entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
ParityPonderGRU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/7e/c7edgnsiuilw7uzwau7radvkvvtmowm7d7uh56mczbhieiykfrnx.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.new_zeros] # Source node to ATen node mapping: # h => full_default # Graph fragment: # %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_new_zeros_0 = async_compile.triton('triton_poi_fused_new_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zw/czwxbu6nuxhoujusu3krfetmqzx7rxloioah6gicy4ie2wmv6tqi.py # Topologically Sorted Source Nodes: [stack_3], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack_3 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_8, %primals_8, %primals_8, %primals_8, %primals_6, %primals_6, %primals_6],), kwargs = {}) triton_poi_fused_stack_1 = async_compile.triton('triton_poi_fused_stack_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 5, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr1 + (x0), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 6, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tmp26 & tmp28 tmp30 = tl.load(in_ptr1 + (x0), tmp29 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp0 >= tmp27 tmp32 = tl.full([1], 7, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tl.load(in_ptr1 + (x0), tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.where(tmp29, tmp30, tmp34) tmp36 = tl.where(tmp24, tmp25, tmp35) tmp37 = tl.where(tmp19, tmp20, tmp36) tmp38 = tl.where(tmp14, tmp15, tmp37) tmp39 = tl.where(tmp9, tmp10, tmp38) tmp40 = tl.where(tmp4, tmp5, tmp39) tl.store(out_ptr0 + (x2), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hq/chq2ihz43k5f3canufmvrzz3vy4seaa7ohwwzmv2o6szsqgwtn4r.py # Topologically Sorted Source Nodes: [stack_4], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack_4 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_9, %primals_9, %primals_9, %primals_9, %primals_7, %primals_7, %primals_7],), kwargs = {}) triton_poi_fused_stack_2 = async_compile.triton('triton_poi_fused_stack_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 7 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp5 = tl.load(in_ptr0 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp23 = tl.load(in_ptr1 + (0)) tmp24 = tl.broadcast_to(tmp23, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp7 = tmp0 >= tmp3 tmp8 = tl.full([1], 2, tl.int64) tmp9 = tmp0 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tmp0 >= tmp8 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tmp0 >= tmp12 tmp16 = tl.full([1], 4, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tmp0 >= tmp16 tmp20 = tl.full([1], 5, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp25 = tmp0 >= tmp20 tmp26 = tl.full([1], 6, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp0 >= tmp26 tmp30 = tl.full([1], 7, tl.int64) tmp31 = tmp0 < tmp30 tmp32 = tl.where(tmp28, tmp24, tmp24) tmp33 = tl.where(tmp22, tmp24, tmp32) tmp34 = tl.where(tmp18, tmp6, tmp33) tmp35 = tl.where(tmp14, tmp6, tmp34) tmp36 = tl.where(tmp10, tmp6, tmp35) tmp37 = tl.where(tmp4, tmp6, tmp36) tl.store(out_ptr0 + (x0), tmp37, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/g2/cg23xreycdv6fxtkdfop75dzuhabmjs3xhrvq22ytdld2qihmoyg.py # Topologically Sorted Source Nodes: [stack_2], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_2, %getitem_4, %getitem_6, %getitem, %getitem_2, %getitem_4],), kwargs = {}) triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1))), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1))), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr3 + (x0 + (4*((-12) + x1))), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (x0 + (4*((-16) + x1))), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 24, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tmp26 & tmp28 tmp30 = tl.load(in_ptr1 + (x0 + (4*((-20) + x1))), tmp29 & xmask, other=0.0) tmp31 = tmp0 >= tmp27 tmp32 = tl.full([1], 28, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tl.load(in_ptr2 + (x0 + (4*((-24) + x1))), tmp31 & xmask, other=0.0) tmp35 = tl.where(tmp29, tmp30, tmp34) tmp36 = tl.where(tmp24, tmp25, tmp35) tmp37 = tl.where(tmp19, tmp20, tmp36) tmp38 = tl.where(tmp14, tmp15, tmp37) tmp39 = tl.where(tmp9, tmp10, tmp38) tmp40 = tl.where(tmp4, tmp5, tmp39) tl.store(out_ptr0 + (x2), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oo/coo3437vo4xsrwedl7lcrwfswym3k6uq6mzbtutpnydbupg5rgob.py # Topologically Sorted Source Nodes: [p_m, sigmoid_2, sub_8, bernoulli_2, sigmoid_1, sub_4, bernoulli_1, sigmoid, un_halted_prob_1, p_n_1, un_halted_prob_2, p_n_2, p_n_3, bernoulli, halted_1, sub_2, mul_3, mul_4, p_m_1, halt_1, sub_6, mul_10, mul_11, p_m_2, halted_2, sub_9, halt_2, sub_10, mul_17, mul_18, p_m_3, halted_3, mul_20, mul_13, mul_6, y_m_1, mul_12, y_m_2, mul_19, y_m_3, lambda_n_3, bernoulli_3, sub_13, halt_3, sub_14, mul_24, mul_25, p_m_4, mul_26, mul_27, y_m_4], Original ATen: [aten.new_zeros, aten.sigmoid, aten.rsub, aten.bernoulli, aten.mul, aten.add, aten.new_ones] # Source node to ATen node mapping: # bernoulli => lt_2 # bernoulli_1 => convert_element_type_1, lt_1 # bernoulli_2 => convert_element_type, lt # bernoulli_3 => convert_element_type_3, lt_3 # halt_1 => mul_10 # halt_2 => mul_13 # halt_3 => mul_23 # halted_1 => convert_element_type_2 # halted_2 => add_4 # halted_3 => add_6 # lambda_n_3 => full_default_6 # mul_10 => mul_11 # mul_11 => mul_12 # mul_12 => mul_19 # mul_13 => mul_17 # mul_17 => mul_14 # mul_18 => mul_15 # mul_19 => mul_20 # mul_20 => mul_16 # mul_24 => mul_24 # mul_25 => mul_25 # mul_26 => mul_26 # mul_27 => mul_27 # mul_3 => mul_7 # mul_4 => mul_8 # mul_6 => mul_18 # p_m => full_default_3 # p_m_1 => add_1 # p_m_2 => add_3 # p_m_3 => add_5 # p_m_4 => add_10 # p_n_1 => mul_2 # p_n_2 => mul_4 # p_n_3 => mul_5 # sigmoid => sigmoid_2 # sigmoid_1 => sigmoid_1 # sigmoid_2 => sigmoid # sub_10 => sub_10 # sub_13 => sub_13 # sub_14 => sub_14 # sub_2 => sub_4 # sub_4 => sub_2 # sub_6 => sub_7 # sub_8 => sub_1 # sub_9 => sub_9 # un_halted_prob_1 => sub_3 # un_halted_prob_2 => mul_3 # y_m_1 => add_7 # y_m_2 => add_8 # y_m_3 => add_9 # y_m_4 => add_11 # Graph fragment: # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_14,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select), kwargs = {}) # %lt : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand, %select), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_13,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_1), kwargs = {}) # %lt_1 : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand_1, %select_1), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt_1, torch.float32), kwargs = {}) # %sigmoid_2 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_12,), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_2), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %select_1), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_2), kwargs = {}) # %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %select), kwargs = {}) # %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_1), kwargs = {}) # %lt_2 : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand_2, %select_2), kwargs = {}) # %convert_element_type_2 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt_2, torch.float32), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type_2), kwargs = {}) # %mul_7 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default_3, %sub_4), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convert_element_type_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %mul_8), kwargs = {}) # %mul_10 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %sub_4), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_10), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %sub_7), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %mul_10), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_11, %mul_12), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, %mul_10), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_4), kwargs = {}) # %mul_13 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %sub_9), kwargs = {}) # %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_13), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %sub_10), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %mul_13), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_14, %mul_15), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_13), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %mul_13), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %mul_10), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convert_element_type_2), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %mul_18), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %sub_7), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_19, %mul_17), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, %sub_10), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_20, %mul_16), kwargs = {}) # %full_default_6 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %lt_3 : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%rand_3, %full_default_6), kwargs = {}) # %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt_3, torch.float32), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_6), kwargs = {}) # %mul_23 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_3, %sub_13), kwargs = {}) # %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_23), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, %sub_14), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %mul_23), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_24, %mul_25), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, %sub_14), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_6, %mul_23), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %mul_27), kwargs = {}) triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4 = async_compile.triton('triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*i1', 13: '*i1', 14: '*i1', 15: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (4)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp5 = tl.load(in_ptr2 + (16 + x0), xmask) tmp8 = tl.load(in_ptr1 + (5)) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (20 + x0), xmask) tmp13 = tl.load(in_ptr1 + (6)) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp15 = tl.load(in_ptr2 + (24 + x0), xmask) tmp18 = tl.load(in_ptr3 + (x0), xmask) tmp20 = tl.load(in_ptr4 + (x0), xmask) tmp22 = tl.load(in_ptr5 + (x0), xmask) tmp59 = tl.load(in_ptr1 + (0)) tmp60 = tl.broadcast_to(tmp59, [XBLOCK]) tmp61 = tl.load(in_ptr2 + (x0), xmask) tmp66 = tl.load(in_ptr1 + (1)) tmp67 = tl.broadcast_to(tmp66, [XBLOCK]) tmp68 = tl.load(in_ptr2 + (4 + x0), xmask) tmp73 = tl.load(in_ptr1 + (2)) tmp74 = tl.broadcast_to(tmp73, [XBLOCK]) tmp75 = tl.load(in_ptr2 + (8 + x0), xmask) tmp80 = tl.load(in_ptr1 + (3)) tmp81 = tl.broadcast_to(tmp80, [XBLOCK]) tmp82 = tl.load(in_ptr2 + (12 + x0), xmask) tmp1 = 1.0 tmp2 = tmp0 < tmp1 tmp6 = tmp4 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp11 = tmp9 + tmp10 tmp12 = tl.sigmoid(tmp11) tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp19 = tmp18 < tmp17 tmp21 = tmp20 < tmp12 tmp23 = tmp22 < tmp7 tmp24 = tmp23.to(tl.float32) tmp25 = tmp1 - tmp24 tmp26 = 0.0 tmp27 = tmp26 * tmp25 tmp28 = tmp7 * tmp24 tmp29 = tmp27 + tmp28 tmp30 = tmp21.to(tl.float32) tmp31 = tmp30 * tmp25 tmp32 = tmp1 - tmp31 tmp33 = tmp29 * tmp32 tmp34 = tmp1 - tmp7 tmp35 = tmp34 * tmp12 tmp36 = tmp35 * tmp31 tmp37 = tmp33 + tmp36 tmp38 = tmp19.to(tl.float32) tmp39 = tmp24 + tmp31 tmp40 = tmp1 - tmp39 tmp41 = tmp38 * tmp40 tmp42 = tmp1 - tmp41 tmp43 = tmp37 * tmp42 tmp44 = tmp1 - tmp12 tmp45 = tmp34 * tmp44 tmp46 = tmp45 * tmp17 tmp47 = tmp46 * tmp41 tmp48 = tmp43 + tmp47 tmp49 = tmp2.to(tl.float32) tmp50 = tmp39 + tmp41 tmp51 = tmp1 - tmp50 tmp52 = tmp49 * tmp51 tmp53 = tmp1 - tmp52 tmp54 = tmp48 * tmp53 tmp55 = tmp1 - tmp17 tmp56 = tmp45 * tmp55 tmp57 = tmp56 * tmp52 tmp58 = tmp54 + tmp57 tmp62 = tmp60 + tmp61 tmp63 = tmp62 * tmp24 tmp64 = tmp27 + tmp63 tmp65 = tmp64 * tmp32 tmp69 = tmp67 + tmp68 tmp70 = tmp69 * tmp31 tmp71 = tmp65 + tmp70 tmp72 = tmp71 * tmp42 tmp76 = tmp74 + tmp75 tmp77 = tmp76 * tmp41 tmp78 = tmp72 + tmp77 tmp79 = tmp78 * tmp53 tmp83 = tmp81 + tmp82 tmp84 = tmp83 * tmp52 tmp85 = tmp79 + tmp84 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) tl.store(out_ptr2 + (x0), tmp12, xmask) tl.store(out_ptr3 + (x0), tmp17, xmask) tl.store(out_ptr4 + (x0), tmp19, xmask) tl.store(out_ptr5 + (x0), tmp21, xmask) tl.store(out_ptr6 + (x0), tmp23, xmask) tl.store(in_out_ptr0 + (x0), tmp58, xmask) tl.store(in_out_ptr1 + (x0), tmp85, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jy/cjys3iopkrrusczes7dimlrpecwecndhklisdis5ynngdb4dpi3f.py # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack => cat_3 # Graph fragment: # %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_2, %mul_2, %mul_4, %mul_5],), kwargs = {}) triton_poi_fused_stack_5 = async_compile.triton('triton_poi_fused_stack_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = 1.0 tmp12 = tmp11 - tmp10 tmp13 = tl.load(in_ptr1 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp12 * tmp13 tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp9, tmp14, tmp15) tmp17 = tmp0 >= tmp7 tmp18 = tl.full([1], 12, tl.int64) tmp19 = tmp0 < tmp18 tmp20 = tmp17 & tmp19 tmp21 = tl.load(in_ptr0 + ((-8) + x0), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp11 - tmp21 tmp23 = tl.load(in_ptr1 + ((-8) + x0), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp11 - tmp23 tmp25 = tmp22 * tmp24 tmp26 = tl.load(in_ptr2 + ((-8) + x0), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tmp25 * tmp26 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp20, tmp27, tmp28) tmp30 = tmp0 >= tmp18 tmp31 = tl.full([1], 16, tl.int64) tmp32 = tmp0 < tmp31 tmp33 = tl.load(in_ptr0 + ((-12) + x0), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tmp11 - tmp33 tmp35 = tl.load(in_ptr1 + ((-12) + x0), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp11 - tmp35 tmp37 = tmp34 * tmp36 tmp38 = tl.load(in_ptr2 + ((-12) + x0), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp11 - tmp38 tmp40 = tmp37 * tmp39 tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype) tmp42 = tl.where(tmp30, tmp40, tmp41) tmp43 = tl.where(tmp20, tmp29, tmp42) tmp44 = tl.where(tmp9, tmp16, tmp43) tmp45 = tl.where(tmp4, tmp5, tmp44) tl.store(out_ptr0 + (x0), tmp45, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/o4/co4faoo6vn5p4s7le2cjisym3ezxxx6wg265nankhpf5szhdz3rv.py # Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack_1 => cat_4 # Graph fragment: # %cat_4 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_5, %select_4, %select_3, %select_6],), kwargs = {}) triton_poi_fused_stack_6 = async_compile.triton('triton_poi_fused_stack_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp5 = tl.load(in_ptr0 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (1)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp25 = tl.load(in_ptr0 + (2)) tmp26 = tl.broadcast_to(tmp25, [XBLOCK]) tmp34 = tl.load(in_ptr0 + (3)) tmp35 = tl.broadcast_to(tmp34, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp7 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp17 = tl.load(in_ptr1 + (4 + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp14, tmp18, tmp19) tmp21 = tmp0 >= tmp12 tmp22 = tl.full([1], 12, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp27 = tl.load(in_ptr1 + (8 + ((-8) + x0)), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp24, tmp28, tmp29) tmp31 = tmp0 >= tmp22 tmp32 = tl.full([1], 16, tl.int64) tmp33 = tmp0 < tmp32 tmp36 = tl.load(in_ptr1 + (12 + ((-12) + x0)), tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp31, tmp37, tmp38) tmp40 = tl.where(tmp24, tmp30, tmp39) tmp41 = tl.where(tmp14, tmp20, tmp40) tmp42 = tl.where(tmp4, tmp10, tmp41) tl.store(out_ptr0 + (x0), tmp42, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12, ), (1, )) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.new_zeros] stream0 = get_raw_stream(0) triton_poi_fused_new_zeros_0.run(buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf2) # Topologically Sorted Source Nodes: [ret], Original ATen: [aten._thnn_fused_gru_cell] buf3 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf2, buf0, primals_4, primals_5) buf4 = buf3[0] buf5 = buf3[1] del buf3 buf6 = empty_strided_cuda((7, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [stack_3], Original ATen: [aten.stack] triton_poi_fused_stack_1.run(primals_8, primals_6, buf6, 28, grid=grid(28), stream=stream0) del primals_6 del primals_8 buf7 = empty_strided_cuda((7, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [stack_4], Original ATen: [aten.stack] triton_poi_fused_stack_2.run(primals_9, primals_7, buf7, 7, grid=grid(7), stream=stream0) del primals_7 del primals_9 buf8 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.mm] extern_kernels.mm(buf4, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf8) # Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten._thnn_fused_gru_cell] buf9 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf8, buf4, primals_4, primals_5) buf10 = buf9[0] buf11 = buf9[1] del buf9 buf12 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten.mm] extern_kernels.mm(buf10, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf12) # Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten._thnn_fused_gru_cell] buf13 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf12, buf10, primals_4, primals_5) buf14 = buf13[0] buf15 = buf13[1] del buf13 buf16 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [ret_3], Original ATen: [aten.mm] extern_kernels.mm(buf14, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf16) # Topologically Sorted Source Nodes: [ret_3], Original ATen: [aten._thnn_fused_gru_cell] buf17 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf16, buf14, primals_4, primals_5) del buf1 del buf16 del primals_4 del primals_5 buf18 = buf17[0] buf19 = buf17[1] del buf17 buf20 = empty_strided_cuda((28, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [stack_2], Original ATen: [aten.stack] triton_poi_fused_stack_3.run(buf4, buf10, buf14, buf18, buf20, 112, grid=grid(112), stream=stream0) buf21 = empty_strided_cuda((7, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [baddbmm], Original ATen: [aten.baddbmm] extern_kernels.bmm(reinterpret_tensor(buf20, (7, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (7, 4, 1), (4, 1, 4), 0), out=buf21) # Topologically Sorted Source Nodes: [bernoulli_2], Original ATen: [aten.bernoulli] buf23 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf24 = buf23 del buf23 # Topologically Sorted Source Nodes: [bernoulli_1], Original ATen: [aten.bernoulli] buf27 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf28 = buf27 del buf27 # Topologically Sorted Source Nodes: [bernoulli], Original ATen: [aten.bernoulli] buf31 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf32 = buf31 del buf31 # Topologically Sorted Source Nodes: [bernoulli_3], Original ATen: [aten.bernoulli] buf36 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf37 = buf36 del buf36 buf38 = empty_strided_cuda((4, ), (1, ), torch.bool) buf30 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf25 = empty_strided_cuda((4, ), (1, ), torch.bool) buf29 = empty_strided_cuda((4, ), (1, ), torch.bool) buf33 = empty_strided_cuda((4, ), (1, ), torch.bool) buf34 = empty_strided_cuda((4, ), (1, ), torch.float32) buf39 = buf34; del buf34 # reuse buf35 = empty_strided_cuda((4, ), (1, ), torch.float32) buf40 = buf35; del buf35 # reuse # Topologically Sorted Source Nodes: [p_m, sigmoid_2, sub_8, bernoulli_2, sigmoid_1, sub_4, bernoulli_1, sigmoid, un_halted_prob_1, p_n_1, un_halted_prob_2, p_n_2, p_n_3, bernoulli, halted_1, sub_2, mul_3, mul_4, p_m_1, halt_1, sub_6, mul_10, mul_11, p_m_2, halted_2, sub_9, halt_2, sub_10, mul_17, mul_18, p_m_3, halted_3, mul_20, mul_13, mul_6, y_m_1, mul_12, y_m_2, mul_19, y_m_3, lambda_n_3, bernoulli_3, sub_13, halt_3, sub_14, mul_24, mul_25, p_m_4, mul_26, mul_27, y_m_4], Original ATen: [aten.new_zeros, aten.sigmoid, aten.rsub, aten.bernoulli, aten.mul, aten.add, aten.new_ones] triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4.run(buf39, buf40, buf37, buf7, buf21, buf24, buf28, buf32, buf38, buf30, buf26, buf22, buf25, buf29, buf33, 4, grid=grid(4), stream=stream0) del buf24 del buf28 del buf32 del buf37 buf41 = reinterpret_tensor(buf18, (16, ), (1, ), 0); del buf18 # reuse # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] triton_poi_fused_stack_5.run(buf30, buf26, buf22, buf41, 16, grid=grid(16), stream=stream0) buf42 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack] triton_poi_fused_stack_6.run(buf7, buf21, buf42, 16, grid=grid(16), stream=stream0) del buf21 del buf7 return (reinterpret_tensor(buf41, (4, 4), (4, 1), 0), reinterpret_tensor(buf42, (4, 4), (4, 1), 0), buf39, buf40, primals_1, buf0, buf4, buf5, buf10, buf11, buf14, buf15, buf19, buf22, buf25, buf26, buf29, buf30, buf33, buf38, reinterpret_tensor(buf6, (7, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf20, (7, 4, 4), (16, 1, 4), 0), primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn from typing import Tuple import torch.utils.data import torch.nn.functional import torch.autograd class ParityPonderGRU(Module): """ ## PonderNet with GRU for Parity Task This is a simple model that uses a [GRU Cell](https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html) as the step function. This model is for the [Parity Task](../parity.html) where the input is a vector of `n_elems`. Each element of the vector is either `0`, `1` or `-1` and the output is the parity - a binary value that is true if the number of `1`s is odd and false otherwise. The prediction of the model is the log probability of the parity being $1$. """ def __init__(self, n_elems: 'int', n_hidden: 'int', max_steps: 'int'): """ * `n_elems` is the number of elements in the input vector * `n_hidden` is the state vector size of the GRU * `max_steps` is the maximum number of steps $N$ """ super().__init__() self.max_steps = max_steps self.n_hidden = n_hidden self.gru = nn.GRUCell(n_elems, n_hidden) self.output_layer = nn.Linear(n_hidden, 1) self.lambda_layer = nn.Linear(n_hidden, 1) self.lambda_prob = nn.Sigmoid() self.is_halt = False def forward(self, x: 'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ * `x` is the input of shape `[batch_size, n_elems]` This outputs a tuple of four tensors: 1. $p_1 \\dots p_N$ in a tensor of shape `[N, batch_size]` 2. $\\hat{y}_1 \\dots \\hat{y}_N$ in a tensor of shape `[N, batch_size]` - the log probabilities of the parity being $1$ 3. $p_m$ of shape `[batch_size]` 4. $\\hat{y}_m$ of shape `[batch_size]` where the computation was halted at step $m$ """ batch_size = x.shape[0] h = x.new_zeros((x.shape[0], self.n_hidden)) h = self.gru(x, h) p = [] y = [] un_halted_prob = h.new_ones((batch_size,)) halted = h.new_zeros((batch_size,)) p_m = h.new_zeros((batch_size,)) y_m = h.new_zeros((batch_size,)) for n in range(1, self.max_steps + 1): if n == self.max_steps: lambda_n = h.new_ones(h.shape[0]) else: lambda_n = self.lambda_prob(self.lambda_layer(h))[:, 0] y_n = self.output_layer(h)[:, 0] p_n = un_halted_prob * lambda_n un_halted_prob = un_halted_prob * (1 - lambda_n) halt = torch.bernoulli(lambda_n) * (1 - halted) p.append(p_n) y.append(y_n) p_m = p_m * (1 - halt) + p_n * halt y_m = y_m * (1 - halt) + y_n * halt halted = halted + halt h = self.gru(x, h) if self.is_halt and halted.sum() == batch_size: break return torch.stack(p), torch.stack(y), p_m, y_m def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_elems': 4, 'n_hidden': 4, 'max_steps': 4}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_stack_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + x0, tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + x0, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + x0, tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 5, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr1 + x0, tmp24 & xmask, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 6, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tmp26 & tmp28 tmp30 = tl.load(in_ptr1 + x0, tmp29 & xmask, eviction_policy= 'evict_last', other=0.0) tmp31 = tmp0 >= tmp27 tl.full([1], 7, tl.int64) tmp34 = tl.load(in_ptr1 + x0, tmp31 & xmask, eviction_policy= 'evict_last', other=0.0) tmp35 = tl.where(tmp29, tmp30, tmp34) tmp36 = tl.where(tmp24, tmp25, tmp35) tmp37 = tl.where(tmp19, tmp20, tmp36) tmp38 = tl.where(tmp14, tmp15, tmp37) tmp39 = tl.where(tmp9, tmp10, tmp38) tmp40 = tl.where(tmp4, tmp5, tmp39) tl.store(out_ptr0 + x2, tmp40, xmask) @triton.jit def triton_poi_fused_stack_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 7 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp5 = tl.load(in_ptr0 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp23 = tl.load(in_ptr1 + 0) tmp24 = tl.broadcast_to(tmp23, [XBLOCK]) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp7 = tmp0 >= tmp3 tmp8 = tl.full([1], 2, tl.int64) tmp9 = tmp0 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tmp0 >= tmp8 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tmp0 >= tmp12 tmp16 = tl.full([1], 4, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tmp0 >= tmp16 tmp20 = tl.full([1], 5, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp25 = tmp0 >= tmp20 tmp26 = tl.full([1], 6, tl.int64) tmp27 = tmp0 < tmp26 tmp28 = tmp25 & tmp27 tl.full([1], 7, tl.int64) tmp32 = tl.where(tmp28, tmp24, tmp24) tmp33 = tl.where(tmp22, tmp24, tmp32) tmp34 = tl.where(tmp18, tmp6, tmp33) tmp35 = tl.where(tmp14, tmp6, tmp34) tmp36 = tl.where(tmp10, tmp6, tmp35) tmp37 = tl.where(tmp4, tmp6, tmp36) tl.store(out_ptr0 + x0, tmp37, xmask) @triton.jit def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1)), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr3 + (x0 + 4 * (-12 + x1)), tmp19 & xmask, other=0.0) tmp21 = tmp0 >= tmp17 tmp22 = tl.full([1], 20, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp25 = tl.load(in_ptr0 + (x0 + 4 * (-16 + x1)), tmp24 & xmask, other=0.0) tmp26 = tmp0 >= tmp22 tmp27 = tl.full([1], 24, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tmp26 & tmp28 tmp30 = tl.load(in_ptr1 + (x0 + 4 * (-20 + x1)), tmp29 & xmask, other=0.0) tmp31 = tmp0 >= tmp27 tl.full([1], 28, tl.int64) tmp34 = tl.load(in_ptr2 + (x0 + 4 * (-24 + x1)), tmp31 & xmask, other=0.0) tmp35 = tl.where(tmp29, tmp30, tmp34) tmp36 = tl.where(tmp24, tmp25, tmp35) tmp37 = tl.where(tmp19, tmp20, tmp36) tmp38 = tl.where(tmp14, tmp15, tmp37) tmp39 = tl.where(tmp9, tmp10, tmp38) tmp40 = tl.where(tmp4, tmp5, tmp39) tl.store(out_ptr0 + x2, tmp40, xmask) @triton.jit def triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 4) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp5 = tl.load(in_ptr2 + (16 + x0), xmask) tmp8 = tl.load(in_ptr1 + 5) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (20 + x0), xmask) tmp13 = tl.load(in_ptr1 + 6) tmp14 = tl.broadcast_to(tmp13, [XBLOCK]) tmp15 = tl.load(in_ptr2 + (24 + x0), xmask) tmp18 = tl.load(in_ptr3 + x0, xmask) tmp20 = tl.load(in_ptr4 + x0, xmask) tmp22 = tl.load(in_ptr5 + x0, xmask) tmp59 = tl.load(in_ptr1 + 0) tmp60 = tl.broadcast_to(tmp59, [XBLOCK]) tmp61 = tl.load(in_ptr2 + x0, xmask) tmp66 = tl.load(in_ptr1 + 1) tmp67 = tl.broadcast_to(tmp66, [XBLOCK]) tmp68 = tl.load(in_ptr2 + (4 + x0), xmask) tmp73 = tl.load(in_ptr1 + 2) tmp74 = tl.broadcast_to(tmp73, [XBLOCK]) tmp75 = tl.load(in_ptr2 + (8 + x0), xmask) tmp80 = tl.load(in_ptr1 + 3) tmp81 = tl.broadcast_to(tmp80, [XBLOCK]) tmp82 = tl.load(in_ptr2 + (12 + x0), xmask) tmp1 = 1.0 tmp2 = tmp0 < tmp1 tmp6 = tmp4 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp11 = tmp9 + tmp10 tmp12 = tl.sigmoid(tmp11) tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp19 = tmp18 < tmp17 tmp21 = tmp20 < tmp12 tmp23 = tmp22 < tmp7 tmp24 = tmp23.to(tl.float32) tmp25 = tmp1 - tmp24 tmp26 = 0.0 tmp27 = tmp26 * tmp25 tmp28 = tmp7 * tmp24 tmp29 = tmp27 + tmp28 tmp30 = tmp21.to(tl.float32) tmp31 = tmp30 * tmp25 tmp32 = tmp1 - tmp31 tmp33 = tmp29 * tmp32 tmp34 = tmp1 - tmp7 tmp35 = tmp34 * tmp12 tmp36 = tmp35 * tmp31 tmp37 = tmp33 + tmp36 tmp38 = tmp19.to(tl.float32) tmp39 = tmp24 + tmp31 tmp40 = tmp1 - tmp39 tmp41 = tmp38 * tmp40 tmp42 = tmp1 - tmp41 tmp43 = tmp37 * tmp42 tmp44 = tmp1 - tmp12 tmp45 = tmp34 * tmp44 tmp46 = tmp45 * tmp17 tmp47 = tmp46 * tmp41 tmp48 = tmp43 + tmp47 tmp49 = tmp2.to(tl.float32) tmp50 = tmp39 + tmp41 tmp51 = tmp1 - tmp50 tmp52 = tmp49 * tmp51 tmp53 = tmp1 - tmp52 tmp54 = tmp48 * tmp53 tmp55 = tmp1 - tmp17 tmp56 = tmp45 * tmp55 tmp57 = tmp56 * tmp52 tmp58 = tmp54 + tmp57 tmp62 = tmp60 + tmp61 tmp63 = tmp62 * tmp24 tmp64 = tmp27 + tmp63 tmp65 = tmp64 * tmp32 tmp69 = tmp67 + tmp68 tmp70 = tmp69 * tmp31 tmp71 = tmp65 + tmp70 tmp72 = tmp71 * tmp42 tmp76 = tmp74 + tmp75 tmp77 = tmp76 * tmp41 tmp78 = tmp72 + tmp77 tmp79 = tmp78 * tmp53 tmp83 = tmp81 + tmp82 tmp84 = tmp83 * tmp52 tmp85 = tmp79 + tmp84 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) tl.store(out_ptr2 + x0, tmp12, xmask) tl.store(out_ptr3 + x0, tmp17, xmask) tl.store(out_ptr4 + x0, tmp19, xmask) tl.store(out_ptr5 + x0, tmp21, xmask) tl.store(out_ptr6 + x0, tmp23, xmask) tl.store(in_out_ptr0 + x0, tmp58, xmask) tl.store(in_out_ptr1 + x0, tmp85, xmask) @triton.jit def triton_poi_fused_stack_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (-4 + x0), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = 1.0 tmp12 = tmp11 - tmp10 tmp13 = tl.load(in_ptr1 + (-4 + x0), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp14 = tmp12 * tmp13 tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp9, tmp14, tmp15) tmp17 = tmp0 >= tmp7 tmp18 = tl.full([1], 12, tl.int64) tmp19 = tmp0 < tmp18 tmp20 = tmp17 & tmp19 tmp21 = tl.load(in_ptr0 + (-8 + x0), tmp20 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tmp11 - tmp21 tmp23 = tl.load(in_ptr1 + (-8 + x0), tmp20 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tmp11 - tmp23 tmp25 = tmp22 * tmp24 tmp26 = tl.load(in_ptr2 + (-8 + x0), tmp20 & xmask, eviction_policy= 'evict_last', other=0.0) tmp27 = tmp25 * tmp26 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp20, tmp27, tmp28) tmp30 = tmp0 >= tmp18 tl.full([1], 16, tl.int64) tmp33 = tl.load(in_ptr0 + (-12 + x0), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp34 = tmp11 - tmp33 tmp35 = tl.load(in_ptr1 + (-12 + x0), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp36 = tmp11 - tmp35 tmp37 = tmp34 * tmp36 tmp38 = tl.load(in_ptr2 + (-12 + x0), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp39 = tmp11 - tmp38 tmp40 = tmp37 * tmp39 tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype) tmp42 = tl.where(tmp30, tmp40, tmp41) tmp43 = tl.where(tmp20, tmp29, tmp42) tmp44 = tl.where(tmp9, tmp16, tmp43) tmp45 = tl.where(tmp4, tmp5, tmp44) tl.store(out_ptr0 + x0, tmp45, xmask) @triton.jit def triton_poi_fused_stack_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp5 = tl.load(in_ptr0 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp15 = tl.load(in_ptr0 + 1) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp25 = tl.load(in_ptr0 + 2) tmp26 = tl.broadcast_to(tmp25, [XBLOCK]) tmp34 = tl.load(in_ptr0 + 3) tmp35 = tl.broadcast_to(tmp34, [XBLOCK]) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp7 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp17 = tl.load(in_ptr1 + (4 + (-4 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp14, tmp18, tmp19) tmp21 = tmp0 >= tmp12 tmp22 = tl.full([1], 12, tl.int64) tmp23 = tmp0 < tmp22 tmp24 = tmp21 & tmp23 tmp27 = tl.load(in_ptr1 + (8 + (-8 + x0)), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp24, tmp28, tmp29) tmp31 = tmp0 >= tmp22 tl.full([1], 16, tl.int64) tmp36 = tl.load(in_ptr1 + (12 + (-12 + x0)), tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp31, tmp37, tmp38) tmp40 = tl.where(tmp24, tmp30, tmp39) tmp41 = tl.where(tmp14, tmp20, tmp40) tmp42 = tl.where(tmp4, tmp10, tmp41) tl.store(out_ptr0 + x0, tmp42, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12,), (1,)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_new_zeros_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf2) buf3 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf2, buf0, primals_4, primals_5) buf4 = buf3[0] buf5 = buf3[1] del buf3 buf6 = empty_strided_cuda((7, 4), (4, 1), torch.float32) triton_poi_fused_stack_1[grid(28)](primals_8, primals_6, buf6, 28, XBLOCK=32, num_warps=1, num_stages=1) del primals_6 del primals_8 buf7 = empty_strided_cuda((7,), (1,), torch.float32) triton_poi_fused_stack_2[grid(7)](primals_9, primals_7, buf7, 7, XBLOCK=8, num_warps=1, num_stages=1) del primals_7 del primals_9 buf8 = buf2 del buf2 extern_kernels.mm(buf4, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf8) buf9 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf8, buf4, primals_4, primals_5) buf10 = buf9[0] buf11 = buf9[1] del buf9 buf12 = buf8 del buf8 extern_kernels.mm(buf10, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf12) buf13 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf12, buf10, primals_4, primals_5) buf14 = buf13[0] buf15 = buf13[1] del buf13 buf16 = buf12 del buf12 extern_kernels.mm(buf14, reinterpret_tensor(primals_3, (4, 12), (1, 4), 0), out=buf16) buf17 = torch.ops.aten._thnn_fused_gru_cell.default(buf1, buf16, buf14, primals_4, primals_5) del buf1 del buf16 del primals_4 del primals_5 buf18 = buf17[0] buf19 = buf17[1] del buf17 buf20 = empty_strided_cuda((28, 4), (4, 1), torch.float32) triton_poi_fused_stack_3[grid(112)](buf4, buf10, buf14, buf18, buf20, 112, XBLOCK=128, num_warps=4, num_stages=1) buf21 = empty_strided_cuda((7, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf20, (7, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (7, 4, 1), (4, 1, 4), 0), out=buf21) buf23 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf24 = buf23 del buf23 buf27 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf28 = buf27 del buf27 buf31 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf32 = buf31 del buf31 buf36 = torch.ops.aten.rand.default([4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf37 = buf36 del buf36 buf38 = empty_strided_cuda((4,), (1,), torch.bool) buf30 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf26 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 1), torch.float32) buf25 = empty_strided_cuda((4,), (1,), torch.bool) buf29 = empty_strided_cuda((4,), (1,), torch.bool) buf33 = empty_strided_cuda((4,), (1,), torch.bool) buf34 = empty_strided_cuda((4,), (1,), torch.float32) buf39 = buf34 del buf34 buf35 = empty_strided_cuda((4,), (1,), torch.float32) buf40 = buf35 del buf35 triton_poi_fused_add_bernoulli_mul_new_ones_new_zeros_rsub_sigmoid_4[ grid(4)](buf39, buf40, buf37, buf7, buf21, buf24, buf28, buf32, buf38, buf30, buf26, buf22, buf25, buf29, buf33, 4, XBLOCK=4, num_warps=1, num_stages=1) del buf24 del buf28 del buf32 del buf37 buf41 = reinterpret_tensor(buf18, (16,), (1,), 0) del buf18 triton_poi_fused_stack_5[grid(16)](buf30, buf26, buf22, buf41, 16, XBLOCK=16, num_warps=1, num_stages=1) buf42 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused_stack_6[grid(16)](buf7, buf21, buf42, 16, XBLOCK= 16, num_warps=1, num_stages=1) del buf21 del buf7 return (reinterpret_tensor(buf41, (4, 4), (4, 1), 0), reinterpret_tensor(buf42, (4, 4), (4, 1), 0), buf39, buf40, primals_1, buf0, buf4, buf5, buf10, buf11, buf14, buf15, buf19, buf22, buf25, buf26, buf29, buf30, buf33, buf38, reinterpret_tensor (buf6, (7, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf20, (7, 4, 4 ), (16, 1, 4), 0), primals_3) class ParityPonderGRUNew(Module): """ ## PonderNet with GRU for Parity Task This is a simple model that uses a [GRU Cell](https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html) as the step function. This model is for the [Parity Task](../parity.html) where the input is a vector of `n_elems`. Each element of the vector is either `0`, `1` or `-1` and the output is the parity - a binary value that is true if the number of `1`s is odd and false otherwise. The prediction of the model is the log probability of the parity being $1$. """ def __init__(self, n_elems: 'int', n_hidden: 'int', max_steps: 'int'): """ * `n_elems` is the number of elements in the input vector * `n_hidden` is the state vector size of the GRU * `max_steps` is the maximum number of steps $N$ """ super().__init__() self.max_steps = max_steps self.n_hidden = n_hidden self.gru = nn.GRUCell(n_elems, n_hidden) self.output_layer = nn.Linear(n_hidden, 1) self.lambda_layer = nn.Linear(n_hidden, 1) self.lambda_prob = nn.Sigmoid() self.is_halt = False def forward(self, input_0): primals_2 = self.gru.weight_ih primals_3 = self.gru.weight_hh primals_4 = self.gru.bias_ih primals_5 = self.gru.bias_hh primals_6 = self.output_layer.weight primals_7 = self.output_layer.bias primals_8 = self.lambda_layer.weight primals_9 = self.lambda_layer.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1], output[2], output[3]
mcx/annotated_deep_learning_paper_implementations
ParityPonderGRU
false
7,233
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn from typing import Tuple import torch.utils.data import torch.nn.functional import torch.autograd class Model(Module): """ ## PonderNet with GRU for Parity Task This is a simple model that uses a [GRU Cell](https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html) as the step function. This model is for the [Parity Task](../parity.html) where the input is a vector of `n_elems`. Each element of the vector is either `0`, `1` or `-1` and the output is the parity - a binary value that is true if the number of `1`s is odd and false otherwise. The prediction of the model is the log probability of the parity being $1$. """ def __init__(self, n_elems: 'int', n_hidden: 'int', max_steps: 'int'): """ * `n_elems` is the number of elements in the input vector * `n_hidden` is the state vector size of the GRU * `max_steps` is the maximum number of steps $N$ """ super().__init__() self.max_steps = max_steps self.n_hidden = n_hidden self.gru = nn.GRUCell(n_elems, n_hidden) self.output_layer = nn.Linear(n_hidden, 1) self.lambda_layer = nn.Linear(n_hidden, 1) self.lambda_prob = nn.Sigmoid() self.is_halt = False def forward(self, x: 'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ * `x` is the input of shape `[batch_size, n_elems]` This outputs a tuple of four tensors: 1. $p_1 \\dots p_N$ in a tensor of shape `[N, batch_size]` 2. $\\hat{y}_1 \\dots \\hat{y}_N$ in a tensor of shape `[N, batch_size]` - the log probabilities of the parity being $1$ 3. $p_m$ of shape `[batch_size]` 4. $\\hat{y}_m$ of shape `[batch_size]` where the computation was halted at step $m$ """ batch_size = x.shape[0] h = x.new_zeros((x.shape[0], self.n_hidden)) h = self.gru(x, h) p = [] y = [] un_halted_prob = h.new_ones((batch_size,)) halted = h.new_zeros((batch_size,)) p_m = h.new_zeros((batch_size,)) y_m = h.new_zeros((batch_size,)) for n in range(1, self.max_steps + 1): if n == self.max_steps: lambda_n = h.new_ones(h.shape[0]) else: lambda_n = self.lambda_prob(self.lambda_layer(h))[:, 0] y_n = self.output_layer(h)[:, 0] p_n = un_halted_prob * lambda_n un_halted_prob = un_halted_prob * (1 - lambda_n) halt = torch.bernoulli(lambda_n) * (1 - halted) p.append(p_n) y.append(y_n) p_m = p_m * (1 - halt) + p_n * halt y_m = y_m * (1 - halt) + y_n * halt halted = halted + halt h = self.gru(x, h) if self.is_halt and halted.sum() == batch_size: break return torch.stack(p), torch.stack(y), p_m, y_m def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
equalized_linear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2i/c2if2yhrux7a2hf5x6cptfa3iexq65bs7d3zjjyatstrnnog3cdz.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/t6/ct6f57cdvyh3ahq6iwyawuy7577bar2ftumjxqllolmn4c4lh7ph.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add] # Source node to ATen node mapping: # x_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %expand), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.init import normal import torch.utils.data def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError( 'Fan in and fan out can not be computed for tensor with less than 2 dimensions' ) if dimensions == 2: fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out class equalized_linear(nn.Module): def __init__(self, c_in, c_out, initializer='kaiming', a=1.0, reshape=False ): super(equalized_linear, self).__init__() self.linear = nn.Linear(c_in, c_out, bias=False) if initializer == 'kaiming': normal(self.linear.weight) fan_in, _ = _calculate_fan_in_and_fan_out(self.linear.weight) gain = (2.0 / (1.0 + a ** 2)) ** 0.5 self.scale = gain / fan_in ** 0.5 if reshape: c_out /= 4 * 4 self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) self.reshape = reshape def forward(self, x): x = self.linear(x.mul(self.scale)) if self.reshape: x = x.view(-1, 512, 4, 4) x = x + self.bias.view(1, -1, 1, 1).expand_as(x) else: x = x + self.bias.view(1, -1).expand_as(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'c_in': 4, 'c_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn.init import normal import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0) def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError( 'Fan in and fan out can not be computed for tensor with less than 2 dimensions' ) if dimensions == 2: fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out class equalized_linearNew(nn.Module): def __init__(self, c_in, c_out, initializer='kaiming', a=1.0, reshape=False ): super(equalized_linearNew, self).__init__() self.linear = nn.Linear(c_in, c_out, bias=False) if initializer == 'kaiming': normal(self.linear.weight) fan_in, _ = _calculate_fan_in_and_fan_out(self.linear.weight) gain = (2.0 / (1.0 + a ** 2)) ** 0.5 self.scale = gain / fan_in ** 0.5 if reshape: c_out /= 4 * 4 self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) self.reshape = reshape def forward(self, input_0): primals_3 = self.bias primals_2 = self.linear.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mingo-x/pggan-pytorch
equalized_linear
false
7,234
[ "MIT" ]
1
a1dde73cd4df52476fe7c948d81fa9caea8070a5
https://github.com/mingo-x/pggan-pytorch/tree/a1dde73cd4df52476fe7c948d81fa9caea8070a5
import torch import torch.nn as nn from torch.nn.init import normal import torch.utils.data def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError( 'Fan in and fan out can not be computed for tensor with less than 2 dimensions' ) if dimensions == 2: fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out class Model(nn.Module): def __init__(self, c_in, c_out, initializer='kaiming', a=1.0, reshape=False ): super().__init__() self.linear = nn.Linear(c_in, c_out, bias=False) if initializer == 'kaiming': normal(self.linear.weight) fan_in, _ = _calculate_fan_in_and_fan_out(self.linear.weight) gain = (2.0 / (1.0 + a ** 2)) ** 0.5 self.scale = gain / fan_in ** 0.5 if reshape: c_out /= 4 * 4 self.bias = torch.nn.Parameter(torch.FloatTensor(c_out).fill_(0)) self.reshape = reshape def forward(self, x): x = self.linear(x.mul(self.scale)) if self.reshape: x = x.view(-1, 512, 4, 4) x = x + self.bias.view(1, -1, 1, 1).expand_as(x) else: x = x + self.bias.view(1, -1).expand_as(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ConvBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/v6/cv6oewqqnsshd7he7ylh2kikzu4smtrhj2dmv6nb5csosp7g6vw5.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7r/c7rmcz7d66c7acqsst3ljub72usieb7gow6csu7nmp55tklmjx2e.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # out_1 => convolution # out_2 => expm1, gt, mul, mul_2, where # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_1 = async_compile.triton('triton_poi_fused_convolution_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.elu] triton_poi_fused_convolution_elu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class ConvBlock(nn.Module): """Layer to perform a convolution followed by ELU """ def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv = Conv3x3(in_channels, out_channels) self.nonlin = nn.ELU(inplace=True) def forward(self, x): out = self.conv(x) out = self.nonlin(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_elu_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0, buf2 class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class ConvBlockNew(nn.Module): """Layer to perform a convolution followed by ELU """ def __init__(self, in_channels, out_channels): super(ConvBlockNew, self).__init__() self.conv = Conv3x3(in_channels, out_channels) self.nonlin = nn.ELU(inplace=True) def forward(self, input_0): primals_2 = self.conv.conv.weight primals_3 = self.conv.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
minjabenho/image2pcl
ConvBlock
false
7,235
[ "Apache-2.0" ]
1
7e696ee48edae30814d32f32e605ad6cf8bf702c
https://github.com/minjabenho/image2pcl/tree/7e696ee48edae30814d32f32e605ad6cf8bf702c
import torch import torch.nn as nn class Conv3x3(nn.Module): """Layer to pad and convolve input """ def __init__(self, in_channels, out_channels, use_refl=True): super().__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class Model(nn.Module): """Layer to perform a convolution followed by ELU """ def __init__(self, in_channels, out_channels): super().__init__() self.conv = Conv3x3(in_channels, out_channels) self.nonlin = nn.ELU(inplace=True) def forward(self, x): out = self.conv(x) out = self.nonlin(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Project3D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/32/c32ppse2vdmak5is2nuwq2vbmvddtxyrdxkeqrxyec7bhptha7aa.py # Topologically Sorted Source Nodes: [cam_points], Original ATen: [aten.clone] # Source node to ATen node mapping: # cam_points => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 48 x1 = (xindex // 48) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/p3/cp33b3l57w5jlxxjkbyxuiiw6erdw3sxbh2kc6ydjd74u3ubmxdx.py # Topologically Sorted Source Nodes: [sub, pix_coords_3], Original ATen: [aten.sub, aten.mul] # Source node to ATen node mapping: # pix_coords_3 => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute_16, 0.5), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 2), kwargs = {}) triton_poi_fused_mul_sub_1 = async_compile.triton('triton_poi_fused_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex % 32 x4 = xindex tmp7 = tl.load(in_ptr0 + (x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (16 + x0 + (48*x2)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (x3 + (48*x2)), xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tmp1 == tmp1 tmp4 = tl.full([1], 0, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tmp4 == tmp4 tmp9 = 1e-07 tmp10 = tmp8 + tmp9 tmp11 = tmp7 / tmp10 tmp12 = 0.3333333333333333 tmp13 = tmp11 * tmp12 tmp14 = tl.where(tmp6, tmp13, tmp11) tmp16 = tmp15 / tmp10 tmp17 = tl.where(tmp5, tmp13, tmp16) tmp18 = tl.where(tmp5, tmp14, tmp17) tmp19 = tmp18 * tmp12 tmp20 = tl.where(tmp3, tmp19, tmp18) tmp21 = tmp0 == tmp4 tmp23 = tmp22 / tmp10 tmp24 = tl.where(tmp21, tmp13, tmp23) tmp25 = tl.where(tmp21, tmp14, tmp24) tmp26 = tl.where(tmp2, tmp19, tmp25) tmp27 = tl.where(tmp2, tmp20, tmp26) tmp28 = 0.5 tmp29 = tmp27 - tmp28 tmp30 = 2.0 tmp31 = tmp29 * tmp30 tl.store(out_ptr0 + (x4), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 3, 4, 4), (48, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cam_points], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf1, 192, grid=grid(192), stream=stream0) del buf0 buf2 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cam_points], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (12, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (12, 4, 4), (16, 4, 1), 0), out=buf2) del arg2_1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [sub, pix_coords_3], Original ATen: [aten.sub, aten.mul] triton_poi_fused_mul_sub_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0) del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Project3D(nn.Module): """Layer which projects 3D points into a camera with intrinsics K and at position T """ def __init__(self, batch_size, height, width, eps=1e-07): super(Project3D, self).__init__() self.batch_size = batch_size self.height = height self.width = width self.eps = eps def forward(self, points, K, T): P = torch.matmul(K, T)[:, :3, :] cam_points = torch.matmul(P, points) pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze( 1) + self.eps) pix_coords = pix_coords.view(self.batch_size, 2, self.height, self. width) pix_coords = pix_coords.permute(0, 2, 3, 1) pix_coords[..., 0] /= self.width - 1 pix_coords[..., 1] /= self.height - 1 pix_coords = (pix_coords - 0.5) * 2 return pix_coords def get_inputs(): return [torch.rand([4, 3, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'batch_size': 4, 'height': 4, 'width': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 48 x1 = xindex // 48 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_mul_sub_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex % 32 x4 = xindex tmp7 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (16 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr0 + (x3 + 48 * x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tmp1 == tmp1 tmp4 = tl.full([1], 0, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tmp4 == tmp4 tmp9 = 1e-07 tmp10 = tmp8 + tmp9 tmp11 = tmp7 / tmp10 tmp12 = 0.3333333333333333 tmp13 = tmp11 * tmp12 tmp14 = tl.where(tmp6, tmp13, tmp11) tmp16 = tmp15 / tmp10 tmp17 = tl.where(tmp5, tmp13, tmp16) tmp18 = tl.where(tmp5, tmp14, tmp17) tmp19 = tmp18 * tmp12 tmp20 = tl.where(tmp3, tmp19, tmp18) tmp21 = tmp0 == tmp4 tmp23 = tmp22 / tmp10 tmp24 = tl.where(tmp21, tmp13, tmp23) tmp25 = tl.where(tmp21, tmp14, tmp24) tmp26 = tl.where(tmp2, tmp19, tmp25) tmp27 = tl.where(tmp2, tmp20, tmp26) tmp28 = 0.5 tmp29 = tmp27 - tmp28 tmp30 = 2.0 tmp31 = tmp29 * tmp30 tl.store(out_ptr0 + x4, tmp31, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 3, 4, 4), (48, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1 ), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(192)](buf0, buf1, 192, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (12, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (12, 4, 4), (16, 4, 1), 0), out=buf2 ) del arg2_1 del buf1 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 4, 1, 16), torch.float32) triton_poi_fused_mul_sub_1[grid(128)](buf2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf2 return buf3, class Project3DNew(nn.Module): """Layer which projects 3D points into a camera with intrinsics K and at position T """ def __init__(self, batch_size, height, width, eps=1e-07): super(Project3DNew, self).__init__() self.batch_size = batch_size self.height = height self.width = width self.eps = eps def forward(self, input_0, input_1, input_2): arg2_1 = input_0 arg0_1 = input_1 arg1_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
minjabenho/image2pcl
Project3D
false
7,236
[ "Apache-2.0" ]
1
7e696ee48edae30814d32f32e605ad6cf8bf702c
https://github.com/minjabenho/image2pcl/tree/7e696ee48edae30814d32f32e605ad6cf8bf702c
import torch import torch.nn as nn class Model(nn.Module): """Layer which projects 3D points into a camera with intrinsics K and at position T """ def __init__(self, batch_size, height, width, eps=1e-07): super().__init__() self.batch_size = batch_size self.height = height self.width = width self.eps = eps def forward(self, points, K, T): P = torch.matmul(K, T)[:, :3, :] cam_points = torch.matmul(P, points) pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze( 1) + self.eps) pix_coords = pix_coords.view(self.batch_size, 2, self.height, self. width) pix_coords = pix_coords.permute(0, 2, 3, 1) pix_coords[..., 0] /= self.width - 1 pix_coords[..., 1] /= self.height - 1 pix_coords = (pix_coords - 0.5) * 2 return pix_coords def get_inputs(): return [torch.rand([4, 3, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
SelfAttnLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3l/c3lu4ccbjruychszpewk67ythz75gaj4rslgmbux6fatrywe7g7t.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.add] # Source node to ATen node mapping: # multi_head_attention_forward => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %getitem_5), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ol/colbiyeeegfdyyzeckjnylgg3xt3rkh3aadcz7fjtfx5472nedsg.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_4, 1.0), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/c5/cc5cm2utkmzhcjdhw5qgs7t254ixwfil74kthoebdprvhlljdmul.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.add] # Source node to ATen node mapping: # multi_head_attention_forward => add_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %getitem_4), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vw/cvwoulenwdnyz242jfpxeidrk7o72lp64ezs7a4qyr6jzjnmz5zv.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean] # Source node to ATen node mapping: # multi_head_attention_forward => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_11, [1]), kwargs = {}) triton_poi_fused_mean_6 = async_compile.triton('triton_poi_fused_mean_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/h5/ch5mg4cp4hiu3m2725cfdtrg2qzbpfbabkhvt3p4ujimtbtffjtu.py # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src => add_3 # src_1 => clone_2 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute, %squeeze), kwargs = {}) # %clone_2 : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%add_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tmp1 = tl.load(in_out_ptr0 + (x1 + (4*y0)), xmask & ymask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x1 + (4*y0)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5m/c5m2x4kwr66u6jzlkjcacrwhzqxhxsn3hv6ryzwol7bzp7uppnze.py # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src_1 => add_4, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone_2, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pg/cpgskb56mehof5k52uslszbldka4jbq52y6dhbe764xtjdj3lwxc.py # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src_1 => add_4, add_5, mul_1, mul_2, rsqrt, sub_1, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone_2, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_2, %getitem_7), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_6), kwargs = {}) # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xf/cxfcg7zjujrbwqervynu2zyrvp55bvbh5d5sr7rb7uygjdwkyhbn.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_9), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_10 = async_compile.triton('triton_poi_fused_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/eo/ceoth654lollb7zomdik5dia43d44y676jiemrjhuhkiqi2yqxq7.py # Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add] # Source node to ATen node mapping: # src_2 => add_6 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {}) # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %add_tensor), kwargs = {}) triton_poi_fused_add_11 = async_compile.triton('triton_poi_fused_add_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), out=buf2) del primals_2 buf3 = reinterpret_tensor(buf2, (4, 1, 4), (4, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf3, primals_3, 16, grid=grid(16), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf4, primals_3, 16, grid=grid(16), stream=stream0) buf5 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf5, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf5, (4, 1, 4), (1, 0, 4), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 64, grid=grid(64), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf7, buf8, 64, grid=grid(64), stream=stream0) del buf7 buf9 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf9, buf10, 4, 4, grid=grid(4, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (4, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf10, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf11) buf12 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean] triton_poi_fused_mean_6.run(buf8, buf12, 16, grid=grid(16), stream=stream0) buf13 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(buf13, primals_1, primals_5, 4, 4, grid=grid(4, 4), stream=stream0) del primals_5 buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf15 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf13, buf14, buf15, 4, grid=grid(4), stream=stream0) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf13, buf14, buf15, primals_6, primals_7, buf16, 16, grid=grid(16), stream=stream0) del primals_7 buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf16, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf17) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] triton_poi_fused_relu_10.run(buf18, primals_9, 16, grid=grid(16), stream=stream0) del primals_9 buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf18, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf19) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add] triton_poi_fused_add_11.run(buf20, buf16, primals_11, 16, grid=grid(16), stream=stream0) del primals_11 buf21 = buf15; del buf15 # reuse buf22 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf20, buf21, buf22, 4, grid=grid(4), stream=stream0) buf23 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf20, buf21, buf22, primals_12, primals_13, buf23, 16, grid=grid(16), stream=stream0) del buf21 del buf22 del primals_13 return (reinterpret_tensor(buf23, (4, 4), (1, 4), 0), reinterpret_tensor(buf12, (4, 4), (4, 1), 0), primals_6, primals_12, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), buf8, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), buf13, buf16, buf18, buf20, primals_10, primals_8, primals_4, reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def get_activation_fn(activation): if activation == 'relu': return F.relu elif activation == 'gelu': return F.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerEncoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = get_activation_fn(activation) def forward(self, src, src_mask=None, src_key_padding_mask=None): src2, attn = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src, attn class SelfAttnLayer(nn.Module): def __init__(self, d_model, nhead=4, dropout=0.1): super().__init__() self.transformer_layer = TransformerEncoderLayer(d_model, nhead, d_model * 1, dropout=dropout, activation='relu') def forward(self, k, mask=None): attn = None k = k.transpose(0, 1) x, attn = self.transformer_layer(k, src_mask=mask) x = x.transpose(0, 1) return x, attn def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mean_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tmp1 = tl.load(in_out_ptr0 + (x1 + 4 * y0), xmask & ymask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x1 + 4 * y0), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), out=buf2) del primals_2 buf3 = reinterpret_tensor(buf2, (4, 1, 4), (4, 4, 1), 0) del buf2 get_raw_stream(0) triton_poi_fused_add_0[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0) del buf0 triton_poi_fused_mul_1[grid(16)](buf4, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0) del buf1 triton_poi_fused_add_2[grid(16)](buf5, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf5, (4, 1, 4), (1, 0, 4), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf6, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused__softmax_4[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf7 buf9 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf8, reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 4)](buf9, buf10, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (4, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf10, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf11) buf12 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mean_6[grid(16)](buf8, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf13 = buf11 del buf11 triton_poi_fused_add_native_layer_norm_7[grid(4, 4)](buf13, primals_1, primals_5, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) del primals_5 buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf15 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_native_layer_norm_8[grid(4)](buf13, buf14, buf15, 4, XBLOCK=4, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(16)](buf13, buf14, buf15, primals_6, primals_7, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf16, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf17) buf18 = buf17 del buf17 triton_poi_fused_relu_10[grid(16)](buf18, primals_9, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf19 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf18, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf19) buf20 = buf19 del buf19 triton_poi_fused_add_11[grid(16)](buf20, buf16, primals_11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_11 buf21 = buf15 del buf15 buf22 = buf14 del buf14 triton_poi_fused_native_layer_norm_8[grid(4)](buf20, buf21, buf22, 4, XBLOCK=4, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(16)](buf20, buf21, buf22, primals_12, primals_13, buf23, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf21 del buf22 del primals_13 return (reinterpret_tensor(buf23, (4, 4), (1, 4), 0), reinterpret_tensor(buf12, (4, 4), (4, 1), 0), primals_6, primals_12, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), buf8, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), buf13, buf16, buf18, buf20, primals_10, primals_8, primals_4, reinterpret_tensor(buf3, ( 4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0)) def get_activation_fn(activation): if activation == 'relu': return F.relu elif activation == 'gelu': return F.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerEncoderLayer, self).__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = get_activation_fn(activation) def forward(self, src, src_mask=None, src_key_padding_mask=None): src2, attn = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src, attn class SelfAttnLayerNew(nn.Module): def __init__(self, d_model, nhead=4, dropout=0.1): super().__init__() self.transformer_layer = TransformerEncoderLayer(d_model, nhead, d_model * 1, dropout=dropout, activation='relu') def forward(self, input_0): primals_2 = self.transformer_layer.self_attn.in_proj_weight primals_3 = self.transformer_layer.self_attn.in_proj_bias primals_1 = self.transformer_layer.self_attn.out_proj.weight primals_5 = self.transformer_layer.self_attn.out_proj.bias primals_4 = self.transformer_layer.linear1.weight primals_6 = self.transformer_layer.linear1.bias primals_8 = self.transformer_layer.linear2.weight primals_7 = self.transformer_layer.linear2.bias primals_9 = self.transformer_layer.norm1.weight primals_11 = self.transformer_layer.norm1.bias primals_12 = self.transformer_layer.norm2.weight primals_13 = self.transformer_layer.norm2.bias primals_10 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1]
mensudza/C-Tran
SelfAttnLayer
false
7,237
[ "MIT" ]
1
4895ccb0e675ae2dcd2b619a9e47f30707062668
https://github.com/mensudza/C-Tran/tree/4895ccb0e675ae2dcd2b619a9e47f30707062668
import torch import torch.nn as nn import torch.nn.functional as F def get_activation_fn(activation): if activation == 'relu': return F.relu elif activation == 'gelu': return F.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = get_activation_fn(activation) def forward(self, src, src_mask=None, src_key_padding_mask=None): src2, attn = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src, attn class Model(nn.Module): def __init__(self, d_model, nhead=4, dropout=0.1): super().__init__() self.transformer_layer = TransformerEncoderLayer(d_model, nhead, d_model * 1, dropout=dropout, activation='relu') def forward(self, k, mask=None): attn = None k = k.transpose(0, 1) x, attn = self.transformer_layer(k, src_mask=mask) x = x.transpose(0, 1) return x, attn def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4]
depthwise_separable_conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/cc/ccc3jyqbz5rjanlhmaez5ahwrmffxjcm5mibxaw5efspqo45e4re.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [4, 4], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 1296, grid=grid(1296), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 1296, grid=grid(1296), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class depthwise_separable_conv(torch.nn.Module): def __init__(self, nin, nout, kernel_size, padding): super(depthwise_separable_conv, self).__init__() self.depthwise = nn.Conv2d(nin, nin, kernel_size=kernel_size, padding=padding, groups=nin) self.pointwise = nn.Conv2d(nin, nout, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nin': 4, 'nout': 4, 'kernel_size': 4, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(1296)](buf1, primals_2, 1296, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(1296)](buf3, primals_5, 1296, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class depthwise_separable_convNew(torch.nn.Module): def __init__(self, nin, nout, kernel_size, padding): super(depthwise_separable_convNew, self).__init__() self.depthwise = nn.Conv2d(nin, nin, kernel_size=kernel_size, padding=padding, groups=nin) self.pointwise = nn.Conv2d(nin, nout, kernel_size=1) def forward(self, input_0): primals_1 = self.depthwise.weight primals_2 = self.depthwise.bias primals_4 = self.pointwise.weight primals_5 = self.pointwise.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mirayyuce/Neural-Architecture-Search
depthwise_separable_conv
false
7,238
[ "BSD-3-Clause" ]
1
e294816c85200f4301376c8b355634c6cca81816
https://github.com/mirayyuce/Neural-Architecture-Search/tree/e294816c85200f4301376c8b355634c6cca81816
import torch import torch.nn as nn class Model(torch.nn.Module): def __init__(self, nin, nout, kernel_size, padding): super().__init__() self.depthwise = nn.Conv2d(nin, nin, kernel_size=kernel_size, padding=padding, groups=nin) self.pointwise = nn.Conv2d(nin, nout, kernel_size=1) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4]
BertPredictionHeadTransform
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/k6/ck6o2ucwdqtvjyw7bruyzgade2k6iruvl53t2wmqy2xkgypurpgf.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, u, sub, pow_1, s], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.mean, aten.sub, aten.pow] # Source node to ATen node mapping: # add => add # erf => erf # hidden_states_1 => mul_1 # mul => mul # pow_1 => pow_1 # s => mean_1 # sub => sub # truediv => div # u => mean # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_div_erf_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mean_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mean_mul_pow_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp9 * tmp3 tmp12 = libdevice.erf(tmp11) tmp13 = tmp12 + tmp6 tmp14 = tmp10 * tmp13 tmp15 = tmp8 + tmp14 tmp17 = tmp16 * tmp1 tmp18 = tmp16 * tmp3 tmp19 = libdevice.erf(tmp18) tmp20 = tmp19 + tmp6 tmp21 = tmp17 * tmp20 tmp22 = tmp15 + tmp21 tmp24 = tmp23 * tmp1 tmp25 = tmp23 * tmp3 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp6 tmp28 = tmp24 * tmp27 tmp29 = tmp22 + tmp28 tmp30 = 4.0 tmp31 = tmp29 / tmp30 tmp32 = tmp8 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp14 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp21 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp28 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp30 tl.store(out_ptr0 + (x0), tmp31, xmask) tl.store(out_ptr1 + (x0), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ew/cewcb66a7hyf2vxy6evimdhxxg6p7casfhukvhbgdoijgab2kyck.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, sub, add_1, sqrt, x, mul_2, hidden_states_2], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.sub, aten.sqrt] # Source node to ATen node mapping: # add => add # add_1 => add_1 # erf => erf # hidden_states_1 => mul_1 # hidden_states_2 => add_2 # mul => mul # mul_2 => mul_2 # sqrt => sqrt # sub => sub # truediv => div # x => div_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mean), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_5), kwargs = {}) triton_poi_fused_add_div_erf_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_add_div_erf_mul_sqrt_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp10 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865475 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp11 = tmp9 - tmp10 tmp13 = tmp12 + tmp7 tmp14 = libdevice.sqrt(tmp13) tmp15 = tmp11 / tmp14 tmp16 = tmp0 * tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, u, sub, pow_1, s], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.mean, aten.sub, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, sub, add_1, sqrt, x, mul_2, hidden_states_2], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.sub, aten.sqrt] triton_poi_fused_add_div_erf_mul_sqrt_sub_1.run(primals_4, buf0, buf1, buf2, primals_5, buf3, 256, grid=grid(256), stream=stream0) del buf1 del buf2 del primals_5 return (buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNorm, self).__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) def forward(self, hidden_states): """(N, L, D)""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_erf_mean_mul_pow_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp9 * tmp3 tmp12 = libdevice.erf(tmp11) tmp13 = tmp12 + tmp6 tmp14 = tmp10 * tmp13 tmp15 = tmp8 + tmp14 tmp17 = tmp16 * tmp1 tmp18 = tmp16 * tmp3 tmp19 = libdevice.erf(tmp18) tmp20 = tmp19 + tmp6 tmp21 = tmp17 * tmp20 tmp22 = tmp15 + tmp21 tmp24 = tmp23 * tmp1 tmp25 = tmp23 * tmp3 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp6 tmp28 = tmp24 * tmp27 tmp29 = tmp22 + tmp28 tmp30 = 4.0 tmp31 = tmp29 / tmp30 tmp32 = tmp8 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp14 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp21 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp28 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) tl.store(out_ptr1 + x0, tmp43, xmask) @triton.jit def triton_poi_fused_add_div_erf_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp10 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865475 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp11 = tmp9 - tmp10 tmp13 = tmp12 + tmp7 tmp14 = libdevice.sqrt(tmp13) tmp15 = tmp11 / tmp14 tmp16 = tmp0 * tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr0 + x2, tmp18, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_erf_mul_sqrt_sub_1[grid(256)](primals_4, buf0, buf1, buf2, primals_5, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf2 del primals_5 return buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0 def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNorm, self).__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertPredictionHeadTransformNew(nn.Module): def __init__(self, config): super(BertPredictionHeadTransformNew, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) def forward(self, input_0): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_4 = self.LayerNorm.weight primals_5 = self.LayerNorm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
minjoong507/Image-Captioning-Transformer
BertPredictionHeadTransform
false
7,239
[ "MIT" ]
1
813060f0bb656e336154173f11e99a80362c8c2a
https://github.com/minjoong507/Image-Captioning-Transformer/tree/813060f0bb656e336154173f11e99a80362c8c2a
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super().__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) def forward(self, hidden_states): """(N, L, D)""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Router
