal, score_worst) self.assertGreater(score_suboptimal, score_worst) def testNegativeCorrelationInScore(self): """Negative correlations are handled as expected.""" self.diag.x = self.x # score_positive has a correlation of 0.86 score_positive = TBRMMScore(self.diag) score_negative = TBRMMScore(self.diag) # change the correlation value to -0.99 score_negative.score = score_negative.score._replace(corr=-0.99) self.assertLess(score_negative, score_positive) if __name__ == '__main__': unittest.main()
[ 2, 15069, 12131, 3012, 11419, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 14402, 309, 11473, 12038, 26595, 13, 198, 37811, 198, 6738, 14451, 62, 34162, 13, 24396, 1435, 1330, 256, 1671, 31409, 34162, 198, 6738, 14451, 62, 34162, 13, 24396, 1435, 1330, 256, 1671, 3020, 7890, 198, 6738, 14451, 62, 34162, 13, 24396, 1435, 1330, 256, 1671, 3020, 26124, 17143, 7307, 198, 6738, 14451, 62, 34162, 13, 24396, 1435, 1330, 256, 1671, 3020, 47356, 34558, 198, 6738, 14451, 62, 34162, 13, 24396, 1435, 1330, 256, 1671, 76, 907, 7295, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 555, 715, 395, 198, 198, 51, 11473, 44, 14265, 9704, 1039, 796, 256, 1671, 31409, 34162, 13, 51, 11473, 44, 14265, 9704, 1039, 198, 51, 11473, 12038, 18683, 4660, 34558, 796, 256, 1671, 3020, 47356, 34558, 13, 51, 11473, 12038, 18683, 4660, 34558, 198, 51, 11473, 12038, 23067, 48944, 796, 256, 1671, 3020, 26124, 17143, 7307, 13, 51, 11473, 12038, 23067, 48944, 198, 51, 11473, 12038, 6601, 796, 256, 1671, 3020, 7890, 13, 51, 11473, 12038, 6601, 198, 51, 11473, 12038, 26595, 796, 256, 1671, 76, 907, 7295, 13, 51, 11473, 12038, 26595, 628, 198, 4871, 1475, 42456, 425, 18243, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 37227, 14402, 1398, 309, 11473, 12038, 26595, 526, 15931, 628, 220, 825, 1332, 42779, 24243, 1634, 7, 944, 2599, 198, 220, 220, 220, 37227, 9787, 262, 3376, 37588, 286, 262, 1398, 526, 15931, 198, 220, 220, 220, 2116, 13, 10989, 363, 13, 87, 796, 2116, 13, 87, 198, 220, 220, 220, 4776, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 26675, 13, 10989, 363, 13, 10215, 81, 11, 2116, 13, 10215, 81, 8, 198, 220, 220, 220, 2116, 13, 30493, 17821, 7, 439, 7, 26675, 13, 10989, 363, 13, 88, 6624, 2116, 13, 88, 4008, 198, 220, 220, 220, 2116, 13, 30493, 17821, 7, 439, 7, 26675, 13, 10989, 363, 13, 87, 6624, 2116, 13, 87, 4008, 198, 220, 220, 220, 2116, 13, 30493, 3792, 14202, 7, 26675, 13557, 26675, 8, 628, 220, 825, 1332, 26595, 21746, 7248, 353, 7, 944, 2599, 198, 220, 220, 220, 37227, 464, 4776, 3119, 900, 353, 2499, 526, 15931, 198, 220, 220, 220, 2116, 13, 10989, 363, 13, 87, 796, 2116, 13, 87, 198, 220, 220, 220, 4776, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 198, 220, 220, 220, 4776, 13, 26675, 796, 357, 16, 11, 352, 11, 352, 11, 352, 11, 657, 13, 20, 11, 362, 13, 15, 8, 220, 1303, 9794, 1988, 13, 198, 220, 220, 220, 2116, 13, 30493, 51, 29291, 36, 13255, 7, 26675, 13557, 26675, 11, 357, 16, 11, 352, 11, 352, 11, 352, 11, 657, 13, 20, 11, 362, 13, 15, 4008, 628, 220, 825, 1332, 2949, 15988, 13247, 7, 944, 2599, 198, 220, 220, 220, 37227, 2025, 4049, 318, 4376, 611, 262, 1630, 1448, 318, 407, 7368, 526, 15931, 198, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 3041, 25636, 7, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 374, 6, 2949, 6779, 640, 2168, 373, 7368, 6, 2599, 198, 220, 220, 220, 220, 220, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 628, 220, 825, 1332, 42779, 26595, 7, 944, 2599, 198, 220, 220, 220, 37227, 464, 4776, 318, 355, 2938, 329, 257, 4938, 1486, 526, 15931, 198, 220, 220, 220, 2116, 13, 10989, 363, 13, 87, 796, 2116, 13, 87, 198, 220, 220, 220, 4776, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 198, 220, 220, 220, 2116, 13, 30493, 51, 29291, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 13, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 11, 352, 11, 352, 11, 352, 11, 2835, 7, 944, 13, 10215, 81, 11, 362, 828, 352, 1220, 2116, 13, 10989, 363, 13, 35827, 62, 48240, 4008, 628, 220, 825, 1332, 26595, 2215, 14402, 37, 1768, 7, 944, 2599, 198, 220, 220, 220, 37227, 464, 4776, 318, 355, 2938, 329, 257, 1486, 543, 10143, 257, 1332, 526, 15931, 198, 220, 220, 220, 1303, 779, 355, 1630, 257, 640, 2168, 543, 468, 1877, 16096, 13841, 15, 13, 1065, 1983, 31916, 8, 198, 220, 220, 220, 2116, 13, 10989, 363, 13, 87, 796, 685, 940, 1343, 352, 1635, 1312, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 88, 4008, 60, 198, 220, 220, 220, 4776, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 198, 220, 220, 220, 2116, 13, 30493, 51, 29291, 36, 13255, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 13, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 11, 352, 11, 352, 11, 352, 11, 2835, 32590, 15, 13, 1065, 11, 362, 828, 352, 1220, 2116, 13, 10989, 363, 13, 35827, 62, 48240, 4008, 628, 220, 825, 1332, 42779, 50, 24707, 5189, 31217, 23067, 82, 7, 944, 2599, 198, 220, 220, 220, 37227, 9787, 262, 19841, 2163, 329, 262, 1398, 526, 15931, 198, 220, 220, 220, 2116, 13, 10989, 363, 13, 87, 796, 2116, 13, 87, 198, 220, 220, 220, 1303, 428, 1486, 1208, 477, 5254, 290, 468, 1029, 16096, 198, 220, 220, 220, 4776, 62, 8738, 4402, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 628, 220, 220, 220, 1303, 383, 5166, 2174, 15565, 257, 5287, 329, 262, 360, 12, 54, 1332, 691, 13, 198, 220, 220, 220, 2124, 796, 45941, 13, 18747, 26933, 19924, 13, 20, 11, 10083, 13, 23, 11, 9919, 13, 19, 11, 8699, 13, 20, 11, 19048, 13, 18, 11, 7175, 13, 15, 11, 22352, 13, 24, 11, 9508, 13, 23, 11, 15696, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6957, 13, 15, 11, 20248, 13, 17, 11, 7618, 13, 23, 11, 10261, 13, 21, 11, 10190, 13, 18, 11, 19409, 13, 22, 11, 8699, 13, 15, 11, 9907, 13, 21, 11, 9415, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 13, 23, 11, 13374, 13, 22, 11, 8699, 13, 15, 12962, 198, 220, 220, 220, 331, 796, 45941, 13, 18747, 26933, 35133, 13, 24, 11, 5014, 18, 13, 21, 11, 43550, 13, 23, 11, 29414, 13, 15, 11, 28262, 13, 24, 11, 32747, 13, 20, 11, 49356, 13, 16, 11, 44969, 13, 17, 11, 49125, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44622, 13, 17, 11, 18523, 13, 20, 11, 30727, 13, 24, 11, 28687, 13, 18, 11, 47343, 13, 17, 11, 48655, 13, 16, 11, 23460, 13, 22, 11, 5014, 22, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39260, 13, 15, 11, 38158, 13, 19, 11, 48475, 13, 21, 11, 40736, 13, 17, 12962, 198, 220, 220, 220, 2566, 363, 62, 7266, 8738, 4402, 796, 309, 11473, 12038, 18683, 4660, 34558, 7, 88, 11, 2116, 13, 1845, 8, 198, 220, 220, 220, 2566, 363, 62, 7266, 8738, 4402, 13, 87, 796, 2124, 198, 220, 220, 220, 4776, 62, 7266, 8738, 4402, 796, 309, 11473, 12038, 26595, 7, 10989, 363, 62, 7266, 8738, 4402, 8, 628, 220, 220, 220, 1303, 428, 1486, 10143, 262, 16096, 1332, 198, 220, 220, 220, 2566, 363, 62, 41430, 796, 309, 11473, 12038, 18683, 4660, 34558, 7, 944, 13, 88, 11, 2116, 13, 1845, 8, 198, 220, 220, 220, 2566, 363, 62, 41430, 13, 87, 796, 685, 940, 1343, 352, 1635, 1312, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 88, 4008, 60, 198, 220, 220, 220, 4776, 62, 41430, 796, 309, 11473, 12038, 26595, 7, 10989, 363, 62, 41430, 8, 628, 220, 220, 220, 1303, 262, 8198, 815, 307, 357, 6738, 1266, 284, 5290, 2599, 4776, 62, 8738, 4402, 11, 4776, 62, 7266, 8738, 4402, 198, 220, 220, 220, 1303, 290, 4776, 62, 41430, 198, 220, 220, 220, 2116, 13, 30493, 13681, 263, 7, 26675, 62, 8738, 4402, 11, 4776, 62, 7266, 8738, 4402, 8, 198, 220, 220, 220, 2116, 13, 30493, 13681, 263, 7, 26675, 62, 8738, 4402, 11, 4776, 62, 41430, 8, 198, 220, 220, 220, 2116, 13, 30493, 13681, 263, 7, 26675, 62, 7266, 8738, 4402, 11, 4776, 62, 41430, 8, 628, 220, 825, 1332, 32863, 876, 10606, 49501, 818, 26595, 7, 944, 2599, 198, 220, 220, 220, 37227, 32863, 876, 35811, 389, 12118, 355, 2938, 526, 15931, 198, 220, 220, 220, 2116, 13, 10989, 363, 13, 87, 796, 2116, 13, 87, 198, 220, 220, 220, 1303, 4776, 62, 24561, 468, 257, 16096, 286, 657, 13, 4521, 198, 220, 220, 220, 4776, 62, 24561, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 198, 220, 220, 220, 4776, 62, 31591, 796, 309, 11473, 12038, 26595, 7, 944, 13, 10989, 363, 8, 198, 220, 220, 220, 1303, 1487, 262, 16096, 1988, 284, 532, 15, 13, 2079, 198, 220, 220, 220, 4776, 62, 31591, 13, 26675, 796, 4776, 62, 31591, 13, 26675, 13557, 33491, 7, 10215, 81, 10779, 15, 13, 2079, 8, 198, 220, 220, 220, 2116, 13, 30493, 22058, 7, 26675, 62, 31591, 11, 4776, 62, 24561, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.622043
1,733
""" Name: lagrange.py Goal: interpolation of newton Author: HOUNSI Madouvi antoine-sebastien Date: 02/03/2022 """ import numpy as np import matplotlib.pyplot as plt import sys from math import pow from linearEq.utils.gaussForVal import gauss from os.path import dirname, join from interpolation.polynom import Polynom
[ 37811, 198, 220, 220, 220, 6530, 25, 19470, 9521, 13, 9078, 198, 220, 220, 220, 25376, 25, 39555, 341, 286, 649, 1122, 198, 220, 220, 220, 6434, 25, 29068, 8035, 40, 4627, 280, 8903, 281, 1462, 500, 12, 325, 65, 459, 2013, 198, 220, 220, 220, 7536, 25, 7816, 14, 3070, 14, 1238, 1828, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 25064, 198, 6738, 10688, 1330, 7182, 198, 6738, 14174, 36, 80, 13, 26791, 13, 4908, 1046, 1890, 7762, 1330, 31986, 1046, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 4654, 198, 6738, 39555, 341, 13, 35428, 26601, 1330, 12280, 26601, 628 ]
2.863248
117
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="timesias", version="0.0.4", author="Hanrui Zhang, Yuanfang Guan", author_email="[email protected], [email protected]", description="A machine-learning framework for predicting outcomes from time-series history.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/GuanLab/timesias", project_urls={ "Bug Tracker": "https://github.com/GuanLab/timesias/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(where = 'src'), entry_points = { 'console_scripts': [ 'timesias = src.__main__:main' ] }, python_requires=">=3.6", install_requires = [ 'numpy >=1.14.1', 'scikit-learn >=0.24.1', 'lightgbm >=3.1.1', 'shap ==0.35.0', 'bokeh >=2.3.0' ] )
[ 11748, 900, 37623, 10141, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 1600, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 2625, 22355, 4448, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 19, 1600, 198, 220, 220, 220, 1772, 2625, 29919, 622, 72, 19439, 11, 34071, 69, 648, 42305, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 2433, 8471, 71, 31, 388, 488, 13, 15532, 11, 21486, 7258, 24408, 31, 388, 488, 13, 15532, 1600, 198, 220, 220, 220, 6764, 2625, 32, 4572, 12, 40684, 9355, 329, 25539, 10906, 422, 640, 12, 25076, 2106, 33283, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 38, 7258, 17822, 14, 22355, 4448, 1600, 198, 220, 220, 220, 1628, 62, 6371, 82, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25624, 26885, 1298, 366, 5450, 1378, 12567, 13, 785, 14, 38, 7258, 17822, 14, 22355, 4448, 14, 37165, 1600, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 7, 3003, 796, 705, 10677, 33809, 198, 220, 220, 220, 5726, 62, 13033, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 46521, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22355, 4448, 796, 12351, 13, 834, 12417, 834, 25, 12417, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 13, 21, 1600, 198, 220, 220, 220, 2721, 62, 47911, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 77, 32152, 18189, 16, 13, 1415, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 36216, 15813, 12, 35720, 18189, 15, 13, 1731, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2971, 70, 20475, 18189, 18, 13, 16, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1477, 499, 6624, 15, 13, 2327, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 65, 2088, 71, 18189, 17, 13, 18, 13, 15, 6, 198, 220, 220, 220, 2361, 198, 8, 198 ]
2.2751
498
lst1=[1,2,3,4] lst2=lst1 lst3=lst1.copy() lst1.append(5) lst1[0]=10 print(lst1,lst2,lst3) dict1={'aaa':1,'bbb':2} dict2=dict1 dict3=dict1.copy() dict1['ccc']=3 print(dict1,dict2,dict3) set1=set(['aaa','bbb','ccc']) set2=set1 set3=set1.copy() set1.add('ddd') print(set1,set2,set3)
[ 198, 75, 301, 16, 41888, 16, 11, 17, 11, 18, 11, 19, 60, 198, 75, 301, 17, 28, 75, 301, 16, 198, 75, 301, 18, 28, 75, 301, 16, 13, 30073, 3419, 198, 75, 301, 16, 13, 33295, 7, 20, 8, 198, 75, 301, 16, 58, 15, 22241, 940, 198, 4798, 7, 75, 301, 16, 11, 75, 301, 17, 11, 75, 301, 18, 8, 198, 198, 11600, 16, 34758, 6, 46071, 10354, 16, 4032, 11848, 65, 10354, 17, 92, 198, 11600, 17, 28, 11600, 16, 198, 11600, 18, 28, 11600, 16, 13, 30073, 3419, 198, 11600, 16, 17816, 535, 66, 20520, 28, 18, 198, 4798, 7, 11600, 16, 11, 11600, 17, 11, 11600, 18, 8, 198, 198, 2617, 16, 28, 2617, 7, 17816, 46071, 41707, 11848, 65, 41707, 535, 66, 6, 12962, 198, 2617, 17, 28, 2617, 16, 198, 2617, 18, 28, 2617, 16, 13, 30073, 3419, 198, 2617, 16, 13, 2860, 10786, 1860, 67, 11537, 198, 4798, 7, 2617, 16, 11, 2617, 17, 11, 2617, 18, 8, 198 ]
1.674556
169
""" Fitting a random data using fully connected network with one hidden layer. """ import torch class MyRelu(torch.autograd.Function): """ Implement a custom made autograd function. """ @staticmethod @staticmethod device = torch.device('gpu:0' if torch.cuda.is_available() else 'cpu') # Define dimensions N, D_IN, H, D_OUT = 64, 1000, 100, 10 # Create random data X = torch.randn(N, D_IN, device=device, dtype=dtype, requires_grad=False) y = torch.randn(N, D_OUT, device=device, dtype=dtype, requires_grad=False) # Initialize weights randomly w_1 = torch.randn(D_IN, H, device=device, dtype=dtype, requires_grad=True) w_2 = torch.randn(H, D_OUT, device=device, dtype=dtype, requires_grad=True) # Define learning rate lr = 1e-6 # Loop over number of epochs to fit the data to nn for epoch in range(50): # Forward pass h = X.mm(w_1) h_relu = MyRelu.apply(h) y_pred = h_relu.mm(w_2) # Compute loss loss = (y_pred - y).pow(2).sum() print(f'Loss {epoch} : {loss.item():.4f}') # Use autograd to compute gradients loss.backward() # Update wights using gradient descent # w_1.data -= lr * w_1.grad.data # w_2.data -= lr * w_2.grad.data with torch.no_grad(): w_1 -= lr * w_1.grad w_2 -= lr * w_2.grad # Zero the gradients w_1.grad.zero_() w_2.grad.zero_()
[ 37811, 198, 37, 2535, 257, 4738, 1366, 1262, 3938, 5884, 3127, 351, 530, 7104, 7679, 13, 198, 37811, 628, 198, 11748, 28034, 628, 198, 4871, 2011, 6892, 84, 7, 13165, 354, 13, 2306, 519, 6335, 13, 22203, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48282, 257, 2183, 925, 1960, 519, 6335, 2163, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 198, 25202, 796, 28034, 13, 25202, 10786, 46999, 25, 15, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 198, 198, 2, 2896, 500, 15225, 198, 45, 11, 360, 62, 1268, 11, 367, 11, 360, 62, 12425, 796, 5598, 11, 8576, 11, 1802, 11, 838, 198, 198, 2, 13610, 4738, 1366, 198, 55, 796, 28034, 13, 25192, 77, 7, 45, 11, 360, 62, 1268, 11, 3335, 28, 25202, 11, 288, 4906, 28, 67, 4906, 11, 4433, 62, 9744, 28, 25101, 8, 198, 88, 796, 28034, 13, 25192, 77, 7, 45, 11, 360, 62, 12425, 11, 3335, 28, 25202, 11, 288, 4906, 28, 67, 4906, 11, 4433, 62, 9744, 28, 25101, 8, 198, 198, 2, 20768, 1096, 19590, 15456, 198, 86, 62, 16, 796, 28034, 13, 25192, 77, 7, 35, 62, 1268, 11, 367, 11, 3335, 28, 25202, 11, 288, 4906, 28, 67, 4906, 11, 4433, 62, 9744, 28, 17821, 8, 198, 86, 62, 17, 796, 28034, 13, 25192, 77, 7, 39, 11, 360, 62, 12425, 11, 3335, 28, 25202, 11, 288, 4906, 28, 67, 4906, 11, 4433, 62, 9744, 28, 17821, 8, 198, 198, 2, 2896, 500, 4673, 2494, 198, 14050, 796, 352, 68, 12, 21, 198, 198, 2, 26304, 625, 1271, 286, 36835, 82, 284, 4197, 262, 1366, 284, 299, 77, 198, 1640, 36835, 287, 2837, 7, 1120, 2599, 198, 220, 220, 220, 1303, 19530, 1208, 198, 220, 220, 220, 289, 796, 1395, 13, 3020, 7, 86, 62, 16, 8, 198, 220, 220, 220, 289, 62, 260, 2290, 796, 2011, 6892, 84, 13, 39014, 7, 71, 8, 198, 220, 220, 220, 331, 62, 28764, 796, 289, 62, 260, 2290, 13, 3020, 7, 86, 62, 17, 8, 628, 220, 220, 220, 1303, 3082, 1133, 2994, 198, 220, 220, 220, 2994, 796, 357, 88, 62, 28764, 532, 331, 737, 79, 322, 7, 17, 737, 16345, 3419, 198, 220, 220, 220, 3601, 7, 69, 6, 43, 793, 1391, 538, 5374, 92, 1058, 1391, 22462, 13, 9186, 33529, 13, 19, 69, 92, 11537, 628, 220, 220, 220, 1303, 5765, 1960, 519, 6335, 284, 24061, 3915, 2334, 198, 220, 220, 220, 2994, 13, 1891, 904, 3419, 628, 220, 220, 220, 1303, 10133, 266, 2337, 1262, 31312, 18598, 198, 220, 220, 220, 1303, 266, 62, 16, 13, 7890, 48185, 300, 81, 1635, 266, 62, 16, 13, 9744, 13, 7890, 198, 220, 220, 220, 1303, 266, 62, 17, 13, 7890, 48185, 300, 81, 1635, 266, 62, 17, 13, 9744, 13, 7890, 628, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 266, 62, 16, 48185, 300, 81, 1635, 266, 62, 16, 13, 9744, 198, 220, 220, 220, 220, 220, 220, 220, 266, 62, 17, 48185, 300, 81, 1635, 266, 62, 17, 13, 9744, 628, 220, 220, 220, 1303, 12169, 262, 3915, 2334, 198, 220, 220, 220, 266, 62, 16, 13, 9744, 13, 22570, 62, 3419, 198, 220, 220, 220, 266, 62, 17, 13, 9744, 13, 22570, 62, 3419, 198 ]
2.378049
574
import os from ament_index_python.packages import get_package_share_directory from launch_ros.actions import Node from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration
[ 11748, 28686, 198, 198, 6738, 257, 434, 62, 9630, 62, 29412, 13, 43789, 1330, 651, 62, 26495, 62, 20077, 62, 34945, 198, 6738, 4219, 62, 4951, 13, 4658, 1330, 19081, 198, 198, 6738, 4219, 1330, 21225, 11828, 198, 6738, 4219, 13, 4658, 1330, 16691, 533, 38296, 28100, 1713, 198, 6738, 4219, 13, 7266, 301, 270, 3508, 1330, 21225, 38149, 628 ]
4.266667
60
"""This module contains handlers for the various supported URLs.""" from .ssh_git import SSHGitHandler __all__ = ["SSHGitHandler"] def find_handler(url): """Find a handler that will support a URL. Args: url: The URL to find a handler for. Returns: If a handler is found a class will be returned, None otherwise. """ for handler in __all__: # Get the symbol for handler mod = globals()[handler] # Ask handler if it can handle the url if getattr(mod, "can_handle")(url): return mod return None
[ 37811, 1212, 8265, 4909, 32847, 329, 262, 2972, 4855, 32336, 526, 15931, 198, 6738, 764, 45824, 62, 18300, 1330, 33825, 38, 270, 25060, 198, 198, 834, 439, 834, 796, 14631, 5432, 39, 38, 270, 25060, 8973, 628, 198, 4299, 1064, 62, 30281, 7, 6371, 2599, 198, 220, 220, 220, 37227, 16742, 257, 21360, 326, 481, 1104, 257, 10289, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 25, 383, 10289, 284, 1064, 257, 21360, 329, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 257, 21360, 318, 1043, 257, 1398, 481, 307, 4504, 11, 6045, 4306, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 21360, 287, 11593, 439, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 6194, 329, 21360, 198, 220, 220, 220, 220, 220, 220, 220, 953, 796, 15095, 874, 3419, 58, 30281, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16981, 21360, 611, 340, 460, 5412, 262, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 611, 651, 35226, 7, 4666, 11, 366, 5171, 62, 28144, 4943, 7, 6371, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 953, 198, 220, 220, 220, 1441, 6045, 198 ]
2.669725
218
#!/usr/bin/env python # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Bazel extra_action which genenerates LLVM compilation database files. The files written are consumed by the generate_compile_commands_json.py script to collapse them into a single database. """ import sys import third_party.bazel.extra_actions_base_pb2 as extra_actions_base_pb2 # When set commands will be emitted for all .h files required per unit. INCLUDE_ALL_HEADERS = True if __name__ == '__main__': sys.exit(main(sys.argv))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 15069, 2177, 3012, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 32, 347, 41319, 3131, 62, 2673, 543, 2429, 877, 689, 27140, 15996, 23340, 6831, 3696, 13, 198, 464, 3696, 3194, 389, 13529, 416, 262, 7716, 62, 5589, 576, 62, 9503, 1746, 62, 17752, 13, 9078, 4226, 198, 1462, 9807, 606, 656, 257, 2060, 6831, 13, 198, 37811, 198, 198, 11748, 25064, 198, 198, 11748, 2368, 62, 10608, 13, 65, 41319, 13, 26086, 62, 4658, 62, 8692, 62, 40842, 17, 355, 3131, 62, 4658, 62, 8692, 62, 40842, 17, 628, 198, 2, 1649, 900, 9729, 481, 307, 31234, 329, 477, 764, 71, 3696, 2672, 583, 4326, 13, 198, 1268, 5097, 52, 7206, 62, 7036, 62, 37682, 4877, 796, 6407, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198 ]
3.518519
297
product = input() times = int(input()) coffee = 1.50 water = 1 coke = 1.40 snacks = 2 print(f"{order():.2f}")
[ 11167, 796, 5128, 3419, 198, 22355, 796, 493, 7, 15414, 28955, 198, 198, 1073, 5853, 796, 352, 13, 1120, 198, 7050, 796, 352, 198, 1073, 365, 796, 352, 13, 1821, 198, 16184, 4595, 796, 362, 628, 198, 198, 4798, 7, 69, 1, 90, 2875, 33529, 13, 17, 69, 92, 4943, 198 ]
2.235294
51
# Generated by Django 3.1 on 2021-01-07 18:37 import django.db.models.deletion from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 319, 33448, 12, 486, 12, 2998, 1248, 25, 2718, 198, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.904762
42
# -*- coding: utf-8 -*- import logging from telegram import Chat from telegram.error import BadRequest from marvinbot.handlers import CommandHandler, MessageHandler, CommonFilters, CallbackQueryHandler from marvinbot.plugins import Plugin from topic_plugin.factory import TopicPluginFactory from topic_plugin.models import Topic, Subtopic log = logging.getLogger(__name__) MESSAGES_CACHE_KEY='topic-plugin-messages'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 18931, 198, 198, 6738, 573, 30536, 1330, 24101, 198, 6738, 573, 30536, 13, 18224, 1330, 7772, 18453, 198, 198, 6738, 1667, 7114, 13645, 13, 4993, 8116, 1330, 9455, 25060, 11, 16000, 25060, 11, 8070, 11928, 1010, 11, 4889, 1891, 20746, 25060, 198, 6738, 1667, 7114, 13645, 13, 37390, 1330, 42636, 198, 6738, 7243, 62, 33803, 13, 69, 9548, 1330, 47373, 37233, 22810, 198, 6738, 7243, 62, 33803, 13, 27530, 1330, 47373, 11, 3834, 26652, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 44, 1546, 4090, 48075, 62, 34, 2246, 13909, 62, 20373, 11639, 26652, 12, 33803, 12, 37348, 1095, 6, 198 ]
3.406504
123
import re from models.contact import Contact
[ 11748, 302, 198, 6738, 4981, 13, 32057, 1330, 14039, 198 ]
4.5
10
#!/usr/bin/env python3 # coding: utf-8 # Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: conv_input_ad""" import akg.tvm import akg.topi import akg from akg.ops.nn import conv_backprop_input from akg.ops.nn import conv as conv_forward from akg.utils.format_transform import tvm_array_to_list from akg.utils import validation_check as vc_util def expr_to_int(in_expr): """Converte expr to int type value.""" result = [a.value for a in in_expr] return result @akg.tvm.register_func("akg.autodiff.conv_input_ad_tensor") def conv_input_ad_tensor(data, fmap_shape, filter_shape, pad_, stride_, dilation_, attrs=None): """wraper of convolution filter backprop func.""" data_list = tvm_array_to_list(data) fmap_shape = expr_to_int(fmap_shape) filter_shape = expr_to_int(filter_shape) pad_ = expr_to_int(pad_) stride_ = expr_to_int(stride_) dilation_ = expr_to_int(dilation_) c, _ = conv_backprop_input.conv_backprop_input(data_list, fmap_shape, filter_shape, pad_, stride_, dilation_, attrs=attrs) return c def conv_input_ad_config(data, fmap_shape, filter_shape, pad_, stride_, dilation_, attrs=None): """Configuration of convolution filter gradient.""" _, configs = conv_backprop_input.conv_backprop_input(data, fmap_shape, filter_shape, pad_, stride_, dilation_, attrs=attrs) return configs @vc_util.check_input_type((list, tuple), (list, tuple), (list, tuple), (list, tuple), (list, tuple), (list, tuple), (dict, type(None))) def conv_input_ad(input_ad_inputs, fmap_shape, filter_shape, pad_, stride_, dilation_, attrs=None): """ Compute dx according to "conv forward". Args: input_ad_inputs (list[tvm.tensor.Tensor]): a list with length 2. input_ad_inputs[0](consider as dy) Tensor of type float16 ,shape 5D(out_n, out_c//C0, out_h, out_w,C0) input_ad_inputs[1](consider as w) Tensor of type float16 ,shape 4D(wC//C0*wH*wW, wN//C0, C0,C0) fmap_shape (list): [fN, fC, fH, fW] filter_shape (list): [wN, wC, wH, wW] pad_ (list): [pad_left, pad_right, pad_top, pad_bottom] stride_ (list): [stride_h, stride_w] dilation_ (list): [dilation_h, dilation_w] attrs (dict): a dict with keys like conv_tile, bypass and etc. Returns: tvm.tensor.Tensor, configs. """ backward_dy, forward_w = input_ad_inputs in_n, in_c, in_h, in_w = fmap_shape block_size = 16 in_c = (in_c + block_size - 1) // block_size * block_size x_5d_shape = (in_n, in_c // block_size, in_h, in_w, block_size) forward_x = akg.tvm.placeholder(x_5d_shape, forward_w.dtype, "input_X") original_filter_shape = akg.tvm.placeholder(filter_shape, forward_w.dtype, "input_filter") forward_output, _ = conv_forward.conv([forward_x, forward_w], fmap_shape, filter_shape, pad_, stride_, dilation_, use_bias=False, attrs=attrs) ad_attrs = {"ad_conv_enable": 1, "ad_conv_reuse_conv": 0} jacs = list(akg.differentiate(forward_output, [forward_x], backward_dy, ad_attrs, [backward_dy, forward_w, original_filter_shape])) configs = conv_input_ad_config([backward_dy, forward_w], fmap_shape, filter_shape, pad_, stride_, dilation_, attrs=attrs) return jacs[0], configs
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 13130, 43208, 21852, 1766, 1539, 12052, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 46616, 288, 6649, 2163, 25, 3063, 62, 15414, 62, 324, 37811, 198, 11748, 257, 10025, 13, 83, 14761, 198, 11748, 257, 10025, 13, 4852, 72, 198, 11748, 257, 10025, 198, 6738, 257, 10025, 13, 2840, 13, 20471, 1330, 3063, 62, 1891, 22930, 62, 15414, 198, 6738, 257, 10025, 13, 2840, 13, 20471, 1330, 3063, 355, 3063, 62, 11813, 198, 6738, 257, 10025, 13, 26791, 13, 18982, 62, 35636, 1330, 256, 14761, 62, 18747, 62, 1462, 62, 4868, 198, 6738, 257, 10025, 13, 26791, 1330, 21201, 62, 9122, 355, 410, 66, 62, 22602, 628, 198, 4299, 44052, 62, 1462, 62, 600, 7, 259, 62, 31937, 2599, 198, 220, 220, 220, 37227, 3103, 332, 660, 44052, 284, 493, 2099, 1988, 526, 15931, 198, 220, 220, 220, 1255, 796, 685, 64, 13, 8367, 329, 257, 287, 287, 62, 31937, 60, 198, 220, 220, 220, 1441, 1255, 628, 198, 31, 461, 70, 13, 83, 14761, 13, 30238, 62, 20786, 7203, 461, 70, 13, 2306, 375, 733, 13, 42946, 62, 15414, 62, 324, 62, 83, 22854, 4943, 198, 4299, 3063, 62, 15414, 62, 324, 62, 83, 22854, 7, 7890, 11, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 708, 3808, 28, 14202, 2599, 198, 220, 220, 220, 37227, 29988, 525, 286, 3063, 2122, 8106, 736, 22930, 25439, 526, 15931, 198, 220, 220, 220, 1366, 62, 4868, 796, 256, 14761, 62, 18747, 62, 1462, 62, 4868, 7, 7890, 8, 198, 220, 220, 220, 277, 8899, 62, 43358, 796, 44052, 62, 1462, 62, 600, 7, 69, 8899, 62, 43358, 8, 198, 220, 220, 220, 8106, 62, 43358, 796, 44052, 62, 1462, 62, 600, 7, 24455, 62, 43358, 8, 198, 220, 220, 220, 14841, 62, 796, 44052, 62, 1462, 62, 600, 7, 15636, 62, 8, 198, 220, 220, 220, 33769, 62, 796, 44052, 62, 1462, 62, 600, 7, 2536, 485, 62, 8, 198, 220, 220, 220, 288, 10520, 62, 796, 44052, 62, 1462, 62, 600, 7, 67, 10520, 62, 8, 198, 220, 220, 220, 269, 11, 4808, 796, 3063, 62, 1891, 22930, 62, 15414, 13, 42946, 62, 1891, 22930, 62, 15414, 7, 7890, 62, 4868, 11, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 708, 3808, 28, 1078, 3808, 8, 198, 220, 220, 220, 1441, 269, 628, 198, 4299, 3063, 62, 15414, 62, 324, 62, 11250, 7, 7890, 11, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 708, 3808, 28, 14202, 2599, 198, 220, 220, 220, 37227, 38149, 286, 3063, 2122, 8106, 31312, 526, 15931, 198, 220, 220, 220, 4808, 11, 4566, 82, 796, 3063, 62, 1891, 22930, 62, 15414, 13, 42946, 62, 1891, 22930, 62, 15414, 7, 7890, 11, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 708, 3808, 28, 1078, 3808, 8, 198, 220, 220, 220, 1441, 4566, 82, 628, 198, 31, 28435, 62, 22602, 13, 9122, 62, 15414, 62, 4906, 19510, 4868, 11, 46545, 828, 357, 4868, 11, 46545, 828, 357, 4868, 11, 46545, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 4868, 11, 46545, 828, 357, 4868, 11, 46545, 828, 357, 4868, 11, 46545, 828, 357, 11600, 11, 2099, 7, 14202, 22305, 198, 4299, 3063, 62, 15414, 62, 324, 7, 15414, 62, 324, 62, 15414, 82, 11, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 708, 3808, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 44332, 1864, 284, 366, 42946, 2651, 1911, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 324, 62, 15414, 82, 357, 4868, 58, 83, 14761, 13, 83, 22854, 13, 51, 22854, 60, 2599, 257, 1351, 351, 4129, 362, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 324, 62, 15414, 82, 58, 15, 16151, 44353, 355, 20268, 8, 309, 22854, 286, 2099, 12178, 1433, 837, 43358, 642, 35, 7, 448, 62, 77, 11, 503, 62, 66, 1003, 34, 15, 11, 503, 62, 71, 11, 503, 62, 86, 11, 34, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 324, 62, 15414, 82, 58, 16, 16151, 44353, 355, 266, 8, 220, 309, 22854, 286, 2099, 12178, 1433, 837, 43358, 604, 35, 7, 86, 34, 1003, 34, 15, 9, 86, 39, 9, 86, 54, 11, 266, 45, 1003, 34, 15, 11, 327, 15, 11, 34, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 277, 8899, 62, 43358, 357, 4868, 2599, 685, 69, 45, 11, 277, 34, 11, 277, 39, 11, 277, 54, 60, 198, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 43358, 357, 4868, 2599, 685, 86, 45, 11, 266, 34, 11, 266, 39, 11, 266, 54, 60, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 357, 4868, 2599, 685, 15636, 62, 9464, 11, 14841, 62, 3506, 11, 14841, 62, 4852, 11, 14841, 62, 22487, 60, 198, 220, 220, 220, 220, 220, 220, 220, 33769, 62, 357, 4868, 2599, 685, 2536, 485, 62, 71, 11, 33769, 62, 86, 60, 198, 220, 220, 220, 220, 220, 220, 220, 288, 10520, 62, 357, 4868, 2599, 685, 67, 10520, 62, 71, 11, 288, 10520, 62, 86, 60, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 357, 11600, 2599, 257, 8633, 351, 8251, 588, 3063, 62, 40927, 11, 17286, 290, 3503, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 256, 14761, 13, 83, 22854, 13, 51, 22854, 11, 4566, 82, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 19528, 62, 9892, 11, 2651, 62, 86, 796, 5128, 62, 324, 62, 15414, 82, 628, 220, 220, 220, 287, 62, 77, 11, 287, 62, 66, 11, 287, 62, 71, 11, 287, 62, 86, 796, 277, 8899, 62, 43358, 198, 220, 220, 220, 2512, 62, 7857, 796, 1467, 198, 220, 220, 220, 287, 62, 66, 796, 357, 259, 62, 66, 1343, 2512, 62, 7857, 532, 352, 8, 3373, 2512, 62, 7857, 1635, 2512, 62, 7857, 198, 220, 220, 220, 2124, 62, 20, 67, 62, 43358, 796, 357, 259, 62, 77, 11, 287, 62, 66, 3373, 2512, 62, 7857, 11, 287, 62, 71, 11, 287, 62, 86, 11, 2512, 62, 7857, 8, 628, 220, 220, 220, 2651, 62, 87, 796, 257, 10025, 13, 83, 14761, 13, 5372, 13829, 7, 87, 62, 20, 67, 62, 43358, 11, 2651, 62, 86, 13, 67, 4906, 11, 366, 15414, 62, 55, 4943, 198, 220, 220, 220, 2656, 62, 24455, 62, 43358, 796, 257, 10025, 13, 83, 14761, 13, 5372, 13829, 7, 24455, 62, 43358, 11, 2651, 62, 86, 13, 67, 4906, 11, 366, 15414, 62, 24455, 4943, 198, 220, 220, 220, 2651, 62, 22915, 11, 4808, 796, 3063, 62, 11813, 13, 42946, 26933, 11813, 62, 87, 11, 2651, 62, 86, 4357, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 779, 62, 65, 4448, 28, 25101, 11, 708, 3808, 28, 1078, 3808, 8, 628, 220, 220, 220, 512, 62, 1078, 3808, 796, 19779, 324, 62, 42946, 62, 21633, 1298, 352, 11, 366, 324, 62, 42946, 62, 260, 1904, 62, 42946, 1298, 657, 92, 198, 220, 220, 220, 474, 16436, 796, 1351, 7, 461, 70, 13, 39799, 9386, 7, 11813, 62, 22915, 11, 685, 11813, 62, 87, 4357, 19528, 62, 9892, 11, 512, 62, 1078, 3808, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 1891, 904, 62, 9892, 11, 2651, 62, 86, 11, 2656, 62, 24455, 62, 43358, 60, 4008, 198, 220, 220, 220, 4566, 82, 796, 3063, 62, 15414, 62, 324, 62, 11250, 26933, 1891, 904, 62, 9892, 11, 2651, 62, 86, 4357, 277, 8899, 62, 43358, 11, 8106, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 11, 33769, 62, 11, 288, 10520, 62, 11, 708, 3808, 28, 1078, 3808, 8, 628, 220, 220, 220, 1441, 474, 16436, 58, 15, 4357, 4566, 82, 198 ]
2.315248
1,751
# Hardware: ESP32, SSD1306 128x64 I2C screen # I2C(1): # scl: pin(25) # sda: pin(26) # Required modules: # ssd1306: official SSD1306 driver # microbmp # Required files: # img_LQ_48x48.bmp from machine import I2C from ssd1306 import SSD1306_I2C from microbmp import MicroBMP i2c = I2C(1) ssd = SSD1306_I2C(128, 64, i2c) img_LQ_48x48 = MicroBMP().load("img_LQ_48x48.bmp") bmp_to_screen(img_LQ_48x48, ssd, 40, 8) ssd.show()
[ 2, 28715, 25, 9428, 2624, 11, 21252, 12952, 21, 13108, 87, 2414, 314, 17, 34, 3159, 198, 2, 220, 220, 314, 17, 34, 7, 16, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 264, 565, 25, 6757, 7, 1495, 8, 198, 2, 220, 220, 220, 220, 220, 220, 264, 6814, 25, 6757, 7, 2075, 8, 198, 2, 20906, 13103, 25, 198, 2, 220, 220, 264, 21282, 12952, 21, 25, 1743, 21252, 12952, 21, 4639, 198, 2, 220, 220, 4580, 65, 3149, 198, 2, 20906, 3696, 25, 198, 2, 220, 220, 33705, 62, 43, 48, 62, 2780, 87, 2780, 13, 65, 3149, 198, 198, 6738, 4572, 1330, 314, 17, 34, 198, 6738, 264, 21282, 12952, 21, 1330, 21252, 12952, 21, 62, 40, 17, 34, 198, 6738, 4580, 65, 3149, 1330, 4527, 33, 7378, 628, 198, 198, 72, 17, 66, 796, 314, 17, 34, 7, 16, 8, 198, 824, 67, 796, 21252, 12952, 21, 62, 40, 17, 34, 7, 12762, 11, 5598, 11, 1312, 17, 66, 8, 198, 198, 9600, 62, 43, 48, 62, 2780, 87, 2780, 796, 4527, 33, 7378, 22446, 2220, 7203, 9600, 62, 43, 48, 62, 2780, 87, 2780, 13, 65, 3149, 4943, 198, 65, 3149, 62, 1462, 62, 9612, 7, 9600, 62, 43, 48, 62, 2780, 87, 2780, 11, 264, 21282, 11, 2319, 11, 807, 8, 198, 824, 67, 13, 12860, 3419, 198 ]
1.973451
226
import os, subprocess, sys if __name__ == "__main__": ipa = sys.argv[1] main(f"{ipa}")
[ 11748, 28686, 11, 850, 14681, 11, 25064, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 20966, 64, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 1388, 7, 69, 1, 90, 541, 64, 92, 4943 ]
2.086957
46
import asyncio import logging from copy import deepcopy from any_board_game.validators import ValidationException
[ 11748, 30351, 952, 198, 11748, 18931, 198, 6738, 4866, 1330, 2769, 30073, 198, 198, 6738, 597, 62, 3526, 62, 6057, 13, 12102, 2024, 1330, 3254, 24765, 16922, 628, 198 ]
4.034483
29
#!/usr/bin/env python # -*-coding:utf-8-*- import random from math import sqrt def bulk_walk(num_steps, num_bulk, dClass): """ :param num_steps: 随机行走了多少步 :param num_bulk: 一批次进行了多少次实验 :param dClass: 醉汉类型 :return: distances 一批次里面每次开图的总共行走距离列表 """ drunk = dClass() origin = Location(0, 0) distances = [] for i in range(num_bulk): f = Field() f.add_drunk(drunk, origin) distances.append(round(walk(f, drunk, num_steps), 1)) return distances def drunk_test(num_steps_batch, num_bulk, dClass): """ :param num_steps_batch: 随机行走多少步填入批次 :param num_bulk: 一批次进行了多少次实验 :param dClass: 醉汉类型 :return: """ mean_distance_list = [] for num_steps in num_steps_batch: distances = bulk_walk(num_steps, num_bulk, dClass) print(f'{dClass.__name__} random walk of {num_steps} steps') mean_distance = round(sum(distances) / len(distances), 4) mean_distance_list.append(mean_distance) print(f'Mean = {mean_distance}') print(f'Max = {max(distances)} Min = {min(distances)}') return mean_distance_list if __name__ == '__main__': num_steps_batch = list(range(100, 3000, 100)) data = drunk_test(num_steps_batch, 100, UsualDrunk)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 66, 7656, 25, 40477, 12, 23, 12, 9, 12, 198, 198, 11748, 4738, 198, 6738, 10688, 1330, 19862, 17034, 628, 628, 628, 198, 198, 4299, 11963, 62, 11152, 7, 22510, 62, 20214, 11, 997, 62, 65, 12171, 11, 288, 9487, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 997, 62, 20214, 25, 16268, 248, 237, 17312, 118, 26193, 234, 164, 113, 108, 12859, 228, 13783, 248, 22887, 239, 29826, 98, 198, 220, 220, 220, 1058, 17143, 997, 62, 65, 12171, 25, 220, 31660, 33699, 117, 162, 105, 94, 32573, 249, 26193, 234, 12859, 228, 13783, 248, 22887, 239, 162, 105, 94, 22522, 252, 165, 103, 234, 198, 220, 220, 220, 1058, 17143, 288, 9487, 25, 16268, 228, 231, 162, 109, 231, 163, 109, 119, 161, 252, 233, 198, 220, 220, 220, 1058, 7783, 25, 18868, 220, 31660, 33699, 117, 162, 105, 94, 34932, 234, 165, 251, 95, 162, 107, 237, 162, 105, 94, 28156, 222, 32368, 122, 21410, 45250, 119, 17739, 109, 26193, 234, 164, 113, 108, 164, 115, 251, 163, 99, 119, 26344, 245, 26193, 101, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10785, 796, 288, 9487, 3419, 198, 220, 220, 220, 8159, 796, 13397, 7, 15, 11, 657, 8, 198, 220, 220, 220, 18868, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 22510, 62, 65, 12171, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 7663, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 2860, 62, 7109, 2954, 7, 7109, 2954, 11, 8159, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18868, 13, 33295, 7, 744, 7, 11152, 7, 69, 11, 10785, 11, 997, 62, 20214, 828, 352, 4008, 198, 220, 220, 220, 1441, 18868, 628, 198, 4299, 10785, 62, 9288, 7, 22510, 62, 20214, 62, 43501, 11, 997, 62, 65, 12171, 11, 288, 9487, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 997, 62, 20214, 62, 43501, 25, 16268, 248, 237, 17312, 118, 26193, 234, 164, 113, 108, 13783, 248, 22887, 239, 29826, 98, 161, 94, 104, 17739, 98, 33699, 117, 162, 105, 94, 198, 220, 220, 220, 1058, 17143, 997, 62, 65, 12171, 25, 220, 31660, 33699, 117, 162, 105, 94, 32573, 249, 26193, 234, 12859, 228, 13783, 248, 22887, 239, 162, 105, 94, 22522, 252, 165, 103, 234, 198, 220, 220, 220, 1058, 17143, 288, 9487, 25, 16268, 228, 231, 162, 109, 231, 163, 109, 119, 161, 252, 233, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1612, 62, 30246, 62, 4868, 796, 17635, 198, 220, 220, 220, 329, 997, 62, 20214, 287, 997, 62, 20214, 62, 43501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18868, 796, 11963, 62, 11152, 7, 22510, 62, 20214, 11, 997, 62, 65, 12171, 11, 288, 9487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 90, 67, 9487, 13, 834, 3672, 834, 92, 4738, 2513, 286, 1391, 22510, 62, 20214, 92, 4831, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 30246, 796, 2835, 7, 16345, 7, 17080, 1817, 8, 1220, 18896, 7, 17080, 1817, 828, 604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 30246, 62, 4868, 13, 33295, 7, 32604, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 5308, 272, 796, 1391, 32604, 62, 30246, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 11518, 796, 1391, 9806, 7, 17080, 1817, 38165, 1855, 796, 1391, 1084, 7, 17080, 1817, 38165, 11537, 628, 220, 220, 220, 1441, 1612, 62, 30246, 62, 4868, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 997, 62, 20214, 62, 43501, 796, 1351, 7, 9521, 7, 3064, 11, 20343, 11, 1802, 4008, 198, 220, 220, 220, 1366, 796, 10785, 62, 9288, 7, 22510, 62, 20214, 62, 43501, 11, 1802, 11, 4021, 723, 6187, 2954, 8, 198 ]
1.863836
683
import operator from django.conf import settings from django.db.models import Q from django_elasticsearch_dsl import DocType, Index, fields from django_elasticsearch_dsl_drf.compat import KeywordField, StringField import six from muses.collection.models.item import Item from ..constants import VALUE_NOT_SPECIFIED from .analyzers import ( html_strip, html_strip_synonyms_en, html_strip_synonyms_nl, ) __all__ = ( 'CollectionItemDocument', 'INDEX', ) INDEX = Index(settings.ELASTICSEARCH_INDEX_NAMES[__name__]) # See Elasticsearch Indices API reference for available settings INDEX.settings( number_of_shards=1, number_of_replicas=1, max_result_window=50000, # Increase if needed ) @INDEX.doc_type class CollectionItemDocument(DocType): """Collection item document.""" # ID id = fields.IntegerField(attr='id') record_number = KeywordField() inventory_number = KeywordField() api_url = KeywordField( index="not_analyzed" ) web_url = KeywordField( index="not_analyzed" ) # ******************************************************************** # *************** Main data fields for search and filtering ********** # ******************************************************************** importer_uid = KeywordField( attr='importer_uid_indexing' ) language_code_orig = KeywordField( attr='language_code_orig' ) department = StringField( attr='department_indexing', analyzer=html_strip, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) # ******************************************************************** # ***************************** English ****************************** # ******************************************************************** title_en = StringField( attr='title_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) description_en = StringField( attr='description_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) period_en = StringField( attr='period_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) period_1_en = fields.NestedField( attr='period_1_en_indexing', properties={ 'name': StringField( analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), } ), 'period_2_en': fields.NestedField( properties={ 'name': StringField( analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), } ), 'period_3_en': fields.NestedField( properties={ 'name': StringField( analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), } ), 'period_4_en': fields.NestedField( properties={ 'name': StringField( analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), } ) } ) } ) } ) } ) primary_object_type_en = StringField( attr='primary_object_type_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), 'suggest': fields.CompletionField(), } ) object_type_en = StringField( attr='object_type_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), 'suggest': fields.CompletionField(), } ) # To be shown on the detail page object_type_detail_en = fields.TextField( attr='object_type_detail_en_indexing', index='no' ) material_en = StringField( attr='material_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) # To be shown on the detail page material_detail_en = fields.TextField( attr='material_detail_en_indexing', index='no' ) city_en = StringField( attr='city_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) country_en = StringField( attr='country_en_indexing', analyzer=html_strip_synonyms_en, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='english'), # 'suggest': fields.CompletionField(), } ) # To be shown on the detail page references_en = fields.TextField( attr='references_en_indexing', index='no' ) # To be shown on the detail page acquired_en = fields.TextField( attr='acquired_en_indexing', index='no' ) # To be shown on the detail page site_found_en = fields.TextField( attr='site_found_en_indexing', index='no' ) # To be shown on the detail page reign_en = fields.TextField( attr='reign_en_indexing', index='no' ) # To be shown on the detail page keywords_en = fields.TextField( attr='keywords_en_indexing', index='no' ) # To be shown on the detail page dynasty_en = fields.TextField( attr='dynasty_en_indexing', index='no' ) # New fields # To be shown on the detail page credit_line_en = fields.TextField( attr='credit_line_en_indexing', index='no' ) # To be shown on the detail page region_en = fields.TextField( attr='region_en_indexing', index='no' ) # To be shown on the detail page sub_region_en = fields.TextField( attr='sub_region_en_indexing', index='no' ) # To be shown on the detail page locale_en = fields.TextField( attr='locale_en_indexing', index='no' ) # To be shown on the detail page excavation_en = fields.TextField( attr='excavation_en_indexing', index='no' ) # To be shown on the detail page museum_collection_en = fields.TextField( attr='museum_collection_en_indexing', index='no' ) # To be shown on the detail page style_en = fields.TextField( attr='style_en_indexing', index='no' ) # To be shown on the detail page culture_en = fields.TextField( attr='culture_en_indexing', index='no' ) # To be shown on the detail page inscriptions_en = fields.TextField( attr='inscriptions_en_indexing', index='no' ) # To be shown on the detail page provenance_en = fields.TextField( attr='provenance_en_indexing', index='no' ) # To be shown on the detail page exhibitions_en = fields.TextField( attr='exhibitions_en_indexing', index='no' ) # ******************************************************************** # ****************************** Dutch ******************************* # ******************************************************************** title_nl = StringField( attr='title_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), # 'suggest': fields.CompletionField(), } ) description_nl = StringField( attr='description_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), # 'suggest': fields.CompletionField(), } ) period_nl = StringField( attr='period_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), # 'suggest': fields.CompletionField(), } ) period_1_nl = fields.NestedField( attr='period_1_nl_indexing', properties={ 'name': StringField( analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), } ), 'period_2_nl': fields.NestedField( properties={ 'name': StringField( analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), } ), 'period_3_nl': fields.NestedField( properties={ 'name': StringField( analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), } ), 'period_4_nl': fields.NestedField( properties={ 'name': StringField( analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), } ) } ) } ) } ) } ) primary_object_type_nl = StringField( attr='primary_object_type_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), 'suggest': fields.CompletionField(), } ) object_type_nl = StringField( attr='object_type_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), 'suggest': fields.CompletionField(), } ) # To be shown on the detail page object_type_detail_nl = fields.TextField( attr='object_type_detail_nl_indexing', index='no' ) material_nl = StringField( attr='material_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), # 'suggest': fields.CompletionField(), } ) # To be shown on the detail page material_detail_nl = fields.TextField( attr='material_detail_nl_indexing', index='no' ) city_nl = StringField( attr='city_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), # 'suggest': fields.CompletionField(), } ) country_nl = StringField( attr='country_nl_indexing', analyzer=html_strip_synonyms_nl, fields={ 'raw': KeywordField(), 'natural': StringField(analyzer='dutch'), # 'suggest': fields.CompletionField(), } ) # To be shown on the detail page keywords_nl = fields.TextField( attr='keywords_nl_indexing', index='no' ) # To be shown on the detail page acquired_nl = fields.TextField( attr='acquired_nl_indexing', index='no' ) # To be shown on the detail page site_found_nl = fields.TextField( attr='site_found_nl_indexing', index='no' ) # To be shown on the detail page reign_nl = fields.TextField( attr='reign_nl_indexing', index='no' ) # To be shown on the detail page references_nl = fields.TextField( attr='references_nl_indexing', index='no' ) # To be shown on the detail page dynasty_nl = fields.TextField( attr='dynasty_nl_indexing', index='no' ) # New fields # To be shown on the detail page credit_line_nl = fields.TextField( attr='credit_line_nl_indexing', index='no' ) # To be shown on the detail page region_nl = fields.TextField( attr='region_nl_indexing', index='no' ) # To be shown on the detail page sub_region_nl = fields.TextField( attr='sub_region_nl_indexing', index='no' ) # To be shown on the detail page locale_nl = fields.TextField( attr='locale_nl_indexing', index='no' ) # To be shown on the detail page excavation_nl = fields.TextField( attr='excavation_nl_indexing', index='no' ) # To be shown on the detail page museum_collection_nl = fields.TextField( attr='museum_collection_nl_indexing', index='no' ) # To be shown on the detail page style_nl = fields.TextField( attr='style_nl_indexing', index='no' ) # To be shown on the detail page culture_nl = fields.TextField( attr='culture_nl_indexing', index='no' ) # To be shown on the detail page inscriptions_nl = fields.TextField( attr='inscriptions_nl_indexing', index='no' ) # To be shown on the detail page provenance_nl = fields.TextField( attr='provenance_nl_indexing', index='no' ) # To be shown on the detail page exhibitions_nl = fields.TextField( attr='exhibitions_nl_indexing', index='no' ) # ******************************************************************** # ************************** Language independent ******************** # ******************************************************************** dimensions = StringField( attr='dimensions_indexing', analyzer=html_strip, fields={ 'raw': KeywordField(), 'natural': StringField(), # 'suggest': fields.CompletionField(), } ) object_date_begin = StringField( attr='object_date_begin_indexing', analyzer=html_strip, fields={ 'raw': KeywordField(), 'natural': StringField(), # 'suggest': fields.CompletionField(), } ) object_date_end = StringField( attr='object_date_end_indexing', analyzer=html_strip, fields={ 'raw': KeywordField(), 'natural': StringField(), # 'suggest': fields.CompletionField(), } ) location = fields.GeoPointField(attr='geo_location_indexing') # List of 32x32 PNG versions of the images. Full path to. images = fields.ListField( StringField(attr='images_indexing') ) # List of image URLs. images_urls = fields.ListField( fields.ObjectField( attr='images_urls_indexing', properties={ 'th': KeywordField(index="not_analyzed"), 'lr': KeywordField(index="not_analyzed"), } ) ) # Classified as by our AI classified_as = fields.ListField( StringField( attr='classified_as_indexing', fields={ 'raw': KeywordField(), } ) ) # Classified as 1st element classified_as_1 = StringField( attr='classified_as_1_indexing', fields={ 'raw': KeywordField(), } ) # Classified as 2nd element classified_as_2 = StringField( attr='classified_as_2_indexing', fields={ 'raw': KeywordField(), } ) # Classified as 3rd element classified_as_3 = StringField( attr='classified_as_3_indexing', fields={ 'raw': KeywordField(), } ) # ******************************************************************** # ************** Nested fields for search and filtering ************** # ******************************************************************** # # City object # country = fields.NestedField( # properties={ # 'name': StringField( # analyzer=html_strip, # fields={ # 'raw': KeywordField(), # 'suggest': fields.CompletionField(), # } # ), # 'info': StringField(analyzer=html_strip), # 'location': fields.GeoPointField(attr='location_field_indexing'), # } # ) # # location = fields.GeoPointField(attr='location_field_indexing') class Meta(object): """Meta options.""" model = Item # The model associate with this DocType def get_queryset(self): """Filter out items that are not eligible for indexing.""" qs = super(CollectionItemDocument, self).get_queryset() # qs = qs.select_related('period_node').prefetch_related('images') filters = [] for field in ['title']: for language in ['en', 'nl']: filters.extend( [ Q(**{"{}_{}__isnull".format(field, language): True}), Q(**{"{}_{}__exact".format(field, language): ''}), ] ) if filters: qs = qs.exclude( six.moves.reduce(operator.or_, filters) ) # We concatenate ``object_type`` and ``classification`` fields, after # cleaning them. Therefore, db-only checks don't work here. ids = [] for item in qs: if not ( item.object_type_en_indexing and item.object_type_nl_indexing ): ids.append(item.pk) return qs.exclude(id__in=ids) def prepare_department(self, instance): """Prepare department.""" return instance.department_indexing \ if instance.department_indexing\ else VALUE_NOT_SPECIFIED def prepare_object_date_begin(self, instance): """Prepare material.""" return instance.object_date_begin_indexing def prepare_object_date_end(self, instance): """Prepare material.""" return instance.object_date_end_indexing # ******************************************************************** # ***************************** English ****************************** # ******************************************************************** def prepare_material_en(self, instance): """Prepare material.""" return instance.material_en_indexing \ if instance.material_en_indexing\ else VALUE_NOT_SPECIFIED def prepare_period_en(self, instance): """Prepare state.""" return instance.period_en_indexing \ if instance.period_en_indexing \ else VALUE_NOT_SPECIFIED def prepare_dynasty_en(self, instance): """Prepare dynasty.""" return instance.dynasty_en_indexing \ if instance.dynasty_en_indexing \ else VALUE_NOT_SPECIFIED def prepare_description_en(self, instance): """Prepare description.""" return instance.description_en_indexing \ if instance.description_en_indexing\ else VALUE_NOT_SPECIFIED def prepare_city_en(self, instance): """Prepare city.""" return instance.city_en_indexing \ if instance.city_en_indexing\ else VALUE_NOT_SPECIFIED def prepare_country_en(self, instance): """Prepare country.""" return instance.country_en_indexing \ if instance.country_en_indexing \ else VALUE_NOT_SPECIFIED # ******************************************************************** # ****************************** Dutch ******************************* # ******************************************************************** def prepare_material_nl(self, instance): """Prepare material.""" return instance.material_nl_indexing \ if instance.material_nl_indexing\ else VALUE_NOT_SPECIFIED def prepare_period_nl(self, instance): """Prepare state.""" return instance.period_nl_indexing \ if instance.period_nl_indexing \ else VALUE_NOT_SPECIFIED def prepare_dynasty_nl(self, instance): """Prepare dynasty.""" return instance.dynasty_nl_indexing \ if instance.dynasty_nl_indexing \ else VALUE_NOT_SPECIFIED def prepare_description_nl(self, instance): """Prepare description.""" return instance.description_nl_indexing \ if instance.description_nl_indexing\ else VALUE_NOT_SPECIFIED def prepare_city_nl(self, instance): """Prepare city.""" return instance.city_nl_indexing \ if instance.city_nl_indexing\ else VALUE_NOT_SPECIFIED def prepare_country_nl(self, instance): """Prepare country.""" return instance.country_nl_indexing \ if instance.country_nl_indexing \ else VALUE_NOT_SPECIFIED