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [u_hat], Original ATen: [aten.clone] # Source node to ATen node mapping: # u_hat => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ts/cts7q6dfb3copgexqebefx4p456ecsgth6p6xmle2mmldywndoi3.py # Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone] # Source node to ATen node mapping: # s => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tmp1 = tl_math.exp(tmp0) tmp2 = tmp1 + tmp1 tmp3 = tmp2 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = tmp1 / tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gu/cgurb3rc57bwl3qa722rpwfklrhzbjpi2aveuapolt7tdvfpdis7.py # Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone] # Source node to ATen node mapping: # s => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = (xindex // 4) % 4 x3 = (xindex // 16) y0 = yindex x4 = xindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1) + (16*x3) + (64*x2)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4 + (64*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2t/c2t7stxsalfhsthweh45s4auxfz46xrbwkiajexefoyk5kfgiqco.py # Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, v], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # pow_1 => pow_1 # s2 => sum_2 # sqrt => sqrt # truediv => div_1 # truediv_1 => div_2 # v => mul # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_7, 2), kwargs = {}) # %sum_2 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_7, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div_2), kwargs = {}) triton_poi_fused_add_div_mul_pow_sqrt_sum_3 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp10 / tmp12 tmp15 = 1e-08 tmp16 = tmp10 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp14 / tmp17 tmp19 = tmp13 * tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/n3/cn3o76uutxwnkvtnqyvaxx7tnscbvuwvgsyd6kmrbucnocl6jr5o.py # Topologically Sorted Source Nodes: [a], Original ATen: [aten.clone] # Source node to ATen node mapping: # a => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_13,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = (xindex // 4) y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + (64*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j7/cj7mv2k5l2kigfluq2rwwpouckm4oow7jia7wwvjogp3qlr23xwv.py # Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # c_1 => amax_1, exp_1, sub_1 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vf/cvfvkiz4k3grvhzidjc6vivbeubtw7idhhjrnb6dlbg5vf7fihed.py # Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # c_1 => div_3, sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_3), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + ((4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + (4*y3)), tmp8, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32db6tn7hvzhdl4i5logasyamysp275l3si7xspyfcfakibqvvh.py # Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.bmm] # Source node to ATen node mapping: # s_1 => bmm_3 # Graph fragment: # %bmm_3 : [num_users=2] = call_function[target=torch.ops.aten.bmm.default](args = (%view_12, %view_5), kwargs = {}) triton_poi_fused_bmm_7 = async_compile.triton('triton_poi_fused_bmm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_bmm_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(x0 // 4)) + (x0 % 4)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dp/cdpsbcq6jlubfjxv6az2acdud37r3h5vv43z6ggwpbd74blne64h.py # Topologically Sorted Source Nodes: [b_2, c_2], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # b_2 => add_5 # c_2 => amax_2, exp_2, sub_2, sum_5 # Graph fragment: # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_5, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) triton_poi_fused__softmax_add_8 = async_compile.triton('triton_poi_fused__softmax_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tl.store(out_ptr0 + (x0), tmp14, xmask) tl.store(out_ptr1 + (x0), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xv/cxvds37zsfn7me7vs5spzrzx36owr723owrhlinbklqa5b6xihbd.py # Topologically Sorted Source Nodes: [b_2, c_2, s_2], Original ATen: [aten.add, aten._softmax, aten.clone] # Source node to ATen node mapping: # b_2 => add_5 # c_2 => amax_2, div_6, exp_2, sub_2 # s_2 => clone_7 # Graph fragment: # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_5, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_6 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_5), kwargs = {}) # %clone_7 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_27,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused__softmax_add_clone_9 = async_compile.triton('triton_poi_fused__softmax_add_clone_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_clone_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_clone_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(out_ptr0 + (x2), tmp7, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/z2/cz245egjx7g4j7mn3wb3p6jf5sptc7kpicetafs56orxfbjbs2fy.py # Topologically Sorted Source Nodes: [b_2, b_3, c_3], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # b_2 => add_5 # b_3 => add_8 # c_3 => amax_3, exp_3, sub_3, sum_7 # Graph fragment: # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {}) # %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %view_27), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_8, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) triton_poi_fused__softmax_add_10 = async_compile.triton('triton_poi_fused__softmax_add_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp7 = tmp5 + tmp6 tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp4, tmp9) tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = triton_helpers.maximum(tmp10, tmp15) tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = triton_helpers.maximum(tmp16, tmp21) tmp23 = tmp4 - tmp22 tmp24 = tl_math.exp(tmp23) tmp25 = tmp9 - tmp22 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp15 - tmp22 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp31 = tmp21 - tmp22 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tl.store(out_ptr0 + (x0), tmp22, xmask) tl.store(out_ptr1 + (x0), tmp33, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ux/cux3mtyatkeh2xctjovuxyuzb6jrzez2afgyw5oaihrzojk4rxa5.py # Topologically Sorted Source Nodes: [b_2, b_3, c_3, s_3], Original ATen: [aten.add, aten._softmax, aten.clone] # Source node to ATen node mapping: # b_2 => add_5 # b_3 => add_8 # c_3 => div_9, exp_3, sub_3 # s_3 => clone_10 # Graph fragment: # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %view_19), kwargs = {}) # %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %view_27), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %div_9 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_7), kwargs = {}) # %clone_10 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_37,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused__softmax_add_clone_11 = async_compile.triton('triton_poi_fused__softmax_add_clone_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_clone_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_clone_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + (x2), tmp9, xmask) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jn/cjnqdeixskhije623cnhbvm5o2lfq2nkhcelbbsiuctormqu3kg7.py # Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose] # Source node to ATen node mapping: # Graph fragment: # %permute_74 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%view_12, [0, 2, 1]), kwargs = {}) triton_poi_fused_transpose_12 = async_compile.triton('triton_poi_fused_transpose_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_transpose_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_transpose_12(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [u_hat], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u_hat], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 1, 16), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [s], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf1, buf3, 4, 64, grid=grid(4, 64), stream=stream0) buf4 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [s], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s2, add, truediv, add_1, sqrt, truediv_1, v], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf1, buf6, 4, 64, grid=grid(4, 64), stream=stream0) del buf1 buf7 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [c_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 1, 4), (1, 64, 16), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.bmm] triton_poi_fused_bmm_7.run(buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [s_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf10, reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf11) buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [pow_2, s2_1, add_3, truediv_2, add_4, sqrt_1, truediv_3, v_1], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf12, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf13) buf14 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [b_2, c_2], Original ATen: [aten.add, aten._softmax] triton_poi_fused__softmax_add_8.run(buf7, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [b_2, c_2, s_2], Original ATen: [aten.add, aten._softmax, aten.clone] triton_poi_fused__softmax_add_clone_9.run(buf7, buf13, buf14, buf15, buf16, buf17, 64, grid=grid(64), stream=stream0) buf18 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [s_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf17, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf18) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_3, s2_2, add_6, truediv_4, add_7, sqrt_2, truediv_5, v_2], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf18, buf19, 64, grid=grid(64), stream=stream0) buf20 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf20) buf21 = buf15; del buf15 # reuse buf22 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [b_2, b_3, c_3], Original ATen: [aten.add, aten._softmax] triton_poi_fused__softmax_add_10.run(buf7, buf13, buf20, buf21, buf22, 16, grid=grid(16), stream=stream0) buf23 = reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0); del buf13 # reuse buf24 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [b_2, b_3, c_3, s_3], Original ATen: [aten.add, aten._softmax, aten.clone] triton_poi_fused__softmax_add_clone_11.run(buf23, buf7, buf20, buf21, buf22, buf24, 64, grid=grid(64), stream=stream0) del buf21 del buf22 buf25 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [s_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf24, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf25) buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_4, s2_3, add_9, truediv_6, add_10, sqrt_3, truediv_7, v_3], Original ATen: [aten.pow, aten.sum, aten.add, aten.div, aten.sqrt, aten.mul] triton_poi_fused_add_div_mul_pow_sqrt_sum_3.run(buf25, buf26, 64, grid=grid(64), stream=stream0) buf27 = empty_strided_cuda((16, 4, 1), (4, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose] triton_poi_fused_transpose_12.run(buf9, buf27, 16, 4, grid=grid(16, 4), stream=stream0) del buf9 return (buf26, buf4, buf7, buf11, buf16, buf18, buf23, buf25, reinterpret_tensor(buf24, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf17, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 4), 0), buf27, reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Squash(Module): '\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n ' def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, s: 'torch.Tensor'): """ The shape of `s` is `[batch_size, n_capsules, n_features]` """ s2 = (s ** 2).sum(dim=-1, keepdims=True) return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon)) class Router(Module): """ ## Routing Algorithm This is the routing mechanism described in the paper. You can use multiple routing layers in your models. This combines calculating $\\mathbf{s}_j$ for this layer and the routing algorithm described in *Procedure 1*. """ def __init__(self, in_caps: 'int', out_caps: 'int', in_d: 'int', out_d: 'int', iterations: 'int'): """ `in_caps` is the number of capsules, and `in_d` is the number of features per capsule from the layer below. `out_caps` and `out_d` are the same for this layer. `iterations` is the number of routing iterations, symbolized by $r$ in the paper. """ super().__init__() self.in_caps = in_caps self.out_caps = out_caps self.iterations = iterations self.softmax = nn.Softmax(dim=1) self.squash = Squash() self.weight = nn.Parameter(torch.randn(in_caps, out_caps, in_d, out_d), requires_grad=True) def forward(self, u: 'torch.Tensor'): """ The shape of `u` is `[batch_size, n_capsules, n_features]`. These are the capsules from the lower layer. """ u_hat = torch.einsum('ijnm,bin->bijm', self.weight, u) b = u.new_zeros(u.shape[0], self.in_caps, self.out_caps) v = None for i in range(self.iterations): c = self.softmax(b) s = torch.einsum('bij,bijm->bjm', c, u_hat) v = self.squash(s) a = torch.einsum('bjm,bijm->bij', v, u_hat) b = b + a return v def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_caps': 4, 'out_caps': 4, 'in_d': 4, 'out_d': 4, 'iterations': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tmp1 = tl_math.exp(tmp0) tmp2 = tmp1 + tmp1 tmp3 = tmp2 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = tmp1 / tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = xindex // 4 % 4 x3 = xindex // 16 y0 = yindex x4 = xindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1 + 16 * x3 + 64 * x2), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4 + 64 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp10 / tmp12 tmp15 = 1e-08 tmp16 = tmp10 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp14 / tmp17 tmp19 = tmp13 * tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = xindex // 4 y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * x1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + 64 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask) @triton.jit def triton_poi_fused_bmm_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (x0 // 4) + x0 % 4), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused__softmax_add_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tl.store(out_ptr0 + x0, tmp14, xmask) tl.store(out_ptr1 + x0, tmp25, xmask) @triton.jit def triton_poi_fused__softmax_add_clone_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(out_ptr0 + x2, tmp7, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused__softmax_add_10(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp7 = tmp5 + tmp6 tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp4, tmp9) tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = triton_helpers.maximum(tmp10, tmp15) tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = triton_helpers.maximum(tmp16, tmp21) tmp23 = tmp4 - tmp22 tmp24 = tl_math.exp(tmp23) tmp25 = tmp9 - tmp22 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp15 - tmp22 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp31 = tmp21 - tmp22 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tl.store(out_ptr0 + x0, tmp22, xmask) tl.store(out_ptr1 + x0, tmp33, xmask) @triton.jit def triton_poi_fused__softmax_add_clone_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tl.store(in_out_ptr0 + x2, tmp9, xmask) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_transpose_12(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch .float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 1, 16), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_2[grid(4, 64)](buf1, buf3, 4, 64, XBLOCK=32, YBLOCK=4, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(4, 64)](buf1, buf6, 4, 64, XBLOCK=32, YBLOCK=4, num_warps=4, num_stages=1) del buf1 buf7 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) triton_poi_fused__softmax_5[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_6[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK= 4, YBLOCK=16, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 1, 4), (1, 64, 16), 0) del buf8 triton_poi_fused_bmm_7[grid(64)](buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(buf10, reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf11) buf12 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0) del buf10 triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf12, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf13) buf14 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_poi_fused__softmax_add_8[grid(16)](buf7, buf13, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused__softmax_add_clone_9[grid(64)](buf7, buf13, buf14, buf15, buf16, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf17, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf18) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf18, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) buf20 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf20) buf21 = buf15 del buf15 buf22 = buf14 del buf14 triton_poi_fused__softmax_add_10[grid(16)](buf7, buf13, buf20, buf21, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1) buf23 = reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0) del buf13 buf24 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused__softmax_add_clone_11[grid(64)](buf23, buf7, buf20, buf21, buf22, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf21 del buf22 buf25 = buf20 del buf20 extern_kernels.bmm(reinterpret_tensor(buf24, (16, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), out=buf25) buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_pow_sqrt_sum_3[grid(64)](buf25, buf26, 64, XBLOCK=64, num_warps=1, num_stages=1) buf27 = empty_strided_cuda((16, 4, 1), (4, 1, 4), torch.float32) triton_poi_fused_transpose_12[grid(16, 4)](buf9, buf27, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf9 return (buf26, buf4, buf7, buf11, buf16, buf18, buf23, buf25, reinterpret_tensor(buf24, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf17, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 4), 0), buf27, reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(primals_2, (4, 4, 4), (4, 16, 1), 0)) class Squash(Module): '\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n ' def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, s: 'torch.Tensor'): """ The shape of `s` is `[batch_size, n_capsules, n_features]` """ s2 = (s ** 2).sum(dim=-1, keepdims=True) return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon)) class RouterNew(Module): """ ## Routing Algorithm This is the routing mechanism described in the paper. You can use multiple routing layers in your models. This combines calculating $\\mathbf{s}_j$ for this layer and the routing algorithm described in *Procedure 1*. """ def __init__(self, in_caps: 'int', out_caps: 'int', in_d: 'int', out_d: 'int', iterations: 'int'): """ `in_caps` is the number of capsules, and `in_d` is the number of features per capsule from the layer below. `out_caps` and `out_d` are the same for this layer. `iterations` is the number of routing iterations, symbolized by $r$ in the paper. """ super().__init__() self.in_caps = in_caps self.out_caps = out_caps self.iterations = iterations self.softmax = nn.Softmax(dim=1) self.squash = Squash() self.weight = nn.Parameter(torch.randn(in_caps, out_caps, in_d, out_d), requires_grad=True) def forward(self, input_0): primals_1 = self.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
mcx/annotated_deep_learning_paper_implementations
Router
false
7,240
[ "MIT" ]
1
f169f3a71dd2d36eb28ad31062d3475efa367b88
https://github.com/mcx/annotated_deep_learning_paper_implementations/tree/f169f3a71dd2d36eb28ad31062d3475efa367b88
from torch.nn import Module import torch from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd class Squash(Module): '\n ## Squash\n\n This is **squashing** function from paper, given by equation $(1)$.\n\n $$\\mathbf{v}_j = \x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}\n \x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$$\n\n $\x0crac{\\mathbf{s}_j}{\\lVert \\mathbf{s}_j \rVert}$\n normalizes the length of all the capsules, whilst\n $\x0crac{{\\lVert \\mathbf{s}_j \rVert}^2}{1 + {\\lVert \\mathbf{s}_j \rVert}^2}$\n shrinks the capsules that have a length smaller than one .\n ' def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, s: 'torch.Tensor'): """ The shape of `s` is `[batch_size, n_capsules, n_features]` """ s2 = (s ** 2).sum(dim=-1, keepdims=True) return s2 / (1 + s2) * (s / torch.sqrt(s2 + self.epsilon)) class Model(Module): """ ## Routing Algorithm This is the routing mechanism described in the paper. You can use multiple routing layers in your models. This combines calculating $\\mathbf{s}_j$ for this layer and the routing algorithm described in *Procedure 1*. """ def __init__(self, in_caps: 'int', out_caps: 'int', in_d: 'int', out_d: 'int', iterations: 'int'): """ `in_caps` is the number of capsules, and `in_d` is the number of features per capsule from the layer below. `out_caps` and `out_d` are the same for this layer. `iterations` is the number of routing iterations, symbolized by $r$ in the paper. """ super().__init__() self.in_caps = in_caps self.out_caps = out_caps self.iterations = iterations self.softmax = nn.Softmax(dim=1) self.squash = Squash() self.weight = nn.Parameter(torch.randn(in_caps, out_caps, in_d, out_d), requires_grad=True) def forward(self, u: 'torch.Tensor'): """ The shape of `u` is `[batch_size, n_capsules, n_features]`. These are the capsules from the lower layer. """ u_hat = torch.einsum('ijnm,bin->bijm', self.weight, u) b = u.new_zeros(u.shape[0], self.in_caps, self.out_caps) v = None for i in range(self.iterations): c = self.softmax(b) s = torch.einsum('bij,bijm->bjm', c, u_hat) v = self.squash(s) a = torch.einsum('bjm,bijm->bij', v, u_hat) b = b + a return v def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_caps': 4, 'out_caps': 4, 'in_d': 4, 'out_d': 4, 'iterations': 4}]
Pointer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ku/ckutxoa3tdkp4vgpaf6cdwo3umpfmhw4aepnimgnqqvfrbw2wcgq.py # Topologically Sorted Source Nodes: [X1, X2], Original ATen: [aten.cat] # Source node to ATen node mapping: # X1 => cat # X2 => cat_1 # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.load(in_ptr2 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp6 & xmask, other=0.0) tmp12 = tl.where(tmp4, tmp5, tmp11) tl.store(out_ptr0 + (x3), tmp10, xmask) tl.store(out_ptr1 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lj/cljrqgtjvj3sotyhumpepmt4by4ntzixml6oyfutn3hxxwv4cfyj.py # Topologically Sorted Source Nodes: [mul, sub, mul_1, Y1, mul_2, Y2], Original ATen: [aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # Y1 => add # Y2 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sub => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %primals_5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %primals_5), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -1e+30), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %primals_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp1 tmp5 = -1e+30 tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp9 = tmp8 * tmp1 tmp10 = tmp9 + tmp6 tl.store(out_ptr0 + (x2), tmp7, xmask) tl.store(out_ptr1 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (1, 8, 1), (8, 1, 1)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (1, 8, 1), (8, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [X1, X2], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, buf1, 128, grid=grid(128), stream=stream0) del primals_1 del primals_2 del primals_3 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, primals_6, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 4), (4, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sub, mul_1, Y1, mul_2, Y2], Original ATen: [aten.mul, aten.rsub, aten.add] triton_poi_fused_add_mul_rsub_1.run(buf2, primals_5, buf4, buf3, buf5, 64, grid=grid(64), stream=stream0) del buf2 del buf4 return (buf3, buf5, primals_4, primals_5, primals_6, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 8, 1), (8, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 8, 1), (8, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def mask_logits(target, mask): mask = mask.type(torch.float32) return target * mask + (1 - mask) * -1e+30 class Initialized_Conv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1, relu=False, bias=False): super().__init__() self.out = nn.Conv1d(in_channels, out_channels, kernel_size, stride =stride, padding=padding, groups=groups, bias=bias) if relu is True: self.relu = True nn.init.kaiming_normal_(self.out.weight, nonlinearity='relu') else: self.relu = False nn.init.xavier_uniform_(self.out.weight) def forward(self, x): if self.relu is True: return nn.functional.relu(self.out(x)) else: return self.out(x) class Pointer(nn.Module): def __init__(self, d_model): super().__init__() self.w1 = Initialized_Conv1d(d_model * 2, 1) self.w2 = Initialized_Conv1d(d_model * 2, 1) def forward(self, M1, M2, M3, mask): X1 = torch.cat([M1, M2], dim=1) X2 = torch.cat([M1, M3], dim=1) Y1 = mask_logits(self.w1(X1).squeeze(), mask) Y2 = mask_logits(self.w2(X2).squeeze(), mask) return Y1, Y2 def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.load(in_ptr2 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp6 & xmask, other=0.0) tmp12 = tl.where(tmp4, tmp5, tmp11) tl.store(out_ptr0 + x3, tmp10, xmask) tl.store(out_ptr1 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp8 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp1 tmp5 = -1e+30 tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp9 = tmp8 * tmp1 tmp10 = tmp9 + tmp6 tl.store(out_ptr0 + x2, tmp7, xmask) tl.store(out_ptr1 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (1, 8, 1), (8, 1, 1)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (1, 8, 1), (8, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, primals_3, buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 del primals_3 buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf4 = extern_kernels.convolution(buf1, primals_6, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 4), (4, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_1[grid(64)](buf2, primals_5, buf4, buf3, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 del buf4 return buf3, buf5, primals_4, primals_5, primals_6, buf0, buf1 def mask_logits(target, mask): mask = mask.type(torch.float32) return target * mask + (1 - mask) * -1e+30 class Initialized_Conv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1, relu=False, bias=False): super().__init__() self.out = nn.Conv1d(in_channels, out_channels, kernel_size, stride =stride, padding=padding, groups=groups, bias=bias) if relu is True: self.relu = True nn.init.kaiming_normal_(self.out.weight, nonlinearity='relu') else: self.relu = False nn.init.xavier_uniform_(self.out.weight) def forward(self, x): if self.relu is True: return nn.functional.relu(self.out(x)) else: return self.out(x) class PointerNew(nn.Module): def __init__(self, d_model): super().__init__() self.w1 = Initialized_Conv1d(d_model * 2, 1) self.w2 = Initialized_Conv1d(d_model * 2, 1) def forward(self, input_0, input_1, input_2, input_3): primals_4 = self.w1.out.weight primals_6 = self.w2.out.weight primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 primals_5 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
mirbostani/QA-KD-AL
Pointer
false
7,241
[ "MIT" ]
1
0ec8756ee06ae2a204a5e9110503bc697e9108fb
https://github.com/mirbostani/QA-KD-AL/tree/0ec8756ee06ae2a204a5e9110503bc697e9108fb
import torch import torch.nn as nn def mask_logits(target, mask): mask = mask.type(torch.float32) return target * mask + (1 - mask) * -1e+30 class Initialized_Conv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1, relu=False, bias=False): super().__init__() self.out = nn.Conv1d(in_channels, out_channels, kernel_size, stride =stride, padding=padding, groups=groups, bias=bias) if relu is True: self.relu = True nn.init.kaiming_normal_(self.out.weight, nonlinearity='relu') else: self.relu = False nn.init.xavier_uniform_(self.out.weight) def forward(self, x): if self.relu is True: return nn.functional.relu(self.out(x)) else: return self.out(x) class Model(nn.Module): def __init__(self, d_model): super().__init__() self.w1 = Initialized_Conv1d(d_model * 2, 1) self.w2 = Initialized_Conv1d(d_model * 2, 1) def forward(self, M1, M2, M3, mask): X1 = torch.cat([M1, M2], dim=1) X2 = torch.cat([M1, M3], dim=1) Y1 = mask_logits(self.w1(X1).squeeze(), mask) Y2 = mask_logits(self.w2(X2).squeeze(), mask) return Y1, Y2 def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
SSIM
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/kc/ckc5ftdtcxbcmqsxx57xrul2upk2ygczpppolriskw2ya5alzvp2.py # Topologically Sorted Source Nodes: [x, y, mul], Original ATen: [aten.reflection_pad2d, aten.mul] # Source node to ATen node mapping: # mul => mul # x => _unsafe_index, _unsafe_index_1 # y => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_3]), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg1_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_7]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %_unsafe_index_3), kwargs = {}) triton_poi_fused_mul_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_mul_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lo/clow3kzmb7jev264jm5hdsre6kicqfeascpf6ijglocrlea2sell.py # Topologically Sorted Source Nodes: [x, mu_x, mul_2, y, mu_y, mul_3, add, mul, avg_pool2d_4, mul_1, sigma_xy, mul_4, add_1, SSIM_n, pow_5, pow_6, add_2, add_3, pow_1, avg_pool2d_2, pow_2, sigma_x, pow_3, avg_pool2d_3, pow_4, sigma_y, add_4, add_5, SSIM_d, truediv, sub_3, truediv_1, clamp], Original ATen: [aten.reflection_pad2d, aten.avg_pool2d, aten.mul, aten.add, aten.sub, aten.pow, aten.div, aten.rsub, aten.clamp] # Source node to ATen node mapping: # SSIM_d => mul_6 # SSIM_n => mul_5 # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # avg_pool2d_2 => avg_pool2d_2 # avg_pool2d_3 => avg_pool2d_3 # avg_pool2d_4 => avg_pool2d_4 # clamp => clamp_max, clamp_min # mu_x => avg_pool2d # mu_y => avg_pool2d_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # pow_5 => pow_5 # pow_6 => pow_6 # sigma_x => sub_8 # sigma_xy => sub_10 # sigma_y => sub_9 # sub_3 => sub_11 # truediv => div # truediv_1 => div_1 # x => _unsafe_index, _unsafe_index_1 # y => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_3]), kwargs = {}) # %avg_pool2d : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%_unsafe_index_1, [3, 3], [1, 1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 2), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg1_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_7]), kwargs = {}) # %avg_pool2d_1 : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%_unsafe_index_3, [3, 3], [1, 1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %avg_pool2d_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 0.0001), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %_unsafe_index_3), kwargs = {}) # %avg_pool2d_4 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%mul, [3, 3], [1, 1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, %avg_pool2d_1), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_4, %mul_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0.0009), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add_1), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d, 2), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_5, %pow_6), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 0.0001), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%_unsafe_index_1, 2), kwargs = {}) # %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [3, 3], [1, 1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d, 2), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_2, %pow_2), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%_unsafe_index_3, 2), kwargs = {}) # %avg_pool2d_3 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_3, [3, 3], [1, 1]), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d_1, 2), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_3, %pow_4), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_8, %sub_9), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, 0.0009), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %add_5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_5, %mul_6), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_11, 2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1 = async_compile.triton('triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 27, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (6*x1) + (36*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (6*x1) + (36*x2)), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + (6*x1) + (36*x2)), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + (6*x1) + (36*x2)), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + (6*x1) + (36*x2)), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + (6*x1) + (36*x2)), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + (6*x1) + (36*x2)), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + (6*x1) + (36*x2)), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + (6*x1) + (36*x2)), xmask) tmp19 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp22 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp24 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp28 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp30 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp34 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp55 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp58 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp60 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp62 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp64 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp66 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp68 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp70 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tmp21 = tmp20 + tmp19 tmp23 = tmp22 + tmp21 tmp25 = tmp24 + tmp23 tmp27 = tmp26 + tmp25 tmp29 = tmp28 + tmp27 tmp31 = tmp30 + tmp29 tmp33 = tmp32 + tmp31 tmp35 = tmp34 + tmp33 tmp36 = tmp35 * tmp17 tmp37 = tmp19 * tmp19 tmp38 = tmp20 * tmp20 tmp39 = tmp38 + tmp37 tmp40 = tmp22 * tmp22 tmp41 = tmp40 + tmp39 tmp42 = tmp24 * tmp24 tmp43 = tmp42 + tmp41 tmp44 = tmp26 * tmp26 tmp45 = tmp44 + tmp43 tmp46 = tmp28 * tmp28 tmp47 = tmp46 + tmp45 tmp48 = tmp30 * tmp30 tmp49 = tmp48 + tmp47 tmp50 = tmp32 * tmp32 tmp51 = tmp50 + tmp49 tmp52 = tmp34 * tmp34 tmp53 = tmp52 + tmp51 tmp54 = tmp53 * tmp17 tmp57 = tmp56 + tmp55 tmp59 = tmp58 + tmp57 tmp61 = tmp60 + tmp59 tmp63 = tmp62 + tmp61 tmp65 = tmp64 + tmp63 tmp67 = tmp66 + tmp65 tmp69 = tmp68 + tmp67 tmp71 = tmp70 + tmp69 tmp72 = tmp71 * tmp17 tmp73 = tmp55 * tmp55 tmp74 = tmp56 * tmp56 tmp75 = tmp74 + tmp73 tmp76 = tmp58 * tmp58 tmp77 = tmp76 + tmp75 tmp78 = tmp60 * tmp60 tmp79 = tmp78 + tmp77 tmp80 = tmp62 * tmp62 tmp81 = tmp80 + tmp79 tmp82 = tmp64 * tmp64 tmp83 = tmp82 + tmp81 tmp84 = tmp66 * tmp66 tmp85 = tmp84 + tmp83 tmp86 = tmp68 * tmp68 tmp87 = tmp86 + tmp85 tmp88 = tmp70 * tmp70 tmp89 = tmp88 + tmp87 tmp90 = tmp89 * tmp17 tmp91 = 2.0 tmp92 = tmp36 * tmp91 tmp93 = tmp92 * tmp72 tmp94 = 0.0001 tmp95 = tmp93 + tmp94 tmp96 = tmp36 * tmp72 tmp97 = tmp18 - tmp96 tmp98 = tmp97 * tmp91 tmp99 = 0.0009 tmp100 = tmp98 + tmp99 tmp101 = tmp95 * tmp100 tmp102 = tmp36 * tmp36 tmp103 = tmp72 * tmp72 tmp104 = tmp102 + tmp103 tmp105 = tmp104 + tmp94 tmp106 = tmp54 - tmp102 tmp107 = tmp90 - tmp103 tmp108 = tmp106 + tmp107 tmp109 = tmp108 + tmp99 tmp110 = tmp105 * tmp109 tmp111 = tmp101 / tmp110 tmp112 = 1.0 tmp113 = tmp112 - tmp111 tmp114 = 0.5 tmp115 = tmp113 * tmp114 tmp116 = 0.0 tmp117 = triton_helpers.maximum(tmp115, tmp116) tmp118 = triton_helpers.minimum(tmp117, tmp112) tl.store(in_out_ptr0 + (x3), tmp118, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x, y, mul], Original ATen: [aten.reflection_pad2d, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_reflection_pad2d_0.run(arg0_1, arg1_1, buf2, 576, grid=grid(576), stream=stream0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf0; del buf0 # reuse buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x, mu_x, mul_2, y, mu_y, mul_3, add, mul, avg_pool2d_4, mul_1, sigma_xy, mul_4, add_1, SSIM_n, pow_5, pow_6, add_2, add_3, pow_1, avg_pool2d_2, pow_2, sigma_x, pow_3, avg_pool2d_3, pow_4, sigma_y, add_4, add_5, SSIM_d, truediv, sub_3, truediv_1, clamp], Original ATen: [aten.reflection_pad2d, aten.avg_pool2d, aten.mul, aten.add, aten.sub, aten.pow, aten.div, aten.rsub, aten.clamp] triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1.run(buf7, buf2, arg0_1, arg1_1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del buf2 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SSIM(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super(SSIM, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, x, y): x = self.refl(x) y = self.refl(y) mu_x = self.mu_x_pool(x) mu_y = self.mu_y_pool(y) sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2 sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2 sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2) SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2) return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 6 * x1 + 36 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 6 * x1 + 36 * x2), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + 6 * x1 + 36 * x2), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + 6 * x1 + 36 * x2), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + 6 * x1 + 36 * x2), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + 6 * x1 + 36 * x2), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + 6 * x1 + 36 * x2), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + 6 * x1 + 36 * x2), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + 6 * x1 + 36 * x2), xmask) tmp19 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp22 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp24 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp26 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp28 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp30 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp32 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp34 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp55 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp58 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp60 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp62 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp64 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp66 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp68 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp70 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tmp21 = tmp20 + tmp19 tmp23 = tmp22 + tmp21 tmp25 = tmp24 + tmp23 tmp27 = tmp26 + tmp25 tmp29 = tmp28 + tmp27 tmp31 = tmp30 + tmp29 tmp33 = tmp32 + tmp31 tmp35 = tmp34 + tmp33 tmp36 = tmp35 * tmp17 tmp37 = tmp19 * tmp19 tmp38 = tmp20 * tmp20 tmp39 = tmp38 + tmp37 tmp40 = tmp22 * tmp22 tmp41 = tmp40 + tmp39 tmp42 = tmp24 * tmp24 tmp43 = tmp42 + tmp41 tmp44 = tmp26 * tmp26 tmp45 = tmp44 + tmp43 tmp46 = tmp28 * tmp28 tmp47 = tmp46 + tmp45 tmp48 = tmp30 * tmp30 tmp49 = tmp48 + tmp47 tmp50 = tmp32 * tmp32 tmp51 = tmp50 + tmp49 tmp52 = tmp34 * tmp34 tmp53 = tmp52 + tmp51 tmp54 = tmp53 * tmp17 tmp57 = tmp56 + tmp55 tmp59 = tmp58 + tmp57 tmp61 = tmp60 + tmp59 tmp63 = tmp62 + tmp61 tmp65 = tmp64 + tmp63 tmp67 = tmp66 + tmp65 tmp69 = tmp68 + tmp67 tmp71 = tmp70 + tmp69 tmp72 = tmp71 * tmp17 tmp73 = tmp55 * tmp55 tmp74 = tmp56 * tmp56 tmp75 = tmp74 + tmp73 tmp76 = tmp58 * tmp58 tmp77 = tmp76 + tmp75 tmp78 = tmp60 * tmp60 tmp79 = tmp78 + tmp77 tmp80 = tmp62 * tmp62 tmp81 = tmp80 + tmp79 tmp82 = tmp64 * tmp64 tmp83 = tmp82 + tmp81 tmp84 = tmp66 * tmp66 tmp85 = tmp84 + tmp83 tmp86 = tmp68 * tmp68 tmp87 = tmp86 + tmp85 tmp88 = tmp70 * tmp70 tmp89 = tmp88 + tmp87 tmp90 = tmp89 * tmp17 tmp91 = 2.0 tmp92 = tmp36 * tmp91 tmp93 = tmp92 * tmp72 tmp94 = 0.0001 tmp95 = tmp93 + tmp94 tmp96 = tmp36 * tmp72 tmp97 = tmp18 - tmp96 tmp98 = tmp97 * tmp91 tmp99 = 0.0009 tmp100 = tmp98 + tmp99 tmp101 = tmp95 * tmp100 tmp102 = tmp36 * tmp36 tmp103 = tmp72 * tmp72 tmp104 = tmp102 + tmp103 tmp105 = tmp104 + tmp94 tmp106 = tmp54 - tmp102 tmp107 = tmp90 - tmp103 tmp108 = tmp106 + tmp107 tmp109 = tmp108 + tmp99 tmp110 = tmp105 * tmp109 tmp111 = tmp101 / tmp110 tmp112 = 1.0 tmp113 = tmp112 - tmp111 tmp114 = 0.5 tmp115 = tmp113 * tmp114 tmp116 = 0.0 tmp117 = triton_helpers.maximum(tmp115, tmp116) tmp118 = triton_helpers.minimum(tmp117, tmp112) tl.store(in_out_ptr0 + x3, tmp118, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reflection_pad2d_0[grid(576)](arg0_1, arg1_1, buf2, 576, XBLOCK=128, num_warps=4, num_stages=1) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf0 del buf0 buf7 = buf6 del buf6 triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1[ grid(256)](buf7, buf2, arg0_1, arg1_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del buf2 return buf7, class SSIMNew(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super(SSIMNew, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
minjabenho/image2pcl
SSIM
false
7,242
[ "Apache-2.0" ]
1
7e696ee48edae30814d32f32e605ad6cf8bf702c
https://github.com/minjabenho/image2pcl/tree/7e696ee48edae30814d32f32e605ad6cf8bf702c
import torch import torch.nn as nn class Model(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super().__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, x, y): x = self.refl(x) y = self.refl(y) mu_x = self.mu_x_pool(x) mu_y = self.mu_y_pool(y) sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2 sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2 sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2) SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2) return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
dream_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/og/cogpl4jkz54u3lvipd4h76h5lkcrid5pisie2s5mzdsizeuim3pb.py # Topologically Sorted Source Nodes: [sub, diff], Original ATen: [aten.sub, aten.sum] # Source node to ATen node mapping: # diff => sum_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) triton_per_fused_sub_sum_0 = async_compile.triton('triton_per_fused_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sub, diff], Original ATen: [aten.sub, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sub_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class dream_loss(torch.nn.Module): def __init__(self): super(dream_loss, self).__init__() def forward(self, yhat, y): diff = torch.sum(yhat - y) return diff def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_sub_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class dream_lossNew(torch.nn.Module): def __init__(self): super(dream_lossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mkelcb/knet
dream_loss
false
7,244
[ "MIT" ]
1
f0e75f526c8bcdc6969052328b2b1b9cd6767cd8
https://github.com/mkelcb/knet/tree/f0e75f526c8bcdc6969052328b2b1b9cd6767cd8
import torch class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, yhat, y): diff = torch.sum(yhat - y) return diff def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BertSelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ek/cekc4xnuyislvdovnzf5y3lkc2xvyqm5n6o243mths7wzeuvqbod.py # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] # Source node to ATen node mapping: # attention_mask => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %unsqueeze), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -10000.0), kwargs = {}) # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %mul), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) triton_poi_fused_mul_rsub_1 = async_compile.triton('triton_poi_fused_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = -10000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tmp9 = tmp2 - tmp8 tmp10 = tmp9 * tmp4 tmp11 = tmp7 + tmp10 tmp12 = triton_helpers.maximum(tmp6, tmp11) tmp15 = tmp2 - tmp14 tmp16 = tmp15 * tmp4 tmp17 = tmp13 + tmp16 tmp18 = triton_helpers.maximum(tmp12, tmp17) tmp21 = tmp2 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tmp19 + tmp22 tmp24 = triton_helpers.maximum(tmp18, tmp23) tmp25 = tmp6 - tmp24 tmp26 = tl_math.exp(tmp25) tmp27 = tmp11 - tmp24 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp17 - tmp24 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp33 = tmp23 - tmp24 tmp34 = tl_math.exp(tmp33) tmp35 = tmp32 + tmp34 tmp36 = float("-inf") tmp37 = tmp6 == tmp36 tmp38 = tmp37 == 0 tmp39 = tmp38.to(tl.int64) tmp40 = (tmp39 != 0) tmp41 = tmp11 == tmp36 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = (tmp43 != 0) tmp45 = tmp40 | tmp44 tmp46 = tmp17 == tmp36 tmp47 = tmp46 == 0 tmp48 = tmp47.to(tl.int64) tmp49 = (tmp48 != 0) tmp50 = tmp45 | tmp49 tmp51 = tmp23 == tmp36 tmp52 = tmp51 == 0 tmp53 = tmp52.to(tl.int64) tmp54 = (tmp53 != 0) tmp55 = tmp50 | tmp54 tl.store(out_ptr0 + (x3), tmp24, xmask) tl.store(out_ptr1 + (x3), tmp35, xmask) tl.store(out_ptr2 + (x3), tmp55, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rs/crssvp4cfqnmhgd7rc7jzgyvj2wsdpbpk6qivlfh3twgsgwopsiy.py # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] # Source node to ATen node mapping: # attention_mask => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %unsqueeze), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -10000.0), kwargs = {}) # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %mul), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_mul_rsub_2 = async_compile.triton('triton_poi_fused_mul_rsub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = (xindex // 4) x5 = xindex x3 = (xindex // 64) x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x5), xmask) tmp3 = tl.load(in_ptr1 + (x6 + (16*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp6 = -10000.0 tmp7 = tmp5 * tmp6 tmp8 = tmp2 + tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp13 = tmp11 / tmp12 tmp14 = 0.0 tmp15 = tl.where(tmp1, tmp14, tmp13) tl.store(in_out_ptr0 + (x5), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2) del primals_8 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_6, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_6 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] triton_poi_fused_mul_rsub_1.run(buf5, primals_1, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] triton_poi_fused_mul_rsub_2.run(buf9, buf8, primals_1, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf8 del primals_1 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_9 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) del buf11 return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query_states, key_states, value_states, attention_mask): """ Args: query_states: (N, Lq, D) key_states: (N, L, D) value_states: (N, L, D) attention_mask: (N, Lq, L) Returns: """ attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.0 mixed_query_layer = self.query(query_states) mixed_key_layer = self.key(key_states) mixed_value_layer = self.value(value_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_mul_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last') tmp13 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = -10000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tmp9 = tmp2 - tmp8 tmp10 = tmp9 * tmp4 tmp11 = tmp7 + tmp10 tmp12 = triton_helpers.maximum(tmp6, tmp11) tmp15 = tmp2 - tmp14 tmp16 = tmp15 * tmp4 tmp17 = tmp13 + tmp16 tmp18 = triton_helpers.maximum(tmp12, tmp17) tmp21 = tmp2 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tmp19 + tmp22 tmp24 = triton_helpers.maximum(tmp18, tmp23) tmp25 = tmp6 - tmp24 tmp26 = tl_math.exp(tmp25) tmp27 = tmp11 - tmp24 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp17 - tmp24 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp33 = tmp23 - tmp24 tmp34 = tl_math.exp(tmp33) tmp35 = tmp32 + tmp34 tmp36 = float('-inf') tmp37 = tmp6 == tmp36 tmp38 = tmp37 == 0 tmp39 = tmp38.to(tl.int64) tmp40 = tmp39 != 0 tmp41 = tmp11 == tmp36 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = tmp43 != 0 tmp45 = tmp40 | tmp44 tmp46 = tmp17 == tmp36 tmp47 = tmp46 == 0 tmp48 = tmp47.to(tl.int64) tmp49 = tmp48 != 0 tmp50 = tmp45 | tmp49 tmp51 = tmp23 == tmp36 tmp52 = tmp51 == 0 tmp53 = tmp52.to(tl.int64) tmp54 = tmp53 != 0 tmp55 = tmp50 | tmp54 tl.store(out_ptr0 + x3, tmp24, xmask) tl.store(out_ptr1 + x3, tmp35, xmask) tl.store(out_ptr2 + x3, tmp55, xmask) @triton.jit def triton_poi_fused_mul_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex // 4 x5 = xindex x3 = xindex // 64 x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_out_ptr0 + x5, xmask) tmp3 = tl.load(in_ptr1 + (x6 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp6 = -10000.0 tmp7 = tmp5 * tmp6 tmp8 = tmp2 + tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp13 = tmp11 / tmp12 tmp14 = 0.0 tmp15 = tl.where(tmp1, tmp14, tmp13) tl.store(in_out_ptr0 + x5, tmp15, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2) del primals_8 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_6, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_6 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) triton_poi_fused_mul_rsub_1[grid(64)](buf5, primals_1, buf6, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_mul_rsub_2[grid(256)](buf9, buf8, primals_1, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_1 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_3[grid(16, 4)](buf2, primals_9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_9 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf11 return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_7, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0 ), buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class BertSelfAttentionNew(nn.Module): def __init__(self, config): super(BertSelfAttentionNew, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, input_0, input_1, input_2, input_3): primals_2 = self.query.weight primals_3 = self.query.bias primals_5 = self.key.weight primals_6 = self.key.bias primals_8 = self.value.weight primals_9 = self.value.bias primals_1 = input_0 primals_4 = input_1 primals_7 = input_2 primals_10 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
minjoong507/Image-Captioning-Transformer
BertSelfAttention
false
7,247
[ "MIT" ]
1
813060f0bb656e336154173f11e99a80362c8c2a
https://github.com/minjoong507/Image-Captioning-Transformer/tree/813060f0bb656e336154173f11e99a80362c8c2a
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn class Model(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query_states, key_states, value_states, attention_mask): """ Args: query_states: (N, Lq, D) key_states: (N, L, D) value_states: (N, L, D) attention_mask: (N, Lq, L) Returns: """ attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.0 mixed_query_layer = self.query(query_states) mixed_key_layer = self.key(key_states) mixed_value_layer = self.value(value_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5)}]
BertLMPredictionHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/k6/ck6o2ucwdqtvjyw7bruyzgade2k6iruvl53t2wmqy2xkgypurpgf.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, u, sub, pow_1, s], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.mean, aten.sub, aten.pow] # Source node to ATen node mapping: # add => add # erf => erf # hidden_states_1 => mul_1 # mul => mul # pow_1 => pow_1 # s => mean_1 # sub => sub # truediv => div # u => mean # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_div_erf_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mean_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mean_mul_pow_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp9 * tmp3 tmp12 = libdevice.erf(tmp11) tmp13 = tmp12 + tmp6 tmp14 = tmp10 * tmp13 tmp15 = tmp8 + tmp14 tmp17 = tmp16 * tmp1 tmp18 = tmp16 * tmp3 tmp19 = libdevice.erf(tmp18) tmp20 = tmp19 + tmp6 tmp21 = tmp17 * tmp20 tmp22 = tmp15 + tmp21 tmp24 = tmp23 * tmp1 tmp25 = tmp23 * tmp3 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp6 tmp28 = tmp24 * tmp27 tmp29 = tmp22 + tmp28 tmp30 = 4.0 tmp31 = tmp29 / tmp30 tmp32 = tmp8 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp14 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp21 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp28 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp30 tl.store(out_ptr0 + (x0), tmp31, xmask) tl.store(out_ptr1 + (x0), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ew/cewcb66a7hyf2vxy6evimdhxxg6p7casfhukvhbgdoijgab2kyck.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, sub, add_1, sqrt, x, mul_2, hidden_states_2], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.sub, aten.sqrt] # Source node to ATen node mapping: # add => add # add_1 => add_1 # erf => erf # hidden_states_1 => mul_1 # hidden_states_2 => add_2 # mul => mul # mul_2 => mul_2 # sqrt => sqrt # sub => sub # truediv => div # x => div_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mean), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_5), kwargs = {}) triton_poi_fused_add_div_erf_mul_sqrt_sub_1 = async_compile.triton('triton_poi_fused_add_div_erf_mul_sqrt_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_sqrt_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp10 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865475 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp11 = tmp9 - tmp10 tmp13 = tmp12 + tmp7 tmp14 = libdevice.sqrt(tmp13) tmp15 = tmp11 / tmp14 tmp16 = tmp0 * tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/f2/cf2qmkaxlnr752lokw5qdyvpamejxsvuizodac6qtjtl7yt3h2kr.py # Topologically Sorted Source Nodes: [hidden_states_3, hidden_states_4], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # hidden_states_3 => add_3 # hidden_states_4 => amax, exp, sub_2, sum_1 # Graph fragment: # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_3, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_add_2 = async_compile.triton('triton_poi_fused__softmax_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask) tmp6 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask) tmp9 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + (x4), tmp11, xmask) tl.store(out_ptr1 + (x4), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/by/cby4o5k6splfl4jfpqk2vnklsyi6x32msi4s5nrkzdhs47djvavl.py # Topologically Sorted Source Nodes: [hidden_states_3, hidden_states_4], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # hidden_states_3 => add_3 # hidden_states_4 => amax, div_2, exp, sub_2, sum_1 # Graph fragment: # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_7), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_3, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_add_3 = async_compile.triton('triton_poi_fused__softmax_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 x3 = (xindex // 64) x5 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x5 + (16*x3)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x5 + (16*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + (x4), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, u, sub, pow_1, s], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.mean, aten.sub, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, hidden_states_1, sub, add_1, sqrt, x, mul_2, hidden_states_2], Original ATen: [aten.mul, aten.div, aten.erf, aten.add, aten.sub, aten.sqrt] triton_poi_fused_add_div_erf_mul_sqrt_sub_1.run(primals_4, buf0, buf1, buf2, primals_5, buf3, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf2, (4, 1, 4, 4), (16, 64, 4, 1), 0); del buf2 # reuse buf6 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 64, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [hidden_states_3, hidden_states_4], Original ATen: [aten.add, aten._softmax] triton_poi_fused__softmax_add_2.run(buf4, primals_7, buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [hidden_states_3, hidden_states_4], Original ATen: [aten.add, aten._softmax] triton_poi_fused__softmax_add_3.run(buf7, primals_7, buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 del buf6 del primals_7 return (buf7, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf7, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNorm, self).__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) def forward(self, hidden_states): """(N, L, D)""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.softmax = nn.Softmax(dim=1) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias hidden_states = self.softmax(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, vocab_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_erf_mean_mul_pow_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = tmp9 * tmp3 tmp12 = libdevice.erf(tmp11) tmp13 = tmp12 + tmp6 tmp14 = tmp10 * tmp13 tmp15 = tmp8 + tmp14 tmp17 = tmp16 * tmp1 tmp18 = tmp16 * tmp3 tmp19 = libdevice.erf(tmp18) tmp20 = tmp19 + tmp6 tmp21 = tmp17 * tmp20 tmp22 = tmp15 + tmp21 tmp24 = tmp23 * tmp1 tmp25 = tmp23 * tmp3 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp6 tmp28 = tmp24 * tmp27 tmp29 = tmp22 + tmp28 tmp30 = 4.0 tmp31 = tmp29 / tmp30 tmp32 = tmp8 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp14 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp21 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp28 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) tl.store(out_ptr1 + x0, tmp43, xmask) @triton.jit def triton_poi_fused_add_div_erf_mul_sqrt_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp10 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = 0.7071067811865475 tmp5 = tmp1 * tmp4 tmp6 = libdevice.erf(tmp5) tmp7 = 1.0 tmp8 = tmp6 + tmp7 tmp9 = tmp3 * tmp8 tmp11 = tmp9 - tmp10 tmp13 = tmp12 + tmp7 tmp14 = libdevice.sqrt(tmp13) tmp15 = tmp11 / tmp14 tmp16 = tmp0 * tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused__softmax_add_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask) tmp6 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask) tmp9 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + x4, tmp11, xmask) tl.store(out_ptr1 + x4, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 x3 = xindex // 64 x5 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x5 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr2 + (x5 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + x4, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_erf_mean_mul_pow_sub_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_erf_mul_sqrt_sub_1[grid(256)](primals_4, buf0, buf1, buf2, primals_5, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf2, (4, 1, 4, 4), (16, 64, 4, 1), 0) del buf2 buf6 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 64, 4, 1), 0) del buf1 triton_poi_fused__softmax_add_2[grid(64)](buf4, primals_7, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_add_3[grid(256)](buf7, primals_7, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del buf6 del primals_7 return buf7, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf7, primals_6 def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNorm, self).__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super(BertPredictionHeadTransform, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) def forward(self, hidden_states): """(N, L, D)""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHeadNew(nn.Module): def __init__(self, config): super(BertLMPredictionHeadNew, self).__init__() self.transform = BertPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.softmax = nn.Softmax(dim=1) def forward(self, input_0): primals_2 = self.bias primals_1 = self.transform.dense.weight primals_4 = self.transform.dense.bias primals_5 = self.transform.LayerNorm.weight primals_7 = self.transform.LayerNorm.bias primals_6 = self.decoder.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
minjoong507/Image-Captioning-Transformer
BertLMPredictionHead
false
7,248
[ "MIT" ]
1
813060f0bb656e336154173f11e99a80362c8c2a
https://github.com/minjoong507/Image-Captioning-Transformer/tree/813060f0bb656e336154173f11e99a80362c8c2a
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super().__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.transform_act_fn = gelu self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) def forward(self, hidden_states): """(N, L, D)""" hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class Model(nn.Module): def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.softmax = nn.Softmax(dim=1) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias hidden_states = self.softmax(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, vocab_size=4)}]
CAT_TokenEmbedding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/rr/crr4uc5tissxvuw4bzh6fo6y7osbgp6kedo24pzjiyyorxmxyfkc.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.copy] # Source node to ATen node mapping: # pad => copy # Graph fragment: # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1, %slice_2), kwargs = {}) # %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%empty, %copy, 2, 1, 5), kwargs = {}) # %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %slice_7, 2, 0, 1), kwargs = {}) # %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %slice_12, 2, 5, 6), kwargs = {}) triton_poi_fused_copy_0 = async_compile.triton('triton_poi_fused_copy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_copy_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 6 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y0 = yindex x1 = xindex tmp0 = y0 tmp1 = tl.full([1, 1], 5, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.broadcast_to((-4) + y0, [XBLOCK, YBLOCK]) tmp4 = tl.full([1, 1], 1, tl.int64) tmp5 = tmp3 < tmp4 tmp6 = tmp5 & tmp2 tmp7 = tl.broadcast_to(y0, [XBLOCK, YBLOCK]) tmp8 = tmp7 >= tmp4 tmp9 = tmp7 < tmp1 tmp10 = tmp8 & tmp9 tmp11 = tmp10 & tmp6 tmp12 = tl.load(in_ptr0 + ((-4) + x1 + (4*y0)), tmp11 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp13 = float("nan") tmp14 = tl.where(tmp10, tmp12, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp6, tmp14, tmp15) tmp17 = tmp3 >= tmp4 tmp18 = tmp3 < tmp1 tmp19 = tmp17 & tmp18 tmp20 = tmp19 & tmp2 tmp21 = tl.load(in_ptr0 + ((-20) + x1 + (4*y0)), tmp20 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp22 = tl.where(tmp19, tmp21, tmp13) tmp23 = tl.where(tmp5, tmp16, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp2, tmp23, tmp24) tmp26 = tmp0 < tmp4 tmp27 = tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK]) tmp28 = tmp27 >= tmp4 tmp29 = tmp27 < tmp1 tmp30 = tmp28 & tmp29 tmp31 = tmp30 & tmp26 tmp32 = tl.load(in_ptr0 + (12 + x1 + (4*y0)), tmp31 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp33 = tl.where(tmp30, tmp32, tmp13) tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp26, tmp33, tmp34) tmp36 = tmp0 >= tmp4 tmp37 = tmp0 < tmp1 tmp38 = tmp36 & tmp37 tmp39 = tl.load(in_ptr0 + ((-4) + x1 + (4*y0)), tmp38 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp40 = tl.where(tmp38, tmp39, tmp13) tmp41 = tl.where(tmp26, tmp35, tmp40) tmp42 = tl.where(tmp2, tmp25, tmp41) tl.store(out_ptr0 + (y0 + (6*x1)), tmp42, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6v/c6vcpvedkedg5f7dbt5warppc4dneicv65dm4nutaxergetxh3x5.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%slice_scatter_default_2, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 160 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 10 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (10, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 1, 6), (6, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.copy] stream0 = get_raw_stream(0) triton_poi_fused_copy_0.run(primals_1, buf1, 6, 4, grid=grid(6, 4), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 10, 4), (40, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_3, 160, grid=grid(160), stream=stream0) del primals_3 return (reinterpret_tensor(buf3, (10, 4, 4), (4, 1, 40), 0), primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CAT_TokenEmbedding(nn.Module): def __init__(self, c_in=1, d_feature=10): super(CAT_TokenEmbedding, self).__init__() padding = 1 if torch.__version__ >= '1.5.0' else 2 self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_feature, kernel_size=3, padding=padding, padding_mode='circular') for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu') def forward(self, x: 'torch.Tensor'): x = x.unsqueeze(1) x = x.transpose(0, 2) x = self.tokenConv(x).permute(1, 2, 0) return x def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_copy_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 6 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel y0 = yindex x1 = xindex tmp0 = y0 tmp1 = tl.full([1, 1], 5, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.broadcast_to(-4 + y0, [XBLOCK, YBLOCK]) tmp4 = tl.full([1, 1], 1, tl.int64) tmp5 = tmp3 < tmp4 tmp6 = tmp5 & tmp2 tmp7 = tl.broadcast_to(y0, [XBLOCK, YBLOCK]) tmp8 = tmp7 >= tmp4 tmp9 = tmp7 < tmp1 tmp10 = tmp8 & tmp9 tmp11 = tmp10 & tmp6 tmp12 = tl.load(in_ptr0 + (-4 + x1 + 4 * y0), tmp11 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp13 = float('nan') tmp14 = tl.where(tmp10, tmp12, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp6, tmp14, tmp15) tmp17 = tmp3 >= tmp4 tmp18 = tmp3 < tmp1 tmp19 = tmp17 & tmp18 tmp20 = tmp19 & tmp2 tmp21 = tl.load(in_ptr0 + (-20 + x1 + 4 * y0), tmp20 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp22 = tl.where(tmp19, tmp21, tmp13) tmp23 = tl.where(tmp5, tmp16, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp2, tmp23, tmp24) tmp26 = tmp0 < tmp4 tmp27 = tl.broadcast_to(4 + y0, [XBLOCK, YBLOCK]) tmp28 = tmp27 >= tmp4 tmp29 = tmp27 < tmp1 tmp30 = tmp28 & tmp29 tmp31 = tmp30 & tmp26 tmp32 = tl.load(in_ptr0 + (12 + x1 + 4 * y0), tmp31 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp33 = tl.where(tmp30, tmp32, tmp13) tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp26, tmp33, tmp34) tmp36 = tmp0 >= tmp4 tmp37 = tmp0 < tmp1 tmp38 = tmp36 & tmp37 tmp39 = tl.load(in_ptr0 + (-4 + x1 + 4 * y0), tmp38 & xmask & ymask, eviction_policy='evict_last', other=0.0) tmp40 = tl.where(tmp38, tmp39, tmp13) tmp41 = tl.where(tmp26, tmp35, tmp40) tmp42 = tl.where(tmp2, tmp25, tmp41) tl.store(out_ptr0 + (y0 + 6 * x1), tmp42, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 160 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 10 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (10, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 1, 6), (6, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_copy_0[grid(6, 4)](primals_1, buf1, 6, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_1 buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 10, 4), (40, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(160)](buf3, primals_3, 160, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf3, (10, 4, 4), (4, 1, 40), 0), primals_2, buf1 class CAT_TokenEmbeddingNew(nn.Module): def __init__(self, c_in=1, d_feature=10): super(CAT_TokenEmbeddingNew, self).__init__() padding = 1 if torch.__version__ >= '1.5.0' else 2 self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_feature, kernel_size=3, padding=padding, padding_mode='circular') for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu') def forward(self, input_0): primals_2 = self.tokenConv.weight primals_3 = self.tokenConv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mkmysk123456789/Informer2020
CAT_TokenEmbedding
false
7,250
[ "Apache-2.0" ]
1
ad4b895169a17db580aab6d2c09fd07e06c9b6fa
https://github.com/mkmysk123456789/Informer2020/tree/ad4b895169a17db580aab6d2c09fd07e06c9b6fa
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, c_in=1, d_feature=10): super().__init__() padding = 1 if torch.__version__ >= '1.5.0' else 2 self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_feature, kernel_size=3, padding=padding, padding_mode='circular') for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu') def forward(self, x: 'torch.Tensor'): x = x.unsqueeze(1) x = x.transpose(0, 2) x = self.tokenConv(x).permute(1, 2, 0) return x def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return []
BertAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ek/cekc4xnuyislvdovnzf5y3lkc2xvyqm5n6o243mths7wzeuvqbod.py # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] # Source node to ATen node mapping: # attention_mask => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %unsqueeze), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -10000.0), kwargs = {}) # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %mul), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) triton_poi_fused_mul_rsub_1 = async_compile.triton('triton_poi_fused_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (4*x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = -10000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tmp9 = tmp2 - tmp8 tmp10 = tmp9 * tmp4 tmp11 = tmp7 + tmp10 tmp12 = triton_helpers.maximum(tmp6, tmp11) tmp15 = tmp2 - tmp14 tmp16 = tmp15 * tmp4 tmp17 = tmp13 + tmp16 tmp18 = triton_helpers.maximum(tmp12, tmp17) tmp21 = tmp2 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tmp19 + tmp22 tmp24 = triton_helpers.maximum(tmp18, tmp23) tmp25 = tmp6 - tmp24 tmp26 = tl_math.exp(tmp25) tmp27 = tmp11 - tmp24 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp17 - tmp24 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp33 = tmp23 - tmp24 tmp34 = tl_math.exp(tmp33) tmp35 = tmp32 + tmp34 tmp36 = float("-inf") tmp37 = tmp6 == tmp36 tmp38 = tmp37 == 0 tmp39 = tmp38.to(tl.int64) tmp40 = (tmp39 != 0) tmp41 = tmp11 == tmp36 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = (tmp43 != 0) tmp45 = tmp40 | tmp44 tmp46 = tmp17 == tmp36 tmp47 = tmp46 == 0 tmp48 = tmp47.to(tl.int64) tmp49 = (tmp48 != 0) tmp50 = tmp45 | tmp49 tmp51 = tmp23 == tmp36 tmp52 = tmp51 == 0 tmp53 = tmp52.to(tl.int64) tmp54 = (tmp53 != 0) tmp55 = tmp50 | tmp54 tl.store(out_ptr0 + (x3), tmp24, xmask) tl.store(out_ptr1 + (x3), tmp35, xmask) tl.store(out_ptr2 + (x3), tmp55, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rs/crssvp4cfqnmhgd7rc7jzgyvj2wsdpbpk6qivlfh3twgsgwopsiy.py # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] # Source node to ATen node mapping: # attention_mask => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %unsqueeze), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -10000.0), kwargs = {}) # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %mul), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_mul_rsub_2 = async_compile.triton('triton_poi_fused_mul_rsub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = (xindex // 4) x5 = xindex x3 = (xindex // 64) x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x5), xmask) tmp3 = tl.load(in_ptr1 + (x6 + (16*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp6 = -10000.0 tmp7 = tmp5 * tmp6 tmp8 = tmp2 + tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp13 = tmp11 / tmp12 tmp14 = 0.0 tmp15 = tl.where(tmp1, tmp14, tmp13) tl.store(in_out_ptr0 + (x5), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hk/chkirlrxzb52fxbrq2rynamgt7aligt77yn6j6ihfk46whjvd374.py # Topologically Sorted Source Nodes: [add_1, u, sub_1, pow_1, s], Original ATen: [aten.add, aten.mean, aten.sub, aten.pow] # Source node to ATen node mapping: # add_1 => add_1 # pow_1 => pow_1 # s => mean_1 # sub_1 => sub_2 # u => mean # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_1, [-1], True), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) triton_poi_fused_add_mean_pow_sub_5 = async_compile.triton('triton_poi_fused_add_mean_pow_sub_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_pow_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_pow_sub_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3j/c3junievyif7korlhvw3ftme6dpzx2uodc43q34sexam3chrqpdb.py # Topologically Sorted Source Nodes: [add_1, u, sub_1, add_2, sqrt, x_3, mul_1, hidden_states_2], Original ATen: [aten.add, aten.mean, aten.sub, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # hidden_states_2 => add_3 # mul_1 => mul_1 # sqrt => sqrt # sub_1 => sub_2 # u => mean # x_3 => div_2 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_1, [-1], True), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %mean), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_2,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %sqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_11, %div_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_div_mean_mul_sqrt_sub_6 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp7 = 1e-12 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp5 / tmp9 tmp11 = tmp0 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_6, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_6 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] triton_poi_fused_mul_rsub_1.run(buf5, primals_1, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [sub, attention_mask], Original ATen: [aten.rsub, aten.mul] triton_poi_fused_mul_rsub_2.run(buf9, buf8, primals_1, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf8 del primals_1 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_8, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add_1, u, sub_1, pow_1, s], Original ATen: [aten.add, aten.mean, aten.sub, aten.pow] triton_poi_fused_add_mean_pow_sub_5.run(buf13, primals_4, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_1, u, sub_1, add_2, sqrt, x_3, mul_1, hidden_states_2], Original ATen: [aten.add, aten.mean, aten.sub, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_sqrt_sub_6.run(primals_11, buf13, primals_4, buf14, buf15, primals_12, buf16, 64, grid=grid(64), stream=stream0) del buf14 del buf15 del primals_12 return (buf16, primals_4, primals_11, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query_states, key_states, value_states, attention_mask): """ Args: query_states: (N, Lq, D) key_states: (N, L, D) value_states: (N, L, D) attention_mask: (N, Lq, L) Returns: """ attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.0 mixed_query_layer = self.query(query_states) mixed_key_layer = self.key(key_states) mixed_value_layer = self.value(value_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNorm, self).__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, input_tensor, input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, dropout=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_mul_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + 4 * x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last') tmp13 = tl.load(in_ptr0 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = -10000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tmp9 = tmp2 - tmp8 tmp10 = tmp9 * tmp4 tmp11 = tmp7 + tmp10 tmp12 = triton_helpers.maximum(tmp6, tmp11) tmp15 = tmp2 - tmp14 tmp16 = tmp15 * tmp4 tmp17 = tmp13 + tmp16 tmp18 = triton_helpers.maximum(tmp12, tmp17) tmp21 = tmp2 - tmp20 tmp22 = tmp21 * tmp4 tmp23 = tmp19 + tmp22 tmp24 = triton_helpers.maximum(tmp18, tmp23) tmp25 = tmp6 - tmp24 tmp26 = tl_math.exp(tmp25) tmp27 = tmp11 - tmp24 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp17 - tmp24 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp33 = tmp23 - tmp24 tmp34 = tl_math.exp(tmp33) tmp35 = tmp32 + tmp34 tmp36 = float('-inf') tmp37 = tmp6 == tmp36 tmp38 = tmp37 == 0 tmp39 = tmp38.to(tl.int64) tmp40 = tmp39 != 0 tmp41 = tmp11 == tmp36 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = tmp43 != 0 tmp45 = tmp40 | tmp44 tmp46 = tmp17 == tmp36 tmp47 = tmp46 == 0 tmp48 = tmp47.to(tl.int64) tmp49 = tmp48 != 0 tmp50 = tmp45 | tmp49 tmp51 = tmp23 == tmp36 tmp52 = tmp51 == 0 tmp53 = tmp52.to(tl.int64) tmp54 = tmp53 != 0 tmp55 = tmp50 | tmp54 tl.store(out_ptr0 + x3, tmp24, xmask) tl.store(out_ptr1 + x3, tmp35, xmask) tl.store(out_ptr2 + x3, tmp55, xmask) @triton.jit def triton_poi_fused_mul_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex // 4 x5 = xindex x3 = xindex // 64 x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_out_ptr0 + x5, xmask) tmp3 = tl.load(in_ptr1 + (x6 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp6 = -10000.0 tmp7 = tmp5 * tmp6 tmp8 = tmp2 + tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp13 = tmp11 / tmp12 tmp14 = 0.0 tmp15 = tl.where(tmp1, tmp14, tmp13) tl.store(in_out_ptr0 + x5, tmp15, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_mean_pow_sub_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp7 = 1e-12 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp5 / tmp9 tmp11 = tmp0 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_6, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_6 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) triton_poi_fused_mul_rsub_1[grid(64)](buf5, primals_1, buf6, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_mul_rsub_2[grid(256)](buf9, buf8, primals_1, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_1 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_8 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_mean_pow_sub_5[grid(16)](buf13, primals_4, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_sqrt_sub_6[grid(64)](primals_11, buf13, primals_4, buf14, buf15, primals_12, buf16, 64, XBLOCK= 64, num_warps=1, num_stages=1) del buf14 del buf15 del primals_12 return buf16, primals_4, primals_11, buf9, reinterpret_tensor(buf10, ( 16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9 class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query_states, key_states, value_states, attention_mask): """ Args: query_states: (N, Lq, D) key_states: (N, L, D) value_states: (N, L, D) attention_mask: (N, Lq, L) Returns: """ attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.0 mixed_query_layer = self.query(query_states) mixed_key_layer = self.key(key_states) mixed_value_layer = self.value(value_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNorm, self).__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttentionNew(nn.Module): def __init__(self, config): super(BertAttentionNew, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_0, input_1): primals_2 = self.self.query.weight primals_3 = self.self.query.bias primals_5 = self.self.key.weight primals_6 = self.self.key.bias primals_7 = self.self.value.weight primals_8 = self.self.value.bias primals_9 = self.output.dense.weight primals_10 = self.output.dense.bias primals_11 = self.output.LayerNorm.weight primals_12 = self.output.LayerNorm.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
minjoong507/Image-Captioning-Transformer
BertAttention
false
7,252
[ "MIT" ]
1
813060f0bb656e336154173f11e99a80362c8c2a
https://github.com/minjoong507/Image-Captioning-Transformer/tree/813060f0bb656e336154173f11e99a80362c8c2a
from _paritybench_helpers import _mock_config import math import torch import torch.nn as nn class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, query_states, key_states, value_states, attention_mask): """ Args: query_states: (N, Lq, D) key_states: (N, L, D) value_states: (N, L, D) attention_mask: (N, Lq, L) Returns: """ attention_mask = (1 - attention_mask.unsqueeze(1)) * -10000.0 mixed_query_layer = self.query(query_states) mixed_key_layer = self.key(key_states) mixed_value_layer = self.value(value_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): super().__init__() """ Construct a layernorm module in the TF style (epsilon inside the square root). """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class Model(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): # ... truncated (>4000 chars) for memory efficiency
BoundSoftmaxImpl
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ux/cuxdg3imhwde5un3in6ey2455bihwhfooq3dlrzba6pk5pyugy5w.py # Topologically Sorted Source Nodes: [sub, x], Original ATen: [aten.sub, aten.exp] # Source node to ATen node mapping: # sub => sub # x => exp # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %unsqueeze), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused_exp_sub_0 = async_compile.triton('triton_poi_fused_exp_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rk/crk57ot7q5ezhhll7rh73icrnodouu7urii76vqnf3xfxrtrazbi.py # Topologically Sorted Source Nodes: [s, truediv], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # s => sum_1 # truediv => div # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused_div_sum_1 = async_compile.triton('triton_poi_fused_div_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, x], Original ATen: [aten.sub, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_exp_sub_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [s, truediv], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BoundSoftmaxImpl(nn.Module): def __init__(self, axis): super().__init__() self.axis = axis def forward(self, x): max_x = torch.max(x, dim=self.axis).values assert self.axis == int(self.axis) x = torch.exp(x - max_x.unsqueeze(self.axis)) s = torch.sum(x, dim=self.axis, keepdim=True) return x / s def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'axis': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_exp_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_div_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_exp_sub_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_div_sum_1[grid(1024)](buf0, buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf0 return buf1, class BoundSoftmaxImplNew(nn.Module): def __init__(self, axis): super().__init__() self.axis = axis def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mnmueller/auto_LiRPA
BoundSoftmaxImpl
false
7,253
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, axis): super().__init__() self.axis = axis def forward(self, x): max_x = torch.max(x, dim=self.axis).values assert self.axis == int(self.axis) x = torch.exp(x - max_x.unsqueeze(self.axis)) s = torch.sum(x, dim=self.axis, keepdim=True) return x / s def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [4]
CAT_TemporalEmbedding
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/aj/cajk2ecgc2ept7xftxkdh54a3ls4xyipv5ylqolq2texzer7dylf.py # Topologically Sorted Source Nodes: [embedding, embedding_1, add, embedding_2, add_1, embedding_3, add_2, temporal_embed], Original ATen: [aten.embedding, aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # embedding => embedding # embedding_1 => embedding_1 # embedding_2 => embedding_2 # embedding_3 => embedding_3 # temporal_embed => add_3 # Graph fragment: # %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%arg1_1, %select), kwargs = {}) # %embedding_1 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%arg2_1, %select_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%embedding, %embedding_1), kwargs = {}) # %embedding_2 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%arg3_1, %select_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %embedding_2), kwargs = {}) # %embedding_3 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%arg4_1, %select_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %embedding_3), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 0.0), kwargs = {}) triton_poi_fused_add_embedding_0 = async_compile.triton('triton_poi_fused_add_embedding_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_embedding_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_embedding_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 160 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 10) x0 = xindex % 10 x2 = xindex tmp0 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK], 24, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert(((0 <= tmp5) & (tmp5 < 24)) | ~(xmask), "index out of bounds: 0 <= tmp5 < 24") tmp7 = tl.load(in_ptr1 + (x0 + (10*tmp5)), xmask) tmp9 = tmp8.to(tl.int64) tmp10 = tl.full([XBLOCK], 7, tl.int32) tmp11 = tmp9 + tmp10 tmp12 = tmp9 < 0 tmp13 = tl.where(tmp12, tmp11, tmp9) tl.device_assert(((0 <= tmp13) & (tmp13 < 7)) | ~(xmask), "index out of bounds: 0 <= tmp13 < 7") tmp15 = tl.load(in_ptr2 + (x0 + (10*tmp13)), xmask) tmp16 = tmp7 + tmp15 tmp18 = tmp17.to(tl.int64) tmp19 = tl.full([XBLOCK], 32, tl.int32) tmp20 = tmp18 + tmp19 tmp21 = tmp18 < 0 tmp22 = tl.where(tmp21, tmp20, tmp18) tl.device_assert(((0 <= tmp22) & (tmp22 < 32)) | ~(xmask), "index out of bounds: 0 <= tmp22 < 32") tmp24 = tl.load(in_ptr3 + (x0 + (10*tmp22)), xmask) tmp25 = tmp16 + tmp24 tmp27 = tmp26.to(tl.int64) tmp28 = tl.full([XBLOCK], 13, tl.int32) tmp29 = tmp27 + tmp28 tmp30 = tmp27 < 0 tmp31 = tl.where(tmp30, tmp29, tmp27) tl.device_assert(((0 <= tmp31) & (tmp31 < 13)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 13") tmp33 = tl.load(in_ptr4 + (x0 + (10*tmp31)), xmask) tmp34 = tmp25 + tmp33 tmp35 = 0.0 tmp36 = tmp34 + tmp35 tl.store(out_ptr0 + (x2), tmp36, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (24, 10), (10, 1)) assert_size_stride(arg2_1, (7, 10), (10, 1)) assert_size_stride(arg3_1, (32, 10), (10, 1)) assert_size_stride(arg4_1, (13, 10), (10, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 10), (40, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [embedding, embedding_1, add, embedding_2, add_1, embedding_3, add_2, temporal_embed], Original ATen: [aten.embedding, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_embedding_0.run(arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, buf0, 160, grid=grid(160), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 return (reinterpret_tensor(buf0, (10, 4, 4), (1, 40, 10), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((24, 10), (10, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((7, 10), (10, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((32, 10), (10, 1), device='cuda:0', dtype=torch.float32) arg4_1 = rand_strided((13, 10), (10, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class CAT_FixedEmbedding(nn.Module): def __init__(self, c_in, d_model): super(CAT_FixedEmbedding, self).__init__() w = torch.zeros(c_in, d_model).float() w.require_grad = False position = torch.arange(0, c_in).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log( 10000.0) / d_model)).exp() w[:, 0::2] = torch.sin(position * div_term) w[:, 1::2] = torch.cos(position * div_term) self.emb = nn.Embedding(c_in, d_model) self.emb.weight = nn.Parameter(w, requires_grad=False) def forward(self, x): return self.emb(x).detach() class CAT_TemporalEmbedding(nn.Module): def __init__(self, d_feature=10, embed_type='fixed', freq='h'): super(CAT_TemporalEmbedding, self).__init__() minute_size = 4 hour_size = 24 weekday_size = 7 day_size = 32 month_size = 13 Embed = CAT_FixedEmbedding if embed_type == 'fixed' else nn.Embedding if freq == 't': self.minute_embed = Embed(minute_size, d_feature) self.hour_embed = Embed(hour_size, d_feature) self.weekday_embed = Embed(weekday_size, d_feature) self.day_embed = Embed(day_size, d_feature) self.month_embed = Embed(month_size, d_feature) def forward(self, x): x = x.long() minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self, 'minute_embed') else 0.0 hour_x = self.hour_embed(x[:, :, 3]) weekday_x = self.weekday_embed(x[:, :, 2]) day_x = self.day_embed(x[:, :, 1]) month_x = self.month_embed(x[:, :, 0]) temporal_embed = hour_x + weekday_x + day_x + month_x + minute_x temporal_embed = temporal_embed.permute(2, 0, 1) return temporal_embed def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_embedding_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 160 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 10 x0 = xindex % 10 x2 = xindex tmp0 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tmp0.to(tl.int64) tmp2 = tl.full([XBLOCK], 24, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 24) | ~xmask, 'index out of bounds: 0 <= tmp5 < 24') tmp7 = tl.load(in_ptr1 + (x0 + 10 * tmp5), xmask) tmp9 = tmp8.to(tl.int64) tmp10 = tl.full([XBLOCK], 7, tl.int32) tmp11 = tmp9 + tmp10 tmp12 = tmp9 < 0 tmp13 = tl.where(tmp12, tmp11, tmp9) tl.device_assert((0 <= tmp13) & (tmp13 < 7) | ~xmask, 'index out of bounds: 0 <= tmp13 < 7') tmp15 = tl.load(in_ptr2 + (x0 + 10 * tmp13), xmask) tmp16 = tmp7 + tmp15 tmp18 = tmp17.to(tl.int64) tmp19 = tl.full([XBLOCK], 32, tl.int32) tmp20 = tmp18 + tmp19 tmp21 = tmp18 < 0 tmp22 = tl.where(tmp21, tmp20, tmp18) tl.device_assert((0 <= tmp22) & (tmp22 < 32) | ~xmask, 'index out of bounds: 0 <= tmp22 < 32') tmp24 = tl.load(in_ptr3 + (x0 + 10 * tmp22), xmask) tmp25 = tmp16 + tmp24 tmp27 = tmp26.to(tl.int64) tmp28 = tl.full([XBLOCK], 13, tl.int32) tmp29 = tmp27 + tmp28 tmp30 = tmp27 < 0 tmp31 = tl.where(tmp30, tmp29, tmp27) tl.device_assert((0 <= tmp31) & (tmp31 < 13) | ~xmask, 'index out of bounds: 0 <= tmp31 < 13') tmp33 = tl.load(in_ptr4 + (x0 + 10 * tmp31), xmask) tmp34 = tmp25 + tmp33 tmp35 = 0.0 tmp36 = tmp34 + tmp35 tl.store(out_ptr0 + x2, tmp36, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (24, 10), (10, 1)) assert_size_stride(arg2_1, (7, 10), (10, 1)) assert_size_stride(arg3_1, (32, 10), (10, 1)) assert_size_stride(arg4_1, (13, 10), (10, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 10), (40, 10, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_embedding_0[grid(160)](arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, buf0, 160, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 return reinterpret_tensor(buf0, (10, 4, 4), (1, 40, 10), 0), class CAT_FixedEmbedding(nn.Module): def __init__(self, c_in, d_model): super(CAT_FixedEmbedding, self).__init__() w = torch.zeros(c_in, d_model).float() w.require_grad = False position = torch.arange(0, c_in).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log( 10000.0) / d_model)).exp() w[:, 0::2] = torch.sin(position * div_term) w[:, 1::2] = torch.cos(position * div_term) self.emb = nn.Embedding(c_in, d_model) self.emb.weight = nn.Parameter(w, requires_grad=False) def forward(self, x): return self.emb(x).detach() class CAT_TemporalEmbeddingNew(nn.Module): def __init__(self, d_feature=10, embed_type='fixed', freq='h'): super(CAT_TemporalEmbeddingNew, self).__init__() minute_size = 4 hour_size = 24 weekday_size = 7 day_size = 32 month_size = 13 Embed = CAT_FixedEmbedding if embed_type == 'fixed' else nn.Embedding if freq == 't': self.minute_embed = Embed(minute_size, d_feature) self.hour_embed = Embed(hour_size, d_feature) self.weekday_embed = Embed(weekday_size, d_feature) self.day_embed = Embed(day_size, d_feature) self.month_embed = Embed(month_size, d_feature) def forward(self, input_0): arg1_1 = self.hour_embed.emb.weight arg2_1 = self.weekday_embed.emb.weight arg3_1 = self.day_embed.emb.weight arg4_1 = self.month_embed.emb.weight arg0_1 = input_0 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return output[0]
mkmysk123456789/Informer2020
CAT_TemporalEmbedding
false
7,254
[ "Apache-2.0" ]
1
ad4b895169a17db580aab6d2c09fd07e06c9b6fa
https://github.com/mkmysk123456789/Informer2020/tree/ad4b895169a17db580aab6d2c09fd07e06c9b6fa
import math import torch import torch.nn as nn class CAT_FixedEmbedding(nn.Module): def __init__(self, c_in, d_model): super().__init__() w = torch.zeros(c_in, d_model).float() w.require_grad = False position = torch.arange(0, c_in).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log( 10000.0) / d_model)).exp() w[:, 0::2] = torch.sin(position * div_term) w[:, 1::2] = torch.cos(position * div_term) self.emb = nn.Embedding(c_in, d_model) self.emb.weight = nn.Parameter(w, requires_grad=False) def forward(self, x): return self.emb(x).detach() class Model(nn.Module): def __init__(self, d_feature=10, embed_type='fixed', freq='h'): super().__init__() minute_size = 4 hour_size = 24 weekday_size = 7 day_size = 32 month_size = 13 Embed = CAT_FixedEmbedding if embed_type == 'fixed' else nn.Embedding if freq == 't': self.minute_embed = Embed(minute_size, d_feature) self.hour_embed = Embed(hour_size, d_feature) self.weekday_embed = Embed(weekday_size, d_feature) self.day_embed = Embed(day_size, d_feature) self.month_embed = Embed(month_size, d_feature) def forward(self, x): x = x.long() minute_x = self.minute_embed(x[:, :, 4]) if hasattr(self, 'minute_embed') else 0.0 hour_x = self.hour_embed(x[:, :, 3]) weekday_x = self.weekday_embed(x[:, :, 2]) day_x = self.day_embed(x[:, :, 1]) month_x = self.month_embed(x[:, :, 0]) temporal_embed = hour_x + weekday_x + day_x + month_x + minute_x temporal_embed = temporal_embed.permute(2, 0, 1) return temporal_embed def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return []
CQAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gv/cgvyzvgb4s6skjl2lcdf54y4sqcmmvdkvv2hcpobs5hraiugivrp.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone, aten._unsafe_view] # Source node to ATen node mapping: # matmul => clone_2, view # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone_2, [16, 4]), kwargs = {}) triton_poi_fused__unsafe_view_clone_0 = async_compile.triton('triton_poi_fused__unsafe_view_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_view_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_view_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((4*x1) + (16*(y0 // 4)) + (y0 % 4)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pa/cpa2xlx5dvbxg7yen7xxu7aclanjppmhz3pxswu4bw5tkkqjh7rr.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_5), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/uf/cufxi6e4u5mvvfd5sut4qxvbrhzb7usdtxtg3ze2t6ajs3np5275.py # Topologically Sorted Source Nodes: [add, res, res_1, mul_1, sub, mul_2, add_2, mul_3, sub_1, mul_4, add_3], Original ATen: [aten.add, aten.mul, aten.rsub] # Source node to ATen node mapping: # add => add # add_2 => add_3 # add_3 => add_4 # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # res => add_1 # res_1 => add_2 # sub => sub # sub_1 => sub_2 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %expand_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %bmm), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_6), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %primals_8), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %primals_8), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -1e+30), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %primals_7), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %primals_7), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, -1e+30), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %mul_4), kwargs = {}) triton_poi_fused_add_mul_rsub_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x4), xmask) tmp5 = tl.load(in_ptr3 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp8 = tl.load(in_ptr4 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr5 + (x3), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp7 = tmp4 + tmp6 tmp9 = tmp7 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp8 tmp12 = -1e+30 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp7 * tmp15 tmp17 = tmp10 - tmp15 tmp18 = tmp17 * tmp12 tmp19 = tmp16 + tmp18 tl.store(out_ptr0 + (x4), tmp14, xmask) tl.store(out_ptr1 + (x4), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py # Topologically Sorted Source Nodes: [S1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S1 => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_3, [2], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py # Topologically Sorted Source Nodes: [S1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5q/c5q2cwpxtjxxz7h6xna43qv2cdyea56heflv2ye7d7mtmtdm7twa.py # Topologically Sorted Source Nodes: [S2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S2 => amax_1, exp_1, sub_3 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_4, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cg/ccg5e776j77ye72qtmo5nfcxjaz6zv34474xpm34f62r6hfxzo6g.py # Topologically Sorted Source Nodes: [S2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # S2 => div_1, sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pj/cpjglqinm2mgqqclt3c66vcfcnwohgtuw2thbq5rdw75hhx4fn5r.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%permute, %bmm_1, %mul_5, %mul_6], 2), kwargs = {}) triton_poi_fused_cat_7 = async_compile.triton('triton_poi_fused_cat_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 4 x2 = (xindex // 64) x3 = (xindex // 16) x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1 + (4*x0) + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x3) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x1 + (4*((-8) + x0)) + (16*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + ((4*x3) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = tmp0 >= tmp12 tmp21 = tl.full([1], 16, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tl.load(in_ptr0 + (x1 + (4*((-12) + x0)) + (16*x2)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr2 + ((4*x3) + ((-12) + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 * tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp20, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp19, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + (x4), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_6, (1, ), (1, )) assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_8, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone, aten._unsafe_view] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_view_clone_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone, aten._unsafe_view] triton_poi_fused__unsafe_view_clone_0.run(primals_2, buf2, 16, 4, grid=grid(16, 4), stream=stream0) buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_4, out=buf3) del primals_4 buf4 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_1, primals_5, buf4, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, subres2], Original ATen: [aten.mul, aten.bmm] extern_kernels.bmm(buf4, primals_2, out=buf5) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, res, res_1, mul_1, sub, mul_2, add_2, mul_3, sub_1, mul_4, add_3], Original ATen: [aten.add, aten.mul, aten.rsub] triton_poi_fused_add_mul_rsub_2.run(buf1, buf3, buf5, primals_6, primals_8, primals_7, buf6, buf9, 64, grid=grid(64), stream=stream0) del buf1 del buf3 del primals_6 buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [S1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 64, grid=grid(64), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [S1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf10 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [S2], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [S2], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf10, buf11, 64, grid=grid(64), stream=stream0) buf12 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [A], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf12) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf8, reinterpret_tensor(buf11, (4, 4, 4), (16, 1, 4), 0), out=buf13) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [B], Original ATen: [aten.bmm] extern_kernels.bmm(buf13, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), out=buf14) del buf13 buf15 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] triton_poi_fused_cat_7.run(primals_1, buf12, buf14, buf15, 256, grid=grid(256), stream=stream0) del buf12 del buf14 return (reinterpret_tensor(buf15, (4, 16, 4), (64, 1, 16), 0), primals_7, primals_8, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), primals_2, buf8, buf11, reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor(buf0, (4, 16), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def mask_logits(target, mask): mask = mask.type(torch.float32) return target * mask + (1 - mask) * -1e+30 class CQAttention(nn.Module): def __init__(self, d_model, dropout=0.1): super().__init__() w4C = torch.empty(d_model, 1) w4Q = torch.empty(d_model, 1) w4mlu = torch.empty(1, 1, d_model) nn.init.xavier_uniform_(w4C) nn.init.xavier_uniform_(w4Q) nn.init.xavier_uniform_(w4mlu) self.w4C = nn.Parameter(w4C) self.w4Q = nn.Parameter(w4Q) self.w4mlu = nn.Parameter(w4mlu) bias = torch.empty(1) nn.init.constant_(bias, 0) self.bias = nn.Parameter(bias) self.dropout = dropout def forward(self, C, Q, Cmask, Qmask): C = C.transpose(1, 2) Q = Q.transpose(1, 2) batch_size_c = C.size()[0] _batch_size, Lc, _d_model = C.shape _batch_size, Lq, _d_model = Q.shape S = self.trilinear_for_attention(C, Q) Cmask = Cmask.view(batch_size_c, Lc, 1) Qmask = Qmask.view(batch_size_c, 1, Lq) S1 = F.softmax(mask_logits(S, Qmask), dim=2) S2 = F.softmax(mask_logits(S, Cmask), dim=1) A = torch.bmm(S1, Q) B = torch.bmm(torch.bmm(S1, S2.transpose(1, 2)), C) out = torch.cat([C, A, torch.mul(C, A), torch.mul(C, B)], dim=2) return out.transpose(1, 2) def trilinear_for_attention(self, C, Q): _batch_size, Lc, _d_model = C.shape _batch_size, Lq, _d_model = Q.shape dropout = self.dropout C = F.dropout(C, p=dropout, training=self.training) Q = F.dropout(Q, p=dropout, training=self.training) subres0 = torch.matmul(C, self.w4C).expand([-1, -1, Lq]) subres1 = torch.matmul(Q, self.w4Q).transpose(1, 2).expand([-1, Lc, -1] ) subres2 = torch.matmul(C * self.w4mlu, Q.transpose(1, 2)) res = subres0 + subres1 + subres2 res += self.bias return res def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 1]), torch.rand([4, 1, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__unsafe_view_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (4 * x1 + 16 * (y0 // 4) + y0 % 4), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr2 + x4, xmask) tmp5 = tl.load(in_ptr3 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp8 = tl.load(in_ptr4 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr5 + x3, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp7 = tmp4 + tmp6 tmp9 = tmp7 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp8 tmp12 = -1e+30 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp7 * tmp15 tmp17 = tmp10 - tmp15 tmp18 = tmp17 * tmp12 tmp19 = tmp16 + tmp18 tl.store(out_ptr0 + x4, tmp14, xmask) tl.store(out_ptr1 + x4, tmp19, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_cat_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 4 x2 = xindex // 64 x3 = xindex // 16 x4 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1 + 4 * x0 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x3 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x1 + 4 * (-8 + x0) + 16 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (4 * x3 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp23 = tl.load(in_ptr0 + (x1 + 4 * (-12 + x0) + 16 * x2), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr2 + (4 * x3 + (-12 + x0)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 * tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp20, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp19, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + x4, tmp30, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_6, (1,), (1,)) assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_8, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_view_clone_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf0, primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__unsafe_view_clone_0[grid(16, 4)](primals_2, buf2, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf2, primals_4, out=buf3) del primals_4 buf4 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) triton_poi_fused_mul_1[grid(64)](primals_1, primals_5, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf4, primals_2, out=buf5) buf6 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) del buf4 buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_rsub_2[grid(64)](buf1, buf3, buf5, primals_6, primals_8, primals_7, buf6, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del buf3 del primals_6 buf7 = buf5 del buf5 triton_poi_fused__softmax_3[grid(64)](buf6, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused__softmax_4[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = buf7 del buf7 triton_poi_fused__softmax_5[grid(64)](buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = buf9 del buf9 triton_poi_fused__softmax_6[grid(64)](buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = buf10 del buf10 extern_kernels.bmm(buf8, reinterpret_tensor(primals_2, (4, 4, 4), ( 16, 1, 4), 0), out=buf12) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf8, reinterpret_tensor(buf11, (4, 4, 4), (16, 1, 4), 0), out=buf13) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf13, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), out=buf14) del buf13 buf15 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_cat_7[grid(256)](primals_1, buf12, buf14, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf12 del buf14 return reinterpret_tensor(buf15, (4, 16, 4), (64, 1, 16), 0 ), primals_7, primals_8, reinterpret_tensor(primals_1, (4, 4, 4), ( 16, 1, 4), 0), primals_2, buf8, buf11, reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor(buf0, (4, 16), (1, 4), 0) def mask_logits(target, mask): mask = mask.type(torch.float32) return target * mask + (1 - mask) * -1e+30 class CQAttentionNew(nn.Module): def __init__(self, d_model, dropout=0.1): super().__init__() w4C = torch.empty(d_model, 1) w4Q = torch.empty(d_model, 1) w4mlu = torch.empty(1, 1, d_model) nn.init.xavier_uniform_(w4C) nn.init.xavier_uniform_(w4Q) nn.init.xavier_uniform_(w4mlu) self.w4C = nn.Parameter(w4C) self.w4Q = nn.Parameter(w4Q) self.w4mlu = nn.Parameter(w4mlu) bias = torch.empty(1) nn.init.constant_(bias, 0) self.bias = nn.Parameter(bias) self.dropout = dropout def trilinear_for_attention(self, C, Q): _batch_size, Lc, _d_model = C.shape _batch_size, Lq, _d_model = Q.shape dropout = self.dropout C = F.dropout(C, p=dropout, training=self.training) Q = F.dropout(Q, p=dropout, training=self.training) subres0 = torch.matmul(C, self.w4C).expand([-1, -1, Lq]) subres1 = torch.matmul(Q, self.w4Q).transpose(1, 2).expand([-1, Lc, -1] ) subres2 = torch.matmul(C * self.w4mlu, Q.transpose(1, 2)) res = subres0 + subres1 + subres2 res += self.bias return res def forward(self, input_0, input_1, input_2, input_3): primals_3 = self.w4C primals_4 = self.w4Q primals_5 = self.w4mlu primals_6 = self.bias primals_1 = input_0 primals_2 = input_1 primals_7 = input_2 primals_8 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
mirbostani/QA-KD-AL
CQAttention
false
7,255
[ "MIT" ]
1
0ec8756ee06ae2a204a5e9110503bc697e9108fb
https://github.com/mirbostani/QA-KD-AL/tree/0ec8756ee06ae2a204a5e9110503bc697e9108fb
import torch import torch.nn as nn import torch.nn.functional as F def mask_logits(target, mask): mask = mask.type(torch.float32) return target * mask + (1 - mask) * -1e+30 class Model(nn.Module): def __init__(self, d_model, dropout=0.1): super().__init__() w4C = torch.empty(d_model, 1) w4Q = torch.empty(d_model, 1) w4mlu = torch.empty(1, 1, d_model) nn.init.xavier_uniform_(w4C) nn.init.xavier_uniform_(w4Q) nn.init.xavier_uniform_(w4mlu) self.w4C = nn.Parameter(w4C) self.w4Q = nn.Parameter(w4Q) self.w4mlu = nn.Parameter(w4mlu) bias = torch.empty(1) nn.init.constant_(bias, 0) self.bias = nn.Parameter(bias) self.dropout = dropout def forward(self, C, Q, Cmask, Qmask): C = C.transpose(1, 2) Q = Q.transpose(1, 2) batch_size_c = C.size()[0] _batch_size, Lc, _d_model = C.shape _batch_size, Lq, _d_model = Q.shape S = self.trilinear_for_attention(C, Q) Cmask = Cmask.view(batch_size_c, Lc, 1) Qmask = Qmask.view(batch_size_c, 1, Lq) S1 = F.softmax(mask_logits(S, Qmask), dim=2) S2 = F.softmax(mask_logits(S, Cmask), dim=1) A = torch.bmm(S1, Q) B = torch.bmm(torch.bmm(S1, S2.transpose(1, 2)), C) out = torch.cat([C, A, torch.mul(C, A), torch.mul(C, B)], dim=2) return out.transpose(1, 2) def trilinear_for_attention(self, C, Q): _batch_size, Lc, _d_model = C.shape _batch_size, Lq, _d_model = Q.shape dropout = self.dropout C = F.dropout(C, p=dropout, training=self.training) Q = F.dropout(Q, p=dropout, training=self.training) subres0 = torch.matmul(C, self.w4C).expand([-1, -1, Lq]) subres1 = torch.matmul(Q, self.w4Q).transpose(1, 2).expand([-1, Lc, -1] ) subres2 = torch.matmul(C * self.w4mlu, Q.transpose(1, 2)) res = subres0 + subres1 + subres2 res += self.bias return res def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 1]), torch.rand([4, 1, 4])] def get_init_inputs(): return [4]
Transition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ke/ckeku6fry6eqbkps6aynkemvnmb54cigdg6vs53zhq5lp6aghkmk.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # out_1 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%convolution, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_2 = async_compile.triton('triton_poi_fused_avg_pool2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) return (buf3, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Transition(nn.Module): def __init__(self, in_planes, out_planes): super(Transition, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True) def forward(self, x): out = self.conv(F.relu(x)) out = F.avg_pool2d(out, 2) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'out_planes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_avg_pool2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_avg_pool2d_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf3, primals_2, buf0, buf2 class TransitionNew(nn.Module): def __init__(self, in_planes, out_planes): super(TransitionNew, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mnmueller/auto_LiRPA
Transition
false
7,256
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_planes, out_planes): super().__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True) def forward(self, x): out = self.conv(F.relu(x)) out = F.avg_pool2d(out, 2) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
mlp_2layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/el/cel3ti6ei3rprs2l5m6qs62p6md67qhlcbr3oxhxsqfmherljfbo.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (256, 64), (64, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (10, 256), (256, 1)) assert_size_stride(primals_5, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), reinterpret_tensor(primals_2, (64, 256), (1, 64), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1024, grid=grid(1024), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf2) del primals_5 return (buf2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class mlp_2layer(nn.Module): def __init__(self, in_ch, in_dim, width=1): super(mlp_2layer, self).__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 10) def forward(self, x): x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (256, 64), (64, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (10, 256), (256, 1)) assert_size_stride(primals_5, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0 ), reinterpret_tensor(primals_2, (64, 256), (1, 64), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1024)](buf1, primals_3, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf2) del primals_5 return buf2, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0 ), buf1, primals_4 class mlp_2layerNew(nn.Module): def __init__(self, in_ch, in_dim, width=1): super(mlp_2layerNew, self).__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 10) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mnmueller/auto_LiRPA
mlp_2layer
false
7,257
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_ch, in_dim, width=1): super().__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 10) def forward(self, x): x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BertLayerNormNoVar
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ke/ckesoupia4od4yj57n7ovmr2wav7eopyyngdjidks2sqhi3s4yx5.py # Topologically Sorted Source Nodes: [u, x, mul, add], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # u => mean # x => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_mean_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp14 = tmp12 + tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u, x, mul, add], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BertLayerNormNoVar(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNormNoVar, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) x = x - u return self.weight * x + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp14 = tmp12 + tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class BertLayerNormNoVarNew(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNormNoVarNew, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mnmueller/auto_LiRPA
BertLayerNormNoVar
false
7,258
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, hidden_size, eps=1e-12): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) x = x - u return self.weight * x + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
mlp_5layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/el/cel3ti6ei3rprs2l5m6qs62p6md67qhlcbr3oxhxsqfmherljfbo.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/i5/ci5f4nyelvfg4yf2o65ompoikj7ejkd32vb6hqtyrgycc5eswrpx.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (256, 64), (64, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 256), (256, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (128, 256), (256, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (10, 128), (128, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), reinterpret_tensor(primals_2, (64, 256), (1, 64), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1024, grid=grid(1024), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf3, primals_5, 1024, grid=grid(1024), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (256, 256), (1, 256), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf5, primals_7, 1024, grid=grid(1024), stream=stream0) del primals_7 buf6 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (256, 128), (1, 256), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf7, primals_9, 512, grid=grid(512), stream=stream0) del primals_9 buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf7, reinterpret_tensor(primals_10, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf8) del primals_11 return (buf8, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), buf1, buf3, buf5, buf7, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class mlp_5layer(nn.Module): def __init__(self, in_ch, in_dim, width=1): super(mlp_5layer, self).__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 256 * width) self.fc3 = nn.Linear(256 * width, 256 * width) self.fc4 = nn.Linear(256 * width, 128 * width) self.fc5 = nn.Linear(128 * width, 10) def forward(self, x): x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = self.fc5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (256, 64), (64, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 256), (256, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (128, 256), (256, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (10, 128), (128, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0 ), reinterpret_tensor(primals_2, (64, 256), (1, 64), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1024)](buf1, primals_3, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (256, 256), ( 1, 256), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_0[grid(1024)](buf3, primals_5, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (256, 256), ( 1, 256), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_0[grid(1024)](buf5, primals_7, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_8, (256, 128), ( 1, 256), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_1[grid(512)](buf7, primals_9, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf7, reinterpret_tensor( primals_10, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf8) del primals_11 return buf8, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0 ), buf1, buf3, buf5, buf7, primals_10, primals_8, primals_6, primals_4 class mlp_5layerNew(nn.Module): def __init__(self, in_ch, in_dim, width=1): super(mlp_5layerNew, self).__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 256 * width) self.fc3 = nn.Linear(256 * width, 256 * width) self.fc4 = nn.Linear(256 * width, 128 * width) self.fc5 = nn.Linear(128 * width, 10) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
mnmueller/auto_LiRPA
mlp_5layer
false
7,259
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_ch, in_dim, width=1): super().__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 256 * width) self.fc3 = nn.Linear(256 * width, 256 * width) self.fc4 = nn.Linear(256 * width, 128 * width) self.fc5 = nn.Linear(128 * width, 10) def forward(self, x): x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = self.fc5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
mlp_3layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/el/cel3ti6ei3rprs2l5m6qs62p6md67qhlcbr3oxhxsqfmherljfbo.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/i5/ci5f4nyelvfg4yf2o65ompoikj7ejkd32vb6hqtyrgycc5eswrpx.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (256, 64), (64, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (10, 128), (128, 1)) assert_size_stride(primals_7, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), reinterpret_tensor(primals_2, (64, 256), (1, 64), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1024, grid=grid(1024), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 512, grid=grid(512), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return (buf4, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0), buf1, buf3, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class mlp_3layer(nn.Module): def __init__(self, in_ch, in_dim, width=1): super(mlp_3layer, self).__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 128 * width) self.fc3 = nn.Linear(128 * width, 10) def forward(self, x): x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (256, 64), (64, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (10, 128), (128, 1)) assert_size_stride(primals_7, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 64), (64, 1), 0 ), reinterpret_tensor(primals_2, (64, 256), (1, 64), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1024)](buf1, primals_3, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (256, 128), ( 1, 256), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(512)](buf3, primals_5, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return buf4, reinterpret_tensor(primals_1, (4, 64), (64, 1), 0 ), buf1, buf3, primals_6, primals_4 class mlp_3layerNew(nn.Module): def __init__(self, in_ch, in_dim, width=1): super(mlp_3layerNew, self).__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 128 * width) self.fc3 = nn.Linear(128 * width, 10) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
mnmueller/auto_LiRPA
mlp_3layer
false
7,261
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_ch, in_dim, width=1): super().__init__() self.fc1 = nn.Linear(in_ch * in_dim * in_dim, 256 * width) self.fc2 = nn.Linear(256 * width, 128 * width) self.fc3 = nn.Linear(128 * width, 10) def forward(self, x): x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
AdaptiveInstanceNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/52/c526p7iwll7vx7gobeuv6q3lym4ek7lbhopuykpcibc57bou263i.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jo/cjo3wxmtawsvu7opemz2xwvsknw4nxv74xivifhgb7csue6qqjbi.py # Topologically Sorted Source Nodes: [out, mul_1, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] # Source node to ATen node mapping: # mul_1 => mul_2 # out => add, rsqrt, var_mean # out_1 => add_1 # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %getitem_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_mul_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp31, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, mul_1, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] triton_per_fused__native_batch_norm_legit_add_mul_1.run(buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, grid=grid(16), stream=stream0) del buf1 del primals_2 return (buf6, buf0, primals_3, primals_4, buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from math import sqrt def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNorm(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input, style): style = self.style(style).unsqueeze(2).unsqueeze(3) gamma, beta = style.chunk(2, 1) out = self.norm(input) out = gamma * out + beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from math import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp31, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4 ), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_add_mul_1[grid(16)](buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf1 del primals_2 return buf6, buf0, primals_3, primals_4, buf2, buf5 def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNormNew(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input_0, input_1): primals_2 = self.style.linear.bias primals_1 = self.style.linear.weight_orig primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
mmhnoaccount/DeepChroma_128
AdaptiveInstanceNorm
false
7,262
[ "MIT" ]
1
337ec961bfc4ee44f48cb84e624c293ee2805b62
https://github.com/mmhnoaccount/DeepChroma_128/tree/337ec961bfc4ee44f48cb84e624c293ee2805b62
import torch import torch.nn as nn from math import sqrt def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class Model(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input, style): style = self.style(style).unsqueeze(2).unsqueeze(3) gamma, beta = style.chunk(2, 1) out = self.norm(input) out = gamma * out + beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
cnn_4layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/c3/cc3viy35ukuam57kedmccz7bf2yw3dvtjy2isdmexojnafyusphq.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/du/cdutqb4yatzkfvs63awjxej4mad3qwpiqzj32yeixxljxyqth7fk.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2b/c2bujjyeji7nhf4gfgxav4unhmpugynzwx2v63uhk7lp4nn5exsa.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (8, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (256, 16), (16, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (10, 256), (256, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 2, 2), (32, 4, 2, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 1, 1), (16, 1, 1, 1)) buf3 = reinterpret_tensor(buf2, (4, 16, 1, 1), (16, 1, 64, 64), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf3, primals_5, buf7, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (4, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 256), (1, 16), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf5, primals_7, 1024, grid=grid(1024), stream=stream0) del primals_7 buf6 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_9 return (buf6, primals_1, primals_3, primals_4, buf1, reinterpret_tensor(buf3, (4, 16), (16, 1), 0), buf5, primals_8, primals_6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class cnn_4layer(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=256): super(cnn_4layer, self).__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (8, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (256, 16), (16, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (10, 256), (256, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 2, 2), (32, 4, 2, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 1, 1), (16, 1, 1, 1)) buf3 = reinterpret_tensor(buf2, (4, 16, 1, 1), (16, 1, 64, 64), 0) del buf2 buf7 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(64)](buf3, primals_5, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (4, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 256), (1, 16), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_2[grid(1024)](buf5, primals_7, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_9 return buf6, primals_1, primals_3, primals_4, buf1, reinterpret_tensor(buf3 , (4, 16), (16, 1), 0), buf5, primals_8, primals_6, buf7 class cnn_4layerNew(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=256): super(cnn_4layerNew, self).__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
mnmueller/auto_LiRPA
cnn_4layer
false
7,263
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=256): super().__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
cnn_4layer_LeakyRelu
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/tw/ctw4qtev5k5k65prtdigvjqeacfheyl32x6ntynwnhcj6evtqfp5.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rp/crpq6ay3bx2w6hni4wf7fm3xqw7kh3vra5vqoxiop4mru27uubam.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/z6/cz626pfdzck55lqwlwxmyjjebzy7psusnufojdzlpqnp7y7aa65h.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_2, mul_2, where_2 # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, 0.1), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_tensor, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (8, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (256, 16), (16, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (10, 256), (256, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 2, 2), (32, 4, 2, 1)) buf1 = empty_strided_cuda((4, 8, 2, 2), (32, 4, 2, 1), torch.bool) buf2 = empty_strided_cuda((4, 8, 2, 2), (32, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 128, grid=grid(128), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 1, 1), (16, 1, 1, 1)) buf4 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.bool) buf5 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 64, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 64, grid=grid(64), stream=stream0) del buf3 del primals_5 buf6 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (4, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 256), (1, 16), 0), out=buf6) buf7 = empty_strided_cuda((4, 256), (256, 1), torch.bool) buf8 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 1024, grid=grid(1024), stream=stream0) del buf6 del primals_7 buf9 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf9) del primals_9 return (buf9, primals_1, primals_3, primals_4, buf1, buf2, buf4, reinterpret_tensor(buf5, (4, 16), (16, 1), 0), buf7, buf8, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class cnn_4layer_LeakyRelu(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=256, alpha=0.1): super(cnn_4layer_LeakyRelu, self).__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, 10) self.alpha = alpha def forward(self, x): x = F.leaky_relu(self.conv1(x), self.alpha) x = F.leaky_relu(self.conv2(x), self.alpha) x = x.view(x.size(0), -1) x = F.leaky_relu(self.fc1(x), self.alpha) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (8, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (256, 16), (16, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (10, 256), (256, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 2, 2), (32, 4, 2, 1)) buf1 = empty_strided_cuda((4, 8, 2, 2), (32, 4, 2, 1), torch.bool) buf2 = empty_strided_cuda((4, 8, 2, 2), (32, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(128)](buf0, primals_2, buf1, buf2, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 1, 1), (16, 1, 1, 1)) buf4 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.bool) buf5 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 64, 64), torch.float32 ) triton_poi_fused_convolution_leaky_relu_1[grid(64)](buf3, primals_5, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 del primals_5 buf6 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (4, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 256), (1, 16), 0), out=buf6) buf7 = empty_strided_cuda((4, 256), (256, 1), torch.bool) buf8 = empty_strided_cuda((4, 256), (256, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(1024)](buf6, primals_7, buf7, buf8, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf6 del primals_7 buf9 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf9) del primals_9 return (buf9, primals_1, primals_3, primals_4, buf1, buf2, buf4, reinterpret_tensor(buf5, (4, 16), (16, 1), 0), buf7, buf8, primals_8, primals_6) class cnn_4layer_LeakyReluNew(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=256, alpha=0.1): super(cnn_4layer_LeakyReluNew, self).__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, 10) self.alpha = alpha def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
mnmueller/auto_LiRPA
cnn_4layer_LeakyRelu
false
7,264
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=256, alpha=0.1): super().__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(4 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, 10) self.alpha = alpha def forward(self, x): x = F.leaky_relu(self.conv1(x), self.alpha) x = F.leaky_relu(self.conv2(x), self.alpha) x = x.view(x.size(0), -1) x = F.leaky_relu(self.fc1(x), self.alpha) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Net2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/op/coptu6xep3awc4lajb4xivopppqmjtx3zy7ebtazm45rqvyeknds.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = (xindex // 1200) x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/as/casrc7bf7ghsendgi7tkqxk3hj4ic6aqb4rmkxzuk5dhbidznia7.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] # Source node to ATen node mapping: # out_3 => relu_1 # out_4 => view_4 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {}) triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = (xindex // 300) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300, ), (1, )) assert_size_stride(primals_6, (1, 300), (300, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 25600, grid=grid(25600), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_5, buf3, buf7, 19200, grid=grid(19200), stream=stream0) del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf3, buf4, 19200, grid=grid(19200), stream=stream0) del buf3 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(primals_6, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf6) del primals_7 return (reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Net2(nn.Module): """ Net2 is a more complex network consisting of two hidden layers with 400 and 300 neurons """ hidden1 = 400 hidden2 = 300 def __init__(self, input_size): super(Net2, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, 1) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = xindex // 1200 x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = xindex // 300 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300,), (1,)) assert_size_stride(primals_6, (1, 300), (300, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0 ) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1, primals_2, buf8, 25600, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(19200)](buf2, primals_5, buf3, buf7, 19200, XBLOCK=256, num_warps=4, num_stages=1 ) del primals_5 buf4 = buf2 del buf2 triton_poi_fused_relu_view_2[grid(19200)](buf3, buf4, 19200, XBLOCK =128, num_warps=4, num_stages=1) del buf3 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(primals_6, (300, 1), (1, 300), 0), alpha=1, beta=1, out=buf6) del primals_7 return reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 400), (400, 1), 0 ), buf4, primals_6, buf7, primals_4, buf8 class Net2New(nn.Module): """ Net2 is a more complex network consisting of two hidden layers with 400 and 300 neurons """ hidden1 = 400 hidden2 = 300 def __init__(self, input_size): super(Net2New, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
moritzschaefer/pavooc
Net2
false
7,265
[ "MIT" ]
1
735f5455f9a95a5734436a24e2aa92cf600c91af
https://github.com/moritzschaefer/pavooc/tree/735f5455f9a95a5734436a24e2aa92cf600c91af
import torch from torch import nn class Model(nn.Module): """ Net2 is a more complex network consisting of two hidden layers with 400 and 300 neurons """ hidden1 = 400 hidden2 = 300 def __init__(self, input_size): super().__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, 1) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Debugnetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # output => convolution # output_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7z/c7zuih2ysjtir5rh5seep5ijnhokjlgkyjw2edhf257ahvz4iipr.py # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # output_4 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xq/cxqz2dr7nh2qabrtemj52pazmhrknj5ltcy32ka252ia6a3jgpqi.py # Topologically Sorted Source Nodes: [output_5, output_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # output_5 => convolution_2 # output_6 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pr/cpri5daxkfbmt5ostbhb5o2avircr64a2rmdkxfackaxyjfc7owe.py # Topologically Sorted Source Nodes: [output_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # output_9 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/of/cof37d5wbqzvtkioj7k4me7wqpvfv55rs62ytonj7gij2o3abnod.py # Topologically Sorted Source Nodes: [output_10, output_11], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # output_10 => convolution_4 # output_11 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mn/cmnzsv2cdbsuq2sygridqvwumzmcvknuthlumel5m25l2ajsr4ft.py # Topologically Sorted Source Nodes: [output_18], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # output_18 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ic/cicsjqc3cfcjzqlztx4hz7ssqwe47ngo3g2onc6463k3vgfmt5cw.py # Topologically Sorted Source Nodes: [output_19, output_20], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # output_19 => convolution_8 # output_20 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rs/crsb2j7t6kjc2dizrgavde3h3rerob3nhf7iqux6o24562lkvvoe.py # Topologically Sorted Source Nodes: [output_23, output_24], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # output_23 => convolution_10 # output_24 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kh/ckh2fqykduc5vzc66z3dzxnttv5ucnf27xwzzpqkv57775qdbypn.py # Topologically Sorted Source Nodes: [output_25, output_26], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_25 => convolution_11 # output_26 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (256, ), (1, )) assert_size_stride(primals_24, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_25, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [output_2, output_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [output_5], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [output_5, output_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf7, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [output_7], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [output_7, output_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf9, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [output_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [output_10], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [output_10, output_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [output_12], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [output_12, output_13], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf15, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [output_14], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 256, 16, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [output_14, output_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf17, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [output_16], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 256, 16, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [output_16, output_17], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf19, primals_17, 262144, grid=grid(262144), stream=stream0) del primals_17 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.int8) # Topologically Sorted Source Nodes: [output_18], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf19, buf20, buf21, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [output_19], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf20, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 8, 8), (32768, 64, 8, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [output_19, output_20], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf23, primals_19, 131072, grid=grid(131072), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [output_21], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 8), (32768, 64, 8, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [output_21, output_22], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf25, primals_21, 131072, grid=grid(131072), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [output_23], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 8, 8), (16384, 64, 8, 1)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [output_23, output_24], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf27, primals_23, 65536, grid=grid(65536), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [output_25], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 64, 8, 1)) buf29 = buf28; del buf28 # reuse buf30 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [output_25, output_26], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf29, primals_25, buf30, 32768, grid=grid(32768), stream=stream0) del primals_25 return (buf29, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf27, buf30, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn from torch.nn import init class conv(nn.Module): """ n*n conv with relu """ def __init__(self, in_dim, out_dim, kernal_size, stride, padding): super(conv, self).__init__() self.con_layer = nn.Conv2d(in_dim, out_dim, kernal_size, stride, padding) self.relu = nn.ReLU(inplace=True) self.initi() def forward(self, input_): output = self.con_layer(input_) output = self.relu(output) return output def initi(self): init.normal_(self.con_layer.weight, std=0.01) if self.con_layer.bias is not None: init.constant_(self.con_layer.bias, 0.0) class VGG_19(nn.Module): """ VGG_19 first 10 layers 11 and 12 by CMU """ def __init__(self, input_dim): super(VGG_19, self).__init__() self.conv1_1 = conv(input_dim, 64, 3, 1, 1) self.conv1_2 = conv(64, 64, 3, 1, 1) self.pooling_1 = nn.MaxPool2d(2, 2, 0) self.conv2_1 = conv(64, 128, 3, 1, 1) self.conv2_2 = conv(128, 128, 3, 1, 1) self.pooling_2 = nn.MaxPool2d(2, 2, 0) self.conv3_1 = conv(128, 256, 3, 1, 1) self.conv3_2 = conv(256, 256, 3, 1, 1) self.conv3_3 = conv(256, 256, 3, 1, 1) self.conv3_4 = conv(256, 256, 3, 1, 1) self.pooling_3 = nn.MaxPool2d(2, 2, 0) self.conv4_1 = conv(256, 512, 3, 1, 1) self.conv4_2 = conv(512, 512, 3, 1, 1) self.conv4_3 = conv(512, 256, 3, 1, 1) self.conv4_4 = conv(256, 128, 3, 1, 1) def forward(self, input_): output = self.conv1_1(input_) output = self.conv1_2(output) output = self.pooling_1(output) output = self.conv2_1(output) output = self.conv2_2(output) output = self.pooling_2(output) output = self.conv3_1(output) output = self.conv3_2(output) output = self.conv3_3(output) output = self.conv3_4(output) output = self.pooling_3(output) output = self.conv4_1(output) output = self.conv4_2(output) output = self.conv4_3(output) output = self.conv4_4(output) return output class Debugnetwork(nn.Module): """ """ def __init__(self, args): super(Debugnetwork, self).__init__() self.block_0 = VGG_19(3) def forward(self, input_): output = self.block_0(input_) return output def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {'args': _mock_config()}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (256,), (1,)) assert_size_stride(primals_24, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_25, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(262144)](buf3, buf4, buf5, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_2[grid(524288)](buf7, primals_7, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_2[grid(524288)](buf9, primals_9, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(131072)](buf9, buf10, buf11, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(262144)](buf13, primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_4[grid(262144)](buf15, primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 256, 16, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_4[grid(262144)](buf17, primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 256, 16, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_4[grid(262144)](buf19, primals_17, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_5[grid(65536)](buf19, buf20, buf21, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf20, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 8, 8), (32768, 64, 8, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_6[grid(131072)](buf23, primals_19, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_19 buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 8), (32768, 64, 8, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_6[grid(131072)](buf25, primals_21, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_21 buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 8, 8), (16384, 64, 8, 1)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_7[grid(65536)](buf27, primals_23, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 64, 8, 1)) buf29 = buf28 del buf28 buf30 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool ) triton_poi_fused_convolution_relu_threshold_backward_8[grid(32768)]( buf29, primals_25, buf30, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_25 return (buf29, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf27, buf30) class conv(nn.Module): """ n*n conv with relu """ def __init__(self, in_dim, out_dim, kernal_size, stride, padding): super(conv, self).__init__() self.con_layer = nn.Conv2d(in_dim, out_dim, kernal_size, stride, padding) self.relu = nn.ReLU(inplace=True) self.initi() def forward(self, input_): output = self.con_layer(input_) output = self.relu(output) return output def initi(self): init.normal_(self.con_layer.weight, std=0.01) if self.con_layer.bias is not None: init.constant_(self.con_layer.bias, 0.0) class VGG_19(nn.Module): """ VGG_19 first 10 layers 11 and 12 by CMU """ def __init__(self, input_dim): super(VGG_19, self).__init__() self.conv1_1 = conv(input_dim, 64, 3, 1, 1) self.conv1_2 = conv(64, 64, 3, 1, 1) self.pooling_1 = nn.MaxPool2d(2, 2, 0) self.conv2_1 = conv(64, 128, 3, 1, 1) self.conv2_2 = conv(128, 128, 3, 1, 1) self.pooling_2 = nn.MaxPool2d(2, 2, 0) self.conv3_1 = conv(128, 256, 3, 1, 1) self.conv3_2 = conv(256, 256, 3, 1, 1) self.conv3_3 = conv(256, 256, 3, 1, 1) self.conv3_4 = conv(256, 256, 3, 1, 1) self.pooling_3 = nn.MaxPool2d(2, 2, 0) self.conv4_1 = conv(256, 512, 3, 1, 1) self.conv4_2 = conv(512, 512, 3, 1, 1) self.conv4_3 = conv(512, 256, 3, 1, 1) self.conv4_4 = conv(256, 128, 3, 1, 1) def forward(self, input_): output = self.conv1_1(input_) output = self.conv1_2(output) output = self.pooling_1(output) output = self.conv2_1(output) output = self.conv2_2(output) output = self.pooling_2(output) output = self.conv3_1(output) output = self.conv3_2(output) output = self.conv3_3(output) output = self.conv3_4(output) output = self.pooling_3(output) output = self.conv4_1(output) output = self.conv4_2(output) output = self.conv4_3(output) output = self.conv4_4(output) return output class DebugnetworkNew(nn.Module): """ """ def __init__(self, args): super(DebugnetworkNew, self).__init__() self.block_0 = VGG_19(3) def forward(self, input_0): primals_1 = self.block_0.conv1_1.con_layer.weight primals_2 = self.block_0.conv1_1.con_layer.bias primals_4 = self.block_0.conv1_2.con_layer.weight primals_5 = self.block_0.conv1_2.con_layer.bias primals_6 = self.block_0.conv2_1.con_layer.weight primals_7 = self.block_0.conv2_1.con_layer.bias primals_8 = self.block_0.conv2_2.con_layer.weight primals_9 = self.block_0.conv2_2.con_layer.bias primals_10 = self.block_0.conv3_1.con_layer.weight primals_11 = self.block_0.conv3_1.con_layer.bias primals_12 = self.block_0.conv3_2.con_layer.weight primals_13 = self.block_0.conv3_2.con_layer.bias primals_14 = self.block_0.conv3_3.con_layer.weight primals_15 = self.block_0.conv3_3.con_layer.bias primals_16 = self.block_0.conv3_4.con_layer.weight primals_17 = self.block_0.conv3_4.con_layer.bias primals_18 = self.block_0.conv4_1.con_layer.weight primals_19 = self.block_0.conv4_1.con_layer.bias primals_20 = self.block_0.conv4_2.con_layer.weight primals_21 = self.block_0.conv4_2.con_layer.bias primals_22 = self.block_0.conv4_3.con_layer.weight primals_23 = self.block_0.conv4_3.con_layer.bias primals_24 = self.block_0.conv4_4.con_layer.weight primals_25 = self.block_0.conv4_4.con_layer.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25]) return output[0]
H-Liu1997/Pytorch_Pose_Estimation_Framework
Debugnetwork
false
7,266
[ "MIT" ]
1
06616b3459ff639f8486e6ea4f93922597788b2a
https://github.com/H-Liu1997/Pytorch_Pose_Estimation_Framework/tree/06616b3459ff639f8486e6ea4f93922597788b2a
from _paritybench_helpers import _mock_config import torch import torch.nn as nn from torch.nn import init class conv(nn.Module): """ n*n conv with relu """ def __init__(self, in_dim, out_dim, kernal_size, stride, padding): super().__init__() self.con_layer = nn.Conv2d(in_dim, out_dim, kernal_size, stride, padding) self.relu = nn.ReLU(inplace=True) self.initi() def forward(self, input_): output = self.con_layer(input_) output = self.relu(output) return output def initi(self): init.normal_(self.con_layer.weight, std=0.01) if self.con_layer.bias is not None: init.constant_(self.con_layer.bias, 0.0) class VGG_19(nn.Module): """ VGG_19 first 10 layers 11 and 12 by CMU """ def __init__(self, input_dim): super().__init__() self.conv1_1 = conv(input_dim, 64, 3, 1, 1) self.conv1_2 = conv(64, 64, 3, 1, 1) self.pooling_1 = nn.MaxPool2d(2, 2, 0) self.conv2_1 = conv(64, 128, 3, 1, 1) self.conv2_2 = conv(128, 128, 3, 1, 1) self.pooling_2 = nn.MaxPool2d(2, 2, 0) self.conv3_1 = conv(128, 256, 3, 1, 1) self.conv3_2 = conv(256, 256, 3, 1, 1) self.conv3_3 = conv(256, 256, 3, 1, 1) self.conv3_4 = conv(256, 256, 3, 1, 1) self.pooling_3 = nn.MaxPool2d(2, 2, 0) self.conv4_1 = conv(256, 512, 3, 1, 1) self.conv4_2 = conv(512, 512, 3, 1, 1) self.conv4_3 = conv(512, 256, 3, 1, 1) self.conv4_4 = conv(256, 128, 3, 1, 1) def forward(self, input_): output = self.conv1_1(input_) output = self.conv1_2(output) output = self.pooling_1(output) output = self.conv2_1(output) output = self.conv2_2(output) output = self.pooling_2(output) output = self.conv3_1(output) output = self.conv3_2(output) output = self.conv3_3(output) output = self.conv3_4(output) output = self.pooling_3(output) output = self.conv4_1(output) output = self.conv4_2(output) output = self.conv4_3(output) output = self.conv4_4(output) return output class Model(nn.Module): """ """ def __init__(self, args): super().__init__() self.block_0 = VGG_19(3) def forward(self, input_): output = self.block_0(input_) return output def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
NeuralNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # out_1 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out_3 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out_3 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class NeuralNet(nn.Module): def __init__(self, num_input_nodes, num_hidden_nodes, output_dimension): super(NeuralNet, self).__init__() self.input_linear = nn.Linear(num_input_nodes, num_hidden_nodes) self.output_linear = nn.Linear(num_hidden_nodes, output_dimension) def forward(self, input_vector): out = self.input_linear(input_vector) out = F.tanh(out) out = self.output_linear(out) out = F.softmax(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_input_nodes': 4, 'num_hidden_nodes': 4, 'output_dimension': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf4, primals_4 class NeuralNetNew(nn.Module): def __init__(self, num_input_nodes, num_hidden_nodes, output_dimension): super(NeuralNetNew, self).__init__() self.input_linear = nn.Linear(num_input_nodes, num_hidden_nodes) self.output_linear = nn.Linear(num_hidden_nodes, output_dimension) def forward(self, input_0): primals_1 = self.input_linear.weight primals_2 = self.input_linear.bias primals_4 = self.output_linear.weight primals_5 = self.output_linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
mohiitgupta/named-entity-recognition-nlp-purdue
NeuralNet
false
7,267
[ "MIT" ]
1
68232bbd5d17f3e3989e5df37175cdc670896608
https://github.com/mohiitgupta/named-entity-recognition-nlp-purdue/tree/68232bbd5d17f3e3989e5df37175cdc670896608
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, num_input_nodes, num_hidden_nodes, output_dimension): super().__init__() self.input_linear = nn.Linear(num_input_nodes, num_hidden_nodes) self.output_linear = nn.Linear(num_hidden_nodes, output_dimension) def forward(self, input_vector): out = self.input_linear(input_vector) out = F.tanh(out) out = self.output_linear(out) out = F.softmax(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_input_nodes': 4, 'num_hidden_nodes': 4, 'output_dimension': 4}]
LoRALayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/s4/cs4a3d5eq4vbxgviqbcvk4zafoqduplldcmyyynxgkd23bvnm7ty.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [result], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf1) buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf2, 256, grid=grid(256), stream=stream0) return (buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.parallel import torch.utils.data class LoRALayer(nn.Module): def __init__(self, n_in, n_out=None, adapter_dim=16, adapter_alpha=32): super(LoRALayer, self).__init__() if not n_out: n_out = n_in self.adapter_dim = adapter_dim self.adapter_alpha = adapter_alpha self.adapter_proj_1 = nn.Linear(n_in, adapter_dim, bias=False) nn.init.normal_(self.adapter_proj_1.weight, std=0.02) self.adapter_proj_2 = nn.Linear(adapter_dim, n_out, bias=False) self.adapter_proj_2.weight.data.zero_() def forward(self, x): scale_factor = self.adapter_dim / self.adapter_alpha result = torch.matmul(x, self.adapter_proj_1.weight.type_as(x).T) return torch.matmul(result, self.adapter_proj_2.weight.type_as(x).T ) * scale_factor def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_in': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.nn.parallel import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 16), (16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (16, 4), (1, 16), 0), out=buf1) buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](buf2, 256, XBLOCK=128, num_warps= 4, num_stages=1) return buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf0, primals_3 class LoRALayerNew(nn.Module): def __init__(self, n_in, n_out=None, adapter_dim=16, adapter_alpha=32): super(LoRALayerNew, self).__init__() if not n_out: n_out = n_in self.adapter_dim = adapter_dim self.adapter_alpha = adapter_alpha self.adapter_proj_1 = nn.Linear(n_in, adapter_dim, bias=False) nn.init.normal_(self.adapter_proj_1.weight, std=0.02) self.adapter_proj_2 = nn.Linear(adapter_dim, n_out, bias=False) self.adapter_proj_2.weight.data.zero_() def forward(self, input_0): primals_1 = self.adapter_proj_1.weight primals_3 = self.adapter_proj_2.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mojishoki/LoRA
LoRALayer
false
7,268
[ "MIT" ]
1
556225e776b4e2c5f77d332db15f0c712c13fe0e
https://github.com/mojishoki/LoRA/tree/556225e776b4e2c5f77d332db15f0c712c13fe0e
import torch from torch import nn import torch.nn.parallel import torch.utils.data class Model(nn.Module): def __init__(self, n_in, n_out=None, adapter_dim=16, adapter_alpha=32): super().__init__() if not n_out: n_out = n_in self.adapter_dim = adapter_dim self.adapter_alpha = adapter_alpha self.adapter_proj_1 = nn.Linear(n_in, adapter_dim, bias=False) nn.init.normal_(self.adapter_proj_1.weight, std=0.02) self.adapter_proj_2 = nn.Linear(adapter_dim, n_out, bias=False) self.adapter_proj_2.weight.data.zero_() def forward(self, x): scale_factor = self.adapter_dim / self.adapter_alpha result = torch.matmul(x, self.adapter_proj_1.weight.type_as(x).T) return torch.matmul(result, self.adapter_proj_2.weight.type_as(x).T ) * scale_factor def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
NetVLAD