[ 11748, 10088, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 198, 6738, 42625, 14208, 62, 417, 3477, 12947, 62, 67, 6649, 1330, 14432, 6030, 11, 12901, 11, 7032, 198, 6738, 42625, 14208, 62, 417, 3477, 12947, 62, 67, 6649, 62, 7109, 69, 13, 5589, 265, 1330, 7383, 4775, 15878, 11, 10903, 15878, 198, 198, 11748, 2237, 198, 198, 6738, 1928, 274, 13, 43681, 13, 27530, 13, 9186, 1330, 9097, 198, 198, 6738, 11485, 9979, 1187, 1330, 26173, 8924, 62, 11929, 62, 48451, 28343, 198, 6738, 764, 38200, 47031, 1330, 357, 198, 220, 220, 220, 27711, 62, 36311, 11, 198, 220, 220, 220, 27711, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 27711, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 8, 628, 198, 834, 439, 834, 796, 357, 198, 220, 220, 220, 705, 36307, 7449, 24941, 3256, 198, 220, 220, 220, 705, 12115, 6369, 3256, 198, 8, 198, 198, 12115, 6369, 796, 12901, 7, 33692, 13, 3698, 11262, 2149, 5188, 31315, 62, 12115, 6369, 62, 45, 29559, 58, 834, 3672, 834, 12962, 198, 198, 2, 4091, 48567, 12947, 1423, 1063, 7824, 4941, 329, 1695, 6460, 198, 12115, 6369, 13, 33692, 7, 198, 220, 220, 220, 1271, 62, 1659, 62, 1477, 1371, 28, 16, 11, 198, 220, 220, 220, 1271, 62, 1659, 62, 35666, 44645, 28, 16, 11, 198, 220, 220, 220, 3509, 62, 20274, 62, 17497, 28, 20, 2388, 11, 220, 1303, 25285, 611, 2622, 198, 8, 628, 198, 31, 12115, 6369, 13, 15390, 62, 4906, 198, 4871, 12251, 7449, 24941, 7, 23579, 6030, 2599, 198, 220, 220, 220, 37227, 36307, 2378, 3188, 526, 15931, 628, 220, 220, 220, 1303, 4522, 198, 220, 220, 220, 4686, 796, 7032, 13, 46541, 15878, 7, 35226, 11639, 312, 11537, 628, 220, 220, 220, 1700, 62, 17618, 796, 7383, 4775, 15878, 3419, 628, 220, 220, 220, 13184, 62, 17618, 796, 7383, 4775, 15878, 3419, 628, 220, 220, 220, 40391, 62, 6371, 796, 7383, 4775, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 2625, 1662, 62, 38200, 8863, 1, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3992, 62, 6371, 796, 7383, 4775, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 2625, 1662, 62, 38200, 8863, 1, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 46068, 8162, 8774, 1366, 7032, 329, 2989, 290, 25431, 220, 4557, 1174, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 848, 4337, 62, 27112, 796, 7383, 4775, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 320, 26634, 62, 27112, 62, 9630, 278, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3303, 62, 8189, 62, 11612, 796, 7383, 4775, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 16129, 62, 8189, 62, 11612, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5011, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 10378, 1823, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 8412, 4557, 35625, 3594, 220, 8412, 46068, 1174, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 3670, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 7839, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 6764, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 11213, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2278, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 41007, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2278, 62, 16, 62, 268, 796, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 41007, 62, 16, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41007, 62, 17, 62, 268, 10354, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41007, 62, 18, 62, 268, 10354, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41007, 62, 19, 62, 268, 10354, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4165, 62, 15252, 62, 4906, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 39754, 62, 15252, 62, 4906, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2134, 62, 4906, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15252, 62, 4906, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 2134, 62, 4906, 62, 49170, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15252, 62, 4906, 62, 49170, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2587, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 33665, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 2587, 62, 49170, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 33665, 62, 49170, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1748, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 19205, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1499, 62, 268, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 19315, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 268, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 10288, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 5420, 4972, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 9477, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 43561, 1202, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 2524, 62, 9275, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15654, 62, 9275, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 13580, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 260, 570, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 26286, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 2539, 10879, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 30968, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 67, 19488, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 968, 7032, 198, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3884, 62, 1370, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 43082, 62, 1370, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3814, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 36996, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 850, 62, 36996, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 7266, 62, 36996, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 36693, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 17946, 1000, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 45499, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 41194, 615, 341, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 13257, 62, 43681, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 76, 6744, 62, 43681, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3918, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 7635, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3968, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 25584, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 1035, 24370, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 1040, 24370, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 9157, 590, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 42874, 590, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 48130, 62, 268, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 1069, 3145, 1756, 62, 268, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 8412, 46068, 1174, 10914, 220, 8412, 46068, 8162, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 3670, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 7839, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 6764, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 11213, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2278, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 41007, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2278, 62, 16, 62, 21283, 796, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 41007, 62, 16, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41007, 62, 17, 62, 21283, 10354, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41007, 62, 18, 62, 21283, 10354, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41007, 62, 19, 62, 21283, 10354, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4165, 62, 15252, 62, 4906, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 39754, 62, 15252, 62, 4906, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2134, 62, 4906, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15252, 62, 4906, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 2134, 62, 4906, 62, 49170, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15252, 62, 4906, 62, 49170, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2587, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 33665, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 2587, 62, 49170, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 33665, 62, 49170, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1748, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 19205, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1499, 62, 21283, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 19315, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 62, 28869, 43612, 62, 21283, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 7, 38200, 9107, 11639, 67, 7140, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 26286, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 2539, 10879, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 9477, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 43561, 1202, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 2524, 62, 9275, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15654, 62, 9275, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 13580, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 260, 570, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 10288, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 5420, 4972, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 30968, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 67, 19488, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 968, 7032, 198, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3884, 62, 1370, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 43082, 62, 1370, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3814, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 36996, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 850, 62, 36996, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 7266, 62, 36996, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 36693, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 17946, 1000, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 45499, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 41194, 615, 341, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 13257, 62, 43681, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 76, 6744, 62, 43681, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3918, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 7635, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 3968, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 25584, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 1035, 24370, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 1040, 24370, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 9157, 590, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 42874, 590, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1675, 307, 3402, 319, 262, 3703, 2443, 198, 220, 220, 220, 48130, 62, 21283, 796, 7032, 13, 8206, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 1069, 3145, 1756, 62, 21283, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 11639, 3919, 6, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 8412, 4557, 1174, 15417, 4795, 220, 8412, 2466, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 15225, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 27740, 5736, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2134, 62, 4475, 62, 27471, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15252, 62, 4475, 62, 27471, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2134, 62, 4475, 62, 437, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 15252, 62, 4475, 62, 437, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11802, 10354, 10903, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 4067, 796, 7032, 13, 10082, 78, 12727, 15878, 7, 35226, 11639, 469, 78, 62, 24886, 62, 9630, 278, 11537, 628, 220, 220, 220, 1303, 7343, 286, 3933, 87, 2624, 36182, 6300, 286, 262, 4263, 13, 6462, 3108, 284, 13, 198, 220, 220, 220, 4263, 796, 7032, 13, 8053, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 15878, 7, 35226, 11639, 17566, 62, 9630, 278, 11537, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 7343, 286, 2939, 32336, 13, 198, 220, 220, 220, 4263, 62, 6371, 82, 796, 7032, 13, 8053, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 13, 10267, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 17566, 62, 6371, 82, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 400, 10354, 7383, 4775, 15878, 7, 9630, 2625, 1662, 62, 38200, 8863, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14050, 10354, 7383, 4775, 15878, 7, 9630, 2625, 1662, 62, 38200, 8863, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 5016, 1431, 355, 416, 674, 9552, 198, 220, 220, 220, 10090, 62, 292, 796, 7032, 13, 8053, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 31691, 62, 292, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 5016, 1431, 355, 352, 301, 5002, 198, 220, 220, 220, 10090, 62, 292, 62, 16, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 31691, 62, 292, 62, 16, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 5016, 1431, 355, 362, 358, 5002, 198, 220, 220, 220, 10090, 62, 292, 62, 17, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 31691, 62, 292, 62, 17, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 5016, 1431, 355, 513, 4372, 5002, 198, 220, 220, 220, 10090, 62, 292, 62, 18, 796, 10903, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11639, 31691, 62, 292, 62, 18, 62, 9630, 278, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 46068, 1174, 399, 7287, 7032, 329, 2989, 290, 25431, 220, 46068, 1174, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 1303, 1303, 2254, 2134, 198, 220, 220, 220, 1303, 1499, 796, 7032, 13, 45, 7287, 15878, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 6608, 34758, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 10903, 15878, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4284, 9107, 28, 6494, 62, 36311, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 34758, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1831, 10354, 7383, 4775, 15878, 22784, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47811, 10354, 7032, 13, 5377, 24547, 15878, 22784, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10951, 10354, 10903, 15878, 7, 38200, 9107, 28, 6494, 62, 36311, 828, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24886, 10354, 7032, 13, 10082, 78, 12727, 15878, 7, 35226, 11639, 24886, 62, 3245, 62, 9630, 278, 33809, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 4067, 796, 7032, 13, 10082, 78, 12727, 15878, 7, 35226, 11639, 24886, 62, 3245, 62, 9630, 278, 11537, 628, 220, 220, 220, 1398, 30277, 7, 15252, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48526, 3689, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 9097, 220, 1303, 383, 2746, 11602, 351, 428, 14432, 6030, 628, 220, 220, 220, 825, 651, 62, 10819, 893, 316, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22417, 503, 3709, 326, 389, 407, 8867, 329, 6376, 278, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 82, 796, 2208, 7, 36307, 7449, 24941, 11, 2116, 737, 1136, 62, 10819, 893, 316, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 10662, 82, 796, 10662, 82, 13, 19738, 62, 5363, 10786, 41007, 62, 17440, 27691, 3866, 69, 7569, 62, 5363, 10786, 17566, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 16628, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 37250, 7839, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3303, 287, 37250, 268, 3256, 705, 21283, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16628, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1195, 7, 1174, 4895, 90, 92, 23330, 92, 834, 271, 8423, 1911, 18982, 7, 3245, 11, 3303, 2599, 6407, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1195, 7, 1174, 4895, 90, 92, 23330, 92, 834, 1069, 529, 1911, 18982, 7, 3245, 11, 3303, 2599, 10148, 92, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 16628, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 82, 796, 10662, 82, 13, 1069, 9152, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2237, 13, 76, 5241, 13, 445, 7234, 7, 46616, 13, 273, 62, 11, 16628, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 1673, 36686, 378, 7559, 15252, 62, 4906, 15506, 290, 7559, 4871, 2649, 15506, 7032, 11, 706, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12724, 606, 13, 8447, 11, 20613, 12, 8807, 8794, 836, 470, 670, 994, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 10662, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 13, 15252, 62, 4906, 62, 268, 62, 9630, 278, 290, 2378, 13, 15252, 62, 4906, 62, 21283, 62, 9630, 278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 13, 33295, 7, 9186, 13, 79, 74, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 10662, 82, 13, 1069, 9152, 7, 312, 834, 259, 28, 2340, 8, 628, 220, 220, 220, 825, 8335, 62, 10378, 1823, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 5011, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 10378, 1823, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 10378, 1823, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 15252, 62, 4475, 62, 27471, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 2587, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 15252, 62, 4475, 62, 27471, 62, 9630, 278, 628, 220, 220, 220, 825, 8335, 62, 15252, 62, 4475, 62, 437, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 2587, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 15252, 62, 4475, 62, 437, 62, 9630, 278, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 8412, 4557, 35625, 3594, 220, 8412, 46068, 1174, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 825, 8335, 62, 33665, 62, 268, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 2587, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 33665, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 33665, 62, 268, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 41007, 62, 268, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 1181, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 41007, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 41007, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 67, 19488, 62, 268, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 30968, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 67, 19488, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 67, 19488, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 11213, 62, 268, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 6764, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 11213, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 11213, 62, 268, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 19205, 62, 268, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 1748, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 19205, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 19205, 62, 268, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 19315, 62, 268, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 1499, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 19315, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 19315, 62, 268, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 1303, 41906, 17174, 2466, 198, 220, 220, 220, 1303, 220, 8412, 46068, 1174, 10914, 220, 8412, 46068, 8162, 198, 220, 220, 220, 1303, 41906, 17174, 2466, 628, 220, 220, 220, 825, 8335, 62, 33665, 62, 21283, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 2587, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 33665, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 33665, 62, 21283, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 41007, 62, 21283, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 1181, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 41007, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 41007, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 67, 19488, 62, 21283, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 30968, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 67, 19488, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 67, 19488, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 11213, 62, 21283, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 6764, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 11213, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 11213, 62, 21283, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 19205, 62, 21283, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 1748, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 19205, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 19205, 62, 21283, 62, 9630, 278, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 628, 220, 220, 220, 825, 8335, 62, 19315, 62, 21283, 7, 944, 11, 4554, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37534, 533, 1499, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 13, 19315, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4554, 13, 19315, 62, 21283, 62, 9630, 278, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 26173, 8924, 62, 11929, 62, 48451, 28343, 198 ]
2.098694
10,872
# -*- coding: utf-8 -*- """ Created on Thu Sep 19 10:54:00 2019 @author: Jonathan van Leeuwen, Diederick Niehorster """ import numpy as np import math import scipy import scipy.interpolate as interp import scipy.signal from scipy.cluster.vq import vq, _vq from scipy.spatial.distance import cdist import copy import warnings # ============================================================================= # Helper functions # ============================================================================= def angle_to_pixels(angle, screenDist, screenW, screenXY): """ Calculate the number of pixels which equals a specified angle in visual degrees, given parameters. Calculates the pixels based on the width of the screen. If the pixels are not square, a separate conversion needs to be done with the height of the screen.\n "angleToPixelsWH" returns pixels for width and height. Parameters ---------- angle : float or int The angle to convert in visual degrees screenDist : float or int Viewing distance in cm screenW : float or int The width of the screen in cm screenXY : tuple, ints The resolution of the screen (width - x, height - y), pixels Returns ------- pix : float The number of pixels which corresponds to the visual degree in angle, horizontally Examples -------- >>> pix = angleToPixels(1, 75, 47.5, (1920,1080)) >>> pix 52.912377341863817 """ pixSize = screenW / float(screenXY[0]) angle = np.radians(angle / 2.0) cmOnScreen = np.tan(angle) * float(screenDist) pix = (cmOnScreen / pixSize) * 2 return pix def get_missing(L_X, R_X, missing_x, L_Y, R_Y, missing_y): """ Gets missing data and returns missing data for left, right and average Parameters ---------- L_X : np.array Left eye X gaze position data R_X : np.array Right eye X gaze position data missing_x : scalar The value reflecting mising values for X coordinates in the dataset L_Y : np.array Left eye Y gaze position data R_Y : np.array Right eye Y gaze position data missing_y : scalar The value reflecting mising values for Y coordinates in the dataset Returns ------- qLMiss : np.array - Boolean Boolean indicating missing samples for the left eye qRMiss : np.array - Boolean Boolean indicating missing samples for the right eye qBMiss : np.array - Boolean Boolean indicating missing samples for both eyes """ # Get where the missing is # Left eye qLMissX = np.logical_or(L_X == missing_x, np.isnan(L_X)) qLMissY = np.logical_or(L_Y == missing_y, np.isnan(L_Y)) qLMiss = np.logical_and(qLMissX, qLMissY) # Right qRMissX = np.logical_or(R_X == missing_x, np.isnan(R_X)) qRMissY = np.logical_or(R_Y == missing_y, np.isnan(R_Y)) qRMiss = np.logical_and(qRMissX, qRMissY) # Both eyes qBMiss = np.logical_and(qLMiss, qRMiss) return qLMiss, qRMiss, qBMiss def average_eyes(L_X, R_X, missing_x, L_Y, R_Y, missing_y): """ Averages data from two eyes. Take one eye if only one was found. Parameters ---------- L_X : np.array Left eye X gaze position data R_X : np.array Right eye X gaze position data missing_x : scalar The value reflecting mising values for X coordinates in the dataset L_Y : np.array Left eye Y gaze position data R_Y : np.array Right eye Y gaze position data missing_y : scalar The value reflecting mising values for Y coordinates in the dataset Returns ------- xpos : np.array The average Y gaze position ypos : np.array The average X gaze position qBMiss : np.array - Boolean Boolean indicating missing samples for both eyes qLMiss : np.array - Boolean Boolean indicating missing samples for the left eye qRMiss : np.array - Boolean Boolean indicating missing samples for the right eye """ xpos = np.zeros(len(L_X)) ypos = np.zeros(len(L_Y)) # get missing qLMiss, qRMiss, qBMiss = get_missing(L_X, R_X, missing_x, L_Y, R_Y, missing_y) q = np.logical_and(np.invert(qLMiss), np.invert(qRMiss)) xpos[q] = (L_X[q] + R_X[q]) / 2. ypos[q] = (L_Y[q] + R_Y[q]) / 2. q = np.logical_and(qLMiss, np.invert(qRMiss)) xpos[q] = R_X[q] ypos[q] = R_Y[q] q = np.logical_and(np.invert(qLMiss), qRMiss) xpos[q] = L_X[q] ypos[q] = L_Y[q] xpos[qBMiss] = np.NAN ypos[qBMiss] = np.NAN return xpos, ypos, qBMiss, qLMiss, qRMiss def bool2bounds(b): """ Finds all contiguous sections of true in a boolean Parameters ---------- data : np.array - Boolean (or convertible to boolean) A 1D array containing stretches of True and False Returns ------- on : np.array The array contains the indices where each stretch of True starts off : np.array The array contains the indices where each stretch of True ends Example -------- >>> import numpy as np >>> b = np.array([1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0]) >>> on, off = bool2bounds(b) >>> print(on) [0 4 8] >>> print(off) [0 6 9] """ b = np.array(np.array(b, dtype = np.bool), dtype=int) b = np.pad(b, (1, 1), 'constant', constant_values=(0, 0)) D = np.diff(b) on = np.array(np.where(D == 1)[0], dtype=int) off = np.array(np.where(D == -1)[0] -1, dtype=int) return on, off # ============================================================================= # Interpolation functions # ============================================================================= def find_interp_wins(xpos, ypos, missing, window_time, edge_samples, freq, max_disp): """ Description Parameters ---------- xpos : np.array X gaze position ypos : type Y gaze position missing : type Description window_time : float Duration of window to interpolate over (ms) edge_samples : int Number of samples at window edge used for interpolating freq : float Measurement frequency max_disp : float maximum dispersion in position signal (i.e. if signal is in pixels, provide maxdisp in pixels) Returns ------- miss_start : np.array Array containing indices where each interval to be interpolated starts miss_end : np.array Array containing indices where each interval to be interpolated ends """ # get indices of where missing intervals start and end miss_start, miss_end = bool2bounds(missing) data_start, data_end = bool2bounds(np.invert(missing)) # Determine windowsamples window_samples = round(window_time/(1./freq)) # for each candidate, check if have enough valid data at edges to execute # interpolation. If not, see if merging with adjacent missing is possible # we don't throw out anything we can't deal with yet, we do that below. # this is just some preprocessing k=0 #was K=1 in matlab while k<len(miss_start)-1: # skip if too long if miss_end[k]-miss_start[k]+1 > window_samples: k = k+1 continue # skip if not enough data at left edge if np.sum(data_end == miss_start[k]-1) > 0: datk = int(np.argwhere(data_end==miss_start[k]-1)) if data_end[datk]-data_start[datk]+1 < edge_samples: k = k+1 continue # if not enough data at right edge, merge with next. Having not enough # on right edge of this one, means not having enough at left edge of # next. So both will be excluded always if we don't do anything. So we # can just merge without further checks. Its ok if it then grows too # long, as we'll just end up excluding that too below, which is what # would have happened if we didn't do anything here datk = np.argwhere(data_start==miss_end[k]+1) if len(datk) > 0: datk = int(datk) if data_end[datk]-data_start[datk]+1 < edge_samples: miss_end = np.delete(miss_end , k) miss_start = np.delete(miss_start, k+1) # don't advance k so we check this one again and grow it further if # needed continue # nothing left to do, continue to next k = k+1 # mark intervals that are too long to be deleted (only delete later so that # below checks can use all missing on and offsets) miss_dur = miss_end - miss_start + 1 qRemove = miss_dur>window_samples # for each candidate, check if have enough valid data at edges to execute # interpolation and check displacement during missing wasn't too large. # Mark for later removal as multiple missing close together may otherwise # be wrongly allowed for p in range(len(miss_start)): # check enough valid data at edges # missing too close to beginning of data # previous missing too close # missing too close to end of data # next missing too close if miss_start[p]<edge_samples+1 or \ (p>0 and miss_end[p-1] > miss_start[p]-edge_samples-1) or \ miss_end[p]>len(xpos)-1-edge_samples or \ (p<len(miss_start)-1 and miss_start[p+1] < miss_end[p]+edge_samples+1): qRemove[p] = True continue # check displacement, per missing interval # we want to check per bit of missing, even if multiple bits got merged # this as single data points can still anchor where the interpolation # goes and we thus need to check distance per bit, not over the whole # merged bit idx = np.arange(miss_start[p],miss_end[p]+1, dtype = int) on,off = bool2bounds(np.isnan(xpos[idx])) for q in range(len(on)): lesamps = np.array(on[q] -np.arange(edge_samples)+miss_start[p]-1, dtype=int) resamps = np.array(off[q]+np.arange(edge_samples)+miss_start[p]+1, dtype=int) displacement = np.hypot(np.nanmedian(xpos[resamps])-np.nanmedian(xpos[lesamps]), np.nanmedian(ypos[resamps])-np.nanmedian(ypos[lesamps])) if displacement > max_disp: qRemove[p] = True break if qRemove[p]: continue # Remove the missing clusters which cannot be interpolated qRemove = np.where(qRemove)[0] miss_start = np.delete(miss_start, qRemove) miss_end = np.delete(miss_end , qRemove) return miss_start, miss_end def windowed_interpolate(xpos, ypos, missing, miss_start, miss_end, edge_samples): """ Interpolates the missing data, and removes areas which are not allowed to be interpolated Parameters ---------- xpos : np.array X gaze positions ypos : type Y gaze positions missing : np.array Boolean vector indicating missing samples miss_start : np.array Array containing indices where each interval to be interpolated starts miss_end : np.array Array containing indices where each interval to be interpolated ends edge_samples : int Number of samples at window edge used for interpolating Returns ------- xi : np.array Interpolated X gaze position yi : np.array Interpolated Y gaze position new_missing : np.array Updated boolean vector indicating missing samples after interpolation """ new_missing = copy.deepcopy(missing) # Do the interpolating for p in range(len(miss_start)): # make vector of all samples in this window out_win = np.arange(miss_start[p],miss_end[p]+1) # get edge samples: where no missing data was observed # also get samples in window where data was observed out_win_not_missing = np.invert(new_missing[out_win]) valid_samps = np.concatenate((out_win[0]+np.arange(-edge_samples,0), out_win[out_win_not_missing], out_win[-1]+np.arange(1,edge_samples+1))) # get valid values: where no missing data was observed valid_x = xpos[valid_samps] valid_y = ypos[valid_samps] # do Steffen interpolation, update xpos, ypos xpos[out_win]= steffen_interp(valid_samps,valid_x,out_win) ypos[out_win]= steffen_interp(valid_samps,valid_y,out_win) # update missing: hole is now plugged new_missing[out_win] = False return xpos, ypos, new_missing # ============================================================================= # interpolator # ============================================================================= # ============================================================================= # Clustering functions # ============================================================================= def two_cluster_weighting(xpos, ypos, missing, downsamples, downsamp_filter, cheby_order, window_time, step_time, freq, max_errors, logging, logging_offset): """ Description Parameters ---------- xpos : type Description ypos : type Description missing : type Description downsamples : type Description downsamp_filter : type Description cheby_order : type Description window_time : type Description step_time : type Description freq : type Description max_errors : type Description Returns ------- finalweights : np.array Vector of 2-means clustering weights (one weight for each sample), the higher, the more likely a saccade happened stopped : Boolean Indicates if stopped because of too many errors encountered (True), or completed successfully (False) """ # calculate number of samples of the moving window num_samples = int(window_time/(1./freq)) step_size = np.max([1,int(step_time/(1./freq))]) # create empty weights vector total_weights = np.zeros(len(xpos)) total_weights[missing] = np.nan num_tests = np.zeros(len(xpos)) # stopped is always zero, unless maxiterations is exceeded. this # indicates that file could not be analysed after trying for x iterations stopped = False num_errors = 0 # Number of downsamples nd = len(downsamples) # Downsample if downsamp_filter: # filter signal. Follow the lead of decimate(), which first runs a # Chebychev filter as specified below rp = .05 # passband ripple in dB b = [[] for i in range(nd)] a = [[] for i in range(nd)] for p in range(nd): b[p],a[p] = scipy.signal.cheby1(cheby_order, rp, .8/downsamples[p]) # idx for downsamples idxs = [] for i in range(nd): idxs.append(np.arange(num_samples,0,-downsamples[i],dtype=int)[::-1] - 1) # see where are missing in this data, for better running over the data # below. on,off = bool2bounds(missing) if on.size > 0: # merge intervals smaller than nrsamples long merge = np.argwhere((on[1:] - off[:-1])-1 < num_samples).flatten() for p in merge[::-1]: off[p] = off[p+1] off = np.delete(off, p+1) on = np.delete(on, p+1) # check if intervals at data start and end are large enough if on[0]<num_samples+1: # not enough data point before first missing, so exclude them all on[0]=0 if off[-1]>(len(xpos)-1-num_samples): # not enough data points after last missing, so exclude them all off[-1]=len(xpos)-1 # start at first non-missing sample if trial starts with missing (or # excluded because too short) data if on[0]==0: i=off[0]+1 # start at first non-missing else: i=0 else: i=0 eind = i+num_samples while eind<=(len(xpos)-1): # check if max errors is crossed if num_errors > max_errors: if logging: print(logging_offset + 'Too many empty clusters encountered, aborting file. \n') stopped = True final_weights = np.nan return final_weights, stopped # select data portion of nrsamples idx = range(i,eind) ll_d = [[] for p in range(nd+1)] IDL_d = [[] for p in range(nd+1)] ll_d[0] = np.vstack([xpos[idx], ypos[idx]]) # Filter the bit of data we're about to downsample. Then we simply need # to select each nth sample where n is the integer factor by which # number of samples is reduced. select samples such that they are till # end of window for p in range(nd): if downsamp_filter: ll_d[p+1] = scipy.signal.filtfilt(b[p],a[p],ll_d[0]) ll_d[p+1] = ll_d[p+1][:,idxs[p]] else: ll_d[p+1] = ll_d[0][:,idxs[p]] # do 2-means clustering try: for p in range(nd+1): IDL_d[p] = kmeans2(ll_d[p].T)[0] except NotConvergedError as e: if logging: print(logging_offset + str(e)) num_errors += 1 except Exception as e: if logging: print(logging_offset + 'Unknown error encountered at sample {}.\n'.format(i)) raise e # detect switches and weight of switch (= 1/number of switches in # portion) switches = [[] for p in range(nd+1)] switchesw = [[] for p in range(nd+1)] for p in range(nd+1): switches[p] = np.abs(np.diff(IDL_d[p])) switchesw[p] = 1./np.sum(switches[p]) # get nearest samples of switch and add weight weighted = np.hstack([switches[0]*switchesw[0],0]) for p in range(nd): j = np.array((np.argwhere(switches[p+1]).flatten()+1)*downsamples[p],dtype=int)-1 for o in range(int(downsamples[p])): weighted[j+o] = weighted[j+o] + switchesw[p+1] # add to totalweights total_weights[idx] = total_weights[idx] + weighted # record how many times each sample was tested num_tests[idx] = num_tests[idx] + 1 # update i i += step_size eind += step_size missing_on = np.logical_and(on>=i, on<=eind) missing_off = np.logical_and(off>=i, off<=eind) qWhichMiss = np.logical_or(missing_on, missing_off) if np.sum(qWhichMiss) > 0: # we have some missing in this window. we don't process windows # with missing. Move back if we just skipped some samples, or else # skip whole missing and place start of window and first next # non-missing. if on[qWhichMiss][0] == (eind-step_size): # continue at first non-missing i = off[qWhichMiss][0]+1 else: # we skipped some points, move window back so that we analyze # up to first next missing point i = on[qWhichMiss][0]-num_samples eind = i+num_samples if eind>len(xpos)-1 and eind-step_size<len(xpos)-1: # we just exceeded data bound, but previous eind was before end of # data: we have some unprocessed samples. retreat just enough so we # process those end samples once d = eind-len(xpos)+1 eind = eind-d i = i-d # create final weights np.seterr(invalid='ignore') final_weights = total_weights/num_tests np.seterr(invalid='warn') return final_weights, stopped # ============================================================================= # Fixation detection functions # ============================================================================= def get_fixations(final_weights, timestamp, xpos, ypos, missing, par): """ Description Parameters ---------- finalweights : type weighting from 2-means clustering procedure timestamp : np.array Timestamp from eyetracker (should be in ms!) xpos : np.array Horizontal coordinates from Eyetracker ypos : np.array Vertical coordinates from Eyetracker missing : np.array Vector containing the booleans for mising values par : Dictionary containing the following keys and values cutoffstd : float Number of std above mean clustering-weight to use as fixation cutoff onoffsetThresh : float Threshold (x*MAD of fixation) for walking forward/back for saccade off- and onsets maxMergeDist : float Maximum Euclidean distance in pixels between fixations for merging maxMergeTime : float Maximum time in ms between fixations for merging minFixDur : Float Minimum duration allowed for fiation Returns ------- fix : Dictionary containing the following keys and values cutoff : float Cutoff used for fixation detection start : np.array Vector with fixation start indices end : np.array Vector with fixation end indices startT : np.array Vector with fixation start times endT : np.array Vector with fixation end times dur : type Vector with fixation durations xpos : np.array Vector with fixation median horizontal position (one value for each fixation in trial) ypos : np.array Vector with fixation median vertical position (one value for each fixation in trial) flankdataloss : bool Boolean with 1 for when fixation is flanked by data loss, 0 if not flanked by data loss fracinterped : float Fraction of data loss/interpolated data Examples -------- >>> fix = getFixations(finalweights,data['time'],xpos,ypos,missing,par) >>> fix {'cutoff': 0.1355980099309374, 'dur': array([366.599, 773.2 , 239.964, 236.608, 299.877, 126.637]), 'end': array([111, 349, 433, 508, 600, 643]), 'endT': array([ 369.919, 1163.169, 1443.106, 1693.062, 1999.738, 2142.977]), 'flankdataloss': array([1., 0., 0., 0., 0., 0.]), 'fracinterped': array([0.06363636, 0. , 0. , 0. , 0. , 0. ]), 'start': array([ 2, 118, 362, 438, 511, 606]), 'startT': array([ 6.685, 393.325, 1206.498, 1459.79 , 1703.116, 2019.669]), 'xpos': array([ 945.936, 781.056, 1349.184, 1243.92 , 1290.048, 1522.176]), 'ypos': array([486.216, 404.838, 416.664, 373.005, 383.562, 311.904])} """ ### Extract the required parameters cutoffstd = par['cutoffstd'] onoffsetThresh = par['onoffsetThresh'] maxMergeDist = par['maxMergeDist'] maxMergeTime = par['maxMergeTime'] minFixDur = par['minFixDur'] ### first determine cutoff for finalweights cutoff = np.nanmean(final_weights) + cutoffstd*np.nanstd(final_weights,ddof=1) ### get boolean of fixations fixbool = final_weights < cutoff ### get indices of where fixations start and end fixstart, fixend = bool2bounds(fixbool) ### for each fixation start, walk forward until recorded position is below # a threshold of lambda*MAD away from median fixation position. # same for each fixation end, but walk backward for p in range(len(fixstart)): xFix = xpos[fixstart[p]:fixend[p]+1] yFix = ypos[fixstart[p]:fixend[p]+1] xmedThis = np.nanmedian(xFix) ymedThis = np.nanmedian(yFix) # MAD = median(abs(x_i-median({x}))). For the 2D version, I'm using # median 2D distance of a point from the median fixation position. Not # exactly MAD, but makes more sense to me for 2D than city block, # especially given that we use 2D distance in our walk here MAD = np.nanmedian(np.hypot(xFix-xmedThis, yFix-ymedThis)) thresh = MAD*onoffsetThresh # walk until distance less than threshold away from median fixation # position. No walking occurs when we're already below threshold. i = fixstart[p] if i>0: # don't walk when fixation starting at start of data while np.hypot(xpos[i]-xmedThis,ypos[i]-ymedThis)>thresh: i = i+1 fixstart[p] = i # and now fixation end. i = fixend[p] if i<len(xpos): # don't walk when fixation ending at end of data while np.hypot(xpos[i]-xmedThis,ypos[i]-ymedThis)>thresh: i = i-1 fixend[p] = i ### get start time, end time, starttime = timestamp[fixstart] endtime = timestamp[fixend] ### loop over all fixation candidates in trial, see if should be merged for p in range(1,len(starttime))[::-1]: # get median coordinates of fixation xmedThis = np.median(xpos[fixstart[p]:fixend[p]+1]) ymedThis = np.median(ypos[fixstart[p]:fixend[p]+1]) xmedPrev = np.median(xpos[fixstart[p-1]:fixend[p-1]+1]) ymedPrev = np.median(ypos[fixstart[p-1]:fixend[p-1]+1]) # check if fixations close enough in time and space and thus qualify # for merging # The interval between the two fixations is calculated correctly (see # notes about fixation duration below), i checked this carefully. (Both # start and end of the interval are shifted by one sample in time, but # assuming practically constant sample interval, thats not an issue.) if starttime[p]-endtime[p-1] < maxMergeTime and \ np.hypot(xmedThis-xmedPrev,ymedThis-ymedPrev) < maxMergeDist: # merge fixend[p-1] = fixend[p] endtime[p-1]= endtime[p] # delete merged fixation fixstart = np.delete(fixstart, p) fixend = np.delete(fixend, p) starttime = np.delete(starttime, p) endtime = np.delete(endtime, p) ### beginning and end of fixation must be real data, not interpolated. # If interpolated, those bit(s) at the edge(s) are excluded from the # fixation. First throw out fixations that are all missing/interpolated for p in range(len(starttime))[::-1]: miss = missing[fixstart[p]:fixend[p]+1] if np.sum(miss) == len(miss): fixstart = np.delete(fixstart, p) fixend = np.delete(fixend, p) starttime = np.delete(starttime, p) endtime = np.delete(endtime, p) # then check edges and shrink if needed for p in range(len(starttime)): if missing[fixstart[p]]: fixstart[p] = fixstart[p] + np.argmax(np.invert(missing[fixstart[p]:fixend[p]+1])) starttime[p]= timestamp[fixstart[p]] if missing[fixend[p]]: fixend[p] = fixend[p] - (np.argmax(np.invert(missing[fixstart[p]:fixend[p]+1][::-1]))+1) endtime[p] = timestamp[fixend[p]] ### calculate fixation duration # if you calculate fixation duration by means of time of last sample during # fixation minus time of first sample during fixation (our fixation markers # are inclusive), then you always underestimate fixation duration by one # sample because you're in practice counting to the beginning of the # sample, not the end of it. To solve this, as end time we need to take the # timestamp of the sample that is one past the last sample of the fixation. # so, first calculate fixation duration by simple timestamp subtraction. fixdur = endtime-starttime # then determine what duration of this last sample was nextSamp = np.min(np.vstack([fixend+1,np.zeros(len(fixend),dtype=int)+len(timestamp)-1]),axis=0) # make sure we don't run off the end of the data extratime = timestamp[nextSamp]-timestamp[fixend] # if last fixation ends at end of data, we need to determine how long that # sample is and add that to the end time. Here we simply guess it as the # duration of previous sample if not len(fixend)==0 and fixend[-1]==len(timestamp): # first check if there are fixations in the first place, or we'll index into non-existing data extratime[-1] = np.diff(timestamp[-3:-1]) # now add the duration of the end sample to fixation durations, so we have # correct fixation durations fixdur = fixdur+extratime ### check if any fixations are too short qTooShort = np.argwhere(fixdur<minFixDur) if len(qTooShort) > 0: fixstart = np.delete(fixstart, qTooShort) fixend = np.delete(fixend, qTooShort) starttime = np.delete(starttime, qTooShort) endtime = np.delete(endtime, qTooShort) fixdur = np.delete(fixdur, qTooShort) ### process fixations, get other info about them xmedian = np.zeros(fixstart.shape) # vector for median ymedian = np.zeros(fixstart.shape) # vector for median flankdataloss = np.zeros(fixstart.shape) # vector for whether fixation is flanked by data loss fracinterped = np.zeros(fixstart.shape) # vector for fraction interpolated for a in range(len(fixstart)): idxs = range(fixstart[a],fixend[a]+1) # get data during fixation xposf = xpos[idxs] yposf = ypos[idxs] # for all calculations below we'll only use data that is not # interpolated, so only real data qMiss = missing[idxs] # get median coordinates of fixation xmedian[a] = np.median(xposf[np.invert(qMiss)]) ymedian[a] = np.median(yposf[np.invert(qMiss)]) # determine whether fixation is flanked by period of data loss flankdataloss[a] = (fixstart[a]>0 and missing[fixstart[a]-1]) or (fixend[a]<len(xpos)-1 and missing[fixend[a]+1]) # fraction of data loss during fixation that has been (does not count # data that is still lost) fracinterped[a] = np.sum(np.invert(np.isnan(xposf[qMiss])))/(fixend[a]-fixstart[a]+1) # store all the results in a dictionary fix = {} fix['cutoff'] = cutoff fix['start'] = fixstart fix['end'] = fixend fix['startT'] = starttime fix['endT'] = endtime fix['dur'] = fixdur fix['xpos'] = xmedian fix['ypos'] = ymedian fix['flankdataloss'] = flankdataloss fix['fracinterped'] = fracinterped return fix def get_fix_stats(xpos, ypos, missing, fix, pix_per_deg = None): """ Description Parameters ---------- xpos : np.array X gaze positions ypos : np.array Y gaze positions missing : np.array - Boolean Vector containing the booleans indicating missing samples (originally, before interpolation!) fix : Dictionary containing the following keys and values fstart : np.array fixation start indices fend : np.array fixation end indices pixperdeg : float Number of pixels per visual degree. Output in degrees if provided, in pixels otherwise Returns ------- fix : the fix input dictionary with the following added keys and values RMSxy : float RMS of fixation (precision) BCEA : float BCEA of fixation (precision) rangeX : float max(xpos) - min(xpos) of fixation rangeY : float max(ypos) - min(ypos) of fixation Examples -------- >>> fix = getFixStats(xpos,ypos,missing,fix,pixperdeg) >>> fix {'BCEA': array([0.23148877, 0.23681681, 0.24498942, 0.1571361 , 0.20109245, 0.23703843]), 'RMSxy': array([0.2979522 , 0.23306149, 0.27712236, 0.26264146, 0.28913117, 0.23147076]), 'cutoff': 0.1355980099309374, 'dur': array([366.599, 773.2 , 239.964, 236.608, 299.877, 126.637]), 'end': array([111, 349, 433, 508, 600, 643]), 'endT': array([ 369.919, 1163.169, 1443.106, 1693.062, 1999.738, 2142.977]), 'fixRangeX': array([0.41066299, 0.99860672, 0.66199772, 0.49593727, 0.64628929, 0.81010568]), 'fixRangeY': array([1.58921528, 1.03885955, 1.10576059, 0.94040142, 1.21936613, 0.91263117]), 'flankdataloss': array([1., 0., 0., 0., 0., 0.]), 'fracinterped': array([0.06363636, 0. , 0. , 0. , 0. , 0. ]), 'start': array([ 2, 118, 362, 438, 511, 606]), 'startT': array([ 6.685, 393.325, 1206.498, 1459.79 , 1703.116, 2019.669]), 'xpos': array([ 945.936, 781.056, 1349.184, 1243.92 , 1290.048, 1522.176]), 'ypos': array([486.216, 404.838, 416.664, 373.005, 383.562, 311.904])} """ # Extract the required parameters fstart = fix['start'] fend = fix['end'] # vectors for precision measures RMSxy = np.zeros(fstart.shape) BCEA = np.zeros(fstart.shape) rangeX = np.zeros(fstart.shape) rangeY = np.zeros(fstart.shape) for a in range(len(fstart)): idxs = range(fstart[a],fend[a]+1) # get data during fixation xposf = xpos[idxs] yposf = ypos[idxs] # for all calculations below we'll only use data that is not # interpolated, so only real data qMiss = missing[idxs] ### calculate RMS # since its done with diff, don't just exclude missing and treat # resulting as one continuous vector. replace missing with nan first, # use left-over values # Difference x position xdif = xposf.copy() xdif[qMiss] = np.nan xdif = np.diff(xdif)**2 xdif = xdif[np.invert(np.isnan(xdif))] # Difference y position ydif = yposf.copy() ydif[qMiss] = np.nan ydif = np.diff(ydif)**2 ydif = ydif[np.invert(np.isnan(ydif))] # Distance and RMS measure c = xdif + ydif # 2D sample-to-sample displacement value in pixels RMSxy[a] = np.sqrt(np.mean(c)) if pix_per_deg is not None: RMSxy[a] = RMSxy[a]/pix_per_deg # value in degrees visual angle ### calculate BCEA (Crossland and Rubin 2002 Optometry and Vision Science) stdx = np.std(xposf[np.invert(qMiss)],ddof=1) stdy = np.std(yposf[np.invert(qMiss)],ddof=1) if pix_per_deg is not None: # value in degrees visual angle stdx = stdx/pix_per_deg stdy = stdy/pix_per_deg if len(yposf[np.invert(qMiss)])<2: BCEA[a] = np.nan else: xx = np.corrcoef(xposf[np.invert(qMiss)],yposf[np.invert(qMiss)]) rho = xx[0,1] P = 0.68 # cumulative probability of area under the multivariate normal k = np.log(1./(1-P)) BCEA[a] = 2*k*np.pi*stdx*stdy*np.sqrt(1-rho**2) ### calculate max-min of fixation if np.sum(qMiss) == len(qMiss): rangeX[a] = np.nan rangeY[a] = np.nan else: rangeX[a] = (np.max(xposf[np.invert(qMiss)]) - np.min(xposf[np.invert(qMiss)])) rangeY[a] = (np.max(yposf[np.invert(qMiss)]) - np.min(yposf[np.invert(qMiss)])) if pix_per_deg is not None: # value in degrees visual angle rangeX[a] = rangeX[a]/pix_per_deg rangeY[a] = rangeY[a]/pix_per_deg # Add results to fixation dictionary fix['RMSxy'] = RMSxy fix['BCEA'] = BCEA fix['fixRangeX'] = rangeX fix['fixRangeY'] = rangeY return fix # ============================================================================= # ============================================================================= # # The actual I2MC pipeline function # ============================================================================= # ============================================================================= def I2MC(gazeData, options = None, logging=True, logging_offset=""): """ Parameters ---------- @param gazeData: a dataframe containing the gaze data the dataframe should contain the following columns (either L, R or both or average): L_X - left eye x position L_Y - left eye y position R_X - right eye x position R_Y - right eye y position average_X - average x position average_Y - average y position time - time of the gaze sample @param options: a dictionary containing the options for the I2MC analysis the dictionary should contain the following keys: x_res - x resolution of the screen in pixels y_res - y resolution of the screen in pixels freq - frequency of the Eyetracker in Hz missing_x - value indicating data loss missing_y - value indicating data loss @param logging: boolean indicating whether to log the results @param logging_offset: offset before every logging message Returns ------- @return: false if the analysis was not successful, otherwise a dictionary containing the results of the analysis. The Dictionary contains the following keys: cutoff - start - end - startT - endT - dur - xpos - ypos - flankdataloss - fracinterped - RMSxy - BCEA - fixRangeX - fixRangeY - """ # set defaults if options is None: options = {} data = copy.deepcopy(gazeData) opt = options.copy() par = {} # Check required parameters check_fun('xres', opt, 'horizontal screen resolution') check_fun('yres', opt, 'vertical screen resolution') check_fun('freq', opt, 'tracker sampling rate') check_fun('missingx', opt, 'value indicating data loss for horizontal position') check_fun('missingy', opt, 'value indicating data loss for vertical position') # required parameters: par['xres'] = opt.pop('xres') par['yres'] = opt.pop('yres') par['freq'] = opt.pop('freq') par['missingx'] = opt.pop('missingx') par['missingy'] = opt.pop('missingy') par['scrSz'] = opt.pop('scrSz', None ) # screen size (e.g. in cm). Optional, specify if want fixation statistics in deg par['disttoscreen'] = opt.pop('disttoscreen', None) # screen distance (in same unit as size). Optional, specify if want fixation statistics in deg #parameters with defaults: # CUBIC SPLINE INTERPOLATION par['windowtimeInterp'] = opt.pop('windowtimeInterp', .1) # max duration (s) of missing values for interpolation to occur par['edgeSampInterp'] = opt.pop('edgeSampInterp', 2) # amount of data (number of samples) at edges needed for interpolation par['maxdisp'] = opt.pop('maxdisp', None) # maximum displacement during missing for interpolation to be possible. Default set below if needed # K-MEANS CLUSTERING par['windowtime'] = opt.pop('windowtime', .2) # time window (s) over which to calculate 2-means clustering (choose value so that max. 1 saccade can occur) par['steptime'] = opt.pop('steptime', .02) # time window shift (s) for each iteration. Use zero for sample by sample processing par['downsamples'] = opt.pop('downsamples', [2, 5, 10]) # downsample levels (can be empty) par['downsampFilter'] = opt.pop('downsampFilter', True) # use chebychev filter when downsampling? True: yes, False: no. requires signal processing toolbox. is what matlab's downsampling functions do, but could cause trouble (ringing) with the hard edges in eye-movement data par['chebyOrder'] = opt.pop('chebyOrder', 8.) # order of cheby1 Chebyshev downsampling filter, default is normally ok, as long as there are 25 or more samples in the window (you may have less if your data is of low sampling rate or your window is small par['maxerrors'] = opt.pop('maxerrors', 100.) # maximum number of errors allowed in k-means clustering procedure before proceeding to next file # FIXATION DETERMINATION par['cutoffstd'] = opt.pop('cutoffstd', 2.) # number of standard deviations above mean k-means weights will be used as fixation cutoff par['onoffsetThresh'] = opt.pop('onoffsetThresh', 3.) # number of MAD away from median fixation duration. Will be used to walk forward at fixation starts and backward at fixation ends to refine their placement and stop algorithm from eating into saccades par['maxMergeDist'] = opt.pop('maxMergeDist', 30.) # maximum Euclidean distance in pixels between fixations for merging par['maxMergeTime'] = opt.pop('maxMergeTime', 30.) # maximum time in ms between fixations for merging par['minFixDur'] = opt.pop('minFixDur', 40.) # minimum fixation duration (ms) after merging, fixations with shorter duration are removed from output # Development parameters, change these to False when not developing par['skip_inputhandeling'] = opt.pop('skip_inputhandeling', False) for key in opt: assert False, 'Key "{}" not recognized'.format(key) # ============================================================================= # # Input handeling and checking # ============================================================================= ## loop over input if not par['skip_inputhandeling']: for key, value in par.items(): if key in ['xres','yres','freq','missingx','missingy','windowtimeInterp','maxdisp','windowtime', 'steptime','cutoffstd','onoffsetThresh','maxMergeDist','maxMergeTime','minFixDur']: check_numeric(key,value) check_scalar(key,value) elif key == 'disttoscreen': if value is not None: # may be None (its an optional parameter) check_numeric(key,value) check_scalar(key,value) elif key in ['downsampFilter','chebyOrder','maxerrors','edgeSampInterp']: check_int(key,value) check_scalar(key,value) elif key == 'scrSz': if value is not None: # may be None (its an optional parameter) check_numeric(key,value) check_vector_2(key,value) elif key == 'downsamples': check_int(key,value) else: if type(key) != str: raise ValueError('Key "{}" not recognized'.format(key)) # set defaults if par['maxdisp'] is None: par['maxdisp'] = par['xres']*0.2*np.sqrt(2) # check filter if par['downsampFilter']: nSampRequired = np.max([1,3*par['chebyOrder']])+1 # nSampRequired = max(1,3*(nfilt-1))+1, where nfilt = chebyOrder+1 nSampInWin = round(par['windowtime']/(1./par['freq'])) if nSampInWin < nSampRequired: raise ValueError('I2MC: Filter parameters requested with the setting "chebyOrder" ' + 'will not work for the sampling frequency of your data. Please lower ' + '"chebyOrder", or set the setting "downsampFilter" to False') assert np.sum(par['freq']%np.array(par['downsamples'])) ==0,'I2MCfunc: Some of your downsample levels are not divisors of your sampling frequency. Change the option "downsamples"' # setup visual angle conversion pix_per_deg = None if par['scrSz'] is not None and par['disttoscreen'] is not None: pix_per_deg = angle_to_pixels(1, par['disttoscreen'], par['scrSz'][0], [par['xres'], par['yres']]) # ============================================================================= # Determine missing values and determine X and Y gaze pos # ============================================================================= # deal with monocular data, or create average over two eyes if 'L_X' in data.keys() and 'R_X' not in data.keys(): xpos = data['L_X'] ypos = data['L_Y'] # Check for missing values missing_x = np.logical_or(np.isnan(xpos), xpos == par['missingx']) missing_y = np.logical_or(np.isnan(ypos), ypos == par['missingy']) missing = np.logical_or(missing_x, missing_y) data['left_missing'] = missing q2Eyes = False elif 'R_X' in data.keys() and 'L_X' not in data.keys(): xpos = data['R_X'] ypos = data['R_Y'] # Check for missing values missing_x = np.logical_or(np.isnan(xpos), xpos == par['missingx']) missing_y = np.logical_or(np.isnan(ypos) , ypos == par['missingy']) missing = np.logical_or(missing_x, missing_y) data['right_missing'] = missing q2Eyes = False elif 'average_X' in data.keys(): xpos = data['average_X'] ypos = data['average_Y'] missing_x = np.logical_or(np.isnan(xpos), xpos == par['missingx']) missing_y = np.logical_or(np.isnan(ypos) , ypos == par['missingy']) missing = np.logical_or(missing_x, missing_y) data['average_missing'] = missing q2Eyes = 'R_X' in data.keys() and 'L_X' in data.keys() if q2Eyes: # we have left and right and average already provided, but we need # to get missing in the individual eye signals llmiss, rrmiss, bothmiss = get_missing(data['L_X'], data['R_X'], par['missingx'], data['L_Y'], data['R_Y'], par['missingy']) data['left_missing'] = llmiss data['right_missing'] = rrmiss else: # we have left and right, average them data['average_X'], data['average_Y'], missing, llmiss, rrmiss = average_eyes(data['L_X'], data['R_X'], par['missingx'], data['L_Y'], data['R_Y'], par['missingy']) xpos = data['average_X'] ypos = data['average_Y'] data['average_missing'] = missing data['left_missing'] = llmiss data['right_missing'] = rrmiss q2Eyes = True # ============================================================================= # INTERPOLATION # ============================================================================= # get interpolation windows for average and individual eye signals if logging: print(logging_offset + 'I2MC: Searching for valid interpolation windows') missStart,missEnd = find_interp_wins(xpos, ypos, missing, par['windowtimeInterp'], par['edgeSampInterp'], par['freq'], par['maxdisp']) if q2Eyes: llmissStart,llmissEnd = find_interp_wins(data['L_X'], data['L_Y'], llmiss, par['windowtimeInterp'], par['edgeSampInterp'], par['freq'], par['maxdisp']) rrmissStart,rrmissEnd = find_interp_wins(data['R_X'], data['R_Y'], rrmiss, par['windowtimeInterp'], par['edgeSampInterp'], par['freq'], par['maxdisp']) # Use Steffen interpolation and replace values if logging: print(logging_offset + 'I2MC: Replace interpolation windows with Steffen interpolation') xpos, ypos, missingn = windowed_interpolate(xpos, ypos, missing, missStart, missEnd, par['edgeSampInterp']) if q2Eyes: llx, lly,llmissn = windowed_interpolate(data['L_X'], data['L_Y'], data['left_missing'], llmissStart, llmissEnd, par['edgeSampInterp']) rrx, rry,rrmissn = windowed_interpolate(data['R_X'], data['R_Y'], data['right_missing'], rrmissStart, rrmissEnd, par['edgeSampInterp']) # ============================================================================= # 2-MEANS CLUSTERING # ============================================================================= ## CALCULATE 2-MEANS CLUSTERING FOR SINGLE EYE if not q2Eyes: # get kmeans-clustering for averaged signal if logging: print(logging_offset + 'I2MC: 2-Means clustering started for averaged signal') data['finalweights'], stopped = two_cluster_weighting(xpos, ypos, missingn, par['downsamples'], par['downsampFilter'], par['chebyOrder'], par['windowtime'], par['steptime'],par['freq'], par['maxerrors'], logging, logging_offset) # check whether clustering succeeded if stopped: warnings.warn('I2MC: Clustering stopped after exceeding max errors, continuing to next file \n') return False ## CALCULATE 2-MEANS CLUSTERING FOR SEPARATE EYES elif q2Eyes: # get kmeans-clustering for left eye signal if logging: print(logging_offset + 'I2MC: 2-Means clustering started for left eye signal') finalweights_left, stopped = two_cluster_weighting(llx, lly, llmissn, par['downsamples'], par['downsampFilter'], par['chebyOrder'], par['windowtime'], par['steptime'], par['freq'], par['maxerrors'], logging, logging_offset) # check whether clustering succeeded if stopped: warnings.warn('I2MC: Clustering stopped after exceeding max errors, continuing to next file \n') return False # get kmeans-clustering for right eye signal if logging: print(logging_offset + 'I2MC: 2-Means clustering started for right eye signal') finalweights_right, stopped = two_cluster_weighting(rrx, rry, rrmissn, par['downsamples'], par['downsampFilter'],par['chebyOrder'], par['windowtime'], par['steptime'], par['freq'], par['maxerrors'], logging, logging_offset) # check whether clustering succeeded if stopped: warnings.warn('I2MC: Clustering stopped after exceeding max errors, continuing to next file') return False ## AVERAGE FINALWEIGHTS OVER COMBINED & SEPARATE EYES with warnings.catch_warnings(): warnings.simplefilter("ignore") # ignore warnings from np.nanmean data['finalweights'] = np.nanmean(np.vstack([finalweights_left, finalweights_right]), axis=0) # ============================================================================= # DETERMINE FIXATIONS BASED ON FINALWEIGHTS_AVG # ============================================================================= if logging: print(logging_offset + 'I2MC: Determining fixations based on clustering weight mean for averaged signal and separate eyes + {:.2f}*std'.format(par['cutoffstd'])) fix = get_fixations(data['finalweights'], data['time'], xpos, ypos, missing, par) fix = get_fix_stats(xpos, ypos, missing, fix, pix_per_deg) return fix,data,par
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 8621, 678, 838, 25, 4051, 25, 405, 13130, 198, 198, 31, 9800, 25, 11232, 5719, 5741, 84, 21006, 11, 34288, 41556, 399, 494, 17899, 1706, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 629, 541, 88, 198, 11748, 629, 541, 88, 13, 3849, 16104, 378, 355, 987, 79, 198, 11748, 629, 541, 88, 13, 12683, 282, 198, 6738, 629, 541, 88, 13, 565, 5819, 13, 85, 80, 1330, 410, 80, 11, 4808, 85, 80, 198, 6738, 629, 541, 88, 13, 2777, 34961, 13, 30246, 1330, 269, 17080, 198, 11748, 4866, 198, 11748, 14601, 198, 198, 2, 38093, 25609, 198, 2, 5053, 525, 5499, 198, 2, 38093, 25609, 198, 198, 4299, 9848, 62, 1462, 62, 79, 14810, 7, 9248, 11, 3159, 20344, 11, 3159, 54, 11, 3159, 34278, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27131, 378, 262, 1271, 286, 17848, 543, 21767, 257, 7368, 9848, 287, 5874, 198, 220, 220, 220, 7370, 11, 1813, 10007, 13, 27131, 689, 262, 17848, 1912, 319, 262, 9647, 286, 198, 220, 220, 220, 262, 3159, 13, 1002, 262, 17848, 389, 407, 6616, 11, 257, 4553, 11315, 2476, 198, 220, 220, 220, 284, 307, 1760, 351, 262, 6001, 286, 262, 3159, 13, 59, 77, 198, 220, 220, 220, 366, 9248, 2514, 47, 14810, 12418, 1, 5860, 17848, 329, 9647, 290, 6001, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 9848, 1058, 12178, 393, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9848, 284, 10385, 287, 5874, 7370, 198, 220, 220, 220, 3159, 20344, 1058, 12178, 393, 493, 198, 220, 220, 220, 220, 220, 220, 220, 3582, 278, 5253, 287, 12067, 198, 220, 220, 220, 3159, 54, 1058, 12178, 393, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 9647, 286, 262, 3159, 287, 12067, 198, 220, 220, 220, 3159, 34278, 1058, 46545, 11, 493, 82, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6323, 286, 262, 3159, 357, 10394, 532, 2124, 11, 6001, 532, 331, 828, 17848, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 279, 844, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 17848, 543, 24866, 284, 262, 5874, 4922, 287, 9848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36774, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 279, 844, 796, 9848, 2514, 47, 14810, 7, 16, 11, 5441, 11, 6298, 13, 20, 11, 357, 40454, 11, 24045, 4008, 198, 220, 220, 220, 13163, 279, 844, 198, 220, 220, 220, 6740, 13, 24, 1065, 26514, 2682, 25096, 2548, 1558, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 844, 10699, 796, 3159, 54, 1220, 12178, 7, 9612, 34278, 58, 15, 12962, 198, 220, 220, 220, 9848, 796, 45941, 13, 6335, 1547, 7, 9248, 1220, 362, 13, 15, 8, 198, 220, 220, 220, 12067, 2202, 23901, 796, 45941, 13, 38006, 7, 9248, 8, 1635, 12178, 7, 9612, 20344, 8, 198, 220, 220, 220, 279, 844, 796, 357, 11215, 2202, 23901, 1220, 279, 844, 10699, 8, 1635, 362, 628, 220, 220, 220, 1441, 279, 844, 198, 198, 4299, 651, 62, 45688, 7, 43, 62, 55, 11, 371, 62, 55, 11, 4814, 62, 87, 11, 406, 62, 56, 11, 371, 62, 56, 11, 4814, 62, 88, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 4814, 1366, 290, 5860, 4814, 1366, 329, 1364, 11, 826, 290, 2811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 406, 62, 55, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 9578, 4151, 1395, 17841, 2292, 1366, 198, 220, 220, 220, 371, 62, 55, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 6498, 4151, 1395, 17841, 2292, 1366, 198, 220, 220, 220, 4814, 62, 87, 1058, 16578, 283, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 20252, 285, 1710, 3815, 329, 1395, 22715, 287, 262, 27039, 198, 220, 220, 220, 406, 62, 56, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 9578, 4151, 575, 17841, 2292, 1366, 198, 220, 220, 220, 371, 62, 56, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 6498, 4151, 575, 17841, 2292, 1366, 198, 220, 220, 220, 4814, 62, 88, 1058, 16578, 283, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 20252, 285, 1710, 3815, 329, 575, 22715, 287, 262, 27039, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 10662, 43, 17140, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 12739, 4814, 8405, 329, 262, 1364, 4151, 198, 220, 220, 220, 10662, 49, 17140, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 12739, 4814, 8405, 329, 262, 826, 4151, 198, 220, 220, 220, 10662, 12261, 747, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 12739, 4814, 8405, 329, 1111, 2951, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3497, 810, 262, 4814, 318, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9578, 4151, 198, 220, 220, 220, 10662, 43, 17140, 55, 796, 45941, 13, 6404, 605, 62, 273, 7, 43, 62, 55, 6624, 4814, 62, 87, 11, 45941, 13, 271, 12647, 7, 43, 62, 55, 4008, 198, 220, 220, 220, 10662, 43, 17140, 56, 796, 45941, 13, 6404, 605, 62, 273, 7, 43, 62, 56, 6624, 4814, 62, 88, 11, 45941, 13, 271, 12647, 7, 43, 62, 56, 4008, 198, 220, 220, 220, 10662, 43, 17140, 796, 45941, 13, 6404, 605, 62, 392, 7, 80, 43, 17140, 55, 11, 10662, 43, 17140, 56, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6498, 198, 220, 220, 220, 10662, 49, 17140, 55, 796, 45941, 13, 6404, 605, 62, 273, 7, 49, 62, 55, 6624, 4814, 62, 87, 11, 45941, 13, 271, 12647, 7, 49, 62, 55, 4008, 198, 220, 220, 220, 10662, 49, 17140, 56, 796, 45941, 13, 6404, 605, 62, 273, 7, 49, 62, 56, 6624, 4814, 62, 88, 11, 45941, 13, 271, 12647, 7, 49, 62, 56, 4008, 198, 220, 220, 220, 10662, 49, 17140, 796, 45941, 13, 6404, 605, 62, 392, 7, 80, 49, 17140, 55, 11, 10662, 49, 17140, 56, 8, 628, 220, 220, 220, 1303, 5747, 2951, 198, 220, 220, 220, 10662, 12261, 747, 796, 45941, 13, 6404, 605, 62, 392, 7, 80, 43, 17140, 11, 10662, 49, 17140, 8, 628, 220, 220, 220, 1441, 10662, 43, 17140, 11, 10662, 49, 17140, 11, 10662, 12261, 747, 628, 198, 4299, 2811, 62, 48418, 7, 43, 62, 55, 11, 371, 62, 55, 11, 4814, 62, 87, 11, 406, 62, 56, 11, 371, 62, 56, 11, 4814, 62, 88, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 23118, 1366, 422, 734, 2951, 13, 7214, 530, 4151, 611, 691, 530, 373, 1043, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 406, 62, 55, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 9578, 4151, 1395, 17841, 2292, 1366, 198, 220, 220, 220, 371, 62, 55, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 6498, 4151, 1395, 17841, 2292, 1366, 198, 220, 220, 220, 4814, 62, 87, 1058, 16578, 283, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 20252, 285, 1710, 3815, 329, 1395, 22715, 287, 262, 27039, 198, 220, 220, 220, 406, 62, 56, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 9578, 4151, 575, 17841, 2292, 1366, 198, 220, 220, 220, 371, 62, 56, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 6498, 4151, 575, 17841, 2292, 1366, 198, 220, 220, 220, 4814, 62, 88, 1058, 16578, 283, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 20252, 285, 1710, 3815, 329, 575, 22715, 287, 262, 27039, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2124, 1930, 220, 220, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2811, 575, 17841, 2292, 198, 220, 220, 220, 331, 1930, 220, 220, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2811, 1395, 17841, 2292, 198, 220, 220, 220, 10662, 12261, 747, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 12739, 4814, 8405, 329, 1111, 2951, 198, 220, 220, 220, 10662, 43, 17140, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 12739, 4814, 8405, 329, 262, 1364, 4151, 198, 220, 220, 220, 10662, 49, 17140, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 12739, 4814, 8405, 329, 262, 826, 4151, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2124, 1930, 796, 45941, 13, 9107, 418, 7, 11925, 7, 43, 62, 55, 4008, 198, 220, 220, 220, 331, 1930, 796, 45941, 13, 9107, 418, 7, 11925, 7, 43, 62, 56, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 651, 4814, 198, 220, 220, 220, 10662, 43, 17140, 11, 10662, 49, 17140, 11, 10662, 12261, 747, 796, 651, 62, 45688, 7, 43, 62, 55, 11, 371, 62, 55, 11, 4814, 62, 87, 11, 406, 62, 56, 11, 371, 62, 56, 11, 4814, 62, 88, 8, 628, 220, 220, 220, 10662, 796, 45941, 13, 6404, 605, 62, 392, 7, 37659, 13, 259, 1851, 7, 80, 43, 17140, 828, 45941, 13, 259, 1851, 7, 80, 49, 17140, 4008, 198, 220, 220, 220, 2124, 1930, 58, 80, 60, 796, 357, 43, 62, 55, 58, 80, 60, 1343, 371, 62, 55, 58, 80, 12962, 1220, 362, 13, 198, 220, 220, 220, 331, 1930, 58, 80, 60, 796, 357, 43, 62, 56, 58, 80, 60, 1343, 371, 62, 56, 58, 80, 12962, 1220, 362, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10662, 796, 220, 45941, 13, 6404, 605, 62, 392, 7, 80, 43, 17140, 11, 45941, 13, 259, 1851, 7, 80, 49, 17140, 4008, 198, 220, 220, 220, 2124, 1930, 58, 80, 60, 796, 371, 62, 55, 58, 80, 60, 198, 220, 220, 220, 331, 1930, 58, 80, 60, 796, 371, 62, 56, 58, 80, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10662, 796, 45941, 13, 6404, 605, 62, 392, 7, 37659, 13, 259, 1851, 7, 80, 43, 17140, 828, 10662, 49, 17140, 8, 198, 220, 220, 220, 2124, 1930, 58, 80, 60, 796, 406, 62, 55, 58, 80, 60, 198, 220, 220, 220, 331, 1930, 58, 80, 60, 796, 406, 62, 56, 58, 80, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2124, 1930, 58, 80, 12261, 747, 60, 796, 45941, 13, 45, 1565, 198, 220, 220, 220, 331, 1930, 58, 80, 12261, 747, 60, 796, 45941, 13, 45, 1565, 628, 220, 220, 220, 1441, 2124, 1930, 11, 331, 1930, 11, 10662, 12261, 747, 11, 10662, 43, 17140, 11, 10662, 49, 17140, 198, 198, 4299, 20512, 17, 65, 3733, 7, 65, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9938, 82, 477, 48627, 9004, 286, 2081, 287, 257, 25131, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 45941, 13, 18747, 532, 41146, 357, 273, 41637, 284, 25131, 8, 198, 220, 220, 220, 220, 220, 220, 220, 317, 352, 35, 7177, 7268, 23687, 286, 6407, 290, 10352, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 319, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7177, 4909, 262, 36525, 810, 1123, 7539, 286, 6407, 4940, 198, 220, 220, 220, 572, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7177, 4909, 262, 36525, 810, 1123, 7539, 286, 6407, 5645, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17934, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 13163, 275, 796, 45941, 13, 18747, 26933, 16, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 657, 11, 352, 11, 352, 11, 657, 12962, 198, 220, 220, 220, 13163, 319, 11, 572, 796, 20512, 17, 65, 3733, 7, 65, 8, 198, 220, 220, 220, 13163, 3601, 7, 261, 8, 198, 220, 220, 220, 685, 15, 604, 807, 60, 198, 220, 220, 220, 13163, 3601, 7, 2364, 8, 198, 220, 220, 220, 685, 15, 718, 860, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 275, 796, 45941, 13, 18747, 7, 37659, 13, 18747, 7, 65, 11, 288, 4906, 796, 45941, 13, 30388, 828, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 275, 796, 45941, 13, 15636, 7, 65, 11, 357, 16, 11, 352, 828, 705, 9979, 415, 3256, 6937, 62, 27160, 16193, 15, 11, 657, 4008, 198, 220, 220, 220, 360, 796, 45941, 13, 26069, 7, 65, 8, 198, 220, 220, 220, 319, 220, 796, 45941, 13, 18747, 7, 37659, 13, 3003, 7, 35, 6624, 352, 38381, 15, 4357, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 572, 796, 45941, 13, 18747, 7, 37659, 13, 3003, 7, 35, 6624, 532, 16, 38381, 15, 60, 532, 16, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 1441, 319, 11, 572, 198, 198, 2, 38093, 25609, 198, 2, 4225, 16104, 341, 5499, 220, 198, 2, 38093, 25609, 198, 4299, 1064, 62, 3849, 79, 62, 86, 1040, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 4324, 62, 2435, 11, 5743, 62, 82, 12629, 11, 2030, 80, 11, 3509, 62, 6381, 79, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 17841, 2292, 198, 220, 220, 220, 331, 1930, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 575, 17841, 2292, 198, 220, 220, 220, 4814, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 4324, 62, 2435, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 22920, 286, 4324, 284, 39555, 378, 625, 357, 907, 8, 198, 220, 220, 220, 5743, 62, 82, 12629, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8405, 379, 4324, 5743, 973, 329, 39555, 803, 198, 220, 220, 220, 2030, 80, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 24291, 434, 8373, 198, 220, 220, 220, 3509, 62, 6381, 79, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 4596, 6900, 287, 2292, 6737, 357, 72, 13, 68, 13, 611, 6737, 318, 287, 17848, 11, 2148, 3509, 6381, 79, 287, 17848, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2051, 62, 9688, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 7268, 36525, 810, 1123, 16654, 284, 307, 39555, 515, 4940, 198, 220, 220, 220, 2051, 62, 437, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 7268, 36525, 810, 1123, 16654, 284, 307, 39555, 515, 5645, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 651, 36525, 286, 810, 4814, 20016, 923, 290, 886, 198, 220, 220, 220, 2051, 62, 9688, 11, 2051, 62, 437, 796, 20512, 17, 65, 3733, 7, 45688, 8, 198, 220, 220, 220, 1366, 62, 9688, 11, 1366, 62, 437, 796, 20512, 17, 65, 3733, 7, 37659, 13, 259, 1851, 7, 45688, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 45559, 3810, 9168, 12629, 198, 220, 220, 220, 4324, 62, 82, 12629, 796, 2835, 7, 17497, 62, 2435, 29006, 16, 19571, 19503, 80, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 329, 1123, 4540, 11, 2198, 611, 423, 1576, 4938, 1366, 379, 13015, 284, 12260, 198, 220, 220, 220, 1303, 39555, 341, 13, 1002, 407, 11, 766, 611, 35981, 351, 15909, 4814, 318, 1744, 198, 220, 220, 220, 1303, 356, 836, 470, 3714, 503, 1997, 356, 460, 470, 1730, 351, 1865, 11, 356, 466, 326, 2174, 13, 198, 220, 220, 220, 1303, 428, 318, 655, 617, 662, 36948, 198, 220, 220, 220, 479, 28, 15, 220, 1303, 9776, 509, 28, 16, 287, 2603, 23912, 198, 220, 220, 220, 981, 479, 27, 11925, 7, 3927, 62, 9688, 13219, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 611, 1165, 890, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2051, 62, 437, 58, 74, 45297, 3927, 62, 9688, 58, 74, 48688, 16, 1875, 4324, 62, 82, 12629, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 611, 407, 1576, 1366, 379, 1364, 5743, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 16345, 7, 7890, 62, 437, 6624, 2051, 62, 9688, 58, 74, 45297, 16, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 74, 796, 493, 7, 37659, 13, 853, 3003, 7, 7890, 62, 437, 855, 3927, 62, 9688, 58, 74, 45297, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 437, 58, 19608, 74, 45297, 7890, 62, 9688, 58, 19608, 74, 48688, 16, 1279, 5743, 62, 82, 12629, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 1576, 1366, 379, 826, 5743, 11, 20121, 351, 1306, 13, 11136, 407, 1576, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 319, 826, 5743, 286, 428, 530, 11, 1724, 407, 1719, 1576, 379, 1364, 5743, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1306, 13, 1406, 1111, 481, 307, 15009, 1464, 611, 356, 836, 470, 466, 1997, 13, 1406, 356, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 460, 655, 20121, 1231, 2252, 8794, 13, 6363, 12876, 611, 340, 788, 13676, 1165, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 890, 11, 355, 356, 1183, 655, 886, 510, 23494, 326, 1165, 2174, 11, 543, 318, 644, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 561, 423, 3022, 611, 356, 1422, 470, 466, 1997, 994, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 74, 796, 45941, 13, 853, 3003, 7, 7890, 62, 9688, 855, 3927, 62, 437, 58, 74, 48688, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 19608, 74, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 74, 796, 493, 7, 19608, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 437, 58, 19608, 74, 45297, 7890, 62, 9688, 58, 19608, 74, 48688, 16, 1279, 5743, 62, 82, 12629, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2051, 62, 437, 220, 220, 796, 45941, 13, 33678, 7, 3927, 62, 437, 220, 837, 479, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2051, 62, 9688, 796, 45941, 13, 33678, 7, 3927, 62, 9688, 11, 479, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 836, 470, 5963, 479, 523, 356, 2198, 428, 530, 757, 290, 1663, 340, 2252, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2622, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2147, 1364, 284, 466, 11, 2555, 284, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 10, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1317, 20016, 326, 389, 1165, 890, 284, 307, 13140, 357, 8807, 12233, 1568, 523, 326, 198, 220, 220, 220, 1303, 2174, 8794, 460, 779, 477, 4814, 319, 290, 49005, 8, 198, 220, 220, 220, 2051, 62, 67, 333, 796, 2051, 62, 437, 532, 2051, 62, 9688, 1343, 352, 198, 220, 220, 220, 10662, 27914, 796, 2051, 62, 67, 333, 29, 17497, 62, 82, 12629, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 329, 1123, 4540, 11, 2198, 611, 423, 1576, 4938, 1366, 379, 13015, 284, 12260, 198, 220, 220, 220, 1303, 39555, 341, 290, 2198, 29358, 1141, 4814, 2492, 470, 1165, 1588, 13, 198, 220, 220, 220, 1303, 2940, 329, 1568, 9934, 355, 3294, 4814, 1969, 1978, 743, 4306, 198, 220, 220, 220, 1303, 307, 31238, 3142, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 11925, 7, 3927, 62, 9688, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 1576, 4938, 1366, 379, 13015, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4814, 1165, 1969, 284, 3726, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2180, 4814, 1165, 1969, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4814, 1165, 1969, 284, 886, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1306, 4814, 1165, 1969, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2051, 62, 9688, 58, 79, 60, 27, 14907, 62, 82, 12629, 10, 16, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 79, 29, 15, 290, 2051, 62, 437, 58, 79, 12, 16, 60, 1875, 2051, 62, 9688, 58, 79, 45297, 14907, 62, 82, 12629, 12, 16, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2051, 62, 437, 58, 79, 60, 29, 11925, 7, 87, 1930, 13219, 16, 12, 14907, 62, 82, 12629, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 79, 27, 11925, 7, 3927, 62, 9688, 13219, 16, 290, 2051, 62, 9688, 58, 79, 10, 16, 60, 1279, 2051, 62, 437, 58, 79, 48688, 14907, 62, 82, 12629, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 27914, 58, 79, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 29358, 11, 583, 4814, 16654, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 765, 284, 2198, 583, 1643, 286, 4814, 11, 772, 611, 3294, 10340, 1392, 23791, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 355, 2060, 1366, 2173, 460, 991, 18021, 810, 262, 39555, 341, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2925, 290, 356, 4145, 761, 284, 2198, 5253, 583, 1643, 11, 407, 625, 262, 2187, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 23791, 1643, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 45941, 13, 283, 858, 7, 3927, 62, 9688, 58, 79, 4357, 3927, 62, 437, 58, 79, 48688, 16, 11, 288, 4906, 796, 493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 319, 11, 2364, 796, 20512, 17, 65, 3733, 7, 37659, 13, 271, 12647, 7, 87, 1930, 58, 312, 87, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10662, 287, 2837, 7, 11925, 7, 261, 8, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10287, 9430, 796, 45941, 13, 18747, 7, 261, 58, 80, 60, 532, 37659, 13, 283, 858, 7, 14907, 62, 82, 12629, 47762, 3927, 62, 9688, 58, 79, 45297, 16, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 9430, 796, 45941, 13, 18747, 7, 2364, 58, 80, 48688, 37659, 13, 283, 858, 7, 14907, 62, 82, 12629, 47762, 3927, 62, 9688, 58, 79, 48688, 16, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29358, 796, 45941, 13, 36362, 313, 7, 37659, 13, 12647, 1150, 666, 7, 87, 1930, 58, 411, 9430, 12962, 12, 37659, 13, 12647, 1150, 666, 7, 87, 1930, 58, 829, 9430, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 12647, 1150, 666, 7, 88, 1930, 58, 411, 9430, 12962, 12, 37659, 13, 12647, 1150, 666, 7, 88, 1930, 58, 829, 9430, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29358, 1875, 3509, 62, 6381, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 27914, 58, 79, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 10662, 27914, 58, 79, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 17220, 262, 4814, 23163, 543, 2314, 307, 39555, 515, 198, 220, 220, 220, 10662, 27914, 220, 220, 220, 796, 45941, 13, 3003, 7, 80, 27914, 38381, 15, 60, 198, 220, 220, 220, 2051, 62, 9688, 796, 45941, 13, 33678, 7, 3927, 62, 9688, 11, 10662, 27914, 8, 198, 220, 220, 220, 2051, 62, 437, 220, 220, 796, 45941, 13, 33678, 7, 3927, 62, 437, 220, 837, 10662, 27914, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 2051, 62, 9688, 11, 2051, 62, 437, 198, 198, 4299, 4324, 276, 62, 3849, 16104, 378, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 2051, 62, 9688, 11, 2051, 62, 437, 11, 5743, 62, 82, 12629, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4225, 16104, 689, 262, 4814, 1366, 11, 290, 20694, 3006, 543, 389, 407, 3142, 220, 198, 220, 220, 220, 284, 307, 39555, 515, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 17841, 6116, 198, 220, 220, 220, 331, 1930, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 575, 17841, 6116, 198, 220, 220, 220, 4814, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 41146, 15879, 12739, 4814, 8405, 198, 220, 220, 220, 2051, 62, 9688, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 7268, 36525, 810, 1123, 16654, 284, 307, 39555, 515, 4940, 198, 220, 220, 220, 2051, 62, 437, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 7268, 36525, 810, 1123, 16654, 284, 307, 39555, 515, 5645, 198, 220, 220, 220, 5743, 62, 82, 12629, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 8405, 379, 4324, 5743, 973, 329, 39555, 803, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2124, 72, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 4225, 16104, 515, 1395, 17841, 2292, 198, 220, 220, 220, 331, 72, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 4225, 16104, 515, 575, 17841, 2292, 198, 220, 220, 220, 649, 62, 45688, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 19433, 25131, 15879, 12739, 4814, 8405, 706, 39555, 341, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 649, 62, 45688, 796, 4866, 13, 22089, 30073, 7, 45688, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2141, 262, 39555, 803, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 11925, 7, 3927, 62, 9688, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 15879, 286, 477, 8405, 287, 428, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 5404, 796, 45941, 13, 283, 858, 7, 3927, 62, 9688, 58, 79, 4357, 3927, 62, 437, 58, 79, 48688, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 5743, 8405, 25, 810, 645, 4814, 1366, 373, 6515, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 635, 651, 8405, 287, 4324, 810, 1366, 373, 6515, 198, 220, 220, 220, 220, 220, 220, 220, 503, 62, 5404, 62, 1662, 62, 45688, 796, 45941, 13, 259, 1851, 7, 3605, 62, 45688, 58, 448, 62, 5404, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 82, 9430, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 448, 62, 5404, 58, 15, 48688, 37659, 13, 283, 858, 32590, 14907, 62, 82, 12629, 11, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 5404, 58, 448, 62, 5404, 62, 1662, 62, 45688, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 5404, 58, 12, 16, 48688, 37659, 13, 283, 858, 7, 16, 11, 14907, 62, 82, 12629, 10, 16, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 4938, 3815, 25, 810, 645, 4814, 1366, 373, 6515, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 87, 220, 220, 220, 220, 796, 2124, 1930, 58, 12102, 62, 82, 9430, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 88, 220, 220, 220, 220, 796, 331, 1930, 58, 12102, 62, 82, 9430, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 2441, 46985, 39555, 341, 11, 4296, 2124, 1930, 11, 331, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 58, 448, 62, 5404, 22241, 2876, 46985, 62, 3849, 79, 7, 12102, 62, 82, 9430, 11, 12102, 62, 87, 11, 448, 62, 5404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 58, 448, 62, 5404, 22241, 2876, 46985, 62, 3849, 79, 7, 12102, 62, 82, 9430, 11, 12102, 62, 88, 11, 448, 62, 5404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 4814, 25, 7604, 318, 783, 30601, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 45688, 58, 448, 62, 5404, 60, 796, 10352, 628, 220, 220, 220, 1441, 2124, 1930, 11, 331, 1930, 11, 649, 62, 45688, 198, 198, 2, 38093, 25609, 198, 2, 39555, 1352, 198, 2, 38093, 25609, 198, 198, 2, 38093, 25609, 198, 2, 1012, 436, 1586, 5499, 198, 2, 38093, 25609, 198, 198, 4299, 734, 62, 565, 5819, 62, 6551, 278, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 21838, 12629, 11, 21838, 696, 62, 24455, 11, 1125, 1525, 62, 2875, 11, 4324, 62, 2435, 11, 2239, 62, 2435, 11, 2030, 80, 11, 3509, 62, 48277, 11, 18931, 11, 18931, 62, 28968, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1930, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 331, 1930, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 4814, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 21838, 12629, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 21838, 696, 62, 24455, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 1125, 1525, 62, 2875, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 4324, 62, 2435, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 2239, 62, 2435, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 2030, 80, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 198, 220, 220, 220, 3509, 62, 48277, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 12489, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2457, 43775, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 286, 362, 12, 1326, 504, 32966, 1586, 19590, 357, 505, 3463, 329, 1123, 6291, 828, 262, 2440, 11, 262, 517, 1884, 257, 264, 4134, 671, 3022, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 5025, 1058, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 1423, 16856, 611, 5025, 780, 286, 1165, 867, 8563, 12956, 357, 17821, 828, 393, 5668, 7675, 357, 25101, 8, 198, 220, 220, 220, 37227, 220, 220, 220, 198, 220, 220, 220, 1303, 15284, 1271, 286, 8405, 286, 262, 3867, 4324, 198, 220, 220, 220, 997, 62, 82, 12629, 796, 493, 7, 17497, 62, 2435, 29006, 16, 19571, 19503, 80, 4008, 198, 220, 220, 220, 2239, 62, 7857, 220, 796, 45941, 13, 9806, 26933, 16, 11, 600, 7, 9662, 62, 2435, 29006, 16, 19571, 19503, 80, 4008, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 6565, 19590, 15879, 198, 220, 220, 220, 2472, 62, 43775, 796, 45941, 13, 9107, 418, 7, 11925, 7, 87, 1930, 4008, 198, 220, 220, 220, 2472, 62, 43775, 58, 45688, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 997, 62, 41989, 796, 45941, 13, 9107, 418, 7, 11925, 7, 87, 1930, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5025, 318, 1464, 6632, 11, 4556, 3509, 2676, 602, 318, 20672, 13, 428, 198, 220, 220, 220, 1303, 9217, 326, 2393, 714, 407, 307, 34763, 706, 2111, 329, 2124, 34820, 198, 220, 220, 220, 5025, 796, 10352, 198, 220, 220, 220, 997, 62, 48277, 796, 657, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7913, 286, 21838, 12629, 198, 220, 220, 220, 299, 67, 796, 18896, 7, 30371, 12629, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5588, 39873, 220, 198, 220, 220, 220, 611, 21838, 696, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8106, 6737, 13, 7281, 262, 1085, 286, 875, 1920, 22784, 543, 717, 4539, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2580, 1525, 49916, 8106, 355, 7368, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 374, 79, 796, 764, 2713, 1303, 1208, 3903, 42462, 287, 30221, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 16410, 60, 329, 1312, 287, 2837, 7, 358, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 16410, 60, 329, 1312, 287, 2837, 7, 358, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 358, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 58, 79, 4357, 64, 58, 79, 60, 796, 629, 541, 88, 13, 12683, 282, 13, 2395, 1525, 16, 7, 2395, 1525, 62, 2875, 11, 374, 79, 11, 764, 23, 14, 30371, 12629, 58, 79, 12962, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 4686, 87, 329, 21838, 12629, 198, 220, 220, 220, 4686, 34223, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 358, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 34223, 13, 33295, 7, 37659, 13, 283, 858, 7, 22510, 62, 82, 12629, 11, 15, 12095, 30371, 12629, 58, 72, 4357, 67, 4906, 28, 600, 38381, 3712, 12, 16, 60, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 766, 810, 389, 4814, 287, 428, 1366, 11, 329, 1365, 2491, 625, 262, 1366, 198, 220, 220, 220, 1303, 2174, 13, 198, 220, 220, 220, 319, 11, 2364, 796, 20512, 17, 65, 3733, 7, 45688, 8, 198, 220, 220, 220, 611, 319, 13, 7857, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 20121, 20016, 4833, 621, 299, 3808, 12629, 890, 220, 198, 220, 220, 220, 220, 220, 220, 220, 20121, 796, 45941, 13, 853, 3003, 19510, 261, 58, 16, 47715, 532, 572, 58, 21912, 16, 12962, 12, 16, 1279, 997, 62, 82, 12629, 737, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 20121, 58, 3712, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 58, 79, 60, 796, 572, 58, 79, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 796, 45941, 13, 33678, 7, 2364, 11, 279, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 796, 45941, 13, 33678, 7, 261, 11, 279, 10, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 20016, 379, 1366, 923, 290, 886, 389, 1588, 1576, 198, 220, 220, 220, 220, 220, 220, 220, 611, 319, 58, 15, 60, 27, 22510, 62, 82, 12629, 10, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 1576, 1366, 966, 878, 717, 4814, 11, 523, 19607, 606, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 58, 15, 22241, 15, 628, 220, 220, 220, 220, 220, 220, 220, 611, 572, 58, 12, 16, 60, 33994, 11925, 7, 87, 1930, 13219, 16, 12, 22510, 62, 82, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 1576, 1366, 2173, 706, 938, 4814, 11, 523, 19607, 606, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 572, 58, 12, 16, 22241, 11925, 7, 87, 1930, 13219, 16, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 923, 379, 717, 1729, 12, 45688, 6291, 611, 4473, 4940, 351, 4814, 357, 273, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15009, 780, 1165, 1790, 8, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 611, 319, 58, 15, 60, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28, 2364, 58, 15, 48688, 16, 1303, 923, 379, 717, 1729, 12, 45688, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 28, 15, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 28, 15, 628, 220, 220, 220, 304, 521, 796, 1312, 10, 22510, 62, 82, 12629, 198, 220, 220, 220, 981, 304, 521, 27, 16193, 11925, 7, 87, 1930, 13219, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 3509, 8563, 318, 12606, 198, 220, 220, 220, 220, 220, 220, 220, 611, 997, 62, 48277, 1875, 3509, 62, 48277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 23307, 867, 6565, 23163, 12956, 11, 15614, 278, 2393, 13, 3467, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5025, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 43775, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2457, 62, 43775, 11, 5025, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2922, 1366, 6903, 286, 299, 3808, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 2837, 7, 72, 11, 68, 521, 8, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 62, 67, 796, 16410, 60, 329, 279, 287, 2837, 7, 358, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 4522, 43, 62, 67, 796, 16410, 60, 329, 279, 287, 2837, 7, 358, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 62, 67, 58, 15, 60, 796, 45941, 13, 85, 25558, 26933, 87, 1930, 58, 312, 87, 4357, 331, 1930, 58, 312, 87, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25853, 262, 1643, 286, 1366, 356, 821, 546, 284, 21838, 1403, 13, 3244, 356, 2391, 761, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 2922, 1123, 299, 400, 6291, 810, 299, 318, 262, 18253, 5766, 416, 543, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1271, 286, 8405, 318, 5322, 13, 2922, 8405, 884, 326, 484, 389, 10597, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 886, 286, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 358, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21838, 696, 62, 24455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 62, 67, 58, 79, 10, 16, 60, 796, 629, 541, 88, 13, 12683, 282, 13, 69, 2326, 69, 2326, 7, 65, 58, 79, 4357, 64, 58, 79, 4357, 297, 62, 67, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 62, 67, 58, 79, 10, 16, 60, 796, 32660, 62, 67, 58, 79, 10, 16, 7131, 45299, 312, 34223, 58, 79, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 62, 67, 58, 79, 10, 16, 60, 796, 32660, 62, 67, 58, 15, 7131, 45299, 312, 34223, 58, 79, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 362, 12, 1326, 504, 32966, 1586, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 358, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4522, 43, 62, 67, 58, 79, 60, 796, 479, 1326, 504, 17, 7, 297, 62, 67, 58, 79, 4083, 51, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1892, 3103, 332, 2004, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 965, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 48277, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 20035, 4049, 12956, 379, 6291, 23884, 13, 59, 77, 4458, 18982, 7, 72, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4886, 18225, 290, 3463, 286, 5078, 46121, 352, 14, 17618, 286, 18225, 287, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6903, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18225, 796, 16410, 60, 329, 279, 287, 2837, 7, 358, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 18225, 86, 796, 16410, 60, 329, 279, 287, 2837, 7, 358, 10, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 358, 10, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18225, 58, 79, 60, 796, 45941, 13, 8937, 7, 37659, 13, 26069, 7, 2389, 43, 62, 67, 58, 79, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18225, 86, 58, 79, 60, 220, 796, 352, 19571, 37659, 13, 16345, 7, 2032, 9249, 58, 79, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 16936, 8405, 286, 5078, 290, 751, 3463, 198, 220, 220, 220, 220, 220, 220, 220, 26356, 796, 45941, 13, 71, 25558, 26933, 2032, 9249, 58, 15, 60, 9, 2032, 9249, 86, 58, 15, 4357, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2837, 7, 358, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 45941, 13, 18747, 19510, 37659, 13, 853, 3003, 7, 2032, 9249, 58, 79, 10, 16, 35944, 2704, 41769, 3419, 10, 16, 27493, 30371, 12629, 58, 79, 4357, 67, 4906, 28, 600, 13219, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 267, 287, 2837, 7, 600, 7, 30371, 12629, 58, 79, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26356, 58, 73, 10, 78, 60, 796, 26356, 58, 73, 10, 78, 60, 1343, 18225, 86, 58, 79, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 2472, 43775, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 43775, 58, 312, 87, 60, 796, 2472, 62, 43775, 58, 312, 87, 60, 1343, 26356, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1700, 703, 867, 1661, 1123, 6291, 373, 6789, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 41989, 58, 312, 87, 60, 796, 997, 62, 41989, 58, 312, 87, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 2239, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 304, 521, 15853, 2239, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 261, 796, 45941, 13, 6404, 605, 62, 392, 7, 261, 29, 28, 72, 11, 319, 27, 28, 68, 521, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 2364, 796, 45941, 13, 6404, 605, 62, 392, 7, 2364, 29, 28, 72, 11, 572, 27, 28, 68, 521, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 13828, 17140, 796, 45941, 13, 6404, 605, 62, 273, 7, 45688, 62, 261, 11, 4814, 62, 2364, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 16345, 7, 80, 13828, 17140, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 423, 617, 4814, 287, 428, 4324, 13, 356, 836, 470, 1429, 9168, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 351, 4814, 13, 10028, 736, 611, 356, 655, 26684, 617, 8405, 11, 393, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14267, 2187, 4814, 290, 1295, 923, 286, 4324, 290, 717, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1729, 12, 45688, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 319, 58, 80, 13828, 17140, 7131, 15, 60, 6624, 357, 68, 521, 12, 9662, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2555, 379, 717, 1729, 12, 45688, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 572, 58, 80, 13828, 17140, 7131, 15, 48688, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 26684, 617, 2173, 11, 1445, 4324, 736, 523, 326, 356, 16602, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 510, 284, 717, 1306, 4814, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 319, 58, 80, 13828, 17140, 7131, 15, 45297, 22510, 62, 82, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 521, 796, 1312, 10, 22510, 62, 82, 12629, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 521, 29, 11925, 7, 87, 1930, 13219, 16, 290, 304, 521, 12, 9662, 62, 7857, 27, 11925, 7, 87, 1930, 13219, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 655, 20672, 1366, 5421, 11, 475, 2180, 304, 521, 373, 878, 886, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1366, 25, 356, 423, 617, 555, 14681, 276, 8405, 13, 13703, 655, 1576, 523, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1429, 883, 886, 8405, 1752, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 304, 521, 12, 11925, 7, 87, 1930, 47762, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 521, 796, 304, 521, 12, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 12, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 1303, 2251, 2457, 19590, 198, 220, 220, 220, 45941, 13, 82, 2357, 81, 7, 259, 12102, 11639, 46430, 11537, 198, 220, 220, 220, 2457, 62, 43775, 796, 2472, 62, 43775, 14, 22510, 62, 41989, 198, 220, 220, 220, 45941, 13, 82, 2357, 81, 7, 259, 12102, 11639, 40539, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 2457, 62, 43775, 11, 5025, 198, 198, 2, 38093, 25609, 198, 2, 13268, 341, 13326, 5499, 198, 2, 38093, 25609, 198, 4299, 651, 62, 13049, 602, 7, 20311, 62, 43775, 11, 41033, 11, 2124, 1930, 11, 331, 1930, 11, 4814, 11, 1582, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2457, 43775, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 3463, 278, 422, 362, 12, 1326, 504, 32966, 1586, 8771, 198, 220, 220, 220, 41033, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 5045, 27823, 422, 1926, 21879, 10735, 357, 21754, 307, 287, 13845, 8133, 198, 220, 220, 220, 2124, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 6075, 38342, 22715, 422, 21566, 21879, 10735, 198, 220, 220, 220, 331, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 38937, 22715, 422, 21566, 21879, 10735, 198, 220, 220, 220, 4814, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 7268, 262, 1489, 2305, 504, 329, 285, 1710, 3815, 198, 220, 220, 220, 1582, 1058, 28261, 7268, 262, 1708, 8251, 290, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 19282, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 14367, 2029, 1612, 32966, 1586, 12, 6551, 284, 779, 355, 48785, 45616, 198, 220, 220, 220, 220, 220, 220, 220, 319, 28968, 817, 3447, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 536, 10126, 357, 87, 9, 44, 2885, 286, 48785, 8, 329, 6155, 2651, 14, 1891, 329, 264, 4134, 671, 572, 12, 290, 319, 28709, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 13102, 469, 20344, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22246, 48862, 485, 272, 5253, 287, 17848, 1022, 4259, 602, 329, 35981, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 13102, 469, 7575, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22246, 640, 287, 13845, 1022, 4259, 602, 329, 35981, 198, 220, 220, 220, 220, 220, 220, 220, 949, 22743, 36927, 1058, 48436, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26265, 9478, 3142, 329, 277, 3920, 628, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4259, 1058, 28261, 7268, 262, 1708, 8251, 290, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9712, 2364, 973, 329, 48785, 13326, 198, 220, 220, 220, 220, 220, 220, 220, 923, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 923, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 886, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 886, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 923, 51, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 923, 1661, 198, 220, 220, 220, 220, 220, 220, 220, 886, 51, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 886, 1661, 198, 220, 220, 220, 220, 220, 220, 220, 22365, 1058, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 288, 20074, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 14288, 16021, 2292, 357, 505, 1988, 329, 1123, 48785, 287, 4473, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20650, 351, 48785, 14288, 11723, 2292, 357, 505, 1988, 329, 1123, 48785, 287, 4473, 8, 198, 220, 220, 220, 220, 220, 220, 220, 30172, 67, 10254, 793, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41146, 351, 352, 329, 618, 48785, 318, 49059, 416, 1366, 2994, 11, 657, 611, 407, 49059, 416, 1366, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 1216, 330, 3849, 9124, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 7861, 286, 1366, 2994, 14, 3849, 16104, 515, 1366, 198, 220, 220, 220, 220, 198, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 4259, 796, 651, 22743, 602, 7, 20311, 43775, 11, 7890, 17816, 2435, 6, 4357, 87, 1930, 11, 88, 1930, 11, 45688, 11, 1845, 8, 198, 220, 220, 220, 13163, 4259, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 8968, 2364, 10354, 657, 13, 1485, 2816, 4089, 405, 2079, 26895, 31020, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 67, 333, 10354, 7177, 26933, 32459, 13, 43452, 11, 767, 4790, 13, 17, 220, 837, 32817, 13, 24, 2414, 11, 34044, 13, 28688, 11, 31011, 13, 42802, 11, 19710, 13, 21, 2718, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 437, 10354, 7177, 26933, 16243, 11, 44367, 11, 47407, 11, 2026, 23, 11, 10053, 11, 718, 3559, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 437, 51, 10354, 7177, 26933, 45620, 13, 24, 1129, 11, 1367, 5066, 13, 22172, 11, 1478, 3559, 13, 15801, 11, 1467, 6052, 13, 3312, 17, 11, 7358, 13, 22, 2548, 11, 362, 23726, 13, 24, 3324, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2704, 962, 67, 10254, 793, 10354, 7177, 26933, 16, 1539, 657, 1539, 657, 1539, 657, 1539, 657, 1539, 657, 8183, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31944, 3849, 9124, 10354, 7177, 26933, 15, 13, 3312, 2623, 2623, 2623, 11, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 2361, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 10354, 7177, 26933, 220, 362, 11, 19035, 11, 4570, 17, 11, 604, 2548, 11, 642, 1157, 11, 3126, 21, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 51, 10354, 7177, 26933, 220, 220, 718, 13, 35978, 11, 220, 5014, 18, 13, 26582, 11, 1105, 3312, 13, 36260, 11, 1478, 3270, 13, 3720, 837, 1596, 3070, 13, 18298, 11, 13130, 13, 36657, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 87, 1930, 10354, 7177, 26933, 860, 2231, 13, 24, 2623, 11, 220, 767, 6659, 13, 2713, 21, 11, 1511, 2920, 13, 22883, 11, 1105, 3559, 13, 5892, 837, 1105, 3829, 13, 47202, 11, 1315, 1828, 13, 24096, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 88, 1930, 10354, 7177, 26933, 34251, 13, 20666, 11, 32320, 13, 23, 2548, 11, 38158, 13, 21, 2414, 11, 47946, 13, 22544, 11, 49814, 13, 43918, 11, 35592, 13, 24, 3023, 12962, 92, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 29677, 262, 2672, 10007, 220, 198, 220, 220, 220, 45616, 19282, 796, 1582, 17816, 8968, 2364, 19282, 20520, 198, 220, 220, 220, 319, 28968, 817, 3447, 796, 1582, 17816, 261, 28968, 817, 3447, 20520, 198, 220, 220, 220, 3509, 13102, 469, 20344, 796, 1582, 17816, 9806, 13102, 469, 20344, 20520, 198, 220, 220, 220, 3509, 13102, 469, 7575, 796, 1582, 17816, 9806, 13102, 469, 7575, 20520, 198, 220, 220, 220, 949, 22743, 36927, 796, 1582, 17816, 1084, 22743, 36927, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 717, 5004, 45616, 329, 2457, 43775, 198, 220, 220, 220, 45616, 796, 45941, 13, 12647, 32604, 7, 20311, 62, 43775, 8, 1343, 45616, 19282, 9, 37659, 13, 12647, 19282, 7, 20311, 62, 43775, 11, 1860, 1659, 28, 16, 8, 628, 220, 220, 220, 44386, 651, 25131, 286, 4259, 602, 198, 220, 220, 220, 4259, 30388, 796, 2457, 62, 43775, 1279, 45616, 198, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 651, 36525, 286, 810, 4259, 602, 923, 290, 886, 198, 220, 220, 220, 4259, 9688, 11, 4259, 437, 796, 20512, 17, 65, 3733, 7, 13049, 30388, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 329, 1123, 48785, 923, 11, 2513, 2651, 1566, 6264, 2292, 318, 2174, 220, 198, 220, 220, 220, 1303, 257, 11387, 286, 37456, 9, 44, 2885, 1497, 422, 14288, 48785, 2292, 13, 198, 220, 220, 220, 1303, 976, 329, 1123, 48785, 886, 11, 475, 2513, 19528, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 11925, 7, 13049, 9688, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 22743, 796, 2124, 1930, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 22743, 796, 331, 1930, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1150, 1212, 796, 45941, 13, 12647, 1150, 666, 7, 87, 22743, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1150, 1212, 796, 45941, 13, 12647, 1150, 666, 7, 88, 22743, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 45878, 796, 14288, 7, 8937, 7, 87, 62, 72, 12, 1150, 666, 15090, 87, 92, 4008, 737, 1114, 262, 362, 35, 2196, 11, 314, 1101, 1262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14288, 362, 35, 5253, 286, 257, 966, 422, 262, 14288, 48785, 2292, 13, 1892, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3446, 45878, 11, 475, 1838, 517, 2565, 284, 502, 329, 362, 35, 621, 1748, 2512, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2592, 1813, 326, 356, 779, 362, 35, 5253, 287, 674, 2513, 994, 198, 220, 220, 220, 220, 220, 220, 220, 45878, 796, 45941, 13, 12647, 1150, 666, 7, 37659, 13, 36362, 313, 7, 87, 22743, 12, 87, 1150, 1212, 11, 331, 22743, 12, 88, 1150, 1212, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 796, 45878, 9, 261, 28968, 817, 3447, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2513, 1566, 5253, 1342, 621, 11387, 1497, 422, 14288, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2292, 13, 1400, 6155, 8833, 618, 356, 821, 1541, 2174, 11387, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 4259, 9688, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 29, 15, 25, 220, 1303, 836, 470, 2513, 618, 48785, 3599, 379, 923, 286, 1366, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 45941, 13, 36362, 313, 7, 87, 1930, 58, 72, 45297, 87, 1150, 1212, 11, 88, 1930, 58, 72, 45297, 88, 1150, 1212, 8, 29, 400, 3447, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 9688, 58, 79, 60, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 783, 48785, 886, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 4259, 437, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 27, 11925, 7, 87, 1930, 2599, 1303, 836, 470, 2513, 618, 48785, 7464, 379, 886, 286, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 45941, 13, 36362, 313, 7, 87, 1930, 58, 72, 45297, 87, 1150, 1212, 11, 88, 1930, 58, 72, 45297, 88, 1150, 1212, 8, 29, 400, 3447, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 12, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 437, 58, 79, 60, 796, 1312, 628, 220, 220, 220, 44386, 651, 923, 640, 11, 886, 640, 11, 198, 220, 220, 220, 923, 2435, 796, 41033, 58, 13049, 9688, 60, 198, 220, 220, 220, 886, 2435, 796, 41033, 58, 13049, 437, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 9052, 625, 477, 48785, 5871, 287, 4473, 11, 766, 611, 815, 307, 23791, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 16, 11, 11925, 7, 9688, 2435, 4008, 58, 3712, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 14288, 22715, 286, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1150, 1212, 796, 45941, 13, 1150, 666, 7, 87, 1930, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1150, 1212, 796, 45941, 13, 1150, 666, 7, 88, 1930, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1150, 36854, 796, 45941, 13, 1150, 666, 7, 87, 1930, 58, 13049, 9688, 58, 79, 12, 16, 5974, 13049, 437, 58, 79, 12, 16, 48688, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1150, 36854, 796, 45941, 13, 1150, 666, 7, 88, 1930, 58, 13049, 9688, 58, 79, 12, 16, 5974, 13049, 437, 58, 79, 12, 16, 48688, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 4259, 602, 1969, 1576, 287, 640, 290, 2272, 290, 4145, 12780, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 35981, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 16654, 1022, 262, 734, 4259, 602, 318, 10488, 9380, 357, 3826, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4710, 546, 48785, 9478, 2174, 828, 1312, 10667, 428, 7773, 13, 357, 10265, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 923, 290, 886, 286, 262, 16654, 389, 14869, 416, 530, 6291, 287, 640, 11, 475, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13148, 14547, 6937, 6291, 16654, 11, 29294, 407, 281, 2071, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 611, 923, 2435, 58, 79, 45297, 437, 2435, 58, 79, 12, 16, 60, 1279, 3509, 13102, 469, 7575, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 36362, 313, 7, 87, 1150, 1212, 12, 87, 1150, 36854, 11, 88, 1150, 1212, 12, 88, 1150, 36854, 8, 1279, 3509, 13102, 469, 20344, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20121, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 437, 58, 79, 12, 16, 60, 796, 4259, 437, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 2435, 58, 79, 12, 16, 22241, 886, 2435, 58, 79, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12233, 23791, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 9688, 796, 45941, 13, 33678, 7, 13049, 9688, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 437, 796, 45941, 13, 33678, 7, 13049, 437, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 2435, 796, 45941, 13, 33678, 7, 9688, 2435, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 2435, 796, 45941, 13, 33678, 7, 437, 2435, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 3726, 290, 886, 286, 48785, 1276, 