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/rf/crf4dxzzztpnpsbe5tqyxtwblvnanasglxpd4kotnpzrxio4tyxt.py # Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # soft_assign_1 => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 64], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5d/c5d7kzlutdnexlvvxxhykl25ql7o3i5jbl47ltsdy3da45644hz6.py # Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_2, residual_3, sum_2, residual_4, residual_5, sum_3, residual_6, residual_7, sum_4, residual_8, residual_9, sum_5, residual_10, residual_11, sum_6, residual_12, residual_13, sum_7, residual_14, residual_15, sum_8, residual_16, residual_17, sum_9, residual_18, residual_19, sum_10, residual_20, residual_21, sum_11, residual_22, residual_23, sum_12, residual_24, residual_25, sum_13, residual_26, residual_27, sum_14, residual_28, residual_29, sum_15, residual_30, residual_31, sum_16, residual_32, residual_33, sum_17, residual_34, residual_35, sum_18, residual_36, residual_37, sum_19, residual_38, residual_39, sum_20, residual_40, residual_41, sum_21, residual_42, residual_43, sum_22, residual_44, residual_45, sum_23, residual_46, residual_47, sum_24, residual_48, residual_49, sum_25, residual_50, residual_51, sum_26, residual_52, residual_53, sum_27, residual_54, residual_55, sum_28, residual_56, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # residual => sub_1 # residual_1 => mul # residual_10 => sub_6 # residual_11 => mul_5 # residual_12 => sub_7 # residual_13 => mul_6 # residual_14 => sub_8 # residual_15 => mul_7 # residual_16 => sub_9 # residual_17 => mul_8 # residual_18 => sub_10 # residual_19 => mul_9 # residual_2 => sub_2 # residual_20 => sub_11 # residual_21 => mul_10 # residual_22 => sub_12 # residual_23 => mul_11 # residual_24 => sub_13 # residual_25 => mul_12 # residual_26 => sub_14 # residual_27 => mul_13 # residual_28 => sub_15 # residual_29 => mul_14 # residual_3 => mul_1 # residual_30 => sub_16 # residual_31 => mul_15 # residual_32 => sub_17 # residual_33 => mul_16 # residual_34 => sub_18 # residual_35 => mul_17 # residual_36 => sub_19 # residual_37 => mul_18 # residual_38 => sub_20 # residual_39 => mul_19 # residual_4 => sub_3 # residual_40 => sub_21 # residual_41 => mul_20 # residual_42 => sub_22 # residual_43 => mul_21 # residual_44 => sub_23 # residual_45 => mul_22 # residual_46 => sub_24 # residual_47 => mul_23 # residual_48 => sub_25 # residual_49 => mul_24 # residual_5 => mul_2 # residual_50 => sub_26 # residual_51 => mul_25 # residual_52 => sub_27 # residual_53 => mul_26 # residual_54 => sub_28 # residual_55 => mul_27 # residual_56 => sub_29 # residual_57 => mul_28 # residual_6 => sub_4 # residual_7 => mul_3 # residual_8 => sub_5 # residual_9 => mul_4 # sum_1 => sum_2 # sum_10 => sum_11 # sum_11 => sum_12 # sum_12 => sum_13 # sum_13 => sum_14 # sum_14 => sum_15 # sum_15 => sum_16 # sum_16 => sum_17 # sum_17 => sum_18 # sum_18 => sum_19 # sum_19 => sum_20 # sum_2 => sum_3 # sum_20 => sum_21 # sum_21 => sum_22 # sum_22 => sum_23 # sum_23 => sum_24 # sum_24 => sum_25 # sum_25 => sum_26 # sum_26 => sum_27 # sum_27 => sum_28 # sum_28 => sum_29 # sum_29 => sum_30 # sum_3 => sum_4 # sum_4 => sum_5 # sum_5 => sum_6 # sum_6 => sum_7 # sum_7 => sum_8 # sum_8 => sum_9 # sum_9 => sum_10 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze_2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %unsqueeze_5), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_7), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %unsqueeze_8), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_10), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %unsqueeze_11), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {}) # %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_13), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %unsqueeze_14), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [-1]), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_16), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %unsqueeze_17), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_19), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %unsqueeze_20), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [-1]), kwargs = {}) # %sub_8 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_22), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %unsqueeze_23), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_7, [-1]), kwargs = {}) # %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_25), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %unsqueeze_26), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1]), kwargs = {}) # %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_28), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %unsqueeze_29), kwargs = {}) # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_9, [-1]), kwargs = {}) # %sub_11 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_31), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %unsqueeze_32), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_10, [-1]), kwargs = {}) # %sub_12 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_34), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %unsqueeze_35), kwargs = {}) # %sum_13 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_11, [-1]), kwargs = {}) # %sub_13 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_37), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %unsqueeze_38), kwargs = {}) # %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_12, [-1]), kwargs = {}) # %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_40), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %unsqueeze_41), kwargs = {}) # %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_13, [-1]), kwargs = {}) # %sub_15 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_43), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_15, %unsqueeze_44), kwargs = {}) # %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_14, [-1]), kwargs = {}) # %sub_16 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_46), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %unsqueeze_47), kwargs = {}) # %sum_17 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_15, [-1]), kwargs = {}) # %sub_17 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_49), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %unsqueeze_50), kwargs = {}) # %sum_18 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_16, [-1]), kwargs = {}) # %sub_18 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_52), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %unsqueeze_53), kwargs = {}) # %sum_19 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_17, [-1]), kwargs = {}) # %sub_19 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_55), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %unsqueeze_56), kwargs = {}) # %sum_20 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_18, [-1]), kwargs = {}) # %sub_20 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_58), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %unsqueeze_59), kwargs = {}) # %sum_21 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_19, [-1]), kwargs = {}) # %sub_21 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_61), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %unsqueeze_62), kwargs = {}) # %sum_22 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_20, [-1]), kwargs = {}) # %sub_22 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_64), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %unsqueeze_65), kwargs = {}) # %sum_23 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_21, [-1]), kwargs = {}) # %sub_23 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_67), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_23, %unsqueeze_68), kwargs = {}) # %sum_24 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_22, [-1]), kwargs = {}) # %sub_24 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_70), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %unsqueeze_71), kwargs = {}) # %sum_25 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_23, [-1]), kwargs = {}) # %sub_25 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_73), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %unsqueeze_74), kwargs = {}) # %sum_26 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_24, [-1]), kwargs = {}) # %sub_26 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_76), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_26, %unsqueeze_77), kwargs = {}) # %sum_27 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_25, [-1]), kwargs = {}) # %sub_27 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_79), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %unsqueeze_80), kwargs = {}) # %sum_28 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_26, [-1]), kwargs = {}) # %sub_28 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_82), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_28, %unsqueeze_83), kwargs = {}) # %sum_29 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_27, [-1]), kwargs = {}) # %sub_29 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_85), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_29, %unsqueeze_86), kwargs = {}) # %sum_30 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_28, [-1]), kwargs = {}) triton_per_fused_mul_sub_sum_1 = async_compile.triton('triton_per_fused_mul_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: 'i32', 63: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 61, 'num_reduction': 29, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (20 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (24 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (28 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (36 + x0), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (40 + x0), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (44 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (52 + x0), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (56 + x0), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (60 + x0), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (68 + x0), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (72 + x0), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (76 + x0), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (80 + x0), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (84 + x0), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (88 + x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr1 + (92 + x0), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (96 + x0), xmask, eviction_policy='evict_last') tmp49 = tl.load(in_ptr1 + (100 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (104 + x0), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (108 + x0), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (112 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp59 = tl.load(in_ptr2 + (r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp60 = tl.load(in_ptr3 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp63 = tl.load(in_ptr4 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp70 = tl.load(in_ptr2 + (16 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp79 = tl.load(in_ptr2 + (32 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp88 = tl.load(in_ptr2 + (48 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp97 = tl.load(in_ptr2 + (64 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp106 = tl.load(in_ptr2 + (80 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp115 = tl.load(in_ptr2 + (96 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp124 = tl.load(in_ptr2 + (112 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp133 = tl.load(in_ptr2 + (128 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp142 = tl.load(in_ptr2 + (144 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp151 = tl.load(in_ptr2 + (160 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp160 = tl.load(in_ptr2 + (176 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp169 = tl.load(in_ptr2 + (192 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp178 = tl.load(in_ptr2 + (208 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp187 = tl.load(in_ptr2 + (224 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp196 = tl.load(in_ptr2 + (240 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp205 = tl.load(in_ptr2 + (256 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp214 = tl.load(in_ptr2 + (272 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp223 = tl.load(in_ptr2 + (288 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp232 = tl.load(in_ptr2 + (304 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp241 = tl.load(in_ptr2 + (320 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp250 = tl.load(in_ptr2 + (336 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp259 = tl.load(in_ptr2 + (352 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp268 = tl.load(in_ptr2 + (368 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp277 = tl.load(in_ptr2 + (384 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp286 = tl.load(in_ptr2 + (400 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp295 = tl.load(in_ptr2 + (416 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp304 = tl.load(in_ptr2 + (432 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp313 = tl.load(in_ptr2 + (448 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp0 - tmp3 tmp6 = tmp0 - tmp5 tmp8 = tmp0 - tmp7 tmp10 = tmp0 - tmp9 tmp12 = tmp0 - tmp11 tmp14 = tmp0 - tmp13 tmp16 = tmp0 - tmp15 tmp18 = tmp0 - tmp17 tmp20 = tmp0 - tmp19 tmp22 = tmp0 - tmp21 tmp24 = tmp0 - tmp23 tmp26 = tmp0 - tmp25 tmp28 = tmp0 - tmp27 tmp30 = tmp0 - tmp29 tmp32 = tmp0 - tmp31 tmp34 = tmp0 - tmp33 tmp36 = tmp0 - tmp35 tmp38 = tmp0 - tmp37 tmp40 = tmp0 - tmp39 tmp42 = tmp0 - tmp41 tmp44 = tmp0 - tmp43 tmp46 = tmp0 - tmp45 tmp48 = tmp0 - tmp47 tmp50 = tmp0 - tmp49 tmp52 = tmp0 - tmp51 tmp54 = tmp0 - tmp53 tmp56 = tmp0 - tmp55 tmp58 = tmp0 - tmp57 tmp61 = tmp59 - tmp60 tmp62 = tl_math.exp(tmp61) tmp64 = tmp62 / tmp63 tmp65 = tmp58 * tmp64 tmp66 = tl.broadcast_to(tmp65, [XBLOCK, RBLOCK]) tmp68 = tl.where(xmask, tmp66, 0) tmp69 = tl.sum(tmp68, 1)[:, None] tmp71 = tmp70 - tmp60 tmp72 = tl_math.exp(tmp71) tmp73 = tmp72 / tmp63 tmp74 = tmp2 * tmp73 tmp75 = tl.broadcast_to(tmp74, [XBLOCK, RBLOCK]) tmp77 = tl.where(xmask, tmp75, 0) tmp78 = tl.sum(tmp77, 1)[:, None] tmp80 = tmp79 - tmp60 tmp81 = tl_math.exp(tmp80) tmp82 = tmp81 / tmp63 tmp83 = tmp4 * tmp82 tmp84 = tl.broadcast_to(tmp83, [XBLOCK, RBLOCK]) tmp86 = tl.where(xmask, tmp84, 0) tmp87 = tl.sum(tmp86, 1)[:, None] tmp89 = tmp88 - tmp60 tmp90 = tl_math.exp(tmp89) tmp91 = tmp90 / tmp63 tmp92 = tmp6 * tmp91 tmp93 = tl.broadcast_to(tmp92, [XBLOCK, RBLOCK]) tmp95 = tl.where(xmask, tmp93, 0) tmp96 = tl.sum(tmp95, 1)[:, None] tmp98 = tmp97 - tmp60 tmp99 = tl_math.exp(tmp98) tmp100 = tmp99 / tmp63 tmp101 = tmp8 * tmp100 tmp102 = tl.broadcast_to(tmp101, [XBLOCK, RBLOCK]) tmp104 = tl.where(xmask, tmp102, 0) tmp105 = tl.sum(tmp104, 1)[:, None] tmp107 = tmp106 - tmp60 tmp108 = tl_math.exp(tmp107) tmp109 = tmp108 / tmp63 tmp110 = tmp10 * tmp109 tmp111 = tl.broadcast_to(tmp110, [XBLOCK, RBLOCK]) tmp113 = tl.where(xmask, tmp111, 0) tmp114 = tl.sum(tmp113, 1)[:, None] tmp116 = tmp115 - tmp60 tmp117 = tl_math.exp(tmp116) tmp118 = tmp117 / tmp63 tmp119 = tmp12 * tmp118 tmp120 = tl.broadcast_to(tmp119, [XBLOCK, RBLOCK]) tmp122 = tl.where(xmask, tmp120, 0) tmp123 = tl.sum(tmp122, 1)[:, None] tmp125 = tmp124 - tmp60 tmp126 = tl_math.exp(tmp125) tmp127 = tmp126 / tmp63 tmp128 = tmp14 * tmp127 tmp129 = tl.broadcast_to(tmp128, [XBLOCK, RBLOCK]) tmp131 = tl.where(xmask, tmp129, 0) tmp132 = tl.sum(tmp131, 1)[:, None] tmp134 = tmp133 - tmp60 tmp135 = tl_math.exp(tmp134) tmp136 = tmp135 / tmp63 tmp137 = tmp16 * tmp136 tmp138 = tl.broadcast_to(tmp137, [XBLOCK, RBLOCK]) tmp140 = tl.where(xmask, tmp138, 0) tmp141 = tl.sum(tmp140, 1)[:, None] tmp143 = tmp142 - tmp60 tmp144 = tl_math.exp(tmp143) tmp145 = tmp144 / tmp63 tmp146 = tmp18 * tmp145 tmp147 = tl.broadcast_to(tmp146, [XBLOCK, RBLOCK]) tmp149 = tl.where(xmask, tmp147, 0) tmp150 = tl.sum(tmp149, 1)[:, None] tmp152 = tmp151 - tmp60 tmp153 = tl_math.exp(tmp152) tmp154 = tmp153 / tmp63 tmp155 = tmp20 * tmp154 tmp156 = tl.broadcast_to(tmp155, [XBLOCK, RBLOCK]) tmp158 = tl.where(xmask, tmp156, 0) tmp159 = tl.sum(tmp158, 1)[:, None] tmp161 = tmp160 - tmp60 tmp162 = tl_math.exp(tmp161) tmp163 = tmp162 / tmp63 tmp164 = tmp22 * tmp163 tmp165 = tl.broadcast_to(tmp164, [XBLOCK, RBLOCK]) tmp167 = tl.where(xmask, tmp165, 0) tmp168 = tl.sum(tmp167, 1)[:, None] tmp170 = tmp169 - tmp60 tmp171 = tl_math.exp(tmp170) tmp172 = tmp171 / tmp63 tmp173 = tmp24 * tmp172 tmp174 = tl.broadcast_to(tmp173, [XBLOCK, RBLOCK]) tmp176 = tl.where(xmask, tmp174, 0) tmp177 = tl.sum(tmp176, 1)[:, None] tmp179 = tmp178 - tmp60 tmp180 = tl_math.exp(tmp179) tmp181 = tmp180 / tmp63 tmp182 = tmp26 * tmp181 tmp183 = tl.broadcast_to(tmp182, [XBLOCK, RBLOCK]) tmp185 = tl.where(xmask, tmp183, 0) tmp186 = tl.sum(tmp185, 1)[:, None] tmp188 = tmp187 - tmp60 tmp189 = tl_math.exp(tmp188) tmp190 = tmp189 / tmp63 tmp191 = tmp28 * tmp190 tmp192 = tl.broadcast_to(tmp191, [XBLOCK, RBLOCK]) tmp194 = tl.where(xmask, tmp192, 0) tmp195 = tl.sum(tmp194, 1)[:, None] tmp197 = tmp196 - tmp60 tmp198 = tl_math.exp(tmp197) tmp199 = tmp198 / tmp63 tmp200 = tmp30 * tmp199 tmp201 = tl.broadcast_to(tmp200, [XBLOCK, RBLOCK]) tmp203 = tl.where(xmask, tmp201, 0) tmp204 = tl.sum(tmp203, 1)[:, None] tmp206 = tmp205 - tmp60 tmp207 = tl_math.exp(tmp206) tmp208 = tmp207 / tmp63 tmp209 = tmp32 * tmp208 tmp210 = tl.broadcast_to(tmp209, [XBLOCK, RBLOCK]) tmp212 = tl.where(xmask, tmp210, 0) tmp213 = tl.sum(tmp212, 1)[:, None] tmp215 = tmp214 - tmp60 tmp216 = tl_math.exp(tmp215) tmp217 = tmp216 / tmp63 tmp218 = tmp34 * tmp217 tmp219 = tl.broadcast_to(tmp218, [XBLOCK, RBLOCK]) tmp221 = tl.where(xmask, tmp219, 0) tmp222 = tl.sum(tmp221, 1)[:, None] tmp224 = tmp223 - tmp60 tmp225 = tl_math.exp(tmp224) tmp226 = tmp225 / tmp63 tmp227 = tmp36 * tmp226 tmp228 = tl.broadcast_to(tmp227, [XBLOCK, RBLOCK]) tmp230 = tl.where(xmask, tmp228, 0) tmp231 = tl.sum(tmp230, 1)[:, None] tmp233 = tmp232 - tmp60 tmp234 = tl_math.exp(tmp233) tmp235 = tmp234 / tmp63 tmp236 = tmp38 * tmp235 tmp237 = tl.broadcast_to(tmp236, [XBLOCK, RBLOCK]) tmp239 = tl.where(xmask, tmp237, 0) tmp240 = tl.sum(tmp239, 1)[:, None] tmp242 = tmp241 - tmp60 tmp243 = tl_math.exp(tmp242) tmp244 = tmp243 / tmp63 tmp245 = tmp40 * tmp244 tmp246 = tl.broadcast_to(tmp245, [XBLOCK, RBLOCK]) tmp248 = tl.where(xmask, tmp246, 0) tmp249 = tl.sum(tmp248, 1)[:, None] tmp251 = tmp250 - tmp60 tmp252 = tl_math.exp(tmp251) tmp253 = tmp252 / tmp63 tmp254 = tmp42 * tmp253 tmp255 = tl.broadcast_to(tmp254, [XBLOCK, RBLOCK]) tmp257 = tl.where(xmask, tmp255, 0) tmp258 = tl.sum(tmp257, 1)[:, None] tmp260 = tmp259 - tmp60 tmp261 = tl_math.exp(tmp260) tmp262 = tmp261 / tmp63 tmp263 = tmp44 * tmp262 tmp264 = tl.broadcast_to(tmp263, [XBLOCK, RBLOCK]) tmp266 = tl.where(xmask, tmp264, 0) tmp267 = tl.sum(tmp266, 1)[:, None] tmp269 = tmp268 - tmp60 tmp270 = tl_math.exp(tmp269) tmp271 = tmp270 / tmp63 tmp272 = tmp46 * tmp271 tmp273 = tl.broadcast_to(tmp272, [XBLOCK, RBLOCK]) tmp275 = tl.where(xmask, tmp273, 0) tmp276 = tl.sum(tmp275, 1)[:, None] tmp278 = tmp277 - tmp60 tmp279 = tl_math.exp(tmp278) tmp280 = tmp279 / tmp63 tmp281 = tmp48 * tmp280 tmp282 = tl.broadcast_to(tmp281, [XBLOCK, RBLOCK]) tmp284 = tl.where(xmask, tmp282, 0) tmp285 = tl.sum(tmp284, 1)[:, None] tmp287 = tmp286 - tmp60 tmp288 = tl_math.exp(tmp287) tmp289 = tmp288 / tmp63 tmp290 = tmp50 * tmp289 tmp291 = tl.broadcast_to(tmp290, [XBLOCK, RBLOCK]) tmp293 = tl.where(xmask, tmp291, 0) tmp294 = tl.sum(tmp293, 1)[:, None] tmp296 = tmp295 - tmp60 tmp297 = tl_math.exp(tmp296) tmp298 = tmp297 / tmp63 tmp299 = tmp52 * tmp298 tmp300 = tl.broadcast_to(tmp299, [XBLOCK, RBLOCK]) tmp302 = tl.where(xmask, tmp300, 0) tmp303 = tl.sum(tmp302, 1)[:, None] tmp305 = tmp304 - tmp60 tmp306 = tl_math.exp(tmp305) tmp307 = tmp306 / tmp63 tmp308 = tmp54 * tmp307 tmp309 = tl.broadcast_to(tmp308, [XBLOCK, RBLOCK]) tmp311 = tl.where(xmask, tmp309, 0) tmp312 = tl.sum(tmp311, 1)[:, None] tmp314 = tmp313 - tmp60 tmp315 = tl_math.exp(tmp314) tmp316 = tmp315 / tmp63 tmp317 = tmp56 * tmp316 tmp318 = tl.broadcast_to(tmp317, [XBLOCK, RBLOCK]) tmp320 = tl.where(xmask, tmp318, 0) tmp321 = tl.sum(tmp320, 1)[:, None] tl.store(out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.store(out_ptr1 + (r2 + (16*x3)), tmp4, xmask) tl.store(out_ptr2 + (r2 + (16*x3)), tmp6, xmask) tl.store(out_ptr3 + (r2 + (16*x3)), tmp8, xmask) tl.store(out_ptr4 + (r2 + (16*x3)), tmp10, xmask) tl.store(out_ptr5 + (r2 + (16*x3)), tmp12, xmask) tl.store(out_ptr6 + (r2 + (16*x3)), tmp14, xmask) tl.store(out_ptr7 + (r2 + (16*x3)), tmp16, xmask) tl.store(out_ptr8 + (r2 + (16*x3)), tmp18, xmask) tl.store(out_ptr9 + (r2 + (16*x3)), tmp20, xmask) tl.store(out_ptr10 + (r2 + (16*x3)), tmp22, xmask) tl.store(out_ptr11 + (r2 + (16*x3)), tmp24, xmask) tl.store(out_ptr12 + (r2 + (16*x3)), tmp26, xmask) tl.store(out_ptr13 + (r2 + (16*x3)), tmp28, xmask) tl.store(out_ptr14 + (r2 + (16*x3)), tmp30, xmask) tl.store(out_ptr15 + (r2 + (16*x3)), tmp32, xmask) tl.store(out_ptr16 + (r2 + (16*x3)), tmp34, xmask) tl.store(out_ptr17 + (r2 + (16*x3)), tmp36, xmask) tl.store(out_ptr18 + (r2 + (16*x3)), tmp38, xmask) tl.store(out_ptr19 + (r2 + (16*x3)), tmp40, xmask) tl.store(out_ptr20 + (r2 + (16*x3)), tmp42, xmask) tl.store(out_ptr21 + (r2 + (16*x3)), tmp44, xmask) tl.store(out_ptr22 + (r2 + (16*x3)), tmp46, xmask) tl.store(out_ptr23 + (r2 + (16*x3)), tmp48, xmask) tl.store(out_ptr24 + (r2 + (16*x3)), tmp50, xmask) tl.store(out_ptr25 + (r2 + (16*x3)), tmp52, xmask) tl.store(out_ptr26 + (r2 + (16*x3)), tmp54, xmask) tl.store(out_ptr27 + (r2 + (16*x3)), tmp56, xmask) tl.store(out_ptr28 + (x3), tmp69, xmask) tl.store(out_ptr29 + (x3), tmp78, xmask) tl.store(out_ptr30 + (x3), tmp87, xmask) tl.store(out_ptr31 + (x3), tmp96, xmask) tl.store(out_ptr32 + (x3), tmp105, xmask) tl.store(out_ptr33 + (x3), tmp114, xmask) tl.store(out_ptr34 + (x3), tmp123, xmask) tl.store(out_ptr35 + (x3), tmp132, xmask) tl.store(out_ptr36 + (x3), tmp141, xmask) tl.store(out_ptr37 + (x3), tmp150, xmask) tl.store(out_ptr38 + (x3), tmp159, xmask) tl.store(out_ptr39 + (x3), tmp168, xmask) tl.store(out_ptr40 + (x3), tmp177, xmask) tl.store(out_ptr41 + (x3), tmp186, xmask) tl.store(out_ptr42 + (x3), tmp195, xmask) tl.store(out_ptr43 + (x3), tmp204, xmask) tl.store(out_ptr44 + (x3), tmp213, xmask) tl.store(out_ptr45 + (x3), tmp222, xmask) tl.store(out_ptr46 + (x3), tmp231, xmask) tl.store(out_ptr47 + (x3), tmp240, xmask) tl.store(out_ptr48 + (x3), tmp249, xmask) tl.store(out_ptr49 + (x3), tmp258, xmask) tl.store(out_ptr50 + (x3), tmp267, xmask) tl.store(out_ptr51 + (x3), tmp276, xmask) tl.store(out_ptr52 + (x3), tmp285, xmask) tl.store(out_ptr53 + (x3), tmp294, xmask) tl.store(out_ptr54 + (x3), tmp303, xmask) tl.store(out_ptr55 + (x3), tmp312, xmask) tl.store(out_ptr56 + (x3), tmp321, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pc/cpc4rilvtd5w4yagyevfs2h753octnb56qd5zek3pkk2r4jika3b.py # Topologically Sorted Source Nodes: [residual_58, residual_59, sum_30, residual_60, residual_61, sum_31, residual_62, residual_63, sum_32, residual_64, residual_65, sum_33, residual_66, residual_67, sum_34, residual_68, residual_69, sum_35, residual_70, residual_71, sum_36, residual_72, residual_73, sum_37, residual_74, residual_75, sum_38, residual_76, residual_77, sum_39, residual_78, residual_79, sum_40, residual_80, residual_81, sum_41, residual_82, residual_83, sum_42, residual_84, residual_85, sum_43, residual_86, residual_87, sum_44, residual_88, residual_89, sum_45, residual_90, residual_91, sum_46, residual_92, residual_93, sum_47, residual_94, residual_95, sum_48, residual_96, residual_97, sum_49, residual_98, residual_99, sum_50, residual_100, residual_101, sum_51, residual_102, residual_103, sum_52, residual_104, residual_105, sum_53, residual_106, residual_107, sum_54, residual_108, residual_109, sum_55, residual_110, residual_111, sum_56, residual_112, residual_113, sum_57], Original ATen: [aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # residual_100 => sub_51 # residual_101 => mul_50 # residual_102 => sub_52 # residual_103 => mul_51 # residual_104 => sub_53 # residual_105 => mul_52 # residual_106 => sub_54 # residual_107 => mul_53 # residual_108 => sub_55 # residual_109 => mul_54 # residual_110 => sub_56 # residual_111 => mul_55 # residual_112 => sub_57 # residual_113 => mul_56 # residual_58 => sub_30 # residual_59 => mul_29 # residual_60 => sub_31 # residual_61 => mul_30 # residual_62 => sub_32 # residual_63 => mul_31 # residual_64 => sub_33 # residual_65 => mul_32 # residual_66 => sub_34 # residual_67 => mul_33 # residual_68 => sub_35 # residual_69 => mul_34 # residual_70 => sub_36 # residual_71 => mul_35 # residual_72 => sub_37 # residual_73 => mul_36 # residual_74 => sub_38 # residual_75 => mul_37 # residual_76 => sub_39 # residual_77 => mul_38 # residual_78 => sub_40 # residual_79 => mul_39 # residual_80 => sub_41 # residual_81 => mul_40 # residual_82 => sub_42 # residual_83 => mul_41 # residual_84 => sub_43 # residual_85 => mul_42 # residual_86 => sub_44 # residual_87 => mul_43 # residual_88 => sub_45 # residual_89 => mul_44 # residual_90 => sub_46 # residual_91 => mul_45 # residual_92 => sub_47 # residual_93 => mul_46 # residual_94 => sub_48 # residual_95 => mul_47 # residual_96 => sub_49 # residual_97 => mul_48 # residual_98 => sub_50 # residual_99 => mul_49 # sum_30 => sum_31 # sum_31 => sum_32 # sum_32 => sum_33 # sum_33 => sum_34 # sum_34 => sum_35 # sum_35 => sum_36 # sum_36 => sum_37 # sum_37 => sum_38 # sum_38 => sum_39 # sum_39 => sum_40 # sum_40 => sum_41 # sum_41 => sum_42 # sum_42 => sum_43 # sum_43 => sum_44 # sum_44 => sum_45 # sum_45 => sum_46 # sum_46 => sum_47 # sum_47 => sum_48 # sum_48 => sum_49 # sum_49 => sum_50 # sum_50 => sum_51 # sum_51 => sum_52 # sum_52 => sum_53 # sum_53 => sum_54 # sum_54 => sum_55 # sum_55 => sum_56 # sum_56 => sum_57 # sum_57 => sum_58 # Graph fragment: # %sub_30 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_88), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_30, %unsqueeze_89), kwargs = {}) # %sum_31 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_29, [-1]), kwargs = {}) # %sub_31 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_91), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_31, %unsqueeze_92), kwargs = {}) # %sum_32 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_30, [-1]), kwargs = {}) # %sub_32 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_94), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_32, %unsqueeze_95), kwargs = {}) # %sum_33 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_31, [-1]), kwargs = {}) # %sub_33 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_97), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_33, %unsqueeze_98), kwargs = {}) # %sum_34 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_32, [-1]), kwargs = {}) # %sub_34 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_100), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_34, %unsqueeze_101), kwargs = {}) # %sum_35 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_33, [-1]), kwargs = {}) # %sub_35 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_103), kwargs = {}) # %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_35, %unsqueeze_104), kwargs = {}) # %sum_36 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_34, [-1]), kwargs = {}) # %sub_36 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_106), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_36, %unsqueeze_107), kwargs = {}) # %sum_37 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_35, [-1]), kwargs = {}) # %sub_37 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_109), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_37, %unsqueeze_110), kwargs = {}) # %sum_38 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_36, [-1]), kwargs = {}) # %sub_38 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_112), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_38, %unsqueeze_113), kwargs = {}) # %sum_39 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_37, [-1]), kwargs = {}) # %sub_39 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_115), kwargs = {}) # %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_39, %unsqueeze_116), kwargs = {}) # %sum_40 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_38, [-1]), kwargs = {}) # %sub_40 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_118), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_40, %unsqueeze_119), kwargs = {}) # %sum_41 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_39, [-1]), kwargs = {}) # %sub_41 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_121), kwargs = {}) # %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_41, %unsqueeze_122), kwargs = {}) # %sum_42 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_40, [-1]), kwargs = {}) # %sub_42 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_124), kwargs = {}) # %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_42, %unsqueeze_125), kwargs = {}) # %sum_43 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_41, [-1]), kwargs = {}) # %sub_43 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_127), kwargs = {}) # %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_43, %unsqueeze_128), kwargs = {}) # %sum_44 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_42, [-1]), kwargs = {}) # %sub_44 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_130), kwargs = {}) # %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_44, %unsqueeze_131), kwargs = {}) # %sum_45 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_43, [-1]), kwargs = {}) # %sub_45 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_133), kwargs = {}) # %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_45, %unsqueeze_134), kwargs = {}) # %sum_46 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_44, [-1]), kwargs = {}) # %sub_46 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_136), kwargs = {}) # %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_46, %unsqueeze_137), kwargs = {}) # %sum_47 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_45, [-1]), kwargs = {}) # %sub_47 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_139), kwargs = {}) # %mul_46 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_47, %unsqueeze_140), kwargs = {}) # %sum_48 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_46, [-1]), kwargs = {}) # %sub_48 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_142), kwargs = {}) # %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_48, %unsqueeze_143), kwargs = {}) # %sum_49 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_47, [-1]), kwargs = {}) # %sub_49 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_145), kwargs = {}) # %mul_48 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_49, %unsqueeze_146), kwargs = {}) # %sum_50 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_48, [-1]), kwargs = {}) # %sub_50 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_148), kwargs = {}) # %mul_49 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_50, %unsqueeze_149), kwargs = {}) # %sum_51 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_49, [-1]), kwargs = {}) # %sub_51 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_151), kwargs = {}) # %mul_50 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_51, %unsqueeze_152), kwargs = {}) # %sum_52 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_50, [-1]), kwargs = {}) # %sub_52 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_154), kwargs = {}) # %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_52, %unsqueeze_155), kwargs = {}) # %sum_53 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_51, [-1]), kwargs = {}) # %sub_53 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_157), kwargs = {}) # %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_53, %unsqueeze_158), kwargs = {}) # %sum_54 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_52, [-1]), kwargs = {}) # %sub_54 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_160), kwargs = {}) # %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_54, %unsqueeze_161), kwargs = {}) # %sum_55 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_53, [-1]), kwargs = {}) # %sub_55 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_163), kwargs = {}) # %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_55, %unsqueeze_164), kwargs = {}) # %sum_56 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_54, [-1]), kwargs = {}) # %sub_56 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_166), kwargs = {}) # %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_56, %unsqueeze_167), kwargs = {}) # %sum_57 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_55, [-1]), kwargs = {}) # %sub_57 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_169), kwargs = {}) # %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_57, %unsqueeze_170), kwargs = {}) # %sum_58 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_56, [-1]), kwargs = {}) triton_per_fused_mul_sub_sum_2 = async_compile.triton('triton_per_fused_mul_sub_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: 'i32', 62: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sub_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 59, 'num_reduction': 28, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sub_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (116 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (120 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (124 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (132 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (136 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (140 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (144 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (148 + x0), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (152 + x0), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (156 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (160 + x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (164 + x0), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (168 + x0), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (172 + x0), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (176 + x0), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (180 + x0), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (184 + x0), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (188 + x0), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (196 + x0), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (200 + x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr1 + (204 + x0), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (208 + x0), xmask, eviction_policy='evict_last') tmp49 = tl.load(in_ptr1 + (212 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (216 + x0), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (220 + x0), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (224 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr2 + (464 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp58 = tl.load(in_ptr3 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp61 = tl.load(in_ptr4 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp68 = tl.load(in_ptr2 + (480 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp77 = tl.load(in_ptr2 + (496 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp86 = tl.load(in_ptr2 + (512 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp95 = tl.load(in_ptr2 + (528 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp104 = tl.load(in_ptr2 + (544 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp113 = tl.load(in_ptr2 + (560 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp122 = tl.load(in_ptr2 + (576 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp131 = tl.load(in_ptr2 + (592 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp140 = tl.load(in_ptr2 + (608 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp149 = tl.load(in_ptr2 + (624 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp158 = tl.load(in_ptr2 + (640 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp167 = tl.load(in_ptr2 + (656 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp176 = tl.load(in_ptr2 + (672 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp185 = tl.load(in_ptr2 + (688 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp194 = tl.load(in_ptr2 + (704 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp203 = tl.load(in_ptr2 + (720 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp212 = tl.load(in_ptr2 + (736 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp221 = tl.load(in_ptr2 + (752 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp230 = tl.load(in_ptr2 + (768 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp239 = tl.load(in_ptr2 + (784 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp248 = tl.load(in_ptr2 + (800 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp257 = tl.load(in_ptr2 + (816 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp266 = tl.load(in_ptr2 + (832 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp275 = tl.load(in_ptr2 + (848 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp284 = tl.load(in_ptr2 + (864 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp293 = tl.load(in_ptr2 + (880 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp302 = tl.load(in_ptr2 + (896 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp0 - tmp3 tmp6 = tmp0 - tmp5 tmp8 = tmp0 - tmp7 tmp10 = tmp0 - tmp9 tmp12 = tmp0 - tmp11 tmp14 = tmp0 - tmp13 tmp16 = tmp0 - tmp15 tmp18 = tmp0 - tmp17 tmp20 = tmp0 - tmp19 tmp22 = tmp0 - tmp21 tmp24 = tmp0 - tmp23 tmp26 = tmp0 - tmp25 tmp28 = tmp0 - tmp27 tmp30 = tmp0 - tmp29 tmp32 = tmp0 - tmp31 tmp34 = tmp0 - tmp33 tmp36 = tmp0 - tmp35 tmp38 = tmp0 - tmp37 tmp40 = tmp0 - tmp39 tmp42 = tmp0 - tmp41 tmp44 = tmp0 - tmp43 tmp46 = tmp0 - tmp45 tmp48 = tmp0 - tmp47 tmp50 = tmp0 - tmp49 tmp52 = tmp0 - tmp51 tmp54 = tmp0 - tmp53 tmp56 = tmp0 - tmp55 tmp59 = tmp57 - tmp58 tmp60 = tl_math.exp(tmp59) tmp62 = tmp60 / tmp61 tmp63 = tmp2 * tmp62 tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = tl.where(xmask, tmp64, 0) tmp67 = tl.sum(tmp66, 1)[:, None] tmp69 = tmp68 - tmp58 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 / tmp61 tmp72 = tmp4 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = tl.where(xmask, tmp73, 0) tmp76 = tl.sum(tmp75, 1)[:, None] tmp78 = tmp77 - tmp58 tmp79 = tl_math.exp(tmp78) tmp80 = tmp79 / tmp61 tmp81 = tmp6 * tmp80 tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK]) tmp84 = tl.where(xmask, tmp82, 0) tmp85 = tl.sum(tmp84, 1)[:, None] tmp87 = tmp86 - tmp58 tmp88 = tl_math.exp(tmp87) tmp89 = tmp88 / tmp61 tmp90 = tmp8 * tmp89 tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK]) tmp93 = tl.where(xmask, tmp91, 0) tmp94 = tl.sum(tmp93, 1)[:, None] tmp96 = tmp95 - tmp58 tmp97 = tl_math.exp(tmp96) tmp98 = tmp97 / tmp61 tmp99 = tmp10 * tmp98 tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK]) tmp102 = tl.where(xmask, tmp100, 0) tmp103 = tl.sum(tmp102, 1)[:, None] tmp105 = tmp104 - tmp58 tmp106 = tl_math.exp(tmp105) tmp107 = tmp106 / tmp61 tmp108 = tmp12 * tmp107 tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK]) tmp111 = tl.where(xmask, tmp109, 0) tmp112 = tl.sum(tmp111, 1)[:, None] tmp114 = tmp113 - tmp58 tmp115 = tl_math.exp(tmp114) tmp116 = tmp115 / tmp61 tmp117 = tmp14 * tmp116 tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK]) tmp120 = tl.where(xmask, tmp118, 0) tmp121 = tl.sum(tmp120, 1)[:, None] tmp123 = tmp122 - tmp58 tmp124 = tl_math.exp(tmp123) tmp125 = tmp124 / tmp61 tmp126 = tmp16 * tmp125 tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK]) tmp129 = tl.where(xmask, tmp127, 0) tmp130 = tl.sum(tmp129, 1)[:, None] tmp132 = tmp131 - tmp58 tmp133 = tl_math.exp(tmp132) tmp134 = tmp133 / tmp61 tmp135 = tmp18 * tmp134 tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK]) tmp138 = tl.where(xmask, tmp136, 0) tmp139 = tl.sum(tmp138, 1)[:, None] tmp141 = tmp140 - tmp58 tmp142 = tl_math.exp(tmp141) tmp143 = tmp142 / tmp61 tmp144 = tmp20 * tmp143 tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK]) tmp147 = tl.where(xmask, tmp145, 0) tmp148 = tl.sum(tmp147, 1)[:, None] tmp150 = tmp149 - tmp58 tmp151 = tl_math.exp(tmp150) tmp152 = tmp151 / tmp61 tmp153 = tmp22 * tmp152 tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK]) tmp156 = tl.where(xmask, tmp154, 0) tmp157 = tl.sum(tmp156, 1)[:, None] tmp159 = tmp158 - tmp58 tmp160 = tl_math.exp(tmp159) tmp161 = tmp160 / tmp61 tmp162 = tmp24 * tmp161 tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK]) tmp165 = tl.where(xmask, tmp163, 0) tmp166 = tl.sum(tmp165, 1)[:, None] tmp168 = tmp167 - tmp58 tmp169 = tl_math.exp(tmp168) tmp170 = tmp169 / tmp61 tmp171 = tmp26 * tmp170 tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK]) tmp174 = tl.where(xmask, tmp172, 0) tmp175 = tl.sum(tmp174, 1)[:, None] tmp177 = tmp176 - tmp58 tmp178 = tl_math.exp(tmp177) tmp179 = tmp178 / tmp61 tmp180 = tmp28 * tmp179 tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK]) tmp183 = tl.where(xmask, tmp181, 0) tmp184 = tl.sum(tmp183, 1)[:, None] tmp186 = tmp185 - tmp58 tmp187 = tl_math.exp(tmp186) tmp188 = tmp187 / tmp61 tmp189 = tmp30 * tmp188 tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK]) tmp192 = tl.where(xmask, tmp190, 0) tmp193 = tl.sum(tmp192, 1)[:, None] tmp195 = tmp194 - tmp58 tmp196 = tl_math.exp(tmp195) tmp197 = tmp196 / tmp61 tmp198 = tmp32 * tmp197 tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK]) tmp201 = tl.where(xmask, tmp199, 0) tmp202 = tl.sum(tmp201, 1)[:, None] tmp204 = tmp203 - tmp58 tmp205 = tl_math.exp(tmp204) tmp206 = tmp205 / tmp61 tmp207 = tmp34 * tmp206 tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK]) tmp210 = tl.where(xmask, tmp208, 0) tmp211 = tl.sum(tmp210, 1)[:, None] tmp213 = tmp212 - tmp58 tmp214 = tl_math.exp(tmp213) tmp215 = tmp214 / tmp61 tmp216 = tmp36 * tmp215 tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK]) tmp219 = tl.where(xmask, tmp217, 0) tmp220 = tl.sum(tmp219, 1)[:, None] tmp222 = tmp221 - tmp58 tmp223 = tl_math.exp(tmp222) tmp224 = tmp223 / tmp61 tmp225 = tmp38 * tmp224 tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK]) tmp228 = tl.where(xmask, tmp226, 0) tmp229 = tl.sum(tmp228, 1)[:, None] tmp231 = tmp230 - tmp58 tmp232 = tl_math.exp(tmp231) tmp233 = tmp232 / tmp61 tmp234 = tmp40 * tmp233 tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK]) tmp237 = tl.where(xmask, tmp235, 0) tmp238 = tl.sum(tmp237, 1)[:, None] tmp240 = tmp239 - tmp58 tmp241 = tl_math.exp(tmp240) tmp242 = tmp241 / tmp61 tmp243 = tmp42 * tmp242 tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK]) tmp246 = tl.where(xmask, tmp244, 0) tmp247 = tl.sum(tmp246, 1)[:, None] tmp249 = tmp248 - tmp58 tmp250 = tl_math.exp(tmp249) tmp251 = tmp250 / tmp61 tmp252 = tmp44 * tmp251 tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK]) tmp255 = tl.where(xmask, tmp253, 0) tmp256 = tl.sum(tmp255, 1)[:, None] tmp258 = tmp257 - tmp58 tmp259 = tl_math.exp(tmp258) tmp260 = tmp259 / tmp61 tmp261 = tmp46 * tmp260 tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK]) tmp264 = tl.where(xmask, tmp262, 0) tmp265 = tl.sum(tmp264, 1)[:, None] tmp267 = tmp266 - tmp58 tmp268 = tl_math.exp(tmp267) tmp269 = tmp268 / tmp61 tmp270 = tmp48 * tmp269 tmp271 = tl.broadcast_to(tmp270, [XBLOCK, RBLOCK]) tmp273 = tl.where(xmask, tmp271, 0) tmp274 = tl.sum(tmp273, 1)[:, None] tmp276 = tmp275 - tmp58 tmp277 = tl_math.exp(tmp276) tmp278 = tmp277 / tmp61 tmp279 = tmp50 * tmp278 tmp280 = tl.broadcast_to(tmp279, [XBLOCK, RBLOCK]) tmp282 = tl.where(xmask, tmp280, 0) tmp283 = tl.sum(tmp282, 1)[:, None] tmp285 = tmp284 - tmp58 tmp286 = tl_math.exp(tmp285) tmp287 = tmp286 / tmp61 tmp288 = tmp52 * tmp287 tmp289 = tl.broadcast_to(tmp288, [XBLOCK, RBLOCK]) tmp291 = tl.where(xmask, tmp289, 0) tmp292 = tl.sum(tmp291, 1)[:, None] tmp294 = tmp293 - tmp58 tmp295 = tl_math.exp(tmp294) tmp296 = tmp295 / tmp61 tmp297 = tmp54 * tmp296 tmp298 = tl.broadcast_to(tmp297, [XBLOCK, RBLOCK]) tmp300 = tl.where(xmask, tmp298, 0) tmp301 = tl.sum(tmp300, 1)[:, None] tmp303 = tmp302 - tmp58 tmp304 = tl_math.exp(tmp303) tmp305 = tmp304 / tmp61 tmp306 = tmp56 * tmp305 tmp307 = tl.broadcast_to(tmp306, [XBLOCK, RBLOCK]) tmp309 = tl.where(xmask, tmp307, 0) tmp310 = tl.sum(tmp309, 1)[:, None] tl.store(out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.store(out_ptr1 + (r2 + (16*x3)), tmp4, xmask) tl.store(out_ptr2 + (r2 + (16*x3)), tmp6, xmask) tl.store(out_ptr3 + (r2 + (16*x3)), tmp8, xmask) tl.store(out_ptr4 + (r2 + (16*x3)), tmp10, xmask) tl.store(out_ptr5 + (r2 + (16*x3)), tmp12, xmask) tl.store(out_ptr6 + (r2 + (16*x3)), tmp14, xmask) tl.store(out_ptr7 + (r2 + (16*x3)), tmp16, xmask) tl.store(out_ptr8 + (r2 + (16*x3)), tmp18, xmask) tl.store(out_ptr9 + (r2 + (16*x3)), tmp20, xmask) tl.store(out_ptr10 + (r2 + (16*x3)), tmp22, xmask) tl.store(out_ptr11 + (r2 + (16*x3)), tmp24, xmask) tl.store(out_ptr12 + (r2 + (16*x3)), tmp26, xmask) tl.store(out_ptr13 + (r2 + (16*x3)), tmp28, xmask) tl.store(out_ptr14 + (r2 + (16*x3)), tmp30, xmask) tl.store(out_ptr15 + (r2 + (16*x3)), tmp32, xmask) tl.store(out_ptr16 + (r2 + (16*x3)), tmp34, xmask) tl.store(out_ptr17 + (r2 + (16*x3)), tmp36, xmask) tl.store(out_ptr18 + (r2 + (16*x3)), tmp38, xmask) tl.store(out_ptr19 + (r2 + (16*x3)), tmp40, xmask) tl.store(out_ptr20 + (r2 + (16*x3)), tmp42, xmask) tl.store(out_ptr21 + (r2 + (16*x3)), tmp44, xmask) tl.store(out_ptr22 + (r2 + (16*x3)), tmp46, xmask) tl.store(out_ptr23 + (r2 + (16*x3)), tmp48, xmask) tl.store(out_ptr24 + (r2 + (16*x3)), tmp50, xmask) tl.store(out_ptr25 + (r2 + (16*x3)), tmp52, xmask) tl.store(out_ptr26 + (r2 + (16*x3)), tmp54, xmask) tl.store(out_ptr27 + (r2 + (16*x3)), tmp56, xmask) tl.store(out_ptr28 + (x3), tmp67, xmask) tl.store(out_ptr29 + (x3), tmp76, xmask) tl.store(out_ptr30 + (x3), tmp85, xmask) tl.store(out_ptr31 + (x3), tmp94, xmask) tl.store(out_ptr32 + (x3), tmp103, xmask) tl.store(out_ptr33 + (x3), tmp112, xmask) tl.store(out_ptr34 + (x3), tmp121, xmask) tl.store(out_ptr35 + (x3), tmp130, xmask) tl.store(out_ptr36 + (x3), tmp139, xmask) tl.store(out_ptr37 + (x3), tmp148, xmask) tl.store(out_ptr38 + (x3), tmp157, xmask) tl.store(out_ptr39 + (x3), tmp166, xmask) tl.store(out_ptr40 + (x3), tmp175, xmask) tl.store(out_ptr41 + (x3), tmp184, xmask) tl.store(out_ptr42 + (x3), tmp193, xmask) tl.store(out_ptr43 + (x3), tmp202, xmask) tl.store(out_ptr44 + (x3), tmp211, xmask) tl.store(out_ptr45 + (x3), tmp220, xmask) tl.store(out_ptr46 + (x3), tmp229, xmask) tl.store(out_ptr47 + (x3), tmp238, xmask) tl.store(out_ptr48 + (x3), tmp247, xmask) tl.store(out_ptr49 + (x3), tmp256, xmask) tl.store(out_ptr50 + (x3), tmp265, xmask) tl.store(out_ptr51 + (x3), tmp274, xmask) tl.store(out_ptr52 + (x3), tmp283, xmask) tl.store(out_ptr53 + (x3), tmp292, xmask) tl.store(out_ptr54 + (x3), tmp301, xmask) tl.store(out_ptr55 + (x3), tmp310, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/st/cstxuovzesn23qbkbmy6v42shqz4pls6o6mkdxfmwjszj5mvqofd.py # Topologically Sorted Source Nodes: [residual_114, residual_115, sum_58, residual_116, residual_117, sum_59, residual_118, residual_119, sum_60, residual_120, residual_121, sum_61, residual_122, residual_123, sum_62, residual_124, residual_125, sum_63, residual_126, residual_127, sum_64], Original ATen: [aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # residual_114 => sub_58 # residual_115 => mul_57 # residual_116 => sub_59 # residual_117 => mul_58 # residual_118 => sub_60 # residual_119 => mul_59 # residual_120 => sub_61 # residual_121 => mul_60 # residual_122 => sub_62 # residual_123 => mul_61 # residual_124 => sub_63 # residual_125 => mul_62 # residual_126 => sub_64 # residual_127 => mul_63 # sum_58 => sum_59 # sum_59 => sum_60 # sum_60 => sum_61 # sum_61 => sum_62 # sum_62 => sum_63 # sum_63 => sum_64 # sum_64 => sum_65 # Graph fragment: # %sub_58 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_172), kwargs = {}) # %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_58, %unsqueeze_173), kwargs = {}) # %sum_59 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_57, [-1]), kwargs = {}) # %sub_59 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_175), kwargs = {}) # %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_59, %unsqueeze_176), kwargs = {}) # %sum_60 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_58, [-1]), kwargs = {}) # %sub_60 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_178), kwargs = {}) # %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_60, %unsqueeze_179), kwargs = {}) # %sum_61 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_59, [-1]), kwargs = {}) # %sub_61 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_181), kwargs = {}) # %mul_60 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_61, %unsqueeze_182), kwargs = {}) # %sum_62 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_60, [-1]), kwargs = {}) # %sub_62 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_184), kwargs = {}) # %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_62, %unsqueeze_185), kwargs = {}) # %sum_63 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_61, [-1]), kwargs = {}) # %sub_63 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_187), kwargs = {}) # %mul_62 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_63, %unsqueeze_188), kwargs = {}) # %sum_64 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_62, [-1]), kwargs = {}) # %sub_64 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_190), kwargs = {}) # %mul_63 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_64, %unsqueeze_191), kwargs = {}) # %sum_65 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_63, [-1]), kwargs = {}) triton_per_fused_mul_sub_sum_3 = async_compile.triton('triton_per_fused_mul_sub_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: 'i32', 20: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 7, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (228 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (232 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (236 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (240 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (244 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (248 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (252 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (912 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.load(in_ptr4 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp26 = tl.load(in_ptr2 + (928 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr2 + (944 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp44 = tl.load(in_ptr2 + (960 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp53 = tl.load(in_ptr2 + (976 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp62 = tl.load(in_ptr2 + (992 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp71 = tl.load(in_ptr2 + (1008 + r2 + (1024*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp0 - tmp3 tmp6 = tmp0 - tmp5 tmp8 = tmp0 - tmp7 tmp10 = tmp0 - tmp9 tmp12 = tmp0 - tmp11 tmp14 = tmp0 - tmp13 tmp17 = tmp15 - tmp16 tmp18 = tl_math.exp(tmp17) tmp20 = tmp18 / tmp19 tmp21 = tmp2 * tmp20 tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.where(xmask, tmp22, 0) tmp25 = tl.sum(tmp24, 1)[:, None] tmp27 = tmp26 - tmp16 tmp28 = tl_math.exp(tmp27) tmp29 = tmp28 / tmp19 tmp30 = tmp4 * tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tmp36 = tmp35 - tmp16 tmp37 = tl_math.exp(tmp36) tmp38 = tmp37 / tmp19 tmp39 = tmp6 * tmp38 tmp40 = tl.broadcast_to(tmp39, [XBLOCK, RBLOCK]) tmp42 = tl.where(xmask, tmp40, 0) tmp43 = tl.sum(tmp42, 1)[:, None] tmp45 = tmp44 - tmp16 tmp46 = tl_math.exp(tmp45) tmp47 = tmp46 / tmp19 tmp48 = tmp8 * tmp47 tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp51 = tl.where(xmask, tmp49, 0) tmp52 = tl.sum(tmp51, 1)[:, None] tmp54 = tmp53 - tmp16 tmp55 = tl_math.exp(tmp54) tmp56 = tmp55 / tmp19 tmp57 = tmp10 * tmp56 tmp58 = tl.broadcast_to(tmp57, [XBLOCK, RBLOCK]) tmp60 = tl.where(xmask, tmp58, 0) tmp61 = tl.sum(tmp60, 1)[:, None] tmp63 = tmp62 - tmp16 tmp64 = tl_math.exp(tmp63) tmp65 = tmp64 / tmp19 tmp66 = tmp12 * tmp65 tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK]) tmp69 = tl.where(xmask, tmp67, 0) tmp70 = tl.sum(tmp69, 1)[:, None] tmp72 = tmp71 - tmp16 tmp73 = tl_math.exp(tmp72) tmp74 = tmp73 / tmp19 tmp75 = tmp14 * tmp74 tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.where(xmask, tmp76, 0) tmp79 = tl.sum(tmp78, 1)[:, None] tl.store(out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.store(out_ptr1 + (r2 + (16*x3)), tmp4, xmask) tl.store(out_ptr2 + (r2 + (16*x3)), tmp6, xmask) tl.store(out_ptr3 + (r2 + (16*x3)), tmp8, xmask) tl.store(out_ptr4 + (r2 + (16*x3)), tmp10, xmask) tl.store(out_ptr5 + (r2 + (16*x3)), tmp12, xmask) tl.store(out_ptr6 + (r2 + (16*x3)), tmp14, xmask) tl.store(out_ptr7 + (x3), tmp25, xmask) tl.store(out_ptr8 + (x3), tmp34, xmask) tl.store(out_ptr9 + (x3), tmp43, xmask) tl.store(out_ptr10 + (x3), tmp52, xmask) tl.store(out_ptr11 + (x3), tmp61, xmask) tl.store(out_ptr12 + (x3), tmp70, xmask) tl.store(out_ptr13 + (x3), tmp79, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oc/coczrn6vl6mexwre2io3xtgstw7pjvmjymjanrr2pcnzp7gd7wea.py # Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63], Original ATen: [aten.zeros, aten.copy] # Source node to ATen node mapping: # setitem => copy # setitem_1 => copy_1 # setitem_10 => copy_10 # setitem_11 => copy_11 # setitem_12 => copy_12 # setitem_13 => copy_13 # setitem_14 => copy_14 # setitem_15 => copy_15 # setitem_16 => copy_16 # setitem_17 => copy_17 # setitem_18 => copy_18 # setitem_19 => copy_19 # setitem_2 => copy_2 # setitem_20 => copy_20 # setitem_21 => copy_21 # setitem_22 => copy_22 # setitem_23 => copy_23 # setitem_24 => copy_24 # setitem_25 => copy_25 # setitem_26 => copy_26 # setitem_27 => copy_27 # setitem_28 => copy_28 # setitem_29 => copy_29 # setitem_3 => copy_3 # setitem_30 => copy_30 # setitem_31 => copy_31 # setitem_32 => copy_32 # setitem_33 => copy_33 # setitem_34 => copy_34 # setitem_35 => copy_35 # setitem_36 => copy_36 # setitem_37 => copy_37 # setitem_38 => copy_38 # setitem_39 => copy_39 # setitem_4 => copy_4 # setitem_40 => copy_40 # setitem_41 => copy_41 # setitem_42 => copy_42 # setitem_43 => copy_43 # setitem_44 => copy_44 # setitem_45 => copy_45 # setitem_46 => copy_46 # setitem_47 => copy_47 # setitem_48 => copy_48 # setitem_49 => copy_49 # setitem_5 => copy_5 # setitem_50 => copy_50 # setitem_51 => copy_51 # setitem_52 => copy_52 # setitem_53 => copy_53 # setitem_54 => copy_54 # setitem_55 => copy_55 # setitem_56 => copy_56 # setitem_57 => copy_57 # setitem_58 => copy_58 # setitem_59 => copy_59 # setitem_6 => copy_6 # setitem_60 => copy_60 # setitem_61 => copy_61 # setitem_62 => copy_62 # setitem_63 => copy_63 # setitem_7 => copy_7 # setitem_8 => copy_8 # setitem_9 => copy_9 # vlad => full # Graph fragment: # %full : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 64, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_7, %sum_2), kwargs = {}) # %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%full, %copy, 1, 0, 1), kwargs = {}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_26, %sum_3), kwargs = {}) # %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %copy_1, 1, 1, 2), kwargs = {}) # %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_45, %sum_4), kwargs = {}) # %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %copy_2, 1, 2, 3), kwargs = {}) # %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_64, %sum_5), kwargs = {}) # %slice_scatter_default_3 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %copy_3, 1, 3, 4), kwargs = {}) # %copy_4 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_83, %sum_6), kwargs = {}) # %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_3, %copy_4, 1, 4, 5), kwargs = {}) # %copy_5 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_102, %sum_7), kwargs = {}) # %slice_scatter_default_5 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %copy_5, 1, 5, 6), kwargs = {}) # %copy_6 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_121, %sum_8), kwargs = {}) # %slice_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_5, %copy_6, 1, 6, 7), kwargs = {}) # %copy_7 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_140, %sum_9), kwargs = {}) # %slice_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_6, %copy_7, 1, 7, 8), kwargs = {}) # %copy_8 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_159, %sum_10), kwargs = {}) # %slice_scatter_default_8 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %copy_8, 1, 8, 9), kwargs = {}) # %copy_9 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_178, %sum_11), kwargs = {}) # %slice_scatter_default_9 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_8, %copy_9, 1, 9, 10), kwargs = {}) # %copy_10 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_197, %sum_12), kwargs = {}) # %slice_scatter_default_10 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_9, %copy_10, 1, 10, 11), kwargs = {}) # %copy_11 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_216, %sum_13), kwargs = {}) # %slice_scatter_default_11 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_10, %copy_11, 1, 11, 12), kwargs = {}) # %copy_12 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_235, %sum_14), kwargs = {}) # %slice_scatter_default_12 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_11, %copy_12, 1, 12, 13), kwargs = {}) # %copy_13 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_254, %sum_15), kwargs = {}) # %slice_scatter_default_13 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_12, %copy_13, 1, 13, 14), kwargs = {}) # %copy_14 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_273, %sum_16), kwargs = {}) # %slice_scatter_default_14 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_13, %copy_14, 1, 14, 15), kwargs = {}) # %copy_15 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_292, %sum_17), kwargs = {}) # %slice_scatter_default_15 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_14, %copy_15, 1, 15, 16), kwargs = {}) # %copy_16 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_311, %sum_18), kwargs = {}) # %slice_scatter_default_16 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_15, %copy_16, 1, 16, 17), kwargs = {}) # %copy_17 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_330, %sum_19), kwargs = {}) # %slice_scatter_default_17 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_16, %copy_17, 1, 17, 18), kwargs = {}) # %copy_18 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_349, %sum_20), kwargs = {}) # %slice_scatter_default_18 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_17, %copy_18, 1, 18, 19), kwargs = {}) # %copy_19 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_368, %sum_21), kwargs = {}) # %slice_scatter_default_19 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_18, %copy_19, 1, 19, 20), kwargs = {}) # %copy_20 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_387, %sum_22), kwargs = {}) # %slice_scatter_default_20 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_19, %copy_20, 1, 20, 21), kwargs = {}) # %copy_21 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_406, %sum_23), kwargs = {}) # %slice_scatter_default_21 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_20, %copy_21, 1, 21, 22), kwargs = {}) # %copy_22 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_425, %sum_24), kwargs = {}) # %slice_scatter_default_22 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_21, %copy_22, 1, 22, 23), kwargs = {}) # %copy_23 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_444, %sum_25), kwargs = {}) # %slice_scatter_default_23 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_22, %copy_23, 1, 23, 24), kwargs = {}) # %copy_24 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_463, %sum_26), kwargs = {}) # %slice_scatter_default_24 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_23, %copy_24, 1, 24, 25), kwargs = {}) # %copy_25 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_482, %sum_27), kwargs = {}) # %slice_scatter_default_25 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_24, %copy_25, 1, 25, 26), kwargs = {}) # %copy_26 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_501, %sum_28), kwargs = {}) # %slice_scatter_default_26 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_25, %copy_26, 1, 26, 27), kwargs = {}) # %copy_27 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_520, %sum_29), kwargs = {}) # %slice_scatter_default_27 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_26, %copy_27, 1, 27, 28), kwargs = {}) # %copy_28 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_539, %sum_30), kwargs = {}) # %slice_scatter_default_28 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_27, %copy_28, 1, 28, 29), kwargs = {}) # %copy_29 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_558, %sum_31), kwargs = {}) # %slice_scatter_default_29 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_28, %copy_29, 1, 29, 30), kwargs = {}) # %copy_30 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_577, %sum_32), kwargs = {}) # %slice_scatter_default_30 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_29, %copy_30, 1, 30, 31), kwargs = {}) # %copy_31 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_596, %sum_33), kwargs = {}) # %slice_scatter_default_31 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_30, %copy_31, 1, 31, 32), kwargs = {}) # %copy_32 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_615, %sum_34), kwargs = {}) # %slice_scatter_default_32 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_31, %copy_32, 1, 32, 33), kwargs = {}) # %copy_33 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_634, %sum_35), kwargs = {}) # %slice_scatter_default_33 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_32, %copy_33, 1, 33, 34), kwargs = {}) # %copy_34 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_653, %sum_36), kwargs = {}) # %slice_scatter_default_34 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_33, %copy_34, 1, 34, 35), kwargs = {}) # %copy_35 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_672, %sum_37), kwargs = {}) # %slice_scatter_default_35 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_34, %copy_35, 1, 35, 36), kwargs = {}) # %copy_36 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_691, %sum_38), kwargs = {}) # %slice_scatter_default_36 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_35, %copy_36, 1, 36, 37), kwargs = {}) # %copy_37 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_710, %sum_39), kwargs = {}) # %slice_scatter_default_37 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_36, %copy_37, 1, 37, 38), kwargs = {}) # %copy_38 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_729, %sum_40), kwargs = {}) # %slice_scatter_default_38 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_37, %copy_38, 1, 38, 39), kwargs = {}) # %copy_39 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_748, %sum_41), kwargs = {}) # %slice_scatter_default_39 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_38, %copy_39, 1, 39, 40), kwargs = {}) # %copy_40 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_767, %sum_42), kwargs = {}) # %slice_scatter_default_40 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_39, %copy_40, 1, 40, 41), kwargs = {}) # %copy_41 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_786, %sum_43), kwargs = {}) # %slice_scatter_default_41 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_40, %copy_41, 1, 41, 42), kwargs = {}) # %copy_42 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_805, %sum_44), kwargs = {}) # %slice_scatter_default_42 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_41, %copy_42, 1, 42, 43), kwargs = {}) # %copy_43 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_824, %sum_45), kwargs = {}) # %slice_scatter_default_43 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_42, %copy_43, 1, 43, 44), kwargs = {}) # %copy_44 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_843, %sum_46), kwargs = {}) # %slice_scatter_default_44 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_43, %copy_44, 1, 44, 45), kwargs = {}) # %copy_45 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_862, %sum_47), kwargs = {}) # %slice_scatter_default_45 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_44, %copy_45, 1, 45, 46), kwargs = {}) # %copy_46 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_881, %sum_48), kwargs = {}) # %slice_scatter_default_46 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_45, %copy_46, 1, 46, 47), kwargs = {}) # %copy_47 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_900, %sum_49), kwargs = {}) # %slice_scatter_default_47 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_46, %copy_47, 1, 47, 48), kwargs = {}) # %copy_48 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_919, %sum_50), kwargs = {}) # %slice_scatter_default_48 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_47, %copy_48, 1, 48, 49), kwargs = {}) # %copy_49 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_938, %sum_51), kwargs = {}) # %slice_scatter_default_49 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_48, %copy_49, 1, 49, 50), kwargs = {}) # %copy_50 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_957, %sum_52), kwargs = {}) # %slice_scatter_default_50 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_49, %copy_50, 1, 50, 51), kwargs = {}) # %copy_51 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_976, %sum_53), kwargs = {}) # %slice_scatter_default_51 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_50, %copy_51, 1, 51, 52), kwargs = {}) # %copy_52 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_995, %sum_54), kwargs = {}) # %slice_scatter_default_52 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_51, %copy_52, 1, 52, 53), kwargs = {}) # %copy_53 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1014, %sum_55), kwargs = {}) # %slice_scatter_default_53 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_52, %copy_53, 1, 53, 54), kwargs = {}) # %copy_54 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1033, %sum_56), kwargs = {}) # %slice_scatter_default_54 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_53, %copy_54, 1, 54, 55), kwargs = {}) # %copy_55 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1052, %sum_57), kwargs = {}) # %slice_scatter_default_55 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_54, %copy_55, 1, 55, 56), kwargs = {}) # %copy_56 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1071, %sum_58), kwargs = {}) # %slice_scatter_default_56 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_55, %copy_56, 1, 56, 57), kwargs = {}) # %copy_57 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1090, %sum_59), kwargs = {}) # %slice_scatter_default_57 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_56, %copy_57, 1, 57, 58), kwargs = {}) # %copy_58 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1109, %sum_60), kwargs = {}) # %slice_scatter_default_58 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_57, %copy_58, 1, 58, 59), kwargs = {}) # %copy_59 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1128, %sum_61), kwargs = {}) # %slice_scatter_default_59 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_58, %copy_59, 1, 59, 60), kwargs = {}) # %copy_60 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1147, %sum_62), kwargs = {}) # %slice_scatter_default_60 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_59, %copy_60, 1, 60, 61), kwargs = {}) # %copy_61 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1166, %sum_63), kwargs = {}) # %slice_scatter_default_61 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_60, %copy_61, 1, 61, 62), kwargs = {}) # %copy_62 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1185, %sum_64), kwargs = {}) # %slice_scatter_default_62 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_61, %copy_62, 1, 62, 63), kwargs = {}) # %copy_63 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1204, %sum_65), kwargs = {}) # %slice_scatter_default_63 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_62, %copy_63, 1, 63, 64), kwargs = {}) triton_poi_fused_copy_zeros_4 = async_compile.triton('triton_poi_fused_copy_zeros_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_copy_zeros_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 64, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_copy_zeros_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 64 x0 = xindex % 4 x2 = (xindex // 256) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([1], 3, tl.int64) tmp8 = tmp0 >= tmp7 tmp9 = tmp0 < tmp1 tmp10 = tmp8 & tmp9 tmp11 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp0 >= tmp12 tmp14 = tmp0 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.full([1], 1, tl.int64) tmp18 = tmp0 >= tmp17 tmp19 = tmp0 < tmp12 tmp20 = tmp18 & tmp19 tmp21 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp0 < tmp17 tmp23 = tl.load(in_ptr4 + (x0 + (4*x2)), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = 0.0 tmp25 = tl.where(tmp22, tmp23, tmp24) tmp26 = tl.where(tmp20, tmp21, tmp25) tmp27 = tl.where(tmp15, tmp16, tmp26) tmp28 = tl.where(tmp10, tmp11, tmp27) tmp29 = tl.where(tmp5, tmp6, tmp28) tmp30 = tl.full([1], 8, tl.int64) tmp31 = tmp0 >= tmp30 tmp32 = tl.full([1], 9, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tmp31 & tmp33 tmp35 = tl.load(in_ptr5 + (x0 + (4*x2)), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.full([1], 7, tl.int64) tmp37 = tmp0 >= tmp36 tmp38 = tmp0 < tmp30 tmp39 = tmp37 & tmp38 tmp40 = tl.load(in_ptr6 + (x0 + (4*x2)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp41 = tl.full([1], 6, tl.int64) tmp42 = tmp0 >= tmp41 tmp43 = tmp0 < tmp36 tmp44 = tmp42 & tmp43 tmp45 = tl.load(in_ptr7 + (x0 + (4*x2)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp46 = tmp0 >= tmp3 tmp47 = tmp0 < tmp41 tmp48 = tmp46 & tmp47 tmp49 = tl.load(in_ptr8 + (x0 + (4*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.where(tmp48, tmp49, tmp29) tmp51 = tl.where(tmp44, tmp45, tmp50) tmp52 = tl.where(tmp39, tmp40, tmp51) tmp53 = tl.where(tmp34, tmp35, tmp52) tmp54 = tl.full([1], 12, tl.int64) tmp55 = tmp0 >= tmp54 tmp56 = tl.full([1], 13, tl.int64) tmp57 = tmp0 < tmp56 tmp58 = tmp55 & tmp57 tmp59 = tl.load(in_ptr9 + (x0 + (4*x2)), tmp58 & xmask, eviction_policy='evict_last', other=0.0) tmp60 = tl.full([1], 11, tl.int64) tmp61 = tmp0 >= tmp60 tmp62 = tmp0 < tmp54 tmp63 = tmp61 & tmp62 tmp64 = tl.load(in_ptr10 + (x0 + (4*x2)), tmp63 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.full([1], 10, tl.int64) tmp66 = tmp0 >= tmp65 tmp67 = tmp0 < tmp60 tmp68 = tmp66 & tmp67 tmp69 = tl.load(in_ptr11 + (x0 + (4*x2)), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp0 >= tmp32 tmp71 = tmp0 < tmp65 tmp72 = tmp70 & tmp71 tmp73 = tl.load(in_ptr12 + (x0 + (4*x2)), tmp72 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp72, tmp73, tmp53) tmp75 = tl.where(tmp68, tmp69, tmp74) tmp76 = tl.where(tmp63, tmp64, tmp75) tmp77 = tl.where(tmp58, tmp59, tmp76) tmp78 = tl.full([1], 16, tl.int64) tmp79 = tmp0 >= tmp78 tmp80 = tl.full([1], 17, tl.int64) tmp81 = tmp0 < tmp80 tmp82 = tmp79 & tmp81 tmp83 = tl.load(in_ptr13 + (x0 + (4*x2)), tmp82 & xmask, eviction_policy='evict_last', other=0.0) tmp84 = tl.full([1], 15, tl.int64) tmp85 = tmp0 >= tmp84 tmp86 = tmp0 < tmp78 tmp87 = tmp85 & tmp86 tmp88 = tl.load(in_ptr14 + (x0 + (4*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full([1], 14, tl.int64) tmp90 = tmp0 >= tmp89 tmp91 = tmp0 < tmp84 tmp92 = tmp90 & tmp91 tmp93 = tl.load(in_ptr15 + (x0 + (4*x2)), tmp92 & xmask, eviction_policy='evict_last', other=0.0) tmp94 = tmp0 >= tmp56 tmp95 = tmp0 < tmp89 tmp96 = tmp94 & tmp95 tmp97 = tl.load(in_ptr16 + (x0 + (4*x2)), tmp96 & xmask, eviction_policy='evict_last', other=0.0) tmp98 = tl.where(tmp96, tmp97, tmp77) tmp99 = tl.where(tmp92, tmp93, tmp98) tmp100 = tl.where(tmp87, tmp88, tmp99) tmp101 = tl.where(tmp82, tmp83, tmp100) tmp102 = tl.full([1], 20, tl.int64) tmp103 = tmp0 >= tmp102 tmp104 = tl.full([1], 21, tl.int64) tmp105 = tmp0 < tmp104 tmp106 = tmp103 & tmp105 tmp107 = tl.load(in_ptr17 + (x0 + (4*x2)), tmp106 & xmask, eviction_policy='evict_last', other=0.0) tmp108 = tl.full([1], 19, tl.int64) tmp109 = tmp0 >= tmp108 tmp110 = tmp0 < tmp102 tmp111 = tmp109 & tmp110 tmp112 = tl.load(in_ptr18 + (x0 + (4*x2)), tmp111 & xmask, eviction_policy='evict_last', other=0.0) tmp113 = tl.full([1], 18, tl.int64) tmp114 = tmp0 >= tmp113 tmp115 = tmp0 < tmp108 tmp116 = tmp114 & tmp115 tmp117 = tl.load(in_ptr19 + (x0 + (4*x2)), tmp116 & xmask, eviction_policy='evict_last', other=0.0) tmp118 = tmp0 >= tmp80 tmp119 = tmp0 < tmp113 tmp120 = tmp118 & tmp119 tmp121 = tl.load(in_ptr20 + (x0 + (4*x2)), tmp120 & xmask, eviction_policy='evict_last', other=0.0) tmp122 = tl.where(tmp120, tmp121, tmp101) tmp123 = tl.where(tmp116, tmp117, tmp122) tmp124 = tl.where(tmp111, tmp112, tmp123) tmp125 = tl.where(tmp106, tmp107, tmp124) tmp126 = tl.full([1], 24, tl.int64) tmp127 = tmp0 >= tmp126 tmp128 = tl.full([1], 25, tl.int64) tmp129 = tmp0 < tmp128 tmp130 = tmp127 & tmp129 tmp131 = tl.load(in_ptr21 + (x0 + (4*x2)), tmp130 & xmask, eviction_policy='evict_last', other=0.0) tmp132 = tl.full([1], 23, tl.int64) tmp133 = tmp0 >= tmp132 tmp134 = tmp0 < tmp126 tmp135 = tmp133 & tmp134 tmp136 = tl.load(in_ptr22 + (x0 + (4*x2)), tmp135 & xmask, eviction_policy='evict_last', other=0.0) tmp137 = tl.full([1], 22, tl.int64) tmp138 = tmp0 >= tmp137 tmp139 = tmp0 < tmp132 tmp140 = tmp138 & tmp139 tmp141 = tl.load(in_ptr23 + (x0 + (4*x2)), tmp140 & xmask, eviction_policy='evict_last', other=0.0) tmp142 = tmp0 >= tmp104 tmp143 = tmp0 < tmp137 tmp144 = tmp142 & tmp143 tmp145 = tl.load(in_ptr24 + (x0 + (4*x2)), tmp144 & xmask, eviction_policy='evict_last', other=0.0) tmp146 = tl.where(tmp144, tmp145, tmp125) tmp147 = tl.where(tmp140, tmp141, tmp146) tmp148 = tl.where(tmp135, tmp136, tmp147) tmp149 = tl.where(tmp130, tmp131, tmp148) tmp150 = tl.full([1], 28, tl.int64) tmp151 = tmp0 >= tmp150 tmp152 = tl.full([1], 29, tl.int64) tmp153 = tmp0 < tmp152 tmp154 = tmp151 & tmp153 tmp155 = tl.load(in_ptr25 + (x0 + (4*x2)), tmp154 & xmask, eviction_policy='evict_last', other=0.0) tmp156 = tl.full([1], 27, tl.int64) tmp157 = tmp0 >= tmp156 tmp158 = tmp0 < tmp150 tmp159 = tmp157 & tmp158 tmp160 = tl.load(in_ptr26 + (x0 + (4*x2)), tmp159 & xmask, eviction_policy='evict_last', other=0.0) tmp161 = tl.full([1], 26, tl.int64) tmp162 = tmp0 >= tmp161 tmp163 = tmp0 < tmp156 tmp164 = tmp162 & tmp163 tmp165 = tl.load(in_ptr27 + (x0 + (4*x2)), tmp164 & xmask, eviction_policy='evict_last', other=0.0) tmp166 = tmp0 >= tmp128 tmp167 = tmp0 < tmp161 tmp168 = tmp166 & tmp167 tmp169 = tl.load(in_ptr28 + (x0 + (4*x2)), tmp168 & xmask, eviction_policy='evict_last', other=0.0) tmp170 = tl.where(tmp168, tmp169, tmp149) tmp171 = tl.where(tmp164, tmp165, tmp170) tmp172 = tl.where(tmp159, tmp160, tmp171) tmp173 = tl.where(tmp154, tmp155, tmp172) tmp174 = tl.full([1], 32, tl.int64) tmp175 = tmp0 >= tmp174 tmp176 = tl.full([1], 33, tl.int64) tmp177 = tmp0 < tmp176 tmp178 = tmp175 & tmp177 tmp179 = tl.load(in_ptr29 + (x0 + (4*x2)), tmp178 & xmask, eviction_policy='evict_last', other=0.0) tmp180 = tl.full([1], 31, tl.int64) tmp181 = tmp0 >= tmp180 tmp182 = tmp0 < tmp174 tmp183 = tmp181 & tmp182 tmp184 = tl.load(in_ptr30 + (x0 + (4*x2)), tmp183 & xmask, eviction_policy='evict_last', other=0.0) tmp185 = tl.full([1], 30, tl.int64) tmp186 = tmp0 >= tmp185 tmp187 = tmp0 < tmp180 tmp188 = tmp186 & tmp187 tmp189 = tl.load(in_ptr31 + (x0 + (4*x2)), tmp188 & xmask, eviction_policy='evict_last', other=0.0) tmp190 = tmp0 >= tmp152 tmp191 = tmp0 < tmp185 tmp192 = tmp190 & tmp191 tmp193 = tl.load(in_ptr32 + (x0 + (4*x2)), tmp192 & xmask, eviction_policy='evict_last', other=0.0) tmp194 = tl.where(tmp192, tmp193, tmp173) tmp195 = tl.where(tmp188, tmp189, tmp194) tmp196 = tl.where(tmp183, tmp184, tmp195) tmp197 = tl.where(tmp178, tmp179, tmp196) tmp198 = tl.full([1], 36, tl.int64) tmp199 = tmp0 >= tmp198 tmp200 = tl.full([1], 37, tl.int64) tmp201 = tmp0 < tmp200 tmp202 = tmp199 & tmp201 tmp203 = tl.load(in_ptr33 + (x0 + (4*x2)), tmp202 & xmask, eviction_policy='evict_last', other=0.0) tmp204 = tl.full([1], 35, tl.int64) tmp205 = tmp0 >= tmp204 tmp206 = tmp0 < tmp198 tmp207 = tmp205 & tmp206 tmp208 = tl.load(in_ptr34 + (x0 + (4*x2)), tmp207 & xmask, eviction_policy='evict_last', other=0.0) tmp209 = tl.full([1], 34, tl.int64) tmp210 = tmp0 >= tmp209 tmp211 = tmp0 < tmp204 tmp212 = tmp210 & tmp211 tmp213 = tl.load(in_ptr35 + (x0 + (4*x2)), tmp212 & xmask, eviction_policy='evict_last', other=0.0) tmp214 = tmp0 >= tmp176 tmp215 = tmp0 < tmp209 tmp216 = tmp214 & tmp215 tmp217 = tl.load(in_ptr36 + (x0 + (4*x2)), tmp216 & xmask, eviction_policy='evict_last', other=0.0) tmp218 = tl.where(tmp216, tmp217, tmp197) tmp219 = tl.where(tmp212, tmp213, tmp218) tmp220 = tl.where(tmp207, tmp208, tmp219) tmp221 = tl.where(tmp202, tmp203, tmp220) tmp222 = tl.full([1], 40, tl.int64) tmp223 = tmp0 >= tmp222 tmp224 = tl.full([1], 41, tl.int64) tmp225 = tmp0 < tmp224 tmp226 = tmp223 & tmp225 tmp227 = tl.load(in_ptr37 + (x0 + (4*x2)), tmp226 & xmask, eviction_policy='evict_last', other=0.0) tmp228 = tl.full([1], 39, tl.int64) tmp229 = tmp0 >= tmp228 tmp230 = tmp0 < tmp222 tmp231 = tmp229 & tmp230 tmp232 = tl.load(in_ptr38 + (x0 + (4*x2)), tmp231 & xmask, eviction_policy='evict_last', other=0.0) tmp233 = tl.full([1], 38, tl.int64) tmp234 = tmp0 >= tmp233 tmp235 = tmp0 < tmp228 tmp236 = tmp234 & tmp235 tmp237 = tl.load(in_ptr39 + (x0 + (4*x2)), tmp236 & xmask, eviction_policy='evict_last', other=0.0) tmp238 = tmp0 >= tmp200 tmp239 = tmp0 < tmp233 tmp240 = tmp238 & tmp239 tmp241 = tl.load(in_ptr40 + (x0 + (4*x2)), tmp240 & xmask, eviction_policy='evict_last', other=0.0) tmp242 = tl.where(tmp240, tmp241, tmp221) tmp243 = tl.where(tmp236, tmp237, tmp242) tmp244 = tl.where(tmp231, tmp232, tmp243) tmp245 = tl.where(tmp226, tmp227, tmp244) tmp246 = tl.full([1], 44, tl.int64) tmp247 = tmp0 >= tmp246 tmp248 = tl.full([1], 45, tl.int64) tmp249 = tmp0 < tmp248 tmp250 = tmp247 & tmp249 tmp251 = tl.load(in_ptr41 + (x0 + (4*x2)), tmp250 & xmask, eviction_policy='evict_last', other=0.0) tmp252 = tl.full([1], 43, tl.int64) tmp253 = tmp0 >= tmp252 tmp254 = tmp0 < tmp246 tmp255 = tmp253 & tmp254 tmp256 = tl.load(in_ptr42 + (x0 + (4*x2)), tmp255 & xmask, eviction_policy='evict_last', other=0.0) tmp257 = tl.full([1], 42, tl.int64) tmp258 = tmp0 >= tmp257 tmp259 = tmp0 < tmp252 tmp260 = tmp258 & tmp259 tmp261 = tl.load(in_ptr43 + (x0 + (4*x2)), tmp260 & xmask, eviction_policy='evict_last', other=0.0) tmp262 = tmp0 >= tmp224 tmp263 = tmp0 < tmp257 tmp264 = tmp262 & tmp263 tmp265 = tl.load(in_ptr44 + (x0 + (4*x2)), tmp264 & xmask, eviction_policy='evict_last', other=0.0) tmp266 = tl.where(tmp264, tmp265, tmp245) tmp267 = tl.where(tmp260, tmp261, tmp266) tmp268 = tl.where(tmp255, tmp256, tmp267) tmp269 = tl.where(tmp250, tmp251, tmp268) tmp270 = tl.full([1], 48, tl.int64) tmp271 = tmp0 >= tmp270 tmp272 = tl.full([1], 49, tl.int64) tmp273 = tmp0 < tmp272 tmp274 = tmp271 & tmp273 tmp275 = tl.load(in_ptr45 + (x0 + (4*x2)), tmp274 & xmask, eviction_policy='evict_last', other=0.0) tmp276 = tl.full([1], 47, tl.int64) tmp277 = tmp0 >= tmp276 tmp278 = tmp0 < tmp270 tmp279 = tmp277 & tmp278 tmp280 = tl.load(in_ptr46 + (x0 + (4*x2)), tmp279 & xmask, eviction_policy='evict_last', other=0.0) tmp281 = tl.full([1], 46, tl.int64) tmp282 = tmp0 >= tmp281 tmp283 = tmp0 < tmp276 tmp284 = tmp282 & tmp283 tmp285 = tl.load(in_ptr47 + (x0 + (4*x2)), tmp284 & xmask, eviction_policy='evict_last', other=0.0) tmp286 = tmp0 >= tmp248 tmp287 = tmp0 < tmp281 tmp288 = tmp286 & tmp287 tmp289 = tl.load(in_ptr48 + (x0 + (4*x2)), tmp288 & xmask, eviction_policy='evict_last', other=0.0) tmp290 = tl.where(tmp288, tmp289, tmp269) tmp291 = tl.where(tmp284, tmp285, tmp290) tmp292 = tl.where(tmp279, tmp280, tmp291) tmp293 = tl.where(tmp274, tmp275, tmp292) tmp294 = tl.full([1], 52, tl.int64) tmp295 = tmp0 >= tmp294 tmp296 = tl.full([1], 53, tl.int64) tmp297 = tmp0 < tmp296 tmp298 = tmp295 & tmp297 tmp299 = tl.load(in_ptr49 + (x0 + (4*x2)), tmp298 & xmask, eviction_policy='evict_last', other=0.0) tmp300 = tl.full([1], 51, tl.int64) tmp301 = tmp0 >= tmp300 tmp302 = tmp0 < tmp294 tmp303 = tmp301 & tmp302 tmp304 = tl.load(in_ptr50 + (x0 + (4*x2)), tmp303 & xmask, eviction_policy='evict_last', other=0.0) tmp305 = tl.full([1], 50, tl.int64) tmp306 = tmp0 >= tmp305 tmp307 = tmp0 < tmp300 tmp308 = tmp306 & tmp307 tmp309 = tl.load(in_ptr51 + (x0 + (4*x2)), tmp308 & xmask, eviction_policy='evict_last', other=0.0) tmp310 = tmp0 >= tmp272 tmp311 = tmp0 < tmp305 tmp312 = tmp310 & tmp311 tmp313 = tl.load(in_ptr52 + (x0 + (4*x2)), tmp312 & xmask, eviction_policy='evict_last', other=0.0) tmp314 = tl.where(tmp312, tmp313, tmp293) tmp315 = tl.where(tmp308, tmp309, tmp314) tmp316 = tl.where(tmp303, tmp304, tmp315) tmp317 = tl.where(tmp298, tmp299, tmp316) tmp318 = tl.full([1], 56, tl.int64) tmp319 = tmp0 >= tmp318 tmp320 = tl.full([1], 57, tl.int64) tmp321 = tmp0 < tmp320 tmp322 = tmp319 & tmp321 tmp323 = tl.load(in_ptr53 + (x0 + (4*x2)), tmp322 & xmask, eviction_policy='evict_last', other=0.0) tmp324 = tl.full([1], 55, tl.int64) tmp325 = tmp0 >= tmp324 tmp326 = tmp0 < tmp318 tmp327 = tmp325 & tmp326 tmp328 = tl.load(in_ptr54 + (x0 + (4*x2)), tmp327 & xmask, eviction_policy='evict_last', other=0.0) tmp329 = tl.full([1], 54, tl.int64) tmp330 = tmp0 >= tmp329 tmp331 = tmp0 < tmp324 tmp332 = tmp330 & tmp331 tmp333 = tl.load(in_ptr55 + (x0 + (4*x2)), tmp332 & xmask, eviction_policy='evict_last', other=0.0) tmp334 = tmp0 >= tmp296 tmp335 = tmp0 < tmp329 tmp336 = tmp334 & tmp335 tmp337 = tl.load(in_ptr56 + (x0 + (4*x2)), tmp336 & xmask, eviction_policy='evict_last', other=0.0) tmp338 = tl.where(tmp336, tmp337, tmp317) tmp339 = tl.where(tmp332, tmp333, tmp338) tmp340 = tl.where(tmp327, tmp328, tmp339) tmp341 = tl.where(tmp322, tmp323, tmp340) tmp342 = tl.full([1], 60, tl.int64) tmp343 = tmp0 >= tmp342 tmp344 = tl.full([1], 61, tl.int64) tmp345 = tmp0 < tmp344 tmp346 = tmp343 & tmp345 tmp347 = tl.load(in_ptr57 + (x0 + (4*x2)), tmp346 & xmask, eviction_policy='evict_last', other=0.0) tmp348 = tl.full([1], 59, tl.int64) tmp349 = tmp0 >= tmp348 tmp350 = tmp0 < tmp342 tmp351 = tmp349 & tmp350 tmp352 = tl.load(in_ptr58 + (x0 + (4*x2)), tmp351 & xmask, eviction_policy='evict_last', other=0.0) tmp353 = tl.full([1], 58, tl.int64) tmp354 = tmp0 >= tmp353 tmp355 = tmp0 < tmp348 tmp356 = tmp354 & tmp355 tmp357 = tl.load(in_ptr59 + (x0 + (4*x2)), tmp356 & xmask, eviction_policy='evict_last', other=0.0) tmp358 = tmp0 >= tmp320 tmp359 = tmp0 < tmp353 tmp360 = tmp358 & tmp359 tmp361 = tl.load(in_ptr60 + (x0 + (4*x2)), tmp360 & xmask, eviction_policy='evict_last', other=0.0) tmp362 = tl.where(tmp360, tmp361, tmp341) tmp363 = tl.where(tmp356, tmp357, tmp362) tmp364 = tl.where(tmp351, tmp352, tmp363) tmp365 = tl.where(tmp346, tmp347, tmp364) tmp366 = tl.full([1], 63, tl.int64) tmp367 = tmp0 >= tmp366 tmp368 = tl.load(in_ptr61 + (x0 + (4*x2)), tmp367 & xmask, eviction_policy='evict_last', other=0.0) tmp369 = tl.full([1], 62, tl.int64) tmp370 = tmp0 >= tmp369 tmp371 = tmp0 < tmp366 tmp372 = tmp370 & tmp371 tmp373 = tl.load(in_ptr62 + (x0 + (4*x2)), tmp372 & xmask, eviction_policy='evict_last', other=0.0) tmp374 = tmp0 >= tmp344 tmp375 = tmp0 < tmp369 tmp376 = tmp374 & tmp375 tmp377 = tl.load(in_ptr63 + (x0 + (4*x2)), tmp376 & xmask, eviction_policy='evict_last', other=0.0) tmp378 = tl.where(tmp376, tmp377, tmp365) tmp379 = tl.where(tmp372, tmp373, tmp378) tmp380 = tl.where(tmp367, tmp368, tmp379) tl.store(in_out_ptr0 + (x3), tmp380, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wo/cwoqglscqofsrwvjna2wblwxhomdjbzeemiddjzs3znbybhuucvg.py # Topologically Sorted Source Nodes: [vlad_1, vlad_3], Original ATen: [aten.div, aten.linalg_vector_norm] # Source node to ATen node mapping: # vlad_1 => div_1 # vlad_3 => div_2, pow_3, pow_4, sum_67 # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_scatter_default_63, %expand_64), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {}) # %sum_67 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_67, 0.5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_65), kwargs = {}) triton_red_fused_div_linalg_vector_norm_5 = async_compile.triton('triton_red_fused_div_linalg_vector_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[4, 256], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_div_linalg_vector_norm_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_div_linalg_vector_norm_5(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 4 rnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex r2 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r3 + (256*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr0 + ((4*r2) + (256*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr0 + (1 + (4*r2) + (256*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (2 + (4*r2) + (256*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr0 + (3 + (4*r2) + (256*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = _tmp18 + tmp17 _tmp18 = tl.where(rmask & xmask, tmp19, _tmp18) tl.store(out_ptr0 + (r3 + (256*x0)), tmp15, rmask & xmask) tmp18 = tl.sum(_tmp18, 1)[:, None] tmp20 = libdevice.sqrt(tmp18) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp21 = tl.load(out_ptr0 + (r3 + (256*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp22 = 1e-12 tmp23 = triton_helpers.maximum(tmp20, tmp22) tmp24 = tmp21 / tmp23 tl.store(out_ptr1 + (r3 + (256*x0)), tmp24, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (64, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 4, 4), (1024, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(buf0, buf1, buf2, 64, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf8 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf10 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf19 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf22 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf26 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf28 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf31 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf35 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf37 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf40 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf42 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf44 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf46 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf49 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf51 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf53 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf55 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf58 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf60 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf62 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf64 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf3 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf18 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf20 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf25 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf27 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf29 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf32 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf34 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf36 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf38 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf41 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf43 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf45 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf47 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf50 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf52 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf54 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf56 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf59 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf61 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf63 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf65 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_2, residual_3, sum_2, residual_4, residual_5, sum_3, residual_6, residual_7, sum_4, residual_8, residual_9, sum_5, residual_10, residual_11, sum_6, residual_12, residual_13, sum_7, residual_14, residual_15, sum_8, residual_16, residual_17, sum_9, residual_18, residual_19, sum_10, residual_20, residual_21, sum_11, residual_22, residual_23, sum_12, residual_24, residual_25, sum_13, residual_26, residual_27, sum_14, residual_28, residual_29, sum_15, residual_30, residual_31, sum_16, residual_32, residual_33, sum_17, residual_34, residual_35, sum_18, residual_36, residual_37, sum_19, residual_38, residual_39, sum_20, residual_40, residual_41, sum_21, residual_42, residual_43, sum_22, residual_44, residual_45, sum_23, residual_46, residual_47, sum_24, residual_48, residual_49, sum_25, residual_50, residual_51, sum_26, residual_52, residual_53, sum_27, residual_54, residual_55, sum_28, residual_56, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum] triton_per_fused_mul_sub_sum_1.run(primals_1, primals_3, buf0, buf1, buf2, buf4, buf6, buf8, buf10, buf13, buf15, buf17, buf19, buf22, buf24, buf26, buf28, buf31, buf33, buf35, buf37, buf40, buf42, buf44, buf46, buf49, buf51, buf53, buf55, buf58, buf60, buf62, buf64, buf3, buf5, buf7, buf9, buf11, buf14, buf16, buf18, buf20, buf23, buf25, buf27, buf29, buf32, buf34, buf36, buf38, buf41, buf43, buf45, buf47, buf50, buf52, buf54, buf56, buf59, buf61, buf63, buf65, 16, 16, grid=grid(16), stream=stream0) buf67 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf69 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf71 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf73 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf76 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf78 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf80 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf82 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf85 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf87 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf89 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf91 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf94 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf96 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf98 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf100 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf103 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf105 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf107 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf109 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf112 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf114 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf116 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf118 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf121 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf123 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf125 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf127 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf68 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf70 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf72 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf74 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf77 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf79 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf81 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf83 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf86 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf88 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf90 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf92 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf95 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf97 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf99 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf101 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf104 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf106 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf108 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf110 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf113 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf115 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf117 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf119 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf122 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf124 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf126 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf128 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [residual_58, residual_59, sum_30, residual_60, residual_61, sum_31, residual_62, residual_63, sum_32, residual_64, residual_65, sum_33, residual_66, residual_67, sum_34, residual_68, residual_69, sum_35, residual_70, residual_71, sum_36, residual_72, residual_73, sum_37, residual_74, residual_75, sum_38, residual_76, residual_77, sum_39, residual_78, residual_79, sum_40, residual_80, residual_81, sum_41, residual_82, residual_83, sum_42, residual_84, residual_85, sum_43, residual_86, residual_87, sum_44, residual_88, residual_89, sum_45, residual_90, residual_91, sum_46, residual_92, residual_93, sum_47, residual_94, residual_95, sum_48, residual_96, residual_97, sum_49, residual_98, residual_99, sum_50, residual_100, residual_101, sum_51, residual_102, residual_103, sum_52, residual_104, residual_105, sum_53, residual_106, residual_107, sum_54, residual_108, residual_109, sum_55, residual_110, residual_111, sum_56, residual_112, residual_113, sum_57], Original ATen: [aten.sub, aten.mul, aten.sum] triton_per_fused_mul_sub_sum_2.run(primals_1, primals_3, buf0, buf1, buf2, buf67, buf69, buf71, buf73, buf76, buf78, buf80, buf82, buf85, buf87, buf89, buf91, buf94, buf96, buf98, buf100, buf103, buf105, buf107, buf109, buf112, buf114, buf116, buf118, buf121, buf123, buf125, buf127, buf68, buf70, buf72, buf74, buf77, buf79, buf81, buf83, buf86, buf88, buf90, buf92, buf95, buf97, buf99, buf101, buf104, buf106, buf108, buf110, buf113, buf115, buf117, buf119, buf122, buf124, buf126, buf128, 16, 16, grid=grid(16), stream=stream0) buf130 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf132 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf134 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf136 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf139 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf141 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf143 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch.float32) buf131 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf133 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf135 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf137 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf140 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf142 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf144 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [residual_114, residual_115, sum_58, residual_116, residual_117, sum_59, residual_118, residual_119, sum_60, residual_120, residual_121, sum_61, residual_122, residual_123, sum_62, residual_124, residual_125, sum_63, residual_126, residual_127, sum_64], Original ATen: [aten.sub, aten.mul, aten.sum] triton_per_fused_mul_sub_sum_3.run(primals_1, primals_3, buf0, buf1, buf2, buf130, buf132, buf134, buf136, buf139, buf141, buf143, buf131, buf133, buf135, buf137, buf140, buf142, buf144, 16, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 64, 4), (256, 4, 1), torch.float32) buf21 = buf12; del buf12 # reuse buf30 = buf21; del buf21 # reuse buf39 = buf30; del buf30 # reuse buf48 = buf39; del buf39 # reuse buf57 = buf48; del buf48 # reuse buf66 = buf57; del buf57 # reuse buf75 = buf66; del buf66 # reuse buf84 = buf75; del buf75 # reuse buf93 = buf84; del buf84 # reuse buf102 = buf93; del buf93 # reuse buf111 = buf102; del buf102 # reuse buf120 = buf111; del buf111 # reuse buf129 = buf120; del buf120 # reuse buf138 = buf129; del buf129 # reuse buf145 = buf138; del buf138 # reuse # Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63], Original ATen: [aten.zeros, aten.copy] triton_poi_fused_copy_zeros_4.run(buf145, buf11, buf9, buf7, buf5, buf3, buf20, buf18, buf16, buf14, buf29, buf27, buf25, buf23, buf38, buf36, buf34, buf32, buf47, buf45, buf43, buf41, buf56, buf54, buf52, buf50, buf65, buf63, buf61, buf59, buf74, buf72, buf70, buf68, buf83, buf81, buf79, buf77, buf92, buf90, buf88, buf86, buf101, buf99, buf97, buf95, buf110, buf108, buf106, buf104, buf119, buf117, buf115, buf113, buf128, buf126, buf124, buf122, buf137, buf135, buf133, buf131, buf144, buf142, buf140, 1024, grid=grid(1024), stream=stream0) del buf101 del buf104 del buf106 del buf108 del buf11 del buf110 del buf113 del buf115 del buf117 del buf119 del buf122 del buf124 del buf126 del buf128 del buf131 del buf133 del buf135 del buf137 del buf14 del buf140 del buf142 del buf144 del buf16 del buf18 del buf20 del buf23 del buf25 del buf27 del buf29 del buf3 del buf32 del buf34 del buf36 del buf38 del buf41 del buf43 del buf45 del buf47 del buf5 del buf50 del buf52 del buf54 del buf56 del buf59 del buf61 del buf63 del buf65 del buf68 del buf7 del buf70 del buf72 del buf74 del buf77 del buf79 del buf81 del buf83 del buf86 del buf88 del buf9 del buf90 del buf92 del buf95 del buf97 del buf99 buf146 = empty_strided_cuda((4, 64, 4), (256, 4, 1), torch.float32) buf147 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf148 = reinterpret_tensor(buf147, (4, 1), (1, 1), 0); del buf147 # reuse buf149 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [vlad_1, vlad_3], Original ATen: [aten.div, aten.linalg_vector_norm] triton_red_fused_div_linalg_vector_norm_5.run(buf148, buf145, buf146, buf149, 4, 256, grid=grid(4), stream=stream0) del buf146 return (buf149, primals_1, primals_2, buf0, buf1, buf2, reinterpret_tensor(primals_3, (1, 4), (4, 1), 0), buf4, buf6, buf8, buf10, buf13, buf15, buf17, buf19, buf22, buf24, buf26, buf28, buf31, buf33, buf35, buf37, buf40, buf42, buf44, buf46, buf49, buf51, buf53, buf55, buf58, buf60, buf62, buf64, buf67, buf69, buf71, buf73, buf76, buf78, buf80, buf82, buf85, buf87, buf89, buf91, buf94, buf96, buf98, buf100, buf103, buf105, buf107, buf109, buf112, buf114, buf116, buf118, buf121, buf123, buf125, buf127, buf130, buf132, buf134, buf136, buf139, buf141, buf143, buf145, buf148, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.nn.functional as F class NetVLAD(nn.Module): """NetVLAD layer implementation""" def __init__(self, dim, num_clusters=64): """ Args: dim : int Dimension of descriptors num_clusters : int The number of clusters """ super(NetVLAD, self).__init__() self.num_clusters = num_clusters self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=False ) self.centroids = nn.Parameter(torch.rand(num_clusters, dim)) def init_params(self, clsts, traindescs): clsts_assign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True) dots = np.dot(clsts_assign, traindescs.T) dots.sort(0) dots = dots[::-1, :] alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) self.conv.weight = nn.Parameter(torch.from_numpy(alpha * clsts_assign).unsqueeze(2).unsqueeze(3)) self.conv.bias = None def forward(self, x, crm=None): N, C = x.shape[:2] soft_assign = self.conv(x).view(N, self.num_clusters, -1) soft_assign = F.softmax(soft_assign, dim=1) if crm is not None: assert crm.shape[0] == N and crm.shape[1] == 1 and crm.shape[2: ] == x.shape[2:] soft_assign = torch.mul(soft_assign, crm.view(N, 1, -1)) x_flatten = x.view(N, C, -1) vlad = torch.zeros((N, self.num_clusters, C), dtype=x.dtype, layout =x.layout, device=x.device) for c in range(self.num_clusters): residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3 ) - self.centroids[c:c + 1, :].expand(x_flatten.size(-1), - 1, -1).permute(1, 2, 0).unsqueeze(0) residual *= soft_assign[:, c:c + 1, :].unsqueeze(2) vlad[:, c:c + 1, :] = residual.sum(dim=-1) vlad = F.normalize(vlad, p=2, dim=2) vlad = vlad.view(N, -1) vlad = F.normalize(vlad, p=2, dim=1) return vlad def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp10, xmask) @triton.jit def triton_per_fused_mul_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (20 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (24 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (28 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (36 + x0), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (40 + x0), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (44 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (52 + x0), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (56 + x0), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (60 + x0), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (68 + x0), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (72 + x0), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (76 + x0), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (80 + x0), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (84 + x0), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (88 + x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr1 + (92 + x0), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (96 + x0), xmask, eviction_policy='evict_last') tmp49 = tl.load(in_ptr1 + (100 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (104 + x0), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (108 + x0), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (112 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp59 = tl.load(in_ptr2 + (r2 + 1024 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp60 = tl.load(in_ptr3 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp63 = tl.load(in_ptr4 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp70 = tl.load(in_ptr2 + (16 + r2 + 1024 * x1), xmask, eviction_policy ='evict_last', other=0.0) tmp79 = tl.load(in_ptr2 + (32 + r2 + 1024 * x1), xmask, eviction_policy ='evict_last', other=0.0) tmp88 = tl.load(in_ptr2 + (48 + r2 + 1024 * x1), xmask, eviction_policy ='evict_last', other=0.0) tmp97 = tl.load(in_ptr2 + (64 + r2 + 1024 * x1), xmask, eviction_policy ='evict_last', other=0.0) tmp106 = tl.load(in_ptr2 + (80 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp115 = tl.load(in_ptr2 + (96 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp124 = tl.load(in_ptr2 + (112 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp133 = tl.load(in_ptr2 + (128 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp142 = tl.load(in_ptr2 + (144 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp151 = tl.load(in_ptr2 + (160 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp160 = tl.load(in_ptr2 + (176 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp169 = tl.load(in_ptr2 + (192 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp178 = tl.load(in_ptr2 + (208 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp187 = tl.load(in_ptr2 + (224 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp196 = tl.load(in_ptr2 + (240 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp205 = tl.load(in_ptr2 + (256 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp214 = tl.load(in_ptr2 + (272 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp223 = tl.load(in_ptr2 + (288 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp232 = tl.load(in_ptr2 + (304 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp241 = tl.load(in_ptr2 + (320 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp250 = tl.load(in_ptr2 + (336 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp259 = tl.load(in_ptr2 + (352 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp268 = tl.load(in_ptr2 + (368 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp277 = tl.load(in_ptr2 + (384 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp286 = tl.load(in_ptr2 + (400 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp295 = tl.load(in_ptr2 + (416 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp304 = tl.load(in_ptr2 + (432 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp313 = tl.load(in_ptr2 + (448 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp0 - tmp3 tmp6 = tmp0 - tmp5 tmp8 = tmp0 - tmp7 tmp10 = tmp0 - tmp9 tmp12 = tmp0 - tmp11 tmp14 = tmp0 - tmp13 tmp16 = tmp0 - tmp15 tmp18 = tmp0 - tmp17 tmp20 = tmp0 - tmp19 tmp22 = tmp0 - tmp21 tmp24 = tmp0 - tmp23 tmp26 = tmp0 - tmp25 tmp28 = tmp0 - tmp27 tmp30 = tmp0 - tmp29 tmp32 = tmp0 - tmp31 tmp34 = tmp0 - tmp33 tmp36 = tmp0 - tmp35 tmp38 = tmp0 - tmp37 tmp40 = tmp0 - tmp39 tmp42 = tmp0 - tmp41 tmp44 = tmp0 - tmp43 tmp46 = tmp0 - tmp45 tmp48 = tmp0 - tmp47 tmp50 = tmp0 - tmp49 tmp52 = tmp0 - tmp51 tmp54 = tmp0 - tmp53 tmp56 = tmp0 - tmp55 tmp58 = tmp0 - tmp57 tmp61 = tmp59 - tmp60 tmp62 = tl_math.exp(tmp61) tmp64 = tmp62 / tmp63 tmp65 = tmp58 * tmp64 tmp66 = tl.broadcast_to(tmp65, [XBLOCK, RBLOCK]) tmp68 = tl.where(xmask, tmp66, 0) tmp69 = tl.sum(tmp68, 1)[:, None] tmp71 = tmp70 - tmp60 tmp72 = tl_math.exp(tmp71) tmp73 = tmp72 / tmp63 tmp74 = tmp2 * tmp73 tmp75 = tl.broadcast_to(tmp74, [XBLOCK, RBLOCK]) tmp77 = tl.where(xmask, tmp75, 0) tmp78 = tl.sum(tmp77, 1)[:, None] tmp80 = tmp79 - tmp60 tmp81 = tl_math.exp(tmp80) tmp82 = tmp81 / tmp63 tmp83 = tmp4 * tmp82 tmp84 = tl.broadcast_to(tmp83, [XBLOCK, RBLOCK]) tmp86 = tl.where(xmask, tmp84, 0) tmp87 = tl.sum(tmp86, 1)[:, None] tmp89 = tmp88 - tmp60 tmp90 = tl_math.exp(tmp89) tmp91 = tmp90 / tmp63 tmp92 = tmp6 * tmp91 tmp93 = tl.broadcast_to(tmp92, [XBLOCK, RBLOCK]) tmp95 = tl.where(xmask, tmp93, 0) tmp96 = tl.sum(tmp95, 1)[:, None] tmp98 = tmp97 - tmp60 tmp99 = tl_math.exp(tmp98) tmp100 = tmp99 / tmp63 tmp101 = tmp8 * tmp100 tmp102 = tl.broadcast_to(tmp101, [XBLOCK, RBLOCK]) tmp104 = tl.where(xmask, tmp102, 0) tmp105 = tl.sum(tmp104, 1)[:, None] tmp107 = tmp106 - tmp60 tmp108 = tl_math.exp(tmp107) tmp109 = tmp108 / tmp63 tmp110 = tmp10 * tmp109 tmp111 = tl.broadcast_to(tmp110, [XBLOCK, RBLOCK]) tmp113 = tl.where(xmask, tmp111, 0) tmp114 = tl.sum(tmp113, 1)[:, None] tmp116 = tmp115 - tmp60 tmp117 = tl_math.exp(tmp116) tmp118 = tmp117 / tmp63 tmp119 = tmp12 * tmp118 tmp120 = tl.broadcast_to(tmp119, [XBLOCK, RBLOCK]) tmp122 = tl.where(xmask, tmp120, 0) tmp123 = tl.sum(tmp122, 1)[:, None] tmp125 = tmp124 - tmp60 tmp126 = tl_math.exp(tmp125) tmp127 = tmp126 / tmp63 tmp128 = tmp14 * tmp127 tmp129 = tl.broadcast_to(tmp128, [XBLOCK, RBLOCK]) tmp131 = tl.where(xmask, tmp129, 0) tmp132 = tl.sum(tmp131, 1)[:, None] tmp134 = tmp133 - tmp60 tmp135 = tl_math.exp(tmp134) tmp136 = tmp135 / tmp63 tmp137 = tmp16 * tmp136 tmp138 = tl.broadcast_to(tmp137, [XBLOCK, RBLOCK]) tmp140 = tl.where(xmask, tmp138, 0) tmp141 = tl.sum(tmp140, 1)[:, None] tmp143 = tmp142 - tmp60 tmp144 = tl_math.exp(tmp143) tmp145 = tmp144 / tmp63 tmp146 = tmp18 * tmp145 tmp147 = tl.broadcast_to(tmp146, [XBLOCK, RBLOCK]) tmp149 = tl.where(xmask, tmp147, 0) tmp150 = tl.sum(tmp149, 1)[:, None] tmp152 = tmp151 - tmp60 tmp153 = tl_math.exp(tmp152) tmp154 = tmp153 / tmp63 tmp155 = tmp20 * tmp154 tmp156 = tl.broadcast_to(tmp155, [XBLOCK, RBLOCK]) tmp158 = tl.where(xmask, tmp156, 0) tmp159 = tl.sum(tmp158, 1)[:, None] tmp161 = tmp160 - tmp60 tmp162 = tl_math.exp(tmp161) tmp163 = tmp162 / tmp63 tmp164 = tmp22 * tmp163 tmp165 = tl.broadcast_to(tmp164, [XBLOCK, RBLOCK]) tmp167 = tl.where(xmask, tmp165, 0) tmp168 = tl.sum(tmp167, 1)[:, None] tmp170 = tmp169 - tmp60 tmp171 = tl_math.exp(tmp170) tmp172 = tmp171 / tmp63 tmp173 = tmp24 * tmp172 tmp174 = tl.broadcast_to(tmp173, [XBLOCK, RBLOCK]) tmp176 = tl.where(xmask, tmp174, 0) tmp177 = tl.sum(tmp176, 1)[:, None] tmp179 = tmp178 - tmp60 tmp180 = tl_math.exp(tmp179) tmp181 = tmp180 / tmp63 tmp182 = tmp26 * tmp181 tmp183 = tl.broadcast_to(tmp182, [XBLOCK, RBLOCK]) tmp185 = tl.where(xmask, tmp183, 0) tmp186 = tl.sum(tmp185, 1)[:, None] tmp188 = tmp187 - tmp60 tmp189 = tl_math.exp(tmp188) tmp190 = tmp189 / tmp63 tmp191 = tmp28 * tmp190 tmp192 = tl.broadcast_to(tmp191, [XBLOCK, RBLOCK]) tmp194 = tl.where(xmask, tmp192, 0) tmp195 = tl.sum(tmp194, 1)[:, None] tmp197 = tmp196 - tmp60 tmp198 = tl_math.exp(tmp197) tmp199 = tmp198 / tmp63 tmp200 = tmp30 * tmp199 tmp201 = tl.broadcast_to(tmp200, [XBLOCK, RBLOCK]) tmp203 = tl.where(xmask, tmp201, 0) tmp204 = tl.sum(tmp203, 1)[:, None] tmp206 = tmp205 - tmp60 tmp207 = tl_math.exp(tmp206) tmp208 = tmp207 / tmp63 tmp209 = tmp32 * tmp208 tmp210 = tl.broadcast_to(tmp209, [XBLOCK, RBLOCK]) tmp212 = tl.where(xmask, tmp210, 0) tmp213 = tl.sum(tmp212, 1)[:, None] tmp215 = tmp214 - tmp60 tmp216 = tl_math.exp(tmp215) tmp217 = tmp216 / tmp63 tmp218 = tmp34 * tmp217 tmp219 = tl.broadcast_to(tmp218, [XBLOCK, RBLOCK]) tmp221 = tl.where(xmask, tmp219, 0) tmp222 = tl.sum(tmp221, 1)[:, None] tmp224 = tmp223 - tmp60 tmp225 = tl_math.exp(tmp224) tmp226 = tmp225 / tmp63 tmp227 = tmp36 * tmp226 tmp228 = tl.broadcast_to(tmp227, [XBLOCK, RBLOCK]) tmp230 = tl.where(xmask, tmp228, 0) tmp231 = tl.sum(tmp230, 1)[:, None] tmp233 = tmp232 - tmp60 tmp234 = tl_math.exp(tmp233) tmp235 = tmp234 / tmp63 tmp236 = tmp38 * tmp235 tmp237 = tl.broadcast_to(tmp236, [XBLOCK, RBLOCK]) tmp239 = tl.where(xmask, tmp237, 0) tmp240 = tl.sum(tmp239, 1)[:, None] tmp242 = tmp241 - tmp60 tmp243 = tl_math.exp(tmp242) tmp244 = tmp243 / tmp63 tmp245 = tmp40 * tmp244 tmp246 = tl.broadcast_to(tmp245, [XBLOCK, RBLOCK]) tmp248 = tl.where(xmask, tmp246, 0) tmp249 = tl.sum(tmp248, 1)[:, None] tmp251 = tmp250 - tmp60 tmp252 = tl_math.exp(tmp251) tmp253 = tmp252 / tmp63 tmp254 = tmp42 * tmp253 tmp255 = tl.broadcast_to(tmp254, [XBLOCK, RBLOCK]) tmp257 = tl.where(xmask, tmp255, 0) tmp258 = tl.sum(tmp257, 1)[:, None] tmp260 = tmp259 - tmp60 tmp261 = tl_math.exp(tmp260) tmp262 = tmp261 / tmp63 tmp263 = tmp44 * tmp262 tmp264 = tl.broadcast_to(tmp263, [XBLOCK, RBLOCK]) tmp266 = tl.where(xmask, tmp264, 0) tmp267 = tl.sum(tmp266, 1)[:, None] tmp269 = tmp268 - tmp60 tmp270 = tl_math.exp(tmp269) tmp271 = tmp270 / tmp63 tmp272 = tmp46 * tmp271 tmp273 = tl.broadcast_to(tmp272, [XBLOCK, RBLOCK]) tmp275 = tl.where(xmask, tmp273, 0) tmp276 = tl.sum(tmp275, 1)[:, None] tmp278 = tmp277 - tmp60 tmp279 = tl_math.exp(tmp278) tmp280 = tmp279 / tmp63 tmp281 = tmp48 * tmp280 tmp282 = tl.broadcast_to(tmp281, [XBLOCK, RBLOCK]) tmp284 = tl.where(xmask, tmp282, 0) tmp285 = tl.sum(tmp284, 1)[:, None] tmp287 = tmp286 - tmp60 tmp288 = tl_math.exp(tmp287) tmp289 = tmp288 / tmp63 tmp290 = tmp50 * tmp289 tmp291 = tl.broadcast_to(tmp290, [XBLOCK, RBLOCK]) tmp293 = tl.where(xmask, tmp291, 0) tmp294 = tl.sum(tmp293, 1)[:, None] tmp296 = tmp295 - tmp60 tmp297 = tl_math.exp(tmp296) tmp298 = tmp297 / tmp63 tmp299 = tmp52 * tmp298 tmp300 = tl.broadcast_to(tmp299, [XBLOCK, RBLOCK]) tmp302 = tl.where(xmask, tmp300, 0) tmp303 = tl.sum(tmp302, 1)[:, None] tmp305 = tmp304 - tmp60 tmp306 = tl_math.exp(tmp305) tmp307 = tmp306 / tmp63 tmp308 = tmp54 * tmp307 tmp309 = tl.broadcast_to(tmp308, [XBLOCK, RBLOCK]) tmp311 = tl.where(xmask, tmp309, 0) tmp312 = tl.sum(tmp311, 1)[:, None] tmp314 = tmp313 - tmp60 tmp315 = tl_math.exp(tmp314) tmp316 = tmp315 / tmp63 tmp317 = tmp56 * tmp316 tmp318 = tl.broadcast_to(tmp317, [XBLOCK, RBLOCK]) tmp320 = tl.where(xmask, tmp318, 0) tmp321 = tl.sum(tmp320, 1)[:, None] tl.store(out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.store(out_ptr1 + (r2 + 16 * x3), tmp4, xmask) tl.store(out_ptr2 + (r2 + 16 * x3), tmp6, xmask) tl.store(out_ptr3 + (r2 + 16 * x3), tmp8, xmask) tl.store(out_ptr4 + (r2 + 16 * x3), tmp10, xmask) tl.store(out_ptr5 + (r2 + 16 * x3), tmp12, xmask) tl.store(out_ptr6 + (r2 + 16 * x3), tmp14, xmask) tl.store(out_ptr7 + (r2 + 16 * x3), tmp16, xmask) tl.store(out_ptr8 + (r2 + 16 * x3), tmp18, xmask) tl.store(out_ptr9 + (r2 + 16 * x3), tmp20, xmask) tl.store(out_ptr10 + (r2 + 16 * x3), tmp22, xmask) tl.store(out_ptr11 + (r2 + 16 * x3), tmp24, xmask) tl.store(out_ptr12 + (r2 + 16 * x3), tmp26, xmask) tl.store(out_ptr13 + (r2 + 16 * x3), tmp28, xmask) tl.store(out_ptr14 + (r2 + 16 * x3), tmp30, xmask) tl.store(out_ptr15 + (r2 + 16 * x3), tmp32, xmask) tl.store(out_ptr16 + (r2 + 16 * x3), tmp34, xmask) tl.store(out_ptr17 + (r2 + 16 * x3), tmp36, xmask) tl.store(out_ptr18 + (r2 + 16 * x3), tmp38, xmask) tl.store(out_ptr19 + (r2 + 16 * x3), tmp40, xmask) tl.store(out_ptr20 + (r2 + 16 * x3), tmp42, xmask) tl.store(out_ptr21 + (r2 + 16 * x3), tmp44, xmask) tl.store(out_ptr22 + (r2 + 16 * x3), tmp46, xmask) tl.store(out_ptr23 + (r2 + 16 * x3), tmp48, xmask) tl.store(out_ptr24 + (r2 + 16 * x3), tmp50, xmask) tl.store(out_ptr25 + (r2 + 16 * x3), tmp52, xmask) tl.store(out_ptr26 + (r2 + 16 * x3), tmp54, xmask) tl.store(out_ptr27 + (r2 + 16 * x3), tmp56, xmask) tl.store(out_ptr28 + x3, tmp69, xmask) tl.store(out_ptr29 + x3, tmp78, xmask) tl.store(out_ptr30 + x3, tmp87, xmask) tl.store(out_ptr31 + x3, tmp96, xmask) tl.store(out_ptr32 + x3, tmp105, xmask) tl.store(out_ptr33 + x3, tmp114, xmask) tl.store(out_ptr34 + x3, tmp123, xmask) tl.store(out_ptr35 + x3, tmp132, xmask) tl.store(out_ptr36 + x3, tmp141, xmask) tl.store(out_ptr37 + x3, tmp150, xmask) tl.store(out_ptr38 + x3, tmp159, xmask) tl.store(out_ptr39 + x3, tmp168, xmask) tl.store(out_ptr40 + x3, tmp177, xmask) tl.store(out_ptr41 + x3, tmp186, xmask) tl.store(out_ptr42 + x3, tmp195, xmask) tl.store(out_ptr43 + x3, tmp204, xmask) tl.store(out_ptr44 + x3, tmp213, xmask) tl.store(out_ptr45 + x3, tmp222, xmask) tl.store(out_ptr46 + x3, tmp231, xmask) tl.store(out_ptr47 + x3, tmp240, xmask) tl.store(out_ptr48 + x3, tmp249, xmask) tl.store(out_ptr49 + x3, tmp258, xmask) tl.store(out_ptr50 + x3, tmp267, xmask) tl.store(out_ptr51 + x3, tmp276, xmask) tl.store(out_ptr52 + x3, tmp285, xmask) tl.store(out_ptr53 + x3, tmp294, xmask) tl.store(out_ptr54 + x3, tmp303, xmask) tl.store(out_ptr55 + x3, tmp312, xmask) tl.store(out_ptr56 + x3, tmp321, xmask) @triton.jit def triton_per_fused_mul_sub_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (116 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (120 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (124 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (132 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (136 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (140 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (144 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (148 + x0), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (152 + x0), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (156 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (160 + x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (164 + x0), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (168 + x0), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (172 + x0), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (176 + x0), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (180 + x0), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (184 + x0), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (188 + x0), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr1 + (196 + x0), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr1 + (200 + x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr1 + (204 + x0), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr1 + (208 + x0), xmask, eviction_policy='evict_last') tmp49 = tl.load(in_ptr1 + (212 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr1 + (216 + x0), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr1 + (220 + x0), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (224 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr2 + (464 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp58 = tl.load(in_ptr3 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp61 = tl.load(in_ptr4 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp68 = tl.load(in_ptr2 + (480 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp77 = tl.load(in_ptr2 + (496 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp86 = tl.load(in_ptr2 + (512 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp95 = tl.load(in_ptr2 + (528 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp104 = tl.load(in_ptr2 + (544 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp113 = tl.load(in_ptr2 + (560 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp122 = tl.load(in_ptr2 + (576 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp131 = tl.load(in_ptr2 + (592 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp140 = tl.load(in_ptr2 + (608 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp149 = tl.load(in_ptr2 + (624 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp158 = tl.load(in_ptr2 + (640 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp167 = tl.load(in_ptr2 + (656 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp176 = tl.load(in_ptr2 + (672 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp185 = tl.load(in_ptr2 + (688 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp194 = tl.load(in_ptr2 + (704 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp203 = tl.load(in_ptr2 + (720 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp212 = tl.load(in_ptr2 + (736 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp221 = tl.load(in_ptr2 + (752 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp230 = tl.load(in_ptr2 + (768 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp239 = tl.load(in_ptr2 + (784 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp248 = tl.load(in_ptr2 + (800 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp257 = tl.load(in_ptr2 + (816 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp266 = tl.load(in_ptr2 + (832 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp275 = tl.load(in_ptr2 + (848 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp284 = tl.load(in_ptr2 + (864 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp293 = tl.load(in_ptr2 + (880 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp302 = tl.load(in_ptr2 + (896 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp0 - tmp3 tmp6 = tmp0 - tmp5 tmp8 = tmp0 - tmp7 tmp10 = tmp0 - tmp9 tmp12 = tmp0 - tmp11 tmp14 = tmp0 - tmp13 tmp16 = tmp0 - tmp15 tmp18 = tmp0 - tmp17 tmp20 = tmp0 - tmp19 tmp22 = tmp0 - tmp21 tmp24 = tmp0 - tmp23 tmp26 = tmp0 - tmp25 tmp28 = tmp0 - tmp27 tmp30 = tmp0 - tmp29 tmp32 = tmp0 - tmp31 tmp34 = tmp0 - tmp33 tmp36 = tmp0 - tmp35 tmp38 = tmp0 - tmp37 tmp40 = tmp0 - tmp39 tmp42 = tmp0 - tmp41 tmp44 = tmp0 - tmp43 tmp46 = tmp0 - tmp45 tmp48 = tmp0 - tmp47 tmp50 = tmp0 - tmp49 tmp52 = tmp0 - tmp51 tmp54 = tmp0 - tmp53 tmp56 = tmp0 - tmp55 tmp59 = tmp57 - tmp58 tmp60 = tl_math.exp(tmp59) tmp62 = tmp60 / tmp61 tmp63 = tmp2 * tmp62 tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = tl.where(xmask, tmp64, 0) tmp67 = tl.sum(tmp66, 1)[:, None] tmp69 = tmp68 - tmp58 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 / tmp61 tmp72 = tmp4 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = tl.where(xmask, tmp73, 0) tmp76 = tl.sum(tmp75, 1)[:, None] tmp78 = tmp77 - tmp58 tmp79 = tl_math.exp(tmp78) tmp80 = tmp79 / tmp61 tmp81 = tmp6 * tmp80 tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK]) tmp84 = tl.where(xmask, tmp82, 0) tmp85 = tl.sum(tmp84, 1)[:, None] tmp87 = tmp86 - tmp58 tmp88 = tl_math.exp(tmp87) tmp89 = tmp88 / tmp61 tmp90 = tmp8 * tmp89 tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK]) tmp93 = tl.where(xmask, tmp91, 0) tmp94 = tl.sum(tmp93, 1)[:, None] tmp96 = tmp95 - tmp58 tmp97 = tl_math.exp(tmp96) tmp98 = tmp97 / tmp61 tmp99 = tmp10 * tmp98 tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK]) tmp102 = tl.where(xmask, tmp100, 0) tmp103 = tl.sum(tmp102, 1)[:, None] tmp105 = tmp104 - tmp58 tmp106 = tl_math.exp(tmp105) tmp107 = tmp106 / tmp61 tmp108 = tmp12 * tmp107 tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK]) tmp111 = tl.where(xmask, tmp109, 0) tmp112 = tl.sum(tmp111, 1)[:, None] tmp114 = tmp113 - tmp58 tmp115 = tl_math.exp(tmp114) tmp116 = tmp115 / tmp61 tmp117 = tmp14 * tmp116 tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK]) tmp120 = tl.where(xmask, tmp118, 0) tmp121 = tl.sum(tmp120, 1)[:, None] tmp123 = tmp122 - tmp58 tmp124 = tl_math.exp(tmp123) tmp125 = tmp124 / tmp61 tmp126 = tmp16 * tmp125 tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK]) tmp129 = tl.where(xmask, tmp127, 0) tmp130 = tl.sum(tmp129, 1)[:, None] tmp132 = tmp131 - tmp58 tmp133 = tl_math.exp(tmp132) tmp134 = tmp133 / tmp61 tmp135 = tmp18 * tmp134 tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK]) tmp138 = tl.where(xmask, tmp136, 0) tmp139 = tl.sum(tmp138, 1)[:, None] tmp141 = tmp140 - tmp58 tmp142 = tl_math.exp(tmp141) tmp143 = tmp142 / tmp61 tmp144 = tmp20 * tmp143 tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK]) tmp147 = tl.where(xmask, tmp145, 0) tmp148 = tl.sum(tmp147, 1)[:, None] tmp150 = tmp149 - tmp58 tmp151 = tl_math.exp(tmp150) tmp152 = tmp151 / tmp61 tmp153 = tmp22 * tmp152 tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK]) tmp156 = tl.where(xmask, tmp154, 0) tmp157 = tl.sum(tmp156, 1)[:, None] tmp159 = tmp158 - tmp58 tmp160 = tl_math.exp(tmp159) tmp161 = tmp160 / tmp61 tmp162 = tmp24 * tmp161 tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK]) tmp165 = tl.where(xmask, tmp163, 0) tmp166 = tl.sum(tmp165, 1)[:, None] tmp168 = tmp167 - tmp58 tmp169 = tl_math.exp(tmp168) tmp170 = tmp169 / tmp61 tmp171 = tmp26 * tmp170 tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK]) tmp174 = tl.where(xmask, tmp172, 0) tmp175 = tl.sum(tmp174, 1)[:, None] tmp177 = tmp176 - tmp58 tmp178 = tl_math.exp(tmp177) tmp179 = tmp178 / tmp61 tmp180 = tmp28 * tmp179 tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK]) tmp183 = tl.where(xmask, tmp181, 0) tmp184 = tl.sum(tmp183, 1)[:, None] tmp186 = tmp185 - tmp58 tmp187 = tl_math.exp(tmp186) tmp188 = tmp187 / tmp61 tmp189 = tmp30 * tmp188 tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK]) tmp192 = tl.where(xmask, tmp190, 0) tmp193 = tl.sum(tmp192, 1)[:, None] tmp195 = tmp194 - tmp58 tmp196 = tl_math.exp(tmp195) tmp197 = tmp196 / tmp61 tmp198 = tmp32 * tmp197 tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK]) tmp201 = tl.where(xmask, tmp199, 0) tmp202 = tl.sum(tmp201, 1)[:, None] tmp204 = tmp203 - tmp58 tmp205 = tl_math.exp(tmp204) tmp206 = tmp205 / tmp61 tmp207 = tmp34 * tmp206 tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK]) tmp210 = tl.where(xmask, tmp208, 0) tmp211 = tl.sum(tmp210, 1)[:, None] tmp213 = tmp212 - tmp58 tmp214 = tl_math.exp(tmp213) tmp215 = tmp214 / tmp61 tmp216 = tmp36 * tmp215 tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK]) tmp219 = tl.where(xmask, tmp217, 0) tmp220 = tl.sum(tmp219, 1)[:, None] tmp222 = tmp221 - tmp58 tmp223 = tl_math.exp(tmp222) tmp224 = tmp223 / tmp61 tmp225 = tmp38 * tmp224 tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK]) tmp228 = tl.where(xmask, tmp226, 0) tmp229 = tl.sum(tmp228, 1)[:, None] tmp231 = tmp230 - tmp58 tmp232 = tl_math.exp(tmp231) tmp233 = tmp232 / tmp61 tmp234 = tmp40 * tmp233 tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK]) tmp237 = tl.where(xmask, tmp235, 0) tmp238 = tl.sum(tmp237, 1)[:, None] tmp240 = tmp239 - tmp58 tmp241 = tl_math.exp(tmp240) tmp242 = tmp241 / tmp61 tmp243 = tmp42 * tmp242 tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK]) tmp246 = tl.where(xmask, tmp244, 0) tmp247 = tl.sum(tmp246, 1)[:, None] tmp249 = tmp248 - tmp58 tmp250 = tl_math.exp(tmp249) tmp251 = tmp250 / tmp61 tmp252 = tmp44 * tmp251 tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK]) tmp255 = tl.where(xmask, tmp253, 0) tmp256 = tl.sum(tmp255, 1)[:, None] tmp258 = tmp257 - tmp58 tmp259 = tl_math.exp(tmp258) tmp260 = tmp259 / tmp61 tmp261 = tmp46 * tmp260 tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK]) tmp264 = tl.where(xmask, tmp262, 0) tmp265 = tl.sum(tmp264, 1)[:, None] tmp267 = tmp266 - tmp58 tmp268 = tl_math.exp(tmp267) tmp269 = tmp268 / tmp61 tmp270 = tmp48 * tmp269 tmp271 = tl.broadcast_to(tmp270, [XBLOCK, RBLOCK]) tmp273 = tl.where(xmask, tmp271, 0) tmp274 = tl.sum(tmp273, 1)[:, None] tmp276 = tmp275 - tmp58 tmp277 = tl_math.exp(tmp276) tmp278 = tmp277 / tmp61 tmp279 = tmp50 * tmp278 tmp280 = tl.broadcast_to(tmp279, [XBLOCK, RBLOCK]) tmp282 = tl.where(xmask, tmp280, 0) tmp283 = tl.sum(tmp282, 1)[:, None] tmp285 = tmp284 - tmp58 tmp286 = tl_math.exp(tmp285) tmp287 = tmp286 / tmp61 tmp288 = tmp52 * tmp287 tmp289 = tl.broadcast_to(tmp288, [XBLOCK, RBLOCK]) tmp291 = tl.where(xmask, tmp289, 0) tmp292 = tl.sum(tmp291, 1)[:, None] tmp294 = tmp293 - tmp58 tmp295 = tl_math.exp(tmp294) tmp296 = tmp295 / tmp61 tmp297 = tmp54 * tmp296 tmp298 = tl.broadcast_to(tmp297, [XBLOCK, RBLOCK]) tmp300 = tl.where(xmask, tmp298, 0) tmp301 = tl.sum(tmp300, 1)[:, None] tmp303 = tmp302 - tmp58 tmp304 = tl_math.exp(tmp303) tmp305 = tmp304 / tmp61 tmp306 = tmp56 * tmp305 tmp307 = tl.broadcast_to(tmp306, [XBLOCK, RBLOCK]) tmp309 = tl.where(xmask, tmp307, 0) tmp310 = tl.sum(tmp309, 1)[:, None] tl.store(out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.store(out_ptr1 + (r2 + 16 * x3), tmp4, xmask) tl.store(out_ptr2 + (r2 + 16 * x3), tmp6, xmask) tl.store(out_ptr3 + (r2 + 16 * x3), tmp8, xmask) tl.store(out_ptr4 + (r2 + 16 * x3), tmp10, xmask) tl.store(out_ptr5 + (r2 + 16 * x3), tmp12, xmask) tl.store(out_ptr6 + (r2 + 16 * x3), tmp14, xmask) tl.store(out_ptr7 + (r2 + 16 * x3), tmp16, xmask) tl.store(out_ptr8 + (r2 + 16 * x3), tmp18, xmask) tl.store(out_ptr9 + (r2 + 16 * x3), tmp20, xmask) tl.store(out_ptr10 + (r2 + 16 * x3), tmp22, xmask) tl.store(out_ptr11 + (r2 + 16 * x3), tmp24, xmask) tl.store(out_ptr12 + (r2 + 16 * x3), tmp26, xmask) tl.store(out_ptr13 + (r2 + 16 * x3), tmp28, xmask) tl.store(out_ptr14 + (r2 + 16 * x3), tmp30, xmask) tl.store(out_ptr15 + (r2 + 16 * x3), tmp32, xmask) tl.store(out_ptr16 + (r2 + 16 * x3), tmp34, xmask) tl.store(out_ptr17 + (r2 + 16 * x3), tmp36, xmask) tl.store(out_ptr18 + (r2 + 16 * x3), tmp38, xmask) tl.store(out_ptr19 + (r2 + 16 * x3), tmp40, xmask) tl.store(out_ptr20 + (r2 + 16 * x3), tmp42, xmask) tl.store(out_ptr21 + (r2 + 16 * x3), tmp44, xmask) tl.store(out_ptr22 + (r2 + 16 * x3), tmp46, xmask) tl.store(out_ptr23 + (r2 + 16 * x3), tmp48, xmask) tl.store(out_ptr24 + (r2 + 16 * x3), tmp50, xmask) tl.store(out_ptr25 + (r2 + 16 * x3), tmp52, xmask) tl.store(out_ptr26 + (r2 + 16 * x3), tmp54, xmask) tl.store(out_ptr27 + (r2 + 16 * x3), tmp56, xmask) tl.store(out_ptr28 + x3, tmp67, xmask) tl.store(out_ptr29 + x3, tmp76, xmask) tl.store(out_ptr30 + x3, tmp85, xmask) tl.store(out_ptr31 + x3, tmp94, xmask) tl.store(out_ptr32 + x3, tmp103, xmask) tl.store(out_ptr33 + x3, tmp112, xmask) tl.store(out_ptr34 + x3, tmp121, xmask) tl.store(out_ptr35 + x3, tmp130, xmask) tl.store(out_ptr36 + x3, tmp139, xmask) tl.store(out_ptr37 + x3, tmp148, xmask) tl.store(out_ptr38 + x3, tmp157, xmask) tl.store(out_ptr39 + x3, tmp166, xmask) tl.store(out_ptr40 + x3, tmp175, xmask) tl.store(out_ptr41 + x3, tmp184, xmask) tl.store(out_ptr42 + x3, tmp193, xmask) tl.store(out_ptr43 + x3, tmp202, xmask) tl.store(out_ptr44 + x3, tmp211, xmask) tl.store(out_ptr45 + x3, tmp220, xmask) tl.store(out_ptr46 + x3, tmp229, xmask) tl.store(out_ptr47 + x3, tmp238, xmask) tl.store(out_ptr48 + x3, tmp247, xmask) tl.store(out_ptr49 + x3, tmp256, xmask) tl.store(out_ptr50 + x3, tmp265, xmask) tl.store(out_ptr51 + x3, tmp274, xmask) tl.store(out_ptr52 + x3, tmp283, xmask) tl.store(out_ptr53 + x3, tmp292, xmask) tl.store(out_ptr54 + x3, tmp301, xmask) tl.store(out_ptr55 + x3, tmp310, xmask) @triton.jit def triton_per_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (228 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (232 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (236 + x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (240 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (244 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (248 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (252 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (912 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp19 = tl.load(in_ptr4 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp26 = tl.load(in_ptr2 + (928 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr2 + (944 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp44 = tl.load(in_ptr2 + (960 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp53 = tl.load(in_ptr2 + (976 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp62 = tl.load(in_ptr2 + (992 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp71 = tl.load(in_ptr2 + (1008 + r2 + 1024 * x1), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp4 = tmp0 - tmp3 tmp6 = tmp0 - tmp5 tmp8 = tmp0 - tmp7 tmp10 = tmp0 - tmp9 tmp12 = tmp0 - tmp11 tmp14 = tmp0 - tmp13 tmp17 = tmp15 - tmp16 tmp18 = tl_math.exp(tmp17) tmp20 = tmp18 / tmp19 tmp21 = tmp2 * tmp20 tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.where(xmask, tmp22, 0) tmp25 = tl.sum(tmp24, 1)[:, None] tmp27 = tmp26 - tmp16 tmp28 = tl_math.exp(tmp27) tmp29 = tmp28 / tmp19 tmp30 = tmp4 * tmp29 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tmp36 = tmp35 - tmp16 tmp37 = tl_math.exp(tmp36) tmp38 = tmp37 / tmp19 tmp39 = tmp6 * tmp38 tmp40 = tl.broadcast_to(tmp39, [XBLOCK, RBLOCK]) tmp42 = tl.where(xmask, tmp40, 0) tmp43 = tl.sum(tmp42, 1)[:, None] tmp45 = tmp44 - tmp16 tmp46 = tl_math.exp(tmp45) tmp47 = tmp46 / tmp19 tmp48 = tmp8 * tmp47 tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp51 = tl.where(xmask, tmp49, 0) tmp52 = tl.sum(tmp51, 1)[:, None] tmp54 = tmp53 - tmp16 tmp55 = tl_math.exp(tmp54) tmp56 = tmp55 / tmp19 tmp57 = tmp10 * tmp56 tmp58 = tl.broadcast_to(tmp57, [XBLOCK, RBLOCK]) tmp60 = tl.where(xmask, tmp58, 0) tmp61 = tl.sum(tmp60, 1)[:, None] tmp63 = tmp62 - tmp16 tmp64 = tl_math.exp(tmp63) tmp65 = tmp64 / tmp19 tmp66 = tmp12 * tmp65 tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK]) tmp69 = tl.where(xmask, tmp67, 0) tmp70 = tl.sum(tmp69, 1)[:, None] tmp72 = tmp71 - tmp16 tmp73 = tl_math.exp(tmp72) tmp74 = tmp73 / tmp19 tmp75 = tmp14 * tmp74 tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK]) tmp78 = tl.where(xmask, tmp76, 0) tmp79 = tl.sum(tmp78, 1)[:, None] tl.store(out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.store(out_ptr1 + (r2 + 16 * x3), tmp4, xmask) tl.store(out_ptr2 + (r2 + 16 * x3), tmp6, xmask) tl.store(out_ptr3 + (r2 + 16 * x3), tmp8, xmask) tl.store(out_ptr4 + (r2 + 16 * x3), tmp10, xmask) tl.store(out_ptr5 + (r2 + 16 * x3), tmp12, xmask) tl.store(out_ptr6 + (r2 + 16 * x3), tmp14, xmask) tl.store(out_ptr7 + x3, tmp25, xmask) tl.store(out_ptr8 + x3, tmp34, xmask) tl.store(out_ptr9 + x3, tmp43, xmask) tl.store(out_ptr10 + x3, tmp52, xmask) tl.store(out_ptr11 + x3, tmp61, xmask) tl.store(out_ptr12 + x3, tmp70, xmask) tl.store(out_ptr13 + x3, tmp79, xmask) @triton.jit def triton_poi_fused_copy_zeros_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 64 x0 = xindex % 4 x2 = xindex // 256 x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tl.full([1], 3, tl.int64) tmp8 = tmp0 >= tmp7 tmp9 = tmp0 < tmp1 tmp10 = tmp8 & tmp9 tmp11 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp10 & xmask, eviction_policy ='evict_last', other=0.0) tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp0 >= tmp12 tmp14 = tmp0 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp15 & xmask, eviction_policy ='evict_last', other=0.0) tmp17 = tl.full([1], 1, tl.int64) tmp18 = tmp0 >= tmp17 tmp19 = tmp0 < tmp12 tmp20 = tmp18 & tmp19 tmp21 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp20 & xmask, eviction_policy ='evict_last', other=0.0) tmp22 = tmp0 < tmp17 tmp23 = tl.load(in_ptr4 + (x0 + 4 * x2), tmp22 & xmask, eviction_policy ='evict_last', other=0.0) tmp24 = 0.0 tmp25 = tl.where(tmp22, tmp23, tmp24) tmp26 = tl.where(tmp20, tmp21, tmp25) tmp27 = tl.where(tmp15, tmp16, tmp26) tmp28 = tl.where(tmp10, tmp11, tmp27) tmp29 = tl.where(tmp5, tmp6, tmp28) tmp30 = tl.full([1], 8, tl.int64) tmp31 = tmp0 >= tmp30 tmp32 = tl.full([1], 9, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tmp31 & tmp33 tmp35 = tl.load(in_ptr5 + (x0 + 4 * x2), tmp34 & xmask, eviction_policy ='evict_last', other=0.0) tmp36 = tl.full([1], 7, tl.int64) tmp37 = tmp0 >= tmp36 tmp38 = tmp0 < tmp30 tmp39 = tmp37 & tmp38 tmp40 = tl.load(in_ptr6 + (x0 + 4 * x2), tmp39 & xmask, eviction_policy ='evict_last', other=0.0) tmp41 = tl.full([1], 6, tl.int64) tmp42 = tmp0 >= tmp41 tmp43 = tmp0 < tmp36 tmp44 = tmp42 & tmp43 tmp45 = tl.load(in_ptr7 + (x0 + 4 * x2), tmp44 & xmask, eviction_policy ='evict_last', other=0.0) tmp46 = tmp0 >= tmp3 tmp47 = tmp0 < tmp41 tmp48 = tmp46 & tmp47 tmp49 = tl.load(in_ptr8 + (x0 + 4 * x2), tmp48 & xmask, eviction_policy ='evict_last', other=0.0) tmp50 = tl.where(tmp48, tmp49, tmp29) tmp51 = tl.where(tmp44, tmp45, tmp50) tmp52 = tl.where(tmp39, tmp40, tmp51) tmp53 = tl.where(tmp34, tmp35, tmp52) tmp54 = tl.full([1], 12, tl.int64) tmp55 = tmp0 >= tmp54 tmp56 = tl.full([1], 13, tl.int64) tmp57 = tmp0 < tmp56 tmp58 = tmp55 & tmp57 tmp59 = tl.load(in_ptr9 + (x0 + 4 * x2), tmp58 & xmask, eviction_policy ='evict_last', other=0.0) tmp60 = tl.full([1], 11, tl.int64) tmp61 = tmp0 >= tmp60 tmp62 = tmp0 < tmp54 tmp63 = tmp61 & tmp62 tmp64 = tl.load(in_ptr10 + (x0 + 4 * x2), tmp63 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.full([1], 10, tl.int64) tmp66 = tmp0 >= tmp65 tmp67 = tmp0 < tmp60 tmp68 = tmp66 & tmp67 tmp69 = tl.load(in_ptr11 + (x0 + 4 * x2), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp0 >= tmp32 tmp71 = tmp0 < tmp65 tmp72 = tmp70 & tmp71 tmp73 = tl.load(in_ptr12 + (x0 + 4 * x2), tmp72 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp72, tmp73, tmp53) tmp75 = tl.where(tmp68, tmp69, tmp74) tmp76 = tl.where(tmp63, tmp64, tmp75) tmp77 = tl.where(tmp58, tmp59, tmp76) tmp78 = tl.full([1], 16, tl.int64) tmp79 = tmp0 >= tmp78 tmp80 = tl.full([1], 17, tl.int64) tmp81 = tmp0 < tmp80 tmp82 = tmp79 & tmp81 tmp83 = tl.load(in_ptr13 + (x0 + 4 * x2), tmp82 & xmask, eviction_policy='evict_last', other=0.0) tmp84 = tl.full([1], 15, tl.int64) tmp85 = tmp0 >= tmp84 tmp86 = tmp0 < tmp78 tmp87 = tmp85 & tmp86 tmp88 = tl.load(in_ptr14 + (x0 + 4 * x2), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full([1], 14, tl.int64) tmp90 = tmp0 >= tmp89 tmp91 = tmp0 < tmp84 tmp92 = tmp90 & tmp91 tmp93 = tl.load(in_ptr15 + (x0 + 4 * x2), tmp92 & xmask, eviction_policy='evict_last', other=0.0) tmp94 = tmp0 >= tmp56 tmp95 = tmp0 < tmp89 tmp96 = tmp94 & tmp95 tmp97 = tl.load(in_ptr16 + (x0 + 4 * x2), tmp96 & xmask, eviction_policy='evict_last', other=0.0) tmp98 = tl.where(tmp96, tmp97, tmp77) tmp99 = tl.where(tmp92, tmp93, tmp98) tmp100 = tl.where(tmp87, tmp88, tmp99) tmp101 = tl.where(tmp82, tmp83, tmp100) tmp102 = tl.full([1], 20, tl.int64) tmp103 = tmp0 >= tmp102 tmp104 = tl.full([1], 21, tl.int64) tmp105 = tmp0 < tmp104 tmp106 = tmp103 & tmp105 tmp107 = tl.load(in_ptr17 + (x0 + 4 * x2), tmp106 & xmask, eviction_policy='evict_last', other=0.0) tmp108 = tl.full([1], 19, tl.int64) tmp109 = tmp0 >= tmp108 tmp110 = tmp0 < tmp102 tmp111 = tmp109 & tmp110 tmp112 = tl.load(in_ptr18 + (x0 + 4 * x2), tmp111 & xmask, eviction_policy='evict_last', other=0.0) tmp113 = tl.full([1], 18, tl.int64) tmp114 = tmp0 >= tmp113 tmp115 = tmp0 < tmp108 tmp116 = tmp114 & tmp115 tmp117 = tl.load(in_ptr19 + (x0 + 4 * x2), tmp116 & xmask, eviction_policy='evict_last', other=0.0) tmp118 = tmp0 >= tmp80 tmp119 = tmp0 < tmp113 tmp120 = tmp118 & tmp119 tmp121 = tl.load(in_ptr20 + (x0 + 4 * x2), tmp120 & xmask, eviction_policy='evict_last', other=0.0) tmp122 = tl.where(tmp120, tmp121, tmp101) tmp123 = tl.where(tmp116, tmp117, tmp122) tmp124 = tl.where(tmp111, tmp112, tmp123) tmp125 = tl.where(tmp106, tmp107, tmp124) tmp126 = tl.full([1], 24, tl.int64) tmp127 = tmp0 >= tmp126 tmp128 = tl.full([1], 25, tl.int64) tmp129 = tmp0 < tmp128 tmp130 = tmp127 & tmp129 tmp131 = tl.load(in_ptr21 + (x0 + 4 * x2), tmp130 & xmask, eviction_policy='evict_last', other=0.0) tmp132 = tl.full([1], 23, tl.int64) tmp133 = tmp0 >= tmp132 tmp134 = tmp0 < tmp126 tmp135 = tmp133 & tmp134 tmp136 = tl.load(in_ptr22 + (x0 + 4 * x2), tmp135 & xmask, eviction_policy='evict_last', other=0.0) tmp137 = tl.full([1], 22, tl.int64) tmp138 = tmp0 >= tmp137 tmp139 = tmp0 < tmp132 tmp140 = tmp138 & tmp139 tmp141 = tl.load(in_ptr23 + (x0 + 4 * x2), tmp140 & xmask, eviction_policy='evict_last', other=0.0) tmp142 = tmp0 >= tmp104 tmp143 = tmp0 < tmp137 tmp144 = tmp142 & tmp143 tmp145 = tl.load(in_ptr24 + (x0 + 4 * x2), tmp144 & xmask, eviction_policy='evict_last', other=0.0) tmp146 = tl.where(tmp144, tmp145, tmp125) tmp147 = tl.where(tmp140, tmp141, tmp146) tmp148 = tl.where(tmp135, tmp136, tmp147) tmp149 = tl.where(tmp130, tmp131, tmp148) tmp150 = tl.full([1], 28, tl.int64) tmp151 = tmp0 >= tmp150 tmp152 = tl.full([1], 29, tl.int64) tmp153 = tmp0 < tmp152 tmp154 = tmp151 & tmp153 tmp155 = tl.load(in_ptr25 + (x0 + 4 * x2), tmp154 & xmask, eviction_policy='evict_last', other=0.0) tmp156 = tl.full([1], 27, tl.int64) tmp157 = tmp0 >= tmp156 tmp158 = tmp0 < tmp150 tmp159 = tmp157 & tmp158 tmp160 = tl.load(in_ptr26 + (x0 + 4 * x2), tmp159 & xmask, eviction_policy='evict_last', other=0.0) tmp161 = tl.full([1], 26, tl.int64) tmp162 = tmp0 >= tmp161 tmp163 = tmp0 < tmp156 tmp164 = tmp162 & tmp163 tmp165 = tl.load(in_ptr27 + (x0 + 4 * x2), tmp164 & xmask, eviction_policy='evict_last', other=0.0) tmp166 = tmp0 >= tmp128 tmp167 = tmp0 < tmp161 tmp168 = tmp166 & tmp167 tmp169 = tl.load(in_ptr28 + (x0 + 4 * x2), tmp168 & xmask, eviction_policy='evict_last', other=0.0) tmp170 = tl.where(tmp168, tmp169, tmp149) tmp171 = tl.where(tmp164, tmp165, tmp170) tmp172 = tl.where(tmp159, tmp160, tmp171) tmp173 = tl.where(tmp154, tmp155, tmp172) tmp174 = tl.full([1], 32, tl.int64) tmp175 = tmp0 >= tmp174 tmp176 = tl.full([1], 33, tl.int64) tmp177 = tmp0 < tmp176 tmp178 = tmp175 & tmp177 tmp179 = tl.load(in_ptr29 + (x0 + 4 * x2), tmp178 & xmask, eviction_policy='evict_last', other=0.0) tmp180 = tl.full([1], 31, tl.int64) tmp181 = tmp0 >= tmp180 tmp182 = tmp0 < tmp174 tmp183 = tmp181 & tmp182 tmp184 = tl.load(in_ptr30 + (x0 + 4 * x2), tmp183 & xmask, eviction_policy='evict_last', other=0.0) tmp185 = tl.full([1], 30, tl.int64) tmp186 = tmp0 >= tmp185 tmp187 = tmp0 < tmp180 tmp188 = tmp186 & tmp187 tmp189 = tl.load(in_ptr31 + (x0 + 4 * x2), tmp188 & xmask, eviction_policy='evict_last', other=0.0) tmp190 = tmp0 >= tmp152 tmp191 = tmp0 < tmp185 tmp192 = tmp190 & tmp191 tmp193 = tl.load(in_ptr32 + (x0 + 4 * x2), tmp192 & xmask, eviction_policy='evict_last', other=0.0) tmp194 = tl.where(tmp192, tmp193, tmp173) tmp195 = tl.where(tmp188, tmp189, tmp194) tmp196 = tl.where(tmp183, tmp184, tmp195) tmp197 = tl.where(tmp178, tmp179, tmp196) tmp198 = tl.full([1], 36, tl.int64) tmp199 = tmp0 >= tmp198 tmp200 = tl.full([1], 37, tl.int64) tmp201 = tmp0 < tmp200 tmp202 = tmp199 & tmp201 tmp203 = tl.load(in_ptr33 + (x0 + 4 * x2), tmp202 & xmask, eviction_policy='evict_last', other=0.0) tmp204 = tl.full([1], 35, tl.int64) tmp205 = tmp0 >= tmp204 tmp206 = tmp0 < tmp198 tmp207 = tmp205 & tmp206 tmp208 = tl.load(in_ptr34 + (x0 + 4 * x2), tmp207 & xmask, eviction_policy='evict_last', other=0.0) tmp209 = tl.full([1], 34, tl.int64) tmp210 = tmp0 >= tmp209 tmp211 = tmp0 < tmp204 tmp212 = tmp210 & tmp211 tmp213 = tl.load(in_ptr35 + (x0 + 4 * x2), tmp212 & xmask, eviction_policy='evict_last', other=0.0) tmp214 = tmp0 >= tmp176 tmp215 = tmp0 < tmp209 tmp216 = tmp214 & tmp215 tmp217 = tl.load(in_ptr36 + (x0 + 4 * x2), tmp216 & xmask, eviction_policy='evict_last', other=0.0) tmp218 = tl.where(tmp216, tmp217, tmp197) tmp219 = tl.where(tmp212, tmp213, tmp218) tmp220 = tl.where(tmp207, tmp208, tmp219) tmp221 = tl.where(tmp202, tmp203, tmp220) tmp222 = tl.full([1], 40, tl.int64) tmp223 = tmp0 >= tmp222 tmp224 = tl.full([1], 41, tl.int64) tmp225 = tmp0 < tmp224 tmp226 = tmp223 & tmp225 tmp227 = tl.load(in_ptr37 + (x0 + 4 * x2), tmp226 & xmask, eviction_policy='evict_last', other=0.0) tmp228 = tl.full([1], 39, tl.int64) tmp229 = tmp0 >= tmp228 tmp230 = tmp0 < tmp222 tmp231 = tmp229 & tmp230 tmp232 = tl.load(in_ptr38 + (x0 + 4 * x2), tmp231 & xmask, eviction_policy='evict_last', other=0.0) tmp233 = tl.full([1], 38, tl.int64) tmp234 = tmp0 >= tmp233 tmp235 = tmp0 < tmp228 tmp236 = tmp234 & tmp235 tmp237 = tl.load(in_ptr39 + (x0 + 4 * x2), tmp236 & xmask, eviction_policy='evict_last', other=0.0) tmp238 = tmp0 >= tmp200 tmp239 = tmp0 < tmp233 tmp240 = tmp238 & tmp239 tmp241 = tl.load(in_ptr40 + (x0 + 4 * x2), tmp240 & xmask, eviction_policy='evict_last', other=0.0) tmp242 = tl.where(tmp240, tmp241, tmp221) tmp243 = tl.where(tmp236, tmp237, tmp242) tmp244 = tl.where(tmp231, tmp232, tmp243) tmp245 = tl.where(tmp226, tmp227, tmp244) tmp246 = tl.full([1], 44, tl.int64) tmp247 = tmp0 >= tmp246 tmp248 = tl.full([1], 45, tl.int64) tmp249 = tmp0 < tmp248 tmp250 = tmp247 & tmp249 tmp251 = tl.load(in_ptr41 + (x0 + 4 * x2), tmp250 & xmask, eviction_policy='evict_last', other=0.0) tmp252 = tl.full([1], 43, tl.int64) tmp253 = tmp0 >= tmp252 tmp254 = tmp0 < tmp246 tmp255 = tmp253 & tmp254 tmp256 = tl.load(in_ptr42 + (x0 + 4 * x2), tmp255 & xmask, eviction_policy='evict_last', other=0.0) tmp257 = tl.full([1], 42, tl.int64) tmp258 = tmp0 >= tmp257 tmp259 = tmp0 < tmp252 tmp260 = tmp258 & tmp259 tmp261 = tl.load(in_ptr43 + (x0 + 4 * x2), tmp260 & xmask, eviction_policy='evict_last', other=0.0) tmp262 = tmp0 >= tmp224 tmp263 = tmp0 < tmp257 tmp264 = tmp262 & tmp263 tmp265 = tl.load(in_ptr44 + (x0 + 4 * x2), tmp264 & xmask, eviction_policy='evict_last', other=0.0) tmp266 = tl.where(tmp264, tmp265, tmp245) tmp267 = tl.where(tmp260, tmp261, tmp266) tmp268 = tl.where(tmp255, tmp256, tmp267) tmp269 = tl.where(tmp250, tmp251, tmp268) tmp270 = tl.full([1], 48, tl.int64) tmp271 = tmp0 >= tmp270 tmp272 = tl.full([1], 49, tl.int64) tmp273 = tmp0 < tmp272 tmp274 = tmp271 & tmp273 tmp275 = tl.load(in_ptr45 + (x0 + 4 * x2), tmp274 & xmask, eviction_policy='evict_last', other=0.0) tmp276 = tl.full([1], 47, tl.int64) tmp277 = tmp0 >= tmp276 tmp278 = tmp0 < tmp270 tmp279 = tmp277 & tmp278 tmp280 = tl.load(in_ptr46 + (x0 + 4 * x2), tmp279 & xmask, eviction_policy='evict_last', other=0.0) tmp281 = tl.full([1], 46, tl.int64) tmp282 = tmp0 >= tmp281 tmp283 = tmp0 < tmp276 tmp284 = tmp282 & tmp283 tmp285 = tl.load(in_ptr47 + (x0 + 4 * x2), tmp284 & xmask, eviction_policy='evict_last', other=0.0) tmp286 = tmp0 >= tmp248 tmp287 = tmp0 < tmp281 tmp288 = tmp286 & tmp287 tmp289 = tl.load(in_ptr48 + (x0 + 4 * x2), tmp288 & xmask, eviction_policy='evict_last', other=0.0) tmp290 = tl.where(tmp288, tmp289, tmp269) tmp291 = tl.where(tmp284, tmp285, tmp290) tmp292 = tl.where(tmp279, tmp280, tmp291) tmp293 = tl.where(tmp274, tmp275, tmp292) tmp294 = tl.full([1], 52, tl.int64) tmp295 = tmp0 >= tmp294 tmp296 = tl.full([1], 53, tl.int64) tmp297 = tmp0 < tmp296 tmp298 = tmp295 & tmp297 tmp299 = tl.load(in_ptr49 + (x0 + 4 * x2), tmp298 & xmask, eviction_policy='evict_last', other=0.0) tmp300 = tl.full([1], 51, tl.int64) tmp301 = tmp0 >= tmp300 tmp302 = tmp0 < tmp294 tmp303 = tmp301 & tmp302 tmp304 = tl.load(in_ptr50 + (x0 + 4 * x2), tmp303 & xmask, eviction_policy='evict_last', other=0.0) tmp305 = tl.full([1], 50, tl.int64) tmp306 = tmp0 >= tmp305 tmp307 = tmp0 < tmp300 tmp308 = tmp306 & tmp307 tmp309 = tl.load(in_ptr51 + (x0 + 4 * x2), tmp308 & xmask, eviction_policy='evict_last', other=0.0) tmp310 = tmp0 >= tmp272 tmp311 = tmp0 < tmp305 tmp312 = tmp310 & tmp311 tmp313 = tl.load(in_ptr52 + (x0 + 4 * x2), tmp312 & xmask, eviction_policy='evict_last', other=0.0) tmp314 = tl.where(tmp312, tmp313, tmp293) tmp315 = tl.where(tmp308, tmp309, tmp314) tmp316 = tl.where(tmp303, tmp304, tmp315) tmp317 = tl.where(tmp298, tmp299, tmp316) tmp318 = tl.full([1], 56, tl.int64) tmp319 = tmp0 >= tmp318 tmp320 = tl.full([1], 57, tl.int64) tmp321 = tmp0 < tmp320 tmp322 = tmp319 & tmp321 tmp323 = tl.load(in_ptr53 + (x0 + 4 * x2), tmp322 & xmask, eviction_policy='evict_last', other=0.0) tmp324 = tl.full([1], 55, tl.int64) tmp325 = tmp0 >= tmp324 tmp326 = tmp0 < tmp318 tmp327 = tmp325 & tmp326 tmp328 = tl.load(in_ptr54 + (x0 + 4 * x2), tmp327 & xmask, eviction_policy='evict_last', other=0.0) tmp329 = tl.full([1], 54, tl.int64) tmp330 = tmp0 >= tmp329 tmp331 = tmp0 < tmp324 tmp332 = tmp330 & tmp331 tmp333 = tl.load(in_ptr55 + (x0 + 4 * x2), tmp332 & xmask, eviction_policy='evict_last', other=0.0) tmp334 = tmp0 >= tmp296 tmp335 = tmp0 < tmp329 tmp336 = tmp334 & tmp335 tmp337 = tl.load(in_ptr56 + (x0 + 4 * x2), tmp336 & xmask, eviction_policy='evict_last', other=0.0) tmp338 = tl.where(tmp336, tmp337, tmp317) tmp339 = tl.where(tmp332, tmp333, tmp338) tmp340 = tl.where(tmp327, tmp328, tmp339) tmp341 = tl.where(tmp322, tmp323, tmp340) tmp342 = tl.full([1], 60, tl.int64) tmp343 = tmp0 >= tmp342 tmp344 = tl.full([1], 61, tl.int64) tmp345 = tmp0 < tmp344 tmp346 = tmp343 & tmp345 tmp347 = tl.load(in_ptr57 + (x0 + 4 * x2), tmp346 & xmask, eviction_policy='evict_last', other=0.0) tmp348 = tl.full([1], 59, tl.int64) tmp349 = tmp0 >= tmp348 tmp350 = tmp0 < tmp342 tmp351 = tmp349 & tmp350 tmp352 = tl.load(in_ptr58 + (x0 + 4 * x2), tmp351 & xmask, eviction_policy='evict_last', other=0.0) tmp353 = tl.full([1], 58, tl.int64) tmp354 = tmp0 >= tmp353 tmp355 = tmp0 < tmp348 tmp356 = tmp354 & tmp355 tmp357 = tl.load(in_ptr59 + (x0 + 4 * x2), tmp356 & xmask, eviction_policy='evict_last', other=0.0) tmp358 = tmp0 >= tmp320 tmp359 = tmp0 < tmp353 tmp360 = tmp358 & tmp359 tmp361 = tl.load(in_ptr60 + (x0 + 4 * x2), tmp360 & xmask, eviction_policy='evict_last', other=0.0) tmp362 = tl.where(tmp360, tmp361, tmp341) tmp363 = tl.where(tmp356, tmp357, tmp362) tmp364 = tl.where(tmp351, tmp352, tmp363) tmp365 = tl.where(tmp346, tmp347, tmp364) tmp366 = tl.full([1], 63, tl.int64) tmp367 = tmp0 >= tmp366 tmp368 = tl.load(in_ptr61 + (x0 + 4 * x2), tmp367 & xmask, eviction_policy='evict_last', other=0.0) tmp369 = tl.full([1], 62, tl.int64) tmp370 = tmp0 >= tmp369 tmp371 = tmp0 < tmp366 tmp372 = tmp370 & tmp371 tmp373 = tl.load(in_ptr62 + (x0 + 4 * x2), tmp372 & xmask, eviction_policy='evict_last', other=0.0) tmp374 = tmp0 >= tmp344 tmp375 = tmp0 < tmp369 tmp376 = tmp374 & tmp375 tmp377 = tl.load(in_ptr63 + (x0 + 4 * x2), tmp376 & xmask, eviction_policy='evict_last', other=0.0) tmp378 = tl.where(tmp376, tmp377, tmp365) tmp379 = tl.where(tmp372, tmp373, tmp378) tmp380 = tl.where(tmp367, tmp368, tmp379) tl.store(in_out_ptr0 + x3, tmp380, xmask) @triton.jit def triton_red_fused_div_linalg_vector_norm_5(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl. constexpr): xnumel = 4 rnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex r2 = rindex // 4 tmp0 = tl.load(in_ptr0 + (r3 + 256 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr0 + (4 * r2 + 256 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr0 + (1 + 4 * r2 + 256 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (2 + 4 * r2 + 256 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr0 + (3 + 4 * r2 + 256 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = _tmp18 + tmp17 _tmp18 = tl.where(rmask & xmask, tmp19, _tmp18) tl.store(out_ptr0 + (r3 + 256 * x0), tmp15, rmask & xmask) tmp18 = tl.sum(_tmp18, 1)[:, None] tmp20 = libdevice.sqrt(tmp18) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp21 = tl.load(out_ptr0 + (r3 + 256 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp22 = 1e-12 tmp23 = triton_helpers.maximum(tmp20, tmp22) tmp24 = tmp21 / tmp23 tl.store(out_ptr1 + (r3 + 256 * x0), tmp24, rmask & xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (64, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 4, 4), (1024, 16, 4, 1)) buf1 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf2 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(64)](buf0, buf1, buf2, 64, 64, XBLOCK=32, num_warps=8, num_stages=1) buf4 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf6 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf8 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf10 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf13 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf15 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf17 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf19 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf22 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf24 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf26 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf28 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf31 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf33 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf35 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf37 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf40 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf42 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf44 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf46 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf49 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf51 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf53 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf55 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf58 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf60 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf62 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf64 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf3 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf18 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf20 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf25 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf27 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf29 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf32 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf34 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf36 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf38 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf41 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf43 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf45 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf47 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf50 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf52 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf54 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf56 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf59 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf61 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf63 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf65 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_per_fused_mul_sub_sum_1[grid(16)](primals_1, primals_3, buf0, buf1, buf2, buf4, buf6, buf8, buf10, buf13, buf15, buf17, buf19, buf22, buf24, buf26, buf28, buf31, buf33, buf35, buf37, buf40, buf42, buf44, buf46, buf49, buf51, buf53, buf55, buf58, buf60, buf62, buf64, buf3, buf5, buf7, buf9, buf11, buf14, buf16, buf18, buf20, buf23, buf25, buf27, buf29, buf32, buf34, buf36, buf38, buf41, buf43, buf45, buf47, buf50, buf52, buf54, buf56, buf59, buf61, buf63, buf65, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf67 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf69 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf71 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf73 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf76 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf78 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf80 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf82 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf85 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf87 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf89 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf91 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf94 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf96 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf98 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf100 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf103 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf105 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf107 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf109 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf112 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf114 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf116 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf118 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf121 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf123 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf125 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf127 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf68 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf70 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf72 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf74 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf77 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf79 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf81 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf83 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf86 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf88 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf90 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf92 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf95 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf97 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf99 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf101 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf104 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf106 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf108 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf110 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf113 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf115 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf117 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf119 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf122 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf124 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf126 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf128 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_per_fused_mul_sub_sum_2[grid(16)](primals_1, primals_3, buf0, buf1, buf2, buf67, buf69, buf71, buf73, buf76, buf78, buf80, buf82, buf85, buf87, buf89, buf91, buf94, buf96, buf98, buf100, buf103, buf105, buf107, buf109, buf112, buf114, buf116, buf118, buf121, buf123, buf125, buf127, buf68, buf70, buf72, buf74, buf77, buf79, buf81, buf83, buf86, buf88, buf90, buf92, buf95, buf97, buf99, buf101, buf104, buf106, buf108, buf110, buf113, buf115, buf117, buf119, buf122, buf124, buf126, buf128, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf130 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf132 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf134 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf136 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf139 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf141 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf143 = empty_strided_cuda((4, 1, 4, 16), (64, 256, 16, 1), torch. float32) buf131 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf133 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf135 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf137 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf140 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf142 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) buf144 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_per_fused_mul_sub_sum_3[grid(16)](primals_1, primals_3, buf0, buf1, buf2, buf130, buf132, buf134, buf136, buf139, buf141, buf143, buf131, buf133, buf135, buf137, buf140, buf142, buf144, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf12 = empty_strided_cuda((4, 64, 4), (256, 4, 1), torch.float32) buf21 = buf12 del buf12 buf30 = buf21 del buf21 buf39 = buf30 del buf30 buf48 = buf39 del buf39 buf57 = buf48 del buf48 buf66 = buf57 del buf57 buf75 = buf66 del buf66 buf84 = buf75 del buf75 buf93 = buf84 del buf84 buf102 = buf93 del buf93 buf111 = buf102 del buf102 buf120 = buf111 del buf111 buf129 = buf120 del buf120 buf138 = buf129 del buf129 buf145 = buf138 del buf138 triton_poi_fused_copy_zeros_4[grid(1024)](buf145, buf11, buf9, buf7, buf5, buf3, buf20, buf18, buf16, buf14, buf29, buf27, buf25, buf23, buf38, buf36, buf34, buf32, buf47, buf45, buf43, buf41, buf56, buf54, buf52, buf50, buf65, buf63, buf61, buf59, buf74, buf72, buf70, buf68, buf83, buf81, buf79, buf77, buf92, buf90, buf88, buf86, buf101, buf99, buf97, buf95, buf110, buf108, buf106, buf104, buf119, buf117, buf115, buf113, buf128, buf126, buf124, buf122, buf137, buf135, buf133, buf131, buf144, buf142, buf140, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf101 del buf104 del buf106 del buf108 del buf11 del buf110 del buf113 del buf115 del buf117 del buf119 del buf122 del buf124 del buf126 del buf128 del buf131 del buf133 del buf135 del buf137 del buf14 del buf140 del buf142 del buf144 del buf16 del buf18 del buf20 del buf23 del buf25 del buf27 del buf29 del buf3 del buf32 del buf34 del buf36 del buf38 del buf41 del buf43 del buf45 del buf47 del buf5 del buf50 del buf52 del buf54 del buf56 del buf59 del buf61 del buf63 del buf65 del buf68 del buf7 del buf70 del buf72 del buf74 del buf77 del buf79 del buf81 del buf83 del buf86 del buf88 del buf9 del buf90 del buf92 del buf95 del buf97 del buf99 buf146 = empty_strided_cuda((4, 64, 4), (256, 4, 1), torch.float32) buf147 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf148 = reinterpret_tensor(buf147, (4, 1), (1, 1), 0) del buf147 buf149 = empty_strided_cuda((4, 256), (256, 1), torch.float32) triton_red_fused_div_linalg_vector_norm_5[grid(4)](buf148, buf145, buf146, buf149, 4, 256, XBLOCK=1, RBLOCK=256, num_warps=2, num_stages=1) del buf146 return (buf149, primals_1, primals_2, buf0, buf1, buf2, reinterpret_tensor(primals_3, (1, 4), (4, 1), 0), buf4, buf6, buf8, buf10, buf13, buf15, buf17, buf19, buf22, buf24, buf26, buf28, buf31, buf33, buf35, buf37, buf40, buf42, buf44, buf46, buf49, buf51, buf53, buf55, buf58, buf60, buf62, buf64, buf67, buf69, buf71, buf73, buf76, buf78, buf80, buf82, buf85, buf87, buf89, buf91, buf94, buf96, buf98, buf100, buf103, buf105, buf107, buf109, buf112, buf114, buf116, buf118, buf121, buf123, buf125, buf127, buf130, buf132, buf134, buf136, buf139, buf141, buf143, buf145, buf148) class NetVLADNew(nn.Module): """NetVLAD layer implementation""" def __init__(self, dim, num_clusters=64): """ Args: dim : int Dimension of descriptors num_clusters : int The number of clusters """ super(NetVLADNew, self).__init__() self.num_clusters = num_clusters self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=False ) self.centroids = nn.Parameter(torch.rand(num_clusters, dim)) def init_params(self, clsts, traindescs): clsts_assign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True) dots = np.dot(clsts_assign, traindescs.T) dots.sort(0) dots = dots[::-1, :] alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) self.conv.weight = nn.Parameter(torch.from_numpy(alpha * clsts_assign).unsqueeze(2).unsqueeze(3)) self.conv.bias = None def forward(self, input_0): primals_3 = self.centroids primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lulor/project_vg
NetVLAD
false
7,269
[ "MIT" ]
1
27b0c3b3038c5a666dde516a0a265ae8ddf2059f