307, 1103, 1366, 11, 407, 39555, 515, 13, 198, 220, 220, 220, 1303, 1002, 39555, 515, 11, 883, 1643, 7, 82, 8, 379, 262, 5743, 7, 82, 8, 389, 15009, 422, 262, 198, 220, 220, 220, 1303, 48785, 13, 3274, 3714, 503, 4259, 602, 326, 389, 477, 4814, 14, 3849, 16104, 515, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 11925, 7, 9688, 2435, 4008, 58, 3712, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2051, 796, 4814, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 16345, 7, 3927, 8, 6624, 18896, 7, 3927, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 9688, 796, 45941, 13, 33678, 7, 13049, 9688, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 437, 796, 45941, 13, 33678, 7, 13049, 437, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 2435, 796, 45941, 13, 33678, 7, 9688, 2435, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 2435, 796, 45941, 13, 33678, 7, 437, 2435, 11, 279, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 788, 2198, 13015, 290, 22085, 611, 2622, 198, 220, 220, 220, 329, 279, 287, 2837, 7, 11925, 7, 9688, 2435, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4814, 58, 13049, 9688, 58, 79, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 9688, 58, 79, 60, 796, 4259, 9688, 58, 79, 60, 1343, 45941, 13, 853, 9806, 7, 37659, 13, 259, 1851, 7, 45688, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 2435, 58, 79, 22241, 41033, 58, 13049, 9688, 58, 79, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4814, 58, 13049, 437, 58, 79, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 437, 58, 79, 60, 796, 4259, 437, 58, 79, 60, 532, 357, 37659, 13, 853, 9806, 7, 37659, 13, 259, 1851, 7, 45688, 58, 13049, 9688, 58, 79, 5974, 13049, 437, 58, 79, 48688, 16, 7131, 3712, 12, 16, 60, 4008, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 2435, 58, 79, 60, 796, 41033, 58, 13049, 437, 58, 79, 11907, 198, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 15284, 48785, 9478, 198, 220, 220, 220, 1303, 611, 345, 15284, 48785, 9478, 416, 1724, 286, 640, 286, 938, 6291, 1141, 198, 220, 220, 220, 1303, 48785, 20208, 640, 286, 717, 6291, 1141, 48785, 357, 454, 48785, 19736, 198, 220, 220, 220, 1303, 389, 19889, 828, 788, 345, 1464, 34994, 48785, 9478, 416, 530, 198, 220, 220, 220, 1303, 6291, 780, 345, 821, 287, 3357, 14143, 284, 262, 3726, 286, 262, 198, 220, 220, 220, 1303, 6291, 11, 407, 262, 886, 286, 340, 13, 1675, 8494, 428, 11, 355, 886, 640, 356, 761, 284, 1011, 262, 198, 220, 220, 220, 1303, 41033, 286, 262, 6291, 326, 318, 530, 1613, 262, 938, 6291, 286, 262, 48785, 13, 198, 220, 220, 220, 1303, 523, 11, 717, 15284, 48785, 9478, 416, 2829, 41033, 13284, 7861, 13, 198, 220, 220, 220, 4259, 67, 333, 796, 886, 2435, 12, 9688, 2435, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 788, 5004, 644, 9478, 286, 428, 938, 6291, 373, 198, 220, 220, 220, 1306, 50, 696, 796, 45941, 13, 1084, 7, 37659, 13, 85, 25558, 26933, 13049, 437, 10, 16, 11, 37659, 13, 9107, 418, 7, 11925, 7, 13049, 437, 828, 67, 4906, 28, 600, 47762, 11925, 7, 16514, 27823, 13219, 16, 46570, 22704, 28, 15, 8, 1303, 787, 1654, 356, 836, 470, 1057, 572, 262, 886, 286, 262, 1366, 198, 220, 220, 220, 1070, 10366, 524, 796, 41033, 58, 19545, 50, 696, 45297, 16514, 27823, 58, 13049, 437, 60, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 611, 938, 48785, 5645, 379, 886, 286, 1366, 11, 356, 761, 284, 5004, 703, 890, 326, 198, 220, 220, 220, 1303, 6291, 318, 290, 751, 326, 284, 262, 886, 640, 13, 3423, 356, 2391, 4724, 340, 355, 262, 198, 220, 220, 220, 1303, 9478, 286, 2180, 6291, 198, 220, 220, 220, 611, 407, 18896, 7, 13049, 437, 8, 855, 15, 290, 4259, 437, 58, 12, 16, 60, 855, 11925, 7, 16514, 27823, 2599, 1303, 717, 2198, 611, 612, 389, 4259, 602, 287, 262, 717, 1295, 11, 393, 356, 1183, 6376, 656, 1729, 12, 25687, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 10366, 524, 58, 12, 16, 60, 796, 45941, 13, 26069, 7, 16514, 27823, 58, 12, 18, 21912, 16, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 783, 751, 262, 9478, 286, 262, 886, 6291, 284, 48785, 288, 20074, 11, 523, 356, 423, 198, 220, 220, 220, 1303, 3376, 48785, 288, 20074, 198, 220, 220, 220, 4259, 67, 333, 796, 4259, 67, 333, 10, 2302, 10366, 524, 628, 220, 220, 220, 44386, 2198, 611, 597, 4259, 602, 389, 1165, 1790, 198, 220, 220, 220, 10662, 23307, 16438, 796, 45941, 13, 853, 3003, 7, 13049, 67, 333, 27, 1084, 22743, 36927, 8, 198, 220, 220, 220, 611, 18896, 7, 80, 23307, 16438, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4259, 9688, 796, 45941, 13, 33678, 7, 13049, 9688, 11, 10662, 23307, 16438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4259, 437, 796, 45941, 13, 33678, 7, 13049, 437, 11, 10662, 23307, 16438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 923, 2435, 796, 45941, 13, 33678, 7, 9688, 2435, 11, 10662, 23307, 16438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 2435, 796, 45941, 13, 33678, 7, 437, 2435, 11, 10662, 23307, 16438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4259, 67, 333, 796, 45941, 13, 33678, 7, 13049, 67, 333, 11, 10662, 23307, 16438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 1429, 4259, 602, 11, 651, 584, 7508, 546, 606, 198, 220, 220, 220, 2124, 1150, 666, 796, 45941, 13, 9107, 418, 7, 13049, 9688, 13, 43358, 8, 1303, 15879, 329, 14288, 198, 220, 220, 220, 331, 1150, 666, 796, 45941, 13, 9107, 418, 7, 13049, 9688, 13, 43358, 8, 220, 1303, 15879, 329, 14288, 198, 220, 220, 220, 30172, 67, 10254, 793, 796, 45941, 13, 9107, 418, 7, 13049, 9688, 13, 43358, 8, 1303, 15879, 329, 1771, 48785, 318, 49059, 416, 1366, 2994, 198, 220, 220, 220, 1216, 330, 3849, 9124, 796, 45941, 13, 9107, 418, 7, 13049, 9688, 13, 43358, 8, 1303, 15879, 329, 13390, 39555, 515, 198, 220, 220, 220, 329, 257, 287, 2837, 7, 11925, 7, 13049, 9688, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 34223, 796, 2837, 7, 13049, 9688, 58, 64, 4357, 13049, 437, 58, 64, 48688, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 1366, 1141, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 69, 796, 2124, 1930, 58, 312, 34223, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 69, 796, 331, 1930, 58, 312, 34223, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 477, 16765, 2174, 356, 1183, 691, 779, 1366, 326, 318, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39555, 515, 11, 523, 691, 1103, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17140, 796, 4814, 58, 312, 34223, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 14288, 22715, 286, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1150, 666, 58, 64, 60, 796, 45941, 13, 1150, 666, 7, 87, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1150, 666, 58, 64, 60, 796, 45941, 13, 1150, 666, 7, 88, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 1771, 48785, 318, 49059, 416, 2278, 286, 1366, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 30172, 67, 10254, 793, 58, 64, 60, 796, 357, 13049, 9688, 58, 64, 60, 29, 15, 290, 4814, 58, 13049, 9688, 58, 64, 45297, 16, 12962, 393, 357, 13049, 437, 58, 64, 60, 27, 11925, 7, 87, 1930, 13219, 16, 290, 4814, 58, 13049, 437, 58, 64, 48688, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13390, 286, 1366, 2994, 1141, 48785, 326, 468, 587, 357, 22437, 407, 954, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1366, 326, 318, 991, 2626, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1216, 330, 3849, 9124, 58, 64, 60, 796, 45941, 13, 16345, 7, 37659, 13, 259, 1851, 7, 37659, 13, 271, 12647, 7, 87, 1930, 69, 58, 80, 17140, 60, 4008, 20679, 7, 13049, 437, 58, 64, 45297, 13049, 9688, 58, 64, 48688, 16, 8, 628, 220, 220, 220, 1303, 3650, 477, 262, 2482, 287, 257, 22155, 198, 220, 220, 220, 4259, 796, 23884, 198, 220, 220, 220, 4259, 17816, 8968, 2364, 20520, 796, 45616, 198, 220, 220, 220, 4259, 17816, 9688, 20520, 796, 4259, 9688, 198, 220, 220, 220, 4259, 17816, 437, 20520, 796, 4259, 437, 198, 220, 220, 220, 4259, 17816, 9688, 51, 20520, 796, 923, 2435, 198, 220, 220, 220, 4259, 17816, 437, 51, 20520, 796, 886, 2435, 198, 220, 220, 220, 4259, 17816, 67, 333, 20520, 796, 4259, 67, 333, 198, 220, 220, 220, 4259, 17816, 87, 1930, 20520, 796, 2124, 1150, 666, 198, 220, 220, 220, 4259, 17816, 88, 1930, 20520, 796, 331, 1150, 666, 198, 220, 220, 220, 4259, 17816, 2704, 962, 67, 10254, 793, 20520, 796, 30172, 67, 10254, 793, 198, 220, 220, 220, 4259, 17816, 31944, 3849, 9124, 20520, 796, 1216, 330, 3849, 9124, 198, 220, 220, 220, 1441, 4259, 198, 198, 4299, 651, 62, 13049, 62, 34242, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 4259, 11, 279, 844, 62, 525, 62, 13500, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 17841, 6116, 198, 220, 220, 220, 331, 1930, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 575, 17841, 6116, 198, 220, 220, 220, 4814, 1058, 45941, 13, 18747, 532, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 20650, 7268, 262, 1489, 2305, 504, 12739, 4814, 8405, 357, 11612, 3289, 11, 878, 39555, 341, 8133, 198, 220, 220, 220, 4259, 1058, 28261, 7268, 262, 1708, 8251, 290, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 277, 9688, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48785, 923, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 41229, 1058, 45941, 13, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48785, 886, 36525, 198, 220, 220, 220, 279, 844, 525, 13500, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 17848, 583, 5874, 4922, 13, 25235, 287, 7370, 611, 2810, 11, 287, 17848, 4306, 628, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 4259, 1058, 262, 4259, 5128, 22155, 351, 262, 1708, 2087, 8251, 290, 3815, 220, 198, 220, 220, 220, 220, 220, 220, 220, 371, 5653, 5431, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 5653, 286, 48785, 357, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37078, 32, 1058, 12178, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37078, 32, 286, 48785, 357, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 55, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 87, 1930, 8, 532, 949, 7, 87, 1930, 8, 286, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 2837, 56, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 88, 1930, 8, 532, 949, 7, 88, 1930, 8, 286, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 4259, 796, 651, 22743, 29668, 7, 87, 1930, 11, 88, 1930, 11, 45688, 11, 13049, 11, 79, 844, 525, 13500, 8, 198, 220, 220, 220, 13163, 4259, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 2749, 16412, 10354, 7177, 26933, 15, 13, 1954, 1415, 3459, 3324, 11, 657, 13, 1954, 3104, 1433, 6659, 11, 657, 13, 1731, 2920, 4531, 3682, 11, 657, 13, 18458, 1485, 5333, 837, 657, 13, 1264, 2931, 22995, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 1954, 2154, 2548, 3559, 46570, 198, 220, 220, 220, 220, 705, 49, 5653, 5431, 10354, 7177, 26933, 15, 13, 1959, 41544, 1828, 837, 657, 13, 1954, 20548, 19442, 11, 657, 13, 27019, 1065, 24940, 11, 657, 13, 2075, 18897, 20964, 11, 657, 13, 27693, 1485, 17657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 1954, 1415, 2154, 4304, 46570, 198, 220, 220, 220, 220, 705, 8968, 2364, 10354, 657, 13, 1485, 2816, 4089, 405, 2079, 26895, 31020, 11, 198, 220, 220, 220, 220, 705, 67, 333, 10354, 7177, 26933, 32459, 13, 43452, 11, 767, 4790, 13, 17, 220, 837, 32817, 13, 24, 2414, 11, 34044, 13, 28688, 11, 31011, 13, 42802, 11, 19710, 13, 21, 2718, 46570, 198, 220, 220, 220, 220, 705, 437, 10354, 7177, 26933, 16243, 11, 44367, 11, 47407, 11, 2026, 23, 11, 10053, 11, 718, 3559, 46570, 198, 220, 220, 220, 220, 705, 437, 51, 10354, 7177, 26933, 45620, 13, 24, 1129, 11, 1367, 5066, 13, 22172, 11, 1478, 3559, 13, 15801, 11, 1467, 6052, 13, 3312, 17, 11, 7358, 13, 22, 2548, 11, 362, 23726, 13, 24, 3324, 46570, 198, 220, 220, 220, 220, 705, 13049, 17257, 55, 10354, 7177, 26933, 15, 13, 33289, 2791, 22579, 11, 657, 13, 34808, 1899, 43864, 11, 657, 13, 2791, 19104, 43571, 11, 657, 13, 2920, 3270, 2718, 1983, 11, 657, 13, 27720, 27693, 1959, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 6659, 486, 2713, 3104, 46570, 198, 220, 220, 220, 220, 705, 13049, 17257, 56, 10354, 7177, 26933, 16, 13, 3365, 5892, 1314, 2078, 11, 352, 13, 15, 30460, 3270, 2816, 11, 352, 13, 940, 3553, 1899, 3270, 11, 657, 13, 46899, 21844, 3682, 11, 352, 13, 28896, 32459, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 24, 1065, 5066, 17657, 46570, 198, 220, 220, 220, 220, 705, 2704, 962, 67, 10254, 793, 10354, 7177, 26933, 16, 1539, 657, 1539, 657, 1539, 657, 1539, 657, 1539, 657, 8183, 828, 198, 220, 220, 220, 220, 705, 31944, 3849, 9124, 10354, 7177, 26933, 15, 13, 3312, 2623, 2623, 2623, 11, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 657, 13, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 220, 220, 220, 220, 220, 220, 220, 2361, 828, 198, 220, 220, 220, 220, 705, 9688, 10354, 7177, 26933, 220, 362, 11, 19035, 11, 4570, 17, 11, 604, 2548, 11, 642, 1157, 11, 3126, 21, 46570, 198, 220, 220, 220, 220, 705, 9688, 51, 10354, 7177, 26933, 220, 220, 718, 13, 35978, 11, 220, 5014, 18, 13, 26582, 11, 1105, 3312, 13, 36260, 11, 1478, 3270, 13, 3720, 837, 1596, 3070, 13, 18298, 11, 13130, 13, 36657, 46570, 198, 220, 220, 220, 220, 705, 87, 1930, 10354, 7177, 26933, 860, 2231, 13, 24, 2623, 11, 220, 767, 6659, 13, 2713, 21, 11, 1511, 2920, 13, 22883, 11, 1105, 3559, 13, 5892, 837, 1105, 3829, 13, 47202, 11, 1315, 1828, 13, 24096, 46570, 198, 220, 220, 220, 220, 705, 88, 1930, 10354, 7177, 26933, 34251, 13, 20666, 11, 32320, 13, 23, 2548, 11, 38158, 13, 21, 2414, 11, 47946, 13, 22544, 11, 49814, 13, 43918, 11, 35592, 13, 24, 3023, 12962, 92, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 29677, 262, 2672, 10007, 220, 198, 220, 220, 220, 277, 9688, 796, 4259, 17816, 9688, 20520, 198, 220, 220, 220, 41229, 796, 4259, 17816, 437, 20520, 628, 220, 220, 220, 1303, 30104, 329, 15440, 5260, 198, 220, 220, 220, 371, 5653, 5431, 796, 45941, 13, 9107, 418, 7, 69, 9688, 13, 43358, 8, 198, 220, 220, 220, 37078, 32, 220, 796, 45941, 13, 9107, 418, 7, 69, 9688, 13, 43358, 8, 198, 220, 220, 220, 2837, 55, 796, 45941, 13, 9107, 418, 7, 69, 9688, 13, 43358, 8, 198, 220, 220, 220, 2837, 56, 796, 45941, 13, 9107, 418, 7, 69, 9688, 13, 43358, 8, 628, 220, 220, 220, 329, 257, 287, 2837, 7, 11925, 7, 69, 9688, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 34223, 796, 2837, 7, 69, 9688, 58, 64, 4357, 69, 437, 58, 64, 48688, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 1366, 1141, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 69, 796, 2124, 1930, 58, 312, 34223, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 69, 796, 331, 1930, 58, 312, 34223, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 477, 16765, 2174, 356, 1183, 691, 779, 1366, 326, 318, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39555, 515, 11, 523, 691, 1103, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17140, 796, 4814, 58, 312, 34223, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 44386, 15284, 371, 5653, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1201, 663, 1760, 351, 814, 11, 836, 470, 655, 19607, 4814, 290, 2190, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7186, 355, 530, 12948, 15879, 13, 6330, 4814, 351, 15709, 717, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 1364, 12, 2502, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43795, 2124, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 67, 361, 796, 2124, 1930, 69, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 67, 361, 58, 80, 17140, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 67, 361, 796, 45941, 13, 26069, 7, 24954, 361, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 67, 361, 796, 2124, 67, 361, 58, 37659, 13, 259, 1851, 7, 37659, 13, 271, 12647, 7, 24954, 361, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43795, 331, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 331, 67, 361, 796, 331, 1930, 69, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 331, 67, 361, 58, 80, 17140, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 331, 67, 361, 796, 45941, 13, 26069, 7, 5173, 361, 8, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 331, 67, 361, 796, 331, 67, 361, 58, 37659, 13, 259, 1851, 7, 37659, 13, 271, 12647, 7, 5173, 361, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34600, 290, 371, 5653, 3953, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2124, 67, 361, 1343, 331, 67, 361, 1303, 362, 35, 6291, 12, 1462, 12, 39873, 29358, 1988, 287, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 371, 5653, 5431, 58, 64, 60, 796, 45941, 13, 31166, 17034, 7, 37659, 13, 32604, 7, 66, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 844, 62, 525, 62, 13500, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 5653, 5431, 58, 64, 60, 796, 371, 5653, 5431, 58, 64, 60, 14, 79, 844, 62, 525, 62, 13500, 1303, 1988, 287, 7370, 5874, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 44386, 15284, 37078, 32, 357, 21544, 1044, 290, 34599, 6244, 13123, 15748, 290, 19009, 5800, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14367, 87, 796, 45941, 13, 19282, 7, 87, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 4357, 1860, 1659, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 336, 9892, 796, 45941, 13, 19282, 7, 88, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 4357, 1860, 1659, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 844, 62, 525, 62, 13500, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 287, 7370, 5874, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 87, 796, 14367, 87, 14, 79, 844, 62, 525, 62, 13500, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 9892, 796, 336, 9892, 14, 79, 844, 62, 525, 62, 13500, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 88, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 12962, 27, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37078, 32, 58, 64, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31383, 796, 45941, 13, 10215, 81, 1073, 891, 7, 87, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 4357, 88, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 8873, 796, 31383, 58, 15, 11, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 796, 657, 13, 3104, 1303, 23818, 12867, 286, 1989, 739, 262, 1963, 42524, 3487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 796, 45941, 13, 6404, 7, 16, 19571, 7, 16, 12, 47, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37078, 32, 58, 64, 60, 796, 362, 9, 74, 9, 37659, 13, 14415, 9, 19282, 87, 9, 301, 9892, 9, 37659, 13, 31166, 17034, 7, 16, 12, 81, 8873, 1174, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 44386, 15284, 3509, 12, 1084, 286, 48785, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 16345, 7, 80, 17140, 8, 6624, 18896, 7, 80, 17140, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 55, 58, 64, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 56, 58, 64, 60, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 55, 58, 64, 60, 796, 357, 37659, 13, 9806, 7, 87, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 12962, 532, 45941, 13, 1084, 7, 87, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 15437, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 56, 58, 64, 60, 796, 357, 37659, 13, 9806, 7, 88, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 8, 12962, 532, 45941, 13, 1084, 7, 88, 1930, 69, 58, 37659, 13, 259, 1851, 7, 80, 17140, 15437, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 279, 844, 62, 525, 62, 13500, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 287, 7370, 5874, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 55, 58, 64, 60, 796, 2837, 55, 58, 64, 60, 14, 79, 844, 62, 525, 62, 13500, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 56, 58, 64, 60, 796, 2837, 56, 58, 64, 60, 14, 79, 844, 62, 525, 62, 13500, 628, 220, 220, 220, 1303, 3060, 2482, 284, 48785, 22155, 198, 220, 220, 220, 4259, 17816, 49, 5653, 5431, 20520, 796, 371, 5653, 5431, 198, 220, 220, 220, 4259, 17816, 2749, 16412, 20520, 796, 37078, 32, 198, 220, 220, 220, 4259, 17816, 13049, 17257, 55, 20520, 796, 2837, 55, 198, 220, 220, 220, 4259, 17816, 13049, 17257, 56, 20520, 796, 2837, 56, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 4259, 198, 198, 2, 38093, 25609, 198, 2, 38093, 25609, 198, 2, 1303, 383, 4036, 314, 17, 9655, 11523, 2163, 198, 2, 38093, 25609, 198, 2, 38093, 25609, 198, 4299, 314, 17, 9655, 7, 70, 6201, 6601, 11, 3689, 796, 6045, 11, 18931, 28, 17821, 11, 18931, 62, 28968, 33151, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2488, 17143, 17841, 6601, 25, 257, 1366, 14535, 7268, 262, 17841, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1366, 14535, 815, 3994, 262, 1708, 15180, 357, 31336, 406, 11, 371, 393, 1111, 393, 2811, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 62, 55, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1364, 4151, 2124, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 62, 56, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1364, 4151, 331, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 62, 55, 220, 220, 220, 220, 220, 220, 220, 220, 532, 826, 4151, 2124, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 62, 56, 220, 220, 220, 220, 220, 220, 220, 220, 532, 826, 4151, 331, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 55, 220, 220, 532, 2811, 2124, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2811, 62, 56, 220, 220, 532, 2811, 331, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 220, 220, 220, 220, 220, 220, 220, 532, 640, 286, 262, 17841, 6291, 198, 220, 220, 220, 2488, 17143, 3689, 25, 257, 22155, 7268, 262, 3689, 329, 262, 314, 17, 9655, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 262, 22155, 815, 3994, 262, 1708, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 411, 220, 220, 220, 220, 220, 220, 220, 532, 2124, 6323, 286, 262, 3159, 287, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 411, 220, 220, 220, 220, 220, 220, 220, 532, 331, 6323, 286, 262, 3159, 287, 17848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 220, 220, 220, 220, 220, 220, 220, 220, 532, 8373, 286, 262, 21566, 21879, 10735, 287, 26109, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 87, 220, 220, 220, 532, 1988, 12739, 1366, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 88, 220, 220, 220, 532, 1988, 12739, 1366, 2994, 198, 220, 220, 220, 2488, 17143, 18931, 25, 25131, 12739, 1771, 284, 2604, 262, 2482, 198, 220, 220, 220, 2488, 17143, 18931, 62, 28968, 25, 11677, 878, 790, 18931, 3275, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2488, 7783, 25, 3991, 611, 262, 3781, 373, 407, 4388, 11, 4306, 257, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 7268, 262, 2482, 286, 262, 3781, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 28261, 4909, 262, 1708, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45616, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 51, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 51, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22365, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30172, 67, 10254, 793, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1216, 330, 3849, 9124, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 371, 5653, 5431, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37078, 32, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 17257, 55, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4259, 17257, 56, 220, 220, 220, 220, 220, 220, 532, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 900, 26235, 198, 220, 220, 220, 611, 3689, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 796, 23884, 198, 220, 220, 220, 1366, 796, 4866, 13, 22089, 30073, 7, 70, 6201, 6601, 8, 198, 220, 220, 220, 2172, 220, 796, 3689, 13, 30073, 3419, 198, 220, 220, 220, 1582, 220, 796, 23884, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6822, 2672, 10007, 220, 198, 220, 220, 220, 2198, 62, 12543, 10786, 87, 411, 3256, 220, 220, 220, 220, 2172, 11, 705, 17899, 38342, 3159, 6323, 11537, 198, 220, 220, 220, 2198, 62, 12543, 10786, 88, 411, 3256, 220, 220, 220, 220, 2172, 11, 705, 1851, 605, 3159, 6323, 11537, 198, 220, 220, 220, 2198, 62, 12543, 10786, 19503, 80, 3256, 220, 220, 220, 220, 2172, 11, 705, 2213, 10735, 19232, 2494, 11537, 198, 220, 220, 220, 2198, 62, 12543, 10786, 45688, 87, 3256, 2172, 11, 705, 8367, 12739, 1366, 2994, 329, 16021, 2292, 11537, 198, 220, 220, 220, 2198, 62, 12543, 10786, 45688, 88, 3256, 2172, 11, 705, 8367, 12739, 1366, 2994, 329, 11723, 2292, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2672, 10007, 25, 198, 220, 220, 220, 1582, 17816, 87, 411, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 87, 411, 11537, 198, 220, 220, 220, 1582, 17816, 88, 411, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 88, 411, 11537, 198, 220, 220, 220, 1582, 17816, 19503, 80, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 19503, 80, 11537, 198, 220, 220, 220, 1582, 17816, 45688, 87, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 45688, 87, 11537, 198, 220, 220, 220, 1582, 17816, 45688, 88, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 45688, 88, 11537, 198, 220, 220, 220, 1582, 17816, 1416, 81, 50, 89, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 1416, 81, 50, 89, 3256, 6045, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3159, 2546, 357, 68, 13, 70, 13, 287, 12067, 737, 32233, 11, 11986, 611, 765, 48785, 7869, 287, 3396, 198, 220, 220, 220, 1582, 17816, 17080, 83, 17500, 1361, 20520, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 17080, 83, 17500, 1361, 3256, 6045, 8, 220, 220, 220, 220, 1303, 3159, 5253, 357, 259, 976, 4326, 355, 2546, 737, 32233, 11, 11986, 611, 765, 48785, 7869, 287, 3396, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 17143, 7307, 351, 26235, 25, 198, 220, 220, 220, 1303, 327, 10526, 2149, 6226, 24027, 23255, 45472, 6234, 198, 220, 220, 220, 1582, 17816, 17497, 2435, 9492, 79, 20520, 796, 2172, 13, 12924, 10786, 17497, 2435, 9492, 79, 3256, 764, 16, 8, 220, 220, 1303, 3509, 9478, 357, 82, 8, 286, 4814, 3815, 329, 39555, 341, 284, 3051, 198, 220, 220, 220, 1582, 17816, 14907, 50, 696, 9492, 79, 20520, 220, 220, 796, 2172, 13, 12924, 10786, 14907, 50, 696, 9492, 79, 3256, 362, 8, 220, 220, 220, 220, 220, 1303, 2033, 286, 1366, 357, 17618, 286, 8405, 8, 379, 13015, 2622, 329, 39555, 341, 198, 220, 220, 220, 1582, 17816, 9806, 6381, 79, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 9806, 6381, 79, 3256, 6045, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5415, 29358, 1141, 4814, 329, 39555, 341, 284, 307, 1744, 13, 15161, 900, 2174, 611, 2622, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 509, 12, 11682, 15037, 7852, 7759, 1137, 2751, 198, 220, 220, 220, 1582, 17816, 17497, 2435, 20520, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 17497, 2435, 3256, 764, 17, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 640, 4324, 357, 82, 8, 625, 543, 284, 15284, 362, 12, 1326, 504, 32966, 1586, 357, 6679, 577, 1988, 523, 326, 3509, 13, 352, 264, 4134, 671, 460, 3051, 8, 198, 220, 220, 220, 1582, 17816, 4169, 457, 524, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 4169, 457, 524, 3256, 764, 2999, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 640, 4324, 6482, 357, 82, 8, 329, 1123, 24415, 13, 5765, 6632, 329, 6291, 416, 6291, 7587, 198, 220, 220, 220, 1582, 17816, 30371, 12629, 20520, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 30371, 12629, 3256, 685, 17, 11, 642, 11, 838, 12962, 1303, 21838, 1403, 2974, 357, 5171, 307, 6565, 8, 198, 220, 220, 220, 1582, 17816, 30371, 696, 22417, 20520, 220, 220, 796, 2172, 13, 12924, 10786, 30371, 696, 22417, 3256, 6407, 8, 220, 220, 1303, 779, 1125, 1525, 49916, 8106, 618, 21838, 321, 11347, 30, 6407, 25, 3763, 11, 10352, 25, 645, 13, 4433, 6737, 7587, 2891, 3524, 13, 318, 644, 2603, 23912, 338, 21838, 321, 11347, 5499, 466, 11, 475, 714, 2728, 5876, 357, 1806, 278, 8, 351, 262, 1327, 13015, 287, 4151, 12, 21084, 434, 1366, 198, 220, 220, 220, 1582, 17816, 2395, 1525, 18743, 20520, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 2395, 1525, 18743, 3256, 807, 2014, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1502, 286, 1125, 1525, 16, 2580, 48209, 258, 85, 21838, 321, 11347, 8106, 11, 4277, 318, 7685, 12876, 11, 355, 890, 355, 612, 389, 1679, 393, 517, 8405, 287, 262, 4324, 357, 5832, 743, 423, 1342, 611, 534, 1366, 318, 286, 1877, 19232, 2494, 393, 534, 4324, 318, 1402, 198, 220, 220, 220, 1582, 17816, 9806, 48277, 20520, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 9806, 48277, 3256, 1802, 2014, 220, 220, 220, 220, 220, 220, 220, 1303, 5415, 1271, 286, 8563, 3142, 287, 479, 12, 1326, 504, 32966, 1586, 8771, 878, 18788, 284, 1306, 2393, 198, 220, 220, 220, 1303, 44855, 6234, 38267, 1137, 23678, 6234, 198, 220, 220, 220, 1582, 17816, 8968, 2364, 19282, 20520, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 8968, 2364, 19282, 3256, 362, 2014, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1271, 286, 3210, 47060, 2029, 1612, 479, 12, 1326, 504, 19590, 481, 307, 973, 355, 48785, 45616, 198, 220, 220, 220, 1582, 17816, 261, 28968, 817, 3447, 20520, 220, 220, 796, 2172, 13, 12924, 10786, 261, 28968, 817, 3447, 3256, 513, 2014, 220, 220, 220, 220, 1303, 1271, 286, 45878, 1497, 422, 14288, 48785, 9478, 13, 2561, 307, 973, 284, 2513, 2651, 379, 48785, 4940, 290, 19528, 379, 48785, 5645, 284, 35139, 511, 13127, 290, 2245, 11862, 422, 6600, 656, 264, 4134, 2367, 198, 220, 220, 220, 1582, 17816, 9806, 13102, 469, 20344, 20520, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 9806, 13102, 469, 20344, 3256, 1542, 2014, 220, 220, 220, 220, 220, 1303, 5415, 48862, 485, 272, 5253, 287, 17848, 1022, 4259, 602, 329, 35981, 198, 220, 220, 220, 1582, 17816, 9806, 13102, 469, 7575, 20520, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 9806, 13102, 469, 7575, 3256, 1542, 2014, 220, 220, 220, 220, 220, 1303, 5415, 640, 287, 13845, 1022, 4259, 602, 329, 35981, 198, 220, 220, 220, 1582, 17816, 1084, 22743, 36927, 20520, 220, 220, 220, 220, 220, 220, 220, 796, 2172, 13, 12924, 10786, 1084, 22743, 36927, 3256, 2319, 2014, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5288, 48785, 9478, 357, 907, 8, 706, 35981, 11, 4259, 602, 351, 12238, 9478, 389, 4615, 422, 5072, 198, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7712, 10007, 11, 1487, 777, 284, 10352, 618, 407, 5922, 198, 220, 220, 220, 1582, 17816, 48267, 62, 259, 79, 1071, 392, 10809, 20520, 220, 796, 2172, 13, 12924, 10786, 48267, 62, 259, 79, 1071, 392, 10809, 3256, 10352, 8, 628, 220, 220, 220, 329, 1994, 287, 2172, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10352, 11, 705, 9218, 45144, 36786, 407, 8018, 4458, 18982, 7, 2539, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 1303, 23412, 1021, 10809, 290, 10627, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 22492, 9052, 625, 5128, 198, 220, 220, 220, 611, 407, 1582, 17816, 48267, 62, 259, 79, 1071, 392, 10809, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 1582, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 37250, 87, 411, 41707, 88, 411, 41707, 19503, 80, 41707, 45688, 87, 41707, 45688, 88, 41707, 17497, 2435, 9492, 79, 41707, 9806, 6381, 79, 41707, 17497, 2435, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4169, 457, 524, 41707, 8968, 2364, 19282, 41707, 261, 28968, 817, 3447, 41707, 9806, 13102, 469, 20344, 41707, 9806, 13102, 469, 7575, 41707, 1084, 22743, 36927, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 77, 39223, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 1416, 282, 283, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 6624, 705, 17080, 83, 17500, 1361, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 407, 6045, 25, 220, 220, 1303, 743, 307, 6045, 357, 896, 281, 11902, 11507, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 77, 39223, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 1416, 282, 283, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 287, 37250, 30371, 696, 22417, 41707, 2395, 1525, 18743, 41707, 9806, 48277, 41707, 14907, 50, 696, 9492, 79, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 600, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 1416, 282, 283, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 6624, 705, 1416, 81, 50, 89, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 407, 6045, 25, 220, 220, 1303, 743, 307, 6045, 357, 896, 281, 11902, 11507, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 77, 39223, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 31364, 62, 17, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 6624, 705, 30371, 12629, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 600, 7, 2539, 11, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 2539, 8, 14512, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 9218, 45144, 36786, 407, 8018, 4458, 18982, 7, 2539, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 900, 26235, 198, 220, 220, 220, 611, 1582, 17816, 9806, 6381, 79, 20520, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 9806, 6381, 79, 20520, 796, 1582, 17816, 87, 411, 20520, 9, 15, 13, 17, 9, 37659, 13, 31166, 17034, 7, 17, 8, 628, 220, 220, 220, 1303, 2198, 8106, 198, 220, 220, 220, 611, 1582, 17816, 30371, 696, 22417, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 299, 50, 696, 37374, 796, 45941, 13, 9806, 26933, 16, 11, 18, 9, 1845, 17816, 2395, 1525, 18743, 6, 11907, 47762, 16, 220, 1303, 299, 50, 696, 37374, 796, 3509, 7, 16, 11, 18, 9, 7, 77, 69, 2326, 12, 16, 4008, 10, 16, 11, 810, 299, 69, 2326, 796, 1125, 1525, 18743, 10, 16, 198, 220, 220, 220, 220, 220, 220, 220, 299, 50, 696, 818, 16643, 796, 2835, 7, 1845, 17816, 17497, 2435, 20520, 29006, 16, 19571, 1845, 17816, 19503, 80, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 50, 696, 818, 16643, 1279, 299, 50, 696, 37374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 40, 17, 9655, 25, 25853, 10007, 9167, 351, 262, 4634, 366, 2395, 1525, 18743, 1, 705, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10594, 407, 670, 329, 262, 19232, 8373, 286, 534, 1366, 13, 4222, 2793, 705, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 2395, 1525, 18743, 1600, 393, 900, 262, 4634, 366, 30371, 696, 22417, 1, 284, 10352, 11537, 198, 220, 220, 220, 198, 220, 220, 220, 6818, 45941, 13, 16345, 7, 1845, 17816, 19503, 80, 20520, 4, 37659, 13, 18747, 7, 1845, 17816, 30371, 12629, 20520, 4008, 6624, 15, 4032, 40, 17, 9655, 20786, 25, 2773, 286, 534, 21838, 1403, 2974, 389, 407, 2659, 271, 669, 286, 534, 19232, 8373, 13, 9794, 262, 3038, 366, 30371, 12629, 30543, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9058, 5874, 9848, 11315, 198, 220, 220, 220, 279, 844, 62, 525, 62, 13500, 796, 6045, 198, 220, 220, 220, 611, 1582, 17816, 1416, 81, 50, 89, 20520, 318, 407, 6045, 290, 1582, 17816, 17080, 83, 17500, 1361, 20520, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 844, 62, 525, 62, 13500, 796, 9848, 62, 1462, 62, 79, 14810, 7, 16, 11, 1582, 17816, 17080, 83, 17500, 1361, 6, 4357, 1582, 17816, 1416, 81, 50, 89, 6, 7131, 15, 4357, 685, 1845, 17816, 87, 411, 6, 4357, 1582, 17816, 88, 411, 6, 11907, 8, 628, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 45559, 3810, 4814, 3815, 290, 5004, 1395, 290, 575, 17841, 1426, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 1730, 351, 937, 37320, 1366, 11, 393, 2251, 2811, 625, 734, 2951, 198, 220, 220, 220, 611, 705, 43, 62, 55, 6, 287, 1366, 13, 13083, 3419, 290, 705, 49, 62, 55, 6, 407, 287, 1366, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 796, 1366, 17816, 43, 62, 55, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 796, 1366, 17816, 43, 62, 56, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 4814, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 87, 796, 45941, 13, 6404, 605, 62, 273, 7, 37659, 13, 271, 12647, 7, 87, 1930, 828, 2124, 1930, 6624, 1582, 17816, 45688, 87, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 88, 796, 45941, 13, 6404, 605, 62, 273, 7, 37659, 13, 271, 12647, 7, 88, 1930, 828, 331, 1930, 6624, 1582, 17816, 45688, 88, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 796, 45941, 13, 6404, 605, 62, 273, 7, 45688, 62, 87, 11, 4814, 62, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 9464, 62, 45688, 20520, 796, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 36, 8505, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1288, 361, 705, 49, 62, 55, 6, 287, 1366, 13, 13083, 3419, 290, 705, 43, 62, 55, 6, 407, 287, 1366, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 796, 1366, 17816, 49, 62, 55, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 796, 1366, 17816, 49, 62, 56, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 4814, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 87, 796, 45941, 13, 6404, 605, 62, 273, 7, 37659, 13, 271, 12647, 7, 87, 1930, 828, 2124, 1930, 6624, 1582, 17816, 45688, 87, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 88, 796, 45941, 13, 6404, 605, 62, 273, 7, 37659, 13, 271, 12647, 7, 88, 1930, 8, 837, 331, 1930, 6624, 1582, 17816, 45688, 88, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 796, 45941, 13, 6404, 605, 62, 273, 7, 45688, 62, 87, 11, 4814, 62, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 3506, 62, 45688, 20520, 796, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 36, 8505, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1288, 361, 705, 23913, 62, 55, 6, 287, 1366, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 796, 1366, 17816, 23913, 62, 55, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 796, 1366, 17816, 23913, 62, 56, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 87, 796, 45941, 13, 6404, 605, 62, 273, 7, 37659, 13, 271, 12647, 7, 87, 1930, 828, 2124, 1930, 6624, 1582, 17816, 45688, 87, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 88, 796, 45941, 13, 6404, 605, 62, 273, 7, 37659, 13, 271, 12647, 7, 88, 1930, 8, 837, 331, 1930, 6624, 1582, 17816, 45688, 88, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 796, 45941, 13, 6404, 605, 62, 273, 7, 45688, 62, 87, 11, 4814, 62, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 23913, 62, 45688, 20520, 796, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 36, 8505, 796, 705, 49, 62, 55, 6, 287, 1366, 13, 13083, 3419, 290, 705, 43, 62, 55, 6, 287, 1366, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10662, 17, 36, 8505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 423, 1364, 290, 826, 290, 2811, 1541, 2810, 11, 475, 356, 761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 651, 4814, 287, 262, 1981, 4151, 10425, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 3927, 11, 374, 81, 3927, 11, 1111, 3927, 796, 651, 62, 45688, 7, 7890, 17816, 43, 62, 55, 6, 4357, 1366, 17816, 49, 62, 55, 6, 4357, 1582, 17816, 45688, 87, 6, 4357, 1366, 17816, 43, 62, 56, 6, 4357, 1366, 17816, 49, 62, 56, 6, 4357, 1582, 17816, 45688, 88, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 9464, 62, 45688, 20520, 220, 796, 32660, 3927, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 3506, 62, 45688, 20520, 796, 374, 81, 3927, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2073, 25, 1303, 356, 423, 1364, 290, 826, 11, 2811, 606, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 23913, 62, 55, 6, 4357, 1366, 17816, 23913, 62, 56, 6, 4357, 4814, 11, 32660, 3927, 11, 374, 81, 3927, 796, 2811, 62, 48418, 7, 7890, 17816, 43, 62, 55, 6, 4357, 1366, 17816, 49, 62, 55, 6, 4357, 1582, 17816, 45688, 87, 6, 4357, 1366, 17816, 43, 62, 56, 6, 4357, 1366, 17816, 49, 62, 56, 6, 4357, 1582, 17816, 45688, 88, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1930, 796, 1366, 17816, 23913, 62, 55, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 331, 1930, 796, 1366, 17816, 23913, 62, 56, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 23913, 62, 45688, 20520, 796, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 9464, 62, 45688, 20520, 220, 796, 32660, 3927, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 3506, 62, 45688, 20520, 796, 374, 81, 3927, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 17, 36, 8505, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 23255, 45472, 6234, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 651, 39555, 341, 9168, 329, 2811, 290, 1981, 4151, 10425, 198, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 40, 17, 9655, 25, 11140, 278, 329, 4938, 39555, 341, 9168, 11537, 198, 220, 220, 220, 2051, 10434, 11, 3927, 12915, 796, 1064, 62, 3849, 79, 62, 86, 1040, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 1582, 17816, 17497, 2435, 9492, 79, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 14907, 50, 696, 9492, 79, 6, 4357, 1582, 17816, 19503, 80, 6, 4357, 1582, 17816, 9806, 6381, 79, 6, 12962, 198, 220, 220, 220, 611, 10662, 17, 36, 8505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 3927, 10434, 11, 297, 3927, 12915, 796, 1064, 62, 3849, 79, 62, 86, 1040, 7, 7890, 17816, 43, 62, 55, 6, 4357, 1366, 17816, 43, 62, 56, 6, 4357, 32660, 3927, 11, 1582, 17816, 17497, 2435, 9492, 79, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 14907, 50, 696, 9492, 79, 6, 4357, 1582, 17816, 19503, 80, 6, 4357, 1582, 17816, 9806, 6381, 79, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 81, 3927, 10434, 11, 21062, 3927, 12915, 796, 1064, 62, 3849, 79, 62, 86, 1040, 7, 7890, 17816, 49, 62, 55, 6, 4357, 1366, 17816, 49, 62, 56, 6, 4357, 374, 81, 3927, 11, 1582, 17816, 17497, 2435, 9492, 79, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 14907, 50, 696, 9492, 79, 6, 4357, 1582, 17816, 19503, 80, 6, 4357, 1582, 17816, 9806, 6381, 79, 6, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5765, 2441, 46985, 39555, 341, 290, 6330, 3815, 198, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 40, 17, 9655, 25, 40177, 39555, 341, 9168, 351, 2441, 46985, 39555, 341, 11537, 198, 220, 220, 220, 2124, 1930, 11, 331, 1930, 11, 4814, 77, 796, 4324, 276, 62, 3849, 16104, 378, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 2051, 10434, 11, 2051, 12915, 11, 1582, 17816, 14907, 50, 696, 9492, 79, 6, 12962, 198, 220, 220, 220, 611, 10662, 17, 36, 8505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 87, 11, 220, 12810, 11, 297, 3927, 77, 796, 4324, 276, 62, 3849, 16104, 378, 7, 7890, 17816, 43, 62, 55, 6, 4357, 1366, 17816, 43, 62, 56, 6, 4357, 1366, 17816, 9464, 62, 45688, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 3927, 10434, 11, 32660, 3927, 12915, 11, 1582, 17816, 14907, 50, 696, 9492, 79, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 374, 40914, 11, 374, 563, 11, 21062, 3927, 77, 796, 4324, 276, 62, 3849, 16104, 378, 7, 7890, 17816, 49, 62, 55, 6, 4357, 1366, 17816, 49, 62, 56, 6, 4357, 1366, 17816, 3506, 62, 45688, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 81, 3927, 10434, 11, 374, 81, 3927, 12915, 11, 1582, 17816, 14907, 50, 696, 9492, 79, 6, 12962, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 362, 12, 11682, 15037, 7852, 7759, 1137, 2751, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 22492, 33290, 34, 6239, 6158, 362, 12, 11682, 15037, 7852, 7759, 1137, 2751, 7473, 311, 2751, 2538, 412, 48743, 198, 220, 220, 220, 611, 407, 10662, 17, 36, 8505, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 479, 1326, 504, 12, 565, 436, 1586, 329, 16449, 6737, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 40, 17, 9655, 25, 362, 12, 5308, 504, 32966, 1586, 2067, 329, 16449, 6737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 20311, 43775, 6, 4357, 5025, 796, 734, 62, 565, 5819, 62, 6551, 278, 7, 87, 1930, 11, 331, 1930, 11, 4814, 77, 11, 1582, 17816, 30371, 12629, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 30371, 696, 22417, 6, 4357, 1582, 17816, 2395, 1525, 18743, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 17497, 2435, 6, 4357, 1582, 17816, 4169, 457, 524, 6, 4357, 1845, 17816, 19503, 80, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 9806, 48277, 6, 4357, 18931, 11, 18931, 62, 28968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 1771, 32966, 1586, 14131, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5025, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 10786, 40, 17, 9655, 25, 1012, 436, 1586, 5025, 706, 23353, 3509, 8563, 11, 8282, 284, 1306, 2393, 3467, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 33290, 34, 6239, 6158, 362, 12, 11682, 15037, 7852, 7759, 1137, 2751, 7473, 7946, 27082, 6158, 412, 43335, 198, 220, 220, 220, 1288, 361, 10662, 17, 36, 8505, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 479, 1326, 504, 12, 565, 436, 1586, 329, 1364, 4151, 6737, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 40, 17, 9655, 25, 362, 12, 5308, 504, 32966, 1586, 2067, 329, 1364, 4151, 6737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 43775, 62, 9464, 11, 5025, 796, 734, 62, 565, 5819, 62, 6551, 278, 7, 297, 87, 11, 220, 12810, 11, 32660, 3927, 77, 11, 1582, 17816, 30371, 12629, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 30371, 696, 22417, 6, 4357, 1582, 17816, 2395, 1525, 18743, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 17497, 2435, 6, 4357, 1582, 17816, 4169, 457, 524, 6, 4357, 1582, 17816, 19503, 80, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 9806, 48277, 6, 4357, 18931, 11, 18931, 62, 28968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 1771, 32966, 1586, 14131, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5025, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 10786, 40, 17, 9655, 25, 1012, 436, 1586, 5025, 706, 23353, 3509, 8563, 11, 8282, 284, 1306, 2393, 3467, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 479, 1326, 504, 12, 565, 436, 1586, 329, 826, 4151, 6737, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 40, 17, 9655, 25, 362, 12, 5308, 504, 32966, 1586, 2067, 329, 826, 4151, 6737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 43775, 62, 3506, 11, 5025, 796, 734, 62, 565, 5819, 62, 6551, 278, 7, 21062, 87, 11, 374, 563, 11, 374, 81, 3927, 77, 11, 1582, 17816, 30371, 12629, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 30371, 696, 22417, 6, 4357, 1845, 17816, 2395, 1525, 18743, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 17497, 2435, 6, 4357, 1582, 17816, 4169, 457, 524, 6, 4357, 1582, 17816, 19503, 80, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1582, 17816, 9806, 48277, 6, 4357, 18931, 11, 18931, 62, 28968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 1771, 32966, 1586, 14131, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5025, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 10786, 40, 17, 9655, 25, 1012, 436, 1586, 5025, 706, 23353, 3509, 8563, 11, 8282, 284, 1306, 2393, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 317, 5959, 11879, 25261, 8845, 34874, 28729, 9440, 33, 1268, 1961, 1222, 7946, 27082, 6158, 412, 43335, 198, 220, 220, 220, 220, 220, 220, 220, 351, 14601, 13, 40198, 62, 40539, 654, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 36439, 24455, 7203, 46430, 4943, 1303, 8856, 14601, 422, 45941, 13, 12647, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 20311, 43775, 20520, 796, 45941, 13, 12647, 32604, 7, 37659, 13, 85, 25558, 26933, 20311, 43775, 62, 9464, 11, 2457, 43775, 62, 3506, 46570, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 1303, 220, 38267, 1137, 44, 8881, 44855, 18421, 29809, 1961, 6177, 25261, 8845, 34874, 62, 10116, 38, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 611, 18931, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6404, 2667, 62, 28968, 1343, 705, 40, 17, 9655, 25, 360, 13221, 278, 4259, 602, 1912, 319, 32966, 1586, 3463, 1612, 329, 16449, 6737, 290, 4553, 2951, 1343, 46110, 13, 17, 69, 92, 9, 19282, 4458, 18982, 7, 1845, 17816, 8968, 2364, 19282, 20520, 4008, 198, 220, 220, 220, 4259, 796, 651, 62, 13049, 602, 7, 7890, 17816, 20311, 43775, 6, 4357, 1366, 17816, 2435, 6, 4357, 2124, 1930, 11, 331, 1930, 11, 4814, 11, 1582, 8, 198, 220, 220, 220, 4259, 796, 651, 62, 13049, 62, 34242, 7, 87, 1930, 11, 331, 1930, 11, 4814, 11, 4259, 11, 279, 844, 62, 525, 62, 13500, 8, 198, 220, 220, 198, 220, 220, 220, 1441, 4259, 11, 7890, 11, 1845, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.327887
22,462
""" Given a string, you need to reverse the order of characters in each word within a sentence while still preserving whitespace and initial word order. Example 1: Input: "Let's take LeetCode contest" Output: "s'teL ekat edoCteeL tsetnoc" Note: In the string, each word is separated by single space and there will not be any extra space in the string. """ def reverseWords(s): """ :type s: str :rtype: str """ if not s: return s return ' '.join([w[::-1] for w in s.split(' ')]) if __name__ == '__main__': test_reverseWords()
[ 37811, 198, 15056, 257, 4731, 11, 345, 761, 284, 9575, 262, 1502, 286, 3435, 287, 1123, 1573, 1626, 257, 6827, 981, 991, 23934, 13216, 10223, 290, 4238, 1573, 1502, 13, 198, 198, 16281, 352, 25, 198, 198, 20560, 25, 366, 5756, 338, 1011, 1004, 316, 10669, 8414, 1, 198, 26410, 25, 366, 82, 470, 68, 43, 304, 41826, 1225, 78, 34, 660, 68, 43, 256, 2617, 77, 420, 1, 198, 198, 6425, 25, 554, 262, 4731, 11, 1123, 1573, 318, 11266, 416, 2060, 2272, 290, 612, 481, 407, 307, 597, 3131, 2272, 287, 262, 4731, 13, 198, 37811, 198, 198, 4299, 9575, 37117, 7, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 4906, 264, 25, 965, 198, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 264, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 198, 220, 220, 220, 1441, 705, 45302, 22179, 26933, 86, 58, 3712, 12, 16, 60, 329, 266, 287, 264, 13, 35312, 10786, 705, 8, 12962, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 62, 50188, 37117, 3419, 198 ]
2.84
200
import ctypes import sys from typing import ClassVar, Type from .constants import * module = sys.modules["pyrtma.internal_types"] # RTMA INTERNAL MESSAGE TYPES MT = {} MT["Exit"] = 0 MT["Kill"] = 1 MT["Acknowledge"] = 2 MT["FailSubscribe"] = 6 MT["FailedMessage"] = 8 MT["Connect"] = 13 MT["Disconnect"] = 14 MT["Subscribe"] = 15 MT["Unsubscribe"] = 16 MT["PauseSubscription"] = 85 MT["ResumeSubscription"] = 86 MT["SaveMessageLog"] = 56 MT["MessageLogSaved"] = 57 MT["PauseMessageLogging"] = 58 MT["ResumeMessageLogging"] = 59 MT["ResetMessageLog"] = 60 MT["DumpMessageLog"] = 61 MT["ForceDisconnect"] = 82 MT["ModuleReady"] = 26 MT["TimingMessage"] = 80 # START OF RTMA INTERNAL MESSAGE DEFINITIONS MODULE_ID = ctypes.c_short HOST_ID = ctypes.c_short MSG_TYPE = ctypes.c_int MSG_COUNT = ctypes.c_int class Message(ctypes.Structure): """Subclasses of Message must implement _fields_, header_size, and header_type""" @staticmethod @staticmethod # END OF RTMA INTERNAL MESSAGE DEFINTIONS # Dictionary to lookup message name by message type id number # This needs come after all the message defintions are defined MT_BY_ID = {v: k for k, v in MT.items()} def AddMessage(msg_name, msg_type, msg_def=None, signal=False): """Add a user message definition to the rtma module""" mt = getattr(module, "MT") mt[msg_name] = msg_type mt_by_id = getattr(module, "MT_BY_ID") mt_by_id[msg_type] = msg_name if not signal: setattr(module, msg_name, msg_def) else: setattr(module, msg_name, MSG_TYPE)
[ 11748, 269, 19199, 198, 11748, 25064, 198, 6738, 19720, 1330, 5016, 19852, 11, 5994, 198, 6738, 764, 9979, 1187, 1330, 1635, 198, 198, 21412, 796, 25064, 13, 18170, 14692, 79, 2417, 83, 2611, 13, 32538, 62, 19199, 8973, 198, 198, 2, 11923, 5673, 23255, 45, 1847, 337, 1546, 4090, 8264, 24412, 47, 1546, 198, 198, 13752, 796, 23884, 198, 13752, 14692, 30337, 8973, 796, 657, 198, 13752, 14692, 27100, 8973, 796, 352, 198, 13752, 14692, 32, 5319, 2965, 8973, 796, 362, 198, 13752, 14692, 39044, 27125, 8973, 796, 718, 198, 13752, 14692, 37, 6255, 12837, 8973, 796, 807, 198, 13752, 14692, 13313, 8973, 796, 1511, 198, 13752, 14692, 7279, 8443, 8973, 796, 1478, 198, 13752, 14692, 27125, 8973, 796, 1315, 198, 13752, 14692, 3118, 7266, 12522, 8973, 796, 1467, 198, 13752, 14692, 49991, 7004, 33584, 8973, 796, 7600, 198, 13752, 14692, 4965, 2454, 7004, 33584, 8973, 796, 9849, 198, 13752, 14692, 16928, 12837, 11187, 8973, 796, 7265, 198, 13752, 14692, 12837, 11187, 50, 9586, 8973, 796, 7632, 198, 13752, 14692, 49991, 12837, 11187, 2667, 8973, 796, 7618, 198, 13752, 14692, 4965, 2454, 12837, 11187, 2667, 8973, 796, 7863, 198, 13752, 14692, 4965, 316, 12837, 11187, 8973, 796, 3126, 198, 13752, 14692, 35, 931, 12837, 11187, 8973, 796, 8454, 198, 13752, 14692, 10292, 7279, 8443, 8973, 796, 9415, 198, 13752, 14692, 26796, 35474, 8973, 796, 2608, 198, 13752, 14692, 14967, 278, 12837, 8973, 796, 4019, 198, 198, 2, 33303, 3963, 11923, 5673, 23255, 45, 1847, 337, 1546, 4090, 8264, 5550, 20032, 2043, 11053, 198, 198, 33365, 24212, 62, 2389, 796, 269, 19199, 13, 66, 62, 19509, 198, 39, 10892, 62, 2389, 796, 269, 19199, 13, 66, 62, 19509, 198, 5653, 38, 62, 25216, 796, 269, 19199, 13, 66, 62, 600, 198, 5653, 38, 62, 34, 28270, 796, 269, 19199, 13, 66, 62, 600, 628, 628, 198, 4871, 16000, 7, 310, 9497, 13, 1273, 5620, 2599, 198, 220, 220, 220, 37227, 7004, 37724, 286, 16000, 1276, 3494, 4808, 25747, 62, 11, 13639, 62, 7857, 11, 290, 13639, 62, 4906, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 628, 628, 628, 628, 628, 198, 2, 23578, 3963, 11923, 5673, 23255, 45, 1847, 337, 1546, 4090, 8264, 23449, 12394, 11053, 198, 198, 2, 28261, 284, 35847, 3275, 1438, 416, 3275, 2099, 4686, 1271, 198, 2, 770, 2476, 1282, 706, 477, 262, 3275, 825, 600, 507, 389, 5447, 198, 13752, 62, 17513, 62, 2389, 796, 1391, 85, 25, 479, 329, 479, 11, 410, 287, 19308, 13, 23814, 3419, 92, 628, 198, 4299, 3060, 12837, 7, 19662, 62, 3672, 11, 31456, 62, 4906, 11, 31456, 62, 4299, 28, 14202, 11, 6737, 28, 25101, 2599, 198, 220, 220, 220, 37227, 4550, 257, 2836, 3275, 6770, 284, 262, 374, 83, 2611, 8265, 37811, 198, 220, 220, 220, 45079, 796, 651, 35226, 7, 21412, 11, 366, 13752, 4943, 198, 220, 220, 220, 45079, 58, 19662, 62, 3672, 60, 796, 31456, 62, 4906, 198, 220, 220, 220, 45079, 62, 1525, 62, 312, 796, 651, 35226, 7, 21412, 11, 366, 13752, 62, 17513, 62, 2389, 4943, 198, 220, 220, 220, 45079, 62, 1525, 62, 312, 58, 19662, 62, 4906, 60, 796, 31456, 62, 3672, 628, 220, 220, 220, 611, 407, 6737, 25, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 21412, 11, 31456, 62, 3672, 11, 31456, 62, 4299, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 21412, 11, 31456, 62, 3672, 11, 49064, 62, 25216, 8, 628 ]
2.666667
588
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2021 4Paradigm # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- from testcasebase import TestCaseBase import time import threading from libs.test_loader import load from libs.logger import infoLogger import libs.utils as utils from libs.deco import multi_dimension if __name__ == "__main__": load(TestMakeSnapshot)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 33448, 604, 10044, 324, 17225, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 1332, 7442, 8692, 1330, 6208, 20448, 14881, 198, 11748, 640, 198, 11748, 4704, 278, 198, 6738, 9195, 82, 13, 9288, 62, 29356, 1330, 3440, 198, 6738, 9195, 82, 13, 6404, 1362, 1330, 7508, 11187, 1362, 198, 11748, 9195, 82, 13, 26791, 355, 3384, 4487, 198, 6738, 9195, 82, 13, 12501, 78, 1330, 5021, 62, 46156, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3440, 7, 14402, 12050, 43826, 9442, 8, 198 ]
3.36194
268
import struct import traceback from .util import compute_checksum """ tapextract.py - Extract the binary data from a TAP file """ def read_headerless_data(data_bytes): """only check the checksum and length here""" computed_checksum = compute_checksum(data_bytes[:-1]) checksum = struct.unpack_from('<B', data_bytes, len(data_bytes) - 1)[0] return data_bytes[1:-1] # strip the flags and checksum
[ 11748, 2878, 198, 11748, 12854, 1891, 198, 6738, 764, 22602, 1330, 24061, 62, 42116, 388, 198, 198, 37811, 198, 83, 1758, 742, 974, 13, 9078, 532, 29677, 262, 13934, 1366, 422, 257, 309, 2969, 2393, 198, 37811, 198, 198, 4299, 1100, 62, 25677, 1203, 62, 7890, 7, 7890, 62, 33661, 2599, 198, 220, 220, 220, 37227, 8807, 2198, 262, 8794, 388, 290, 4129, 994, 37811, 198, 220, 220, 220, 29231, 62, 42116, 388, 796, 24061, 62, 42116, 388, 7, 7890, 62, 33661, 58, 21912, 16, 12962, 198, 220, 220, 220, 8794, 388, 796, 2878, 13, 403, 8002, 62, 6738, 10786, 27, 33, 3256, 1366, 62, 33661, 11, 18896, 7, 7890, 62, 33661, 8, 532, 352, 38381, 15, 60, 198, 220, 220, 220, 1441, 1366, 62, 33661, 58, 16, 21912, 16, 60, 220, 1303, 10283, 262, 9701, 290, 8794, 388, 628, 198 ]
2.950355
141
import MolecularSystem msys=MolecularSystem.Universe() atom= for ii in xrange(300): msys.add_atom() msys._atomDB.df
[ 11748, 38275, 11964, 198, 198, 907, 893, 28, 44, 2305, 10440, 11964, 13, 3118, 3997, 3419, 198, 198, 37696, 28, 198, 198, 1640, 21065, 287, 2124, 9521, 7, 6200, 2599, 198, 220, 220, 220, 13845, 893, 13, 2860, 62, 37696, 3419, 198, 198, 907, 893, 13557, 37696, 11012, 13, 7568, 198 ]
2.431373
51
import re
[ 11748, 302, 628, 628, 198 ]
2.8
5
""" Market Watch View """ __docformat__ = "numpy" import argparse from typing import List import re import requests import pandas as pd from bs4 import BeautifulSoup import numpy as np from gamestonk_terminal.helper_funcs import ( check_positive, get_user_agent, clean_data_values_to_float, int_or_round_float, parse_known_args_and_warn, ) # pylint: disable=too-many-branches def sec_fillings(other_args: List[str], ticker: str): """Display SEC filings for a given stock ticker Parameters ---------- other_args : List[str] argparse other args - ["-n", "10"] ticker : str Stock ticker """ parser = argparse.ArgumentParser( add_help=False, prog="sec", description=""" Prints SEC filings of the company. The following fields are expected: Filing Date, Document Date, Type, Category, Amended, and Link. [Source: Market Watch] """, ) parser.add_argument( "-n", "--num", action="store", dest="n_num", type=check_positive, default=5, help="number of latest SEC filings.", ) try: ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return pd.set_option("display.max_colwidth", None) url_financials = f"https://www.marketwatch.com/investing/stock/{ticker}/financials/secfilings" text_soup_financials = BeautifulSoup( requests.get(url_financials, headers={"User-Agent": get_user_agent()}).text, "lxml", ) # a_financials_header = list() df_financials = None b_ready_to_process_info = False soup_financials = text_soup_financials.findAll("tr", {"class": "table__row"}) for financials_info in soup_financials: a_financials = financials_info.text.split("\n") # If header has been processed and dataframe created ready to populate the SEC information if b_ready_to_process_info: l_financials_info = [a_financials[2]] l_financials_info.extend(a_financials[5:-1]) l_financials_info.append(financials_info.a["href"]) # Append data values to financials df_financials.loc[len(df_financials.index)] = l_financials_info # type: ignore if "Filing Date" in a_financials: l_financials_header = [a_financials[2]] l_financials_header.extend(a_financials[5:-1]) l_financials_header.append("Link") df_financials = pd.DataFrame(columns=l_financials_header) df_financials.set_index("Filing Date") b_ready_to_process_info = True # Set Filing Date as index df_financials = df_financials.set_index("Filing Date") # type: ignore print(df_financials.head(n=ns_parser.n_num).to_string()) print("") except Exception as e: print(e) print("") return def sean_seah_warnings(other_args: List[str], ticker: str): """Display Sean Seah warnings Parameters ---------- other_args : List[str] argparse other args ticker : str Stock ticker """ parser = argparse.ArgumentParser( add_help=False, prog="warnings", description=""" Sean Seah warnings. Check: Consistent historical earnings per share; Consistently high return on equity; Consistently high return on assets; 5x Net Income > Long-Term Debt; and Interest coverage ratio more than 3. See https://www.drwealth.com/gone-fishing-with-buffett-by-sean-seah/comment-page-1/ [Source: Market Watch] """, ) parser.add_argument( "-i", "--info", action="store_true", default=False, dest="b_info", help="provide more information about Sean Seah warning rules.", ) parser.add_argument( "-d", "--debug", action="store_true", default=False, dest="b_debug", help="print insights into warnings calculation.", ) try: ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return if ns_parser.b_info: filepath = "fundamental_analysis/info_sean_seah.txt" with open(filepath) as fp: line = fp.readline() while line: print(f"{line.strip()}") line = fp.readline() print("") # From INCOME STATEMENT, get: 'EPS (Basic)', 'Net Income', 'Interest Expense', 'EBITDA' url_financials = ( f"https://www.marketwatch.com/investing/stock/{ticker}/financials/income" ) text_soup_financials = BeautifulSoup( requests.get(url_financials, headers={"User-Agent": get_user_agent()}).text, "lxml", ) # Define financials columns a_financials_header = list() for financials_header in text_soup_financials.findAll( "th", {"class": "overflow__heading"} ): a_financials_header.append( financials_header.text.strip("\n").split("\n")[0] ) df_financials = pd.DataFrame(columns=a_financials_header[0:-1]) # Add financials values soup_financials = text_soup_financials.findAll( lambda tag: tag.name == "tr" and tag.get("class") == ["table__row"] ) soup_financials += text_soup_financials.findAll( "tr", {"class": "table__row is-highlighted"} ) for financials_info in soup_financials: financials_row = financials_info.text.split("\n") if len(financials_row) > 5: for item in financials_row: if bool(re.search(r"\d", item)): a_financials_info = financials_info.text.split("\n") l_financials = [a_financials_info[2]] l_financials.extend(a_financials_info[5:-2]) # Append data values to financials df_financials.loc[len(df_financials.index)] = l_financials break l_fin = ["EPS (Basic)", "Net Income", "Interest Expense", "EBITDA"] if not all(elem in df_financials["Item"].values for elem in l_fin): print("The source doesn't contain all necessary financial data") print(url_financials, "\n") return # Set item name as index df_financials = df_financials.set_index("Item") df_sean_seah = df_financials.loc[l_fin] # From BALANCE SHEET, get: 'Liabilities & Shareholders\' Equity', 'Long-Term Debt' url_financials = f"https://www.marketwatch.com/investing/stock/{ticker}/financials/balance-sheet" text_soup_financials = BeautifulSoup( requests.get(url_financials, headers={"User-Agent": get_user_agent()}).text, "lxml", ) # Define financials columns a_financials_header = list() for financials_header in text_soup_financials.findAll( "th", {"class": "overflow__heading"} ): a_financials_header.append( financials_header.text.strip("\n").split("\n")[0] ) s_header_end_trend = "5-year trend" df_financials = pd.DataFrame( columns=a_financials_header[ 0 : a_financials_header.index(s_header_end_trend) ] ) # Add financials values soup_financials = text_soup_financials.findAll( lambda tag: tag.name == "tr" and tag.get("class") == ["table__row"] ) soup_financials += text_soup_financials.findAll( "tr", {"class": "table__row is-highlighted"} ) for financials_info in soup_financials: financials_row = financials_info.text.split("\n") if len(financials_row) > 5: for item in financials_row: if bool(re.search(r"\d", item)): a_financials_info = financials_info.text.split("\n") l_financials = [a_financials_info[2]] l_financials.extend(a_financials_info[5:-2]) # Append data values to financials df_financials.loc[len(df_financials.index)] = l_financials break # Set item name as index df_financials = df_financials.set_index("Item") # Create dataframe to compute meaningful metrics from sean seah book df_sean_seah = df_sean_seah.append( df_financials.loc[ [ "Total Shareholders' Equity", "Liabilities & Shareholders' Equity", "Long-Term Debt", ] ] ) # Clean these metrics by parsing their values to float df_sean_seah = df_sean_seah.applymap(lambda x: clean_data_values_to_float(x)) # Add additional necessary metrics series = ( df_sean_seah.loc["Net Income"] / df_sean_seah.loc["Total Shareholders' Equity"] ) series.name = "ROE" df_sean_seah = df_sean_seah.append(series) series = df_sean_seah.loc["EBITDA"] / df_sean_seah.loc["Interest Expense"] series.name = "Interest Coverage Ratio" df_sean_seah = df_sean_seah.append(series) series = ( df_sean_seah.loc["Net Income"] / df_sean_seah.loc["Liabilities & Shareholders' Equity"] ) series.name = "ROA" df_sean_seah = df_sean_seah.append(series) print(df_sean_seah.applymap(lambda x: int_or_round_float(x)).to_string()) n_warnings = 0 print("\nWARNINGS:") if np.any(df_sean_seah.loc["EPS (Basic)"].diff().dropna().values < 0): print("NO consistent historical earnings per share") n_warnings += 1 if ns_parser.b_debug: sa_eps = np.array2string( df_sean_seah.loc["EPS (Basic)"].values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" EPS: {sa_eps}") sa_growth = np.array2string( df_sean_seah.loc["EPS (Basic)"].diff().dropna().values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" Growth: {sa_growth} < 0") if np.any(df_sean_seah.loc["ROE"].values < 0.15): print("NOT consistently high return on equity") n_warnings += 1 if ns_parser.b_debug: sa_roe = np.array2string( df_sean_seah.loc["ROE"].values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" ROE: {sa_roe} < 0.15") if np.any(df_sean_seah.loc["ROA"].values < 0.07): print("NOT consistently high return on assets") n_warnings += 1 if ns_parser.b_debug: sa_roa = np.array2string( df_sean_seah.loc["ROA"].values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" ROA: {sa_roa} < 0.07") if np.any( df_sean_seah.loc["Long-Term Debt"].values > 5 * df_sean_seah.loc["Net Income"].values ): print("5x Net Income < Long-Term Debt") n_warnings += 1 if ns_parser.b_debug: sa_5_net_income = np.array2string( 5 * df_sean_seah.loc["Net Income"].values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" 5x NET Income: {sa_5_net_income}") sa_long_term_debt = np.array2string( df_sean_seah.loc["Long-Term Debt"].values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" lower than Long-Term Debt: {sa_long_term_debt}") if np.any(df_sean_seah.loc["Interest Coverage Ratio"].values < 3): print("Interest coverage ratio less than 3") n_warnings += 1 if ns_parser.b_debug: sa_interest_coverage_ratio = np.array2string( 100 * df_sean_seah.loc["Interest Coverage Ratio"].values, formatter={"float_kind": lambda x: int_or_round_float(x)}, ) print(f" Interest Coverage Ratio: {sa_interest_coverage_ratio} < 3") if n_warnings == 0: print("None. Good stonk") print("") except Exception as e: print(e) print("") return
[ 37811, 5991, 6305, 3582, 37227, 198, 834, 15390, 18982, 834, 796, 366, 77, 32152, 1, 198, 198, 11748, 1822, 29572, 198, 6738, 19720, 1330, 7343, 198, 11748, 302, 198, 11748, 7007, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 9106, 19115, 74, 62, 23705, 282, 13, 2978, 525, 62, 12543, 6359, 1330, 357, 198, 220, 220, 220, 2198, 62, 24561, 11, 198, 220, 220, 220, 651, 62, 7220, 62, 25781, 11, 198, 220, 220, 220, 3424, 62, 7890, 62, 27160, 62, 1462, 62, 22468, 11, 198, 220, 220, 220, 493, 62, 273, 62, 744, 62, 22468, 11, 198, 220, 220, 220, 21136, 62, 4002, 62, 22046, 62, 392, 62, 40539, 11, 198, 8, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 1671, 12140, 628, 198, 4299, 792, 62, 20797, 654, 7, 847, 62, 22046, 25, 7343, 58, 2536, 4357, 4378, 263, 25, 965, 2599, 198, 220, 220, 220, 37227, 23114, 10729, 28058, 329, 257, 1813, 4283, 4378, 263, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 584, 62, 22046, 1058, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 29572, 584, 26498, 532, 14631, 12, 77, 1600, 366, 940, 8973, 198, 220, 220, 220, 4378, 263, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10500, 4378, 263, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 16794, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1172, 2625, 2363, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 82, 10729, 28058, 286, 262, 1664, 13, 383, 1708, 7032, 389, 2938, 25, 376, 4386, 7536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16854, 7536, 11, 5994, 11, 21743, 11, 1703, 1631, 11, 290, 7502, 13, 685, 7416, 25, 5991, 6305, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 22510, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 77, 62, 22510, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 9122, 62, 24561, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 17618, 286, 3452, 10729, 28058, 33283, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 36545, 62, 48610, 796, 21136, 62, 4002, 62, 22046, 62, 392, 62, 40539, 7, 48610, 11, 584, 62, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 36545, 62, 48610, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 2617, 62, 18076, 7203, 13812, 13, 9806, 62, 4033, 10394, 1600, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 46921, 82, 796, 277, 1, 5450, 1378, 2503, 13, 10728, 8340, 13, 785, 14, 24859, 278, 14, 13578, 14, 90, 83, 15799, 92, 14, 46921, 82, 14, 2363, 10379, 654, 1, 628, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 82, 10486, 62, 46921, 82, 796, 23762, 50, 10486, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 1136, 7, 6371, 62, 46921, 82, 11, 24697, 28, 4895, 12982, 12, 36772, 1298, 651, 62, 7220, 62, 25781, 3419, 92, 737, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 19875, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 62, 46921, 82, 62, 25677, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1493, 62, 1462, 62, 14681, 62, 10951, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 17141, 62, 46921, 82, 796, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7203, 2213, 1600, 19779, 4871, 1298, 366, 11487, 834, 808, 20662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3176, 82, 62, 10951, 287, 17141, 62, 46921, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 796, 3176, 82, 62, 10951, 13, 5239, 13, 35312, 7203, 59, 77, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 13639, 468, 587, 13686, 290, 1366, 14535, 2727, 3492, 284, 48040, 262, 10729, 1321, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 275, 62, 1493, 62, 1462, 62, 14681, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 62, 10951, 796, 685, 64, 62, 46921, 82, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 62, 10951, 13, 2302, 437, 7, 64, 62, 46921, 82, 58, 20, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 62, 10951, 13, 33295, 7, 46921, 82, 62, 10951, 13, 64, 14692, 33257, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2034, 437, 1366, 3815, 284, 3176, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 13, 17946, 58, 11925, 7, 7568, 62, 46921, 82, 13, 9630, 15437, 796, 300, 62, 46921, 82, 62, 10951, 220, 1303, 2099, 25, 8856, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 37, 4386, 7536, 1, 287, 257, 62, 46921, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 62, 25677, 796, 685, 64, 62, 46921, 82, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 62, 25677, 13, 2302, 437, 7, 64, 62, 46921, 82, 58, 20, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 62, 25677, 13, 33295, 7203, 11280, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 28, 75, 62, 46921, 82, 62, 25677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 13, 2617, 62, 9630, 7203, 37, 4386, 7536, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 62, 1493, 62, 1462, 62, 14681, 62, 10951, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 376, 4386, 7536, 355, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 47764, 62, 46921, 82, 13, 2617, 62, 9630, 7203, 37, 4386, 7536, 4943, 220, 1303, 2099, 25, 8856, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7568, 62, 46921, 82, 13, 2256, 7, 77, 28, 5907, 62, 48610, 13, 77, 62, 22510, 737, 1462, 62, 8841, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4943, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 4299, 384, 272, 62, 325, 993, 62, 40539, 654, 7, 847, 62, 22046, 25, 7343, 58, 2536, 4357, 4378, 263, 25, 965, 2599, 198, 220, 220, 220, 37227, 23114, 11465, 16214, 14601, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 584, 62, 22046, 1058, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 29572, 584, 26498, 198, 220, 220, 220, 4378, 263, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 10500, 4378, 263, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 16794, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1172, 2625, 40539, 654, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11465, 16214, 14601, 13, 6822, 25, 3515, 7609, 6754, 12042, 583, 2648, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3515, 396, 1473, 1029, 1441, 319, 13598, 26, 3515, 396, 1473, 1029, 1441, 319, 6798, 26, 642, 87, 3433, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19003, 1875, 5882, 12, 40596, 30319, 26, 290, 12033, 5197, 8064, 517, 621, 513, 13, 4091, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 2503, 13, 7109, 14298, 13, 785, 14, 21260, 12, 69, 3929, 12, 4480, 12, 36873, 3087, 12, 1525, 12, 325, 272, 12, 325, 993, 14, 23893, 12, 7700, 12, 16, 14, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7416, 25, 5991, 6305, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 72, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 10951, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 65, 62, 10951, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15234, 485, 517, 1321, 546, 11465, 16214, 6509, 3173, 33283, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 24442, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 65, 62, 24442, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 4798, 17218, 656, 14601, 17952, 33283, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 36545, 62, 48610, 796, 21136, 62, 4002, 62, 22046, 62, 392, 62, 40539, 7, 48610, 11, 584, 62, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 36545, 62, 48610, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 62, 48610, 13, 65, 62, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 366, 10990, 6860, 62, 20930, 14, 10951, 62, 325, 272, 62, 325, 993, 13, 14116, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 6978, 8, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 277, 79, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 90, 1370, 13, 36311, 3419, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 277, 79, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3574, 3268, 9858, 36, 15486, 12529, 11, 651, 25, 705, 36, 3705, 357, 26416, 8, 3256, 705, 7934, 19003, 3256, 705, 19302, 5518, 1072, 3256, 705, 36, 26094, 5631, 6, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 46921, 82, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5450, 1378, 2503, 13, 10728, 8340, 13, 785, 14, 24859, 278, 14, 13578, 14, 90, 83, 15799, 92, 14, 46921, 82, 14, 12519, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 82, 10486, 62, 46921, 82, 796, 23762, 50, 10486, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 1136, 7, 6371, 62, 46921, 82, 11, 24697, 28, 4895, 12982, 12, 36772, 1298, 651, 62, 7220, 62, 25781, 3419, 92, 737, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 19875, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 3176, 82, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 62, 25677, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3176, 82, 62, 25677, 287, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 400, 1600, 19779, 4871, 1298, 366, 2502, 11125, 834, 33878, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 62, 25677, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3176, 82, 62, 25677, 13, 5239, 13, 36311, 7203, 59, 77, 11074, 35312, 7203, 59, 77, 4943, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 28, 64, 62, 46921, 82, 62, 25677, 58, 15, 21912, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3176, 82, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 17141, 62, 46921, 82, 796, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 7621, 25, 7621, 13, 3672, 6624, 366, 2213, 1, 290, 7621, 13, 1136, 7203, 4871, 4943, 6624, 14631, 11487, 834, 808, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 17141, 62, 46921, 82, 15853, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2213, 1600, 19779, 4871, 1298, 366, 11487, 834, 808, 318, 12, 8929, 2971, 276, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3176, 82, 62, 10951, 287, 17141, 62, 46921, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3176, 82, 62, 808, 796, 3176, 82, 62, 10951, 13, 5239, 13, 35312, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 46921, 82, 62, 808, 8, 1875, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 3176, 82, 62, 808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20512, 7, 260, 13, 12947, 7, 81, 1, 59, 67, 1600, 2378, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 62, 10951, 796, 3176, 82, 62, 10951, 13, 5239, 13, 35312, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 796, 685, 64, 62, 46921, 82, 62, 10951, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 13, 2302, 437, 7, 64, 62, 46921, 82, 62, 10951, 58, 20, 21912, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2034, 437, 1366, 3815, 284, 3176, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 13, 17946, 58, 11925, 7, 7568, 62, 46921, 82, 13, 9630, 15437, 796, 300, 62, 46921, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 300, 62, 15643, 796, 14631, 36, 3705, 357, 26416, 42501, 366, 7934, 19003, 1600, 366, 19302, 5518, 1072, 1600, 366, 36, 26094, 5631, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 7, 68, 10671, 287, 47764, 62, 46921, 82, 14692, 7449, 1, 4083, 27160, 329, 9766, 76, 287, 300, 62, 15643, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 464, 2723, 1595, 470, 3994, 477, 3306, 3176, 1366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 6371, 62, 46921, 82, 11, 37082, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 2378, 1438, 355, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 47764, 62, 46921, 82, 13, 2617, 62, 9630, 7203, 7449, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 796, 47764, 62, 46921, 82, 13, 17946, 58, 75, 62, 15643, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3574, 48091, 19240, 48052, 2767, 11, 651, 25, 705, 32304, 5738, 1222, 8734, 10476, 43054, 35659, 3256, 705, 14617, 12, 40596, 30319, 6, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 46921, 82, 796, 277, 1, 5450, 1378, 2503, 13, 10728, 8340, 13, 785, 14, 24859, 278, 14, 13578, 14, 90, 83, 15799, 92, 14, 46921, 82, 14, 20427, 12, 21760, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 82, 10486, 62, 46921, 82, 796, 23762, 50, 10486, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7007, 13, 1136, 7, 6371, 62, 46921, 82, 11, 24697, 28, 4895, 12982, 12, 36772, 1298, 651, 62, 7220, 62, 25781, 3419, 92, 737, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 19875, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 3176, 82, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 62, 25677, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3176, 82, 62, 25677, 287, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 400, 1600, 19779, 4871, 1298, 366, 2502, 11125, 834, 33878, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 62, 25677, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3176, 82, 62, 25677, 13, 5239, 13, 36311, 7203, 59, 77, 11074, 35312, 7203, 59, 77, 4943, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 264, 62, 25677, 62, 437, 62, 83, 10920, 796, 366, 20, 12, 1941, 5182, 1, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 64, 62, 46921, 82, 62, 25677, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 1058, 257, 62, 46921, 82, 62, 25677, 13, 9630, 7, 82, 62, 25677, 62, 437, 62, 83, 10920, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3176, 82, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 17141, 62, 46921, 82, 796, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 7621, 25, 7621, 13, 3672, 6624, 366, 2213, 1, 290, 7621, 13, 1136, 7203, 4871, 4943, 6624, 14631, 11487, 834, 808, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 17141, 62, 46921, 82, 15853, 2420, 62, 82, 10486, 62, 46921, 82, 13, 19796, 3237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2213, 1600, 19779, 4871, 1298, 366, 11487, 834, 808, 318, 12, 8929, 2971, 276, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3176, 82, 62, 10951, 287, 17141, 62, 46921, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3176, 82, 62, 808, 796, 3176, 82, 62, 10951, 13, 5239, 13, 35312, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 46921, 82, 62, 808, 8, 1875, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 3176, 82, 62, 808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20512, 7, 260, 13, 12947, 7, 81, 1, 59, 67, 1600, 2378, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 62, 46921, 82, 62, 10951, 796, 3176, 82, 62, 10951, 13, 5239, 13, 35312, 7203, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 796, 685, 64, 62, 46921, 82, 62, 10951, 58, 17, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 62, 46921, 82, 13, 2302, 437, 7, 64, 62, 46921, 82, 62, 10951, 58, 20, 21912, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2034, 437, 1366, 3815, 284, 3176, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 13, 17946, 58, 11925, 7, 7568, 62, 46921, 82, 13, 9630, 15437, 796, 300, 62, 46921, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 2378, 1438, 355, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 796, 47764, 62, 46921, 82, 13, 2617, 62, 9630, 7203, 7449, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 1366, 14535, 284, 24061, 11570, 20731, 422, 384, 272, 384, 993, 1492, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 796, 47764, 62, 325, 272, 62, 325, 993, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 46921, 82, 13, 17946, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14957, 8734, 10476, 6, 35659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32304, 5738, 1222, 8734, 10476, 6, 35659, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14617, 12, 40596, 30319, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5985, 777, 20731, 416, 32096, 511, 3815, 284, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 796, 47764, 62, 325, 272, 62, 325, 993, 13, 39014, 8899, 7, 50033, 2124, 25, 3424, 62, 7890, 62, 27160, 62, 1462, 62, 22468, 7, 87, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3224, 3306, 20731, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 7934, 19003, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 14957, 8734, 10476, 6, 35659, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 13, 3672, 796, 366, 13252, 36, 1, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 796, 47764, 62, 325, 272, 62, 325, 993, 13, 33295, 7, 25076, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2168, 796, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 36, 26094, 5631, 8973, 1220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 19302, 5518, 1072, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 13, 3672, 796, 366, 19302, 33998, 33956, 1, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 796, 47764, 62, 325, 272, 62, 325, 993, 13, 33295, 7, 25076, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2168, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 7934, 19003, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 32304, 5738, 1222, 8734, 10476, 6, 35659, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 13, 3672, 796, 366, 13252, 32, 1, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 796, 47764, 62, 325, 272, 62, 325, 993, 13, 33295, 7, 25076, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7568, 62, 325, 272, 62, 325, 993, 13, 39014, 8899, 7, 50033, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 29720, 1462, 62, 8841, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40539, 654, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 31502, 50, 25, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 7568, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 36, 3705, 357, 26416, 16725, 4083, 26069, 22446, 14781, 2616, 22446, 27160, 1279, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15285, 6414, 6754, 12042, 583, 2648, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40539, 654, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 62, 48610, 13, 65, 62, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 25386, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 36, 3705, 357, 26416, 16725, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 47013, 25, 1391, 11400, 62, 25386, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 27922, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 36, 3705, 357, 26416, 16725, 4083, 26069, 22446, 14781, 2616, 22446, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 19045, 25, 1391, 11400, 62, 27922, 92, 1279, 657, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 7568, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 13252, 36, 1, 4083, 27160, 1279, 657, 13, 1314, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11929, 9835, 1029, 1441, 319, 13598, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40539, 654, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 62, 48610, 13, 65, 62, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 20646, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 13252, 36, 1, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 15107, 36, 25, 1391, 11400, 62, 20646, 92, 1279, 657, 13, 1314, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 7568, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 13252, 32, 1, 4083, 27160, 1279, 657, 13, 2998, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11929, 9835, 1029, 1441, 319, 6798, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40539, 654, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 62, 48610, 13, 65, 62, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 305, 64, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 13252, 32, 1, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 15107, 32, 25, 1391, 11400, 62, 305, 64, 92, 1279, 657, 13, 2998, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 14617, 12, 40596, 30319, 1, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1875, 642, 1635, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 7934, 19003, 1, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20, 87, 3433, 19003, 1279, 5882, 12, 40596, 30319, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40539, 654, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 62, 48610, 13, 65, 62, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 20, 62, 3262, 62, 12519, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 1635, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 7934, 19003, 1, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 642, 87, 30502, 19003, 25, 1391, 11400, 62, 20, 62, 3262, 62, 12519, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 6511, 62, 4354, 62, 11275, 83, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 14617, 12, 40596, 30319, 1, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 2793, 621, 5882, 12, 40596, 30319, 25, 1391, 11400, 62, 6511, 62, 4354, 62, 11275, 83, 92, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1092, 7, 7568, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 19302, 33998, 33956, 1, 4083, 27160, 1279, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 19302, 5197, 8064, 1342, 621, 513, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40539, 654, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 62, 48610, 13, 65, 62, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 62, 9446, 62, 1073, 1857, 62, 10366, 952, 796, 45941, 13, 18747, 17, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 1635, 47764, 62, 325, 272, 62, 325, 993, 13, 17946, 14692, 19302, 33998, 33956, 1, 4083, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 28, 4895, 22468, 62, 11031, 1298, 37456, 2124, 25, 493, 62, 273, 62, 744, 62, 22468, 7, 87, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 220, 220, 12033, 33998, 33956, 25, 1391, 11400, 62, 9446, 62, 1073, 1857, 62, 10366, 952, 92, 1279, 513, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 299, 62, 40539, 654, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14202, 13, 4599, 336, 261, 74, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4943, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198 ]
1.985849
6,572
# TODO - redundant file, and functionality, as we use scipy! import math
[ 2, 16926, 46, 532, 30806, 2393, 11, 290, 11244, 11, 355, 356, 779, 629, 541, 88, 0, 198, 198, 11748, 10688, 628 ]
3.409091
22
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject from facebook_business.adobjects.abstractcrudobject import AbstractCrudObject from facebook_business.adobjects.objectparser import ObjectParser from facebook_business.api import FacebookRequest from facebook_business.typechecker import TypeChecker """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """
[ 2, 15069, 1946, 3203, 11, 3457, 13, 198, 198, 2, 921, 389, 29376, 7520, 257, 1729, 12, 41195, 11, 8688, 11, 29359, 12, 5787, 5964, 284, 198, 2, 779, 11, 4866, 11, 13096, 11, 290, 14983, 428, 3788, 287, 2723, 2438, 393, 13934, 198, 2, 1296, 329, 779, 287, 4637, 351, 262, 3992, 2594, 290, 23113, 2810, 416, 198, 2, 3203, 13, 198, 198, 2, 1081, 351, 597, 3788, 326, 48105, 351, 262, 3203, 3859, 11, 534, 779, 198, 2, 286, 428, 3788, 318, 2426, 284, 262, 3203, 23836, 34200, 290, 198, 2, 42283, 685, 4023, 1378, 16244, 364, 13, 19024, 13, 785, 14, 30586, 14, 4083, 770, 6634, 4003, 198, 2, 2236, 307, 3017, 287, 477, 9088, 393, 8904, 16690, 286, 262, 3788, 13, 198, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 198, 2, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 198, 2, 16034, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 198, 2, 5550, 1847, 20754, 3268, 3336, 47466, 13, 198, 198, 6738, 23960, 62, 22680, 13, 324, 48205, 13, 397, 8709, 15252, 1330, 27741, 10267, 198, 6738, 23960, 62, 22680, 13, 324, 48205, 13, 397, 8709, 6098, 463, 15252, 1330, 27741, 13916, 463, 10267, 198, 6738, 23960, 62, 22680, 13, 324, 48205, 13, 15252, 48610, 1330, 9515, 46677, 198, 6738, 23960, 62, 22680, 13, 15042, 1330, 3203, 18453, 198, 6738, 23960, 62, 22680, 13, 4906, 9122, 263, 1330, 5994, 9787, 263, 198, 198, 37811, 198, 1212, 1398, 318, 8295, 12, 27568, 13, 198, 198, 1890, 597, 2428, 393, 3895, 7007, 3519, 284, 428, 1398, 11, 3387, 1309, 514, 760, 319, 198, 12567, 290, 356, 1183, 4259, 287, 674, 2438, 5235, 9355, 13, 775, 1183, 407, 307, 1498, 284, 2453, 198, 31216, 2581, 329, 428, 1398, 13, 198, 37811, 628, 198 ]
3.97
400
''' Evaluation of agent trajectories against the simulator (nav graph) ground truth ''' import os import sys import json import math from collections import defaultdict import networkx as nx import numpy as np from dtw import DTW BASE_DIR = 'src/vln_evaluation/' GT = BASE_DIR + 'data/R2R_coda.json' CONN = BASE_DIR + 'data/connectivity/' WMAP_JSON_OUTPUT = BASE_DIR + 'data/bags/wmap/submit_coda_robot_wmap.json' NOMAP_JSON_OUTPUT = BASE_DIR + 'data/bags/nomap/submit_coda_robot_nomap.json' class SimEvaluation(object): ''' Results submission format: [{'instr_id': string, 'trajectory':[(viewpoint_id, heading_rads, elevation_rads),] } ] ''' def nav_error(self, instr_id, path): ''' Shortcut for getting some numbers on the fly. ''' gt = self.gt[int(instr_id.split('_')[0])] start = gt['path'][0] assert start == path[0][0], 'Result trajectories should include the start position' goal = gt['path'][-1] final_position = path[-1][0] return self.distances[final_position][goal] def _score_item(self, instr_id, path): ''' Calculate error based on the final position in trajectory, and also the closest position (oracle stopping rule). ''' gt = self.gt[instr_id] path = self.path_to_points(path, gt['scan']) start_pos = gt['trajectory'][0] assert self.distance(start_pos, path[0]) < 0.1, 'Result trajectories should include the start position' goal_pos = gt['trajectory'][-1] final_position = path[-1] #APPROXIMATION - We just use a straight line distance here final_dist = self.distance(goal_pos, final_position) self.scores['nav_errors'].append(final_dist) min_dist = final_dist path_len = 0 for i,pos in enumerate(path): dist = self.distance(goal_pos, pos) if dist < min_dist: min_dist = dist if i > 0: path_len += self.distance(pos, path[i-1]) self.scores['oracle_errors'].append(min_dist) self.scores['trajectory_lengths'].append(path_len) if 'path' in gt: self.scores['shortest_path_lengths'].append(self.distances[gt['scan']][gt['path'][0]][gt['path'][-1]]) else: # Assume the reference path is the shortest path to goal ref_len = np.array([self.distance(a,b) for a,b in zip(path[:-1],path[1:])]).sum() self.scores['shortest_path_lengths'].append(ref_len) # Add ntdw and sdtw self.scores['ndtw'].append(self.dtw(path, gt['trajectory'], metric='ndtw')) self.scores['sdtw'].append(self.dtw(path, gt['trajectory'], metric='sdtw')) def score(self, data): ''' Evaluate each agent trajectory based on how close it got to the goal location ''' self.scores = defaultdict(list) instr_ids = set(self.instr_ids) for item in data: item['instr_id'] = str(item['instr_id']) # Check against expected ids if item['instr_id'] in ['0_0', '0_1', '0_2', '9_0', '9_1', '9_2', '32_0', '32_1', '32_2']: continue if item['instr_id'] in instr_ids: instr_ids.remove(item['instr_id']) self._score_item(item['instr_id'], item['trajectory']) if len(instr_ids) != 0: print('Trajectories not provided for %d instruction ids: %s' % (len(instr_ids),instr_ids)) num_successes = len([i for i in self.scores['nav_errors'] if i < self.error_margin]) oracle_successes = len([i for i in self.scores['oracle_errors'] if i < self.error_margin]) spls = [] for err,length,sp in zip(self.scores['nav_errors'],self.scores['trajectory_lengths'],self.scores['shortest_path_lengths']): if err < self.error_margin: spls.append(sp/max(length,sp)) else: spls.append(0) score_summary ={ 'length': np.average(self.scores['trajectory_lengths']), 'nav_error': np.average(self.scores['nav_errors']), 'oracle success_rate': float(oracle_successes)/float(len(self.scores['oracle_errors'])), 'success_rate': float(num_successes)/float(len(self.scores['nav_errors'])), 'spl': np.average(spls), 'sdtw': np.average(self.scores['sdtw']), 'ndtw': np.average(self.scores['ndtw']) } assert score_summary['spl'] <= score_summary['success_rate'] return score_summary, self.scores def score_ntdw(): ''' Calculate ntdw between different experimental settings for paper Table 3. ''' EXPS = ['sim_results/baseline/submit_coda.json', 'sim_results/baseline/submit_coda_theta_1.json', 'sim_results/baseline/submit_coda_theta_2.json', 'sim_results/baseline/submit_coda_theta_3.json', 'sim_results/baseline_color_jittered/submit_coda_theta_1.json', 'sim_results/baseline_color_jittered/submit_coda_theta_2.json', 'sim_results/baseline_color_jittered/submit_coda_theta_3.json', 'bags/wmap/submit_coda_robot_wmap.json', # Robot with map 'bags/nomap/submit_coda_robot_nomap.json'] # Robot no map ntdw = np.zeros((len(EXPS), len(EXPS))) scorer = DTW() print('\nCalculating ntdw matrix for %s' % EXPS) for i, ref_path in enumerate(EXPS): with open('src/vln_evaluation/data/%s' % ref_path) as f: ref = json.load(f) for item in ref: item['path_id'] = int(item['instr_id'].split('_')[0]) evaluator = SimEvaluation(ref, CONN) for j, pred_path in enumerate(EXPS): with open('src/vln_evaluation/data/%s' % pred_path) as f: pred = json.load(f) summary,scores = evaluator.score(pred) ntdw[i,j] = summary['ndtw'] print(ntdw) if __name__ == '__main__': evaluate(WMAP_JSON_OUTPUT) evaluate(NOMAP_JSON_OUTPUT) score_ntdw()
[ 7061, 6, 34959, 286, 5797, 20134, 1749, 1028, 262, 35375, 357, 28341, 4823, 8, 220, 198, 220, 220, 220, 2323, 3872, 705, 7061, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 10688, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 288, 4246, 1330, 24311, 54, 628, 198, 33, 11159, 62, 34720, 796, 705, 10677, 14, 85, 18755, 62, 18206, 2288, 14, 6, 198, 19555, 796, 49688, 62, 34720, 1343, 705, 7890, 14, 49, 17, 49, 62, 66, 11329, 13, 17752, 6, 198, 10943, 45, 796, 49688, 62, 34720, 1343, 705, 7890, 14, 8443, 3458, 14, 6, 198, 22117, 2969, 62, 40386, 62, 2606, 7250, 3843, 796, 49688, 62, 34720, 1343, 705, 7890, 14, 34005, 14, 86, 8899, 14, 46002, 62, 66, 11329, 62, 305, 13645, 62, 86, 8899, 13, 17752, 6, 198, 45, 2662, 2969, 62, 40386, 62, 2606, 7250, 3843, 796, 49688, 62, 34720, 1343, 705, 7890, 14, 34005, 14, 26601, 499, 14, 46002, 62, 66, 11329, 62, 305, 13645, 62, 26601, 499, 13, 17752, 6, 628, 198, 198, 4871, 3184, 36, 2100, 2288, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 15691, 14498, 5794, 25, 220, 685, 90, 6, 259, 2536, 62, 312, 10354, 4731, 11, 705, 9535, 752, 652, 10354, 58, 7, 1177, 4122, 62, 312, 11, 9087, 62, 81, 5643, 11, 22910, 62, 81, 5643, 828, 60, 1782, 2361, 705, 7061, 628, 198, 220, 220, 220, 825, 6812, 62, 18224, 7, 944, 11, 6480, 62, 312, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 10073, 8968, 329, 1972, 617, 3146, 319, 262, 6129, 13, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 796, 2116, 13, 13655, 58, 600, 7, 259, 2536, 62, 312, 13, 35312, 10786, 62, 11537, 58, 15, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 308, 83, 17816, 6978, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 923, 6624, 3108, 58, 15, 7131, 15, 4357, 705, 23004, 20134, 1749, 815, 2291, 262, 923, 2292, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 796, 308, 83, 17816, 6978, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 9150, 796, 3108, 58, 12, 16, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17080, 1817, 58, 20311, 62, 9150, 7131, 35231, 60, 628, 198, 220, 220, 220, 825, 4808, 26675, 62, 9186, 7, 944, 11, 6480, 62, 312, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 27131, 378, 4049, 1912, 319, 262, 2457, 2292, 287, 22942, 11, 290, 635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 11706, 2292, 357, 273, 6008, 12225, 3896, 737, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 796, 2116, 13, 13655, 58, 259, 2536, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 2116, 13, 6978, 62, 1462, 62, 13033, 7, 6978, 11, 308, 83, 17816, 35836, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 1930, 796, 308, 83, 17816, 9535, 752, 652, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 30246, 7, 9688, 62, 1930, 11, 3108, 58, 15, 12962, 1279, 657, 13, 16, 11, 705, 23004, 20134, 1749, 815, 2291, 262, 923, 2292, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 62, 1930, 796, 308, 83, 17816, 9535, 752, 652, 6, 7131, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 9150, 796, 3108, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2969, 31190, 55, 3955, 6234, 532, 775, 655, 779, 257, 3892, 1627, 5253, 994, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 17080, 796, 2116, 13, 30246, 7, 35231, 62, 1930, 11, 2457, 62, 9150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 28341, 62, 48277, 6, 4083, 33295, 7, 20311, 62, 17080, 8, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 17080, 796, 2457, 62, 17080, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 11925, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1930, 287, 27056, 378, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 2116, 13, 30246, 7, 35231, 62, 1930, 11, 1426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1233, 1279, 949, 62, 17080, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 17080, 796, 1233, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 11925, 15853, 2116, 13, 30246, 7, 1930, 11, 3108, 58, 72, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 273, 6008, 62, 48277, 6, 4083, 33295, 7, 1084, 62, 17080, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 9535, 752, 652, 62, 13664, 82, 6, 4083, 33295, 7, 6978, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 6978, 6, 287, 308, 83, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 19509, 395, 62, 6978, 62, 13664, 82, 6, 4083, 33295, 7, 944, 13, 17080, 1817, 58, 13655, 17816, 35836, 20520, 7131, 13655, 17816, 6978, 6, 7131, 15, 60, 7131, 13655, 17816, 6978, 6, 7131, 12, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 2195, 2454, 262, 4941, 3108, 318, 262, 35581, 3108, 284, 3061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 11925, 796, 45941, 13, 18747, 26933, 944, 13, 30246, 7, 64, 11, 65, 8, 329, 257, 11, 65, 287, 19974, 7, 6978, 58, 21912, 16, 4357, 6978, 58, 16, 25, 12962, 35944, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 19509, 395, 62, 6978, 62, 13664, 82, 6, 4083, 33295, 7, 5420, 62, 11925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 299, 8671, 86, 290, 45647, 4246, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 358, 4246, 6, 4083, 33295, 7, 944, 13, 67, 4246, 7, 6978, 11, 308, 83, 17816, 9535, 752, 652, 6, 4357, 18663, 11639, 358, 4246, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 17816, 21282, 4246, 6, 4083, 33295, 7, 944, 13, 67, 4246, 7, 6978, 11, 308, 83, 17816, 9535, 752, 652, 6, 4357, 18663, 11639, 21282, 4246, 6, 4008, 628, 220, 220, 220, 825, 4776, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 26439, 4985, 1123, 5797, 22942, 1912, 319, 703, 1969, 340, 1392, 284, 262, 3061, 4067, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1416, 2850, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6480, 62, 2340, 796, 900, 7, 944, 13, 259, 2536, 62, 2340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 17816, 259, 2536, 62, 312, 20520, 796, 965, 7, 9186, 17816, 259, 2536, 62, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 1028, 2938, 220, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 17816, 259, 2536, 62, 312, 20520, 287, 37250, 15, 62, 15, 3256, 705, 15, 62, 16, 3256, 705, 15, 62, 17, 3256, 705, 24, 62, 15, 3256, 705, 24, 62, 16, 3256, 705, 24, 62, 17, 3256, 705, 2624, 62, 15, 3256, 705, 2624, 62, 16, 3256, 705, 2624, 62, 17, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2378, 17816, 259, 2536, 62, 312, 20520, 287, 6480, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6480, 62, 2340, 13, 28956, 7, 9186, 17816, 259, 2536, 62, 312, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 26675, 62, 9186, 7, 9186, 17816, 259, 2536, 62, 312, 6, 4357, 2378, 17816, 9535, 752, 652, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 259, 2536, 62, 2340, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15721, 752, 1749, 407, 2810, 329, 4064, 67, 12064, 220, 2340, 25, 4064, 82, 6, 4064, 357, 11925, 7, 259, 2536, 62, 2340, 828, 259, 2536, 62, 2340, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 13138, 274, 796, 18896, 26933, 72, 329, 1312, 287, 2116, 13, 1416, 2850, 17816, 28341, 62, 48277, 20520, 611, 1312, 1279, 2116, 13, 18224, 62, 36153, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 393, 6008, 62, 13138, 274, 796, 18896, 26933, 72, 329, 1312, 287, 2116, 13, 1416, 2850, 17816, 273, 6008, 62, 48277, 20520, 611, 1312, 1279, 2116, 13, 18224, 62, 36153, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 4328, 82, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 11454, 11, 13664, 11, 2777, 287, 19974, 7, 944, 13, 1416, 2850, 17816, 28341, 62, 48277, 6, 4357, 944, 13, 1416, 2850, 17816, 9535, 752, 652, 62, 13664, 82, 6, 4357, 944, 13, 1416, 2850, 17816, 19509, 395, 62, 6978, 62, 13664, 82, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11454, 1279, 2116, 13, 18224, 62, 36153, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 82, 13, 33295, 7, 2777, 14, 9806, 7, 13664, 11, 2777, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4328, 82, 13, 33295, 7, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4776, 62, 49736, 796, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13664, 10354, 45941, 13, 23913, 7, 944, 13, 1416, 2850, 17816, 9535, 752, 652, 62, 13664, 82, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28341, 62, 18224, 10354, 45941, 13, 23913, 7, 944, 13, 1416, 2850, 17816, 28341, 62, 48277, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 273, 6008, 1943, 62, 4873, 10354, 12178, 7, 273, 6008, 62, 13138, 274, 20679, 22468, 7, 11925, 7, 944, 13, 1416, 2850, 17816, 273, 6008, 62, 48277, 6, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13138, 62, 4873, 10354, 12178, 7, 22510, 62, 13138, 274, 20679, 22468, 7, 11925, 7, 944, 13, 1416, 2850, 17816, 28341, 62, 48277, 6, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22018, 10354, 45941, 13, 23913, 7, 22018, 82, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21282, 4246, 10354, 45941, 13, 23913, 7, 944, 13, 1416, 2850, 17816, 21282, 4246, 20520, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 358, 4246, 10354, 45941, 13, 23913, 7, 944, 13, 1416, 2850, 17816, 358, 4246, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 4776, 62, 49736, 17816, 22018, 20520, 19841, 4776, 62, 49736, 17816, 13138, 62, 4873, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4776, 62, 49736, 11, 2116, 13, 1416, 2850, 628, 198, 198, 4299, 4776, 62, 429, 67, 86, 33529, 198, 220, 705, 7061, 27131, 378, 299, 8671, 86, 1022, 1180, 11992, 6460, 329, 3348, 8655, 513, 13, 705, 7061, 198, 220, 7788, 3705, 796, 37250, 14323, 62, 43420, 14, 12093, 4470, 14, 46002, 62, 66, 11329, 13, 17752, 3256, 198, 220, 220, 220, 705, 14323, 62, 43420, 14, 12093, 4470, 14, 46002, 62, 66, 11329, 62, 1169, 8326, 62, 16, 13, 17752, 3256, 198, 220, 220, 220, 705, 14323, 62, 43420, 14, 12093, 4470, 14, 46002, 62, 66, 11329, 62, 1169, 8326, 62, 17, 13, 17752, 3256, 198, 220, 220, 220, 705, 14323, 62, 43420, 14, 12093, 4470, 14, 46002, 62, 66, 11329, 62, 1169, 8326, 62, 18, 13, 17752, 3256, 198, 220, 220, 220, 705, 14323, 62, 43420, 14, 12093, 4470, 62, 8043, 62, 73, 36613, 14, 46002, 62, 66, 11329, 62, 1169, 8326, 62, 16, 13, 17752, 3256, 198, 220, 220, 220, 705, 14323, 62, 43420, 14, 12093, 4470, 62, 8043, 62, 73, 36613, 14, 46002, 62, 66, 11329, 62, 1169, 8326, 62, 17, 13, 17752, 3256, 198, 220, 220, 220, 705, 14323, 62, 43420, 14, 12093, 4470, 62, 8043, 62, 73, 36613, 14, 46002, 62, 66, 11329, 62, 1169, 8326, 62, 18, 13, 17752, 3256, 198, 220, 220, 220, 705, 34005, 14, 86, 8899, 14, 46002, 62, 66, 11329, 62, 305, 13645, 62, 86, 8899, 13, 17752, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16071, 351, 3975, 198, 220, 220, 220, 705, 34005, 14, 26601, 499, 14, 46002, 62, 66, 11329, 62, 305, 13645, 62, 26601, 499, 13, 17752, 20520, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16071, 645, 3975, 628, 220, 299, 8671, 86, 796, 45941, 13, 9107, 418, 19510, 11925, 7, 6369, 3705, 828, 18896, 7, 6369, 3705, 22305, 198, 220, 30664, 796, 24311, 54, 3419, 198, 220, 3601, 10786, 59, 77, 9771, 3129, 803, 299, 8671, 86, 17593, 329, 4064, 82, 6, 4064, 7788, 3705, 8, 198, 220, 329, 1312, 11, 1006, 62, 6978, 287, 27056, 378, 7, 6369, 3705, 2599, 198, 220, 220, 220, 351, 1280, 10786, 10677, 14, 85, 18755, 62, 18206, 2288, 14, 7890, 14, 4, 82, 6, 4064, 1006, 62, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 1006, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 329, 2378, 287, 1006, 25, 198, 220, 220, 220, 220, 220, 2378, 17816, 6978, 62, 312, 20520, 796, 493, 7, 9186, 17816, 259, 2536, 62, 312, 6, 4083, 35312, 10786, 62, 11537, 58, 15, 12962, 198, 220, 220, 220, 5418, 84, 1352, 796, 3184, 36, 2100, 2288, 7, 5420, 11, 7102, 45, 8, 198, 220, 220, 220, 329, 474, 11, 2747, 62, 6978, 287, 27056, 378, 7, 6369, 3705, 2599, 198, 220, 220, 220, 220, 220, 351, 1280, 10786, 10677, 14, 85, 18755, 62, 18206, 2288, 14, 7890, 14, 4, 82, 6, 4064, 2747, 62, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 220, 220, 10638, 11, 1416, 2850, 796, 5418, 84, 1352, 13, 26675, 7, 28764, 8, 198, 220, 220, 220, 220, 220, 299, 8671, 86, 58, 72, 11, 73, 60, 796, 10638, 17816, 358, 4246, 20520, 198, 220, 3601, 7, 429, 67, 86, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 13446, 7, 22117, 2969, 62, 40386, 62, 2606, 7250, 3843, 8, 198, 220, 220, 220, 13446, 7, 45, 2662, 2969, 62, 40386, 62, 2606, 7250, 3843, 8, 198, 220, 220, 220, 4776, 62, 429, 67, 86, 3419, 628, 198 ]
2.202394
2,673
# # Group Chat Server # # Copyright (C) 2019 Internet Real-Time Laboratory # # Written by Jan Janak <[email protected]> # import re import os import shlex import types import time import json import sqlite3 import traceback import pjsua2 as pj import time from types import SimpleNamespace from email.utils import formatdate, parseaddr DOMAIN = os.environ['DOMAIN'] ADMIN_PASSWORD = os.environ['ADMIN_PASSWORD'] OUTBOUND_PROXY = os.environ.get('OUTBOUND_PROXY', 'sip:127.0.0.1:5060;transport=tcp') REGISTRAR = os.environ.get('REGISTRAR', 'sip:%s' % DOMAIN) CMD_MARKER = os.environ.get('CMD_MARKER', '#') DEBUG = os.environ.get('DEBUG', False) LISTEN = os.environ.get('LISTEN', '127.0.0.1:0') ROBOT = os.environ.get('ROBOT', '"Chat Robot" <sip:chatrobot@%s>' % DOMAIN) DB_FILE = os.environ.get('DB_FILE', '/data/chat.db') # Returns a name-addr from the following formats: # - username # - sip:username@domain # - display_name <sip:username@domain> # if __name__ == "__main__": # Global registries of pjsip accounts and budies so that they do # not get garbage collected by Python while the native library # still holds references to those. accounts = dict() buddies = dict() trampoline = dict() outbox = None request = None create_database() try: ua = UserAgent() RobotAccount() for naddr in Room.enum(): RoomAccount(naddr, register=True) outbox = Outbox() ua.run() finally: ua.cleanup()
[ 2, 198, 2, 4912, 24101, 9652, 198, 2, 198, 2, 15069, 357, 34, 8, 13130, 4455, 6416, 12, 7575, 18643, 198, 2, 198, 2, 22503, 416, 2365, 2365, 461, 1279, 13881, 461, 73, 31, 6359, 13, 4033, 2178, 544, 13, 15532, 29, 198, 2, 198, 11748, 302, 198, 11748, 28686, 198, 11748, 427, 2588, 198, 11748, 3858, 198, 11748, 640, 198, 11748, 33918, 198, 11748, 44161, 578, 18, 198, 11748, 12854, 1891, 198, 11748, 279, 73, 2385, 64, 17, 355, 279, 73, 198, 11748, 640, 198, 6738, 220, 220, 3858, 1330, 17427, 36690, 10223, 198, 6738, 220, 220, 3053, 13, 26791, 1330, 5794, 4475, 11, 21136, 29851, 628, 198, 39170, 29833, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 17816, 39170, 29833, 20520, 198, 2885, 23678, 62, 47924, 54, 12532, 796, 28686, 13, 268, 2268, 17816, 2885, 23678, 62, 47924, 54, 12532, 20520, 198, 12425, 33, 15919, 62, 31190, 34278, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 12425, 33, 15919, 62, 31190, 34278, 3256, 705, 82, 541, 25, 16799, 13, 15, 13, 15, 13, 16, 25, 1120, 1899, 26, 7645, 634, 28, 83, 13155, 11537, 198, 31553, 1797, 5446, 1503, 220, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 31553, 1797, 5446, 1503, 3256, 705, 82, 541, 25, 4, 82, 6, 4064, 24121, 29833, 8, 198, 34, 12740, 62, 44, 14175, 1137, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 34, 12740, 62, 44, 14175, 1137, 3256, 705, 2, 11537, 198, 30531, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 30531, 3256, 10352, 8, 198, 45849, 1677, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 45849, 1677, 3256, 705, 16799, 13, 15, 13, 15, 13, 16, 25, 15, 11537, 198, 49, 9864, 2394, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 49, 9864, 2394, 3256, 705, 1, 30820, 16071, 1, 1279, 82, 541, 25, 17006, 305, 13645, 31, 4, 82, 29, 6, 4064, 24121, 29833, 8, 198, 11012, 62, 25664, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 11012, 62, 25664, 3256, 31051, 7890, 14, 17006, 13, 9945, 11537, 628, 628, 628, 198, 198, 2, 16409, 257, 1438, 12, 29851, 422, 262, 1708, 17519, 25, 198, 2, 532, 20579, 198, 2, 532, 31145, 25, 29460, 31, 27830, 198, 2, 532, 3359, 62, 3672, 1279, 82, 541, 25, 29460, 31, 27830, 29, 198, 2, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 8060, 4214, 1678, 286, 279, 8457, 541, 5504, 290, 3600, 444, 523, 326, 484, 466, 198, 220, 220, 220, 1303, 407, 651, 15413, 7723, 416, 11361, 981, 262, 6868, 5888, 198, 220, 220, 220, 1303, 991, 6622, 10288, 284, 883, 13, 198, 220, 220, 220, 5504, 796, 8633, 3419, 198, 220, 220, 220, 35548, 796, 8633, 3419, 198, 220, 220, 220, 491, 696, 14453, 796, 8633, 3419, 198, 220, 220, 220, 503, 3524, 796, 6045, 198, 220, 220, 220, 2581, 796, 6045, 628, 220, 220, 220, 2251, 62, 48806, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 334, 64, 796, 11787, 36772, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 16071, 30116, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 29851, 287, 10096, 13, 44709, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10096, 30116, 7, 77, 29851, 11, 7881, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 503, 3524, 796, 3806, 3524, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 334, 64, 13, 5143, 3419, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 334, 64, 13, 27773, 929, 3419, 198 ]