https://github.com/lulor/project_vg/tree/27b0c3b3038c5a666dde516a0a265ae8ddf2059f
import torch import numpy as np from torch import nn import torch.nn.functional as F class Model(nn.Module): """NetVLAD layer implementation""" def __init__(self, dim, num_clusters=64): """ Args: dim : int Dimension of descriptors num_clusters : int The number of clusters """ super().__init__() self.num_clusters = num_clusters self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=False ) self.centroids = nn.Parameter(torch.rand(num_clusters, dim)) def init_params(self, clsts, traindescs): clsts_assign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True) dots = np.dot(clsts_assign, traindescs.T) dots.sort(0) dots = dots[::-1, :] alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) self.conv.weight = nn.Parameter(torch.from_numpy(alpha * clsts_assign).unsqueeze(2).unsqueeze(3)) self.conv.bias = None def forward(self, x, crm=None): N, C = x.shape[:2] soft_assign = self.conv(x).view(N, self.num_clusters, -1) soft_assign = F.softmax(soft_assign, dim=1) if crm is not None: assert crm.shape[0] == N and crm.shape[1] == 1 and crm.shape[2: ] == x.shape[2:] soft_assign = torch.mul(soft_assign, crm.view(N, 1, -1)) x_flatten = x.view(N, C, -1) vlad = torch.zeros((N, self.num_clusters, C), dtype=x.dtype, layout =x.layout, device=x.device) for c in range(self.num_clusters): residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3 ) - self.centroids[c:c + 1, :].expand(x_flatten.size(-1), - 1, -1).permute(1, 2, 0).unsqueeze(0) residual *= soft_assign[:, c:c + 1, :].unsqueeze(2) vlad[:, c:c + 1, :] = residual.sum(dim=-1) vlad = F.normalize(vlad, p=2, dim=2) vlad = vlad.view(N, -1) vlad = F.normalize(vlad, p=2, dim=1) return vlad def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
DuelingNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/tf/ctfobpckmiv3kkga3a6gzs6unuclcnxpb4xc2h5r3udgxgix4ip5.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] # Source node to ATen node mapping: # h1 => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nl/cnlp53tjaaclmkilyizp32cbhjp6ctd3j4psucie664opwp5nivh.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.sub] # Source node to ATen node mapping: # add => add # output => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %addmm_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %expand_1), kwargs = {}) triton_poi_fused_add_sub_1 = async_compile.triton('triton_poi_fused_add_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (x2), xmask) tmp6 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp12 = tmp10 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = tmp5 - tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf3, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [adv], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.sub] triton_poi_fused_add_sub_1.run(buf5, primals_9, buf4, buf6, 16, grid=grid(16), stream=stream0) del buf4 del buf5 del primals_9 return (buf6, primals_3, buf1, buf3, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class DuelingNet(nn.Module): def __init__(self, n_in, n_mid, n_out): super(DuelingNet, self).__init__() self.fc1 = nn.Linear(n_in, n_mid) self.fc2 = nn.Linear(n_mid, n_mid) self.fc3_adv = nn.Linear(n_mid, n_out) self.fc3_val = nn.Linear(n_mid, 1) def forward(self, x): h1 = F.relu(self.fc1(x)) h2 = F.relu(self.fc2(h1)) adv = self.fc3_adv(h2) val = self.fc3_val(h2).expand(-1, adv.size(1)) output = val + adv - adv.mean(1, keepdim=True).expand(-1, adv.size(1)) return output def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_in': 4, 'n_mid': 4, 'n_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + x2, xmask) tmp6 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp12 = tmp10 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = tmp5 - tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_0[grid(16)](buf3, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (4, 1), (1, 4 ), 0), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_sub_1[grid(16)](buf5, primals_9, buf4, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 del buf5 del primals_9 return buf6, primals_3, buf1, buf3, primals_8, primals_6, primals_4 class DuelingNetNew(nn.Module): def __init__(self, n_in, n_mid, n_out): super(DuelingNetNew, self).__init__() self.fc1 = nn.Linear(n_in, n_mid) self.fc2 = nn.Linear(n_mid, n_mid) self.fc3_adv = nn.Linear(n_mid, n_out) self.fc3_val = nn.Linear(n_mid, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_3 = self.fc2.weight primals_5 = self.fc2.bias primals_4 = self.fc3_adv.weight primals_7 = self.fc3_adv.bias primals_8 = self.fc3_val.weight primals_9 = self.fc3_val.bias primals_6 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
moriaki3193/Torch26
DuelingNet
false
7,271
[ "MIT" ]
1
fb75f6b6bb07c63fedb03fad7b647837eb40db2e
https://github.com/moriaki3193/Torch26/tree/fb75f6b6bb07c63fedb03fad7b647837eb40db2e
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, n_in, n_mid, n_out): super().__init__() self.fc1 = nn.Linear(n_in, n_mid) self.fc2 = nn.Linear(n_mid, n_mid) self.fc3_adv = nn.Linear(n_mid, n_out) self.fc3_val = nn.Linear(n_mid, 1) def forward(self, x): h1 = F.relu(self.fc1(x)) h2 = F.relu(self.fc2(h1)) adv = self.fc3_adv(h2) val = self.fc3_val(h2).expand(-1, adv.size(1)) output = val + adv - adv.mean(1, keepdim=True).expand(-1, adv.size(1)) return output def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
AveragePooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/4d/c4dx5dtglp5hpi3omo5xmukglcgv7f2ug2u4gm65rtchytndj27z.py # Topologically Sorted Source Nodes: [masked_fill_, x_sum, x_num_1, truediv], Original ATen: [aten.masked_fill, aten.sum, aten.clamp, aten.div] # Source node to ATen node mapping: # masked_fill_ => full_default, where # truediv => div # x_num_1 => clamp_min # x_sum => sum_1 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%expand, %full_default, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%where, [1]), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%expand_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %clamp_min), kwargs = {}) triton_poi_fused_clamp_div_masked_fill_sum_0 = async_compile.triton('triton_poi_fused_clamp_div_masked_fill_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_masked_fill_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_masked_fill_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3 + (64*x2)), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (16 + x3 + (64*x2)), xmask) tmp10 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (32 + x3 + (64*x2)), xmask) tmp15 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (48 + x3 + (64*x2)), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = tl.where(tmp2, tmp1, tmp3) tmp6 = tmp5 == tmp1 tmp8 = tl.where(tmp6, tmp1, tmp7) tmp9 = tmp4 + tmp8 tmp11 = tmp10 == tmp1 tmp13 = tl.where(tmp11, tmp1, tmp12) tmp14 = tmp9 + tmp13 tmp16 = tmp15 == tmp1 tmp18 = tl.where(tmp16, tmp1, tmp17) tmp19 = tmp14 + tmp18 tmp20 = 1.0 tmp21 = tmp0 == tmp20 tmp22 = tmp21.to(tl.float32) tmp23 = tmp5 == tmp20 tmp24 = tmp23.to(tl.float32) tmp25 = tmp22 + tmp24 tmp26 = tmp10 == tmp20 tmp27 = tmp26.to(tl.float32) tmp28 = tmp25 + tmp27 tmp29 = tmp15 == tmp20 tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 + tmp30 tmp32 = triton_helpers.maximum(tmp31, tmp20) tmp33 = tmp19 / tmp32 tl.store(out_ptr0 + (x4), tmp33, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [masked_fill_, x_sum, x_num_1, truediv], Original ATen: [aten.masked_fill, aten.sum, aten.clamp, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_masked_fill_sum_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AveragePooling(nn.Module): def __init__(self): super(AveragePooling, self).__init__() """ (item, subitem) can be (word, characters), or (sentence, words) x: num_items x max_subitem_size x input_size x_mask: num_items x max_subitem_size return num_items x input_size """ def forward(self, x, x_mask): """ x_output: num_items x input_size x 1 --> num_items x input_size """ x_now = x.clone() empty_mask = x_mask.eq(0).unsqueeze(2).expand_as(x_now) x_now.data.masked_fill_(empty_mask.data, 0) x_sum = torch.sum(x_now, 1) x_num = torch.sum(x_mask.eq(1).float(), 1).unsqueeze(1).expand_as(x_sum ) x_num = torch.clamp(x_num, min=1) return x_sum / x_num def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_div_masked_fill_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask) tmp10 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask) tmp15 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = tl.where(tmp2, tmp1, tmp3) tmp6 = tmp5 == tmp1 tmp8 = tl.where(tmp6, tmp1, tmp7) tmp9 = tmp4 + tmp8 tmp11 = tmp10 == tmp1 tmp13 = tl.where(tmp11, tmp1, tmp12) tmp14 = tmp9 + tmp13 tmp16 = tmp15 == tmp1 tmp18 = tl.where(tmp16, tmp1, tmp17) tmp19 = tmp14 + tmp18 tmp20 = 1.0 tmp21 = tmp0 == tmp20 tmp22 = tmp21.to(tl.float32) tmp23 = tmp5 == tmp20 tmp24 = tmp23.to(tl.float32) tmp25 = tmp22 + tmp24 tmp26 = tmp10 == tmp20 tmp27 = tmp26.to(tl.float32) tmp28 = tmp25 + tmp27 tmp29 = tmp15 == tmp20 tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 + tmp30 tmp32 = triton_helpers.maximum(tmp31, tmp20) tmp33 = tmp19 / tmp32 tl.store(out_ptr0 + x4, tmp33, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_masked_fill_sum_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf0, class AveragePoolingNew(nn.Module): def __init__(self): super(AveragePoolingNew, self).__init__() """ (item, subitem) can be (word, characters), or (sentence, words) x: num_items x max_subitem_size x input_size x_mask: num_items x max_subitem_size return num_items x input_size """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mpandeydev/SDnetmod
AveragePooling
false
7,272
[ "MIT" ]
1
c8cdf6150e3cd28330359a7d81df236729522a69
https://github.com/mpandeydev/SDnetmod/tree/c8cdf6150e3cd28330359a7d81df236729522a69
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() """ (item, subitem) can be (word, characters), or (sentence, words) x: num_items x max_subitem_size x input_size x_mask: num_items x max_subitem_size return num_items x input_size """ def forward(self, x, x_mask): """ x_output: num_items x input_size x 1 --> num_items x input_size """ x_now = x.clone() empty_mask = x_mask.eq(0).unsqueeze(2).expand_as(x_now) x_now.data.masked_fill_(empty_mask.data, 0) x_sum = torch.sum(x_now, 1) x_num = torch.sum(x_mask.eq(1).float(), 1).unsqueeze(1).expand_as(x_sum ) x_num = torch.clamp(x_num, min=1) return x_sum / x_num def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return []
SinenetComponent
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/un/cun6ihhwjyyhox6wzkegtighr4a3swoiif6bzjf2uy6ughgxorz7.py # Topologically Sorted Source Nodes: [i_f, i_f_t, deg, s, mul_2], Original ATen: [aten.mul, aten.add, aten.sin] # Source node to ATen node mapping: # deg => add # i_f => mul # i_f_t => mul_1 # mul_2 => mul_2 # s => sin # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (4, %primals_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %sin), kwargs = {}) triton_poi_fused_add_mul_sin_0 = async_compile.triton('triton_poi_fused_add_mul_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sin_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr2 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp8 = tl.load(in_ptr3 + (0)) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp1 = 4.0 tmp2 = tmp1 * tmp0 tmp4 = tmp2 * tmp3 tmp7 = tmp4 + tmp6 tmp10 = tl_math.sin(tmp7) tmp11 = tmp9 * tmp10 tl.store(out_ptr0 + (x0), tmp7, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ap/capawthl36q53mm4p74ufqms3xhssnufdiwutbdd2igrcv5r7q7b.py # Topologically Sorted Source Nodes: [h_SBT, h_SB], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # h_SB => sum_1 # h_SBT => mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_5), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {}) triton_poi_fused_mul_sum_1 = async_compile.triton('triton_poi_fused_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [i_f, i_f_t, deg, s, mul_2], Original ATen: [aten.mul, aten.add, aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sin_0.run(primals_1, primals_2, primals_3, primals_4, buf0, buf1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_SBT, h_SB], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_1.run(buf1, primals_5, buf2, 64, grid=grid(64), stream=stream0) return (buf2, buf1, primals_4, primals_5, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class SinenetComponent(torch.nn.Module): def __init__(self, time_len, i): super().__init__() self.time_len = time_len self.i = i self.t_wav = 1.0 / 16000 self.log_f_mean = 5.02654 self.log_f_std = 0.373288 self.a = torch.nn.Parameter(torch.Tensor(1)) self.phi = torch.nn.Parameter(torch.Tensor(1)) def forward(self, x, f, t): i_f = torch.mul(self.i, f) i_f_t = torch.mul(i_f, t) deg = torch.add(i_f_t, self.phi) s = torch.sin(deg) self.W = torch.mul(self.a, s) h_SBT = torch.mul(self.W, x) h_SB = torch.sum(h_SBT, dim=-1, keepdim=False) return h_SB def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'time_len': 4, 'i': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sin_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr2 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp8 = tl.load(in_ptr3 + 0) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp1 = 4.0 tmp2 = tmp1 * tmp0 tmp4 = tmp2 * tmp3 tmp7 = tmp4 + tmp6 tmp10 = tl_math.sin(tmp7) tmp11 = tmp9 * tmp10 tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) @triton.jit def triton_poi_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x0, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sin_0[grid(256)](primals_1, primals_2, primals_3, primals_4, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_sum_1[grid(64)](buf1, primals_5, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, buf1, primals_4, primals_5, buf0 class SinenetComponentNew(torch.nn.Module): def __init__(self, time_len, i): super().__init__() self.time_len = time_len self.i = i self.t_wav = 1.0 / 16000 self.log_f_mean = 5.02654 self.log_f_std = 0.373288 self.a = torch.nn.Parameter(torch.Tensor(1)) self.phi = torch.nn.Parameter(torch.Tensor(1)) def forward(self, input_0, input_1, input_2): primals_3 = self.a primals_4 = self.phi primals_1 = input_0 primals_2 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
moquan/22_Nov_2018
SinenetComponent
false
7,273
[ "MIT" ]
1
eaa81bf5050d74612fe1322abcdb26a0a919e976
https://github.com/moquan/22_Nov_2018/tree/eaa81bf5050d74612fe1322abcdb26a0a919e976
import torch class Model(torch.nn.Module): def __init__(self, time_len, i): super().__init__() self.time_len = time_len self.i = i self.t_wav = 1.0 / 16000 self.log_f_mean = 5.02654 self.log_f_std = 0.373288 self.a = torch.nn.Parameter(torch.Tensor(1)) self.phi = torch.nn.Parameter(torch.Tensor(1)) def forward(self, x, f, t): i_f = torch.mul(self.i, f) i_f_t = torch.mul(i_f, t) deg = torch.add(i_f_t, self.phi) s = torch.sin(deg) self.W = torch.mul(self.a, s) h_SBT = torch.mul(self.W, x) h_SB = torch.sum(h_SBT, dim=-1, keepdim=False) return h_SB def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Net3
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/op/coptu6xep3awc4lajb4xivopppqmjtx3zy7ebtazm45rqvyeknds.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = (xindex // 1200) x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/as/casrc7bf7ghsendgi7tkqxk3hj4ic6aqb4rmkxzuk5dhbidznia7.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] # Source node to ATen node mapping: # out_3 => relu_1 # out_4 => view_4 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {}) triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = (xindex // 300) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kk/ckkc5xafafjuch75gwnhuryooqjc3zkq5tebbj3xugoo6gpc6wsg.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_7 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 70 x2 = xindex % 1120 x3 = (xindex // 1120) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1152*x3)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300, ), (1, )) assert_size_stride(primals_6, (300, 300), (300, 1)) assert_size_stride(primals_7, (300, ), (1, )) assert_size_stride(primals_8, (70, 300), (300, 1)) assert_size_stride(primals_9, (70, ), (1, )) assert_size_stride(primals_10, (1, 70), (70, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse buf15 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf15, 25600, grid=grid(25600), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_5, buf3, buf14, 19200, grid=grid(19200), stream=stream0) del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf3, buf4, 19200, grid=grid(19200), stream=stream0) buf5 = empty_strided_cuda((64, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 300), (1, 300), 0), out=buf5) buf6 = buf3; del buf3 # reuse buf13 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf5, primals_7, buf6, buf13, 19200, grid=grid(19200), stream=stream0) del primals_7 buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf6, buf7, 19200, grid=grid(19200), stream=stream0) del buf6 buf8 = empty_strided_cuda((64, 70), (70, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (300, 70), (1, 300), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 70), (1120, 280, 70, 1), 0); del buf8 # reuse buf12 = empty_strided_cuda((4, 4, 4, 70), (1152, 280, 70, 1), torch.bool) # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf9, primals_9, buf12, 4480, grid=grid(4480), stream=stream0) del primals_9 buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 70), (70, 1), 0), reinterpret_tensor(primals_10, (70, 1), (1, 70), 0), alpha=1, beta=1, out=buf11) del primals_11 return (reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, buf7, reinterpret_tensor(buf9, (64, 70), (70, 1), 0), primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((300, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((70, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((70, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 70), (70, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Net3(nn.Module): """ Net3 is a neural network consisting of four hidden layers with sizes 400, 300, 300 and 70 """ layer_sizes = [400, 300, 300, 70] hidden1 = 400 hidden2 = 300 hidden3 = 300 hidden4 = 70 def __init__(self, input_size): super(Net3, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.fc5 = nn.Linear(self.hidden4, 1) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) out = self.relu3(out) out = self.fc4(out) out = self.relu4(out) out = self.fc5(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = xindex // 1200 x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = xindex // 300 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 70 x2 = xindex % 1120 x3 = xindex // 1120 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1152 * x3), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300,), (1,)) assert_size_stride(primals_6, (300, 300), (300, 1)) assert_size_stride(primals_7, (300,), (1,)) assert_size_stride(primals_8, (70, 300), (300, 1)) assert_size_stride(primals_9, (70,), (1,)) assert_size_stride(primals_10, (1, 70), (70, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0 ) del buf0 buf15 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1, primals_2, buf15, 25600, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(19200)](buf2, primals_5, buf3, buf14, 19200, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = buf2 del buf2 triton_poi_fused_relu_view_2[grid(19200)](buf3, buf4, 19200, XBLOCK =128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((64, 300), (300, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 300), ( 1, 300), 0), out=buf5) buf6 = buf3 del buf3 buf13 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(19200)](buf5, primals_7, buf6, buf13, 19200, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf7 = buf5 del buf5 triton_poi_fused_relu_view_2[grid(19200)](buf6, buf7, 19200, XBLOCK =128, num_warps=4, num_stages=1) del buf6 buf8 = empty_strided_cuda((64, 70), (70, 1), torch.float32) extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (300, 70), (1, 300), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 70), (1120, 280, 70, 1), 0) del buf8 buf12 = empty_strided_cuda((4, 4, 4, 70), (1152, 280, 70, 1), torch .bool) triton_poi_fused_relu_threshold_backward_3[grid(4480)](buf9, primals_9, buf12, 4480, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 70), (70, 1), 0), reinterpret_tensor(primals_10, (70, 1), (1, 70), 0 ), alpha=1, beta=1, out=buf11) del primals_11 return reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 400), (400, 1), 0 ), buf4, buf7, reinterpret_tensor(buf9, (64, 70), (70, 1), 0 ), primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15 class Net3New(nn.Module): """ Net3 is a neural network consisting of four hidden layers with sizes 400, 300, 300 and 70 """ layer_sizes = [400, 300, 300, 70] hidden1 = 400 hidden2 = 300 hidden3 = 300 hidden4 = 70 def __init__(self, input_size): super(Net3New, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.fc5 = nn.Linear(self.hidden4, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
moritzschaefer/pavooc
Net3
false
7,274
[ "MIT" ]
1
735f5455f9a95a5734436a24e2aa92cf600c91af
https://github.com/moritzschaefer/pavooc/tree/735f5455f9a95a5734436a24e2aa92cf600c91af
import torch from torch import nn class Model(nn.Module): """ Net3 is a neural network consisting of four hidden layers with sizes 400, 300, 300 and 70 """ layer_sizes = [400, 300, 300, 70] hidden1 = 400 hidden2 = 300 hidden3 = 300 hidden4 = 70 def __init__(self, input_size): super().__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.fc5 = nn.Linear(self.hidden4, 1) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) out = self.relu3(out) out = self.fc4(out) out = self.relu4(out) out = self.fc5(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MaxPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ye/cyer3e3q24cnknj35g4jhiqyzqlzuynppjhp52ioic4qspesjovr.py # Topologically Sorted Source Nodes: [masked_fill_, max_1, eq_1, masked_fill__1], Original ATen: [aten.masked_fill, aten.max, aten.eq] # Source node to ATen node mapping: # eq_1 => eq_1 # masked_fill_ => full_default, where # masked_fill__1 => full_default_1, where_1 # max_1 => max_1 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%expand, %full_default, %arg1_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%where, 1), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem, -1000000.0), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_1, %getitem), kwargs = {}) triton_poi_fused_eq_masked_fill_max_0 = async_compile.triton('triton_poi_fused_eq_masked_fill_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_masked_fill_max_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_masked_fill_max_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask) tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask) tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask) tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = -1000000.0 tmp5 = tl.where(tmp2, tmp4, tmp3) tmp7 = tmp6 == tmp1 tmp9 = tl.where(tmp7, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp12 = tmp11 == tmp1 tmp14 = tl.where(tmp12, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp17 = tmp16 == tmp1 tmp19 = tl.where(tmp17, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp20 == tmp4 tmp22 = tl.where(tmp21, tmp1, tmp20) tl.store(in_out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [masked_fill_, max_1, eq_1, masked_fill__1], Original ATen: [aten.masked_fill, aten.max, aten.eq] stream0 = get_raw_stream(0) triton_poi_fused_eq_masked_fill_max_0.run(buf1, arg0_1, arg1_1, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaxPooling(nn.Module): def __init__(self): super(MaxPooling, self).__init__() self.MIN = -1000000.0 """ (item, subitem) can be (word, characters), or (sentence, words) x: num_items x max_subitem_size x input_size x_mask: num_items x max_subitem_size return num_items x input_size """ def forward(self, x, x_mask): """ x_output: num_items x input_size x 1 --> num_items x input_size """ empty_mask = x_mask.eq(0).unsqueeze(2).expand_as(x) x_now = x.clone() x_now.data.masked_fill_(empty_mask.data, self.MIN) x_output = x_now.max(1)[0] x_output.data.masked_fill_(x_output.data.eq(self.MIN), 0) return x_output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_masked_fill_max_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask) tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask) tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask) tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tmp4 = -1000000.0 tmp5 = tl.where(tmp2, tmp4, tmp3) tmp7 = tmp6 == tmp1 tmp9 = tl.where(tmp7, tmp4, tmp8) tmp10 = triton_helpers.maximum(tmp5, tmp9) tmp12 = tmp11 == tmp1 tmp14 = tl.where(tmp12, tmp4, tmp13) tmp15 = triton_helpers.maximum(tmp10, tmp14) tmp17 = tmp16 == tmp1 tmp19 = tl.where(tmp17, tmp4, tmp18) tmp20 = triton_helpers.maximum(tmp15, tmp19) tmp21 = tmp20 == tmp4 tmp22 = tl.where(tmp21, tmp1, tmp20) tl.store(in_out_ptr0 + x2, tmp22, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_eq_masked_fill_max_0[grid(16)](buf1, arg0_1, arg1_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf1, class MaxPoolingNew(nn.Module): def __init__(self): super(MaxPoolingNew, self).__init__() self.MIN = -1000000.0 """ (item, subitem) can be (word, characters), or (sentence, words) x: num_items x max_subitem_size x input_size x_mask: num_items x max_subitem_size return num_items x input_size """ def forward(self, input_0, input_1): arg1_1 = input_0 arg0_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mpandeydev/SDnetmod
MaxPooling
false
7,275
[ "MIT" ]
1
c8cdf6150e3cd28330359a7d81df236729522a69
https://github.com/mpandeydev/SDnetmod/tree/c8cdf6150e3cd28330359a7d81df236729522a69
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.MIN = -1000000.0 """ (item, subitem) can be (word, characters), or (sentence, words) x: num_items x max_subitem_size x input_size x_mask: num_items x max_subitem_size return num_items x input_size """ def forward(self, x, x_mask): """ x_output: num_items x input_size x 1 --> num_items x input_size """ empty_mask = x_mask.eq(0).unsqueeze(2).expand_as(x) x_now = x.clone() x_now.data.masked_fill_(empty_mask.data, self.MIN) x_output = x_now.max(1)[0] x_output.data.masked_fill_(x_output.data.eq(self.MIN), 0) return x_output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return []
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 32), (32, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (4, 32), (32, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 2048, grid=grid(2048), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 2048, grid=grid(2048), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Actor(torch.nn.Module): def __init__(self, numObs, numActions): super(Actor, self).__init__() self.actor_input = nn.Linear(numObs, 32) self.actor_fc1 = nn.Linear(32, 32) self.actor_output = nn.Linear(32, numActions) def forward(self, x): x = F.relu(self.actor_input(x)) x = F.relu(self.actor_fc1(x)) logits = self.actor_output(x) return logits def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'numObs': 4, 'numActions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 32), (32, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (4, 32), (32, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1, primals_2, buf6, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf3, primals_5, buf5, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor( buf3, (64, 32), (32, 1), 0), primals_6, buf5, primals_4, buf6 class ActorNew(torch.nn.Module): def __init__(self, numObs, numActions): super(ActorNew, self).__init__() self.actor_input = nn.Linear(numObs, 32) self.actor_fc1 = nn.Linear(32, 32) self.actor_output = nn.Linear(32, numActions) def forward(self, input_0): primals_1 = self.actor_input.weight primals_2 = self.actor_input.bias primals_4 = self.actor_fc1.weight primals_5 = self.actor_fc1.bias primals_6 = self.actor_output.weight primals_7 = self.actor_output.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
mpgussert/fundamentalRL
Actor
false
7,276
[ "MIT" ]
1
4f45436226e0823c21cac316dec8bbf1df697467
https://github.com/mpgussert/fundamentalRL/tree/4f45436226e0823c21cac316dec8bbf1df697467
import torch import torch.nn.functional as F import torch.nn as nn class Model(torch.nn.Module): def __init__(self, numObs, numActions): super().__init__() self.actor_input = nn.Linear(numObs, 32) self.actor_fc1 = nn.Linear(32, 32) self.actor_output = nn.Linear(32, numActions) def forward(self, x): x = F.relu(self.actor_input(x)) x = F.relu(self.actor_fc1(x)) logits = self.actor_output(x) return logits def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Agent
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # y => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 32), (32, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (4, 32), (32, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (32, 4), (4, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (32, 32), (32, 1)) assert_size_stride(primals_11, (32, ), (1, )) assert_size_stride(primals_12, (1, 32), (32, 1)) assert_size_stride(primals_13, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse buf14 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf14, 2048, grid=grid(2048), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse buf13 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf13, 2048, grid=grid(2048), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 32), (1, 4), 0), out=buf5) del primals_8 buf6 = reinterpret_tensor(buf5, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf5 # reuse buf12 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf6, primals_9, buf12, 2048, grid=grid(2048), stream=stream0) del primals_9 buf7 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 32), (1, 32), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf7 # reuse buf11 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf8, primals_11, buf11, 2048, grid=grid(2048), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 32), (32, 1), 0), reinterpret_tensor(primals_12, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf10) del primals_13 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(buf6, (64, 32), (32, 1), 0), reinterpret_tensor(buf8, (64, 32), (32, 1), 0), primals_12, buf11, primals_10, buf12, primals_6, buf13, primals_4, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Agent(torch.nn.Module): def __init__(self, numObs, numActions): super(Agent, self).__init__() self.critic_input = nn.Linear(numObs, 32) self.critic_fc1 = nn.Linear(32, 32) self.critic_output = nn.Linear(32, 1) self.actor_input = nn.Linear(numObs, 32) self.actor_fc1 = nn.Linear(32, 32) self.actor_output = nn.Linear(32, numActions) def forward(self, x): y = F.relu(self.actor_input(x)) y = F.relu(self.actor_fc1(y)) logits = self.actor_output(y) z = F.relu(self.critic_input(x)) z = F.relu(self.critic_fc1(z)) value = self.critic_output(z) return logits, value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'numObs': 4, 'numActions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (32, 4), (4, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 32), (32, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (4, 32), (32, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (32, 4), (4, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (32, 32), (32, 1)) assert_size_stride(primals_11, (32,), (1,)) assert_size_stride(primals_12, (1, 32), (32, 1)) assert_size_stride(primals_13, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf0 buf14 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool ) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1, primals_2, buf14, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf2 buf13 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf3, primals_5, buf13, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 32), (1, 4), 0), out=buf5) del primals_8 buf6 = reinterpret_tensor(buf5, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf5 buf12 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf6, primals_9, buf12, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf7 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 32), (1, 32), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf7 buf11 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf8, primals_11, buf11, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 32), (32, 1), 0), reinterpret_tensor(primals_12, (32, 1), (1, 32), 0 ), alpha=1, beta=1, out=buf10) del primals_13 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor( buf3, (64, 32), (32, 1), 0), reinterpret_tensor(buf6, (64, 32), (32, 1), 0), reinterpret_tensor(buf8, (64, 32), (32, 1), 0 ), primals_12, buf11, primals_10, buf12, primals_6, buf13, primals_4, buf14 class AgentNew(torch.nn.Module): def __init__(self, numObs, numActions): super(AgentNew, self).__init__() self.critic_input = nn.Linear(numObs, 32) self.critic_fc1 = nn.Linear(32, 32) self.critic_output = nn.Linear(32, 1) self.actor_input = nn.Linear(numObs, 32) self.actor_fc1 = nn.Linear(32, 32) self.actor_output = nn.Linear(32, numActions) def forward(self, input_0): primals_1 = self.critic_input.weight primals_2 = self.critic_input.bias primals_4 = self.critic_fc1.weight primals_5 = self.critic_fc1.bias primals_12 = self.critic_output.weight primals_13 = self.critic_output.bias primals_8 = self.actor_input.weight primals_9 = self.actor_input.bias primals_10 = self.actor_fc1.weight primals_11 = self.actor_fc1.bias primals_6 = self.actor_output.weight primals_7 = self.actor_output.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1]
mpgussert/fundamentalRL
Agent
false
7,277
[ "MIT" ]
1
4f45436226e0823c21cac316dec8bbf1df697467
https://github.com/mpgussert/fundamentalRL/tree/4f45436226e0823c21cac316dec8bbf1df697467
import torch import torch.nn.functional as F import torch.nn as nn class Model(torch.nn.Module): def __init__(self, numObs, numActions): super().__init__() self.critic_input = nn.Linear(numObs, 32) self.critic_fc1 = nn.Linear(32, 32) self.critic_output = nn.Linear(32, 1) self.actor_input = nn.Linear(numObs, 32) self.actor_fc1 = nn.Linear(32, 32) self.actor_output = nn.Linear(32, numActions) def forward(self, x): y = F.relu(self.actor_input(x)) y = F.relu(self.actor_fc1(y)) logits = self.actor_output(y) z = F.relu(self.critic_input(x)) z = F.relu(self.critic_fc1(z)) value = self.critic_output(z) return logits, value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
cnn_7layer_alt
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/5j/c5ji4mfxenghd3ccczky5osir42aijmeisydrv7ufxv2edv4ktf6.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/m6/cm6p6okjwnkvhqumzqnzw3a4chp3uvjzvn7re4pqvpizj4cehwfz.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/is/ciswnsgoxwzttnk3n4uptq5a77i3prr6wqkpzjhju7e4d6ki4jvh.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/c6/cc623uyseovkuyagjqv6tbtxb6rcyfk2owm2q5p6nm42vcizngup.py # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3d/c3daizw6k7n3mdqdhvpifdxm2baxmazxb7opdgejzyeaavnbkn3d.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_5 => relu_4 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (8, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (128, 16), (16, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, 128), (128, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (10, 128), (128, 1)) assert_size_stride(primals_15, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 512, grid=grid(512), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 2, 2), (32, 4, 2, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 128, grid=grid(128), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 2, 2), (64, 4, 2, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 1, 1), (16, 1, 1, 1)) buf7 = reinterpret_tensor(buf6, (4, 16, 1, 1), (16, 1, 64, 64), 0); del buf6 # reuse buf13 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf7, primals_9, buf13, 64, grid=grid(64), stream=stream0) del primals_9 buf8 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 128), (1, 16), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_11, 512, grid=grid(512), stream=stream0) del primals_11 buf10 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_12, (128, 128), (1, 128), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf11, primals_13, 512, grid=grid(512), stream=stream0) del primals_13 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, buf11, reinterpret_tensor(primals_14, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf12) del primals_15 return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, reinterpret_tensor(buf7, (4, 16), (16, 1), 0), buf9, buf11, primals_14, primals_12, primals_10, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class cnn_7layer_alt(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=128): super(cnn_7layer_alt, self).__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(4 * width, 4 * width, 4, stride=2, padding=1) self.conv3 = nn.Conv2d(4 * width, 8 * width, 3, stride=1, padding=1) self.conv4 = nn.Conv2d(8 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, linear_size) self.fc3 = nn.Linear(linear_size, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (8, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (128, 16), (16, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128, 128), (128, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (10, 128), (128, 1)) assert_size_stride(primals_15, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(512)](buf1, primals_2, 512, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 2, 2), (32, 4, 2, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(128)](buf3, primals_5, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 2, 2), (64, 4, 2, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(256)](buf5, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 1, 1), (16, 1, 1, 1)) buf7 = reinterpret_tensor(buf6, (4, 16, 1, 1), (16, 1, 64, 64), 0) del buf6 buf13 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(64)](buf7, primals_9, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf8 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 128), (1, 16), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(512)](buf9, primals_11, 512, XBLOCK= 256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_12, (128, 128), (1, 128), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_4[grid(512)](buf11, primals_13, 512, XBLOCK= 256, num_warps=4, num_stages=1) del primals_13 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_15, buf11, reinterpret_tensor( primals_14, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf12) del primals_15 return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, reinterpret_tensor(buf7, (4, 16), (16, 1), 0), buf9, buf11, primals_14, primals_12, primals_10, buf13) class cnn_7layer_altNew(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=128): super(cnn_7layer_altNew, self).__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(4 * width, 4 * width, 4, stride=2, padding=1) self.conv3 = nn.Conv2d(4 * width, 8 * width, 3, stride=1, padding=1) self.conv4 = nn.Conv2d(8 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, linear_size) self.fc3 = nn.Linear(linear_size, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.fc1.weight primals_11 = self.fc1.bias primals_12 = self.fc2.weight primals_13 = self.fc2.bias primals_14 = self.fc3.weight primals_15 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
mnmueller/auto_LiRPA
cnn_7layer_alt
false
7,278
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_ch, in_dim, width=2, linear_size=128): super().__init__() self.conv1 = nn.Conv2d(in_ch, 4 * width, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(4 * width, 4 * width, 4, stride=2, padding=1) self.conv3 = nn.Conv2d(4 * width, 8 * width, 3, stride=1, padding=1) self.conv4 = nn.Conv2d(8 * width, 8 * width, 4, stride=2, padding=1) self.fc1 = nn.Linear(8 * width * (in_dim // 4) * (in_dim // 4), linear_size) self.fc2 = nn.Linear(linear_size, linear_size) self.fc3 = nn.Linear(linear_size, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Inception
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [conv2d_1, branch3x3_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # branch3x3_1 => relu_1 # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tn/ctnpkytwfzoa42qs7orq2dukxazj6xkswsaijmba7yloy2im5ocs.py # Topologically Sorted Source Nodes: [max_pool2d, branchM_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # branchM_1 => relu_5 # max_pool2d => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%primals_3, [3, 3], [1, 1], [1, 1], [1, 1], False), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x3 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + x3), tmp10 & xmask, other=float("-inf")) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + x3), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + x3), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + x3), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x3), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tl.full([1], 0, tl.int32) tmp53 = triton_helpers.maximum(tmp52, tmp51) tl.store(in_out_ptr0 + (x3), tmp53, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/py/cpyuiu2e7w6632is4nthozh6f4rhru6fh5gc65ctjkqznk5vbiro.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_2, %relu_4, %relu_6], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 16 x0 = xindex % 16 x2 = (xindex // 256) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 8, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp15 & xmask, other=0.0) tmp17 = tl.load(in_ptr3 + ((-4) + x1), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 12, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (x0 + (16*((-8) + x1)) + (64*x2)), tmp25 & xmask, other=0.0) tmp27 = tl.load(in_ptr5 + ((-8) + x1), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 16, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + (x0 + (16*((-12) + x1)) + (64*x2)), tmp32 & xmask, other=0.0) tmp36 = tl.load(in_ptr7 + ((-12) + x1), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x3), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/64/c64kbll2vwngzupaesjb3bkeqvvmff5z5c4ptcrwvfprjnzaxdkv.py # Topologically Sorted Source Nodes: [conv2d_5, branchM_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # branchM_2 => relu_6 # conv2d_5 => convolution_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4, 5, 5), (100, 25, 5, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d_1, branch3x3_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf2, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(primals_3, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_3, branch5x5_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf5, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_10, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [max_pool2d, branchM_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf8, primals_3, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 4, 4), (64, 16, 4, 1)) buf10 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf0, primals_2, buf3, primals_7, buf6, primals_11, buf9, primals_13, buf10, 1024, grid=grid(1024), stream=stream0) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, branchM_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf9, primals_13, buf11, 256, grid=grid(256), stream=stream0) del buf9 del primals_13 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, branch5x5_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf6, primals_11, buf12, 256, grid=grid(256), stream=stream0) del buf6 del primals_11 buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, branch3x3_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf3, primals_7, buf13, 256, grid=grid(256), stream=stream0) del buf3 del primals_7 buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, branch1x1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf0, primals_2, buf14, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf2, buf5, buf8, buf11, buf12, buf13, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 5, 5), (100, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, output_relu=True): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size= kernel_size, stride=stride, padding=padding, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU() if output_relu else None def forward(self, x): x = self.conv(x) x = self.bn(x) if self.relu: x = self.relu(x) return x class Inception(nn.Module): def __init__(self, channel, batch_norm=False): super(Inception, self).__init__() if batch_norm is False: self.branch1x1 = nn.Conv2d(channel[0], channel[1], kernel_size= (1, 1), stride=1) self.branch3x3_1 = nn.Conv2d(channel[0], channel[2], kernel_size=(1, 1), stride=1) self.branch3x3_2 = nn.Conv2d(channel[2], channel[3], kernel_size=(3, 3), stride=1, padding=1) self.branch5x5_1 = nn.Conv2d(channel[0], channel[4], kernel_size=(1, 1), stride=1) self.branch5x5_2 = nn.Conv2d(channel[4], channel[5], kernel_size=(5, 5), stride=1, padding=2) self.branchM_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branchM_2 = nn.Conv2d(channel[0], channel[6], kernel_size= (1, 1), stride=1) else: self.branch1x1 = BasicConv2d(channel[0], channel[1], kernel_size=(1, 1), stride=1) self.branch3x3_1 = BasicConv2d(channel[0], channel[2], kernel_size=(1, 1), stride=1) self.branch3x3_2 = BasicConv2d(channel[2], channel[3], kernel_size=(3, 3), stride=1, padding=1) self.branch5x5_1 = BasicConv2d(channel[0], channel[4], kernel_size=(1, 1), stride=1) self.branch5x5_2 = BasicConv2d(channel[4], channel[5], kernel_size=(5, 5), stride=1, padding=2) self.branchM_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branchM_2 = BasicConv2d(channel[0], channel[6], kernel_size=(1, 1), stride=1) self.relu = nn.ReLU(True) def forward(self, x): branch1x1 = self.relu(self.branch1x1(x)) branch3x3_1 = self.relu(self.branch3x3_1(x)) branch3x3_2 = self.relu(self.branch3x3_2(branch3x3_1)) branch5x5_1 = self.relu(self.branch5x5_1(x)) branch5x5_2 = self.relu(self.branch5x5_2(branch5x5_1)) branchM_1 = self.relu(self.branchM_1(x)) branchM_2 = self.relu(self.branchM_2(branchM_1)) outputs = [branch1x1, branch3x3_2, branch5x5_2, branchM_2] return torch.cat(outputs, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': [4, 4, 4, 4, 4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x3 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + x3), tmp10 & xmask, other=float('-inf')) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + x3), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + x3), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x3), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x3, tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x3), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + x3), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + x3), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + x3), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tl.full([1], 0, tl.int32) tmp53 = triton_helpers.maximum(tmp52, tmp51) tl.store(in_out_ptr0 + x3, tmp53, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 16 x0 = xindex % 16 x2 = xindex // 256 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 8, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp15 & xmask, other=0.0) tmp17 = tl.load(in_ptr3 + (-4 + x1), tmp15 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 12, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (x0 + 16 * (-8 + x1) + 64 * x2), tmp25 & xmask, other=0.0) tmp27 = tl.load(in_ptr5 + (-8 + x1), tmp25 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 16, tl.int64) tmp35 = tl.load(in_ptr6 + (x0 + 16 * (-12 + x1) + 64 * x2), tmp32 & xmask, other=0.0) tmp36 = tl.load(in_ptr7 + (-12 + x1), tmp32 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x3, tmp43, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4, 5, 5), (100, 25, 5, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf2, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf3 = extern_kernels.convolution(buf2, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = extern_kernels.convolution(primals_3, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_0[grid(256)](buf5, primals_9, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf6 = extern_kernels.convolution(buf5, primals_10, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = buf7 del buf7 triton_poi_fused_max_pool2d_with_indices_relu_1[grid(256)](buf8, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = extern_kernels.convolution(buf8, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 4, 4), (64, 16, 4, 1)) buf10 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch. float32) triton_poi_fused_cat_2[grid(1024)](buf0, primals_2, buf3, primals_7, buf6, primals_11, buf9, primals_13, buf10, 1024, XBLOCK=256, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(256)](buf9, primals_13, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf9 del primals_13 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(256)](buf6, primals_11, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_11 buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(256)](buf3, primals_7, buf13, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del primals_7 buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(256)](buf0, primals_2, buf14, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf2, buf5, buf8, buf11, buf12, buf13, buf14) class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, output_relu=True): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size= kernel_size, stride=stride, padding=padding, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU() if output_relu else None def forward(self, x): x = self.conv(x) x = self.bn(x) if self.relu: x = self.relu(x) return x class InceptionNew(nn.Module): def __init__(self, channel, batch_norm=False): super(InceptionNew, self).__init__() if batch_norm is False: self.branch1x1 = nn.Conv2d(channel[0], channel[1], kernel_size= (1, 1), stride=1) self.branch3x3_1 = nn.Conv2d(channel[0], channel[2], kernel_size=(1, 1), stride=1) self.branch3x3_2 = nn.Conv2d(channel[2], channel[3], kernel_size=(3, 3), stride=1, padding=1) self.branch5x5_1 = nn.Conv2d(channel[0], channel[4], kernel_size=(1, 1), stride=1) self.branch5x5_2 = nn.Conv2d(channel[4], channel[5], kernel_size=(5, 5), stride=1, padding=2) self.branchM_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branchM_2 = nn.Conv2d(channel[0], channel[6], kernel_size= (1, 1), stride=1) else: self.branch1x1 = BasicConv2d(channel[0], channel[1], kernel_size=(1, 1), stride=1) self.branch3x3_1 = BasicConv2d(channel[0], channel[2], kernel_size=(1, 1), stride=1) self.branch3x3_2 = BasicConv2d(channel[2], channel[3], kernel_size=(3, 3), stride=1, padding=1) self.branch5x5_1 = BasicConv2d(channel[0], channel[4], kernel_size=(1, 1), stride=1) self.branch5x5_2 = BasicConv2d(channel[4], channel[5], kernel_size=(5, 5), stride=1, padding=2) self.branchM_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branchM_2 = BasicConv2d(channel[0], channel[6], kernel_size=(1, 1), stride=1) self.relu = nn.ReLU(True) def forward(self, input_0): primals_1 = self.branch1x1.weight primals_2 = self.branch1x1.bias primals_4 = self.branch3x3_1.weight primals_5 = self.branch3x3_1.bias primals_6 = self.branch3x3_2.weight primals_7 = self.branch3x3_2.bias primals_8 = self.branch5x5_1.weight primals_9 = self.branch5x5_1.bias primals_10 = self.branch5x5_2.weight primals_11 = self.branch5x5_2.bias primals_12 = self.branchM_2.weight primals_13 = self.branchM_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
moh2236945/pytorch_classification
Inception
false
7,279
[ "MIT" ]
1
8816f08af327e06208b348a78d9c63c133b6a628
https://github.com/moh2236945/pytorch_classification/tree/8816f08af327e06208b348a78d9c63c133b6a628
import torch import torch.nn as nn class BasicConv2d(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, output_relu=True): super().__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size= kernel_size, stride=stride, padding=padding, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU() if output_relu else None def forward(self, x): x = self.conv(x) x = self.bn(x) if self.relu: x = self.relu(x) return x class Model(nn.Module): def __init__(self, channel, batch_norm=False): super().__init__() if batch_norm is False: self.branch1x1 = nn.Conv2d(channel[0], channel[1], kernel_size= (1, 1), stride=1) self.branch3x3_1 = nn.Conv2d(channel[0], channel[2], kernel_size=(1, 1), stride=1) self.branch3x3_2 = nn.Conv2d(channel[2], channel[3], kernel_size=(3, 3), stride=1, padding=1) self.branch5x5_1 = nn.Conv2d(channel[0], channel[4], kernel_size=(1, 1), stride=1) self.branch5x5_2 = nn.Conv2d(channel[4], channel[5], kernel_size=(5, 5), stride=1, padding=2) self.branchM_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branchM_2 = nn.Conv2d(channel[0], channel[6], kernel_size= (1, 1), stride=1) else: self.branch1x1 = BasicConv2d(channel[0], channel[1], kernel_size=(1, 1), stride=1) self.branch3x3_1 = BasicConv2d(channel[0], channel[2], kernel_size=(1, 1), stride=1) self.branch3x3_2 = BasicConv2d(channel[2], channel[3], kernel_size=(3, 3), stride=1, padding=1) self.branch5x5_1 = BasicConv2d(channel[0], channel[4], kernel_size=(1, 1), stride=1) self.branch5x5_2 = BasicConv2d(channel[4], channel[5], kernel_size=(5, 5), stride=1, padding=2) self.branchM_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.branchM_2 = BasicConv2d(channel[0], channel[6], kernel_size=(1, 1), stride=1) self.relu = nn.ReLU(True) def forward(self, x): branch1x1 = self.relu(self.branch1x1(x)) branch3x3_1 = self.relu(self.branch3x3_1(x)) branch3x3_2 = self.relu(self.branch3x3_2(branch3x3_1)) branch5x5_1 = self.relu(self.branch5x5_1(x)) branch5x5_2 = self.relu(self.branch5x5_2(branch5x5_1)) branchM_1 = self.relu(self.branchM_1(x)) branchM_2 = self.relu(self.branchM_2(branchM_1)) outputs = [branch1x1, branch3x3_2, branch5x5_2, branchM_2] return torch.cat(outputs, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SharedAgent
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jm/cjmjqfjv2ijia2nagoscrnh2gu57uuxti5zfjtxbtxgqzk2qxxoh.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (1, 8), (8, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf11, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf10, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf4 # reuse buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf5, primals_7, buf9, 512, grid=grid(512), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 8), (8, 1), 0), reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf6) del primals_9 buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf5, (64, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf8) del primals_11 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 8), (8, 1), 0), primals_10, primals_8, buf9, primals_6, buf10, primals_4, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class SharedAgent(torch.nn.Module): """ A simple two headed / chimera Actor Critic agent. The actor and critic share the body of the network. It is argued that this is because "good" actions correlate to visiting states with "large" values, and so there should exist some form of shared information between these two functions, thus motivating the shared body. However, I haven't seen a rigorous proof of this, and training an AC model with a shared body usually just leads to added complications in my experience. If you know a good reference for a mathematical proof on why this should be done please let me know! """ def __init__(self, numObs, numActions, numHidden): super(SharedAgent, self).__init__() self.shared_input = nn.Linear(numObs, numHidden) self.shared_fc1 = nn.Linear(numHidden, numHidden) self.shared_fc2 = nn.Linear(numHidden, 2 * numHidden) self.actor_output = nn.Linear(2 * numHidden, numActions) self.critic_output = nn.Linear(2 * numHidden, 1) def forward(self, x): x = F.relu(self.shared_input(x)) x = F.relu(self.shared_fc1(x)) x = F.relu(self.shared_fc2(x)) logits = self.actor_output(x) value = self.critic_output(x) return logits, value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'numObs': 4, 'numActions': 4, 'numHidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (1, 8), (8, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf11, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf4 buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(512)](buf5, primals_7, buf9, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf5, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf6) del primals_9 buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf5, (64, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf8) del primals_11 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 8), (8, 1), 0 ), primals_10, primals_8, buf9, primals_6, buf10, primals_4, buf11 class SharedAgentNew(torch.nn.Module): """ A simple two headed / chimera Actor Critic agent. The actor and critic share the body of the network. It is argued that this is because "good" actions correlate to visiting states with "large" values, and so there should exist some form of shared information between these two functions, thus motivating the shared body. However, I haven't seen a rigorous proof of this, and training an AC model with a shared body usually just leads to added complications in my experience. If you know a good reference for a mathematical proof on why this should be done please let me know! """ def __init__(self, numObs, numActions, numHidden): super(SharedAgentNew, self).__init__() self.shared_input = nn.Linear(numObs, numHidden) self.shared_fc1 = nn.Linear(numHidden, numHidden) self.shared_fc2 = nn.Linear(numHidden, 2 * numHidden) self.actor_output = nn.Linear(2 * numHidden, numActions) self.critic_output = nn.Linear(2 * numHidden, 1) def forward(self, input_0): primals_1 = self.shared_input.weight primals_2 = self.shared_input.bias primals_4 = self.shared_fc1.weight primals_5 = self.shared_fc1.bias primals_6 = self.shared_fc2.weight primals_7 = self.shared_fc2.bias primals_8 = self.actor_output.weight primals_9 = self.actor_output.bias primals_10 = self.critic_output.weight primals_11 = self.critic_output.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1]
mpgussert/fundamentalRL
SharedAgent
false
7,280
[ "MIT" ]
1
4f45436226e0823c21cac316dec8bbf1df697467
https://github.com/mpgussert/fundamentalRL/tree/4f45436226e0823c21cac316dec8bbf1df697467
import torch import torch.nn.functional as F import torch.nn as nn class Model(torch.nn.Module): """ A simple two headed / chimera Actor Critic agent. The actor and critic share the body of the network. It is argued that this is because "good" actions correlate to visiting states with "large" values, and so there should exist some form of shared information between these two functions, thus motivating the shared body. However, I haven't seen a rigorous proof of this, and training an AC model with a shared body usually just leads to added complications in my experience. If you know a good reference for a mathematical proof on why this should be done please let me know! """ def __init__(self, numObs, numActions, numHidden): super().__init__() self.shared_input = nn.Linear(numObs, numHidden) self.shared_fc1 = nn.Linear(numHidden, numHidden) self.shared_fc2 = nn.Linear(numHidden, 2 * numHidden) self.actor_output = nn.Linear(2 * numHidden, numActions) self.critic_output = nn.Linear(2 * numHidden, 1) def forward(self, x): x = F.relu(self.shared_input(x)) x = F.relu(self.shared_fc1(x)) x = F.relu(self.shared_fc2(x)) logits = self.actor_output(x) value = self.critic_output(x) return logits, value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
BoundNot
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/qs/cqsrkz3gbpplm7lww4odi2i7zyfpi7judf4uepdd45jimhykbtq2.py # Topologically Sorted Source Nodes: [logical_not], Original ATen: [aten.logical_not] # Source node to ATen node mapping: # logical_not => logical_not # Graph fragment: # %logical_not : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_logical_not_0 = async_compile.triton('triton_poi_fused_logical_not_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_not_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = (tmp0 != 0) tmp2 = tmp1 == 0 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [logical_not], Original ATen: [aten.logical_not] stream0 = get_raw_stream(0) triton_poi_fused_logical_not_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import MSELoss def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): deviation = A.norm(self.dual_norm, -1) * self.eps bound = A.matmul(x) + sign * deviation.unsqueeze(-1) else: bound = x + sign * self.eps bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U center = (x_U + x_L) / 2.0 diff = (x_U - x_L) / 2.0 if not A.identity == 1: unfold_input = F.unfold(center, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound = prod.view(prod.size(0), prod.size(1), int(math. sqrt(prod.size(2))), int(math.sqrt(prod.size(2)))) unfold_input = F.unfold(diff, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches.abs() prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound += sign * prod.view(prod.size(0), prod.size(1), int(math.sqrt(prod.size(2))), int(math.sqrt(prod. size(2)))) else: bound = center + sign * diff return bound else: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U raise NotImplementedError() if isinstance(A, eyeC) or isinstance(A, torch.Tensor): return concretize_matrix(A) elif isinstance(A, Patches): return concretize_patches(A) elif isinstance(A, BoundList): for b in A.bound_list: if isinstance(b, eyeC) or isinstance(b, torch.Tensor): pass else: raise NotImplementedError() def init(self, x, aux=None, forward=False): if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U else: x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): if self.norm == np.inf: if self.x_L is None and self.x_U is None: return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps) else: return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})' .format(self.eps, self.x_L, self.x_U)) else: return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm, self.eps) class PerturbationSynonym(Perturbation): def __init__(self, budget, eps=1.0, use_simple=False): super(PerturbationSynonym, self).__init__() self._load_synonyms() self.budget = budget self.eps = eps self.use_simple = use_simple self.model = None self.train = False def __repr__(self): return ( 'perturbation(Synonym-based word substitution budget={}, eps={})' .format(self.budget, self.eps)) def _load_synonyms(self, path='data/synonyms.json'): with open(path) as file: self.synonym = json.loads(file.read()) logger.info('Synonym list loaded for {} words'.format(len(self. synonym))) def set_train(self, train): self.train = train def concretize(self, x, A, sign, aux): assert self.model is not None x_rep, mask, can_be_replaced = aux batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] dim_out = A.shape[1] max_num_cand = x_rep.shape[2] mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32, device=A.device) num_pos = int(np.max(np.sum(can_be_replaced, axis=-1))) update_A = A.shape[-1] > num_pos * dim_word if update_A: bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape( batch_size, -1, 1)).squeeze(-1) else: bias = 0.0 A = A.reshape(batch_size, dim_out, -1, dim_word) A_new, x_new, x_rep_new, mask_new = [], [], [], [] zeros_A = torch.zeros(dim_out, dim_word, device=A.device) zeros_w = torch.zeros(dim_word, device=A.device) zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device) zeros_mask = torch.zeros(max_num_cand, device=A.device) for t in range(batch_size): cnt = 0 for i in range(0, length): if can_be_replaced[t][i]: if update_A: A_new.append(A[t, :, i, :]) x_new.append(x[t][i]) x_rep_new.append(x_rep[t][i]) mask_new.append(mask[t][i]) cnt += 1 if update_A: A_new += [zeros_A] * (num_pos - cnt) x_new += [zeros_w] * (num_pos - cnt) x_rep_new += [zeros_rep] * (num_pos - cnt) mask_new += [zeros_mask] * (num_pos - cnt) if update_A: A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word ).transpose(1, 2) x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word) x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos, max_num_cand, dim_word) mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand) length = num_pos A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2) x = x.reshape(batch_size, length, -1, 1) if sign == 1: cmp, init = torch.max, -1e+30 else: cmp, init = torch.min, 1e+30 init_tensor = torch.ones(batch_size, dim_out) * init dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1) ] dp[0][0] = torch.zeros(batch_size, dim_out) A = A.reshape(batch_size * length, A.shape[2], A.shape[3]) Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x. shape[3])).reshape(batch_size, length, A.shape[1]) Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length, max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size, length, A.shape[1], max_num_cand) Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2) Ax_rep_bound = cmp(Ax_rep, dim=-1).values if self.use_simple and self.train: return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias for i in range(1, length + 1): dp[i][0] = dp[i - 1][0] + Ax[:, i - 1] for j in range(1, self.budget + 1): dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1 ] + Ax_rep_bound[:, i - 1]) dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1, batch_size, dim_out) return cmp(dp, dim=0).values + bias def init(self, x, aux=None, forward=False): tokens, batch = aux self.tokens = tokens assert len(x.shape) == 3 batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] max_pos = 1 can_be_replaced = np.zeros((batch_size, length), dtype=np.bool) self._build_substitution(batch) for t in range(batch_size): cnt = 0 candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] for i in range(len(tokens[t])): if tokens[t][i] == '[UNK]' or len(candidates[i] ) == 0 or tokens[t][i] != candidates[i][0]: continue for w in candidates[i][1:]: if w in self.model.vocab: can_be_replaced[t][i] = True cnt += 1 break max_pos = max(max_pos, cnt) dim = max_pos * dim_word if forward: eye = torch.eye(dim_word) lw = torch.zeros(batch_size, dim, length, dim_word) lb = torch.zeros_like(x) word_embeddings = self.model.word_embeddings.weight vocab = self.model.vocab x_rep = [[[] for i in range(length)] for t in range(batch_size)] max_num_cand = 1 for t in range(batch_size): candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] cnt = 0 for i in range(length): if can_be_replaced[t][i]: word_embed = word_embeddings[vocab[tokens[t][i]]] other_embed = x[t, i] - word_embed if forward: lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye lb[t, i, :] = torch.zeros_like(word_embed) for w in candidates[i][1:]: if w in self.model.vocab: x_rep[t][i].append(word_embeddings[self.model. vocab[w]] + other_embed) max_num_cand = max(max_num_cand, len(x_rep[t][i])) cnt += 1 elif forward: lb[t, i, :] = x[t, i, :] if forward: uw, ub = lw, lb else: lw = lb = uw = ub = None zeros = torch.zeros(dim_word, device=x.device) x_rep_, mask = [], [] for t in range(batch_size): for i in range(length): x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep [t][i])) mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len( x_rep[t][i])) x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand, dim_word) mask = torch.tensor(mask, dtype=torch.float32, device=x.device ).reshape(batch_size, length, max_num_cand) x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps) inf = 1e+20 lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * inf, dim=2).values upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * -inf, dim=2).values lower = torch.min(lower, x) upper = torch.max(upper, x) return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask, can_be_replaced) def _build_substitution(self, batch): for t, example in enumerate(batch): if 'candidates' not in example or example['candidates'] is None: candidates = [] tokens = example['sentence'].strip().lower().split(' ') for i in range(len(tokens)): _cand = [] if tokens[i] in self.synonym: for w in self.synonym[tokens[i]]: if w in self.model.vocab: _cand.append(w) if len(_cand) > 0: _cand = [tokens[i]] + _cand candidates.append(_cand) example['candidates'] = candidates class Interval(tuple): def __new__(self, lb=None, ub=None, ptb=None): if ub is None: assert isinstance(lb, tuple) lb, ub = lb return tuple.__new__(Interval, (lb, ub)) def __init__(self, lb, ub, ptb=None): if ptb is None: self.ptb = None assert lb is ub elif not isinstance(ptb, Perturbation): raise ValueError( 'ptb must be a Perturbation object or None. Got type {}'. format(type(ptb))) else: self.ptb = ptb def __str__(self): return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb) def __repr__(self): return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1], self.ptb) """Checking if the other interval is tuple, keep the perturbation.""" @staticmethod def make_interval(lb, ub, other): if isinstance(other, Interval): return Interval(lb, ub, other.ptb) else: return lb, ub """Given a tuple or Interval object, returns the norm and eps.""" @staticmethod def get_perturbation(interval): if isinstance(interval, Interval): if isinstance(interval.ptb, PerturbationLpNorm): return interval.ptb.norm, interval.ptb.eps elif isinstance(interval.ptb, PerturbationSynonym): return np.inf, 1.0 elif isinstance(interval.ptb, PerturbationL0Norm): return 0, interval.ptb.eps, interval.ptb.ratio elif interval.ptb is None: raise RuntimeError( 'get_perturbation() encountered an interval that is not perturbed.' ) else: raise RuntimeError( 'get_perturbation() does not know how to handle {}'. format(type(interval.ptb))) else: return np.inf, np.nan """Checking if a Interval or tuple object has perturbation enabled.""" @staticmethod def is_perturbed(interval): if isinstance(interval, Interval) and interval.ptb is None: return False else: return True class Bound(nn.Module): def __init__(self, input_name, name, ori_name, attr={}, inputs=[], output_index=0, options={}, device=None): super().__init__() self.output_name = [] (self.input_name, self.name, self.ori_name, self.attr, self.inputs, self.output_index, self.options, self.device) = (input_name, name, ori_name, attr, inputs, output_index, options, device) self.fv = None self.from_input = False self.bounded = False self.IBP_rets = None self.perturbed = False if options is not None and 'loss_fusion' in options: self.loss_fusion = options['loss_fusion'] else: self.loss_fusion = False """Check if the i-th input is with perturbation or not.""" def is_input_perturbed(self, i=0): return self.inputs[i].perturbed def forward(self, *x): raise NotImplementedError def interval_propagate(self, *v): assert len(v) == 1 h_L, h_U = v[0] return Interval.make_interval(self.forward(h_L), self.forward(h_U), v[0]) def bound_forward(self, dim_in, last): raise NotImplementedError def bound_backward(self, last_lA, last_uA): raise NotImplementedError def infer_batch_dim(self, batch_size, *x): None raise NotImplementedError def broadcast_backward(self, A, x): shape = x.default_shape batch_dim = max(self.batch_dim, 0) if isinstance(A, torch.Tensor): if x.batch_dim == -1: shape = torch.Size([A.shape[batch_dim + 1]] + list(shape)) dims = [] cnt_sum = A.ndim - len(shape) - 1 for i in range(1, A.ndim): if i != self.batch_dim + 1 and cnt_sum > 0: dims.append(i) cnt_sum -= 1 if dims: A = torch.sum(A, dim=dims) else: dims = list(range(1, 1 + A.ndim - 1 - len(shape))) if dims: A = torch.sum(A, dim=dims) dims = [] for i in range(len(shape)): if shape[i] == 1 and A.shape[i + 1] != 1: dims.append(i + 1) if dims: A = torch.sum(A, dim=dims, keepdim=True) assert A.shape[1:] == shape elif type(A) == Patches: pass return A @staticmethod def broadcast_forward(dim_in, x, shape_res): lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub shape_x, shape_res = list(x.lb.shape), list(shape_res) if lw is None: lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device) has_batch_size = False else: has_batch_size = True while len(shape_x) < len(shape_res): if not has_batch_size: lw, uw = lw.unsqueeze(0), uw.unsqueeze(0) lb, ub = lb.unsqueeze(0), ub.unsqueeze(0) shape_x = [1] + shape_x has_batch_size = True else: lw, uw = lw.unsqueeze(2), uw.unsqueeze(2) lb, ub = lb.unsqueeze(1), ub.unsqueeze(1) shape_x = [shape_x[0], 1] + shape_x[1:] repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))] lb, ub = lb.repeat(*repeat), ub.repeat(*repeat) repeat = repeat[:1] + [1] + repeat[1:] lw, uw = lw.repeat(*repeat), uw.repeat(*repeat) return lw, lb, uw, ub def get_bias(self, A, bias): if A is None: return 0 assert not isnan(A) assert not isnan(bias) if isinstance(A, torch.Tensor): if torch.norm(A, p=1) < epsilon: return 0 output_dim = A.shape[0] if self.batch_dim != -1: batch_size = A.shape[self.batch_dim + 1] A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1 ]).astype(np.int32), batch_size, np.prod(A.shape[self. batch_dim + 2:]).astype(np.int32)] A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size, output_dim, -1) bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape( batch_size, -1, 1) bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1) else: batch_size = A.shape[1] A = A.view(output_dim, batch_size, -1) bias_new = A.matmul(bias.view(-1)) if isnan(bias_new): return 0 else: return bias_new elif type(A) == Patches: if torch.norm(A.patches, p=1) < epsilon: return 0 if self.batch_dim != -1: batch_size = bias.shape[0] bias = F.unfold(bias, kernel_size=A.patches.size(-1), stride=A.stride, padding=A.padding).transpose(-2, -1 ).unsqueeze(-2) bias.size(1) patches = A.patches.view(A.patches.size(0), A.patches.size( 1), A.patches.size(-4), A.patches.size(-1) * A.patches. size(-2) * A.patches.size(-3)) prod = bias * patches bias_new = prod.sum(-1).transpose(-2, -1) bias_new = bias_new.view(batch_size, bias_new.size(-2), int (math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new. size(-1)))) else: patches = A.patches patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias patches_reshape = patches_reshape.transpose(-1, -2) return patches_reshape.view(patches_reshape.size(0), patches_reshape.size(1), int(math.sqrt(patches_reshape. size(2))), -1).transpose(0, 1) return bias_new else: return NotImplementedError() class BoundNot(Bound): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) def forward(self, x): return x.logical_not() def infer_batch_dim(self, batch_size, *x): return x[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_name': 4, 'name': 4, 'ori_name': 4, 'attr': 4, 'inputs': 4, 'output_index': 4, 'options': _mock_config(loss_fusion =MSELoss()), 'device': 0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import numpy as np import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 != 0 tmp2 = tmp1 == 0 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_logical_not_0[grid(256)](arg0_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 return buf0, def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): deviation = A.norm(self.dual_norm, -1) * self.eps bound = A.matmul(x) + sign * deviation.unsqueeze(-1) else: bound = x + sign * self.eps bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U center = (x_U + x_L) / 2.0 diff = (x_U - x_L) / 2.0 if not A.identity == 1: unfold_input = F.unfold(center, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound = prod.view(prod.size(0), prod.size(1), int(math. sqrt(prod.size(2))), int(math.sqrt(prod.size(2)))) unfold_input = F.unfold(diff, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches.abs() prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound += sign * prod.view(prod.size(0), prod.size(1), int(math.sqrt(prod.size(2))), int(math.sqrt(prod. size(2)))) else: bound = center + sign * diff return bound else: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U raise NotImplementedError() if isinstance(A, eyeC) or isinstance(A, torch.Tensor): return concretize_matrix(A) elif isinstance(A, Patches): return concretize_patches(A) elif isinstance(A, BoundList): for b in A.bound_list: if isinstance(b, eyeC) or isinstance(b, torch.Tensor): pass else: raise NotImplementedError() def init(self, x, aux=None, forward=False): if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U else: x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): if self.norm == np.inf: if self.x_L is None and self.x_U is None: return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps) else: return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})' .format(self.eps, self.x_L, self.x_U)) else: return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm, self.eps) class PerturbationSynonym(Perturbation): def __init__(self, budget, eps=1.0, use_simple=False): super(PerturbationSynonym, self).