2.38914
663
""" forecast.py author: Jonathan Tsai <[email protected]> Python interface to Forecast API Usage: python forecast.py LATITUDE LONGITUDE python forecast.py -t TIMESTAMP LATITUDE LONGITUDE Examples: $ python forecast.py 37.8267 -122.423 """ import getopt import json import requests import os import sys import urllib from keys import FORECAST_API_KEY FORECAST_URL = 'https://api.forecast.io/forecast/%(api_key)s/%(latitude)s,%(longitude)s' FORECAST_DATPOINT_URL = 'https://api.forecast.io/forecast/%(api_key)s/%(latitude)s,%(longitude)s,%(timestamp)s' if __name__ == '__main__': main()
[ 37811, 198, 754, 2701, 13, 9078, 198, 9800, 25, 11232, 13146, 1872, 1279, 31373, 31, 73, 756, 82, 1872, 13, 785, 29, 198, 198, 37906, 7071, 284, 4558, 2701, 7824, 198, 198, 28350, 25, 198, 220, 220, 220, 21015, 11092, 13, 9078, 42355, 2043, 52, 7206, 44533, 2043, 52, 7206, 198, 220, 220, 220, 21015, 11092, 13, 9078, 532, 83, 31742, 6465, 23518, 42355, 2043, 52, 7206, 44533, 2043, 52, 7206, 198, 27730, 25, 198, 220, 220, 220, 720, 21015, 11092, 13, 9078, 5214, 13, 23, 25674, 532, 18376, 13, 43356, 628, 198, 37811, 198, 198, 11748, 651, 8738, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 2956, 297, 571, 198, 198, 6738, 8251, 1330, 7473, 2943, 11262, 62, 17614, 62, 20373, 198, 198, 13775, 2943, 11262, 62, 21886, 796, 705, 5450, 1378, 15042, 13, 754, 2701, 13, 952, 14, 754, 2701, 14, 4, 7, 15042, 62, 2539, 8, 82, 14, 4, 7, 15460, 3984, 8, 82, 11, 4, 7, 6511, 3984, 8, 82, 6, 198, 13775, 2943, 11262, 62, 35, 1404, 16402, 12394, 62, 21886, 796, 705, 5450, 1378, 15042, 13, 754, 2701, 13, 952, 14, 754, 2701, 14, 4, 7, 15042, 62, 2539, 8, 82, 14, 4, 7, 15460, 3984, 8, 82, 11, 4, 7, 6511, 3984, 8, 82, 11, 4, 7, 16514, 27823, 8, 82, 6, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.495902
244
import time import numpy as np import argparse import cv2 pt = './pi-object-detection/MobileNetSSD_deploy.prototxt.txt' ca = './pi-object-detection/MobileNetSSD_deploy.caffemodel' CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) testfile = "erwin1.mp4" cf = 0.6 video_captured = cv2.VideoCapture(testfile) print("testing", testfile) fps = video_captured.get(cv2.CAP_PROP_FPS) # OpenCV2 version 2 used "CV_CAP_PROP_FPS" frame_count = int(video_captured.get(cv2.CAP_PROP_FRAME_COUNT)) duration = frame_count/fps print('fps = ' + str(fps)) print('number of frames = ' + str(frame_count)) print('duration (S) = ' + str(duration)) minutes = int(duration/60) seconds = duration%60 print('duration (M:S) = ' + str(minutes) + ':' + str(seconds)) frame_nbr = 0 start_time = time.time() while (video_captured.isOpened()): # read frame-by-frame ret, image = video_captured.read() if ret == False: break if frame_nbr < 150: frame_nbr+= 1 continue net = cv2.dnn.readNetFromCaffe(pt, ca) (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5) net.setInput(blob) detections = net.forward() for i in np.arange(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with the # prediction confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the `confidence` is # greater than the minimum confidence if confidence > cf: # extract the index of the class label from the `detections`, # then compute the (x, y)-coordinates of the bounding box for # the object idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # display the prediction label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100) if CLASSES[idx] == 'person': print("[INFO] {}".format(label)) cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2) y = startY - 15 if startY - 15 > 15 else startY + 15 cv2.putText(image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) cv2.imwrite("/home/administrator/snap/frame%d.jpg" % frame_nbr, image) frame_nbr += 1
[ 11748, 640, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1822, 29572, 198, 11748, 269, 85, 17, 198, 198, 457, 796, 705, 19571, 14415, 12, 15252, 12, 15255, 3213, 14, 17066, 7934, 5432, 35, 62, 2934, 1420, 13, 11235, 313, 742, 13, 14116, 6, 198, 6888, 796, 705, 19571, 14415, 12, 15252, 12, 15255, 3213, 14, 17066, 7934, 5432, 35, 62, 2934, 1420, 13, 66, 2001, 368, 375, 417, 6, 198, 198, 31631, 1546, 796, 14631, 25249, 1600, 366, 25534, 20106, 1531, 1600, 366, 65, 35298, 1600, 366, 16944, 1600, 366, 24482, 1600, 198, 197, 1, 10985, 293, 1600, 366, 10885, 1600, 366, 7718, 1600, 366, 9246, 1600, 366, 16337, 1600, 366, 8232, 1600, 366, 67, 3191, 11487, 1600, 198, 197, 1, 9703, 1600, 366, 30527, 1600, 366, 76, 20965, 32256, 1600, 366, 6259, 1600, 366, 79, 8426, 15060, 1600, 366, 7091, 538, 1600, 198, 197, 1, 568, 13331, 1600, 366, 27432, 1600, 366, 14981, 41143, 8973, 198, 25154, 20673, 796, 45941, 13, 25120, 13, 403, 6933, 7, 15, 11, 14280, 11, 2546, 16193, 11925, 7, 31631, 1546, 828, 513, 4008, 198, 198, 9288, 7753, 796, 366, 263, 5404, 16, 13, 3149, 19, 1, 198, 12993, 796, 657, 13, 21, 198, 198, 15588, 62, 27144, 1522, 796, 269, 85, 17, 13, 10798, 49630, 7, 9288, 7753, 8, 198, 4798, 7203, 33407, 1600, 1332, 7753, 8, 198, 198, 29647, 796, 2008, 62, 27144, 1522, 13, 1136, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 37, 3705, 8, 220, 220, 220, 220, 220, 1303, 4946, 33538, 17, 2196, 362, 973, 366, 33538, 62, 33177, 62, 4805, 3185, 62, 37, 3705, 1, 198, 14535, 62, 9127, 796, 493, 7, 15588, 62, 27144, 1522, 13, 1136, 7, 33967, 17, 13, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 34, 28270, 4008, 198, 32257, 796, 5739, 62, 9127, 14, 29647, 198, 198, 4798, 10786, 29647, 796, 705, 1343, 965, 7, 29647, 4008, 198, 4798, 10786, 17618, 286, 13431, 796, 705, 1343, 965, 7, 14535, 62, 9127, 4008, 198, 4798, 10786, 32257, 357, 50, 8, 796, 705, 1343, 965, 7, 32257, 4008, 198, 1084, 1769, 796, 493, 7, 32257, 14, 1899, 8, 198, 43012, 796, 9478, 4, 1899, 198, 4798, 10786, 32257, 357, 44, 25, 50, 8, 796, 705, 1343, 965, 7, 1084, 1769, 8, 1343, 705, 32105, 1343, 965, 7, 43012, 4008, 198, 198, 14535, 62, 77, 1671, 796, 657, 198, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 4514, 357, 15588, 62, 27144, 1522, 13, 271, 18257, 2945, 3419, 2599, 198, 220, 220, 220, 1303, 1100, 5739, 12, 1525, 12, 14535, 198, 220, 220, 220, 1005, 11, 2939, 796, 2008, 62, 27144, 1522, 13, 961, 3419, 198, 220, 220, 220, 611, 1005, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 611, 5739, 62, 77, 1671, 1279, 6640, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 62, 77, 1671, 47932, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 2010, 796, 269, 85, 17, 13, 67, 20471, 13, 961, 7934, 4863, 34, 21223, 7, 457, 11, 1275, 8, 628, 220, 220, 220, 357, 71, 11, 266, 8, 796, 2939, 13, 43358, 58, 25, 17, 60, 198, 220, 220, 220, 44812, 796, 269, 85, 17, 13, 67, 20471, 13, 2436, 672, 4863, 5159, 7, 33967, 17, 13, 411, 1096, 7, 9060, 11, 357, 6200, 11, 5867, 36911, 657, 13, 405, 3695, 3559, 11, 357, 6200, 11, 5867, 828, 18112, 13, 20, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2010, 13, 2617, 20560, 7, 2436, 672, 8, 198, 220, 220, 220, 4886, 507, 796, 2010, 13, 11813, 3419, 628, 220, 220, 220, 329, 1312, 287, 45941, 13, 283, 858, 7, 15, 11, 4886, 507, 13, 43358, 58, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 262, 6628, 357, 72, 13, 68, 1539, 12867, 8, 3917, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 6628, 796, 4886, 507, 58, 15, 11, 657, 11, 1312, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8106, 503, 4939, 4886, 507, 416, 13359, 262, 4600, 39745, 63, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3744, 621, 262, 5288, 6628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6628, 1875, 30218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 262, 6376, 286, 262, 1398, 6167, 422, 262, 4600, 15255, 478, 507, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 788, 24061, 262, 357, 87, 11, 331, 13219, 37652, 17540, 286, 262, 5421, 278, 3091, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 493, 7, 15255, 478, 507, 58, 15, 11, 657, 11, 1312, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3091, 796, 4886, 507, 58, 15, 11, 657, 11, 1312, 11, 513, 25, 22, 60, 1635, 45941, 13, 18747, 26933, 86, 11, 289, 11, 266, 11, 289, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9688, 55, 11, 923, 56, 11, 886, 55, 11, 886, 56, 8, 796, 3091, 13, 459, 2981, 7203, 600, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3359, 262, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 45144, 38362, 46110, 13, 17, 69, 92, 4, 1911, 18982, 7, 31631, 1546, 58, 312, 87, 4357, 6628, 1635, 1802, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 42715, 1546, 58, 312, 87, 60, 6624, 705, 6259, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 58, 10778, 60, 23884, 1911, 18982, 7, 18242, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 9060, 11, 357, 9688, 55, 11, 923, 56, 828, 357, 437, 55, 11, 886, 56, 828, 20444, 20673, 58, 312, 87, 4357, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 923, 56, 532, 1315, 611, 923, 56, 532, 1315, 1875, 1315, 2073, 923, 56, 1343, 1315, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 9060, 11, 6167, 11, 357, 9688, 55, 11, 331, 828, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 657, 13, 20, 11, 20444, 20673, 58, 312, 87, 4357, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 7203, 14, 11195, 14, 39081, 12392, 14, 45380, 14, 14535, 4, 67, 13, 9479, 1, 4064, 5739, 62, 77, 1671, 11, 2939, 8, 198, 220, 220, 220, 5739, 62, 77, 1671, 15853, 352, 198 ]
2.227197
1,206
# Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests tensorflow_hub.tools.make_nearest_neighbour_index.index_builder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags import tensorflow as tf from tensorflow_hub.tools.make_nearest_neighbour_index import index_builder # resources dependency MNNI_FOLDER = ("org_tensorflow_hub/tools/" "make_nearest_neighbour_index/") FLAGS = flags.FLAGS flags.DEFINE_integer("embed_output_dir", None, "") flags.DEFINE_integer("num_trees", 10, "") flags.DEFINE_string("index_output_dir", None, "") def _ensure_tf2(): """Ensure running with TensorFlow 2 behavior. This function is safe to call even before flags have been parsed. Raises: ImportError: If tensorflow is too old for proper TF2 behavior. """ print("Running with tensorflow %s (git version %s)", tf.__version__, tf.__git_version__) if tf.__version__.startswith("1."): if tf.__git_version__ == "unknown": # For internal testing use. try: tf.compat.v1.enable_v2_behavior() return except AttributeError: pass # Fail below for missing enabler function. raise ImportError("Sorry, this program needs TensorFlow 2.") if __name__ == "__main__": try: _ensure_tf2() except ImportError as e: print("Skipping tests:", str(e)) sys.exit(0) tf.test.main()
[ 2, 15069, 13130, 383, 309, 22854, 37535, 14699, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 51, 3558, 11192, 273, 11125, 62, 40140, 13, 31391, 13, 15883, 62, 710, 12423, 62, 710, 394, 6084, 62, 9630, 13, 9630, 62, 38272, 526, 15931, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 2352, 75, 1330, 9701, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 62, 40140, 13, 31391, 13, 15883, 62, 710, 12423, 62, 710, 394, 6084, 62, 9630, 1330, 6376, 62, 38272, 198, 2, 4133, 20203, 198, 198, 44, 6144, 40, 62, 37, 3535, 14418, 796, 5855, 2398, 62, 83, 22854, 11125, 62, 40140, 14, 31391, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15883, 62, 710, 12423, 62, 710, 394, 6084, 62, 9630, 14, 4943, 198, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 20521, 62, 22915, 62, 15908, 1600, 6045, 11, 366, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 22510, 62, 83, 6037, 1600, 838, 11, 366, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 9630, 62, 22915, 62, 15908, 1600, 6045, 11, 366, 4943, 628, 628, 198, 4299, 4808, 641, 495, 62, 27110, 17, 33529, 198, 220, 37227, 4834, 19532, 2491, 351, 309, 22854, 37535, 362, 4069, 13, 628, 220, 770, 2163, 318, 3338, 284, 869, 772, 878, 9701, 423, 587, 44267, 13, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 17267, 12331, 25, 1002, 11192, 273, 11125, 318, 1165, 1468, 329, 1774, 24958, 17, 4069, 13, 198, 220, 37227, 198, 220, 3601, 7203, 28768, 351, 11192, 273, 11125, 4064, 82, 357, 18300, 2196, 4064, 82, 42501, 48700, 13, 834, 9641, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 834, 18300, 62, 9641, 834, 8, 198, 220, 611, 48700, 13, 834, 9641, 834, 13, 9688, 2032, 342, 7203, 16, 526, 2599, 198, 220, 220, 220, 611, 48700, 13, 834, 18300, 62, 9641, 834, 6624, 366, 34680, 1298, 220, 1303, 1114, 5387, 4856, 779, 13, 198, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 5589, 265, 13, 85, 16, 13, 21633, 62, 85, 17, 62, 46571, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 220, 1303, 18448, 2174, 329, 4814, 551, 397, 1754, 2163, 13, 198, 220, 220, 220, 5298, 17267, 12331, 7203, 14385, 11, 428, 1430, 2476, 309, 22854, 37535, 362, 19570, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1949, 25, 198, 220, 220, 220, 4808, 641, 495, 62, 27110, 17, 3419, 198, 220, 2845, 17267, 12331, 355, 304, 25, 198, 220, 220, 220, 3601, 7203, 50, 4106, 2105, 5254, 25, 1600, 965, 7, 68, 4008, 198, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 48700, 13, 9288, 13, 12417, 3419, 198 ]
3.097059
680
"""Feature map based model interpretation methods in NvTK. """ import torch import logging import numpy as np from .Motif import normalize_pwm __all__ = ["get_activate_W", "get_fmap", "get_activate_W_from_fmap", "get_activate_sequence_from_fmap", "save_activate_seqlets"] def _get_W_from_conv(model, motif_width=5, normalize=True, device=torch.device("cuda")): ''' Experimental function! get motif directly from convolution parameters, PWM were extracted from `model.Embedding.conv` ''' x_tensor = torch.zeros((4, 4, motif_width)).to(device) x_tensor[0,0,:] = 1 x_tensor[1,1,:] = 1 x_tensor[2,2,:] = 1 x_tensor[3,3,:] = 1 try: fmap = model.Embedding.conv(x_tensor).data.cpu().numpy() except AttributeError: logging.error("Check if you model have model.Embedding.conv attr?") raise AttributeError W = fmap.swapaxes(0, 1).clip(0) if normalize: W = np.array([normalize_pwm(pwm) for pwm in W]) return W # hook def get_fmap(model, hook_module, data_loader, device=torch.device("cuda")): """Get feature map of input data at model.hook_module Parameters ---------- model : model hook_module : int hook_module data_loader : torch.Data.Dataloader input data device : torch.device, optional torch.device, Default is `torch.device("cuda")`. Returns ---------- fmap : np.ndarr feature map of input data at model.hook_module X : np.ndarr input data """ fmap, X = [], [] model.eval() with torch.no_grad(): activations = ActivateFeaturesHook(hook_module) for x_tensor, _ in data_loader: x_tensor = x_tensor.to(device) _ = model(x_tensor) X.append(x_tensor.cpu().numpy()) fmap.append(activations.get_features()) fmap = np.vstack(fmap) X = np.vstack(X) activations.close() return fmap, X def get_activate_W_from_fmap(fmap, X, pool=1, threshold=0.99, motif_width=10): """Get activated motif pwm from feature map Parameters ---------- fmap : np.ndarr feature map of input data at model.hook_module X : np.ndarr input data pool : int input data threshold : floor threshold determine the activated sites in feature map motif_width : int width of motif, the width region sequence of activated sites will be normalized as counts Returns ---------- W : np.ndarr array of activated motif pwm, shape of W (n_filters, 4, motif_width) """ motif_nb = fmap.shape[1] X_dim, seq_len = X.shape[1], X.shape[-1] W=[] for filter_index in range(motif_nb): # find regions above threshold data_index, pos_index = np.where(fmap[:,filter_index,:] > np.max(fmap[:,filter_index,:], axis=1, keepdims=True)*threshold) seq_align = []; count_matrix = [] for i in range(len(pos_index)): # pad 1-nt start = pos_index[i] - 1 # - motif_width // 2 end = start + motif_width + 2 # handle boundary conditions if end > seq_len: end = seq_len start = end - motif_width - 2 if start < 0: start = 0 end = start + motif_width + 2 seq = X[data_index[i], :, start*pool:end*pool] seq_align.append(seq) count_matrix.append(np.sum(seq, axis=0, keepdims=True)) seq_align = np.array(seq_align) count_matrix = np.array(count_matrix) # normalize counts seq_align = (np.sum(seq_align, axis=0)/np.sum(count_matrix, axis=0))*np.ones((X_dim, (motif_width+2)*pool)) seq_align[np.isnan(seq_align)] = 0 W.append(seq_align) W = np.array(W) return W def get_activate_W(model, hook_module, data, pool=1, threshold=0.99, motif_width=20): """Get activated motif pwm of input data at model.hook_module Parameters ---------- model : model hook_module : int hook_module data_loader : torch.Data.Dataloader input data device : torch.device, optional torch.device, Default is `torch.device("cuda")`. pool : int input data threshold : floor threshold determine the activated sites in feature map motif_width : int width of motif, the width region sequence of activated sites will be normalized as counts Returns ---------- W : np.ndarr array of activated motif pwm, shape of W (n_filters, 4, motif_width) """ fmap, X = get_fmap(model, hook_module, data) W = get_activate_W_from_fmap(fmap, X, pool, threshold, motif_width) return W def get_activate_sequence_from_fmap(fmap, X, pool=1, threshold=0.99, motif_width=40): """Get activated sequence from feature map. Seqlets could be further analyzed by bioinformatic softwares, such as Homer2. Parameters ---------- fmap : np.ndarr feature map of input data at model.hook_module X : np.ndarr input data pool : int input data threshold : floor threshold determine the activated sites in feature map motif_width : int width of motif, the width region sequence of activated sites will be normalized as counts Returns ---------- W : list list of activated motif seqlets, shape of W (n_filters, 4, motif_width) M : list Seqlet Names, defined as "Motif_Act" """ motif_nb = fmap.shape[1] seq_len = X.shape[-1] W, M = [], [] for filter_index in range(motif_nb): # find regions above threshold data_index, pos_index = np.where(fmap[:,filter_index,:] > np.max(fmap[:,filter_index,:], axis=1, keepdims=True)*threshold) for i in range(len(pos_index)): # handle boundary conditions start = pos_index[i] - 1 end = pos_index[i] + motif_width + 2 if end > seq_len: end = seq_len start= end - motif_width - 2 if start < 0: start = 0 end = start + motif_width + 2 seq = X[data_index[i], :, start*pool:end*pool] W.append(seq) M.append('_'.join(("Motif", str(filter_index), "Act", str(i)))) return W, M def save_activate_seqlets(model, hook_module, data, out_fname, pool=1, threshold=0.99, motif_width=40): """Save activated Seqlets pwm from feature map Seqlets could be further analyzed by bioinformatic softwares, such as Homer2. Parameters ---------- model : model hook_module : int hook_module data_loader : torch.Data.Dataloader input data out_fname : str output file name device : torch.device, optional torch.device, Default is `torch.device("cuda")`. pool : int input data threshold : floor threshold determine the activated sites in feature map motif_width : int width of motif, the width region sequence of activated sites will be normalized as counts """ fmap, X = get_fmap(model, hook_module, data) gene_seq, gene_name = get_activate_sequence_from_fmap(fmap, X, pool=pool, threshold=threshold, motif_width=motif_width) onehot2seq(gene_seq, gene_name, out_fname)
[ 37811, 38816, 3975, 1912, 2746, 10794, 5050, 287, 399, 85, 51, 42, 13, 198, 37811, 198, 198, 11748, 28034, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 47733, 361, 1330, 3487, 1096, 62, 79, 26377, 198, 198, 834, 439, 834, 796, 14631, 1136, 62, 39022, 62, 54, 1600, 366, 1136, 62, 69, 8899, 1600, 366, 1136, 62, 39022, 62, 54, 62, 6738, 62, 69, 8899, 1600, 198, 220, 220, 220, 366, 1136, 62, 39022, 62, 43167, 62, 6738, 62, 69, 8899, 1600, 366, 21928, 62, 39022, 62, 41068, 5289, 8973, 198, 198, 4299, 4808, 1136, 62, 54, 62, 6738, 62, 42946, 7, 19849, 11, 32702, 62, 10394, 28, 20, 11, 3487, 1096, 28, 17821, 11, 3335, 28, 13165, 354, 13, 25202, 7203, 66, 15339, 4943, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 32286, 2163, 0, 198, 220, 220, 220, 651, 32702, 3264, 422, 3063, 2122, 10007, 11, 220, 198, 220, 220, 220, 350, 22117, 547, 21242, 422, 4600, 19849, 13, 31567, 6048, 278, 13, 42946, 63, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2124, 62, 83, 22854, 796, 28034, 13, 9107, 418, 19510, 19, 11, 604, 11, 32702, 62, 10394, 29720, 1462, 7, 25202, 8, 198, 220, 220, 220, 2124, 62, 83, 22854, 58, 15, 11, 15, 11, 47715, 796, 352, 198, 220, 220, 220, 2124, 62, 83, 22854, 58, 16, 11, 16, 11, 47715, 796, 352, 198, 220, 220, 220, 2124, 62, 83, 22854, 58, 17, 11, 17, 11, 47715, 796, 352, 198, 220, 220, 220, 2124, 62, 83, 22854, 58, 18, 11, 18, 11, 47715, 796, 352, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 8899, 796, 2746, 13, 31567, 6048, 278, 13, 42946, 7, 87, 62, 83, 22854, 737, 7890, 13, 36166, 22446, 77, 32152, 3419, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7203, 9787, 611, 345, 2746, 423, 2746, 13, 31567, 6048, 278, 13, 42946, 708, 81, 1701, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 628, 220, 220, 220, 370, 796, 277, 8899, 13, 2032, 499, 897, 274, 7, 15, 11, 352, 737, 15036, 7, 15, 8, 198, 220, 220, 220, 611, 3487, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 370, 796, 45941, 13, 18747, 26933, 11265, 1096, 62, 79, 26377, 7, 79, 26377, 8, 329, 279, 26377, 287, 370, 12962, 198, 220, 220, 220, 1441, 370, 628, 198, 2, 8011, 628, 198, 4299, 651, 62, 69, 8899, 7, 19849, 11, 8011, 62, 21412, 11, 1366, 62, 29356, 11, 3335, 28, 13165, 354, 13, 25202, 7203, 66, 15339, 4943, 2599, 198, 220, 220, 220, 37227, 3855, 3895, 3975, 286, 5128, 1366, 379, 2746, 13, 25480, 62, 21412, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2746, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 198, 220, 220, 220, 8011, 62, 21412, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 62, 21412, 198, 220, 220, 220, 1366, 62, 29356, 1058, 28034, 13, 6601, 13, 35, 10254, 1170, 263, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 3335, 1058, 28034, 13, 25202, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 25202, 11, 15161, 318, 4600, 13165, 354, 13, 25202, 7203, 66, 15339, 4943, 44646, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 8899, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 3975, 286, 5128, 1366, 379, 2746, 13, 25480, 62, 21412, 198, 220, 220, 220, 1395, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 8899, 11, 1395, 796, 685, 4357, 17635, 198, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1753, 602, 796, 33120, 23595, 39, 566, 7, 25480, 62, 21412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 62, 83, 22854, 11, 4808, 287, 1366, 62, 29356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 83, 22854, 796, 2124, 62, 83, 22854, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 2746, 7, 87, 62, 83, 22854, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 13, 33295, 7, 87, 62, 83, 22854, 13, 36166, 22446, 77, 32152, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 8899, 13, 33295, 7, 15791, 602, 13, 1136, 62, 40890, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 277, 8899, 796, 45941, 13, 85, 25558, 7, 69, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 45941, 13, 85, 25558, 7, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1753, 602, 13, 19836, 3419, 198, 220, 220, 220, 1441, 277, 8899, 11, 1395, 628, 198, 4299, 651, 62, 39022, 62, 54, 62, 6738, 62, 69, 8899, 7, 69, 8899, 11, 1395, 11, 5933, 28, 16, 11, 11387, 28, 15, 13, 2079, 11, 32702, 62, 10394, 28, 940, 2599, 198, 220, 220, 220, 37227, 3855, 13906, 32702, 279, 26377, 422, 3895, 3975, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 8899, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 3975, 286, 5128, 1366, 379, 2746, 13, 25480, 62, 21412, 198, 220, 220, 220, 1395, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 5933, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 11387, 1058, 4314, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 5004, 262, 13906, 5043, 287, 3895, 3975, 198, 220, 220, 220, 32702, 62, 10394, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 286, 32702, 11, 262, 9647, 3814, 8379, 286, 13906, 5043, 220, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 39279, 355, 9853, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 370, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 286, 13906, 32702, 279, 26377, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 286, 370, 357, 77, 62, 10379, 1010, 11, 604, 11, 32702, 62, 10394, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 32702, 62, 46803, 796, 277, 8899, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 1395, 62, 27740, 11, 33756, 62, 11925, 796, 1395, 13, 43358, 58, 16, 4357, 1395, 13, 43358, 58, 12, 16, 60, 628, 220, 220, 220, 370, 28, 21737, 198, 220, 220, 220, 329, 8106, 62, 9630, 287, 2837, 7, 27926, 361, 62, 46803, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 7652, 2029, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9630, 11, 1426, 62, 9630, 796, 45941, 13, 3003, 7, 69, 8899, 58, 45299, 24455, 62, 9630, 11, 47715, 1875, 45941, 13, 9806, 7, 69, 8899, 58, 45299, 24455, 62, 9630, 11, 25, 4357, 16488, 28, 16, 11, 1394, 67, 12078, 28, 17821, 27493, 400, 10126, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 31494, 796, 25787, 954, 62, 6759, 8609, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 1930, 62, 9630, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14841, 352, 12, 429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 1426, 62, 9630, 58, 72, 60, 532, 352, 1303, 532, 32702, 62, 10394, 3373, 362, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 923, 1343, 32702, 62, 10394, 1343, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5412, 18645, 3403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 886, 1875, 33756, 62, 11925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 33756, 62, 11925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 886, 532, 32702, 62, 10394, 532, 362, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 657, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 923, 1343, 32702, 62, 10394, 1343, 362, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 796, 1395, 58, 7890, 62, 9630, 58, 72, 4357, 1058, 11, 923, 9, 7742, 25, 437, 9, 7742, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 31494, 13, 33295, 7, 41068, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 62, 6759, 8609, 13, 33295, 7, 37659, 13, 16345, 7, 41068, 11, 16488, 28, 15, 11, 1394, 67, 12078, 28, 17821, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 31494, 796, 45941, 13, 18747, 7, 41068, 62, 31494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 954, 62, 6759, 8609, 796, 45941, 13, 18747, 7, 9127, 62, 6759, 8609, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3487, 1096, 9853, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 31494, 796, 357, 37659, 13, 16345, 7, 41068, 62, 31494, 11, 16488, 28, 15, 20679, 37659, 13, 16345, 7, 9127, 62, 6759, 8609, 11, 16488, 28, 15, 4008, 9, 37659, 13, 1952, 19510, 55, 62, 27740, 11, 357, 27926, 361, 62, 10394, 10, 17, 27493, 7742, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 31494, 58, 37659, 13, 271, 12647, 7, 41068, 62, 31494, 15437, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 370, 13, 33295, 7, 41068, 62, 31494, 8, 628, 220, 220, 220, 370, 796, 45941, 13, 18747, 7, 54, 8, 198, 220, 220, 220, 1441, 370, 628, 198, 4299, 651, 62, 39022, 62, 54, 7, 19849, 11, 8011, 62, 21412, 11, 1366, 11, 5933, 28, 16, 11, 11387, 28, 15, 13, 2079, 11, 32702, 62, 10394, 28, 1238, 2599, 198, 220, 220, 220, 37227, 3855, 13906, 32702, 279, 26377, 286, 5128, 1366, 379, 2746, 13, 25480, 62, 21412, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2746, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 198, 220, 220, 220, 8011, 62, 21412, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 62, 21412, 198, 220, 220, 220, 1366, 62, 29356, 1058, 28034, 13, 6601, 13, 35, 10254, 1170, 263, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 3335, 1058, 28034, 13, 25202, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 25202, 11, 15161, 318, 4600, 13165, 354, 13, 25202, 7203, 66, 15339, 4943, 44646, 198, 220, 220, 220, 5933, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 11387, 1058, 4314, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 5004, 262, 13906, 5043, 287, 3895, 3975, 198, 220, 220, 220, 32702, 62, 10394, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 286, 32702, 11, 262, 9647, 3814, 8379, 286, 13906, 5043, 220, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 39279, 355, 9853, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 370, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 286, 13906, 32702, 279, 26377, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 286, 370, 357, 77, 62, 10379, 1010, 11, 604, 11, 32702, 62, 10394, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 8899, 11, 1395, 796, 651, 62, 69, 8899, 7, 19849, 11, 8011, 62, 21412, 11, 1366, 8, 198, 220, 220, 220, 370, 796, 651, 62, 39022, 62, 54, 62, 6738, 62, 69, 8899, 7, 69, 8899, 11, 1395, 11, 5933, 11, 11387, 11, 32702, 62, 10394, 8, 198, 220, 220, 220, 1441, 370, 628, 198, 198, 4299, 651, 62, 39022, 62, 43167, 62, 6738, 62, 69, 8899, 7, 69, 8899, 11, 1395, 11, 5933, 28, 16, 11, 11387, 28, 15, 13, 2079, 11, 32702, 62, 10394, 28, 1821, 2599, 198, 220, 220, 220, 37227, 3855, 13906, 8379, 422, 3895, 3975, 13, 198, 220, 220, 220, 1001, 80, 5289, 714, 307, 2252, 15475, 416, 13401, 259, 687, 1512, 2705, 86, 3565, 11, 220, 198, 220, 220, 220, 884, 355, 28440, 17, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 8899, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 3975, 286, 5128, 1366, 379, 2746, 13, 25480, 62, 21412, 198, 220, 220, 220, 1395, 1058, 45941, 13, 358, 3258, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 5933, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 11387, 1058, 4314, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 5004, 262, 13906, 5043, 287, 3895, 3975, 198, 220, 220, 220, 32702, 62, 10394, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 286, 32702, 11, 262, 9647, 3814, 8379, 286, 13906, 5043, 220, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 39279, 355, 9853, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 370, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 13906, 32702, 33756, 5289, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 286, 370, 357, 77, 62, 10379, 1010, 11, 604, 11, 32702, 62, 10394, 8, 198, 220, 220, 220, 337, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 1001, 80, 1616, 28531, 11, 5447, 355, 366, 47733, 361, 62, 6398, 1, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 32702, 62, 46803, 796, 277, 8899, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 33756, 62, 11925, 796, 1395, 13, 43358, 58, 12, 16, 60, 628, 220, 220, 220, 370, 11, 337, 796, 685, 4357, 17635, 198, 220, 220, 220, 329, 8106, 62, 9630, 287, 2837, 7, 27926, 361, 62, 46803, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 7652, 2029, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 9630, 11, 1426, 62, 9630, 796, 45941, 13, 3003, 7, 69, 8899, 58, 45299, 24455, 62, 9630, 11, 47715, 1875, 45941, 13, 9806, 7, 69, 8899, 58, 45299, 24455, 62, 9630, 11, 25, 4357, 16488, 28, 16, 11, 1394, 67, 12078, 28, 17821, 27493, 400, 10126, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 1930, 62, 9630, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5412, 18645, 3403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 1426, 62, 9630, 58, 72, 60, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 1426, 62, 9630, 58, 72, 60, 1343, 32702, 62, 10394, 1343, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 886, 1875, 33756, 62, 11925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 33756, 62, 11925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 28, 886, 532, 32702, 62, 10394, 532, 362, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 657, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 796, 923, 1343, 32702, 62, 10394, 1343, 362, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 796, 1395, 58, 7890, 62, 9630, 58, 72, 4357, 1058, 11, 923, 9, 7742, 25, 437, 9, 7742, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 370, 13, 33295, 7, 41068, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 13, 33295, 10786, 62, 4458, 22179, 7, 7203, 47733, 361, 1600, 965, 7, 24455, 62, 9630, 828, 366, 6398, 1600, 965, 7, 72, 35514, 628, 220, 220, 220, 1441, 370, 11, 337, 628, 198, 4299, 3613, 62, 39022, 62, 41068, 5289, 7, 19849, 11, 8011, 62, 21412, 11, 1366, 11, 503, 62, 69, 3672, 11, 5933, 28, 16, 11, 11387, 28, 15, 13, 2079, 11, 32702, 62, 10394, 28, 1821, 2599, 198, 220, 220, 220, 37227, 16928, 13906, 1001, 80, 5289, 279, 26377, 422, 3895, 3975, 198, 220, 220, 220, 1001, 80, 5289, 714, 307, 2252, 15475, 416, 13401, 259, 687, 1512, 2705, 86, 3565, 11, 220, 198, 220, 220, 220, 884, 355, 28440, 17, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2746, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 198, 220, 220, 220, 8011, 62, 21412, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 8011, 62, 21412, 198, 220, 220, 220, 1366, 62, 29356, 1058, 28034, 13, 6601, 13, 35, 10254, 1170, 263, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 503, 62, 69, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 2393, 1438, 198, 220, 220, 220, 3335, 1058, 28034, 13, 25202, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 25202, 11, 15161, 318, 4600, 13165, 354, 13, 25202, 7203, 66, 15339, 4943, 44646, 198, 220, 220, 220, 5933, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 1366, 198, 220, 220, 220, 11387, 1058, 4314, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 5004, 262, 13906, 5043, 287, 3895, 3975, 198, 220, 220, 220, 32702, 62, 10394, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 286, 32702, 11, 262, 9647, 3814, 8379, 286, 13906, 5043, 220, 198, 220, 220, 220, 220, 220, 220, 220, 481, 307, 39279, 355, 9853, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 277, 8899, 11, 1395, 796, 651, 62, 69, 8899, 7, 19849, 11, 8011, 62, 21412, 11, 1366, 8, 198, 220, 220, 220, 9779, 62, 41068, 11, 9779, 62, 3672, 796, 651, 62, 39022, 62, 43167, 62, 6738, 62, 69, 8899, 7, 69, 8899, 11, 1395, 11, 5933, 28, 7742, 11, 11387, 28, 400, 10126, 11, 32702, 62, 10394, 28, 27926, 361, 62, 10394, 8, 198, 220, 220, 220, 530, 8940, 17, 41068, 7, 70, 1734, 62, 41068, 11, 9779, 62, 3672, 11, 503, 62, 69, 3672, 8, 628 ]
2.288073
3,270
"""Test cases for `Kernel.__call__`.""" from typing import Callable, Optional, Tuple, Union import numpy as np import pytest import probnum as pn from probnum.typing import ShapeType from ._utils import _shape_param_to_id_str D_IN = None @pytest.fixture( params=[ pytest.param( (x0_shape, x1_shape), id=( f"x0{_shape_param_to_id_str(x0_shape)}-" f"x1{_shape_param_to_id_str(x1_shape)}" ), ) for x0_shape, x1_shape in [ [(), None], [(), ()], [(1,), None], [(1,), (1,)], [(D_IN,), None], [(D_IN,), (D_IN,)], [(), (1,)], [(), (D_IN,)], [(1,), ()], [(D_IN,), ()], [(1, D_IN), (1, D_IN)], [(1, D_IN), (1, 1)], [(10, D_IN), (10, 1)], [(10, D_IN), None], [(100, 1), (100, D_IN)], [(1, 1, D_IN), (1, 1, 1)], [(10, 1, D_IN), (10, D_IN)], [(10, 1, D_IN), (1, 2, 1)], [(100, 1, 1), (10, D_IN)], [(100, 1, D_IN), (1, 10, 1)], [(2, 4, 1, 1, 3, D_IN), (1, 4, 5, 1, 1, 1)], ] ], name="input_shapes", ) def fixture_input_shapes( request, input_dim: int ) -> Tuple[ShapeType, Optional[ShapeType]]: """Shapes for the first and second argument of the covariance function. The second shape is ``None`` if the second argument to the covariance function is ``None``.""" x0_shape, x1_shape = request.param return (_construct_shape(x0_shape), _construct_shape(x1_shape)) @pytest.fixture(name="x0") def fixture_x0( rng: np.random.Generator, input_shapes: Tuple[ShapeType, Optional[ShapeType]] ) -> np.ndarray: """The first argument to the covariance function drawn from a standard normal distribution.""" x0_shape, _ = input_shapes return rng.normal(0, 1, size=x0_shape) @pytest.fixture(name="x1") def fixture_x1( rng: np.random.Generator, input_shapes: Tuple[ShapeType, Optional[ShapeType]], ) -> Optional[np.ndarray]: """The first argument to the covariance function drawn from a standard normal distribution.""" _, x1_shape = input_shapes if x1_shape is None: return None return rng.normal(0, 1, size=x1_shape) @pytest.fixture(name="call_result") def fixture_call_result( kernel: pn.kernels.Kernel, x0: np.ndarray, x1: Optional[np.ndarray] ) -> Union[np.ndarray, np.floating]: """Result of ``Kernel.__call__`` when given ``x0`` and ``x1``.""" return kernel(x0, x1) @pytest.fixture(name="call_result_naive") def fixture_call_result_naive( kernel_call_naive: Callable[[np.ndarray, Optional[np.ndarray]], np.ndarray], x0: np.ndarray, x1: Optional[np.ndarray], ) -> Union[np.ndarray, np.floating]: """Result of ``Kernel.__call__`` when applied to the entries of ``x0`` and ``x1`` in a loop.""" return kernel_call_naive(x0, x1) def test_type(call_result: Union[np.ndarray, np.floating]): """Test whether the type of the output of ``Kernel.__call__`` is a NumPy type, i.e. an ``np.ndarray`` or a ``np.floating``.""" assert isinstance(call_result, (np.ndarray, np.floating)) def test_shape( call_result: Union[np.ndarray, np.floating], call_result_naive: Union[np.ndarray, np.floating], ): """Test whether the shape of the output of ``Kernel.__call__`` matches the shape of the naive reference implementation.""" assert call_result.shape == call_result_naive.shape def test_values( call_result: Union[np.ndarray, np.floating], call_result_naive: Union[np.ndarray, np.floating], ): """Test whether the entries of the output of ``Kernel.__call__`` match the entries generated by the naive reference implementation.""" np.testing.assert_allclose( call_result, call_result_naive, rtol=10 ** -12, atol=10 ** -12, ) @pytest.mark.parametrize( "shape", [ (), (1,), (10,), (1, 10), (4, 25), ], ) def test_wrong_input_dimension(kernel: pn.kernels.Kernel, shape: ShapeType): """Test whether passing an input with the wrong input dimension raises an error.""" input_shape = shape + (kernel.input_dim + 1,) with pytest.raises(ValueError): kernel(np.zeros(input_shape), None) with pytest.raises(ValueError): kernel(np.ones(input_shape), np.zeros(shape + (kernel.input_dim,))) with pytest.raises(ValueError): kernel(np.ones(shape + (kernel.input_dim,)), np.zeros(input_shape)) @pytest.mark.parametrize( "x0_shape,x1_shape", [ ((2,), (8,)), ((2, 5), (3, 5)), ((4, 4), (4, 2)), ], ) def test_broadcasting_error( kernel: pn.kernels.Kernel, x0_shape: np.ndarray, x1_shape: np.ndarray, ): """Test whether an error is raised if the inputs can not be broadcast to a common shape.""" with pytest.raises(ValueError): kernel( np.zeros(x0_shape + (kernel.input_dim,)), np.ones(x1_shape + (kernel.input_dim,)), )
[ 37811, 14402, 2663, 329, 4600, 42, 7948, 13, 834, 13345, 834, 63, 526, 15931, 198, 198, 6738, 19720, 1330, 4889, 540, 11, 32233, 11, 309, 29291, 11, 4479, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 198, 11748, 1861, 22510, 355, 279, 77, 198, 6738, 1861, 22510, 13, 774, 13886, 1330, 25959, 6030, 198, 198, 6738, 47540, 26791, 1330, 4808, 43358, 62, 17143, 62, 1462, 62, 312, 62, 2536, 198, 198, 35, 62, 1268, 796, 6045, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 198, 220, 220, 220, 42287, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 17143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 87, 15, 62, 43358, 11, 2124, 16, 62, 43358, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 87, 15, 90, 62, 43358, 62, 17143, 62, 1462, 62, 312, 62, 2536, 7, 87, 15, 62, 43358, 38165, 21215, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 87, 16, 90, 62, 43358, 62, 17143, 62, 1462, 62, 312, 62, 2536, 7, 87, 16, 62, 43358, 8, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 15, 62, 43358, 11, 2124, 16, 62, 43358, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22784, 6045, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22784, 7499, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 16, 11, 828, 6045, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 16, 11, 828, 357, 16, 35751, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 35, 62, 1268, 11, 828, 6045, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 35, 62, 1268, 11, 828, 357, 35, 62, 1268, 35751, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22784, 357, 16, 35751, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 22784, 357, 35, 62, 1268, 35751, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 16, 11, 828, 7499, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 35, 62, 1268, 11, 828, 7499, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 16, 11, 360, 62, 1268, 828, 357, 16, 11, 360, 62, 1268, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 16, 11, 360, 62, 1268, 828, 357, 16, 11, 352, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 940, 11, 360, 62, 1268, 828, 357, 940, 11, 352, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 940, 11, 360, 62, 1268, 828, 6045, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 3064, 11, 352, 828, 357, 3064, 11, 360, 62, 1268, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 16, 11, 352, 11, 360, 62, 1268, 828, 357, 16, 11, 352, 11, 352, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 940, 11, 352, 11, 360, 62, 1268, 828, 357, 940, 11, 360, 62, 1268, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 940, 11, 352, 11, 360, 62, 1268, 828, 357, 16, 11, 362, 11, 352, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 3064, 11, 352, 11, 352, 828, 357, 940, 11, 360, 62, 1268, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 3064, 11, 352, 11, 360, 62, 1268, 828, 357, 16, 11, 838, 11, 352, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 17, 11, 604, 11, 352, 11, 352, 11, 513, 11, 360, 62, 1268, 828, 357, 16, 11, 604, 11, 642, 11, 352, 11, 352, 11, 352, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 1438, 2625, 15414, 62, 1477, 7916, 1600, 198, 8, 198, 4299, 29220, 62, 15414, 62, 1477, 7916, 7, 198, 220, 220, 220, 2581, 11, 5128, 62, 27740, 25, 493, 198, 8, 4613, 309, 29291, 58, 33383, 6030, 11, 32233, 58, 33383, 6030, 60, 5974, 198, 220, 220, 220, 37227, 2484, 7916, 329, 262, 717, 290, 1218, 4578, 286, 262, 44829, 590, 2163, 13, 383, 1218, 198, 220, 220, 220, 5485, 318, 7559, 14202, 15506, 611, 262, 1218, 4578, 284, 262, 44829, 590, 2163, 318, 7559, 14202, 15506, 526, 15931, 628, 220, 220, 220, 2124, 15, 62, 43358, 11, 2124, 16, 62, 43358, 796, 2581, 13, 17143, 628, 220, 220, 220, 1441, 44104, 41571, 62, 43358, 7, 87, 15, 62, 43358, 828, 4808, 41571, 62, 43358, 7, 87, 16, 62, 43358, 4008, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 3672, 2625, 87, 15, 4943, 198, 4299, 29220, 62, 87, 15, 7, 198, 220, 220, 220, 374, 782, 25, 45941, 13, 25120, 13, 8645, 1352, 11, 5128, 62, 1477, 7916, 25, 309, 29291, 58, 33383, 6030, 11, 32233, 58, 33383, 6030, 11907, 198, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 37227, 464, 717, 4578, 284, 262, 44829, 590, 2163, 7428, 422, 257, 3210, 3487, 198, 220, 220, 220, 6082, 526, 15931, 628, 220, 220, 220, 2124, 15, 62, 43358, 11, 4808, 796, 5128, 62, 1477, 7916, 628, 220, 220, 220, 1441, 374, 782, 13, 11265, 7, 15, 11, 352, 11, 2546, 28, 87, 15, 62, 43358, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 3672, 2625, 87, 16, 4943, 198, 4299, 29220, 62, 87, 16, 7, 198, 220, 220, 220, 374, 782, 25, 45941, 13, 25120, 13, 8645, 1352, 11, 198, 220, 220, 220, 5128, 62, 1477, 7916, 25, 309, 29291, 58, 33383, 6030, 11, 32233, 58, 33383, 6030, 60, 4357, 198, 8, 4613, 32233, 58, 37659, 13, 358, 18747, 5974, 198, 220, 220, 220, 37227, 464, 717, 4578, 284, 262, 44829, 590, 2163, 7428, 422, 257, 3210, 3487, 198, 220, 220, 220, 6082, 526, 15931, 628, 220, 220, 220, 4808, 11, 2124, 16, 62, 43358, 796, 5128, 62, 1477, 7916, 628, 220, 220, 220, 611, 2124, 16, 62, 43358, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1441, 374, 782, 13, 11265, 7, 15, 11, 352, 11, 2546, 28, 87, 16, 62, 43358, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 3672, 2625, 13345, 62, 20274, 4943, 198, 4299, 29220, 62, 13345, 62, 20274, 7, 198, 220, 220, 220, 9720, 25, 279, 77, 13, 74, 44930, 13, 42, 7948, 11, 2124, 15, 25, 45941, 13, 358, 18747, 11, 2124, 16, 25, 32233, 58, 37659, 13, 358, 18747, 60, 198, 8, 4613, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 5974, 198, 220, 220, 220, 37227, 23004, 286, 7559, 42, 7948, 13, 834, 13345, 834, 15506, 618, 1813, 7559, 87, 15, 15506, 290, 7559, 87, 16, 15506, 526, 15931, 628, 220, 220, 220, 1441, 9720, 7, 87, 15, 11, 2124, 16, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 3672, 2625, 13345, 62, 20274, 62, 2616, 425, 4943, 198, 4299, 29220, 62, 13345, 62, 20274, 62, 2616, 425, 7, 198, 220, 220, 220, 9720, 62, 13345, 62, 2616, 425, 25, 4889, 540, 30109, 37659, 13, 358, 18747, 11, 32233, 58, 37659, 13, 358, 18747, 60, 4357, 45941, 13, 358, 18747, 4357, 198, 220, 220, 220, 2124, 15, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 2124, 16, 25, 32233, 58, 37659, 13, 358, 18747, 4357, 198, 8, 4613, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 5974, 198, 220, 220, 220, 37227, 23004, 286, 7559, 42, 7948, 13, 834, 13345, 834, 15506, 618, 5625, 284, 262, 12784, 286, 7559, 87, 15, 15506, 290, 7559, 87, 16, 15506, 287, 198, 220, 220, 220, 257, 9052, 526, 15931, 628, 220, 220, 220, 1441, 9720, 62, 13345, 62, 2616, 425, 7, 87, 15, 11, 2124, 16, 8, 628, 198, 4299, 1332, 62, 4906, 7, 13345, 62, 20274, 25, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 60, 2599, 198, 220, 220, 220, 37227, 14402, 1771, 262, 2099, 286, 262, 5072, 286, 7559, 42, 7948, 13, 834, 13345, 834, 15506, 318, 257, 31835, 20519, 2099, 11, 1312, 13, 68, 13, 198, 220, 220, 220, 281, 7559, 37659, 13, 358, 18747, 15506, 393, 257, 7559, 37659, 13, 48679, 803, 15506, 526, 15931, 628, 220, 220, 220, 6818, 318, 39098, 7, 13345, 62, 20274, 11, 357, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 4008, 628, 198, 4299, 1332, 62, 43358, 7, 198, 220, 220, 220, 869, 62, 20274, 25, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 4357, 198, 220, 220, 220, 869, 62, 20274, 62, 2616, 425, 25, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 4357, 198, 2599, 198, 220, 220, 220, 37227, 14402, 1771, 262, 5485, 286, 262, 5072, 286, 7559, 42, 7948, 13, 834, 13345, 834, 15506, 7466, 262, 5485, 286, 198, 220, 220, 220, 262, 24354, 4941, 7822, 526, 15931, 628, 220, 220, 220, 6818, 869, 62, 20274, 13, 43358, 6624, 869, 62, 20274, 62, 2616, 425, 13, 43358, 628, 198, 4299, 1332, 62, 27160, 7, 198, 220, 220, 220, 869, 62, 20274, 25, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 4357, 198, 220, 220, 220, 869, 62, 20274, 62, 2616, 425, 25, 4479, 58, 37659, 13, 358, 18747, 11, 45941, 13, 48679, 803, 4357, 198, 2599, 198, 220, 220, 220, 37227, 14402, 1771, 262, 12784, 286, 262, 5072, 286, 7559, 42, 7948, 13, 834, 13345, 834, 15506, 2872, 262, 12784, 198, 220, 220, 220, 7560, 416, 262, 24354, 4941, 7822, 526, 15931, 628, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 439, 19836, 7, 198, 220, 220, 220, 220, 220, 220, 220, 869, 62, 20274, 11, 198, 220, 220, 220, 220, 220, 220, 220, 869, 62, 20274, 62, 2616, 425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 374, 83, 349, 28, 940, 12429, 532, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 379, 349, 28, 940, 12429, 532, 1065, 11, 198, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 43358, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 29994, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 940, 11, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 19, 11, 1679, 828, 198, 220, 220, 220, 16589, 198, 8, 198, 4299, 1332, 62, 36460, 62, 15414, 62, 46156, 7, 33885, 25, 279, 77, 13, 74, 44930, 13, 42, 7948, 11, 5485, 25, 25959, 6030, 2599, 198, 220, 220, 220, 37227, 14402, 1771, 6427, 281, 5128, 351, 262, 2642, 5128, 15793, 12073, 281, 4049, 526, 15931, 628, 220, 220, 220, 5128, 62, 43358, 796, 5485, 1343, 357, 33885, 13, 15414, 62, 27740, 1343, 352, 35751, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 7, 37659, 13, 9107, 418, 7, 15414, 62, 43358, 828, 6045, 8, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 7, 37659, 13, 1952, 7, 15414, 62, 43358, 828, 45941, 13, 9107, 418, 7, 43358, 1343, 357, 33885, 13, 15414, 62, 27740, 11, 22305, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 7, 37659, 13, 1952, 7, 43358, 1343, 357, 33885, 13, 15414, 62, 27740, 35751, 828, 45941, 13, 9107, 418, 7, 15414, 62, 43358, 4008, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 87, 15, 62, 43358, 11, 87, 16, 62, 43358, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 17, 11, 828, 357, 23, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 17, 11, 642, 828, 357, 18, 11, 642, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 19, 11, 604, 828, 357, 19, 11, 362, 36911, 198, 220, 220, 220, 16589, 198, 8, 198, 4299, 1332, 62, 36654, 19913, 62, 18224, 7, 198, 220, 220, 220, 9720, 25, 279, 77, 13, 74, 44930, 13, 42, 7948, 11, 198, 220, 220, 220, 2124, 15, 62, 43358, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 2124, 16, 62, 43358, 25, 45941, 13, 358, 18747, 11, 198, 2599, 198, 220, 220, 220, 37227, 14402, 1771, 281, 4049, 318, 4376, 611, 262, 17311, 460, 407, 307, 7025, 284, 257, 2219, 198, 220, 220, 220, 5485, 526, 15931, 628, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 9107, 418, 7, 87, 15, 62, 43358, 1343, 357, 33885, 13, 15414, 62, 27740, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 1952, 7, 87, 16, 62, 43358, 1343, 357, 33885, 13, 15414, 62, 27740, 35751, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.174958
2,372
import numpy as np import tensorflow as tf import scipy.misc as smc import config_res as config from common.cnn_utils_res import * from common import resnet_rgb_model as model from common import resnet_depth_model as model_depth from common import all_transformer as at3 from common import global_agg_net from common.Lie_functions import exponential_map_single import nw_loader_color as ldr import model_utils _BETA_CONST = 1.0 _ALPHA_CONST = 1.0 IMG_HT = config.depth_img_params['IMG_HT'] IMG_WDT = config.depth_img_params['IMG_WDT'] batch_size = config.net_params['batch_size'] learning_rate = config.net_params['learning_rate'] n_epochs = config.net_params['epochs'] current_epoch = config.net_params['load_epoch'] tf.reset_default_graph() X1 = tf.placeholder(tf.float32, shape = (batch_size, IMG_HT, IMG_WDT, 3), name = "X1") X2 = tf.placeholder(tf.float32, shape = (batch_size, IMG_HT, IMG_WDT, 1), name = "X2") depth_maps_target = tf.placeholder(tf.float32, shape = (batch_size, IMG_HT, IMG_WDT, 1), name = "depth_maps_target") expected_transforms = tf.placeholder(tf.float32, shape = (batch_size, 4, 4), name = "expected_transforms") phase = tf.placeholder(tf.bool, [], name = "phase") phase_rgb = tf.placeholder(tf.bool, [], name = "phase_rgb") keep_prob = tf.placeholder(tf.float32, name = "keep_prob") fx = config.camera_params['fx'] fy = config.camera_params['fy'] cx = config.camera_params['cx'] cy = config.camera_params['cy'] fx_scaled = 2*(fx)/np.float32(IMG_WDT) # focal length x scaled for -1 to 1 range fy_scaled = 2*(fy)/np.float32(IMG_HT) # focal length y scaled for -1 to 1 range cx_scaled = -1 + 2*(cx - 1.0)/np.float32(IMG_WDT) # optical center x scaled for -1 to 1 range cy_scaled = -1 + 2*(cy - 1.0)/np.float32(IMG_HT) # optical center y scaled for -1 to 1 range K_mat_scaled = np.array([[fx_scaled, 0.0, cx_scaled], [0.0, fy_scaled, cy_scaled], [0.0, 0.0, 1.0]], dtype = np.float32) K_final = tf.constant(K_mat_scaled, dtype = tf.float32) small_transform = tf.constant(config.camera_params['cam_transform_02_inv'], dtype = tf.float32) X2_pooled = tf.nn.max_pool(X2, ksize=[1,5,5,1], strides=[1,1,1,1], padding="SAME") depth_maps_target_pooled = tf.nn.max_pool(depth_maps_target, ksize=[1,5,5,1], strides=[1,1,1,1], padding="SAME") output_vectors, weight_summaries = global_agg_net.End_Net_Out(X1, phase_rgb, X2_pooled, phase, keep_prob) # se(3) -> SE(3) for the whole batch predicted_transforms = tf.map_fn(lambda x:exponential_map_single(output_vectors[x]), elems=tf.range(0, batch_size, 1), dtype=tf.float32) # transforms depth maps by the predicted transformation depth_maps_predicted, cloud_pred = tf.map_fn(lambda x:at3._simple_transformer(X2_pooled[x,:,:,0]*40.0 + 40.0, predicted_transforms[x], K_final, small_transform), elems = tf.range(0, batch_size, 1), dtype = (tf.float32, tf.float32)) # transforms depth maps by the expected transformation depth_maps_expected, cloud_exp = tf.map_fn(lambda x:at3._simple_transformer(X2_pooled[x,:,:,0]*40.0 + 40.0, expected_transforms[x], K_final, small_transform), elems = tf.range(0, batch_size, 1), dtype = (tf.float32, tf.float32)) # photometric loss between predicted and expected transformation photometric_loss = tf.nn.l2_loss(tf.subtract((depth_maps_expected[:,10:-10,10:-10] - 40.0)/40.0, (depth_maps_predicted[:,10:-10,10:-10] - 40.0)/40.0)) # earth mover's distance between point clouds cloud_loss = model_utils.get_emd_loss(cloud_pred, cloud_exp) # final loss term predicted_loss_train = _ALPHA_CONST*photometric_loss + _BETA_CONST*cloud_loss tf.add_to_collection('losses1', predicted_loss_train) loss1 = tf.add_n(tf.get_collection('losses1')) train_step = tf.train.AdamOptimizer(learning_rate = config.net_params['learning_rate'], beta1 = config.net_params['beta1']).minimize(predicted_loss_train) predicted_loss_validation = tf.nn.l2_loss(tf.subtract((depth_maps_expected[:,10:-10,10:-10] - 40.0)/40.0, (depth_maps_predicted[:,10:-10,10:-10] - 40.0)/40.0)) cloud_loss_validation = model_utils.get_emd_loss(cloud_pred, cloud_exp) training_summary_1 = tf.summary.scalar('cloud_loss', _BETA_CONST*cloud_loss) training_summary_2 = tf.summary.scalar('photometric_loss', photometric_loss) validation_summary_1 = tf.summary.scalar('Validation_loss', predicted_loss_validation) validation_summary_2 = tf.summary.scalar('Validation_cloud_loss', cloud_loss_validation) merge_train = tf.summary.merge([training_summary_1] + [training_summary_2] + weight_summaries) merge_val = tf.summary.merge([validation_summary_1] + [validation_summary_2]) saver = tf.train.Saver() # tensorflow gpu configuration. Not to be confused with network configuration file config_tf = tf.ConfigProto() config_tf.gpu_options.allow_growth=True with tf.Session(config = config_tf) as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter("./logs_simple_transformer/") total_iterations_train = 0 total_iterations_validate = 0 if(current_epoch == 0): writer.add_graph(sess.graph) checkpoint_path = config.paths['checkpoint_path'] if(current_epoch > 0): print("Restoring Checkpoint") saver.restore(sess, checkpoint_path + "/model-%d"%current_epoch) current_epoch+=1 total_iterations_train = current_epoch*config.net_params['total_frames_train']/batch_size total_iterations_validate = current_epoch*config.net_params['total_frames_validation']/batch_size for epoch in range(current_epoch, n_epochs): total_partitions_train = config.net_params['total_frames_train']/config.net_params['partition_limit'] total_partitions_validation = config.net_params['total_frames_validation']/config.net_params['partition_limit'] ldr.shuffle() for part in range(total_partitions_train): source_container, target_container, source_img_container, target_img_container, transforms_container = ldr.load(part, mode = "train") for source_b, target_b, source_img_b, target_img_b, transforms_b in zip(source_container, target_container, source_img_container, target_img_container, transforms_container): outputs= sess.run([depth_maps_predicted, depth_maps_expected, predicted_loss_train, X2_pooled, train_step, merge_train, predicted_transforms, cloud_loss, photometric_loss, loss1], feed_dict={X1: source_img_b, X2: source_b, depth_maps_target: target_b, expected_transforms: transforms_b ,phase:True, keep_prob:0.5, phase_rgb: False}) dmaps_pred = outputs[0] dmaps_exp = outputs[1] loss = outputs[2] source = outputs[3] if(total_iterations_train%10 == 0): writer.add_summary(outputs[5], total_iterations_train/10) print(outputs[8], _ALPHA_CONST*outputs[8], outputs[7], _BETA_CONST*outputs[7], outputs[9],total_iterations_train) random_disp = np.random.randint(batch_size) print(outputs[6][random_disp]) print(transforms_b[random_disp]) if(total_iterations_train%125 == 0): smc.imsave(config.paths['training_imgs_path'] + "/training_save_%d.png"%total_iterations_train, np.vstack((source[random_disp,:,:,0]*40.0 + 40.0, dmaps_pred[random_disp], dmaps_exp[random_disp]))) total_iterations_train+=1 if (epoch%1 == 0): print("Saving after epoch %d"%epoch) saver.save(sess, checkpoint_path + "/model-%d"%epoch) for part in range(total_partitions_validation): source_container, target_container, source_img_container, target_img_container, transforms_container = ldr.load(part, mode = "validation") for source_b, target_b, source_img_b, target_img_b, transforms_b in zip(source_container, target_container, source_img_container, target_img_container, transforms_container): outputs= sess.run([depth_maps_predicted, depth_maps_expected, predicted_loss_validation, X2_pooled, merge_val, cloud_loss_validation], feed_dict={X1: source_img_b, X2: source_b, depth_maps_target: target_b, expected_transforms: transforms_b ,phase:False, keep_prob:1.0, phase_rgb: False}) dmaps_pred = outputs[0] dmaps_exp = outputs[1] loss = outputs[2] source = outputs[3] writer.add_summary(outputs[4], total_iterations_validate) total_iterations_validate+=1 print(loss, total_iterations_validate, outputs[5]) if(total_iterations_validate%25 == 0): random_disp = np.random.randint(batch_size) smc.imsave(config.paths['validation_imgs_path'] + "/validation_save_%d.png"%total_iterations_validate, np.vstack((source[random_disp,:,:,0]*40.0 + 40.0, dmaps_pred[random_disp], dmaps_exp[random_disp])))