__init__() self._load_synonyms() self.budget = budget self.eps = eps self.use_simple = use_simple self.model = None self.train = False def __repr__(self): return ( 'perturbation(Synonym-based word substitution budget={}, eps={})' .format(self.budget, self.eps)) def _load_synonyms(self, path='data/synonyms.json'): with open(path) as file: self.synonym = json.loads(file.read()) logger.info('Synonym list loaded for {} words'.format(len(self. synonym))) def set_train(self, train): self.train = train def concretize(self, x, A, sign, aux): assert self.model is not None x_rep, mask, can_be_replaced = aux batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] dim_out = A.shape[1] max_num_cand = x_rep.shape[2] mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32, device=A.device) num_pos = int(np.max(np.sum(can_be_replaced, axis=-1))) update_A = A.shape[-1] > num_pos * dim_word if update_A: bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape( batch_size, -1, 1)).squeeze(-1) else: bias = 0.0 A = A.reshape(batch_size, dim_out, -1, dim_word) A_new, x_new, x_rep_new, mask_new = [], [], [], [] zeros_A = torch.zeros(dim_out, dim_word, device=A.device) zeros_w = torch.zeros(dim_word, device=A.device) zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device) zeros_mask = torch.zeros(max_num_cand, device=A.device) for t in range(batch_size): cnt = 0 for i in range(0, length): if can_be_replaced[t][i]: if update_A: A_new.append(A[t, :, i, :]) x_new.append(x[t][i]) x_rep_new.append(x_rep[t][i]) mask_new.append(mask[t][i]) cnt += 1 if update_A: A_new += [zeros_A] * (num_pos - cnt) x_new += [zeros_w] * (num_pos - cnt) x_rep_new += [zeros_rep] * (num_pos - cnt) mask_new += [zeros_mask] * (num_pos - cnt) if update_A: A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word ).transpose(1, 2) x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word) x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos, max_num_cand, dim_word) mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand) length = num_pos A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2) x = x.reshape(batch_size, length, -1, 1) if sign == 1: cmp, init = torch.max, -1e+30 else: cmp, init = torch.min, 1e+30 init_tensor = torch.ones(batch_size, dim_out) * init dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1) ] dp[0][0] = torch.zeros(batch_size, dim_out) A = A.reshape(batch_size * length, A.shape[2], A.shape[3]) Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x. shape[3])).reshape(batch_size, length, A.shape[1]) Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length, max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size, length, A.shape[1], max_num_cand) Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2) Ax_rep_bound = cmp(Ax_rep, dim=-1).values if self.use_simple and self.train: return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias for i in range(1, length + 1): dp[i][0] = dp[i - 1][0] + Ax[:, i - 1] for j in range(1, self.budget + 1): dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1 ] + Ax_rep_bound[:, i - 1]) dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1, batch_size, dim_out) return cmp(dp, dim=0).values + bias def init(self, x, aux=None, forward=False): tokens, batch = aux self.tokens = tokens assert len(x.shape) == 3 batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] max_pos = 1 can_be_replaced = np.zeros((batch_size, length), dtype=np.bool) self._build_substitution(batch) for t in range(batch_size): cnt = 0 candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] for i in range(len(tokens[t])): if tokens[t][i] == '[UNK]' or len(candidates[i] ) == 0 or tokens[t][i] != candidates[i][0]: continue for w in candidates[i][1:]: if w in self.model.vocab: can_be_replaced[t][i] = True cnt += 1 break max_pos = max(max_pos, cnt) dim = max_pos * dim_word if forward: eye = torch.eye(dim_word) lw = torch.zeros(batch_size, dim, length, dim_word) lb = torch.zeros_like(x) word_embeddings = self.model.word_embeddings.weight vocab = self.model.vocab x_rep = [[[] for i in range(length)] for t in range(batch_size)] max_num_cand = 1 for t in range(batch_size): candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] cnt = 0 for i in range(length): if can_be_replaced[t][i]: word_embed = word_embeddings[vocab[tokens[t][i]]] other_embed = x[t, i] - word_embed if forward: lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye lb[t, i, :] = torch.zeros_like(word_embed) for w in candidates[i][1:]: if w in self.model.vocab: x_rep[t][i].append(word_embeddings[self.model. vocab[w]] + other_embed) max_num_cand = max(max_num_cand, len(x_rep[t][i])) cnt += 1 elif forward: lb[t, i, :] = x[t, i, :] if forward: uw, ub = lw, lb else: lw = lb = uw = ub = None zeros = torch.zeros(dim_word, device=x.device) x_rep_, mask = [], [] for t in range(batch_size): for i in range(length): x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep [t][i])) mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len( x_rep[t][i])) x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand, dim_word) mask = torch.tensor(mask, dtype=torch.float32, device=x.device ).reshape(batch_size, length, max_num_cand) x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps) inf = 1e+20 lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * inf, dim=2).values upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * -inf, dim=2).values lower = torch.min(lower, x) upper = torch.max(upper, x) return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask, can_be_replaced) def _build_substitution(self, batch): for t, example in enumerate(batch): if 'candidates' not in example or example['candidates'] is None: candidates = [] tokens = example['sentence'].strip().lower().split(' ') for i in range(len(tokens)): _cand = [] if tokens[i] in self.synonym: for w in self.synonym[tokens[i]]: if w in self.model.vocab: _cand.append(w) if len(_cand) > 0: _cand = [tokens[i]] + _cand candidates.append(_cand) example['candidates'] = candidates class Interval(tuple): def __new__(self, lb=None, ub=None, ptb=None): if ub is None: assert isinstance(lb, tuple) lb, ub = lb return tuple.__new__(Interval, (lb, ub)) def __init__(self, lb, ub, ptb=None): if ptb is None: self.ptb = None assert lb is ub elif not isinstance(ptb, Perturbation): raise ValueError( 'ptb must be a Perturbation object or None. Got type {}'. format(type(ptb))) else: self.ptb = ptb def __str__(self): return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb) def __repr__(self): return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1], self.ptb) """Checking if the other interval is tuple, keep the perturbation.""" @staticmethod def make_interval(lb, ub, other): if isinstance(other, Interval): return Interval(lb, ub, other.ptb) else: return lb, ub """Given a tuple or Interval object, returns the norm and eps.""" @staticmethod def get_perturbation(interval): if isinstance(interval, Interval): if isinstance(interval.ptb, PerturbationLpNorm): return interval.ptb.norm, interval.ptb.eps elif isinstance(interval.ptb, PerturbationSynonym): return np.inf, 1.0 elif isinstance(interval.ptb, PerturbationL0Norm): return 0, interval.ptb.eps, interval.ptb.ratio elif interval.ptb is None: raise RuntimeError( 'get_perturbation() encountered an interval that is not perturbed.' ) else: raise RuntimeError( 'get_perturbation() does not know how to handle {}'. format(type(interval.ptb))) else: return np.inf, np.nan """Checking if a Interval or tuple object has perturbation enabled.""" @staticmethod def is_perturbed(interval): if isinstance(interval, Interval) and interval.ptb is None: return False else: return True class Bound(nn.Module): def __init__(self, input_name, name, ori_name, attr={}, inputs=[], output_index=0, options={}, device=None): super().__init__() self.output_name = [] (self.input_name, self.name, self.ori_name, self.attr, self.inputs, self.output_index, self.options, self.device) = (input_name, name, ori_name, attr, inputs, output_index, options, device) self.fv = None self.from_input = False self.bounded = False self.IBP_rets = None self.perturbed = False if options is not None and 'loss_fusion' in options: self.loss_fusion = options['loss_fusion'] else: self.loss_fusion = False """Check if the i-th input is with perturbation or not.""" def is_input_perturbed(self, i=0): return self.inputs[i].perturbed def forward(self, *x): raise NotImplementedError def interval_propagate(self, *v): assert len(v) == 1 h_L, h_U = v[0] return Interval.make_interval(self.forward(h_L), self.forward(h_U), v[0]) def bound_forward(self, dim_in, last): raise NotImplementedError def bound_backward(self, last_lA, last_uA): raise NotImplementedError def infer_batch_dim(self, batch_size, *x): None raise NotImplementedError def broadcast_backward(self, A, x): shape = x.default_shape batch_dim = max(self.batch_dim, 0) if isinstance(A, torch.Tensor): if x.batch_dim == -1: shape = torch.Size([A.shape[batch_dim + 1]] + list(shape)) dims = [] cnt_sum = A.ndim - len(shape) - 1 for i in range(1, A.ndim): if i != self.batch_dim + 1 and cnt_sum > 0: dims.append(i) cnt_sum -= 1 if dims: A = torch.sum(A, dim=dims) else: dims = list(range(1, 1 + A.ndim - 1 - len(shape))) if dims: A = torch.sum(A, dim=dims) dims = [] for i in range(len(shape)): if shape[i] == 1 and A.shape[i + 1] != 1: dims.append(i + 1) if dims: A = torch.sum(A, dim=dims, keepdim=True) assert A.shape[1:] == shape elif type(A) == Patches: pass return A @staticmethod def broadcast_forward(dim_in, x, shape_res): lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub shape_x, shape_res = list(x.lb.shape), list(shape_res) if lw is None: lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device) has_batch_size = False else: has_batch_size = True while len(shape_x) < len(shape_res): if not has_batch_size: lw, uw = lw.unsqueeze(0), uw.unsqueeze(0) lb, ub = lb.unsqueeze(0), ub.unsqueeze(0) shape_x = [1] + shape_x has_batch_size = True else: lw, uw = lw.unsqueeze(2), uw.unsqueeze(2) lb, ub = lb.unsqueeze(1), ub.unsqueeze(1) shape_x = [shape_x[0], 1] + shape_x[1:] repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))] lb, ub = lb.repeat(*repeat), ub.repeat(*repeat) repeat = repeat[:1] + [1] + repeat[1:] lw, uw = lw.repeat(*repeat), uw.repeat(*repeat) return lw, lb, uw, ub def get_bias(self, A, bias): if A is None: return 0 assert not isnan(A) assert not isnan(bias) if isinstance(A, torch.Tensor): if torch.norm(A, p=1) < epsilon: return 0 output_dim = A.shape[0] if self.batch_dim != -1: batch_size = A.shape[self.batch_dim + 1] A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1 ]).astype(np.int32), batch_size, np.prod(A.shape[self. batch_dim + 2:]).astype(np.int32)] A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size, output_dim, -1) bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape( batch_size, -1, 1) bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1) else: batch_size = A.shape[1] A = A.view(output_dim, batch_size, -1) bias_new = A.matmul(bias.view(-1)) if isnan(bias_new): return 0 else: return bias_new elif type(A) == Patches: if torch.norm(A.patches, p=1) < epsilon: return 0 if self.batch_dim != -1: batch_size = bias.shape[0] bias = F.unfold(bias, kernel_size=A.patches.size(-1), stride=A.stride, padding=A.padding).transpose(-2, -1 ).unsqueeze(-2) bias.size(1) patches = A.patches.view(A.patches.size(0), A.patches.size( 1), A.patches.size(-4), A.patches.size(-1) * A.patches. size(-2) * A.patches.size(-3)) prod = bias * patches bias_new = prod.sum(-1).transpose(-2, -1) bias_new = bias_new.view(batch_size, bias_new.size(-2), int (math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new. size(-1)))) else: patches = A.patches patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias patches_reshape = patches_reshape.transpose(-1, -2) return patches_reshape.view(patches_reshape.size(0), patches_reshape.size(1), int(math.sqrt(patches_reshape. size(2))), -1).transpose(0, 1) return bias_new else: return NotImplementedError() class BoundNotNew(Bound): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) def infer_batch_dim(self, batch_size, *x): return x[0] def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mnmueller/auto_LiRPA
BoundNot
false
7,281
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
from _paritybench_helpers import _mock_config import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import MSELoss def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): deviation = A.norm(self.dual_norm, -1) * self.eps bound = A.matmul(x) + sign * deviation.unsqueeze(-1) else: bound = x + sign * self.eps bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - # ... truncated (>4000 chars) for memory efficiency
Net5
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/op/coptu6xep3awc4lajb4xivopppqmjtx3zy7ebtazm45rqvyeknds.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = (xindex // 1200) x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/as/casrc7bf7ghsendgi7tkqxk3hj4ic6aqb4rmkxzuk5dhbidznia7.py # Topologically Sorted Source Nodes: [out_3, out_5], Original ATen: [aten.relu, aten.view] # Source node to ATen node mapping: # out_3 => relu_1 # out_5 => view_4 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {}) triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = (xindex // 300) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dz/cdzzjqufxgjdtwmtqoqggqn2ny2ysfyvvnngvb35noosm27wiln3.py # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_6 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ep/cepy3a3v2ftjseqnazzpg6ymclul67kiqspcli35c422aj3rouiq.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_9 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ix/cix6ohige22nx5mqvwy7agh5yjldprz3tavakjwe7i3isipk53ov.py # Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_12 => relu_4 # Graph fragment: # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3840 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 60 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300, ), (1, )) assert_size_stride(primals_6, (200, 300), (300, 1)) assert_size_stride(primals_7, (200, ), (1, )) assert_size_stride(primals_8, (100, 200), (200, 1)) assert_size_stride(primals_9, (100, ), (1, )) assert_size_stride(primals_10, (60, 100), (100, 1)) assert_size_stride(primals_11, (60, ), (1, )) assert_size_stride(primals_12, (1, 60), (60, 1)) assert_size_stride(primals_13, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse buf17 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf17, 25600, grid=grid(25600), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_5, buf3, buf16, 19200, grid=grid(19200), stream=stream0) del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_3, out_5], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf3, buf4, 19200, grid=grid(19200), stream=stream0) del buf3 buf5 = empty_strided_cuda((64, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 200), (1, 300), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf5 # reuse buf15 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf6, primals_7, buf15, 12800, grid=grid(12800), stream=stream0) del primals_7 buf7 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(primals_8, (200, 100), (1, 200), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf7 # reuse buf14 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_4.run(buf8, primals_9, buf14, 6400, grid=grid(6400), stream=stream0) del primals_9 buf9 = empty_strided_cuda((64, 60), (60, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(primals_10, (100, 60), (1, 100), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4, 60), (960, 240, 60, 1), 0); del buf9 # reuse buf13 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.bool) # Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf10, primals_11, buf13, 3840, grid=grid(3840), stream=stream0) del primals_11 buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf10, (64, 60), (60, 1), 0), reinterpret_tensor(primals_12, (60, 1), (1, 60), 0), alpha=1, beta=1, out=buf12) del primals_13 return (reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(buf10, (64, 60), (60, 1), 0), primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((200, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((60, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((60, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1, 60), (60, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.init import kaiming_normal from torch.nn.init import normal def weights_init(m): if isinstance(m, (nn.Conv1d, nn.Linear)): kaiming_normal(m.weight.data) try: kaiming_normal(m.bias.data) except ValueError: normal(m.bias.data) class Net5(nn.Module): """ Net5 is a neural network consisting of five hidden layers with sizes 400, 300, 200, 100 and 60 Furthermore there are three dropout layers """ hidden1 = 400 hidden2 = 300 hidden3 = 200 hidden4 = 100 hidden5 = 60 def __init__(self, input_size): super(Net5, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.drop1 = nn.Dropout(0.2) self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.drop2 = nn.Dropout(0.15) self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.drop3 = nn.Dropout(0.15) self.fc5 = nn.Linear(self.hidden4, self.hidden5) self.relu5 = nn.ReLU() self.fc6 = nn.Linear(self.hidden5, 1) self.apply(weights_init) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.drop1(out) out = self.fc3(out) out = self.relu3(out) out = self.drop2(out) out = self.fc4(out) out = self.relu4(out) out = self.drop3(out) out = self.fc5(out) out = self.relu5(out) out = self.fc6(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torch.nn.init import kaiming_normal from torch.nn.init import normal assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = xindex // 1200 x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = xindex // 300 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3840 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 60 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300,), (1,)) assert_size_stride(primals_6, (200, 300), (300, 1)) assert_size_stride(primals_7, (200,), (1,)) assert_size_stride(primals_8, (100, 200), (200, 1)) assert_size_stride(primals_9, (100,), (1,)) assert_size_stride(primals_10, (60, 100), (100, 1)) assert_size_stride(primals_11, (60,), (1,)) assert_size_stride(primals_12, (1, 60), (60, 1)) assert_size_stride(primals_13, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0 ) del buf0 buf17 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1, primals_2, buf17, 25600, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(19200)](buf2, primals_5, buf3, buf16, 19200, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = buf2 del buf2 triton_poi_fused_relu_view_2[grid(19200)](buf3, buf4, 19200, XBLOCK =128, num_warps=4, num_stages=1) del buf3 buf5 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 200), ( 1, 300), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 200), (3200, 800, 200, 1), 0) del buf5 buf15 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(12800)](buf6, primals_7, buf15, 12800, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf7 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(primals_8, (200, 100), (1, 200), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf7 buf14 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) triton_poi_fused_relu_threshold_backward_4[grid(6400)](buf8, primals_9, buf14, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf9 = empty_strided_cuda((64, 60), (60, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(primals_10, (100, 60), (1, 100), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4, 60), (960, 240, 60, 1), 0) del buf9 buf13 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_5[grid(3840)](buf10, primals_11, buf13, 3840, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf10, (64, 60), (60, 1), 0), reinterpret_tensor(primals_12, (60, 1), (1, 60), 0 ), alpha=1, beta=1, out=buf12) del primals_13 return (reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(buf10, (64, 60), (60, 1), 0), primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17 ) def weights_init(m): if isinstance(m, (nn.Conv1d, nn.Linear)): kaiming_normal(m.weight.data) try: kaiming_normal(m.bias.data) except ValueError: normal(m.bias.data) class Net5New(nn.Module): """ Net5 is a neural network consisting of five hidden layers with sizes 400, 300, 200, 100 and 60 Furthermore there are three dropout layers """ hidden1 = 400 hidden2 = 300 hidden3 = 200 hidden4 = 100 hidden5 = 60 def __init__(self, input_size): super(Net5New, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.drop1 = nn.Dropout(0.2) self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.drop2 = nn.Dropout(0.15) self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.drop3 = nn.Dropout(0.15) self.fc5 = nn.Linear(self.hidden4, self.hidden5) self.relu5 = nn.ReLU() self.fc6 = nn.Linear(self.hidden5, 1) self.apply(weights_init) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_12 = self.fc6.weight primals_13 = self.fc6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
moritzschaefer/pavooc
Net5
false
7,282
[ "MIT" ]
1
735f5455f9a95a5734436a24e2aa92cf600c91af
https://github.com/moritzschaefer/pavooc/tree/735f5455f9a95a5734436a24e2aa92cf600c91af
import torch from torch import nn from torch.nn.init import kaiming_normal from torch.nn.init import normal def weights_init(m): if isinstance(m, (nn.Conv1d, nn.Linear)): kaiming_normal(m.weight.data) try: kaiming_normal(m.bias.data) except ValueError: normal(m.bias.data) class Model(nn.Module): """ Net5 is a neural network consisting of five hidden layers with sizes 400, 300, 200, 100 and 60 Furthermore there are three dropout layers """ hidden1 = 400 hidden2 = 300 hidden3 = 200 hidden4 = 100 hidden5 = 60 def __init__(self, input_size): super().__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.drop1 = nn.Dropout(0.2) self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.drop2 = nn.Dropout(0.15) self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.drop3 = nn.Dropout(0.15) self.fc5 = nn.Linear(self.hidden4, self.hidden5) self.relu5 = nn.ReLU() self.fc6 = nn.Linear(self.hidden5, 1) self.apply(weights_init) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.drop1(out) out = self.fc3(out) out = self.relu3(out) out = self.drop2(out) out = self.fc4(out) out = self.relu4(out) out = self.drop3(out) out = self.fc5(out) out = self.relu5(out) out = self.fc6(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Net4
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/op/coptu6xep3awc4lajb4xivopppqmjtx3zy7ebtazm45rqvyeknds.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = (xindex // 1200) x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (1216*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (1280*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/as/casrc7bf7ghsendgi7tkqxk3hj4ic6aqb4rmkxzuk5dhbidznia7.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] # Source node to ATen node mapping: # out_3 => relu_1 # out_4 => view_4 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [64, 300]), kwargs = {}) triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = (xindex // 300) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (300*(x1 % 4)) + (1216*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dz/cdzzjqufxgjdtwmtqoqggqn2ny2ysfyvvnngvb35noosm27wiln3.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_5 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ep/cepy3a3v2ftjseqnazzpg6ymclul67kiqspcli35c422aj3rouiq.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_7 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x2 = xindex % 1600 x3 = (xindex // 1600) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ix/cix6ohige22nx5mqvwy7agh5yjldprz3tavakjwe7i3isipk53ov.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_9 => relu_4 # Graph fragment: # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3840 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 60 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300, ), (1, )) assert_size_stride(primals_6, (200, 300), (300, 1)) assert_size_stride(primals_7, (200, ), (1, )) assert_size_stride(primals_8, (100, 200), (200, 1)) assert_size_stride(primals_9, (100, ), (1, )) assert_size_stride(primals_10, (60, 100), (100, 1)) assert_size_stride(primals_11, (60, ), (1, )) assert_size_stride(primals_12, (1, 60), (60, 1)) assert_size_stride(primals_13, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse buf17 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf17, 25600, grid=grid(25600), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_5, buf3, buf16, 19200, grid=grid(19200), stream=stream0) del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.view] triton_poi_fused_relu_view_2.run(buf3, buf4, 19200, grid=grid(19200), stream=stream0) del buf3 buf5 = empty_strided_cuda((64, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 200), (1, 300), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf5 # reuse buf15 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf6, primals_7, buf15, 12800, grid=grid(12800), stream=stream0) del primals_7 buf7 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(primals_8, (200, 100), (1, 200), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf7 # reuse buf14 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_4.run(buf8, primals_9, buf14, 6400, grid=grid(6400), stream=stream0) del primals_9 buf9 = empty_strided_cuda((64, 60), (60, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(primals_10, (100, 60), (1, 100), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4, 60), (960, 240, 60, 1), 0); del buf9 # reuse buf13 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.bool) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf10, primals_11, buf13, 3840, grid=grid(3840), stream=stream0) del primals_11 buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf10, (64, 60), (60, 1), 0), reinterpret_tensor(primals_12, (60, 1), (1, 60), 0), alpha=1, beta=1, out=buf12) del primals_13 return (reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(buf10, (64, 60), (60, 1), 0), primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((300, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((300, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((200, 300), (300, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((60, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((60, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1, 60), (60, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.init import kaiming_normal from torch.nn.init import normal def weights_init(m): if isinstance(m, (nn.Conv1d, nn.Linear)): kaiming_normal(m.weight.data) try: kaiming_normal(m.bias.data) except ValueError: normal(m.bias.data) class Net4(nn.Module): """ Net4 is a neural network consisting of five hidden layers with sizes 400, 300, 200, 100 and 60 """ hidden1 = 400 hidden2 = 300 hidden3 = 200 hidden4 = 100 hidden5 = 60 def __init__(self, input_size): super(Net4, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.fc5 = nn.Linear(self.hidden4, self.hidden5) self.relu5 = nn.ReLU() self.fc6 = nn.Linear(self.hidden5, 1) self.apply(weights_init) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) out = self.relu3(out) out = self.fc4(out) out = self.relu4(out) out = self.fc5(out) out = self.relu5(out) out = self.fc6(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torch.nn.init import kaiming_normal from torch.nn.init import normal assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 400 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 300 x2 = xindex // 1200 x3 = xindex % 1200 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 1216 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 1280 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 19200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 300 x1 = xindex // 300 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 300 * (x1 % 4) + 1216 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 100 x2 = xindex % 1600 x3 = xindex // 1600 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3840 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 60 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (400, 4), (4, 1)) assert_size_stride(primals_2, (400,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (300, 400), (400, 1)) assert_size_stride(primals_5, (300,), (1,)) assert_size_stride(primals_6, (200, 300), (300, 1)) assert_size_stride(primals_7, (200,), (1,)) assert_size_stride(primals_8, (100, 200), (200, 1)) assert_size_stride(primals_9, (100,), (1,)) assert_size_stride(primals_10, (60, 100), (100, 1)) assert_size_stride(primals_11, (60,), (1,)) assert_size_stride(primals_12, (1, 60), (60, 1)) assert_size_stride(primals_13, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0 ) del buf0 buf17 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1, primals_2, buf17, 25600, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 300), (300, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 300), (1, 400), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4, 300), (4864, 1216, 300, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 300), (5120, 1280, 300, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(19200)](buf2, primals_5, buf3, buf16, 19200, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = buf2 del buf2 triton_poi_fused_relu_view_2[grid(19200)](buf3, buf4, 19200, XBLOCK =128, num_warps=4, num_stages=1) del buf3 buf5 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (300, 200), ( 1, 300), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 200), (3200, 800, 200, 1), 0) del buf5 buf15 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(12800)](buf6, primals_7, buf15, 12800, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf7 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(primals_8, (200, 100), (1, 200), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf7 buf14 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool) triton_poi_fused_relu_threshold_backward_4[grid(6400)](buf8, primals_9, buf14, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf9 = empty_strided_cuda((64, 60), (60, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(primals_10, (100, 60), (1, 100), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4, 60), (960, 240, 60, 1), 0) del buf9 buf13 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_5[grid(3840)](buf10, primals_11, buf13, 3840, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf10, (64, 60), (60, 1), 0), reinterpret_tensor(primals_12, (60, 1), (1, 60), 0 ), alpha=1, beta=1, out=buf12) del primals_13 return (reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), buf4, reinterpret_tensor(buf6, (64, 200), (200, 1), 0), reinterpret_tensor(buf8, (64, 100), (100, 1), 0), reinterpret_tensor(buf10, (64, 60), (60, 1), 0), primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17 ) def weights_init(m): if isinstance(m, (nn.Conv1d, nn.Linear)): kaiming_normal(m.weight.data) try: kaiming_normal(m.bias.data) except ValueError: normal(m.bias.data) class Net4New(nn.Module): """ Net4 is a neural network consisting of five hidden layers with sizes 400, 300, 200, 100 and 60 """ hidden1 = 400 hidden2 = 300 hidden3 = 200 hidden4 = 100 hidden5 = 60 def __init__(self, input_size): super(Net4New, self).__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.fc5 = nn.Linear(self.hidden4, self.hidden5) self.relu5 = nn.ReLU() self.fc6 = nn.Linear(self.hidden5, 1) self.apply(weights_init) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_12 = self.fc6.weight primals_13 = self.fc6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
moritzschaefer/pavooc
Net4
false
7,283
[ "MIT" ]
1
735f5455f9a95a5734436a24e2aa92cf600c91af
https://github.com/moritzschaefer/pavooc/tree/735f5455f9a95a5734436a24e2aa92cf600c91af
import torch from torch import nn from torch.nn.init import kaiming_normal from torch.nn.init import normal def weights_init(m): if isinstance(m, (nn.Conv1d, nn.Linear)): kaiming_normal(m.weight.data) try: kaiming_normal(m.bias.data) except ValueError: normal(m.bias.data) class Model(nn.Module): """ Net4 is a neural network consisting of five hidden layers with sizes 400, 300, 200, 100 and 60 """ hidden1 = 400 hidden2 = 300 hidden3 = 200 hidden4 = 100 hidden5 = 60 def __init__(self, input_size): super().__init__() self.fc1 = nn.Linear(input_size, self.hidden1) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(self.hidden1, self.hidden2) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(self.hidden2, self.hidden3) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(self.hidden3, self.hidden4) self.relu4 = nn.ReLU() self.fc5 = nn.Linear(self.hidden4, self.hidden5) self.relu5 = nn.ReLU() self.fc6 = nn.Linear(self.hidden5, 1) self.apply(weights_init) def forward(self, x): out = self.fc1(x) out = self.relu1(out) out = self.fc2(out) out = self.relu2(out) out = self.fc3(out) out = self.relu3(out) out = self.fc4(out) out = self.relu4(out) out = self.fc5(out) out = self.relu5(out) out = self.fc6(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] # Source node to ATen node mapping: # model_input => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out1_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_4, buf6, 256, grid=grid(256), stream=stream0) del primals_4 buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out2_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf4, primals_6, buf5, 256, grid=grid(256), stream=stream0) del primals_6 return (buf3, buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf5, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency(torch .nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency , self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.fc2 = torch.nn.Linear(input_size, hidden_size) self.relu1 = torch.nn.ReLU() self.relu2 = torch.nn.ReLU() def forward(self, input1, input2): model_input = input1 + input2 out1 = self.fc1(model_input) out2 = self.fc2(model_input) out1 = self.relu1(out1) out2 = self.relu2(out2) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3, primals_4, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf4, primals_6, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 return buf3, buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf5, buf6 class NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependencyNew( torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super( NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependencyNew , self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.fc2 = torch.nn.Linear(input_size, hidden_size) self.relu1 = torch.nn.ReLU() self.relu2 = torch.nn.ReLU() def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
mrshu/onnxruntime
NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency
false
7,284
[ "MIT" ]
1
335edaa2c485ba0dec877bf4cdbd652e2d5d105c
https://github.com/mrshu/onnxruntime/tree/335edaa2c485ba0dec877bf4cdbd652e2d5d105c
import torch import torch.nn import torch.onnx class Model(torch .nn.Module): def __init__(self, input_size, hidden_size, num_classes): super().__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.fc2 = torch.nn.Linear(input_size, hidden_size) self.relu1 = torch.nn.ReLU() self.relu2 = torch.nn.ReLU() def forward(self, input1, input2): model_input = input1 + input2 out1 = self.fc1(model_input) out2 = self.fc2(model_input) out1 = self.relu1(out1) out2 = self.relu2(out2) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
NIN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py # Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.clone] # Source node to ATen node mapping: # einsum => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/t6/ct6f57cdvyh3ahq6iwyawuy7577bar2ftumjxqllolmn4c4lh7ph.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.add] # Source node to ATen node mapping: # y => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 1, 16, 4), 0), reinterpret_tensor(buf0, (1, 4, 64), (256, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import string import torch import numpy as np import torch.utils.data import torch import torch.nn as nn def _einsum(a, b, c, x, y): einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c)) return torch.einsum(einsum_str, x, y) def contract_inner(x, y): """tensordot(x, y, 1).""" x_chars = list(string.ascii_lowercase[:len(x.shape)]) y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x .shape)]) y_chars[0] = x_chars[-1] out_chars = x_chars[:-1] + y_chars[1:] return _einsum(x_chars, y_chars, out_chars, x, y) def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device='cpu'): def _compute_fans(shape, in_axis=1, out_axis=0): receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis ] fan_in = shape[in_axis] * receptive_field_size fan_out = shape[out_axis] * receptive_field_size return fan_in, fan_out def init(shape, dtype=dtype, device=device): fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) if mode == 'fan_in': denominator = fan_in elif mode == 'fan_out': denominator = fan_out elif mode == 'fan_avg': denominator = (fan_in + fan_out) / 2 else: raise ValueError( 'invalid mode for variance scaling initializer: {}'.format( mode)) variance = scale / denominator if distribution == 'normal': return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt( variance) elif distribution == 'uniform': return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0 ) * np.sqrt(3 * variance) else: raise ValueError( 'invalid distribution for variance scaling initializer') return init def default_init(scale=1.0): """The same initialization used in DDPM.""" scale = 1e-10 if scale == 0 else scale return variance_scaling(scale, 'fan_avg', 'uniform') class NIN(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) def forward(self, x): x = x.permute(0, 2, 3, 1) y = contract_inner(x, self.W) + self.b return y.permute(0, 3, 1, 2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'num_units': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import string import numpy as np import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch .float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 1, 16, 4), 0 ), reinterpret_tensor(buf0, (1, 4, 64), (256, 1, 4), 0) def _einsum(a, b, c, x, y): einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c)) return torch.einsum(einsum_str, x, y) def contract_inner(x, y): """tensordot(x, y, 1).""" x_chars = list(string.ascii_lowercase[:len(x.shape)]) y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x .shape)]) y_chars[0] = x_chars[-1] out_chars = x_chars[:-1] + y_chars[1:] return _einsum(x_chars, y_chars, out_chars, x, y) def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device='cpu'): def _compute_fans(shape, in_axis=1, out_axis=0): receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis ] fan_in = shape[in_axis] * receptive_field_size fan_out = shape[out_axis] * receptive_field_size return fan_in, fan_out def init(shape, dtype=dtype, device=device): fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) if mode == 'fan_in': denominator = fan_in elif mode == 'fan_out': denominator = fan_out elif mode == 'fan_avg': denominator = (fan_in + fan_out) / 2 else: raise ValueError( 'invalid mode for variance scaling initializer: {}'.format( mode)) variance = scale / denominator if distribution == 'normal': return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt( variance) elif distribution == 'uniform': return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0 ) * np.sqrt(3 * variance) else: raise ValueError( 'invalid distribution for variance scaling initializer') return init def default_init(scale=1.0): """The same initialization used in DDPM.""" scale = 1e-10 if scale == 0 else scale return variance_scaling(scale, 'fan_avg', 'uniform') class NINNew(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) def forward(self, input_0): primals_2 = self.W primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
mrjavoman/Image-Super-Resolution-via-Iterative-Refinement
NIN
false
7,285
[ "Apache-2.0" ]
1
2eb11d972e8e024c3b1d7a84f90895e329b5b408
https://github.com/mrjavoman/Image-Super-Resolution-via-Iterative-Refinement/tree/2eb11d972e8e024c3b1d7a84f90895e329b5b408
import string import torch import numpy as np import torch.utils.data import torch import torch.nn as nn def _einsum(a, b, c, x, y): einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c)) return torch.einsum(einsum_str, x, y) def contract_inner(x, y): """tensordot(x, y, 1).""" x_chars = list(string.ascii_lowercase[:len(x.shape)]) y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x .shape)]) y_chars[0] = x_chars[-1] out_chars = x_chars[:-1] + y_chars[1:] return _einsum(x_chars, y_chars, out_chars, x, y) def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device='cpu'): def _compute_fans(shape, in_axis=1, out_axis=0): receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis ] fan_in = shape[in_axis] * receptive_field_size fan_out = shape[out_axis] * receptive_field_size return fan_in, fan_out def init(shape, dtype=dtype, device=device): fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) if mode == 'fan_in': denominator = fan_in elif mode == 'fan_out': denominator = fan_out elif mode == 'fan_avg': denominator = (fan_in + fan_out) / 2 else: raise ValueError( 'invalid mode for variance scaling initializer: {}'.format( mode)) variance = scale / denominator if distribution == 'normal': return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt( variance) elif distribution == 'uniform': return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0 ) * np.sqrt(3 * variance) else: raise ValueError( 'invalid distribution for variance scaling initializer') return init def default_init(scale=1.0): """The same initialization used in DDPM.""" scale = 1e-10 if scale == 0 else scale return variance_scaling(scale, 'fan_avg', 'uniform') class Model(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) def forward(self, x): x = x.permute(0, 2, 3, 1) y = contract_inner(x, self.W) + self.b return y.permute(0, 3, 1, 2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] # Source node to ATen node mapping: # model_input => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sb/csbqfhl3tbhobxxibww6rnv4q33jyajqsvetse4kiun22xct43oo.py # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # out1_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return (buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency(torch. nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input1, input2): model_input = input1 + input2 out1 = self.fc1(model_input) out1 = self.relu(out1) out2 = self.fc2(out1) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_relu_1[grid(256)](buf2, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, primals_5 class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew(torch .nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew , self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
mrshu/onnxruntime
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency
false
7,286
[ "MIT" ]
1
335edaa2c485ba0dec877bf4cdbd652e2d5d105c
https://github.com/mrshu/onnxruntime/tree/335edaa2c485ba0dec877bf4cdbd652e2d5d105c
import torch import torch.nn import torch.onnx class Model(torch. nn.Module): def __init__(self, input_size, hidden_size, num_classes): super().__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input1, input2): model_input = input1 + input2 out1 = self.fc1(model_input) out1 = self.relu(out1) out2 = self.fc2(out1) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
BoundReciprocal
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yb/cybxmqgstg473ic3ozmef5imn5esyxvm3ttfpkjco3dcshvnl2bq.py # Topologically Sorted Source Nodes: [reciprocal], Original ATen: [aten.reciprocal] # Source node to ATen node mapping: # reciprocal => reciprocal # Graph fragment: # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_reciprocal_0 = async_compile.triton('triton_poi_fused_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [reciprocal], Original ATen: [aten.reciprocal] stream0 = get_raw_stream(0) triton_poi_fused_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import MSELoss def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): deviation = A.norm(self.dual_norm, -1) * self.eps bound = A.matmul(x) + sign * deviation.unsqueeze(-1) else: bound = x + sign * self.eps bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U center = (x_U + x_L) / 2.0 diff = (x_U - x_L) / 2.0 if not A.identity == 1: unfold_input = F.unfold(center, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound = prod.view(prod.size(0), prod.size(1), int(math. sqrt(prod.size(2))), int(math.sqrt(prod.size(2)))) unfold_input = F.unfold(diff, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches.abs() prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound += sign * prod.view(prod.size(0), prod.size(1), int(math.sqrt(prod.size(2))), int(math.sqrt(prod. size(2)))) else: bound = center + sign * diff return bound else: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U raise NotImplementedError() if isinstance(A, eyeC) or isinstance(A, torch.Tensor): return concretize_matrix(A) elif isinstance(A, Patches): return concretize_patches(A) elif isinstance(A, BoundList): for b in A.bound_list: if isinstance(b, eyeC) or isinstance(b, torch.Tensor): pass else: raise NotImplementedError() def init(self, x, aux=None, forward=False): if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U else: x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): if self.norm == np.inf: if self.x_L is None and self.x_U is None: return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps) else: return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})' .format(self.eps, self.x_L, self.x_U)) else: return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm, self.eps) class PerturbationSynonym(Perturbation): def __init__(self, budget, eps=1.0, use_simple=False): super(PerturbationSynonym, self).__init__() self._load_synonyms() self.budget = budget self.eps = eps self.use_simple = use_simple self.model = None self.train = False def __repr__(self): return ( 'perturbation(Synonym-based word substitution budget={}, eps={})' .format(self.budget, self.eps)) def _load_synonyms(self, path='data/synonyms.json'): with open(path) as file: self.synonym = json.loads(file.read()) logger.info('Synonym list loaded for {} words'.format(len(self. synonym))) def set_train(self, train): self.train = train def concretize(self, x, A, sign, aux): assert self.model is not None x_rep, mask, can_be_replaced = aux batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] dim_out = A.shape[1] max_num_cand = x_rep.shape[2] mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32, device=A.device) num_pos = int(np.max(np.sum(can_be_replaced, axis=-1))) update_A = A.shape[-1] > num_pos * dim_word if update_A: bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape( batch_size, -1, 1)).squeeze(-1) else: bias = 0.0 A = A.reshape(batch_size, dim_out, -1, dim_word) A_new, x_new, x_rep_new, mask_new = [], [], [], [] zeros_A = torch.zeros(dim_out, dim_word, device=A.device) zeros_w = torch.zeros(dim_word, device=A.device) zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device) zeros_mask = torch.zeros(max_num_cand, device=A.device) for t in range(batch_size): cnt = 0 for i in range(0, length): if can_be_replaced[t][i]: if update_A: A_new.append(A[t, :, i, :]) x_new.append(x[t][i]) x_rep_new.append(x_rep[t][i]) mask_new.append(mask[t][i]) cnt += 1 if update_A: A_new += [zeros_A] * (num_pos - cnt) x_new += [zeros_w] * (num_pos - cnt) x_rep_new += [zeros_rep] * (num_pos - cnt) mask_new += [zeros_mask] * (num_pos - cnt) if update_A: A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word ).transpose(1, 2) x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word) x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos, max_num_cand, dim_word) mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand) length = num_pos A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2) x = x.reshape(batch_size, length, -1, 1) if sign == 1: cmp, init = torch.max, -1e+30 else: cmp, init = torch.min, 1e+30 init_tensor = torch.ones(batch_size, dim_out) * init dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1) ] dp[0][0] = torch.zeros(batch_size, dim_out) A = A.reshape(batch_size * length, A.shape[2], A.shape[3]) Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x. shape[3])).reshape(batch_size, length, A.shape[1]) Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length, max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size, length, A.shape[1], max_num_cand) Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2) Ax_rep_bound = cmp(Ax_rep, dim=-1).values if self.use_simple and self.train: return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias for i in range(1, length + 1): dp[i][0] = dp[i - 1][0] + Ax[:, i - 1] for j in range(1, self.budget + 1): dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1 ] + Ax_rep_bound[:, i - 1]) dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1, batch_size, dim_out) return cmp(dp, dim=0).values + bias def init(self, x, aux=None, forward=False): tokens, batch = aux self.tokens = tokens assert len(x.shape) == 3 batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] max_pos = 1 can_be_replaced = np.zeros((batch_size, length), dtype=np.bool) self._build_substitution(batch) for t in range(batch_size): cnt = 0 candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] for i in range(len(tokens[t])): if tokens[t][i] == '[UNK]' or len(candidates[i] ) == 0 or tokens[t][i] != candidates[i][0]: continue for w in candidates[i][1:]: if w in self.model.vocab: can_be_replaced[t][i] = True cnt += 1 break max_pos = max(max_pos, cnt) dim = max_pos * dim_word if forward: eye = torch.eye(dim_word) lw = torch.zeros(batch_size, dim, length, dim_word) lb = torch.zeros_like(x) word_embeddings = self.model.word_embeddings.weight vocab = self.model.vocab x_rep = [[[] for i in range(length)] for t in range(batch_size)] max_num_cand = 1 for t in range(batch_size): candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] cnt = 0 for i in range(length): if can_be_replaced[t][i]: word_embed = word_embeddings[vocab[tokens[t][i]]] other_embed = x[t, i] - word_embed if forward: lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye lb[t, i, :] = torch.zeros_like(word_embed) for w in candidates[i][1:]: if w in self.model.vocab: x_rep[t][i].append(word_embeddings[self.model. vocab[w]] + other_embed) max_num_cand = max(max_num_cand, len(x_rep[t][i])) cnt += 1 elif forward: lb[t, i, :] = x[t, i, :] if forward: uw, ub = lw, lb else: lw = lb = uw = ub = None zeros = torch.zeros(dim_word, device=x.device) x_rep_, mask = [], [] for t in range(batch_size): for i in range(length): x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep [t][i])) mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len( x_rep[t][i])) x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand, dim_word) mask = torch.tensor(mask, dtype=torch.float32, device=x.device ).reshape(batch_size, length, max_num_cand) x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps) inf = 1e+20 lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * inf, dim=2).values upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * -inf, dim=2).values lower = torch.min(lower, x) upper = torch.max(upper, x) return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask, can_be_replaced) def _build_substitution(self, batch): for t, example in enumerate(batch): if 'candidates' not in example or example['candidates'] is None: candidates = [] tokens = example['sentence'].strip().lower().split(' ') for i in range(len(tokens)): _cand = [] if tokens[i] in self.synonym: for w in self.synonym[tokens[i]]: if w in self.model.vocab: _cand.append(w) if len(_cand) > 0: _cand = [tokens[i]] + _cand candidates.append(_cand) example['candidates'] = candidates class Interval(tuple): def __new__(self, lb=None, ub=None, ptb=None): if ub is None: assert isinstance(lb, tuple) lb, ub = lb return tuple.__new__(Interval, (lb, ub)) def __init__(self, lb, ub, ptb=None): if ptb is None: self.ptb = None assert lb is ub elif not isinstance(ptb, Perturbation): raise ValueError( 'ptb must be a Perturbation object or None. Got type {}'. format(type(ptb))) else: self.ptb = ptb def __str__(self): return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb) def __repr__(self): return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1], self.ptb) """Checking if the other interval is tuple, keep the perturbation.""" @staticmethod def make_interval(lb, ub, other): if isinstance(other, Interval): return Interval(lb, ub, other.ptb) else: return lb, ub """Given a tuple or Interval object, returns the norm and eps.""" @staticmethod def get_perturbation(interval): if isinstance(interval, Interval): if isinstance(interval.ptb, PerturbationLpNorm): return interval.ptb.norm, interval.ptb.eps elif isinstance(interval.ptb, PerturbationSynonym): return np.inf, 1.0 elif isinstance(interval.ptb, PerturbationL0Norm): return 0, interval.ptb.eps, interval.ptb.ratio elif interval.ptb is None: raise RuntimeError( 'get_perturbation() encountered an interval that is not perturbed.' ) else: raise RuntimeError( 'get_perturbation() does not know how to handle {}'. format(type(interval.ptb))) else: return np.inf, np.nan """Checking if a Interval or tuple object has perturbation enabled.""" @staticmethod def is_perturbed(interval): if isinstance(interval, Interval) and interval.ptb is None: return False else: return True class Bound(nn.Module): def __init__(self, input_name, name, ori_name, attr={}, inputs=[], output_index=0, options={}, device=None): super().__init__() self.output_name = [] (self.input_name, self.name, self.ori_name, self.attr, self.inputs, self.output_index, self.options, self.device) = (input_name, name, ori_name, attr, inputs, output_index, options, device) self.fv = None self.from_input = False self.bounded = False self.IBP_rets = None self.perturbed = False if options is not None and 'loss_fusion' in options: self.loss_fusion = options['loss_fusion'] else: self.loss_fusion = False """Check if the i-th input is with perturbation or not.""" def is_input_perturbed(self, i=0): return self.inputs[i].perturbed def forward(self, *x): raise NotImplementedError def interval_propagate(self, *v): assert len(v) == 1 h_L, h_U = v[0] return Interval.make_interval(self.forward(h_L), self.forward(h_U), v[0]) def bound_forward(self, dim_in, last): raise NotImplementedError def bound_backward(self, last_lA, last_uA): raise NotImplementedError def infer_batch_dim(self, batch_size, *x): None raise NotImplementedError def broadcast_backward(self, A, x): shape = x.default_shape batch_dim = max(self.batch_dim, 0) if isinstance(A, torch.Tensor): if x.batch_dim == -1: shape = torch.Size([A.shape[batch_dim + 1]] + list(shape)) dims = [] cnt_sum = A.ndim - len(shape) - 1 for i in range(1, A.ndim): if i != self.batch_dim + 1 and cnt_sum > 0: dims.append(i) cnt_sum -= 1 if dims: A = torch.sum(A, dim=dims) else: dims = list(range(1, 1 + A.ndim - 1 - len(shape))) if dims: A = torch.sum(A, dim=dims) dims = [] for i in range(len(shape)): if shape[i] == 1 and A.shape[i + 1] != 1: dims.append(i + 1) if dims: A = torch.sum(A, dim=dims, keepdim=True) assert A.shape[1:] == shape elif type(A) == Patches: pass return A @staticmethod def broadcast_forward(dim_in, x, shape_res): lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub shape_x, shape_res = list(x.lb.shape), list(shape_res) if lw is None: lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device) has_batch_size = False else: has_batch_size = True while len(shape_x) < len(shape_res): if not has_batch_size: lw, uw = lw.unsqueeze(0), uw.unsqueeze(0) lb, ub = lb.unsqueeze(0), ub.unsqueeze(0) shape_x = [1] + shape_x has_batch_size = True else: lw, uw = lw.unsqueeze(2), uw.unsqueeze(2) lb, ub = lb.unsqueeze(1), ub.unsqueeze(1) shape_x = [shape_x[0], 1] + shape_x[1:] repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))] lb, ub = lb.repeat(*repeat), ub.repeat(*repeat) repeat = repeat[:1] + [1] + repeat[1:] lw, uw = lw.repeat(*repeat), uw.repeat(*repeat) return lw, lb, uw, ub def get_bias(self, A, bias): if A is None: return 0 assert not isnan(A) assert not isnan(bias) if isinstance(A, torch.Tensor): if torch.norm(A, p=1) < epsilon: return 0 output_dim = A.shape[0] if self.batch_dim != -1: batch_size = A.shape[self.batch_dim + 1] A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1 ]).astype(np.int32), batch_size, np.prod(A.shape[self. batch_dim + 2:]).astype(np.int32)] A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size, output_dim, -1) bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape( batch_size, -1, 1) bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1) else: batch_size = A.shape[1] A = A.view(output_dim, batch_size, -1) bias_new = A.matmul(bias.view(-1)) if isnan(bias_new): return 0 else: return bias_new elif type(A) == Patches: if torch.norm(A.patches, p=1) < epsilon: return 0 if self.batch_dim != -1: batch_size = bias.shape[0] bias = F.unfold(bias, kernel_size=A.patches.size(-1), stride=A.stride, padding=A.padding).transpose(-2, -1 ).unsqueeze(-2) bias.size(1) patches = A.patches.view(A.patches.size(0), A.patches.size( 1), A.patches.size(-4), A.patches.size(-1) * A.patches. size(-2) * A.patches.size(-3)) prod = bias * patches bias_new = prod.sum(-1).transpose(-2, -1) bias_new = bias_new.view(batch_size, bias_new.size(-2), int (math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new. size(-1)))) else: patches = A.patches patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias patches_reshape = patches_reshape.transpose(-1, -2) return patches_reshape.view(patches_reshape.size(0), patches_reshape.size(1), int(math.sqrt(patches_reshape. size(2))), -1).transpose(0, 1) return bias_new else: return NotImplementedError() class BoundActivation(Bound): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) self.nonlinear = True self.relaxed = False def _init_linear(self, x): self.mask_pos = torch.gt(x.lower, 0) self.mask_neg = torch.lt(x.upper, 0) self.mask_both = 1 - self.mask_pos - self.mask_neg self.lw = torch.zeros(x.lower.shape, device=self.device) self.lb = self.lw.clone() self.uw = self.lw.clone() self.ub = self.lw.clone() def _add_linear(self, mask, type, k, x0, y0): if mask is None: mask = 1 if type == 'lower': w_out, b_out = self.lw, self.lb else: w_out, b_out = self.uw, self.ub w_out += mask * k b_out += mask * (-x0 * k + y0) def bound_relax(self, x): raise NotImplementedError def bound_backward(self, last_lA, last_uA, x): if not self.relaxed: self._init_linear(x) self.bound_relax(x) def _bound_oneside(last_A, sign=-1): if last_A is None: return None, 0 if self.batch_dim == 0: if sign == -1: _A = last_A.clamp(min=0) * self.lw.unsqueeze(0 ) + last_A.clamp(max=0) * self.uw.unsqueeze(0) _bias = last_A.clamp(min=0) * self.lb.unsqueeze(0 ) + last_A.clamp(max=0) * self.ub.unsqueeze(0) elif sign == 1: _A = last_A.clamp(min=0) * self.uw.unsqueeze(0 ) + last_A.clamp(max=0) * self.lw.unsqueeze(0) _bias = last_A.clamp(min=0) * self.ub.unsqueeze(0 ) + last_A.clamp(max=0) * self.lb.unsqueeze(0) while _bias.ndim > 2: _bias = torch.sum(_bias, dim=-1) elif self.batch_dim == -1: mask = torch.gt(last_A, 0.0) if sign == -1: _A = last_A * (mask * self.lw.unsqueeze(0).unsqueeze(1) + (1 - mask) * self.uw.unsqueeze(0).unsqueeze(1)) _bias = last_A * (mask * self.lb.unsqueeze(0).unsqueeze (1) + (1 - mask) * self.ub.unsqueeze(0).unsqueeze(1)) elif sign == 1: _A = last_A * (mask * self.uw.unsqueeze(0).unsqueeze(1) + (1 - mask) * self.lw.unsqueeze(0).unsqueeze(1)) _bias = last_A * (mask * self.ub.unsqueeze(0).unsqueeze (1) + (1 - mask) * self.lb.unsqueeze(0).unsqueeze(1)) while _bias.ndim > 2: _bias = torch.sum(_bias, dim=-1) else: raise NotImplementedError return _A, _bias lA, lbias = _bound_oneside(last_lA, sign=-1) uA, ubias = _bound_oneside(last_uA, sign=+1) return [(lA, uA)], lbias, ubias def bound_forward(self, dim_in, x): if not self.relaxed: self._init_linear(x) self.bound_relax(x) if self.lw.ndim > 0: if x.lw is not None: lw = self.lw.unsqueeze(1).clamp(min=0 ) * x.lw + self.lw.unsqueeze(1).clamp(max=0) * x.uw uw = self.uw.unsqueeze(1).clamp(max=0 ) * x.lw + self.uw.unsqueeze(1).clamp(min=0) * x.uw else: lw = uw = None elif x.lw is not None: lw = self.lw.unsqueeze(0).clamp(min=0) * x.lw + self.lw.unsqueeze(0 ).clamp(max=0) * x.uw uw = self.uw.unsqueeze(0).clamp(min=0) * x.lw + self.uw.unsqueeze(0 ).clamp(max=0) * x.uw else: lw = uw = None lb = self.lw.clamp(min=0) * x.lb + self.lw.clamp(max=0 ) * x.ub + self.lb ub = self.uw.clamp(max=0) * x.lb + self.uw.clamp(min=0 ) * x.ub + self.ub return LinearBound(lw, lb, uw, ub) def infer_batch_dim(self, batch_size, *x): return x[0] class BoundReciprocal(BoundActivation): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) self.nonlinear = True def forward(self, x): return torch.reciprocal(x) def bound_relax(self, x): m = (x.lower + x.upper) / 2 kl = -1 / m.pow(2) self._add_linear(mask=None, type='lower', k=kl, x0=m, y0=1.0 / m) ku = -1.0 / (x.lower * x.upper) self._add_linear(mask=None, type='upper', k=ku, x0=x.lower, y0=1.0 / x.lower) def interval_propagate(self, *v): h_L, h_U = v[0] return torch.reciprocal(h_U.float()), torch.reciprocal(h_L.float()) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_name': 4, 'name': 4, 'ori_name': 4, 'attr': 4, 'inputs': 4, 'output_index': 4, 'options': _mock_config(loss_fusion =MSELoss()), 'device': 0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import numpy as np import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reciprocal_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): deviation = A.norm(self.dual_norm, -1) * self.eps bound = A.matmul(x) + sign * deviation.unsqueeze(-1) else: bound = x + sign * self.eps bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U center = (x_U + x_L) / 2.0 diff = (x_U - x_L) / 2.0 if not A.identity == 1: unfold_input = F.unfold(center, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound = prod.view(prod.size(0), prod.size(1), int(math. sqrt(prod.size(2))), int(math.sqrt(prod.size(2)))) unfold_input = F.unfold(diff, kernel_size=A.patches. size(-1), padding=A.padding, stride=A.stride ).transpose(-2, -1) unfold_input = unfold_input.view(unfold_input.size(0), unfold_input.size(1), -1, A.patches.size(-3), A. patches.size(-2), A.patches.size(-1)) prod = unfold_input * A.patches.abs() prod = prod.sum((-1, -2, -3)).transpose(-2, -1) bound += sign * prod.view(prod.size(0), prod.size(1), int(math.sqrt(prod.size(2))), int(math.sqrt(prod. size(2)))) else: bound = center + sign * diff return bound else: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U raise NotImplementedError() if isinstance(A, eyeC) or isinstance(A, torch.Tensor): return concretize_matrix(A) elif isinstance(A, Patches): return concretize_patches(A) elif isinstance(A, BoundList): for b in A.bound_list: if isinstance(b, eyeC) or isinstance(b, torch.Tensor): pass else: raise NotImplementedError() def init(self, x, aux=None, forward=False): if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U else: x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): if self.norm == np.inf: if self.x_L is None and self.x_U is None: return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps) else: return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})' .format(self.eps, self.x_L, self.x_U)) else: return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm, self.eps) class PerturbationSynonym(Perturbation): def __init__(self, budget, eps=1.0, use_simple=False): super(PerturbationSynonym, self).__init__() self._load_synonyms() self.budget = budget self.eps = eps self.use_simple = use_simple self.model = None self.train = False def __repr__(self): return ( 'perturbation(Synonym-based word substitution budget={}, eps={})' .format(self.budget, self.eps)) def _load_synonyms(self, path='data/synonyms.json'): with open(path) as file: self.synonym = json.loads(file.read()) logger.info('Synonym list loaded for {} words'.format(len(self. synonym))) def set_train(self, train): self.train = train def concretize(self, x, A, sign, aux): assert self.model is not None x_rep, mask, can_be_replaced = aux batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] dim_out = A.shape[1] max_num_cand = x_rep.shape[2] mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32, device=A.device) num_pos = int(np.max(np.sum(can_be_replaced, axis=-1))) update_A = A.shape[-1] > num_pos * dim_word if update_A: bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape( batch_size, -1, 1)).squeeze(-1) else: bias = 0.0 A = A.reshape(batch_size, dim_out, -1, dim_word) A_new, x_new, x_rep_new, mask_new = [], [], [], [] zeros_A = torch.zeros(dim_out, dim_word, device=A.device) zeros_w = torch.zeros(dim_word, device=A.device) zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device) zeros_mask = torch.zeros(max_num_cand, device=A.device) for t in range(batch_size): cnt = 0 for i in range(0, length): if can_be_replaced[t][i]: if update_A: A_new.append(A[t, :, i, :]) x_new.append(x[t][i]) x_rep_new.append(x_rep[t][i]) mask_new.append(mask[t][i]) cnt += 1 if update_A: A_new += [zeros_A] * (num_pos - cnt) x_new += [zeros_w] * (num_pos - cnt) x_rep_new += [zeros_rep] * (num_pos - cnt) mask_new += [zeros_mask] * (num_pos - cnt) if update_A: A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word ).transpose(1, 2) x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word) x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos, max_num_cand, dim_word) mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand) length = num_pos A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2) x = x.reshape(batch_size, length, -1, 1) if sign == 1: cmp, init = torch.max, -1e+30 else: cmp, init = torch.min, 1e+30 init_tensor = torch.ones(batch_size, dim_out) * init dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1) ] dp[0][0] = torch.zeros(batch_size, dim_out) A = A.reshape(batch_size * length, A.shape[2], A.shape[3]) Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x. shape[3])).reshape(batch_size, length, A.shape[1]) Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length, max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size, length, A.shape[1], max_num_cand) Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2) Ax_rep_bound = cmp(Ax_rep, dim=-1).values if self.use_simple and self.train: return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias for i in range(1, length + 1): dp[i][0] = dp[i - 1][0] + Ax[:, i - 1] for j in range(1, self.budget + 1): dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1 ] + Ax_rep_bound[:, i - 1]) dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1, batch_size, dim_out) return cmp(dp, dim=0).values + bias def init(self, x, aux=None, forward=False): tokens, batch = aux self.tokens = tokens assert len(x.shape) == 3 batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2] max_pos = 1 can_be_replaced = np.zeros((batch_size, length), dtype=np.bool) self._build_substitution(batch) for t in range(batch_size): cnt = 0 candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] for i in range(len(tokens[t])): if tokens[t][i] == '[UNK]' or len(candidates[i] ) == 0 or tokens[t][i] != candidates[i][0]: continue for w in candidates[i][1:]: if w in self.model.vocab: can_be_replaced[t][i] = True cnt += 1 break max_pos = max(max_pos, cnt) dim = max_pos * dim_word if forward: eye = torch.eye(dim_word) lw = torch.zeros(batch_size, dim, length, dim_word) lb = torch.zeros_like(x) word_embeddings = self.model.word_embeddings.weight vocab = self.model.vocab x_rep = [[[] for i in range(length)] for t in range(batch_size)] max_num_cand = 1 for t in range(batch_size): candidates = batch[t]['candidates'] if tokens[t][0] == '[CLS]': candidates = [[]] + candidates + [[]] cnt = 0 for i in range(length): if can_be_replaced[t][i]: word_embed = word_embeddings[vocab[tokens[t][i]]] other_embed = x[t, i] - word_embed if forward: lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye lb[t, i, :] = torch.zeros_like(word_embed) for w in candidates[i][1:]: if w in self.model.vocab: x_rep[t][i].append(word_embeddings[self.model. vocab[w]] + other_embed) max_num_cand = max(max_num_cand, len(x_rep[t][i])) cnt += 1 elif forward: lb[t, i, :] = x[t, i, :] if forward: uw, ub = lw, lb else: lw = lb = uw = ub = None zeros = torch.zeros(dim_word, device=x.device) x_rep_, mask = [], [] for t in range(batch_size): for i in range(length): x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep [t][i])) mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len( x_rep[t][i])) x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand, dim_word) mask = torch.tensor(mask, dtype=torch.float32, device=x.device ).reshape(batch_size, length, max_num_cand) x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps) inf = 1e+20 lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * inf, dim=2).values upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask). unsqueeze(-1) * -inf, dim=2).values lower = torch.min(lower, x) upper = torch.max(upper, x) return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask, can_be_replaced) def _build_substitution(self, batch): for t, example in enumerate(batch): if 'candidates' not in example or example['candidates'] is None: candidates = [] tokens = example['sentence'].strip().lower().split(' ') for i in range(len(tokens)): _cand = [] if tokens[i] in self.synonym: for w in self.synonym[tokens[i]]: if w in self.model.vocab: _cand.append(w) if len(_cand) > 0: _cand = [tokens[i]] + _cand candidates.append(_cand) example['candidates'] = candidates class Interval(tuple): def __new__(self, lb=None, ub=None, ptb=None): if ub is None: assert isinstance(lb, tuple) lb, ub = lb return tuple.__new__(Interval, (lb, ub)) def __init__(self, lb, ub, ptb=None): if ptb is None: self.ptb = None assert lb is ub elif not isinstance(ptb, Perturbation): raise ValueError( 'ptb must be a Perturbation object or None. Got type {}'. format(type(ptb))) else: self.ptb = ptb def __str__(self): return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb) def __repr__(self): return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1], self.ptb) """Checking if the other interval is tuple, keep the perturbation.""" @staticmethod def make_interval(lb, ub, other): if isinstance(other, Interval): return Interval(lb, ub, other.ptb) else: return lb, ub """Given a tuple or Interval object, returns the norm and eps.""" @staticmethod def get_perturbation(interval): if isinstance(interval, Interval): if isinstance(interval.ptb, PerturbationLpNorm): return interval.ptb.norm, interval.ptb.eps elif isinstance(interval.ptb, PerturbationSynonym): return np.inf, 1.0 elif isinstance(interval.ptb, PerturbationL0Norm): return 0, interval.ptb.eps, interval.ptb.ratio elif interval.ptb is None: raise RuntimeError( 'get_perturbation() encountered an interval that is not perturbed.' ) else: raise RuntimeError( 'get_perturbation() does not know how to handle {}'. format(type(interval.ptb))) else: return np.inf, np.nan """Checking if a Interval or tuple object has perturbation enabled.""" @staticmethod def is_perturbed(interval): if isinstance(interval, Interval) and interval.ptb is None: return False else: return True class Bound(nn.Module): def __init__(self, input_name, name, ori_name, attr={}, inputs=[], output_index=0, options={}, device=None): super().__init__() self.output_name = [] (self.input_name, self.name, self.ori_name, self.attr, self.inputs, self.output_index, self.options, self.device) = (input_name, name, ori_name, attr, inputs, output_index, options, device) self.fv = None self.from_input = False self.bounded = False self.IBP_rets = None self.perturbed = False if options is not None and 'loss_fusion' in options: self.loss_fusion = options['loss_fusion'] else: self.loss_fusion = False """Check if the i-th input is with perturbation or not.""" def is_input_perturbed(self, i=0): return self.inputs[i].perturbed def forward(self, *x): raise NotImplementedError def interval_propagate(self, *v): assert len(v) == 1 h_L, h_U = v[0] return Interval.make_interval(self.forward(h_L), self.forward(h_U), v[0]) def bound_forward(self, dim_in, last): raise NotImplementedError def bound_backward(self, last_lA, last_uA): raise NotImplementedError def infer_batch_dim(self, batch_size, *x): None raise NotImplementedError def broadcast_backward(self, A, x): shape = x.default_shape batch_dim = max(self.batch_dim, 0) if isinstance(A, torch.Tensor): if x.batch_dim == -1: shape = torch.Size([A.shape[batch_dim + 1]] + list(shape)) dims = [] cnt_sum = A.ndim - len(shape) - 1 for i in range(1, A.ndim): if i != self.batch_dim + 1 and cnt_sum > 0: dims.append(i) cnt_sum -= 1 if dims: A = torch.sum(A, dim=dims) else: dims = list(range(1, 1 + A.ndim - 1 - len(shape))) if dims: A = torch.sum(A, dim=dims) dims = [] for i in range(len(shape)): if shape[i] == 1 and A.shape[i + 1] != 1: dims.append(i + 1) if dims: A = torch.sum(A, dim=dims, keepdim=True) assert A.shape[1:] == shape elif type(A) == Patches: pass return A @staticmethod def broadcast_forward(dim_in, x, shape_res): lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub shape_x, shape_res = list(x.lb.shape), list(shape_res) if lw is None: lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device) has_batch_size = False else: has_batch_size = True while len(shape_x) < len(shape_res): if not has_batch_size: lw, uw = lw.unsqueeze(0), uw.unsqueeze(0) lb, ub = lb.unsqueeze(0), ub.unsqueeze(0) shape_x = [1] + shape_x has_batch_size = True else: lw, uw = lw.unsqueeze(2), uw.unsqueeze(2) lb, ub = lb.unsqueeze(1), ub.unsqueeze(1) shape_x = [shape_x[0], 1] + shape_x[1:] repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))] lb, ub = lb.repeat(*repeat), ub.repeat(*repeat) repeat = repeat[:1] + [1] + repeat[1:] lw, uw = lw.repeat(*repeat), uw.repeat(*repeat) return lw, lb, uw, ub def get_bias(self, A, bias): if A is None: return 0 assert not isnan(A) assert not isnan(bias) if isinstance(A, torch.Tensor): if torch.norm(A, p=1) < epsilon: return 0 output_dim = A.shape[0] if self.batch_dim != -1: batch_size = A.shape[self.batch_dim + 1] A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1 ]).astype(np.int32), batch_size, np.prod(A.shape[self. batch_dim + 2:]).astype(np.int32)] A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size, output_dim, -1) bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape( batch_size, -1, 1) bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1) else: batch_size = A.shape[1] A = A.view(output_dim, batch_size, -1) bias_new = A.matmul(bias.view(-1)) if isnan(bias_new): return 0 else: return bias_new elif type(A) == Patches: if torch.norm(A.patches, p=1) < epsilon: return 0 if self.batch_dim != -1: batch_size = bias.shape[0] bias = F.unfold(bias, kernel_size=A.patches.size(-1), stride=A.stride, padding=A.padding).transpose(-2, -1 ).unsqueeze(-2) bias.size(1) patches = A.patches.view(A.patches.size(0), A.patches.size( 1), A.patches.size(-4), A.patches.size(-1) * A.patches. size(-2) * A.patches.size(-3)) prod = bias * patches bias_new = prod.sum(-1).transpose(-2, -1) bias_new = bias_new.view(batch_size, bias_new.size(-2), int (math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new. size(-1)))) else: patches = A.patches patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias patches_reshape = patches_reshape.transpose(-1, -2) return patches_reshape.view(patches_reshape.size(0), patches_reshape.size(1), int(math.sqrt(patches_reshape. size(2))), -1).transpose(0, 1) return bias_new else: return NotImplementedError() class BoundActivation(Bound): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) self.nonlinear = True self.relaxed = False def _init_linear(self, x): self.mask_pos = torch.gt(x.lower, 0) self.mask_neg = torch.lt(x.upper, 0) self.mask_both = 1 - self.mask_pos - self.mask_neg self.lw = torch.zeros(x.lower.shape, device=self.device) self.lb = self.lw.clone() self.uw = self.lw.clone() self.ub = self.lw.clone() def _add_linear(self, mask, type, k, x0, y0): if mask is None: mask = 1 if type == 'lower': w_out, b_out = self.lw, self.lb else: w_out, b_out = self.uw, self.ub w_out += mask * k b_out += mask * (-x0 * k + y0) def bound_relax(self, x): raise NotImplementedError def bound_backward(self, last_lA, last_uA, x): if not self.relaxed: self._init_linear(x) self.bound_relax(x) def _bound_oneside(last_A, sign=-1): if last_A is None: return None, 0 if self.batch_dim == 0: if sign == -1: _A = last_A.clamp(min=0) * self.lw.unsqueeze(0 ) + last_A.clamp(max=0) * self.uw.unsqueeze(0) _bias = last_A.clamp(min=0) * self.lb.unsqueeze(0 ) + last_A.clamp(max=0) * self.ub.unsqueeze(0) elif sign == 1: _A = last_A.clamp(min=0) * self.uw.unsqueeze(0 ) + last_A.clamp(max=0) * self.lw.unsqueeze(0) _bias = last_A.clamp(min=0) * self.ub.unsqueeze(0 ) + last_A.clamp(max=0) * self.lb.unsqueeze(0) while _bias.ndim > 2: _bias = torch.sum(_bias, dim=-1) elif self.batch_dim == -1: mask = torch.gt(last_A, 0.0) if sign == -1: _A = last_A * (mask * self.lw.unsqueeze(0).unsqueeze(1) + (1 - mask) * self.uw.unsqueeze(0).unsqueeze(1)) _bias = last_A * (mask * self.lb.unsqueeze(0).unsqueeze (1) + (1 - mask) * self.ub.unsqueeze(0).unsqueeze(1)) elif sign == 1: _A = last_A * (mask * self.uw.unsqueeze(0).unsqueeze(1) + (1 - mask) * self.lw.unsqueeze(0).unsqueeze(1)) _bias = last_A * (mask * self.ub.unsqueeze(0).unsqueeze (1) + (1 - mask) * self.lb.unsqueeze(0).unsqueeze(1)) while _bias.ndim > 2: _bias = torch.sum(_bias, dim=-1) else: raise NotImplementedError return _A, _bias lA, lbias = _bound_oneside(last_lA, sign=-1) uA, ubias = _bound_oneside(last_uA, sign=+1) return [(lA, uA)], lbias, ubias def bound_forward(self, dim_in, x): if not self.relaxed: self._init_linear(x) self.bound_relax(x) if self.lw.ndim > 0: if x.lw is not None: lw = self.lw.unsqueeze(1).clamp(min=0 ) * x.lw + self.lw.unsqueeze(1).clamp(max=0) * x.uw uw = self.uw.unsqueeze(1).clamp(max=0 ) * x.lw + self.uw.unsqueeze(1).clamp(min=0) * x.uw else: lw = uw = None elif x.lw is not None: lw = self.lw.unsqueeze(0).clamp(min=0) * x.lw + self.lw.unsqueeze(0 ).clamp(max=0) * x.uw uw = self.uw.unsqueeze(0).clamp(min=0) * x.lw + self.uw.unsqueeze(0 ).clamp(max=0) * x.uw else: lw = uw = None lb = self.lw.clamp(min=0) * x.lb + self.lw.clamp(max=0 ) * x.ub + self.lb ub = self.uw.clamp(max=0) * x.lb + self.uw.clamp(min=0 ) * x.ub + self.ub return LinearBound(lw, lb, uw, ub) def infer_batch_dim(self, batch_size, *x): return x[0] class BoundReciprocalNew(BoundActivation): def __init__(self, input_name, name, ori_name, attr, inputs, output_index, options, device): super().__init__(input_name, name, ori_name, attr, inputs, output_index, options, device) self.nonlinear = True def bound_relax(self, x): m = (x.lower + x.upper) / 2 kl = -1 / m.pow(2) self._add_linear(mask=None, type='lower', k=kl, x0=m, y0=1.0 / m) ku = -1.0 / (x.lower * x.upper) self._add_linear(mask=None, type='upper', k=ku, x0=x.lower, y0=1.0 / x.lower) def interval_propagate(self, *v): h_L, h_U = v[0] return torch.reciprocal(h_U.float()), torch.reciprocal(h_L.float()) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mnmueller/auto_LiRPA