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 629, 541, 88, 13, 44374, 355, 895, 66, 198, 198, 11748, 4566, 62, 411, 355, 4566, 198, 198, 6738, 2219, 13, 66, 20471, 62, 26791, 62, 411, 1330, 1635, 198, 6738, 2219, 1330, 581, 3262, 62, 81, 22296, 62, 19849, 355, 2746, 198, 6738, 2219, 1330, 581, 3262, 62, 18053, 62, 19849, 355, 2746, 62, 18053, 198, 6738, 2219, 1330, 477, 62, 7645, 16354, 355, 379, 18, 198, 6738, 2219, 1330, 3298, 62, 9460, 62, 3262, 198, 6738, 2219, 13, 47918, 62, 12543, 2733, 1330, 39682, 62, 8899, 62, 29762, 198, 198, 11748, 299, 86, 62, 29356, 62, 8043, 355, 300, 7109, 198, 11748, 2746, 62, 26791, 628, 198, 62, 33, 20892, 62, 10943, 2257, 796, 352, 13, 15, 198, 62, 1847, 47, 7801, 62, 10943, 2257, 796, 352, 13, 15, 198, 3955, 38, 62, 6535, 796, 4566, 13, 18053, 62, 9600, 62, 37266, 17816, 3955, 38, 62, 6535, 20520, 198, 3955, 38, 62, 22332, 51, 796, 4566, 13, 18053, 62, 9600, 62, 37266, 17816, 3955, 38, 62, 22332, 51, 20520, 198, 43501, 62, 7857, 796, 4566, 13, 3262, 62, 37266, 17816, 43501, 62, 7857, 20520, 198, 40684, 62, 4873, 796, 4566, 13, 3262, 62, 37266, 17816, 40684, 62, 4873, 20520, 198, 77, 62, 538, 5374, 82, 796, 4566, 13, 3262, 62, 37266, 17816, 538, 5374, 82, 20520, 198, 14421, 62, 538, 5374, 796, 4566, 13, 3262, 62, 37266, 17816, 2220, 62, 538, 5374, 20520, 198, 198, 27110, 13, 42503, 62, 12286, 62, 34960, 3419, 198, 198, 55, 16, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 5485, 796, 357, 43501, 62, 7857, 11, 8959, 38, 62, 6535, 11, 8959, 38, 62, 22332, 51, 11, 513, 828, 1438, 796, 366, 55, 16, 4943, 198, 55, 17, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 5485, 796, 357, 43501, 62, 7857, 11, 8959, 38, 62, 6535, 11, 8959, 38, 62, 22332, 51, 11, 352, 828, 1438, 796, 366, 55, 17, 4943, 198, 18053, 62, 31803, 62, 16793, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 5485, 796, 357, 43501, 62, 7857, 11, 8959, 38, 62, 6535, 11, 8959, 38, 62, 22332, 51, 11, 352, 828, 1438, 796, 366, 18053, 62, 31803, 62, 16793, 4943, 198, 40319, 62, 7645, 23914, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 5485, 796, 357, 43501, 62, 7857, 11, 604, 11, 604, 828, 1438, 796, 366, 40319, 62, 7645, 23914, 4943, 198, 198, 40715, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 30388, 11, 685, 4357, 1438, 796, 366, 40715, 4943, 198, 40715, 62, 81, 22296, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 30388, 11, 685, 4357, 1438, 796, 366, 40715, 62, 81, 22296, 4943, 198, 14894, 62, 1676, 65, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 1438, 796, 366, 14894, 62, 1676, 65, 4943, 198, 198, 21373, 796, 4566, 13, 25695, 62, 37266, 17816, 21373, 20520, 198, 24928, 796, 4566, 13, 25695, 62, 37266, 17816, 24928, 20520, 198, 66, 87, 796, 4566, 13, 25695, 62, 37266, 17816, 66, 87, 20520, 198, 948, 796, 4566, 13, 25695, 62, 37266, 17816, 948, 20520, 198, 198, 21373, 62, 1416, 3021, 796, 362, 9, 7, 21373, 20679, 37659, 13, 22468, 2624, 7, 3955, 38, 62, 22332, 51, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25397, 4129, 2124, 27464, 329, 532, 16, 284, 352, 2837, 198, 24928, 62, 1416, 3021, 796, 362, 9, 7, 24928, 20679, 37659, 13, 22468, 2624, 7, 3955, 38, 62, 6535, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 25397, 4129, 331, 27464, 329, 532, 16, 284, 352, 2837, 198, 66, 87, 62, 1416, 3021, 796, 532, 16, 1343, 362, 9, 7, 66, 87, 532, 352, 13, 15, 20679, 37659, 13, 22468, 2624, 7, 3955, 38, 62, 22332, 51, 8, 220, 220, 1303, 18480, 3641, 2124, 27464, 329, 532, 16, 284, 352, 2837, 198, 948, 62, 1416, 3021, 796, 532, 16, 1343, 362, 9, 7, 948, 532, 352, 13, 15, 20679, 37659, 13, 22468, 2624, 7, 3955, 38, 62, 6535, 8, 220, 220, 220, 1303, 18480, 3641, 331, 27464, 329, 532, 16, 284, 352, 2837, 198, 198, 42, 62, 6759, 62, 1416, 3021, 796, 45941, 13, 18747, 26933, 58, 21373, 62, 1416, 3021, 11, 220, 657, 13, 15, 11, 43213, 62, 1416, 3021, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 15, 11, 277, 88, 62, 1416, 3021, 11, 220, 3075, 62, 1416, 3021, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 4357, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 198, 42, 62, 20311, 796, 48700, 13, 9979, 415, 7, 42, 62, 6759, 62, 1416, 3021, 11, 288, 4906, 796, 48700, 13, 22468, 2624, 8, 198, 17470, 62, 35636, 796, 48700, 13, 9979, 415, 7, 11250, 13, 25695, 62, 37266, 17816, 20991, 62, 35636, 62, 2999, 62, 16340, 6, 4357, 288, 4906, 796, 48700, 13, 22468, 2624, 8, 628, 198, 55, 17, 62, 7742, 276, 796, 48700, 13, 20471, 13, 9806, 62, 7742, 7, 55, 17, 11, 479, 7857, 41888, 16, 11, 20, 11, 20, 11, 16, 4357, 35002, 41888, 16, 11, 16, 11, 16, 11, 16, 4357, 24511, 2625, 50, 10067, 4943, 198, 18053, 62, 31803, 62, 16793, 62, 7742, 276, 796, 48700, 13, 20471, 13, 9806, 62, 7742, 7, 18053, 62, 31803, 62, 16793, 11, 479, 7857, 41888, 16, 11, 20, 11, 20, 11, 16, 4357, 35002, 41888, 16, 11, 16, 11, 16, 11, 16, 4357, 24511, 2625, 50, 10067, 4943, 198, 198, 22915, 62, 303, 5217, 11, 3463, 62, 82, 13929, 3166, 796, 3298, 62, 9460, 62, 3262, 13, 12915, 62, 7934, 62, 7975, 7, 55, 16, 11, 7108, 62, 81, 22296, 11, 1395, 17, 62, 7742, 276, 11, 7108, 11, 1394, 62, 1676, 65, 8, 198, 198, 2, 384, 7, 18, 8, 4613, 7946, 7, 18, 8, 329, 262, 2187, 15458, 198, 28764, 5722, 62, 7645, 23914, 796, 48700, 13, 8899, 62, 22184, 7, 50033, 2124, 25, 11201, 35470, 62, 8899, 62, 29762, 7, 22915, 62, 303, 5217, 58, 87, 46570, 9766, 907, 28, 27110, 13, 9521, 7, 15, 11, 15458, 62, 7857, 11, 352, 828, 288, 4906, 28, 27110, 13, 22468, 2624, 8, 198, 198, 2, 31408, 6795, 8739, 416, 262, 11001, 13389, 198, 18053, 62, 31803, 62, 28764, 5722, 11, 6279, 62, 28764, 796, 48700, 13, 8899, 62, 22184, 7, 50033, 2124, 25, 265, 18, 13557, 36439, 62, 7645, 16354, 7, 55, 17, 62, 7742, 276, 58, 87, 11, 45299, 45299, 15, 60, 9, 1821, 13, 15, 1343, 2319, 13, 15, 11, 11001, 62, 7645, 23914, 58, 87, 4357, 509, 62, 20311, 11, 1402, 62, 35636, 828, 9766, 907, 796, 48700, 13, 9521, 7, 15, 11, 15458, 62, 7857, 11, 352, 828, 288, 4906, 796, 357, 27110, 13, 22468, 2624, 11, 48700, 13, 22468, 2624, 4008, 198, 198, 2, 31408, 6795, 8739, 416, 262, 2938, 13389, 198, 18053, 62, 31803, 62, 40319, 11, 6279, 62, 11201, 796, 48700, 13, 8899, 62, 22184, 7, 50033, 2124, 25, 265, 18, 13557, 36439, 62, 7645, 16354, 7, 55, 17, 62, 7742, 276, 58, 87, 11, 45299, 45299, 15, 60, 9, 1821, 13, 15, 1343, 2319, 13, 15, 11, 2938, 62, 7645, 23914, 58, 87, 4357, 509, 62, 20311, 11, 1402, 62, 35636, 828, 9766, 907, 796, 48700, 13, 9521, 7, 15, 11, 15458, 62, 7857, 11, 352, 828, 288, 4906, 796, 357, 27110, 13, 22468, 2624, 11, 48700, 13, 22468, 2624, 4008, 198, 198, 2, 2825, 16996, 2994, 1022, 11001, 290, 2938, 13389, 198, 38611, 16996, 62, 22462, 796, 48700, 13, 20471, 13, 75, 17, 62, 22462, 7, 27110, 13, 7266, 83, 974, 19510, 18053, 62, 31803, 62, 40319, 58, 45299, 940, 21912, 940, 11, 940, 21912, 940, 60, 532, 2319, 13, 15, 20679, 1821, 13, 15, 11, 357, 18053, 62, 31803, 62, 28764, 5722, 58, 45299, 940, 21912, 940, 11, 940, 21912, 940, 60, 532, 2319, 13, 15, 20679, 1821, 13, 15, 4008, 198, 198, 2, 4534, 285, 2502, 338, 5253, 1022, 966, 15114, 198, 17721, 62, 22462, 796, 2746, 62, 26791, 13, 1136, 62, 368, 67, 62, 22462, 7, 17721, 62, 28764, 11, 6279, 62, 11201, 8, 198, 198, 2, 2457, 2994, 3381, 198, 28764, 5722, 62, 22462, 62, 27432, 796, 4808, 1847, 47, 7801, 62, 10943, 2257, 9, 38611, 16996, 62, 22462, 1343, 4808, 33, 20892, 62, 10943, 2257, 9, 17721, 62, 22462, 198, 198, 27110, 13, 2860, 62, 1462, 62, 43681, 10786, 22462, 274, 16, 3256, 11001, 62, 22462, 62, 27432, 8, 198, 22462, 16, 796, 48700, 13, 2860, 62, 77, 7, 27110, 13, 1136, 62, 43681, 10786, 22462, 274, 16, 6, 4008, 198, 198, 27432, 62, 9662, 796, 48700, 13, 27432, 13, 23159, 27871, 320, 7509, 7, 40684, 62, 4873, 796, 4566, 13, 3262, 62, 37266, 17816, 40684, 62, 4873, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12159, 16, 796, 4566, 13, 3262, 62, 37266, 17816, 31361, 16, 20520, 737, 1084, 48439, 7, 28764, 5722, 62, 22462, 62, 27432, 8, 198, 198, 28764, 5722, 62, 22462, 62, 12102, 341, 796, 48700, 13, 20471, 13, 75, 17, 62, 22462, 7, 27110, 13, 7266, 83, 974, 19510, 18053, 62, 31803, 62, 40319, 58, 45299, 940, 21912, 940, 11, 940, 21912, 940, 60, 532, 2319, 13, 15, 20679, 1821, 13, 15, 11, 357, 18053, 62, 31803, 62, 28764, 5722, 58, 45299, 940, 21912, 940, 11, 940, 21912, 940, 60, 532, 2319, 13, 15, 20679, 1821, 13, 15, 4008, 198, 198, 17721, 62, 22462, 62, 12102, 341, 796, 2746, 62, 26791, 13, 1136, 62, 368, 67, 62, 22462, 7, 17721, 62, 28764, 11, 6279, 62, 11201, 8, 198, 198, 34409, 62, 49736, 62, 16, 796, 48700, 13, 49736, 13, 1416, 282, 283, 10786, 17721, 62, 22462, 3256, 4808, 33, 20892, 62, 10943, 2257, 9, 17721, 62, 22462, 8, 198, 34409, 62, 49736, 62, 17, 796, 48700, 13, 49736, 13, 1416, 282, 283, 10786, 38611, 16996, 62, 22462, 3256, 2825, 16996, 62, 22462, 8, 198, 12102, 341, 62, 49736, 62, 16, 796, 48700, 13, 49736, 13, 1416, 282, 283, 10786, 7762, 24765, 62, 22462, 3256, 11001, 62, 22462, 62, 12102, 341, 8, 198, 12102, 341, 62, 49736, 62, 17, 796, 48700, 13, 49736, 13, 1416, 282, 283, 10786, 7762, 24765, 62, 17721, 62, 22462, 3256, 6279, 62, 22462, 62, 12102, 341, 8, 198, 198, 647, 469, 62, 27432, 796, 48700, 13, 49736, 13, 647, 469, 26933, 34409, 62, 49736, 62, 16, 60, 1343, 685, 34409, 62, 49736, 62, 17, 60, 1343, 3463, 62, 82, 13929, 3166, 8, 198, 647, 469, 62, 2100, 796, 48700, 13, 49736, 13, 647, 469, 26933, 12102, 341, 62, 49736, 62, 16, 60, 1343, 685, 12102, 341, 62, 49736, 62, 17, 12962, 198, 198, 82, 8770, 796, 48700, 13, 27432, 13, 50, 8770, 3419, 198, 198, 2, 11192, 273, 11125, 308, 19944, 8398, 13, 1892, 284, 307, 10416, 351, 3127, 8398, 2393, 198, 198, 11250, 62, 27110, 796, 48700, 13, 16934, 2964, 1462, 3419, 198, 11250, 62, 27110, 13, 46999, 62, 25811, 13, 12154, 62, 27922, 28, 17821, 198, 198, 4480, 48700, 13, 36044, 7, 11250, 796, 4566, 62, 27110, 8, 355, 264, 408, 25, 198, 220, 220, 220, 264, 408, 13, 5143, 7, 27110, 13, 20541, 62, 25641, 2977, 62, 36733, 7509, 28955, 628, 220, 220, 220, 6260, 796, 48700, 13, 49736, 13, 8979, 34379, 7, 1911, 14, 6404, 82, 62, 36439, 62, 7645, 16354, 14, 4943, 628, 220, 220, 220, 2472, 62, 2676, 602, 62, 27432, 796, 657, 198, 220, 220, 220, 2472, 62, 2676, 602, 62, 12102, 378, 796, 657, 628, 220, 220, 220, 611, 7, 14421, 62, 538, 5374, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 34960, 7, 82, 408, 13, 34960, 8, 628, 220, 220, 220, 26954, 62, 6978, 796, 4566, 13, 6978, 82, 17816, 9122, 4122, 62, 6978, 20520, 628, 220, 220, 220, 611, 7, 14421, 62, 538, 5374, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 19452, 3255, 6822, 4122, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 473, 332, 13, 2118, 382, 7, 82, 408, 11, 26954, 62, 6978, 1343, 12813, 19849, 12, 4, 67, 1, 4, 14421, 62, 538, 5374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 538, 5374, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 2676, 602, 62, 27432, 796, 1459, 62, 538, 5374, 9, 11250, 13, 3262, 62, 37266, 17816, 23350, 62, 37805, 62, 27432, 20520, 14, 43501, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 2676, 602, 62, 12102, 378, 796, 1459, 62, 538, 5374, 9, 11250, 13, 3262, 62, 37266, 17816, 23350, 62, 37805, 62, 12102, 341, 20520, 14, 43501, 62, 7857, 628, 220, 220, 220, 329, 36835, 287, 2837, 7, 14421, 62, 538, 5374, 11, 299, 62, 538, 5374, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 3911, 1756, 62, 27432, 796, 4566, 13, 3262, 62, 37266, 17816, 23350, 62, 37805, 62, 27432, 20520, 14, 11250, 13, 3262, 62, 37266, 17816, 3911, 653, 62, 32374, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 3911, 1756, 62, 12102, 341, 796, 4566, 13, 3262, 62, 37266, 17816, 23350, 62, 37805, 62, 12102, 341, 20520, 14, 11250, 13, 3262, 62, 37266, 17816, 3911, 653, 62, 32374, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 300, 7109, 13, 1477, 18137, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 636, 287, 2837, 7, 23350, 62, 3911, 1756, 62, 27432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 34924, 11, 2496, 62, 34924, 11, 2723, 62, 9600, 62, 34924, 11, 2496, 62, 9600, 62, 34924, 11, 31408, 62, 34924, 796, 300, 7109, 13, 2220, 7, 3911, 11, 4235, 796, 366, 27432, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2723, 62, 65, 11, 2496, 62, 65, 11, 2723, 62, 9600, 62, 65, 11, 2496, 62, 9600, 62, 65, 11, 31408, 62, 65, 287, 19974, 7, 10459, 62, 34924, 11, 2496, 62, 34924, 11, 2723, 62, 9600, 62, 34924, 11, 2496, 62, 9600, 62, 34924, 11, 31408, 62, 34924, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23862, 28, 264, 408, 13, 5143, 26933, 18053, 62, 31803, 62, 28764, 5722, 11, 6795, 62, 31803, 62, 40319, 11, 11001, 62, 22462, 62, 27432, 11, 1395, 17, 62, 7742, 276, 11, 4512, 62, 9662, 11, 20121, 62, 27432, 11, 11001, 62, 7645, 23914, 11, 6279, 62, 22462, 11, 2825, 16996, 62, 22462, 11, 2994, 16, 4357, 3745, 62, 11600, 34758, 55, 16, 25, 2723, 62, 9600, 62, 65, 11, 1395, 17, 25, 2723, 62, 65, 11, 6795, 62, 31803, 62, 16793, 25, 2496, 62, 65, 11, 2938, 62, 7645, 23914, 25, 31408, 62, 65, 837, 40715, 25, 17821, 11, 1394, 62, 1676, 65, 25, 15, 13, 20, 11, 7108, 62, 81, 22296, 25, 10352, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 31803, 62, 28764, 796, 23862, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 31803, 62, 11201, 796, 23862, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 23862, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 23862, 58, 18, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 23350, 62, 2676, 602, 62, 27432, 4, 940, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 49736, 7, 22915, 82, 58, 20, 4357, 2472, 62, 2676, 602, 62, 27432, 14, 940, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22915, 82, 58, 23, 4357, 4808, 1847, 47, 7801, 62, 10943, 2257, 9, 22915, 82, 58, 23, 4357, 23862, 58, 22, 4357, 4808, 33, 20892, 62, 10943, 2257, 9, 22915, 82, 58, 22, 4357, 23862, 58, 24, 4357, 23350, 62, 2676, 602, 62, 27432, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 6381, 79, 796, 45941, 13, 25120, 13, 25192, 600, 7, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22915, 82, 58, 21, 7131, 25120, 62, 6381, 79, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7645, 23914, 62, 65, 58, 25120, 62, 6381, 79, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 23350, 62, 2676, 602, 62, 27432, 4, 11623, 6624, 657, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 66, 13, 12078, 1015, 7, 11250, 13, 6978, 82, 17816, 34409, 62, 9600, 82, 62, 6978, 20520, 1343, 12813, 34409, 62, 21928, 62, 4, 67, 13, 11134, 1, 4, 23350, 62, 2676, 602, 62, 27432, 11, 45941, 13, 85, 25558, 19510, 10459, 58, 25120, 62, 6381, 79, 11, 45299, 45299, 15, 60, 9, 1821, 13, 15, 1343, 2319, 13, 15, 11, 288, 31803, 62, 28764, 58, 25120, 62, 6381, 79, 4357, 288, 31803, 62, 11201, 58, 25120, 62, 6381, 79, 60, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 2676, 602, 62, 27432, 47932, 16, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 538, 5374, 4, 16, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 50, 2703, 706, 36835, 4064, 67, 1, 4, 538, 5374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 473, 332, 13, 21928, 7, 82, 408, 11, 26954, 62, 6978, 1343, 12813, 19849, 12, 4, 67, 1, 4, 538, 5374, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 636, 287, 2837, 7, 23350, 62, 3911, 1756, 62, 12102, 341, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 34924, 11, 2496, 62, 34924, 11, 2723, 62, 9600, 62, 34924, 11, 2496, 62, 9600, 62, 34924, 11, 31408, 62, 34924, 796, 300, 7109, 13, 2220, 7, 3911, 11, 4235, 796, 366, 12102, 341, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2723, 62, 65, 11, 2496, 62, 65, 11, 2723, 62, 9600, 62, 65, 11, 2496, 62, 9600, 62, 65, 11, 31408, 62, 65, 287, 19974, 7, 10459, 62, 34924, 11, 2496, 62, 34924, 11, 2723, 62, 9600, 62, 34924, 11, 2496, 62, 9600, 62, 34924, 11, 31408, 62, 34924, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23862, 28, 264, 408, 13, 5143, 26933, 18053, 62, 31803, 62, 28764, 5722, 11, 6795, 62, 31803, 62, 40319, 11, 11001, 62, 22462, 62, 12102, 341, 11, 1395, 17, 62, 7742, 276, 11, 20121, 62, 2100, 11, 6279, 62, 22462, 62, 12102, 341, 4357, 3745, 62, 11600, 34758, 55, 16, 25, 2723, 62, 9600, 62, 65, 11, 1395, 17, 25, 2723, 62, 65, 11, 6795, 62, 31803, 62, 16793, 25, 2496, 62, 65, 11, 2938, 62, 7645, 23914, 25, 31408, 62, 65, 837, 40715, 25, 25101, 11, 1394, 62, 1676, 65, 25, 16, 13, 15, 11, 7108, 62, 81, 22296, 25, 10352, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 31803, 62, 28764, 796, 23862, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 31803, 62, 11201, 796, 23862, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 23862, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 23862, 58, 18, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 2860, 62, 49736, 7, 22915, 82, 58, 19, 4357, 2472, 62, 2676, 602, 62, 12102, 378, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 2676, 602, 62, 12102, 378, 47932, 16, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 22462, 11, 2472, 62, 2676, 602, 62, 12102, 378, 11, 23862, 58, 20, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 23350, 62, 2676, 602, 62, 12102, 378, 4, 1495, 6624, 657, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 6381, 79, 796, 45941, 13, 25120, 13, 25192, 600, 7, 43501, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 895, 66, 13, 12078, 1015, 7, 11250, 13, 6978, 82, 17816, 12102, 341, 62, 9600, 82, 62, 6978, 20520, 1343, 12813, 12102, 341, 62, 21928, 62, 4, 67, 13, 11134, 1, 4, 23350, 62, 2676, 602, 62, 12102, 378, 11, 45941, 13, 85, 25558, 19510, 10459, 58, 25120, 62, 6381, 79, 11, 45299, 45299, 15, 60, 9, 1821, 13, 15, 1343, 2319, 13, 15, 11, 288, 31803, 62, 28764, 58, 25120, 62, 6381, 79, 4357, 288, 31803, 62, 11201, 58, 25120, 62, 6381, 79, 60, 22305 ]
2.404482
3,748
import random from art import logo, vs from utils import clear from game_data import data game()
[ 11748, 4738, 220, 198, 6738, 1242, 1330, 11112, 11, 3691, 198, 6738, 3384, 4487, 1330, 1598, 198, 6738, 983, 62, 7890, 1330, 1366, 628, 198, 198, 6057, 3419 ]
3.571429
28
from . import kernel_approximation # noqa from ._version import __version__ __all__ = ["__version__"]
[ 6738, 764, 1330, 9720, 62, 1324, 13907, 18991, 220, 1303, 645, 20402, 198, 198, 6738, 47540, 9641, 1330, 11593, 9641, 834, 198, 198, 834, 439, 834, 796, 14631, 834, 9641, 834, 8973, 198 ]
3.181818
33
"""Pending deprecation file. To view the actual content, go to: flow/envs/multiagent/ring/accel.py """ from flow.utils.flow_warnings import deprecated from flow.envs.multiagent.ring.accel import AdversarialAccelEnv as MAAEnv @deprecated('flow.multiagent_envs.loop.loop_accel', 'flow.envs.multiagent.ring.accel.AdversarialAccelEnv') class AdversarialAccelEnv(MAAEnv): """See parent class.""" pass
[ 37811, 47, 1571, 1207, 8344, 341, 2393, 13, 198, 198, 2514, 1570, 262, 4036, 2695, 11, 467, 284, 25, 5202, 14, 268, 14259, 14, 41684, 25781, 14, 1806, 14, 330, 5276, 13, 9078, 198, 37811, 198, 6738, 5202, 13, 26791, 13, 11125, 62, 40539, 654, 1330, 39224, 198, 6738, 5202, 13, 268, 14259, 13, 41684, 25781, 13, 1806, 13, 330, 5276, 1330, 1215, 690, 36098, 12832, 5276, 4834, 85, 355, 337, 3838, 4834, 85, 628, 198, 31, 10378, 31023, 10786, 11125, 13, 41684, 25781, 62, 268, 14259, 13, 26268, 13, 26268, 62, 330, 5276, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11125, 13, 268, 14259, 13, 41684, 25781, 13, 1806, 13, 330, 5276, 13, 2782, 690, 36098, 12832, 5276, 4834, 85, 11537, 198, 4871, 1215, 690, 36098, 12832, 5276, 4834, 85, 7, 44, 3838, 4834, 85, 2599, 198, 220, 220, 220, 37227, 6214, 2560, 1398, 526, 15931, 628, 220, 220, 220, 1208, 198 ]
2.625
160
from .ucr import * from .ett_small import ETTSmall
[ 6738, 764, 1229, 81, 1330, 1635, 198, 6738, 764, 3087, 62, 17470, 1330, 12152, 4694, 76, 439, 198 ]
2.833333
18
# coding: utf-8 # Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class Captcha(object): """ The settings of the CAPTCHA challenge. If a specific URL should be accessed only by a human, a CAPTCHA challenge can be placed at the URL to protect the web application from bots. *Warning:* Oracle recommends that you avoid using any confidential information when you supply string values using the API. """ def __init__(self, **kwargs): """ Initializes a new Captcha object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param url: The value to assign to the url property of this Captcha. :type url: str :param session_expiration_in_seconds: The value to assign to the session_expiration_in_seconds property of this Captcha. :type session_expiration_in_seconds: int :param title: The value to assign to the title property of this Captcha. :type title: str :param header_text: The value to assign to the header_text property of this Captcha. :type header_text: str :param footer_text: The value to assign to the footer_text property of this Captcha. :type footer_text: str :param failure_message: The value to assign to the failure_message property of this Captcha. :type failure_message: str :param submit_label: The value to assign to the submit_label property of this Captcha. :type submit_label: str """ self.swagger_types = { 'url': 'str', 'session_expiration_in_seconds': 'int', 'title': 'str', 'header_text': 'str', 'footer_text': 'str', 'failure_message': 'str', 'submit_label': 'str' } self.attribute_map = { 'url': 'url', 'session_expiration_in_seconds': 'sessionExpirationInSeconds', 'title': 'title', 'header_text': 'headerText', 'footer_text': 'footerText', 'failure_message': 'failureMessage', 'submit_label': 'submitLabel' } self._url = None self._session_expiration_in_seconds = None self._title = None self._header_text = None self._footer_text = None self._failure_message = None self._submit_label = None @property def url(self): """ **[Required]** Gets the url of this Captcha. The unique URL path at which to show the CAPTCHA challenge. :return: The url of this Captcha. :rtype: str """ return self._url @url.setter def url(self, url): """ Sets the url of this Captcha. The unique URL path at which to show the CAPTCHA challenge. :param url: The url of this Captcha. :type: str """ self._url = url @property def session_expiration_in_seconds(self): """ **[Required]** Gets the session_expiration_in_seconds of this Captcha. The amount of time before the CAPTCHA expires, in seconds. If unspecified, defaults to `300`. :return: The session_expiration_in_seconds of this Captcha. :rtype: int """ return self._session_expiration_in_seconds @session_expiration_in_seconds.setter def session_expiration_in_seconds(self, session_expiration_in_seconds): """ Sets the session_expiration_in_seconds of this Captcha. The amount of time before the CAPTCHA expires, in seconds. If unspecified, defaults to `300`. :param session_expiration_in_seconds: The session_expiration_in_seconds of this Captcha. :type: int """ self._session_expiration_in_seconds = session_expiration_in_seconds @property def title(self): """ **[Required]** Gets the title of this Captcha. The title used when displaying a CAPTCHA challenge. If unspecified, defaults to `Are you human?` :return: The title of this Captcha. :rtype: str """ return self._title @title.setter def title(self, title): """ Sets the title of this Captcha. The title used when displaying a CAPTCHA challenge. If unspecified, defaults to `Are you human?` :param title: The title of this Captcha. :type: str """ self._title = title @property def header_text(self): """ Gets the header_text of this Captcha. The text to show in the header when showing a CAPTCHA challenge. If unspecified, defaults to 'We have detected an increased number of attempts to access this website. To help us keep this site secure, please let us know that you are not a robot by entering the text from the image below.' :return: The header_text of this Captcha. :rtype: str """ return self._header_text @header_text.setter def header_text(self, header_text): """ Sets the header_text of this Captcha. The text to show in the header when showing a CAPTCHA challenge. If unspecified, defaults to 'We have detected an increased number of attempts to access this website. To help us keep this site secure, please let us know that you are not a robot by entering the text from the image below.' :param header_text: The header_text of this Captcha. :type: str """ self._header_text = header_text @property def footer_text(self): """ Gets the footer_text of this Captcha. The text to show in the footer when showing a CAPTCHA challenge. If unspecified, defaults to 'Enter the letters and numbers as they are shown in the image above.' :return: The footer_text of this Captcha. :rtype: str """ return self._footer_text @footer_text.setter def footer_text(self, footer_text): """ Sets the footer_text of this Captcha. The text to show in the footer when showing a CAPTCHA challenge. If unspecified, defaults to 'Enter the letters and numbers as they are shown in the image above.' :param footer_text: The footer_text of this Captcha. :type: str """ self._footer_text = footer_text @property def failure_message(self): """ **[Required]** Gets the failure_message of this Captcha. The text to show when incorrect CAPTCHA text is entered. If unspecified, defaults to `The CAPTCHA was incorrect. Try again.` :return: The failure_message of this Captcha. :rtype: str """ return self._failure_message @failure_message.setter def failure_message(self, failure_message): """ Sets the failure_message of this Captcha. The text to show when incorrect CAPTCHA text is entered. If unspecified, defaults to `The CAPTCHA was incorrect. Try again.` :param failure_message: The failure_message of this Captcha. :type: str """ self._failure_message = failure_message @property def submit_label(self): """ **[Required]** Gets the submit_label of this Captcha. The text to show on the label of the CAPTCHA challenge submit button. If unspecified, defaults to `Yes, I am human`. :return: The submit_label of this Captcha. :rtype: str """ return self._submit_label @submit_label.setter def submit_label(self, submit_label): """ Sets the submit_label of this Captcha. The text to show on the label of the CAPTCHA challenge submit button. If unspecified, defaults to `Yes, I am human`. :param submit_label: The submit_label of this Captcha. :type: str """ self._submit_label = submit_label
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 15069, 357, 66, 8, 1584, 11, 12131, 11, 18650, 290, 14, 273, 663, 29116, 13, 220, 1439, 2489, 10395, 13, 198, 2, 770, 3788, 318, 10668, 12, 36612, 284, 345, 739, 262, 14499, 2448, 33532, 13789, 357, 52, 6489, 8, 352, 13, 15, 355, 3402, 379, 3740, 1378, 793, 13, 273, 6008, 13, 785, 14, 677, 4541, 14, 84, 489, 393, 24843, 13789, 362, 13, 15, 355, 3402, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 921, 743, 3853, 2035, 5964, 13, 628, 198, 6738, 267, 979, 13, 22602, 1330, 39559, 62, 38568, 62, 11600, 11, 399, 11651, 62, 50, 3525, 1268, 3698, 11, 1988, 62, 40845, 62, 23108, 62, 273, 62, 23108, 62, 34086, 20538, 220, 1303, 645, 20402, 25, 376, 21844, 198, 6738, 267, 979, 13, 12501, 273, 2024, 1330, 2315, 62, 19849, 62, 5219, 62, 6738, 62, 46265, 22046, 628, 198, 31, 15003, 62, 19849, 62, 5219, 62, 6738, 62, 46265, 22046, 198, 4871, 6790, 11693, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 6460, 286, 262, 20176, 51, 49285, 4427, 13, 1002, 257, 2176, 10289, 815, 307, 17535, 691, 416, 257, 1692, 11, 257, 20176, 51, 49285, 4427, 460, 307, 4624, 379, 262, 10289, 284, 1805, 262, 3992, 3586, 422, 29641, 13, 628, 220, 220, 220, 1635, 20361, 25, 9, 18650, 20829, 326, 345, 3368, 1262, 597, 15279, 1321, 618, 345, 5127, 4731, 3815, 1262, 262, 7824, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 257, 649, 6790, 11693, 2134, 351, 3815, 422, 21179, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1708, 21179, 7159, 389, 4855, 357, 10215, 5546, 278, 284, 262, 651, 1010, 14, 2617, 1010, 286, 428, 1398, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 19016, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 19016, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 25, 493, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3670, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 3670, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3670, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13639, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 13639, 62, 5239, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 13639, 62, 5239, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2366, 263, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 2366, 263, 62, 5239, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2366, 263, 62, 5239, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5287, 62, 20500, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 5287, 62, 20500, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 5287, 62, 20500, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9199, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 8333, 284, 262, 9199, 62, 18242, 3119, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 9199, 62, 18242, 25, 965, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2032, 7928, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29891, 62, 1069, 10514, 62, 259, 62, 43012, 10354, 705, 600, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25677, 62, 5239, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5898, 263, 62, 5239, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32165, 495, 62, 20500, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46002, 62, 18242, 10354, 705, 2536, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42348, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 10354, 705, 6371, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29891, 62, 1069, 10514, 62, 259, 62, 43012, 10354, 705, 29891, 3109, 10514, 818, 12211, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 705, 7839, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25677, 62, 5239, 10354, 705, 25677, 8206, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5898, 263, 62, 5239, 10354, 705, 5898, 263, 8206, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32165, 495, 62, 20500, 10354, 705, 32165, 495, 12837, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46002, 62, 18242, 10354, 705, 46002, 33986, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6371, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 29891, 62, 1069, 10514, 62, 259, 62, 43012, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7839, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25677, 62, 5239, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5898, 263, 62, 5239, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 32165, 495, 62, 20500, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 46002, 62, 18242, 796, 6045, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 19016, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 58, 37374, 60, 1174, 29620, 262, 19016, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3748, 10289, 3108, 379, 543, 284, 905, 262, 20176, 51, 49285, 4427, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 19016, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 6371, 628, 220, 220, 220, 2488, 6371, 13, 2617, 353, 198, 220, 220, 220, 825, 19016, 7, 944, 11, 19016, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 19016, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3748, 10289, 3108, 379, 543, 284, 905, 262, 20176, 51, 49285, 4427, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 19016, 25, 383, 19016, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6371, 796, 19016, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 58, 37374, 60, 1174, 29620, 262, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 286, 640, 878, 262, 20176, 51, 49285, 27396, 11, 287, 4201, 13, 1002, 29547, 11, 26235, 284, 4600, 6200, 44646, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 29891, 62, 1069, 10514, 62, 259, 62, 43012, 628, 220, 220, 220, 2488, 29891, 62, 1069, 10514, 62, 259, 62, 43012, 13, 2617, 353, 198, 220, 220, 220, 825, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 7, 944, 11, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 286, 640, 878, 262, 20176, 51, 49285, 27396, 11, 287, 4201, 13, 1002, 29547, 11, 26235, 284, 4600, 6200, 44646, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 25, 383, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 29891, 62, 1069, 10514, 62, 259, 62, 43012, 796, 6246, 62, 1069, 10514, 62, 259, 62, 43012, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3670, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 58, 37374, 60, 1174, 29620, 262, 3670, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3670, 973, 618, 19407, 257, 20176, 51, 49285, 4427, 13, 1002, 29547, 11, 26235, 284, 4600, 8491, 345, 1692, 30, 63, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 3670, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 7839, 628, 220, 220, 220, 2488, 7839, 13, 2617, 353, 198, 220, 220, 220, 825, 3670, 7, 944, 11, 3670, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 3670, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3670, 973, 618, 19407, 257, 20176, 51, 49285, 4427, 13, 1002, 29547, 11, 26235, 284, 4600, 8491, 345, 1692, 30, 63, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3670, 25, 383, 3670, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7839, 796, 3670, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 13639, 62, 5239, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 13639, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 287, 262, 13639, 618, 4478, 257, 20176, 51, 49285, 4427, 13, 1002, 29547, 11, 26235, 284, 705, 1135, 423, 12326, 281, 3220, 1271, 286, 6370, 284, 1895, 428, 3052, 13, 1675, 1037, 514, 1394, 428, 2524, 5713, 11, 3387, 1309, 514, 760, 326, 345, 389, 407, 257, 9379, 416, 8218, 262, 2420, 422, 262, 2939, 2174, 2637, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 13639, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 25677, 62, 5239, 628, 220, 220, 220, 2488, 25677, 62, 5239, 13, 2617, 353, 198, 220, 220, 220, 825, 13639, 62, 5239, 7, 944, 11, 13639, 62, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 13639, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 287, 262, 13639, 618, 4478, 257, 20176, 51, 49285, 4427, 13, 1002, 29547, 11, 26235, 284, 705, 1135, 423, 12326, 281, 3220, 1271, 286, 6370, 284, 1895, 428, 3052, 13, 1675, 1037, 514, 1394, 428, 2524, 5713, 11, 3387, 1309, 514, 760, 326, 345, 389, 407, 257, 9379, 416, 8218, 262, 2420, 422, 262, 2939, 2174, 2637, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13639, 62, 5239, 25, 383, 13639, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25677, 62, 5239, 796, 13639, 62, 5239, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2366, 263, 62, 5239, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 2366, 263, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 287, 262, 2366, 263, 618, 4478, 257, 20176, 51, 49285, 4427, 13, 1002, 29547, 11, 26235, 284, 705, 17469, 262, 7475, 290, 3146, 355, 484, 389, 3402, 287, 262, 2939, 2029, 2637, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 2366, 263, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 5898, 263, 62, 5239, 628, 220, 220, 220, 2488, 5898, 263, 62, 5239, 13, 2617, 353, 198, 220, 220, 220, 825, 2366, 263, 62, 5239, 7, 944, 11, 2366, 263, 62, 5239, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 2366, 263, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 287, 262, 2366, 263, 618, 4478, 257, 20176, 51, 49285, 4427, 13, 1002, 29547, 11, 26235, 284, 705, 17469, 262, 7475, 290, 3146, 355, 484, 389, 3402, 287, 262, 2939, 2029, 2637, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2366, 263, 62, 5239, 25, 383, 2366, 263, 62, 5239, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5898, 263, 62, 5239, 796, 2366, 263, 62, 5239, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 5287, 62, 20500, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 58, 37374, 60, 1174, 29620, 262, 5287, 62, 20500, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 618, 11491, 20176, 51, 49285, 2420, 318, 5982, 13, 1002, 29547, 11, 26235, 284, 4600, 464, 20176, 51, 49285, 373, 11491, 13, 9993, 757, 13, 63, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 5287, 62, 20500, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 32165, 495, 62, 20500, 628, 220, 220, 220, 2488, 32165, 495, 62, 20500, 13, 2617, 353, 198, 220, 220, 220, 825, 5287, 62, 20500, 7, 944, 11, 5287, 62, 20500, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 5287, 62, 20500, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 618, 11491, 20176, 51, 49285, 2420, 318, 5982, 13, 1002, 29547, 11, 26235, 284, 4600, 464, 20176, 51, 49285, 373, 11491, 13, 9993, 757, 13, 63, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5287, 62, 20500, 25, 383, 5287, 62, 20500, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 32165, 495, 62, 20500, 796, 5287, 62, 20500, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 9199, 62, 18242, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 58, 37374, 60, 1174, 29620, 262, 9199, 62, 18242, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 319, 262, 6167, 286, 262, 20176, 51, 49285, 4427, 9199, 4936, 13, 1002, 29547, 11, 26235, 284, 4600, 5297, 11, 314, 716, 1692, 44646, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 9199, 62, 18242, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 46002, 62, 18242, 628, 220, 220, 220, 2488, 46002, 62, 18242, 13, 2617, 353, 198, 220, 220, 220, 825, 9199, 62, 18242, 7, 944, 11, 9199, 62, 18242, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 9199, 62, 18242, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 284, 905, 319, 262, 6167, 286, 262, 20176, 51, 49285, 4427, 9199, 4936, 13, 1002, 29547, 11, 26235, 284, 4600, 5297, 11, 314, 716, 1692, 44646, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9199, 62, 18242, 25, 383, 9199, 62, 18242, 286, 428, 6790, 11693, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 46002, 62, 18242, 796, 9199, 62, 18242, 198 ]
2.574674
3,301
# coding:utf-8 from django.core.cache import cache
[ 2, 19617, 25, 40477, 12, 23, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 23870, 1330, 12940, 628 ]
2.944444
18
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-权限中心(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import List from pydantic import BaseModel from backend.common.error_codes import error_codes from backend.service.models import ResourceCreatorActionConfigItem from backend.service.resource_creator_action import ResourceCreatorActionService
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 24893, 1087, 14573, 15708, 318, 10607, 284, 1104, 262, 1280, 2723, 2055, 416, 1642, 5525, 241, 251, 165, 110, 116, 162, 247, 118, 12859, 239, 12, 30266, 225, 165, 247, 238, 40792, 33232, 225, 7, 14573, 15708, 12, 40, 2390, 8, 1695, 13, 198, 15269, 357, 34, 8, 2177, 12, 1238, 2481, 2320, 43, 317, 1959, 15302, 11, 257, 9368, 1087, 1664, 13, 1439, 2489, 10395, 13, 198, 26656, 15385, 739, 262, 17168, 13789, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 2638, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 36393, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 198, 272, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 13789, 329, 262, 198, 11423, 3303, 15030, 21627, 290, 11247, 739, 262, 13789, 13, 198, 37811, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 198, 198, 6738, 30203, 13, 11321, 13, 18224, 62, 40148, 1330, 4049, 62, 40148, 198, 6738, 30203, 13, 15271, 13, 27530, 1330, 20857, 16719, 273, 12502, 16934, 7449, 198, 6738, 30203, 13, 15271, 13, 31092, 62, 45382, 62, 2673, 1330, 20857, 16719, 273, 12502, 16177, 628, 198 ]
3.834646
254
from Crypto.Util.number import * import requests import json import codecs import base64
[ 6738, 36579, 13, 18274, 346, 13, 17618, 1330, 1635, 198, 11748, 7007, 198, 11748, 33918, 198, 11748, 40481, 82, 198, 11748, 2779, 2414 ]
3.826087
23
import unittest import random from day04 import Guard, get_guard_patterns,get_guard_most_asleep, guard_most_frequently_asleep if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 11748, 4738, 198, 6738, 1110, 3023, 1330, 4932, 11, 651, 62, 14864, 62, 33279, 82, 11, 1136, 62, 14864, 62, 1712, 62, 292, 8892, 11, 4860, 62, 1712, 62, 69, 37971, 62, 292, 8892, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 628 ]
2.809524
63
{ "targets": [ { "target_name": "shmnode", "sources": ["shm.cpp"] } ] }
[ 90, 198, 366, 83, 853, 1039, 1298, 685, 198, 220, 1391, 198, 220, 220, 366, 16793, 62, 3672, 1298, 366, 1477, 10295, 1098, 1600, 198, 220, 220, 366, 82, 2203, 1298, 14631, 1477, 76, 13, 20322, 8973, 198, 220, 1782, 198, 2361, 198, 92, 198 ]
1.866667
45
import hazelcast client = hazelcast.HazelcastClient( # Set up cluster name for authentication cluster_name="YOUR_CLUSTER_NAME", # Set the token of your cloud cluster cloud_discovery_token="YOUR_CLUSTER_DISCOVERY_TOKEN", # If you have enabled encryption for your cluster, also configure TLS/SSL for the client. # Otherwise, skip options below. ssl_enabled=True, ssl_cafile="/path/to/ca.pem", ssl_certfile="/path/to/cert.pem", ssl_keyfile="/path/to/key.pem", ssl_password="YOUR_KEY_STORE_PASSWORD", ) my_map = client.get_map("map-on-the-cloud").blocking() my_map.put("key", "value") print(my_map.get("key")) client.shutdown()
[ 11748, 11595, 417, 2701, 198, 198, 16366, 796, 11595, 417, 2701, 13, 39, 41319, 2701, 11792, 7, 198, 220, 220, 220, 1303, 5345, 510, 13946, 1438, 329, 18239, 198, 220, 220, 220, 13946, 62, 3672, 2625, 56, 11698, 62, 5097, 7759, 1137, 62, 20608, 1600, 198, 220, 220, 220, 1303, 5345, 262, 11241, 286, 534, 6279, 13946, 198, 220, 220, 220, 6279, 62, 67, 40821, 62, 30001, 2625, 56, 11698, 62, 5097, 7759, 1137, 62, 26288, 8220, 5959, 56, 62, 10468, 43959, 1600, 198, 220, 220, 220, 1303, 1002, 345, 423, 9343, 15835, 329, 534, 13946, 11, 635, 17425, 33855, 14, 31127, 329, 262, 5456, 13, 198, 220, 220, 220, 1303, 15323, 11, 14267, 3689, 2174, 13, 198, 220, 220, 220, 264, 6649, 62, 25616, 28, 17821, 11, 198, 220, 220, 220, 264, 6649, 62, 66, 1878, 576, 35922, 6978, 14, 1462, 14, 6888, 13, 79, 368, 1600, 198, 220, 220, 220, 264, 6649, 62, 22583, 7753, 35922, 6978, 14, 1462, 14, 22583, 13, 79, 368, 1600, 198, 220, 220, 220, 264, 6649, 62, 2539, 7753, 35922, 6978, 14, 1462, 14, 2539, 13, 79, 368, 1600, 198, 220, 220, 220, 264, 6649, 62, 28712, 2625, 56, 11698, 62, 20373, 62, 2257, 6965, 62, 47924, 54, 12532, 1600, 198, 8, 198, 198, 1820, 62, 8899, 796, 5456, 13, 1136, 62, 8899, 7203, 8899, 12, 261, 12, 1169, 12, 17721, 11074, 41938, 3419, 198, 1820, 62, 8899, 13, 1996, 7203, 2539, 1600, 366, 8367, 4943, 198, 198, 4798, 7, 1820, 62, 8899, 13, 1136, 7203, 2539, 48774, 198, 198, 16366, 13, 49625, 2902, 3419, 198 ]
2.555133
263
# importing libraries from keras.layers import Dense , Dropout ,Flatten , MaxPooling2D from keras.models import Model # define model # importing MobileNet_v2 for higher accuracy from keras.applications import MobileNetV2 mobile = MobileNetV2(input_shape=(224,224,3),include_top=False,weights='imagenet') #print(mobile.summary()) # layer should not be change for layer in mobile.layers: layer.trainable = False # Make output layer of mobilenet op_layer = mobile.output op_layer = MaxPooling2D(pool_size=(6,6))(op_layer) op_layer = Flatten()(op_layer) op_layer = Dense(128,activation='relu')(op_layer) op_layer = Dropout((0.5))(op_layer) op_layer = Dense(2,activation= 'softmax')(op_layer) # Define model input and output model = Model(inputs = mobile.input , outputs = op_layer) # compiling model model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['acc']) # defining a new model as feature extractor for svm and xgboost model_new = Model(inputs = mobile.input , outputs = op_layer) #compiling model model_new.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['acc'])
[ 2, 33332, 12782, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 360, 1072, 837, 14258, 448, 837, 7414, 41769, 837, 5436, 27201, 278, 17, 35, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 198, 198, 2, 8160, 2746, 198, 2, 33332, 12173, 7934, 62, 85, 17, 329, 2440, 9922, 198, 6738, 41927, 292, 13, 1324, 677, 602, 1330, 12173, 7934, 53, 17, 198, 24896, 796, 12173, 7934, 53, 17, 7, 15414, 62, 43358, 16193, 24137, 11, 24137, 11, 18, 828, 17256, 62, 4852, 28, 25101, 11, 43775, 11639, 320, 11286, 316, 11537, 198, 198, 2, 4798, 7, 24896, 13, 49736, 28955, 198, 198, 2, 7679, 815, 407, 307, 1487, 198, 1640, 7679, 287, 5175, 13, 75, 6962, 25, 198, 220, 7679, 13, 27432, 540, 796, 10352, 628, 220, 220, 198, 220, 1303, 6889, 5072, 7679, 286, 17754, 268, 316, 198, 404, 62, 29289, 796, 5175, 13, 22915, 198, 404, 62, 29289, 796, 5436, 27201, 278, 17, 35, 7, 7742, 62, 7857, 16193, 21, 11, 21, 4008, 7, 404, 62, 29289, 8, 198, 404, 62, 29289, 796, 1610, 41769, 3419, 7, 404, 62, 29289, 8, 198, 404, 62, 29289, 796, 360, 1072, 7, 12762, 11, 48545, 11639, 260, 2290, 6, 5769, 404, 62, 29289, 8, 198, 404, 62, 29289, 796, 14258, 448, 19510, 15, 13, 20, 4008, 7, 404, 62, 29289, 8, 198, 404, 62, 29289, 796, 360, 1072, 7, 17, 11, 48545, 28, 705, 4215, 9806, 6, 5769, 404, 62, 29289, 8, 198, 198, 2, 2896, 500, 2746, 5128, 290, 5072, 198, 19849, 796, 9104, 7, 15414, 82, 796, 5175, 13, 15414, 837, 23862, 796, 1034, 62, 29289, 8, 198, 198, 2, 33393, 2746, 198, 19849, 13, 5589, 576, 7, 40085, 7509, 796, 705, 324, 321, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 705, 39491, 62, 19692, 298, 28338, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 796, 37250, 4134, 6, 12962, 198, 198, 2, 16215, 257, 649, 2746, 355, 3895, 7925, 273, 329, 264, 14761, 290, 2124, 70, 39521, 198, 19849, 62, 3605, 796, 9104, 7, 15414, 82, 796, 5175, 13, 15414, 837, 23862, 796, 1034, 62, 29289, 8, 198, 198, 2, 5589, 4386, 2746, 198, 19849, 62, 3605, 13, 5589, 576, 7, 40085, 7509, 796, 705, 324, 321, 3256, 2994, 796, 705, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 20731, 796, 37250, 4134, 6, 12962, 198 ]
2.833741
409
#!/usr/bin/python # Copyright (c) 2020, Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. """Provide Module Description """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# __author__ = ["Andrew Hopkinson (Oracle Cloud Solutions A-Team)"] __version__ = "1.0.0" __module__ = "ociTenancy" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# from common.okitLogging import getLogger from facades.ociCompartment import OCICompartments # Configure logging logger = getLogger()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 15069, 357, 66, 8, 12131, 11, 18650, 290, 14, 273, 663, 29116, 13, 198, 2, 49962, 739, 262, 14499, 2448, 33532, 13789, 410, 352, 13, 15, 355, 3402, 379, 3740, 1378, 793, 13, 273, 6008, 13, 785, 14, 677, 4541, 14, 84, 489, 13, 198, 198, 37811, 15946, 485, 19937, 12489, 198, 37811, 198, 198, 2, 220, 27156, 27156, 27156, 27156, 27156, 8728, 4907, 2, 198, 834, 9800, 834, 796, 14631, 20508, 21183, 261, 357, 48625, 10130, 23555, 317, 12, 15592, 8, 8973, 198, 834, 9641, 834, 796, 366, 16, 13, 15, 13, 15, 1, 198, 834, 21412, 834, 796, 366, 1733, 24893, 3883, 1, 198, 2, 220, 27156, 27156, 27156, 27156, 27156, 8728, 4907, 2, 628, 198, 6738, 2219, 13, 482, 270, 11187, 2667, 1330, 651, 11187, 1362, 198, 6738, 1777, 2367, 13, 1733, 7293, 1823, 1330, 24775, 2149, 3361, 32514, 198, 198, 2, 17056, 495, 18931, 198, 6404, 1362, 796, 651, 11187, 1362, 3419, 628, 628 ]
3.839286
168
#!/bin/python3 # https://www.hackerrank.com/challenges/crush import sys if __name__ == "__main__": n, m = input().strip().split(' ') n, m = [int(n), int(m)] arr = [0] * (n+1) for a0 in range(m): a, b, k = input().strip().split(' ') a, b, k = [int(a), int(b), int(k)] arr[a-1] += k arr[b] -= k t, r = [0, 0] for i in range(0, n): t += arr[i] r = max(r, t) print(r)
[ 2, 48443, 8800, 14, 29412, 18, 198, 198, 2, 3740, 1378, 2503, 13, 31153, 8056, 962, 13, 785, 14, 36747, 34120, 14, 6098, 1530, 198, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 299, 11, 285, 796, 5128, 22446, 36311, 22446, 35312, 10786, 705, 8, 198, 220, 220, 220, 299, 11, 285, 796, 685, 600, 7, 77, 828, 493, 7, 76, 15437, 198, 220, 220, 220, 5240, 796, 685, 15, 60, 1635, 357, 77, 10, 16, 8, 198, 220, 220, 220, 329, 257, 15, 287, 2837, 7, 76, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 11, 275, 11, 479, 796, 5128, 22446, 36311, 22446, 35312, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 257, 11, 275, 11, 479, 796, 685, 600, 7, 64, 828, 493, 7, 65, 828, 493, 7, 74, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 5240, 58, 64, 12, 16, 60, 15853, 479, 198, 220, 220, 220, 220, 220, 220, 220, 5240, 58, 65, 60, 48185, 479, 628, 220, 220, 220, 256, 11, 374, 796, 685, 15, 11, 657, 60, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 256, 15853, 5240, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 3509, 7, 81, 11, 256, 8, 628, 220, 220, 220, 3601, 7, 81, 8, 198 ]
1.82377
244
SITE = "https://www.google.com/" NAME = ["Michael", "Wayne", "Phelps"] KEYS = {1: 2, 3: 4} AGE = 1000 BIRTH_YEAR = 2050 if __name__ == '__main__': main()
[ 50, 12709, 796, 366, 5450, 1378, 2503, 13, 13297, 13, 785, 30487, 198, 20608, 796, 14631, 13256, 1600, 366, 25309, 710, 1600, 366, 47, 35194, 8973, 198, 7336, 16309, 796, 1391, 16, 25, 362, 11, 513, 25, 604, 92, 198, 11879, 796, 8576, 198, 3483, 49, 4221, 62, 56, 17133, 796, 32215, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.25
72
# coding=utf-8 import numpy as np import time # Putil import data.augment as paug import base.logger as plog GaussianAugmentLogger = plog.PutilLogConfig('gaussian_augment').logger() GaussianAugmentLogger.setLevel(plog.DEBUG) class GaussianAugment(paug.Augment): ''' config: mu: [] sigma: [] ''' def augment(self, data, label=None): ''' data: [batch, height, width, channel] label: [batch, *] ''' dc = [] dc.append(data) for mu in self._config['mu']: for sigma in self._config['sigma']: #np.random.seed((time.time())) noise = np.random.normal(mu, sigma, data.size) noise = np.reshape(noise, data.shape) dc.append(noise) pass pass ret = np.concatenate(dc, axis=0) return ret pass pass #In[]: #import numpy as np # #a = np.zeros(shape=[1, 1, 10, 1, 10, 1]) #np.squeeze(a).shape
[ 2, 19617, 28, 40477, 12, 23, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 198, 2, 5930, 346, 198, 11748, 1366, 13, 559, 5154, 355, 279, 7493, 198, 11748, 2779, 13, 6404, 1362, 355, 458, 519, 628, 198, 35389, 31562, 12512, 434, 11187, 1362, 796, 458, 519, 13, 11588, 346, 11187, 16934, 10786, 4908, 31562, 62, 559, 5154, 27691, 6404, 1362, 3419, 198, 35389, 31562, 12512, 434, 11187, 1362, 13, 2617, 4971, 7, 489, 519, 13, 30531, 8, 628, 198, 4871, 12822, 31562, 12512, 434, 7, 79, 7493, 13, 12512, 434, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4566, 25, 198, 220, 220, 220, 220, 220, 220, 220, 38779, 25, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 25, 17635, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 198, 220, 220, 220, 825, 35016, 7, 944, 11, 1366, 11, 6167, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 25, 685, 43501, 11, 6001, 11, 9647, 11, 6518, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 25, 685, 43501, 11, 1635, 60, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 30736, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 30736, 13, 33295, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 38779, 287, 2116, 13557, 11250, 17816, 30300, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 264, 13495, 287, 2116, 13557, 11250, 17816, 82, 13495, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37659, 13, 25120, 13, 28826, 19510, 2435, 13, 2435, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7838, 796, 45941, 13, 25120, 13, 11265, 7, 30300, 11, 264, 13495, 11, 1366, 13, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7838, 796, 45941, 13, 3447, 1758, 7, 3919, 786, 11, 1366, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30736, 13, 33295, 7, 3919, 786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 45941, 13, 1102, 9246, 268, 378, 7, 17896, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1208, 198, 198, 2, 818, 58, 5974, 198, 2, 11748, 299, 32152, 355, 45941, 198, 2, 198, 2, 64, 796, 45941, 13, 9107, 418, 7, 43358, 41888, 16, 11, 352, 11, 838, 11, 352, 11, 838, 11, 352, 12962, 198, 2, 37659, 13, 16485, 1453, 2736, 7, 64, 737, 43358 ]
1.949515
515
# coding: utf-8 """ Lightly API Lightly.ai enables you to do self-supervised learning in an easy and intuitive way. The lightly.ai OpenAPI spec defines how one can interact with our REST API to unleash the full potential of lightly.ai # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from lightly.openapi_generated.swagger_client.configuration import Configuration class ConfigurationEntry(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'path': 'str', 'default_value': 'Object', 'value_data_type': 'ConfigurationValueDataType' } attribute_map = { 'name': 'name', 'path': 'path', 'default_value': 'defaultValue', 'value_data_type': 'valueDataType' } def __init__(self, name=None, path=None, default_value=None, value_data_type=None, _configuration=None): # noqa: E501 """ConfigurationEntry - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._name = None self._path = None self._default_value = None self._value_data_type = None self.discriminator = None self.name = name self.path = path self.default_value = default_value self.value_data_type = value_data_type @property def name(self): """Gets the name of this ConfigurationEntry. # noqa: E501 the name of this entry which is displayed in the UI # noqa: E501 :return: The name of this ConfigurationEntry. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ConfigurationEntry. the name of this entry which is displayed in the UI # noqa: E501 :param name: The name of this ConfigurationEntry. # noqa: E501 :type: str """ if self._configuration.client_side_validation and name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def path(self): """Gets the path of this ConfigurationEntry. # noqa: E501 the path is the dotnotation which is used to easily access the customMetadata JSON structure of a sample e.g myArray[0].myObject.field # noqa: E501 :return: The path of this ConfigurationEntry. # noqa: E501 :rtype: str """ return self._path @path.setter def path(self, path): """Sets the path of this ConfigurationEntry. the path is the dotnotation which is used to easily access the customMetadata JSON structure of a sample e.g myArray[0].myObject.field # noqa: E501 :param path: The path of this ConfigurationEntry. # noqa: E501 :type: str """ if self._configuration.client_side_validation and path is None: raise ValueError("Invalid value for `path`, must not be `None`") # noqa: E501 self._path = path @property def default_value(self): """Gets the default_value of this ConfigurationEntry. # noqa: E501 the default value used if its not possible to extract the value using the path or if the value extracted is nullish # noqa: E501 :return: The default_value of this ConfigurationEntry. # noqa: E501 :rtype: Object """ return self._default_value @default_value.setter def default_value(self, default_value): """Sets the default_value of this ConfigurationEntry. the default value used if its not possible to extract the value using the path or if the value extracted is nullish # noqa: E501 :param default_value: The default_value of this ConfigurationEntry. # noqa: E501 :type: Object """ if self._configuration.client_side_validation and default_value is None: raise ValueError("Invalid value for `default_value`, must not be `None`") # noqa: E501 self._default_value = default_value @property def value_data_type(self): """Gets the value_data_type of this ConfigurationEntry. # noqa: E501 :return: The value_data_type of this ConfigurationEntry. # noqa: E501 :rtype: ConfigurationValueDataType """ return self._value_data_type @value_data_type.setter def value_data_type(self, value_data_type): """Sets the value_data_type of this ConfigurationEntry. :param value_data_type: The value_data_type of this ConfigurationEntry. # noqa: E501 :type: ConfigurationValueDataType """ if self._configuration.client_side_validation and value_data_type is None: raise ValueError("Invalid value for `value_data_type`, must not be `None`") # noqa: E501 self._value_data_type = value_data_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ConfigurationEntry, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ConfigurationEntry): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ConfigurationEntry): return True return self.to_dict() != other.to_dict()
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 220, 220, 220, 4401, 306, 7824, 628, 220, 220, 220, 4401, 306, 13, 1872, 13536, 345, 284, 466, 2116, 12, 16668, 16149, 4673, 287, 281, 2562, 290, 19933, 835, 13, 383, 15376, 13, 1872, 4946, 17614, 1020, 15738, 703, 530, 460, 9427, 351, 674, 30617, 7824, 284, 33502, 262, 1336, 2785, 286, 15376, 13, 1872, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 4946, 17614, 1020, 2196, 25, 352, 13, 15, 13, 15, 198, 220, 220, 220, 14039, 25, 1104, 31, 30945, 13, 1872, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 12567, 13, 785, 14, 2032, 7928, 12, 15042, 14, 2032, 7928, 12, 8189, 5235, 13, 18300, 198, 37811, 628, 198, 11748, 279, 4798, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 11748, 2237, 198, 198, 6738, 15376, 13, 9654, 15042, 62, 27568, 13, 2032, 7928, 62, 16366, 13, 11250, 3924, 1330, 28373, 628, 198, 4871, 28373, 30150, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 262, 1509, 7928, 2438, 17301, 1430, 13, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 1509, 7928, 62, 19199, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 11688, 2099, 13, 198, 220, 220, 220, 220, 220, 11688, 62, 8899, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 33918, 1994, 287, 6770, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1509, 7928, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 705, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 62, 8367, 10354, 705, 10267, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 62, 7890, 62, 4906, 10354, 705, 38149, 11395, 6601, 6030, 6, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 11688, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6978, 10354, 705, 6978, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 62, 8367, 10354, 705, 12286, 11395, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 62, 7890, 62, 4906, 10354, 705, 8367, 6601, 6030, 6, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 28, 14202, 11, 3108, 28, 14202, 11, 4277, 62, 8367, 28, 14202, 11, 1988, 62, 7890, 62, 4906, 28, 14202, 11, 4808, 11250, 3924, 28, 14202, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38149, 30150, 532, 257, 2746, 5447, 287, 2451, 7928, 37811, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 11250, 3924, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11250, 3924, 796, 28373, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11250, 3924, 796, 4808, 11250, 3924, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6978, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12286, 62, 8367, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 62, 7890, 62, 4906, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15410, 3036, 20900, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12286, 62, 8367, 796, 4277, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8367, 62, 7890, 62, 4906, 796, 1988, 62, 7890, 62, 4906, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 262, 1438, 286, 428, 5726, 543, 318, 9066, 287, 262, 12454, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1438, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 3672, 628, 220, 220, 220, 2488, 3672, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 286, 428, 28373, 30150, 13, 628, 220, 220, 220, 220, 220, 220, 220, 262, 1438, 286, 428, 5726, 543, 318, 9066, 287, 262, 12454, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 383, 1438, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11250, 3924, 13, 16366, 62, 1589, 62, 12102, 341, 290, 1438, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 4600, 3672, 47671, 1276, 407, 307, 4600, 14202, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 3672, 796, 1438, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3108, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 3108, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 262, 3108, 318, 262, 16605, 38983, 543, 318, 973, 284, 3538, 1895, 262, 2183, 9171, 14706, 19449, 4645, 286, 257, 6291, 304, 13, 70, 616, 19182, 58, 15, 4083, 1820, 10267, 13, 3245, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 3108, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 6978, 628, 220, 220, 220, 2488, 6978, 13, 2617, 353, 198, 220, 220, 220, 825, 3108, 7, 944, 11, 3108, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 3108, 286, 428, 28373, 30150, 13, 628, 220, 220, 220, 220, 220, 220, 220, 262, 3108, 318, 262, 16605, 38983, 543, 318, 973, 284, 3538, 1895, 262, 2183, 9171, 14706, 19449, 4645, 286, 257, 6291, 304, 13, 70, 616, 19182, 58, 15, 4083, 1820, 10267, 13, 3245, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3108, 25, 383, 3108, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11250, 3924, 13, 16366, 62, 1589, 62, 12102, 341, 290, 3108, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 4600, 6978, 47671, 1276, 407, 307, 4600, 14202, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6978, 796, 3108, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4277, 62, 8367, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 4277, 62, 8367, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 262, 4277, 1988, 973, 611, 663, 407, 1744, 284, 7925, 262, 1988, 1262, 262, 3108, 393, 611, 262, 1988, 21242, 318, 9242, 680, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 4277, 62, 8367, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 9515, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 12286, 62, 8367, 628, 220, 220, 220, 2488, 12286, 62, 8367, 13, 2617, 353, 198, 220, 220, 220, 825, 4277, 62, 8367, 7, 944, 11, 4277, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 4277, 62, 8367, 286, 428, 28373, 30150, 13, 628, 220, 220, 220, 220, 220, 220, 220, 262, 4277, 1988, 973, 611, 663, 407, 1744, 284, 7925, 262, 1988, 1262, 262, 3108, 393, 611, 262, 1988, 21242, 318, 9242, 680, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4277, 62, 8367, 25, 383, 4277, 62, 8367, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 9515, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11250, 3924, 13, 16366, 62, 1589, 62, 12102, 341, 290, 4277, 62, 8367, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 4600, 12286, 62, 8367, 47671, 1276, 407, 307, 4600, 14202, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12286, 62, 8367, 796, 4277, 62, 8367, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1988, 62, 7890, 62, 4906, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1988, 62, 7890, 62, 4906, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1988, 62, 7890, 62, 4906, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 28373, 11395, 6601, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 8367, 62, 7890, 62, 4906, 628, 220, 220, 220, 2488, 8367, 62, 7890, 62, 4906, 13, 2617, 353, 198, 220, 220, 220, 825, 1988, 62, 7890, 62, 4906, 7, 944, 11, 1988, 62, 7890, 62, 4906, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1988, 62, 7890, 62, 4906, 286, 428, 28373, 30150, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 62, 7890, 62, 4906, 25, 383, 1988, 62, 7890, 62, 4906, 286, 428, 28373, 30150, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 25, 28373, 11395, 6601, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11250, 3924, 13, 16366, 62, 1589, 62, 12102, 341, 290, 1988, 62, 7890, 62, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 4600, 8367, 62, 7890, 62, 4906, 47671, 1276, 407, 307, 4600, 14202, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8367, 62, 7890, 62, 4906, 796, 1988, 62, 7890, 62, 4906, 628, 220, 220, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 2746, 6608, 355, 257, 8633, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 708, 81, 11, 4808, 287, 2237, 13, 2676, 23814, 7, 944, 13, 2032, 7928, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 651, 35226, 7, 944, 11, 708, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1351, 7, 8899, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 2124, 13, 1462, 62, 11600, 3419, 611, 468, 35226, 7, 87, 11, 366, 1462, 62, 11600, 4943, 2073, 2124, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 468, 35226, 7, 8367, 11, 366, 1462, 62, 11600, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1988, 13, 1462, 62, 11600, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 8367, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 8633, 7, 8899, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2378, 25, 357, 9186, 58, 15, 4357, 2378, 58, 16, 4083, 1462, 62, 11600, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 9186, 58, 16, 4357, 366, 1462, 62, 11600, 4943, 2073, 2378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 35226, 60, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1189, 549, 4871, 7, 38149, 30150, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 2116, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 2539, 60, 796, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 284, 62, 2536, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 4731, 10552, 286, 262, 2746, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 4798, 13, 79, 18982, 7, 944, 13, 1462, 62, 11600, 28955, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1890, 4600, 4798, 63, 290, 4600, 381, 22272, 63, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 2536, 3419, 628, 220, 220, 220, 825, 11593, 27363, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 28373, 30150, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 11600, 3419, 6624, 584, 13, 1462, 62, 11600, 3419, 628, 220, 220, 220, 825, 11593, 710, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 407, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 28373, 30150, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 11600, 3419, 14512, 584, 13, 1462, 62, 11600, 3419, 198 ]
2.447441
2,892
import glob import collections import os in_path = '/media/jayson/software/WS/preprocessed/preprocessed/*' vocab_root = '/media/jayson/study/graduation project/paper/experimens/moldes-May' pos_vocab_counter = collections.Counter() ner_vocab_counter = collections.Counter() file_list = glob.glob(in_path) for idx, file_name in enumerate(file_list): if idx % 10000 == 0: print('start to update vocab of example %d...' % idx) lines = file_content(file_name) pos_vocab_counter.update(lines[1].split(' ')) pos_vocab_counter.update(lines[4].split(' ')) ner_vocab_counter.update(lines[2].split(' ')) ner_vocab_counter.update(lines[5].split(' ')) print('start to write pos_vocab...') with open(os.path.join(vocab_root, 'pos_vocab_full'), 'w') as writer: for word, count in pos_vocab_counter.most_common(): writer.write(word + ' ' + str(count) + '\n') print('pos_vocab is written to %s.' % os.path.join(vocab_root, 'pos_vocab_full')) print('start to write ner_vocab...') with open(os.path.join(vocab_root, 'ner_vocab_full'), 'w') as writer: for word, count in ner_vocab_counter.most_common(): writer.write(word + ' ' + str(count) + '\n') print('pos_vocab is written to %s.' % os.path.join(vocab_root, 'ner_vocab_full'))
[ 11748, 15095, 198, 11748, 17268, 198, 11748, 28686, 628, 198, 259, 62, 6978, 796, 31051, 11431, 14, 73, 34907, 14, 43776, 14, 19416, 14, 3866, 14681, 276, 14, 3866, 14681, 276, 15211, 6, 198, 18893, 397, 62, 15763, 796, 31051, 11431, 14, 73, 34907, 14, 44517, 14, 9744, 2288, 1628, 14, 20189, 14, 23100, 12117, 14, 76, 727, 274, 12, 6747, 6, 198, 198, 1930, 62, 18893, 397, 62, 24588, 796, 17268, 13, 31694, 3419, 198, 1008, 62, 18893, 397, 62, 24588, 796, 17268, 13, 31694, 3419, 198, 7753, 62, 4868, 796, 15095, 13, 4743, 672, 7, 259, 62, 6978, 8, 198, 198, 1640, 4686, 87, 11, 2393, 62, 3672, 287, 27056, 378, 7, 7753, 62, 4868, 2599, 198, 197, 361, 4686, 87, 4064, 33028, 6624, 657, 25, 3601, 10786, 9688, 284, 4296, 12776, 397, 286, 1672, 4064, 67, 986, 6, 4064, 4686, 87, 8, 198, 197, 6615, 796, 2393, 62, 11299, 7, 7753, 62, 3672, 8, 198, 197, 1930, 62, 18893, 397, 62, 24588, 13, 19119, 7, 6615, 58, 16, 4083, 35312, 10786, 705, 4008, 198, 197, 1930, 62, 18893, 397, 62, 24588, 13, 19119, 7, 6615, 58, 19, 4083, 35312, 10786, 705, 4008, 198, 197, 1008, 62, 18893, 397, 62, 24588, 13, 19119, 7, 6615, 58, 17, 4083, 35312, 10786, 705, 4008, 198, 197, 1008, 62, 18893, 397, 62, 24588, 13, 19119, 7, 6615, 58, 20, 4083, 35312, 10786, 705, 4008, 198, 198, 4798, 10786, 9688, 284, 3551, 1426, 62, 18893, 397, 986, 11537, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 18893, 397, 62, 15763, 11, 705, 1930, 62, 18893, 397, 62, 12853, 33809, 705, 86, 11537, 355, 6260, 25, 198, 197, 1640, 1573, 11, 954, 287, 1426, 62, 18893, 397, 62, 24588, 13, 1712, 62, 11321, 33529, 198, 197, 197, 16002, 13, 13564, 7, 4775, 1343, 705, 705, 1343, 965, 7, 9127, 8, 1343, 705, 59, 77, 11537, 198, 4798, 10786, 1930, 62, 18893, 397, 318, 3194, 284, 4064, 82, 2637, 4064, 28686, 13, 6978, 13, 22179, 7, 18893, 397, 62, 15763, 11, 705, 1930, 62, 18893, 397, 62, 12853, 6, 4008, 198, 198, 4798, 10786, 9688, 284, 3551, 17156, 62, 18893, 397, 986, 11537, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 18893, 397, 62, 15763, 11, 705, 1008, 62, 18893, 397, 62, 12853, 33809, 705, 86, 11537, 355, 6260, 25, 198, 197, 1640, 1573, 11, 954, 287, 17156, 62, 18893, 397, 62, 24588, 13, 1712, 62, 11321, 33529, 198, 197, 197, 16002, 13, 13564, 7, 4775, 1343, 705, 705, 1343, 965, 7, 9127, 8, 1343, 705, 59, 77, 11537, 198, 4798, 10786, 1930, 62, 18893, 397, 318, 3194, 284, 4064, 82, 2637, 4064, 28686, 13, 6978, 13, 22179, 7, 18893, 397, 62, 15763, 11, 705, 1008, 62, 18893, 397, 62, 12853, 6, 4008, 198 ]
2.648707
464
#!/usr/bin/python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example deletes an ad group by setting the status to 'REMOVED'. To get ad groups, run get_ad_groups.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ from googleads import adwords AD_GROUP_ID = 'INSERT_AD_GROUP_ID_HERE' if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client, AD_GROUP_ID)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 15069, 1853, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 1212, 1672, 28128, 274, 281, 512, 1448, 416, 4634, 262, 3722, 284, 705, 40726, 8874, 1961, 4458, 198, 198, 2514, 651, 512, 2628, 11, 1057, 651, 62, 324, 62, 24432, 13, 9078, 13, 198, 198, 464, 8778, 4863, 31425, 2446, 318, 10427, 18031, 290, 6608, 422, 257, 198, 1, 13297, 5643, 13, 88, 43695, 1, 2393, 13, 2750, 4277, 11, 340, 3073, 329, 428, 2393, 287, 534, 1363, 198, 34945, 13, 1114, 517, 1321, 11, 766, 262, 366, 34, 8103, 18239, 1321, 1, 198, 5458, 286, 674, 20832, 11682, 13, 198, 198, 37811, 198, 198, 6738, 23645, 5643, 1330, 512, 10879, 628, 198, 2885, 62, 46846, 62, 2389, 796, 705, 20913, 17395, 62, 2885, 62, 46846, 62, 2389, 62, 39, 9338, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 1303, 20768, 1096, 5456, 2134, 13, 198, 220, 512, 10879, 62, 16366, 796, 512, 10879, 13, 2782, 37117, 11792, 13, 8912, 4863, 31425, 3419, 628, 220, 1388, 7, 324, 10879, 62, 16366, 11, 5984, 62, 46846, 62, 2389, 8, 198 ]
3.527697
343
class MITCampus(Campus): """ A MITCampus is a Campus that contains tents """ def __init__(self, center_loc, tent_loc=Location(0, 0)): """ Assumes center_loc and tent_loc are Location objects Initializes a new Campus centered at location center_loc with a tent at location tent_loc """ self.center_loc = center_loc self.tent_loc = [] self.tent_loc.append(tent_loc) def add_tent(self, new_tent_loc): """ Assumes new_tent_loc is a Location Adds new_tent_loc to the campus only if the tent is at least 0.5 distance away from all other tents already there. Campus is unchanged otherwise. Returns True if it could add the tent, False otherwise. """ for each_loc in self.tent_loc: if new_tent_loc == each_loc or new_tent_loc.dist_from(each_loc) < 0.5: return False self.tent_loc.append(new_tent_loc) return True def remove_tent(self, tent_loc): """ Assumes tent_loc is a Location Removes tent_loc from the campus. Raises a ValueError if there is not a tent at tent_loc. Does not return anything """ if tent_loc not in self.tent_loc: raise ValueError else: self.tent_loc.remove(tent_loc) def get_tents(self): """ Returns a list of all tents on the campus. The list should contain the string representation of the Location of a tent. The list should be sorted by the x coordinate of the location. """ tent_list = [] tempcopy = self.tent_loc.copy() for item in insertion_sort(tempcopy): item_str = '<' + str(item.getX()) + ',' + str(item.getY()) + '>' tent_list.append(item_str) return tent_list c = MITCampus(Location(1,2)) print(c.add_tent(Location(-1,2))) #should return True print(c.add_tent(Location(-1,2))) #should return True print(c.add_tent(Location(-1,2))) #should return False print(c.add_tent(Location(-1,2))) #should return False print(c.get_tents()) #should return ['<0,0>', '<1,2>', '<2,3>']
[ 628, 198, 4871, 17168, 21111, 385, 7, 21111, 385, 2599, 198, 220, 220, 220, 37227, 317, 17168, 21111, 385, 318, 257, 25005, 326, 4909, 29804, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3641, 62, 17946, 11, 11105, 62, 17946, 28, 14749, 7, 15, 11, 657, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2195, 8139, 3641, 62, 17946, 290, 11105, 62, 17946, 389, 13397, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 257, 649, 25005, 19254, 379, 4067, 3641, 62, 17946, 198, 220, 220, 220, 220, 220, 220, 220, 351, 257, 11105, 379, 4067, 11105, 62, 17946, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16159, 62, 17946, 796, 3641, 62, 17946, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 298, 62, 17946, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 298, 62, 17946, 13, 33295, 7, 83, 298, 62, 17946, 8, 628, 220, 220, 220, 825, 751, 62, 83, 298, 7, 944, 11, 649, 62, 83, 298, 62, 17946, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2195, 8139, 649, 62, 83, 298, 62, 17946, 318, 257, 13397, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 649, 62, 83, 298, 62, 17946, 284, 262, 7611, 691, 611, 262, 11105, 318, 379, 1551, 657, 13, 20, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 1497, 422, 477, 584, 29804, 1541, 612, 13, 25005, 318, 21588, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 6407, 611, 340, 714, 751, 262, 11105, 11, 10352, 4306, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 62, 17946, 287, 2116, 13, 83, 298, 62, 17946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 83, 298, 62, 17946, 6624, 1123, 62, 17946, 393, 649, 62, 83, 298, 62, 17946, 13, 17080, 62, 6738, 7, 27379, 62, 17946, 8, 1279, 657, 13, 20, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 298, 62, 17946, 13, 33295, 7, 3605, 62, 83, 298, 62, 17946, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 4781, 62, 83, 298, 7, 944, 11, 11105, 62, 17946, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2195, 8139, 11105, 62, 17946, 318, 257, 13397, 198, 220, 220, 220, 220, 220, 220, 220, 3982, 5241, 11105, 62, 17946, 422, 262, 7611, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 257, 11052, 12331, 611, 612, 318, 407, 257, 11105, 379, 11105, 62, 17946, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8314, 407, 1441, 1997, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11105, 62, 17946, 407, 287, 2116, 13, 83, 298, 62, 17946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 298, 62, 17946, 13, 28956, 7, 83, 298, 62, 17946, 8, 628, 220, 220, 220, 825, 651, 62, 83, 658, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 1351, 286, 477, 29804, 319, 262, 7611, 13, 383, 1351, 815, 3994, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4731, 10552, 286, 262, 13397, 286, 257, 11105, 13, 383, 1351, 815, 198, 220, 220, 220, 220, 220, 220, 220, 307, 23243, 416, 262, 2124, 20435, 286, 262, 4067, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11105, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2169, 14751, 11081, 796, 2116, 13, 83, 298, 62, 17946, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 36075, 62, 30619, 7, 11498, 14751, 11081, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 62, 2536, 796, 705, 27, 6, 1343, 965, 7, 9186, 13, 1136, 55, 28955, 1343, 705, 4032, 1343, 965, 7, 9186, 13, 1136, 56, 28955, 1343, 705, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11105, 62, 4868, 13, 33295, 7, 9186, 62, 2536, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 11105, 62, 4868, 198, 198, 66, 796, 17168, 21111, 385, 7, 14749, 7, 16, 11, 17, 4008, 198, 4798, 7, 66, 13, 2860, 62, 83, 298, 7, 14749, 32590, 16, 11, 17, 22305, 1303, 21754, 1441, 6407, 198, 4798, 7, 66, 13, 2860, 62, 83, 298, 7, 14749, 32590, 16, 11, 17, 22305, 1303, 21754, 1441, 6407, 198, 4798, 7, 66, 13, 2860, 62, 83, 298, 7, 14749, 32590, 16, 11, 17, 22305, 1303, 21754, 1441, 10352, 198, 4798, 7, 66, 13, 2860, 62, 83, 298, 7, 14749, 32590, 16, 11, 17, 22305, 1303, 21754, 1441, 10352, 198, 4798, 7, 66, 13, 1136, 62, 83, 658, 28955, 1303, 21754, 1441, 37250, 27, 15, 11, 15, 29, 3256, 705, 27, 16, 11, 17, 29, 3256, 705, 27, 17, 11, 18, 29, 20520, 628 ]
2.393424
882
import numpy as np import os # new change from sys import platform # new change from datasets import Dataset, load_dataset from itertools import groupby from overrides import overrides from sklearn.metrics import classification_report from tqdm import tqdm from transformers import AutoTokenizer from typing import Dict, List from thermostat.data import additional_configs, thermostat_configs from thermostat.data.tokenization import fuse_subwords from thermostat.utils import lazy_property from thermostat.visualize import ColorToken, Heatmap, normalize_attributions class ThermopackMeta(type): """ Inspired by: https://stackoverflow.com/a/65917858 """ @staticmethod def force_child(fun, fun_name, base, child): """Turn from Base- to Child-instance-returning function.""" return wrapper class PlaceholderThermounit: """ Raw single instance of a Thermopack. Accessing units of a Thermopack will automatically cast these to Thermounits. This class exists for efficiency purposes. Properly processing an entire dataset while loading it takes too long. """ class ThermounitAttributeArray(np.ndarray): """ NumPy Array of a list of attribute values of Thermopack units Follows: https://numpy.org/devdocs/user/basics.subclassing.html""" class Thermounit(PlaceholderThermounit): """ Processed single instance of a Thermopack (Thermostat dataset/configuration) """ @property @property def fill_text_fields(self, fuse_subwords_strategy='salient'): """ Use detokenizer to fill text fields """ # Determine groups of tokens split by [SEP] tokens text_groups = [] for group in [list(g) for k, g in groupby(self.tokens.items(), lambda kt: kt[1] != self.tokenizer.sep_token) if k]: # Remove groups that only contain special tokens if len([t for t in group if t[1] not in self.tokenizer.all_special_tokens]) < len(group): text_groups.append(group) # Assign text field values based on groups for text_field, field_tokens in zip(self.text_fields, text_groups): # Create new list containing all non-special tokens non_special_tokens_enum = [t for t in field_tokens if t[1] not in self.tokenizer.all_special_tokens] # Select attributions according to token indices (tokens_enum keys) selected_atts = [self.attributions[idx] for idx in [t[0] for t in non_special_tokens_enum]] if fuse_subwords_strategy: tokens_enum, atts = fuse_subwords(non_special_tokens_enum, selected_atts, self.tokenizer, strategy=fuse_subwords_strategy) else: tokens_enum, atts = non_special_tokens_enum, selected_atts assert (len(tokens_enum) == len(atts)) # Cast each token into ColorToken objects with default color white which can later be overwritten # by a Heatmap object color_tokens = [ColorToken(token=token_enum[1], attribution=att, text_field=text_field, token_index=token_enum[0], thermounit_vars=vars(self)) for token_enum, att in zip(tokens_enum, atts)] # Set class attribute with the name of the text field setattr(self, text_field, Heatmap(color_tokens)) # Introduce a texts attribute that also stores all assigned text fields into a dict with the key being the # name of each text field setattr(self, 'texts', {text_field: getattr(self, text_field) for text_field in self.text_fields}) @property def explanation(self, keep_padding_tokens=False): """ Token-attribution tuples of a Thermounit """ if keep_padding_tokens: tokens = self.tokens else: tokens = [(idx, token) for idx, token in self.tokens.items() if token != self.tokenizer.pad_token] attributions = [att for i, att in enumerate(self.attributions) if i in [t[0] for t in tokens]] token_att_tuples = list(zip([t[1] for t in tokens], attributions, [t[0] for t in tokens])) return token_att_tuples @property def heatmap(self, gamma=1.0, normalize=True, flip_attributions_idx=None, fuse_subwords_strategy='salient'): """ Generate a heatmap from explanation (!) data (without instantiating text fields) for a single data point of a Thermostat dataset """ # Handle attributions, apply normalization and sign flipping if needed atts = [x[1] for x in self.explanation] if normalize: atts = normalize_attributions(atts) if flip_attributions_idx == self.predicted_label: atts = [att * -1 for att in atts] non_pad_tokens_enum = [tuple(x[i] for i in [2, 0]) for x in self.explanation] if fuse_subwords_strategy: tokens_enum, atts = fuse_subwords(non_pad_tokens_enum, atts, self.tokenizer, strategy=fuse_subwords_strategy) else: tokens_enum, atts = non_pad_tokens_enum, atts assert (len(tokens_enum) == len(atts)) # Cast each token into ColorToken objects with default color white which can later be overwritten # by a Heatmap object color_tokens = [ColorToken(token=token_enum[1], attribution=att, text_field='text', token_index=token_enum[0], thermounit_vars=vars(self)) for token_enum, att in zip(tokens_enum, atts)] return Heatmap(color_tokens=color_tokens, attributions=atts, gamma=gamma) def list_configs(): """ Returns the list of names of all available configs in the Thermostat HF dataset""" return [config.name for config in thermostat_configs.builder_configs] def get_config(config_name): """ Returns a ThermostatConfig if a config exists by the name of `config_name`, else returns None based on : https://stackoverflow.com/a/7125547 """ return next((x for x in thermostat_configs.builder_configs if x.name == config_name), None) def get_text_fields(config_name): """ Returns a list of the text fields in a Thermostat config """ text_fields = get_config(config_name).text_column if type(text_fields) != list: text_fields = [text_fields] return text_fields def load(config_str: str = None, **kwargs) -> Thermopack: """ Wrapper around the load_dataset method from the HF datasets library: https://huggingface.co/docs/datasets/package_reference/loading_methods.html#datasets.load_dataset :param config_str: equivalent to the second argument (`name`) of `datasets.load_dataset`. The value has to be one of the available configs in `thermostat.data.thermostat_configs.builder_configs` (accessible via `list_configs()`). :param kwargs: Additional keywords will all be passed to `datasets.load_dataset`. `path`, `name` and `split` are already reserved. """ assert config_str, f'Please enter a config. Available options: {list_configs()}' assert config_str in list_configs(), f'Invalid config. Available options: {list_configs()}' """ Following https://stackoverflow.com/a/23430335/6788442 """ ld_kwargs = {key: value for key, value in kwargs.items() if key in load_dataset.__code__.co_varnames and key not in ['path', 'name', 'split']} print(f'Loading Thermostat configuration: {config_str}') if ld_kwargs: print(f'Additional parameters for loading: {ld_kwargs}') # new change if platform == "win32": dataset_script_path = os.path.dirname(os.path.realpath(__file__)).replace('\\thermostat\\data', '\\thermostat\\dataset.py') else: dataset_script_path = os.path.dirname(os.path.realpath(__file__)).replace('/thermostat/data', '/thermostat/dataset.py') # new change data = load_dataset(path=dataset_script_path, name=config_str, split="test", **ld_kwargs) return Thermopack(data) def get_coordinate(thermostat_dataset: Dataset, coordinate: str) -> str: """ Determine a coordinate (dataset, model, or explainer) of a Thermostat dataset from its description """ assert coordinate in ['Model', 'Dataset', 'Explainer'] coord_prefix = f'{coordinate}: ' assert coord_prefix in thermostat_dataset.description str_post_coord_prefix = thermostat_dataset.description.split(coord_prefix)[1] if '\n' in str_post_coord_prefix: coord_value = str_post_coord_prefix.split('\n')[0] else: coord_value = str_post_coord_prefix return coord_value
[ 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 2, 649, 1487, 220, 198, 6738, 25064, 1330, 3859, 198, 2, 649, 1487, 198, 6738, 40522, 1330, 16092, 292, 316, 11, 3440, 62, 19608, 292, 316, 198, 6738, 340, 861, 10141, 1330, 1448, 1525, 198, 6738, 23170, 1460, 1330, 23170, 1460, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 17923, 62, 13116, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 6121, 364, 1330, 11160, 30642, 7509, 198, 6738, 19720, 1330, 360, 713, 11, 7343, 198, 198, 6738, 10811, 1712, 265, 13, 7890, 1330, 3224, 62, 11250, 82, 11, 10811, 1712, 265, 62, 11250, 82, 198, 6738, 10811, 1712, 265, 13, 7890, 13, 30001, 1634, 1330, 32738, 62, 7266, 10879, 198, 6738, 10811, 1712, 265, 13, 26791, 1330, 16931, 62, 26745, 198, 6738, 10811, 1712, 265, 13, 41464, 1096, 1330, 5315, 30642, 11, 12308, 8899, 11, 3487, 1096, 62, 1078, 2455, 507, 628, 198, 4871, 12634, 35244, 441, 48526, 7, 4906, 2599, 198, 220, 220, 220, 37227, 45827, 416, 25, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 36445, 23188, 3365, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 2700, 62, 9410, 7, 12543, 11, 1257, 62, 3672, 11, 2779, 11, 1200, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17278, 422, 7308, 12, 284, 5932, 12, 39098, 12, 7783, 278, 2163, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 29908, 628, 198, 198, 4871, 8474, 13829, 35048, 76, 977, 270, 25, 198, 220, 220, 220, 37227, 16089, 2060, 4554, 286, 257, 12634, 35244, 441, 13, 8798, 278, 4991, 286, 257, 12634, 35244, 441, 481, 6338, 3350, 777, 284, 198, 220, 220, 220, 220, 12634, 76, 977, 896, 13, 770, 1398, 7160, 329, 9332, 4959, 13, 45989, 306, 7587, 281, 2104, 27039, 981, 11046, 340, 198, 220, 220, 220, 220, 2753, 1165, 890, 13, 37227, 628, 198, 4871, 12634, 76, 977, 270, 33682, 19182, 7, 37659, 13, 358, 18747, 2599, 198, 220, 220, 220, 37227, 31835, 20519, 15690, 286, 257, 1351, 286, 11688, 3815, 286, 12634, 35244, 441, 4991, 198, 220, 220, 220, 220, 7281, 82, 25, 3740, 1378, 77, 32152, 13, 2398, 14, 7959, 31628, 14, 7220, 14, 12093, 873, 13, 7266, 4871, 278, 13, 6494, 37811, 628, 198, 4871, 12634, 76, 977, 270, 7, 27271, 13829, 35048, 76, 977, 270, 2599, 198, 220, 220, 220, 37227, 10854, 276, 2060, 4554, 286, 257, 12634, 35244, 441, 357, 35048, 1712, 265, 27039, 14, 11250, 3924, 8, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 825, 6070, 62, 5239, 62, 25747, 7, 944, 11, 32738, 62, 7266, 10879, 62, 2536, 4338, 11639, 21680, 1153, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5765, 1062, 4233, 7509, 284, 6070, 2420, 7032, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 2628, 286, 16326, 6626, 416, 685, 5188, 47, 60, 16326, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 24432, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1448, 287, 685, 4868, 7, 70, 8, 329, 479, 11, 308, 287, 1448, 1525, 7, 944, 13, 83, 482, 641, 13, 23814, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 479, 83, 25, 479, 83, 58, 16, 60, 14512, 2116, 13, 30001, 7509, 13, 325, 79, 62, 30001, 8, 611, 479, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 2628, 326, 691, 3994, 2041, 16326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 26933, 83, 329, 256, 287, 1448, 611, 256, 58, 16, 60, 407, 287, 2116, 13, 30001, 7509, 13, 439, 62, 20887, 62, 83, 482, 641, 12962, 1279, 18896, 7, 8094, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 24432, 13, 33295, 7, 8094, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 570, 2420, 2214, 3815, 1912, 319, 2628, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2420, 62, 3245, 11, 2214, 62, 83, 482, 641, 287, 19974, 7, 944, 13, 5239, 62, 25747, 11, 2420, 62, 24432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 649, 1351, 7268, 477, 1729, 12, 20887, 16326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 62, 20887, 62, 83, 482, 641, 62, 44709, 796, 685, 83, 329, 256, 287, 2214, 62, 83, 482, 641, 611, 256, 58, 16, 60, 407, 287, 2116, 13, 30001, 7509, 13, 439, 62, 20887, 62, 83, 482, 641, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9683, 24548, 507, 1864, 284, 11241, 36525, 357, 83, 482, 641, 62, 44709, 8251, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 30353, 796, 685, 944, 13, 1078, 2455, 507, 58, 312, 87, 60, 329, 4686, 87, 287, 685, 83, 58, 15, 60, 329, 256, 287, 1729, 62, 20887, 62, 83, 482, 641, 62, 44709, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 32738, 62, 7266, 10879, 62, 2536, 4338, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 62, 44709, 11, 708, 82, 796, 32738, 62, 7266, 10879, 7, 13159, 62, 20887, 62, 83, 482, 641, 62, 44709, 11, 6163, 62, 30353, 11, 2116, 13, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4811, 28, 69, 1904, 62, 7266, 10879, 62, 2536, 4338, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 62, 44709, 11, 708, 82, 796, 1729, 62, 20887, 62, 83, 482, 641, 62, 44709, 11, 6163, 62, 30353, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 11925, 7, 83, 482, 641, 62, 44709, 8, 6624, 18896, 7, 30353, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5833, 1123, 11241, 656, 5315, 30642, 5563, 351, 4277, 3124, 2330, 543, 460, 1568, 307, 6993, 9108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 416, 257, 12308, 8899, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 83, 482, 641, 796, 685, 10258, 30642, 7, 30001, 28, 30001, 62, 44709, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39629, 28, 1078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 3245, 28, 5239, 62, 3245, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9630, 28, 30001, 62, 44709, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21969, 977, 270, 62, 85, 945, 28, 85, 945, 7, 944, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 44709, 11, 708, 287, 19974, 7, 83, 482, 641, 62, 44709, 11, 708, 82, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 1398, 11688, 351, 262, 1438, 286, 262, 2420, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 2420, 62, 3245, 11, 12308, 8899, 7, 8043, 62, 83, 482, 641, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11036, 344, 257, 13399, 11688, 326, 635, 7000, 477, 8686, 2420, 7032, 656, 257, 8633, 351, 262, 1994, 852, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1438, 286, 1123, 2420, 2214, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 705, 5239, 82, 3256, 1391, 5239, 62, 3245, 25, 651, 35226, 7, 944, 11, 2420, 62, 3245, 8, 329, 2420, 62, 3245, 287, 2116, 13, 5239, 62, 25747, 30072, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 7468, 7, 944, 11, 1394, 62, 39231, 62, 83, 482, 641, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29130, 12, 1078, 3890, 12777, 2374, 286, 257, 12634, 76, 977, 270, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1394, 62, 39231, 62, 83, 482, 641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 2116, 13, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 47527, 312, 87, 11, 11241, 8, 329, 4686, 87, 11, 11241, 287, 2116, 13, 83, 482, 641, 13, 23814, 3419, 611, 11241, 14512, 2116, 13, 30001, 7509, 13, 15636, 62, 30001, 60, 198, 220, 220, 220, 220, 220, 220, 220, 24548, 507, 796, 685, 1078, 329, 1312, 11, 708, 287, 27056, 378, 7, 944, 13, 1078, 2455, 507, 8, 611, 1312, 287, 685, 83, 58, 15, 60, 329, 256, 287, 16326, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 1078, 62, 28047, 2374, 796, 1351, 7, 13344, 26933, 83, 58, 16, 60, 329, 256, 287, 16326, 4357, 24548, 507, 11, 685, 83, 58, 15, 60, 329, 256, 287, 16326, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 62, 1078, 62, 28047, 2374, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4894, 8899, 7, 944, 11, 34236, 28, 16, 13, 15, 11, 3487, 1096, 28, 17821, 11, 14283, 62, 1078, 2455, 507, 62, 312, 87, 28, 14202, 11, 32738, 62, 7266, 10879, 62, 2536, 4338, 11639, 21680, 1153, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2980, 378, 257, 4894, 8899, 422, 7468, 357, 8133, 1366, 357, 19419, 9113, 26336, 2420, 7032, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 2060, 1366, 966, 286, 257, 12634, 1712, 265, 27039, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 24548, 507, 11, 4174, 3487, 1634, 290, 1051, 33097, 611, 2622, 198, 220, 220, 220, 220, 220, 220, 220, 708, 82, 796, 685, 87, 58, 16, 60, 329, 2124, 287, 2116, 13, 1069, 11578, 341, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3487, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 82, 796, 3487, 1096, 62, 1078, 2455, 507, 7, 30353, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14283, 62, 1078, 2455, 507, 62, 312, 87, 6624, 2116, 13, 28764, 5722, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 82, 796, 685, 1078, 1635, 532, 16, 329, 708, 287, 708, 82, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1729, 62, 15636, 62, 83, 482, 641, 62, 44709, 796, 685, 83, 29291, 7, 87, 58, 72, 60, 329, 1312, 287, 685, 17, 11, 657, 12962, 329, 2124, 287, 2116, 13, 1069, 11578, 341, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 32738, 62, 7266, 10879, 62, 2536, 4338, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 62, 44709, 11, 708, 82, 796, 32738, 62, 7266, 10879, 7, 13159, 62, 15636, 62, 83, 482, 641, 62, 44709, 11, 708, 82, 11, 2116, 13, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4811, 28, 69, 1904, 62, 7266, 10879, 62, 2536, 4338, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16326, 62, 44709, 11, 708, 82, 796, 1729, 62, 15636, 62, 83, 482, 641, 62, 44709, 11, 708, 82, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 357, 11925, 7, 83, 482, 641, 62, 44709, 8, 6624, 18896, 7, 30353, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5833, 1123, 11241, 656, 5315, 30642, 5563, 351, 4277, 3124, 2330, 543, 460, 1568, 307, 6993, 9108, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 416, 257, 12308, 8899, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 83, 482, 641, 796, 685, 10258, 30642, 7, 30001, 28, 30001, 62, 44709, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39629, 28, 1078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 3245, 11639, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 9630, 28, 30001, 62, 44709, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21969, 977, 270, 62, 85, 945, 28, 85, 945, 7, 944, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 62, 44709, 11, 708, 287, 19974, 7, 83, 482, 641, 62, 44709, 11, 708, 82, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12308, 8899, 7, 8043, 62, 83, 482, 641, 28, 8043, 62, 83, 482, 641, 11, 24548, 507, 28, 30353, 11, 34236, 28, 28483, 2611, 8, 628, 198, 4299, 1351, 62, 11250, 82, 33529, 198, 220, 220, 220, 37227, 16409, 262, 1351, 286, 3891, 286, 477, 1695, 4566, 82, 287, 262, 12634, 1712, 265, 42253, 27039, 37811, 198, 220, 220, 220, 1441, 685, 11250, 13, 3672, 329, 4566, 287, 10811, 1712, 265, 62, 11250, 82, 13, 38272, 62, 11250, 82, 60, 628, 198, 4299, 651, 62, 11250, 7, 11250, 62, 3672, 2599, 198, 220, 220, 220, 37227, 16409, 257, 12634, 1712, 265, 16934, 611, 257, 4566, 7160, 416, 262, 1438, 286, 4600, 11250, 62, 3672, 47671, 2073, 5860, 6045, 198, 220, 220, 220, 220, 1912, 319, 1058, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 49517, 2816, 2857, 37227, 198, 220, 220, 220, 1441, 1306, 19510, 87, 329, 2124, 287, 10811, 1712, 265, 62, 11250, 82, 13, 38272, 62, 11250, 82, 611, 2124, 13, 3672, 6624, 4566, 62, 3672, 828, 6045, 8, 628, 198, 4299, 651, 62, 5239, 62, 25747, 7, 11250, 62, 3672, 2599, 198, 220, 220, 220, 37227, 16409, 257, 1351, 286, 262, 2420, 7032, 287, 257, 12634, 1712, 265, 4566, 37227, 198, 220, 220, 220, 2420, 62, 25747, 796, 651, 62, 11250, 7, 11250, 62, 3672, 737, 5239, 62, 28665, 198, 220, 220, 220, 611, 2099, 7, 5239, 62, 25747, 8, 14512, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 25747, 796, 685, 5239, 62, 25747, 60, 198, 220, 220, 220, 1441, 2420, 62, 25747, 628, 198, 4299, 3440, 7, 11250, 62, 2536, 25, 965, 796, 6045, 11, 12429, 46265, 22046, 8, 4613, 12634, 35244, 441, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27323, 2848, 1088, 262, 3440, 62, 19608, 292, 316, 2446, 422, 262, 42253, 40522, 5888, 25, 198, 220, 220, 220, 3740, 1378, 71, 1018, 2667, 2550, 13, 1073, 14, 31628, 14, 19608, 292, 1039, 14, 26495, 62, 35790, 14, 25138, 62, 24396, 82, 13, 6494, 2, 19608, 292, 1039, 13, 2220, 62, 19608, 292, 316, 198, 220, 220, 220, 1058, 17143, 4566, 62, 2536, 25, 7548, 284, 262, 1218, 4578, 357, 63, 3672, 63, 8, 286, 4600, 19608, 292, 1039, 13, 2220, 62, 19608, 292, 316, 44646, 383, 1988, 468, 284, 307, 530, 286, 198, 220, 220, 220, 262, 1695, 4566, 82, 287, 4600, 490, 1712, 265, 13, 7890, 13, 490, 1712, 265, 62, 11250, 82, 13, 38272, 62, 11250, 82, 63, 357, 33780, 2884, 4600, 4868, 62, 11250, 82, 3419, 63, 737, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 15891, 26286, 481, 477, 307, 3804, 284, 4600, 19608, 292, 1039, 13, 2220, 62, 19608, 292, 316, 44646, 4600, 6978, 47671, 4600, 3672, 63, 290, 4600, 35312, 63, 389, 198, 220, 220, 220, 1541, 10395, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 4566, 62, 2536, 11, 277, 6, 5492, 3802, 257, 4566, 13, 14898, 3689, 25, 1391, 4868, 62, 11250, 82, 3419, 92, 6, 198, 220, 220, 220, 6818, 4566, 62, 2536, 287, 1351, 62, 11250, 82, 22784, 277, 6, 44651, 4566, 13, 14898, 3689, 25, 1391, 4868, 62, 11250, 82, 3419, 92, 6, 628, 220, 220, 220, 37227, 14207, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 24409, 1270, 27326, 14, 3134, 3459, 39506, 37227, 198, 220, 220, 220, 300, 67, 62, 46265, 22046, 796, 1391, 2539, 25, 1988, 329, 1994, 11, 1988, 287, 479, 86, 22046, 13, 23814, 3419, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 287, 3440, 62, 19608, 292, 316, 13, 834, 8189, 834, 13, 1073, 62, 85, 1501, 1047, 290, 1994, 407, 287, 37250, 6978, 3256, 705, 3672, 3256, 705, 35312, 20520, 92, 628, 220, 220, 220, 3601, 7, 69, 6, 19031, 12634, 1712, 265, 8398, 25, 1391, 11250, 62, 2536, 92, 11537, 198, 220, 220, 220, 611, 300, 67, 62, 46265, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 17699, 10007, 329, 11046, 25, 1391, 335, 62, 46265, 22046, 92, 11537, 198, 220, 220, 220, 1303, 649, 1487, 198, 220, 220, 220, 611, 3859, 6624, 366, 5404, 2624, 1298, 198, 220, 220, 220, 220, 220, 220, 27039, 62, 12048, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 29720, 33491, 10786, 6852, 490, 1712, 265, 6852, 7890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6852, 490, 1712, 265, 6852, 19608, 292, 316, 13, 9078, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 62, 12048, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 29720, 33491, 10786, 14, 490, 1712, 265, 14, 7890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 490, 1712, 265, 14, 19608, 292, 316, 13, 9078, 11537, 198, 220, 220, 220, 1303, 649, 1487, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1366, 796, 3440, 62, 19608, 292, 316, 7, 6978, 28, 19608, 292, 316, 62, 12048, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 11250, 62, 2536, 11, 6626, 2625, 9288, 1600, 12429, 335, 62, 46265, 22046, 8, 628, 220, 220, 220, 1441, 12634, 35244, 441, 7, 7890, 8, 628, 198, 4299, 651, 62, 37652, 4559, 7, 490, 1712, 265, 62, 19608, 292, 316, 25, 16092, 292, 316, 11, 20435, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 45559, 3810, 257, 20435, 357, 19608, 292, 316, 11, 2746, 11, 393, 4727, 263, 8, 286, 257, 12634, 1712, 265, 27039, 422, 663, 6764, 37227, 198, 220, 220, 220, 6818, 20435, 287, 37250, 17633, 3256, 705, 27354, 292, 316, 3256, 705, 18438, 10613, 20520, 198, 220, 220, 220, 6349, 62, 40290, 796, 277, 6, 90, 37652, 4559, 38362, 705, 198, 220, 220, 220, 6818, 6349, 62, 40290, 287, 10811, 1712, 265, 62, 19608, 292, 316, 13, 11213, 198, 220, 220, 220, 965, 62, 7353, 62, 37652, 62, 40290, 796, 10811, 1712, 265, 62, 19608, 292, 316, 13, 11213, 13, 35312, 7, 37652, 62, 40290, 38381, 16, 60, 198, 220, 220, 220, 611, 705, 59, 77, 6, 287, 965, 62, 7353, 62, 37652, 62, 40290, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 62, 8367, 796, 965, 62, 7353, 62, 37652, 62, 40290, 13, 35312, 10786, 59, 77, 11537, 58, 15, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6349, 62, 8367, 796, 965, 62, 7353, 62, 37652, 62, 40290, 198, 220, 220, 220, 1441, 6349, 62, 8367, 198 ]
2.381327
3,813
from PyQt5.QtCore import Qt from PyQt5.QtGui import QFont from PyQt5.QtWidgets import QWidget, QHBoxLayout, QLabel, QSlider class PsSliderParam(QWidget): """ Class defining slider QWidget comprehensive of slider name, activation checkbox and value label """
[ 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 33734, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1195, 23252, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 38300, 11, 1195, 39, 14253, 32517, 11, 1195, 33986, 11, 1195, 11122, 1304, 628, 198, 4871, 33610, 11122, 1304, 22973, 7, 48, 38300, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 16215, 28982, 1195, 38300, 9815, 286, 28982, 1438, 11, 14916, 2198, 3524, 290, 1988, 6167, 198, 220, 220, 220, 37227, 628 ]
2.904255
94
from .page_handler import parse_xml import re
[ 6738, 764, 7700, 62, 30281, 1330, 21136, 62, 19875, 198, 11748, 302, 628, 628 ]
3.5
14
# coding: utf-8 # from uiautomator2 import utils
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 198, 198, 6738, 334, 544, 315, 296, 1352, 17, 1330, 3384, 4487 ]
2.333333
21
from models.req.Req import Req from models.object_detection.ObjectDetection import ObjectDetection
[ 6738, 4981, 13, 42180, 13, 3041, 80, 1330, 797, 80, 198, 6738, 4981, 13, 15252, 62, 15255, 3213, 13, 10267, 11242, 3213, 1330, 9515, 11242, 3213, 628 ]
3.703704
27
import pyaudio import numpy as np import wave import time CHUNK = 2048 RATE = 32000 FORMAT = pyaudio.paInt16 CHANNEL = 1 SHIFT = 50 """ recording """ audio = pyaudio.PyAudio() stream = audio.open(format=FORMAT, channels=CHANNEL, rate=RATE, input=True, output=True, frames_per_buffer=CHUNK) print("start recording...") print("talk...") while True: data = stream.read(CHUNK) # read each chunk data = np.array(wave.struct.unpack("%dh" % (len(data) / 2), data)) # data that is writen has twice size of chunk and we just want half of it data_fourier = np.fft.rfft(data) mean_freq = np.mean(data_fourier) data_1 = data[0::4] # divide each chunck into 4 parts data_2 = data[1::4] data_3 = data[2::4] data_4 = data[3::4] data_1_fourier = np.fft.fft(data_1) data_2_fourier = np.fft.fft(data_2) data_3_fourier = np.fft.fft(data_3) data_4_fourier = np.fft.fft(data_4) data_1_fourier = np.roll(data_1_fourier, SHIFT) # shift each part data_2_fourier = np.roll(data_2_fourier, SHIFT) data_3_fourier = np.roll(data_3_fourier, SHIFT) data_4_fourier = np.roll(data_4_fourier, SHIFT) data_1_fourier[:SHIFT] = mean_freq # set head & tail of each chunk equal to avoid noise data_1_fourier[-SHIFT:] = mean_freq data_2_fourier[:SHIFT] = mean_freq data_2_fourier[-SHIFT:] = mean_freq data_3_fourier[:SHIFT] = mean_freq data_3_fourier[-SHIFT:] = mean_freq data_4_fourier[:SHIFT] = mean_freq data_4_fourier[-SHIFT:] = mean_freq data_1_new = np.fft.ifft(data_1_fourier) data_2_new = np.fft.ifft(data_2_fourier) data_3_new = np.fft.ifft(data_3_fourier) data_4_new = np.fft.ifft(data_4_fourier) data_1_new = np.real(data_1_new) data_2_new = np.real(data_2_new) data_3_new = np.real(data_3_new) data_4_new = np.real(data_4_new) new_data = np.column_stack((data_1_new, data_2_new, data_3_new, data_4_new)).ravel().astype(np.int16) # reasemble parts together time.sleep(0.02055) # this is used for avoiding eco output = wave.struct.pack("%dh" % (len(new_data)), *list(new_data)) # pack array into a raw file stream.write(output)
[ 11748, 12972, 24051, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 6769, 201, 198, 11748, 640, 201, 198, 201, 198, 3398, 4944, 42, 796, 36117, 201, 198, 49, 6158, 796, 3933, 830, 201, 198, 21389, 1404, 796, 12972, 24051, 13, 8957, 5317, 1433, 201, 198, 3398, 22846, 3698, 796, 352, 201, 198, 9693, 32297, 796, 2026, 201, 198, 201, 198, 37811, 8296, 37227, 201, 198, 24051, 796, 12972, 24051, 13, 20519, 21206, 3419, 201, 198, 5532, 796, 6597, 13, 9654, 7, 18982, 28, 21389, 1404, 11, 9619, 28, 3398, 22846, 3698, 11, 2494, 28, 49, 6158, 11, 5128, 28, 17821, 11, 5072, 28, 17821, 11, 13431, 62, 525, 62, 22252, 28, 3398, 4944, 42, 8, 201, 198, 201, 198, 4798, 7203, 9688, 8296, 9313, 8, 201, 198, 4798, 7203, 16620, 9313, 8, 201, 198, 201, 198, 4514, 6407, 25, 201, 198, 220, 220, 220, 1366, 796, 4269, 13, 961, 7, 3398, 4944, 42, 8, 220, 1303, 1100, 1123, 16058, 201, 198, 220, 220, 220, 1366, 796, 45941, 13, 18747, 7, 19204, 13, 7249, 13, 403, 8002, 7203, 4, 34985, 1, 4064, 357, 11925, 7, 7890, 8, 1220, 362, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 4008, 220, 1303, 1366, 326, 318, 1991, 268, 468, 5403, 2546, 286, 16058, 290, 356, 655, 765, 2063, 286, 340, 201, 198, 201, 198, 220, 220, 220, 1366, 62, 69, 280, 5277, 796, 45941, 13, 487, 83, 13, 81, 487, 83, 7, 7890, 8, 201, 198, 220, 220, 220, 1612, 62, 19503, 80, 796, 45941, 13, 32604, 7, 7890, 62, 69, 280, 5277, 8, 201, 198, 220, 220, 220, 1366, 62, 16, 796, 1366, 58, 15, 3712, 19, 60, 220, 220, 220, 220, 1303, 14083, 1123, 442, 403, 694, 656, 604, 3354, 201, 198, 220, 220, 220, 1366, 62, 17, 796, 1366, 58, 16, 3712, 19, 60, 201, 198, 220, 220, 220, 1366, 62, 18, 796, 1366, 58, 17, 3712, 19, 60, 201, 198, 220, 220, 220, 1366, 62, 19, 796, 1366, 58, 18, 3712, 19, 60, 201, 198, 201, 198, 220, 220, 220, 1366, 62, 16, 62, 69, 280, 5277, 796, 45941, 13, 487, 83, 13, 487, 83, 7, 7890, 62, 16, 8, 201, 198, 220, 220, 220, 1366, 62, 17, 62, 69, 280, 5277, 796, 45941, 13, 487, 83, 13, 487, 83, 7, 7890, 62, 17, 8, 201, 198, 220, 220, 220, 1366, 62, 18, 62, 69, 280, 5277, 796, 45941, 13, 487, 83, 13, 487, 83, 7, 7890, 62, 18, 8, 201, 198, 220, 220, 220, 1366, 62, 19, 62, 69, 280, 5277, 796, 45941, 13, 487, 83, 13, 487, 83, 7, 7890, 62, 19, 8, 201, 198, 201, 198, 220, 220, 220, 1366, 62, 16, 62, 69, 280, 5277, 796, 45941, 13, 2487, 7, 7890, 62, 16, 62, 69, 280, 5277, 11, 6006, 32297, 8, 220, 220, 220, 220, 1303, 6482, 1123, 636, 201, 198, 220, 220, 220, 1366, 62, 17, 62, 69, 280, 5277, 796, 45941, 13, 2487, 7, 7890, 62, 17, 62, 69, 280, 5277, 11, 6006, 32297, 8, 201, 198, 220, 220, 220, 1366, 62, 18, 62, 69, 280, 5277, 796, 45941, 13, 2487, 7, 7890, 62, 18, 62, 69, 280, 5277, 11, 6006, 32297, 8, 201, 198, 220, 220, 220, 1366, 62, 19, 62, 69, 280, 5277, 796, 45941, 13, 2487, 7, 7890, 62, 19, 62, 69, 280, 5277, 11, 6006, 32297, 8, 201, 198, 201, 198, 220, 220, 220, 1366, 62, 16, 62, 69, 280, 5277, 58, 25, 9693, 32297, 60, 796, 1612, 62, 19503, 80, 220, 220, 1303, 900, 1182, 1222, 7894, 286, 1123, 16058, 4961, 284, 3368, 7838, 201, 198, 220, 220, 220, 1366, 62, 16, 62, 69, 280, 5277, 58, 12, 9693, 32297, 47715, 796, 1612, 62, 19503, 80, 201, 198, 220, 220, 220, 1366, 62, 17, 62, 69, 280, 5277, 58, 25, 9693, 32297, 60, 796, 1612, 62, 19503, 80, 201, 198, 220, 220, 220, 1366, 62, 17, 62, 69, 280, 5277, 58, 12, 9693, 32297, 47715, 796, 1612, 62, 19503, 80, 201, 198, 220, 220, 220, 1366, 62, 18, 62, 69, 280, 5277, 58, 25, 9693, 32297, 60, 796, 1612, 62, 19503, 80, 201, 198, 220, 220, 220, 1366, 62, 18, 62, 69, 280, 5277, 58, 12, 9693, 32297, 47715, 796, 1612, 62, 19503, 80, 201, 198, 220, 220, 220, 1366, 62, 19, 62, 69, 280, 5277, 58, 25, 9693, 32297, 60, 796, 1612, 62, 19503, 80, 201, 198, 220, 220, 220, 1366, 62, 19, 62, 69, 280, 5277, 58, 12, 9693, 32297, 47715, 796, 1612, 62, 19503, 80, 201, 198, 201, 198, 220, 220, 220, 1366, 62, 16, 62, 3605, 796, 45941, 13, 487, 83, 13, 361, 701, 7, 7890, 62, 16, 62, 69, 280, 5277, 8, 201, 198, 220, 220, 220, 1366, 62, 17, 62, 3605, 796, 45941, 13, 487, 83, 13, 361, 701, 7, 7890, 62, 17, 62, 69, 280, 5277, 8, 201, 198, 220, 220, 220, 1366, 62, 18, 62, 3605, 796, 45941, 13, 487, 83, 13, 361, 701, 7, 7890, 62, 18, 62, 69, 280, 5277, 8, 201, 198, 220, 220, 220, 1366, 62, 19, 62, 3605, 796, 45941, 13, 487, 83, 13, 361, 701, 7, 7890, 62, 19, 62, 69, 280, 5277, 8, 201, 198, 201, 198, 220, 220, 220, 1366, 62, 16, 62, 3605, 796, 45941, 13, 5305, 7, 7890, 62, 16, 62, 3605, 8, 201, 198, 220, 220, 220, 1366, 62, 17, 62, 3605, 796, 45941, 13, 5305, 7, 7890, 62, 17, 62, 3605, 8, 201, 198, 220, 220, 220, 1366, 62, 18, 62, 3605, 796, 45941, 13, 5305, 7, 7890, 62, 18, 62, 3605, 8, 201, 198, 220, 220, 220, 1366, 62, 19, 62, 3605, 796, 45941, 13, 5305, 7, 7890, 62, 19, 62, 3605, 8, 201, 198, 201, 198, 220, 220, 220, 649, 62, 7890, 796, 45941, 13, 28665, 62, 25558, 19510, 7890, 62, 16, 62, 3605, 11, 1366, 62, 17, 62, 3605, 11, 1366, 62, 18, 62, 3605, 11, 1366, 62, 19, 62, 3605, 29720, 25843, 22446, 459, 2981, 7, 37659, 13, 600, 1433, 8, 220, 1303, 302, 292, 368, 903, 3354, 1978, 201, 198, 201, 198, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 33618, 2816, 8, 220, 220, 1303, 428, 318, 973, 329, 14928, 34286, 201, 198, 201, 198, 220, 220, 220, 5072, 796, 6769, 13, 7249, 13, 8002, 7203, 4, 34985, 1, 4064, 357, 11925, 7, 3605, 62, 7890, 36911, 1635, 4868, 7, 3605, 62, 7890, 4008, 220, 1303, 2353, 7177, 656, 257, 8246, 2393, 201, 198, 220, 220, 220, 4269, 13, 13564, 7, 22915, 8, 201, 198 ]
2.033959
1,119