BoundReciprocal
false
7,287
[ "BSD-3-Clause" ]
1
55cb270b0b99f07b74541d55706c69fbb9daff66
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
from _paritybench_helpers import _mock_config import math import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn import MSELoss def isnan(x): if isinstance(x, Patches): return False return torch.isnan(x).any() class Perturbation: def __init__(self): pass def set_eps(self, eps): self.eps = eps def concretize(self, x, A, sign=-1, aux=None): raise NotImplementedError def init(self, x, aux=None, forward=False): raise NotImplementedError class PerturbationL0Norm(Perturbation): def __init__(self, eps, x_L=None, x_U=None, ratio=1.0): self.eps = eps self.x_U = x_U self.x_L = x_L self.ratio = ratio def concretize(self, x, A, sign=-1, aux=None): if A is None: return None eps = math.ceil(self.eps) x = x.reshape(x.shape[0], -1, 1) center = A.matmul(x) x = x.reshape(x.shape[0], 1, -1) original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2]) neg_mask = A < 0 pos_mask = A >= 0 if sign == 1: A_diff = torch.zeros_like(A) A_diff[pos_mask] = A[pos_mask] - original[pos_mask] A_diff[neg_mask] = -original[neg_mask] else: A_diff = torch.zeros_like(A) A_diff[pos_mask] = original[pos_mask] A_diff[neg_mask] = original[neg_mask] - A[neg_mask] A_diff, _ = torch.sort(A_diff, dim=2, descending=True) bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2 ) * self.ratio return bound.squeeze(2) def init(self, x, aux=None, forward=False): x_L = x x_U = x if not forward: return LinearBound(None, None, None, None, x_L, x_U), x, None batch_size = x.shape[0] dim = x.reshape(batch_size, -1).shape[-1] eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1) lw = eye.reshape(batch_size, dim, *x.shape[1:]) lb = torch.zeros_like(x) uw, ub = lw.clone(), lb.clone() return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None def __repr__(self): return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps) class PerturbationLpNorm(Perturbation): def __init__(self, eps, norm=np.inf, x_L=None, x_U=None): self.eps = eps self.norm = norm self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 - 1.0 / self.norm) self.x_L = x_L self.x_U = x_U """Given an variable x and its bound matrix A, compute worst case bound according to Lp norm.""" def concretize(self, x, A, sign=-1, aux=None): if A is None: return None def concretize_matrix(A): nonlocal x if not isinstance(A, eyeC): A = A.reshape(A.shape[0], A.shape[1], -1) if self.norm == np.inf: x_L = x - self.eps if self.x_L is None else self.x_L x_U = x + self.eps if self.x_U is None else self.x_U x_ub = x_U.reshape(x_U.shape[0], -1, 1) x_lb = x_L.reshape(x_L.shape[0], -1, 1) center = (x_ub + x_lb) / 2.0 diff = (x_ub - x_lb) / 2.0 if not isinstance(A, eyeC): bound = A.matmul(center) + sign * A.abs().matmul(diff) else: bound = center + sign * diff else: x = x.reshape(x.shape[0], -1, 1) if not isinstance(A, eyeC): deviation = A.norm(self.dual_norm, -1) * self.eps bound = A.matmul(x) + sign * deviation.unsqueeze(-1) else: bound = x + sign * self.eps bound = bound.squeeze(-1) return bound def concretize_patches(A): nonlocal x if self.norm == np.inf: x_L = x - # ... truncated (>4000 chars) for memory efficiency
WeightL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/u7/cu7vsiayqefb3g3w7t2akur6uz432klzvqwftk25bgwdpcb3zben.py # Topologically Sorted Source Nodes: [sub, diff, sum_1, diff_1, loss, sum_2, div], Original ATen: [aten.sub, aten.abs, aten.sum, aten.view, aten.mul, aten.div] # Source node to ATen node mapping: # diff => abs_1 # diff_1 => view_1 # div => div # loss => mul # sub => sub # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [1]), kwargs = {}) # %view_1 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%sum_1, [4, -1, 4, 4]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %arg2_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_per_fused_abs_div_mul_sub_sum_view_0 = async_compile.triton('triton_per_fused_abs_div_mul_sub_sum_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_mul_sub_sum_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 9, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_div_mul_sub_sum_view_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 16 r2 = (rindex // 64) r4 = rindex % 64 r3 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r4), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (64 + r4), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (128 + r4), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (192 + r4), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (r3), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tmp13 + tmp17 tmp20 = tmp18 * tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tmp24 = 0.25 tmp25 = tmp23 * tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp25, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, diff, sum_1, diff_1, loss, sum_2, div], Original ATen: [aten.sub, aten.abs, aten.sum, aten.view, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_div_mul_sub_sum_view_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WeightL1Loss(nn.Module): def __init__(self): super(WeightL1Loss, self).__init__() def forward(self, pred_loc, label_loc, loss_weight): b, _, sh, sw = pred_loc.size() pred_loc = pred_loc.view(b, 4, -1, sh, sw) diff = (pred_loc - label_loc).abs() diff = diff.sum(dim=1).view(b, -1, sh, sw) loss = diff * loss_weight return loss.sum().div(b) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_div_mul_sub_sum_view_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 16 r2 = rindex // 64 r4 = rindex % 64 r3 = rindex tmp0 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + r4, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (64 + r4), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr1 + (128 + r4), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (192 + r4), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + r3, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tl_math.abs(tmp11) tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tmp13 + tmp17 tmp20 = tmp18 * tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tmp24 = 0.25 tmp25 = tmp23 * tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp25, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_abs_div_mul_sub_sum_view_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class WeightL1LossNew(nn.Module): def __init__(self): super(WeightL1LossNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
mshmoon/siamrpn-lightweight
WeightL1Loss
false
7,288
[ "MIT" ]
1
f6527e34c9eaaeb45817b12babd78ee73b1c7525
https://github.com/mshmoon/siamrpn-lightweight/tree/f6527e34c9eaaeb45817b12babd78ee73b1c7525
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, pred_loc, label_loc, loss_weight): b, _, sh, sw = pred_loc.size() pred_loc = pred_loc.view(b, 4, -1, sh, sw) diff = (pred_loc - label_loc).abs() diff = diff.sum(dim=1).view(b, -1, sh, sw) loss = diff * loss_weight return loss.sum().div(b) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
Corr
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ni/cnivqy5as35um6234jqmngvb6hqujnfg2rfa3oaeqyy4coozutwo.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %view_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 16), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + (16*y0)), xmask & ymask) tl.store(out_ptr0 + (y0 + (16*x1)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4, 4), (256, 1, 64, 16), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del arg1_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, reinterpret_tensor(arg0_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=16, bias=None) assert_size_stride(buf1, (1, 16, 1, 1), (16, 1, 16, 16)) del arg0_1 del buf0 return (reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Corr(nn.Module): def __init__(self): super(Corr, self).__init__() def forward(self, x, kernel): batch = kernel.size(0) channel = kernel.size(1) x = x.view(1, batch * channel, x.size(2), x.size(3)) kernel = kernel.view(batch * channel, 1, kernel.size(2), kernel.size(3) ) out = F.conv2d(x, kernel, groups=batch * channel) out = out.view(batch, channel, out.size(2), out.size(3)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + 16 * y0), xmask & ymask) tl.store(out_ptr0 + (y0 + 16 * x1), tmp0, xmask & ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4, 4), (256, 1, 64, 16), torch. float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del arg1_1 buf1 = extern_kernels.convolution(buf0, reinterpret_tensor(arg0_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), stride=(1, 1), padding=(0, 0 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=16, bias=None) assert_size_stride(buf1, (1, 16, 1, 1), (16, 1, 16, 16)) del arg0_1 del buf0 return reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), class CorrNew(nn.Module): def __init__(self): super(CorrNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
mshmoon/siamrpn-lightweight
Corr
false
7,289
[ "MIT" ]
1
f6527e34c9eaaeb45817b12babd78ee73b1c7525
https://github.com/mshmoon/siamrpn-lightweight/tree/f6527e34c9eaaeb45817b12babd78ee73b1c7525
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, kernel): batch = kernel.size(0) channel = kernel.size(1) x = x.view(1, batch * channel, x.size(2), x.size(3)) kernel = kernel.view(batch * channel, 1, kernel.size(2), kernel.size(3) ) out = F.conv2d(x, kernel, groups=batch * channel) out = out.view(batch, channel, out.size(2), out.size(3)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BernoulliLogProb
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/na/cnacquvk53qgxzozitnbm3dsdswtqqnwwktg7ckxobsyjyvyz2rd.py # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, neg], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg] # Source node to ATen node mapping: # binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2 # neg => neg_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_2,), kwargs = {}) triton_poi_fused_binary_cross_entropy_with_logits_neg_0 = async_compile.triton('triton_poi_fused_binary_cross_entropy_with_logits_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_binary_cross_entropy_with_logits_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_binary_cross_entropy_with_logits_neg_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = -tmp12 tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, neg], Original ATen: [aten.binary_cross_entropy_with_logits, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_binary_cross_entropy_with_logits_neg_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils import torch.utils.data class BernoulliLogProb(nn.Module): def __init__(self): super().__init__() self.bce_with_logits = nn.BCEWithLogitsLoss(reduction='none') def forward(self, logits, target): return -self.bce_with_logits(logits, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_binary_cross_entropy_with_logits_neg_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = -tmp12 tl.store(out_ptr0 + x0, tmp13, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_binary_cross_entropy_with_logits_neg_0[grid(256)]( arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class BernoulliLogProbNew(nn.Module): def __init__(self): super().__init__() self.bce_with_logits = nn.BCEWithLogitsLoss(reduction='none') def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
msunardi/vae_experiment
BernoulliLogProb
false
7,290
[ "MIT" ]
1
e3ce39e586f1189d157e753370a90c07713658b3
https://github.com/msunardi/vae_experiment/tree/e3ce39e586f1189d157e753370a90c07713658b3
import torch import torch.nn as nn import torch.utils import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() self.bce_with_logits = nn.BCEWithLogitsLoss(reduction='none') def forward(self, logits, target): return -self.bce_with_logits(logits, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LogSoftMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/z5/cz5f25pcqiiedfuqxbk2cnpgag5ontaxdajgnly6msqpsesz47x3.py # Topologically Sorted Source Nodes: [cls_1, cls_2], Original ATen: [aten.clone, aten._log_softmax] # Source node to ATen node mapping: # cls_1 => clone # cls_2 => amax, exp, log, sub, sub_1, sum_1 # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [4], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_clone_0 = async_compile.triton('triton_poi_fused__log_softmax_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 2], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 32 y1 = (yindex // 32) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (32*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + (64*y1)), ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (32 + y0 + (64*y1)), ymask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tmp1 - tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 - tmp3 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp10 = tl_math.log(tmp9) tmp11 = tmp4 - tmp10 tl.store(out_ptr0 + (x2 + (2*y3)), tmp11, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4, 2), (64, 32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [cls_1, cls_2], Original ATen: [aten.clone, aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_clone_0.run(arg0_1, buf0, 128, 2, grid=grid(128, 2), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LogSoftMax(nn.Module): def __init__(self): super(LogSoftMax, self).__init__() def forward(self, cls): b, a2, h, w = cls.size() cls = cls.view(b, 2, a2 // 2, h, w) cls = cls.permute(0, 2, 3, 4, 1).contiguous() cls = F.log_softmax(cls, dim=4) return cls def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 32 y1 = yindex // 32 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 32 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 64 * y1), ymask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (32 + y0 + 64 * y1), ymask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 - tmp3 tmp5 = tmp1 - tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 - tmp3 tmp8 = tl_math.exp(tmp7) tmp9 = tmp6 + tmp8 tmp10 = tl_math.log(tmp9) tmp11 = tmp4 - tmp10 tl.store(out_ptr0 + (x2 + 2 * y3), tmp11, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4, 2), (64, 32, 8, 2, 1), torch .float32) get_raw_stream(0) triton_poi_fused__log_softmax_clone_0[grid(128, 2)](arg0_1, buf0, 128, 2, XBLOCK=2, YBLOCK=64, num_warps=4, num_stages=1) del arg0_1 return buf0, class LogSoftMaxNew(nn.Module): def __init__(self): super(LogSoftMaxNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
mshmoon/siamrpn-lightweight
LogSoftMax
false
7,291
[ "MIT" ]
1
f6527e34c9eaaeb45817b12babd78ee73b1c7525
https://github.com/mshmoon/siamrpn-lightweight/tree/f6527e34c9eaaeb45817b12babd78ee73b1c7525
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() def forward(self, cls): b, a2, h, w = cls.size() cls = cls.view(b, 2, a2 // 2, h, w) cls = cls.permute(0, 2, 3, 4, 1).contiguous() cls = F.log_softmax(cls, dim=4) return cls def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DistillLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/mc/cmc44gqwlbgitm3uqkuiwz6fe3jirwculg7zmyndeuqzyyqzyok7.py # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_1 => exp_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hg/chgnua7xriwlaya5uhb6ovx4n7dh6g35t7drug4ivsx7pil4obce.py # Topologically Sorted Source Nodes: [softmax, hard_target_loss], Original ATen: [aten._softmax, aten._log_softmax] # Source node to ATen node mapping: # hard_target_loss => amax_2, sub_3 # softmax => exp # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 4), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_2), kwargs = {}) triton_poi_fused__log_softmax__softmax_1 = async_compile.triton('triton_poi_fused__log_softmax__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = triton_helpers.maximum(tmp3, tmp5) tmp19 = triton_helpers.maximum(tmp18, tmp8) tmp20 = triton_helpers.maximum(tmp19, tmp11) tmp21 = tmp0 - tmp20 tl.store(out_ptr0 + (x3), tmp17, xmask) tl.store(out_ptr1 + (x3), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fe/cfewtwrwn2vcoeia6efsrmfaqf6spm7ezczk3g6lc4ndbmjov6wy.py # Topologically Sorted Source Nodes: [softmax_1, kl_div, softmax, soft_target_loss, mul_1, hard_target_loss, mul_2, total_loss], Original ATen: [aten._softmax, aten.xlogy, aten.mul, aten.sub, aten.sum, aten.div, aten._log_softmax, aten.neg, aten.add] # Source node to ATen node mapping: # hard_target_loss => div_5, exp_2, log_1, mul_3, neg, sub_4, sum_4, sum_5 # kl_div => div_4, eq, full_default, full_default_1, isnan, log, mul, mul_1, sub_2, sum_3, where, where_1 # mul_1 => mul_4 # mul_2 => mul_5 # soft_target_loss => mul_2 # softmax => div_1, sum_1 # softmax_1 => div_3, sum_2 # total_loss => add # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_3 : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div_3,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div_3, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, %log), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, %div_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_2,), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_4, 16), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, 4), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_4,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, %log_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %arg2_1), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_5,), kwargs = {}) # %div_5 : [num_users=2] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_5, -3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {7: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=(7,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 16, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp19 = tl.load(in_ptr2 + (r3), None) tmp20 = tl.load(in_ptr2 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr2 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr3 + (r3), None) tmp37 = tl.load(in_ptr3 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr3 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr3 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp26 = tmp24 + tmp25 tmp27 = tmp19 / tmp26 tmp28 = libdevice.isnan(tmp27).to(tl.int1) tmp29 = 0.0 tmp30 = tmp27 == tmp29 tmp31 = tl_math.log(tmp27) tmp32 = tmp27 * tmp31 tmp33 = tl.where(tmp30, tmp29, tmp32) tmp34 = float("nan") tmp35 = tl.where(tmp28, tmp34, tmp33) tmp39 = tmp37 + tmp38 tmp41 = tmp39 + tmp40 tmp43 = tmp41 + tmp42 tmp44 = tmp36 / tmp43 tmp45 = tmp27 * tmp44 tmp46 = tmp35 - tmp45 tmp47 = tl.broadcast_to(tmp46, [RBLOCK]) tmp49 = triton_helpers.promote_to_tensor(tl.sum(tmp47, 0)) tmp50 = 0.25 tmp51 = tmp49 * tmp50 tmp52 = 16.0 tmp53 = tmp51 * tmp52 tmp54 = -tmp18 tmp55 = 0.015625 tmp56 = tmp54 * tmp55 tmp57 = 4.0 tmp58 = tmp53 * tmp57 tmp59 = -3.0 tmp60 = tmp56 * tmp59 tmp61 = tmp58 + tmp60 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp53, None) tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp56, None) tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp61, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax, hard_target_loss], Original ATen: [aten._softmax, aten._log_softmax] triton_poi_fused__log_softmax__softmax_1.run(arg1_1, buf2, buf5, 256, grid=grid(256), stream=stream0) del arg1_1 buf6 = empty_strided_cuda((), (), torch.float32) buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [softmax_1, kl_div, softmax, soft_target_loss, mul_1, hard_target_loss, mul_2, total_loss], Original ATen: [aten._softmax, aten.xlogy, aten.mul, aten.sub, aten.sum, aten.div, aten._log_softmax, aten.neg, aten.add] triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2.run(buf4, buf7, buf5, arg2_1, buf0, buf2, buf8, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 del buf2 del buf5 return (buf4, buf7, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class DistillLoss(nn.Module): def __init__(self, temperature, distillation_weight): super().__init__() self.temperature = temperature self.distillation_weight = distillation_weight self.kldiv = nn.KLDivLoss(reduction='batchmean') def forward(self, outputs, labels, outputs_teacher): """Compute distillation loss given outputs, labels, and outputs of teacher model Arguments: outputs {[type]} -- [description] labels {[type]} -- [description] output_teacher {[type]} -- [description] """ soft_target_loss = 0 if outputs_teacher is not None and self.distillation_weight > 0: soft_target_loss = self.kldiv(F.softmax(outputs / self. temperature, dim=1), F.softmax(outputs_teacher / self. temperature, dim=1)) * self.temperature ** 2 hard_target_loss = F.cross_entropy(outputs, labels, reduction='mean') total_loss = (soft_target_loss * self.distillation_weight + hard_target_loss * (1 - self.distillation_weight)) return soft_target_loss, hard_target_loss, total_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'temperature': 4, 'distillation_weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x3, tmp17, xmask) @triton.jit def triton_poi_fused__log_softmax__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.25 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = triton_helpers.maximum(tmp3, tmp5) tmp19 = triton_helpers.maximum(tmp18, tmp8) tmp20 = triton_helpers.maximum(tmp19, tmp11) tmp21 = tmp0 - tmp20 tl.store(out_ptr0 + x3, tmp17, xmask) tl.store(out_ptr1 + x3, tmp21, xmask) @triton.jit def triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp19 = tl.load(in_ptr2 + r3, None) tmp20 = tl.load(in_ptr2 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr2 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr2 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp36 = tl.load(in_ptr3 + r3, None) tmp37 = tl.load(in_ptr3 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp38 = tl.load(in_ptr3 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp40 = tl.load(in_ptr3 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp42 = tl.load(in_ptr3 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp26 = tmp24 + tmp25 tmp27 = tmp19 / tmp26 tmp28 = libdevice.isnan(tmp27).to(tl.int1) tmp29 = 0.0 tmp30 = tmp27 == tmp29 tmp31 = tl_math.log(tmp27) tmp32 = tmp27 * tmp31 tmp33 = tl.where(tmp30, tmp29, tmp32) tmp34 = float('nan') tmp35 = tl.where(tmp28, tmp34, tmp33) tmp39 = tmp37 + tmp38 tmp41 = tmp39 + tmp40 tmp43 = tmp41 + tmp42 tmp44 = tmp36 / tmp43 tmp45 = tmp27 * tmp44 tmp46 = tmp35 - tmp45 tmp47 = tl.broadcast_to(tmp46, [RBLOCK]) tmp49 = triton_helpers.promote_to_tensor(tl.sum(tmp47, 0)) tmp50 = 0.25 tmp51 = tmp49 * tmp50 tmp52 = 16.0 tmp53 = tmp51 * tmp52 tmp54 = -tmp18 tmp55 = 0.015625 tmp56 = tmp54 * tmp55 tmp57 = 4.0 tmp58 = tmp53 * tmp57 tmp59 = -3.0 tmp60 = tmp56 * tmp59 tmp61 = tmp58 + tmp60 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp53, None) tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp56, None) tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp61, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax__softmax_1[grid(256)](arg1_1, buf2, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf6 = empty_strided_cuda((), (), torch.float32) buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 buf7 = buf6 del buf6 buf8 = empty_strided_cuda((), (), torch.float32) triton_per_fused__log_softmax__softmax_add_div_mul_neg_sub_sum_xlogy_2[ grid(1)](buf4, buf7, buf5, arg2_1, buf0, buf2, buf8, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 del buf2 del buf5 return buf4, buf7, buf8 class DistillLossNew(nn.Module): def __init__(self, temperature, distillation_weight): super().__init__() self.temperature = temperature self.distillation_weight = distillation_weight self.kldiv = nn.KLDivLoss(reduction='batchmean') def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1], output[2]
mrtunguyen/knowledge_distillation
DistillLoss
false
7,292
[ "MIT" ]
1
dd114e980dbebda6cc247f658eb801ab948ee6ba
https://github.com/mrtunguyen/knowledge_distillation/tree/dd114e980dbebda6cc247f658eb801ab948ee6ba
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, temperature, distillation_weight): super().__init__() self.temperature = temperature self.distillation_weight = distillation_weight self.kldiv = nn.KLDivLoss(reduction='batchmean') def forward(self, outputs, labels, outputs_teacher): """Compute distillation loss given outputs, labels, and outputs of teacher model Arguments: outputs {[type]} -- [description] labels {[type]} -- [description] output_teacher {[type]} -- [description] """ soft_target_loss = 0 if outputs_teacher is not None and self.distillation_weight > 0: soft_target_loss = self.kldiv(F.softmax(outputs / self. temperature, dim=1), F.softmax(outputs_teacher / self. temperature, dim=1)) * self.temperature ** 2 hard_target_loss = F.cross_entropy(outputs, labels, reduction='mean') total_loss = (soft_target_loss * self.distillation_weight + hard_target_loss * (1 - self.distillation_weight)) return soft_target_loss, hard_target_loss, total_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
LinRegModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gv/cgvpra4kwn5idcnpg33dwbcypnrjm2z2np7rzbwqwz3kurrqhisn.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr2 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp3 = tmp1 * tmp2 tmp6 = tmp3 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LinRegModel(nn.Module): def __init__(self): super().__init__() self.a = nn.Parameter(torch.randn(1)) self.b = nn.Parameter(torch.randn(1)) def forward(self, x): return self.a * x + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp3 = tmp1 * tmp2 tmp6 = tmp3 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class LinRegModelNew(nn.Module): def __init__(self): super().__init__() self.a = nn.Parameter(torch.randn(1)) self.b = nn.Parameter(torch.randn(1)) def forward(self, input_0): primals_1 = self.a primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
muellerzr/walk-with-deep-learning
LinRegModel
false
7,293
[ "Apache-2.0" ]
1
4adbf26da4885d122ed305eccef3efbb6fb10df5
https://github.com/muellerzr/walk-with-deep-learning/tree/4adbf26da4885d122ed305eccef3efbb6fb10df5
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.a = nn.Parameter(torch.randn(1)) self.b = nn.Parameter(torch.randn(1)) def forward(self, x): return self.a * x + self.b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
NormalLogProb
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/kb/ckbntelp7fgmj6oe672w24ehydu67fnblllvt2ppxjo4bax42m3l.py # Topologically Sorted Source Nodes: [var, mul, log, mul_1, sub, pow_2, mul_2, truediv, sub_1], Original ATen: [aten.pow, aten.mul, aten.log, aten.sub, aten.div] # Source node to ATen node mapping: # log => log # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # truediv => div # var => pow_1 # Graph fragment: # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 6.283185307179586), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log, -0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, %mul_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %div), kwargs = {}) triton_poi_fused_div_log_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_div_log_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_log_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_log_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask) tmp8 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 6.283185307179586 tmp3 = tmp1 * tmp2 tmp4 = tl_math.log(tmp3) tmp5 = -0.5 tmp6 = tmp4 * tmp5 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = 2.0 tmp12 = tmp1 * tmp11 tmp13 = tmp10 / tmp12 tmp14 = tmp6 - tmp13 tl.store(out_ptr0 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [var, mul, log, mul_1, sub, pow_2, mul_2, truediv, sub_1], Original ATen: [aten.pow, aten.mul, aten.log, aten.sub, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_log_mul_pow_sub_0.run(arg0_1, arg1_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.utils import torch.utils.data class NormalLogProb(nn.Module): def __init__(self): super().__init__() def forward(self, loc, scale, z): var = torch.pow(scale, 2) return -0.5 * torch.log(2 * np.pi * var) - torch.pow(z - loc, 2) / ( 2 * var) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_log_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp7 = tl.load(in_ptr1 + x0, xmask) tmp8 = tl.load(in_ptr2 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 6.283185307179586 tmp3 = tmp1 * tmp2 tmp4 = tl_math.log(tmp3) tmp5 = -0.5 tmp6 = tmp4 * tmp5 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = 2.0 tmp12 = tmp1 * tmp11 tmp13 = tmp10 / tmp12 tmp14 = tmp6 - tmp13 tl.store(out_ptr0 + x0, tmp14, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_log_mul_pow_sub_0[grid(256)](arg0_1, arg1_1, arg2_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class NormalLogProbNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
msunardi/vae_experiment
NormalLogProb
false
7,294
[ "MIT" ]
1
e3ce39e586f1189d157e753370a90c07713658b3
https://github.com/msunardi/vae_experiment/tree/e3ce39e586f1189d157e753370a90c07713658b3
import torch import numpy as np import torch.nn as nn import torch.utils import torch.utils.data class Model(nn.Module): def __init__(self): super().__init__() def forward(self, loc, scale, z): var = torch.pow(scale, 2) return -0.5 * torch.log(2 * np.pi * var) - torch.pow(z - loc, 2) / ( 2 * var) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
VGGNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/sj/csj6uus7z5hpvi77pvgp63jx4bne5i65mpzpsuvveo3mzfov6ycm.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hh/chhx3le7itvqiqhgpyf6t5xbaz3qoieowrwxioelmfh6lal6ftfr.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/p5/cp5hv3hjyne6yfdkxfpcoembj5kdzfqaljt3y6s6i2vddt5q7436.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (128, 131072), (131072, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128), (128, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (6, 128), (128, 1)) assert_size_stride(primals_11, (6, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 524288, grid=grid(524288), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 524288, grid=grid(524288), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.int8) buf5 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 131072, grid=grid(131072), stream=stream0) buf6 = empty_strided_cuda((1, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (1, 131072), (0, 1), 0), reinterpret_tensor(primals_6, (131072, 128), (1, 131072), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf7, primals_7, 128, grid=grid(128), stream=stream0) del primals_7 buf8 = empty_strided_cuda((1, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (128, 128), (1, 128), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf9, primals_9, 128, grid=grid(128), stream=stream0) del primals_9 buf10 = empty_strided_cuda((1, 6), (6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf9, reinterpret_tensor(primals_10, (128, 6), (1, 128), 0), alpha=1, beta=1, out=buf10) del primals_11 return (buf10, primals_1, primals_3, primals_4, buf1, buf3, buf4, reinterpret_tensor(buf5, (1, 131072), (131072, 1), 0), buf7, buf9, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 131072), (131072, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((6, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class VGGNet(nn.Module): def __init__(self): super(VGGNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.conv2 = nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.fc1 = nn.Linear(32 * 64 * 64, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, 6) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.view(-1, 32 * 64 * 64) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (128, 131072), (131072, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128), (128, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (6, 128), (128, 1)) assert_size_stride(primals_11, (6,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(524288)](buf1, primals_2, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(524288)](buf3, primals_5, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.int8) buf5 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_1[grid(131072)](buf3, buf4, buf5, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf6 = empty_strided_cuda((1, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (1, 131072), (0, 1), 0), reinterpret_tensor(primals_6, (131072, 128), (1, 131072), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_2[grid(128)](buf7, primals_7, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf8 = empty_strided_cuda((1, 128), (128, 1), torch.float32) extern_kernels.mm(buf7, reinterpret_tensor(primals_8, (128, 128), ( 1, 128), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_2[grid(128)](buf9, primals_9, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((1, 6), (6, 1), torch.float32) extern_kernels.addmm(primals_11, buf9, reinterpret_tensor( primals_10, (128, 6), (1, 128), 0), alpha=1, beta=1, out=buf10) del primals_11 return (buf10, primals_1, primals_3, primals_4, buf1, buf3, buf4, reinterpret_tensor(buf5, (1, 131072), (131072, 1), 0), buf7, buf9, primals_10, primals_8, primals_6) class VGGNetNew(nn.Module): def __init__(self): super(VGGNetNew, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.conv2 = nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.fc1 = nn.Linear(32 * 64 * 64, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, 6) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
miyosuda/oculomotor
VGGNet
false
7,295
[ "Apache-2.0" ]
1
78e7ec61a808d058116c69bff1ea71ecf117c126
https://github.com/miyosuda/oculomotor/tree/78e7ec61a808d058116c69bff1ea71ecf117c126
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.conv2 = nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.fc1 = nn.Linear(32 * 64 * 64, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, 6) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.pool(x) x = x.view(-1, 32 * 64 * 64) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/r3/cr3jcopeflsiuvhfrdhwyz5ezfrszpfwmvahpxzfmeqiuakakg7z.py # Topologically Sorted Source Nodes: [conv1d, x_2, adaptive_max_pool1d], Original ATen: [aten.convolution, aten.relu, aten.adaptive_max_pool2d, aten.threshold_backward] # Source node to ATen node mapping: # adaptive_max_pool1d => adaptive_max_pool2d, getitem_1 # conv1d => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %adaptive_max_pool2d : [num_users=2] = call_function[target=torch.ops.aten.adaptive_max_pool2d.default](args = (%unsqueeze, [1, 1]), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%adaptive_max_pool2d, 1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.full([1], 0, tl.int64) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp4, xmask) tl.store(out_ptr2 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (7, 4), (4, 1)) assert_size_stride(primals_7, (7, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf0, buf1, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1), (4, 1, 1)) del buf1 buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.int64) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [conv1d, x_2, adaptive_max_pool1d], Original ATen: [aten.convolution, aten.relu, aten.adaptive_max_pool2d, aten.threshold_backward] triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1.run(buf3, primals_5, buf4, buf5, buf7, 16, grid=grid(16), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 7), (7, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 7), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_7 return (buf6, primals_4, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((7, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((7, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class CNN(nn.Module): """ CNN for heat shock protein classification """ def __init__(self, model_cfg, in_channels, dropout_rate): super(CNN, self).__init__() self.embedder = model_cfg.embedder if self.embedder != 'OneHot': self.embed = nn.Linear(in_channels, model_cfg.embed_dim) in_channels = model_cfg.embed_dim self.conv = nn.Conv1d(in_channels, model_cfg.num_channels, model_cfg.kernel_size, 1) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=dropout_rate if dropout_rate is not None else 0) self.max_pool = nn.AdaptiveMaxPool1d(1) self.linear = nn.Linear(model_cfg.num_channels, 7) def forward(self, x): if self.embedder != 'OneHot': x = self.embed(x) x = x.permute(0, 2, 1) x = self.relu(self.conv(x)) x = self.max_pool(x).reshape(len(x), -1) x = self.dropout(x) x = self.linear(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'model_cfg': _mock_config(embedder=4, embed_dim=4, num_channels=4, kernel_size=4), 'in_channels': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1( in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.full([1], 0, tl.int64) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp4, xmask) tl.store(out_ptr2 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (7, 4), (4, 1)) assert_size_stride(primals_7, (7,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](buf0, buf1, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1), (4, 1, 1)) del buf1 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.int64) buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool) triton_poi_fused_adaptive_max_pool2d_convolution_relu_threshold_backward_1[ grid(16)](buf3, primals_5, buf4, buf5, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 7), (7, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 7), (1, 4), 0), alpha =1, beta=1, out=buf6) del primals_7 return buf6, primals_4, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0 ), buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_6, buf7 class CNNNew(nn.Module): """ CNN for heat shock protein classification """ def __init__(self, model_cfg, in_channels, dropout_rate): super(CNNNew, self).__init__() self.embedder = model_cfg.embedder if self.embedder != 'OneHot': self.embed = nn.Linear(in_channels, model_cfg.embed_dim) in_channels = model_cfg.embed_dim self.conv = nn.Conv1d(in_channels, model_cfg.num_channels, model_cfg.kernel_size, 1) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=dropout_rate if dropout_rate is not None else 0) self.max_pool = nn.AdaptiveMaxPool1d(1) self.linear = nn.Linear(model_cfg.num_channels, 7) def forward(self, input_0): primals_1 = self.embed.weight primals_2 = self.embed.bias primals_3 = self.conv.weight primals_5 = self.conv.bias primals_6 = self.linear.weight primals_7 = self.linear.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
mswzeus/DeeperHSP
CNN
false
7,296
[ "MIT" ]
1
571387f048d3c33fcd78730fdaef57b6c44a27a7
https://github.com/mswzeus/DeeperHSP/tree/571387f048d3c33fcd78730fdaef57b6c44a27a7
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): """ CNN for heat shock protein classification """ def __init__(self, model_cfg, in_channels, dropout_rate): super().__init__() self.embedder = model_cfg.embedder if self.embedder != 'OneHot': self.embed = nn.Linear(in_channels, model_cfg.embed_dim) in_channels = model_cfg.embed_dim self.conv = nn.Conv1d(in_channels, model_cfg.num_channels, model_cfg.kernel_size, 1) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=dropout_rate if dropout_rate is not None else 0) self.max_pool = nn.AdaptiveMaxPool1d(1) self.linear = nn.Linear(model_cfg.num_channels, 7) def forward(self, x): if self.embedder != 'OneHot': x = self.embed(x) x = x.permute(0, 2, 1) x = self.relu(self.conv(x)) x = self.max_pool(x).reshape(len(x), -1) x = self.dropout(x) x = self.linear(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'model_cfg': _mock_config(embedder=4, embed_dim=4, num_channels=4, kernel_size=4), 'in_channels': 4, 'dropout_rate': 0.5}]
BlendLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fk/cfki6qg2njj4g7taj7ghaesj5brkn444q4jnoahj4egxmycjafqi.py # Topologically Sorted Source Nodes: [sub, mul, add], Original ATen: [aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %view_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %mul), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tmp8 = tmp6 * tmp7 tmp9 = tmp2 + tmp8 tl.store(in_out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [sub, mul, add], Original ATen: [aten.sub, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(buf2, primals_2, buf1, primals_5, primals_6, 256, grid=grid(256), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class BlendLinear(nn.Module): def __init__(self, dim_in, dim_out, layer_type=nn.Linear, **unused_kwargs): super(BlendLinear, self).__init__() self._layer0 = layer_type(dim_in, dim_out) self._layer1 = layer_type(dim_in, dim_out) def forward(self, t, x): y0 = self._layer0(x) y1 = self._layer1(x) return y0 + (y1 - y0) * t def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tmp8 = tmp6 * tmp7 tmp9 = tmp2 + tmp8 tl.store(in_out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(256)](buf2, primals_2, buf1, primals_5, primals_6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class BlendLinearNew(nn.Module): def __init__(self, dim_in, dim_out, layer_type=nn.Linear, **unused_kwargs): super(BlendLinearNew, self).__init__() self._layer0 = layer_type(dim_in, dim_out) self._layer1 = layer_type(dim_in, dim_out) def forward(self, input_0, input_1): primals_1 = self._layer0.weight primals_2 = self._layer0.bias primals_4 = self._layer1.weight primals_5 = self._layer1.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
musyoku/ffjord
BlendLinear
false
7,297
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, dim_in, dim_out, layer_type=nn.Linear, **unused_kwargs): super().__init__() self._layer0 = layer_type(dim_in, dim_out) self._layer1 = layer_type(dim_in, dim_out) def forward(self, t, x): y0 = self._layer0(x) y1 = self._layer1(x) return y0 + (y1 - y0) * t def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BlendConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ds/cdsny3rdh32tqyjkeifiz77mt6yoehbkwlrxx6goqlqvlxxbtmip.py # Topologically Sorted Source Nodes: [y0, y1, sub, mul, add], Original ATen: [aten.convolution, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # sub => sub # y0 => convolution # y1 => convolution_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_1, %convolution), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %mul), kwargs = {}) triton_poi_fused_add_convolution_mul_sub_0 = async_compile.triton('triton_poi_fused_add_convolution_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tmp8 = tmp6 * tmp7 tmp9 = tmp2 + tmp8 tl.store(in_out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 2, 2), (16, 4, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y0], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) # Topologically Sorted Source Nodes: [y1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y0, y1, sub, mul, add], Original ATen: [aten.convolution, aten.sub, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_mul_sub_0.run(buf2, primals_2, buf1, primals_5, primals_6, 64, grid=grid(64), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, primals_1, primals_3, primals_4, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class BlendConv2d(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False, **unused_kwargs): super(BlendConv2d, self).__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer0 = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) self._layer1 = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) def forward(self, t, x): y0 = self._layer0(x) y1 = self._layer1(x) return y0 + (y1 - y0) * t def get_inputs(): return [torch.rand([4, 4, 2, 2]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_convolution_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x3, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tmp8 = tmp6 * tmp7 tmp9 = tmp2 + tmp8 tl.store(in_out_ptr0 + x3, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 2, 2), (16, 4, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_convolution_mul_sub_0[grid(64)](buf2, primals_2, buf1, primals_5, primals_6, 64, XBLOCK=64, num_warps =1, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, primals_1, primals_3, primals_4, primals_6 class BlendConv2dNew(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False, **unused_kwargs): super(BlendConv2dNew, self).__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer0 = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) self._layer1 = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) def forward(self, input_0, input_1): primals_1 = self._layer0.weight primals_2 = self._layer0.bias primals_4 = self._layer1.weight primals_5 = self._layer1.bias primals_6 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
musyoku/ffjord
BlendConv2d
false
7,298
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False, **unused_kwargs): super().__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer0 = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) self._layer1 = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) def forward(self, t, x): y0 = self._layer0(x) y1 = self._layer1(x) return y0 + (y1 - y0) * t def get_inputs(): return [torch.rand([4, 4, 2, 2]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GINPreTransition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2k/c2kiox2wvshockbbzjlycxwhjeigavlrfwuvcpbcbxpipbm7d7k6.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # input_2 => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4c/c4c6imuywsqbbstgigf3vhemjpzi4d2e6k2igmpufo34pyjzsogf.py # Topologically Sorted Source Nodes: [input_5, getitem_1, getitem_3], Original ATen: [aten.tanh, aten.index] # Source node to ATen node mapping: # getitem_1 => index # getitem_3 => index_1 # input_5 => tanh_1 # Graph fragment: # %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm_2,), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%tanh_1, [%select]), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%tanh_1, [%select_1]), kwargs = {}) triton_poi_fused_index_tanh_2 = async_compile.triton('triton_poi_fused_index_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_tanh_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tmp7 = libdevice.tanh(tmp6) tmp9 = tmp8 + tmp1 tmp10 = tmp8 < 0 tmp11 = tl.where(tmp10, tmp9, tmp8) tl.device_assert(((0 <= tmp11) & (tmp11 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp11 < 4") tmp13 = tl.load(in_ptr1 + (x0 + (4*tmp11)), xmask) tmp14 = libdevice.tanh(tmp13) tl.store(out_ptr0 + (x2), tmp7, xmask) tl.store(out_ptr1 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_8 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_5, getitem_1, getitem_3], Original ATen: [aten.tanh, aten.index] triton_poi_fused_index_tanh_2.run(primals_9, buf4, buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_5, getitem_1, getitem_3, new_state], Original ATen: [aten.tanh, aten.index, aten.add] extern_kernels._mm_plus_mm(primals_10, buf5, primals_10, buf6, out=buf7) del buf5 del buf6 return (buf7, buf0, buf2, buf3, buf4, reinterpret_tensor(primals_9, (4, ), (4, ), 1), reinterpret_tensor(primals_9, (4, ), (4, ), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import typing import torch.nn as nn class MLP(nn.Module): def __init__(self, input_dim, hidden_sizes: 'typing.Iterable[int]', out_dim, activation_function=nn.Sigmoid(), activation_out=None): super(MLP, self).__init__() i_h_sizes = [input_dim] + hidden_sizes self.mlp = nn.Sequential() for idx in range(len(i_h_sizes) - 1): self.mlp.add_module('layer_{}'.format(idx), nn.Linear( in_features=i_h_sizes[idx], out_features=i_h_sizes[idx + 1])) self.mlp.add_module('act', activation_function) self.mlp.add_module('out_layer', nn.Linear(i_h_sizes[-1], out_dim)) if activation_out is not None: self.mlp.add_module('out_layer_activation', activation_out) def init(self): for i, l in enumerate(self.mlp): if type(l) == nn.Linear: nn.init.xavier_normal_(l.weight) def forward(self, x): return self.mlp(x) class GINPreTransition(nn.Module): def __init__(self, node_state_dim: 'int', node_label_dim: 'int', mlp_hidden_dim: 'typing.Iterable[int]', activation_function=nn.Tanh()): super(type(self), self).__init__() d_i = node_state_dim + node_label_dim d_o = node_state_dim d_h = list(mlp_hidden_dim) self.mlp = MLP(input_dim=d_i, hidden_sizes=d_h, out_dim=d_o, activation_function=activation_function, activation_out= activation_function) def forward(self, node_states, node_labels, edges, agg_matrix): intermediate_states = self.mlp(torch.cat([node_states, node_labels], -1)) new_state = torch.matmul(agg_matrix, intermediate_states[edges[:, 1]] ) + torch.matmul(agg_matrix, intermediate_states[edges[:, 0]]) return new_state def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return [[], {'node_state_dim': 4, 'node_label_dim': 4, 'mlp_hidden_dim': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import typing import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_index_tanh_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tmp7 = libdevice.tanh(tmp6) tmp9 = tmp8 + tmp1 tmp10 = tmp8 < 0 tmp11 = tl.where(tmp10, tmp9, tmp8) tl.device_assert((0 <= tmp11) & (tmp11 < 4) | ~xmask, 'index out of bounds: 0 <= tmp11 < 4') tmp13 = tl.load(in_ptr1 + (x0 + 4 * tmp11), xmask) tmp14 = libdevice.tanh(tmp13) tl.store(out_ptr0 + x2, tmp7, xmask) tl.store(out_ptr1 + x2, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8 ), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_tanh_1[grid(16)](buf2, primals_4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_8 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_index_tanh_2[grid(16)](primals_9, buf4, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels._mm_plus_mm(primals_10, buf5, primals_10, buf6, out=buf7 ) del buf5 del buf6 return buf7, buf0, buf2, buf3, buf4, reinterpret_tensor(primals_9, (4,), (4,), 1), reinterpret_tensor(primals_9, (4,), (4,), 0 ), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0 ), primals_7, primals_5 class MLP(nn.Module): def __init__(self, input_dim, hidden_sizes: 'typing.Iterable[int]', out_dim, activation_function=nn.Sigmoid(), activation_out=None): super(MLP, self).__init__() i_h_sizes = [input_dim] + hidden_sizes self.mlp = nn.Sequential() for idx in range(len(i_h_sizes) - 1): self.mlp.add_module('layer_{}'.format(idx), nn.Linear( in_features=i_h_sizes[idx], out_features=i_h_sizes[idx + 1])) self.mlp.add_module('act', activation_function) self.mlp.add_module('out_layer', nn.Linear(i_h_sizes[-1], out_dim)) if activation_out is not None: self.mlp.add_module('out_layer_activation', activation_out) def init(self): for i, l in enumerate(self.mlp): if type(l) == nn.Linear: nn.init.xavier_normal_(l.weight) def forward(self, x): return self.mlp(x) class GINPreTransitionNew(nn.Module): def __init__(self, node_state_dim: 'int', node_label_dim: 'int', mlp_hidden_dim: 'typing.Iterable[int]', activation_function=nn.Tanh()): super(type(self), self).__init__() d_i = node_state_dim + node_label_dim d_o = node_state_dim d_h = list(mlp_hidden_dim) self.mlp = MLP(input_dim=d_i, hidden_sizes=d_h, out_dim=d_o, activation_function=activation_function, activation_out= activation_function) def forward(self, input_0, input_1, input_2, input_3): primals_3 = self.mlp.mlp.layer_0.weight primals_4 = self.mlp.mlp.layer_0.bias primals_1 = self.mlp.mlp.layer_1.weight primals_6 = self.mlp.mlp.layer_1.bias primals_2 = self.mlp.mlp.out_layer.weight primals_8 = self.mlp.mlp.out_layer.bias primals_5 = input_0 primals_7 = input_1 primals_9 = input_2 primals_10 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
mtiezzi/gnn_site
GINPreTransition
false
7,299
[ "BSD-3-Clause" ]
1
79a13603db876ac24e66a152104faa8b76e1d8e7
https://github.com/mtiezzi/gnn_site/tree/79a13603db876ac24e66a152104faa8b76e1d8e7
import torch import typing import torch.nn as nn class MLP(nn.Module): def __init__(self, input_dim, hidden_sizes: 'typing.Iterable[int]', out_dim, activation_function=nn.Sigmoid(), activation_out=None): super().__init__() i_h_sizes = [input_dim] + hidden_sizes self.mlp = nn.Sequential() for idx in range(len(i_h_sizes) - 1): self.mlp.add_module('layer_{}'.format(idx), nn.Linear( in_features=i_h_sizes[idx], out_features=i_h_sizes[idx + 1])) self.mlp.add_module('act', activation_function) self.mlp.add_module('out_layer', nn.Linear(i_h_sizes[-1], out_dim)) if activation_out is not None: self.mlp.add_module('out_layer_activation', activation_out) def init(self): for i, l in enumerate(self.mlp): if type(l) == nn.Linear: nn.init.xavier_normal_(l.weight) def forward(self, x): return self.mlp(x) class Model(nn.Module): def __init__(self, node_state_dim: 'int', node_label_dim: 'int', mlp_hidden_dim: 'typing.Iterable[int]', activation_function=nn.Tanh()): super(type(self), self).__init__() d_i = node_state_dim + node_label_dim d_o = node_state_dim d_h = list(mlp_hidden_dim) self.mlp = MLP(input_dim=d_i, hidden_sizes=d_h, out_dim=d_o, activation_function=activation_function, activation_out= activation_function) def forward(self, node_states, node_labels, edges, agg_matrix): intermediate_states = self.mlp(torch.cat([node_states, node_labels], -1)) new_state = torch.matmul(agg_matrix, intermediate_states[edges[:, 1]] ) + torch.matmul(agg_matrix, intermediate_states[edges[:, 0]]) return new_state def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return [[], {'node_state_dim': 4, 'node_label_dim': 4, 'mlp_hidden_dim': [4, 4]}]
ConcatSquashLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/w2/cw2aqi7423xdfnyiz52ub43v4vckwb466eb4jrlbmqamapriavp7.py # Topologically Sorted Source Nodes: [sigmoid, mul, add], Original ATen: [aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mm), kwargs = {}) triton_poi_fused_add_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, primals_4, reinterpret_tensor(primals_5, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf1) del primals_5 del primals_6 buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(primals_4, reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, add], Original ATen: [aten.sigmoid, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_0.run(buf0, buf1, buf2, buf3, 256, grid=grid(256), stream=stream0) del buf2 return (buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class ConcatSquashLinear(nn.Module): def __init__(self, dim_in, dim_out): super(ConcatSquashLinear, self).__init__() self._layer = nn.Linear(dim_in, dim_out) self._hyper_bias = nn.Linear(1, dim_out, bias=False) self._hyper_gate = nn.Linear(1, dim_out) def forward(self, t, x): return self._layer(x) * torch.sigmoid(self._hyper_gate(t.view(1, 1)) ) + self._hyper_bias(t.view(1, 1)) def get_inputs(): return [torch.rand([1, 1]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_4, reinterpret_tensor( primals_5, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf1) del primals_5 del primals_6 buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_0[grid(256)](buf0, buf1, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, buf1 class ConcatSquashLinearNew(nn.Module): def __init__(self, dim_in, dim_out): super(ConcatSquashLinearNew, self).__init__() self._layer = nn.Linear(dim_in, dim_out) self._hyper_bias = nn.Linear(1, dim_out, bias=False) self._hyper_gate = nn.Linear(1, dim_out) def forward(self, input_0, input_1): primals_1 = self._layer.weight primals_2 = self._layer.bias primals_5 = self._hyper_bias.weight primals_7 = self._hyper_gate.weight primals_6 = self._hyper_gate.bias primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
musyoku/ffjord
ConcatSquashLinear
false
7,300
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self._layer = nn.Linear(dim_in, dim_out) self._hyper_bias = nn.Linear(1, dim_out, bias=False) self._hyper_gate = nn.Linear(1, dim_out) def forward(self, t, x): return self._layer(x) * torch.sigmoid(self._hyper_gate(t.view(1, 1)) ) + self._hyper_bias(t.view(1, 1)) def get_inputs(): return [torch.rand([1, 1]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ConcatSquashConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ej/cejcyvz7tzjp6tek7y3hc7b5nw6pshpwovikzdozuaem5aw7jmsd.py # Topologically Sorted Source Nodes: [conv2d, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # conv2d => convolution # mul => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_3), kwargs = {}) triton_poi_fused_add_convolution_mul_0 = async_compile.triton('triton_poi_fused_add_convolution_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp2 * tmp4 tmp7 = tmp5 + tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, primals_4, reinterpret_tensor(primals_5, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(primals_4, reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), out=buf3) del primals_7 buf1 = buf0; del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_mul_0.run(buf1, primals_2, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf3 del primals_2 return (buf4, primals_1, primals_3, primals_4, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class ConcatSquashConv2d(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super(ConcatSquashConv2d, self).__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) self._hyper_gate = nn.Linear(1, dim_out) self._hyper_bias = nn.Linear(1, dim_out, bias=False) def forward(self, t, x): return self._layer(x) * torch.sigmoid(self._hyper_gate(t.view(1, 1)) ).view(1, -1, 1, 1) + self._hyper_bias(t.view(1, 1)).view(1, -1, 1, 1) def get_inputs(): return [torch.rand([1, 1]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_convolution_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp2 * tmp4 tmp7 = tmp5 + tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_4, reinterpret_tensor( primals_5, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, reinterpret_tensor(primals_7, (1, 4), (1, 1), 0), out=buf3) del primals_7 buf1 = buf0 del buf0 buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_convolution_mul_0[grid(64)](buf1, primals_2, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 del primals_2 return buf4, primals_1, primals_3, primals_4, buf1, buf2 class ConcatSquashConv2dNew(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super(ConcatSquashConv2dNew, self).__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) self._hyper_gate = nn.Linear(1, dim_out) self._hyper_bias = nn.Linear(1, dim_out, bias=False) def forward(self, input_0, input_1): primals_1 = self._layer.weight primals_2 = self._layer.bias primals_5 = self._hyper_gate.weight primals_6 = self._hyper_gate.bias primals_7 = self._hyper_bias.weight primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
musyoku/ffjord
ConcatSquashConv2d
false
7,301
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super().__init__() module = nn.ConvTranspose2d if transpose else nn.Conv2d self._layer = module(dim_in, dim_out, kernel_size=ksize, stride= stride, padding=padding, dilation=dilation, groups=groups, bias =bias) self._hyper_gate = nn.Linear(1, dim_out) self._hyper_bias = nn.Linear(1, dim_out, bias=False) def forward(self, t, x): return self._layer(x) * torch.sigmoid(self._hyper_gate(t.view(1, 1)) ).view(1, -1, 1, 1) + self._hyper_bias(t.view(1, 1)).view(1, -1, 1, 1) def get_inputs(): return [torch.rand([1, 1]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GatedConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3e/c3eee7neqslxkoihqpsmtjcjpjfrwf663xmas4li4f3utsnbc6cs.py # Topologically Sorted Source Nodes: [f, conv2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # f => convolution # g => sigmoid # mul => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(in_out_ptr1 + (x2), tmp5, xmask) tl.store(out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [f], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [f, conv2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, buf3, primals_2, primals_5, buf4, 16, grid=grid(16), stream=stream0) del primals_2 del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class GatedConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1): super(GatedConv, self).__init__() self.layer_f = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) self.layer_g = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) def forward(self, x): f = self.layer_f(x) g = torch.sigmoid(self.layer_g(x)) return f * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(in_out_ptr1 + x2, tmp5, xmask) tl.store(out_ptr0 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(16)](buf1, buf3, primals_2, primals_5, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf3 class GatedConvNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1): super(GatedConvNew, self).__init__() self.layer_f = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) self.layer_g = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) def forward(self, input_0): primals_1 = self.layer_f.weight primals_2 = self.layer_f.bias primals_3 = self.layer_g.weight primals_5 = self.layer_g.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
musyoku/ffjord
GatedConv
false
7,302
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1): super().__init__() self.layer_f = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) self.layer_g = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=1, groups=groups) def forward(self, x): f = self.layer_f(x) g = torch.sigmoid(self.layer_g(x)) return f * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
GatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/n7/cn763ltmvwhyolo4ons5bcg43w7gpcruu5cxt6jv63ou2sn6r2wl.py # Topologically Sorted Source Nodes: [h, conv2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # g => sigmoid # h => convolution # mul => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0; del buf0 # reuse buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [h, conv2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, buf3, primals_2, primals_5, buf4, 1296, grid=grid(1296), stream=stream0) del primals_2 del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class GatedConv2d(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2d, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, x): if self.activation is None: h = self.h(x) else: h = self.activation(self.h(x)) g = self.sigmoid(self.g(x)) return h * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(1296)](buf1, buf3, primals_2, primals_5, buf4, 1296, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf3 class GatedConv2dNew(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2dNew, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, input_0): primals_1 = self.h.weight primals_2 = self.h.bias primals_3 = self.g.weight primals_5 = self.g.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
musyoku/ffjord
GatedConv2d
false
7,303
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super().__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, x): if self.activation is None: h = self.h(x) else: h = self.activation(self.h(x)) g = self.sigmoid(self.g(x)) return h * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
GatedConvTranspose
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6k/c6kazydtzigopxuzedfthhmhnydldamntm2carnmlp5uv53z3g7p.py # Topologically Sorted Source Nodes: [f, conv_transpose2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_1 # f => convolution # g => sigmoid # mul => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 49) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [f], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = buf0; del buf0 # reuse buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [f, conv_transpose2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, buf3, primals_2, primals_5, buf4, 784, grid=grid(784), stream=stream0) del primals_2 del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class GatedConvTranspose(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1): super(GatedConvTranspose, self).__init__() self.layer_f = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding= output_padding, groups=groups) self.layer_g = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding= output_padding, groups=groups) def forward(self, x): f = self.layer_f(x) g = torch.sigmoid(self.layer_g(x)) return f * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 49 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 7, 7), (196, 49, 7, 1)) buf1 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(784)](buf1, buf3, primals_2, primals_5, buf4, 784, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf3 class GatedConvTransposeNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1): super(GatedConvTransposeNew, self).__init__() self.layer_f = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding= output_padding, groups=groups) self.layer_g = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding= output_padding, groups=groups) def forward(self, input_0): primals_1 = self.layer_f.weight primals_2 = self.layer_f.bias primals_3 = self.layer_g.weight primals_5 = self.layer_g.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
musyoku/ffjord
GatedConvTranspose
false
7,304
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1): super().__init__() self.layer_f = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding= output_padding, groups=groups) self.layer_g = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding= output_padding, groups=groups) def forward(self, x): f = self.layer_f(x) g = torch.sigmoid(self.layer_g(x)) return f * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
HyperConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/cu/ccutvo2v4333pq6xhrg2zryqqwthm7dmmuqprvva2xdwiodpz5jn.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %view_2, %slice_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 1), (1, 1)) assert_size_stride(primals_2, (148, 1), (1, 1)) assert_size_stride(primals_3, (148, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 148), (148, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (1, 148), (1, 1), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_4, reinterpret_tensor(buf0, (4, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf2, buf0, 64, grid=grid(64), stream=stream0) return (buf2, primals_1, primals_4, reinterpret_tensor(buf0, (4, 4, 3, 3), (36, 9, 3, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((148, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((148, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1 or classname.find('Conv') != -1: nn.init.constant_(m.weight, 0) nn.init.normal_(m.bias, 0, 0.01) class HyperConv2d(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super(HyperConv2d, self).__init__() assert dim_in % groups == 0 and dim_out % groups == 0, 'dim_in and dim_out must both be divisible by groups.' self.dim_in = dim_in self.dim_out = dim_out self.ksize = ksize self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias self.transpose = transpose self.params_dim = int(dim_in * dim_out * ksize * ksize / groups) if self.bias: self.params_dim += dim_out self._hypernet = nn.Linear(1, self.params_dim) self.conv_fn = F.conv_transpose2d if transpose else F.conv2d self._hypernet.apply(weights_init) def forward(self, t, x): params = self._hypernet(t.view(1, 1)).view(-1) weight_size = int(self.dim_in * self.dim_out * self.ksize * self. ksize / self.groups) if self.transpose: weight = params[:weight_size].view(self.dim_in, self.dim_out // self.groups, self.ksize, self.ksize) else: weight = params[:weight_size].view(self.dim_out, self.dim_in // self.groups, self.ksize, self.ksize) bias = params[:self.dim_out].view(self.dim_out) if self.bias else None return self.conv_fn(x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, groups=self.groups, dilation=self.dilation) def get_inputs(): return [torch.rand([1, 1]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 1), (1, 1)) assert_size_stride(primals_2, (148, 1), (1, 1)) assert_size_stride(primals_3, (148,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 148), (148, 1), torch.float32) extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor( primals_2, (1, 148), (1, 1), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = extern_kernels.convolution(primals_4, reinterpret_tensor( buf0, (4, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=( 0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, primals_1, primals_4, reinterpret_tensor(buf0, (4, 4, 3, 3 ), (36, 9, 3, 1), 0) def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1 or classname.find('Conv') != -1: nn.init.constant_(m.weight, 0) nn.init.normal_(m.bias, 0, 0.01) class HyperConv2dNew(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super(HyperConv2dNew, self).__init__() assert dim_in % groups == 0 and dim_out % groups == 0, 'dim_in and dim_out must both be divisible by groups.' self.dim_in = dim_in self.dim_out = dim_out self.ksize = ksize self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias self.transpose = transpose self.params_dim = int(dim_in * dim_out * ksize * ksize / groups) if self.bias: self.params_dim += dim_out self._hypernet = nn.Linear(1, self.params_dim) self.conv_fn = F.conv_transpose2d if transpose else F.conv2d self._hypernet.apply(weights_init) def forward(self, input_0, input_1): primals_2 = self._hypernet.weight primals_3 = self._hypernet.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
musyoku/ffjord
HyperConv2d
false
7,305
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1 or classname.find('Conv') != -1: nn.init.constant_(m.weight, 0) nn.init.normal_(m.bias, 0, 0.01) class Model(nn.Module): def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0, dilation=1, groups=1, bias=True, transpose=False): super().__init__() assert dim_in % groups == 0 and dim_out % groups == 0, 'dim_in and dim_out must both be divisible by groups.' self.dim_in = dim_in self.dim_out = dim_out self.ksize = ksize self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias self.transpose = transpose self.params_dim = int(dim_in * dim_out * ksize * ksize / groups) if self.bias: self.params_dim += dim_out self._hypernet = nn.Linear(1, self.params_dim) self.conv_fn = F.conv_transpose2d if transpose else F.conv2d self._hypernet.apply(weights_init) def forward(self, t, x): params = self._hypernet(t.view(1, 1)).view(-1) weight_size = int(self.dim_in * self.dim_out * self.ksize * self. ksize / self.groups) if self.transpose: weight = params[:weight_size].view(self.dim_in, self.dim_out // self.groups, self.ksize, self.ksize) else: weight = params[:weight_size].view(self.dim_out, self.dim_in // self.groups, self.ksize, self.ksize) bias = params[:self.dim_out].view(self.dim_out) if self.bias else None return self.conv_fn(x, weight=weight, bias=bias, stride=self.stride, padding=self.padding, groups=self.groups, dilation=self.dilation) def get_inputs(): return [torch.rand([1, 1]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BasicBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/wd/cwdc75bzdixqjtzarkbcxze6jwzufryjpat4f3mbqxnzuklbuuxw.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # out_1 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 0.0001), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[8, 32], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 8 rnumel = 32 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (32*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 32, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 32.0 tmp18 = tmp16 / tmp17 tmp19 = 0.0001 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tl.store(out_ptr2 + (x0), tmp21, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) tl.store(out_ptr1 + (x0), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fh/cfh6pud2lmejfzlfcsbg3xpj6hy3yssbhoyvgzu4xj3z7teollra.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.native_group_norm, aten.relu] # Source node to ATen node mapping: # out_1 => add_1, mul_1 # out_2 => relu # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) triton_poi_fused_native_group_norm_relu_1 = async_compile.triton('triton_poi_fused_native_group_norm_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_relu_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + ((x4 // 2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((x4 // 2)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 32.0 tmp5 = tmp3 / tmp4 tmp6 = 0.0001 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/an/can2ugv2pect72d2sdxuzgit2owstg2msehowjuz235bvx4rqo2x.py # Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.native_group_norm, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_4 => add_3, mul_3 # out_5 => add_4 # out_6 => relu_1 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %primals_1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_4,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_native_group_norm_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_group_norm_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + ((x4 // 2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + ((x4 // 2)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr5 + (x3), xmask) tmp2 = tmp0 - tmp1 tmp4 = 32.0 tmp5 = tmp3 / tmp4 tmp6 = 0.0001 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tmp18 = 0.0 tmp19 = tmp17 <= tmp18 tl.store(out_ptr0 + (x3), tmp17, xmask) tl.store(out_ptr1 + (x3), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf2 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf4 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.native_group_norm] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_0.run(buf0, buf1, buf2, buf4, 8, 32, grid=grid(8), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.native_group_norm, aten.relu] triton_poi_fused_native_group_norm_relu_1.run(buf0, buf1, buf2, primals_3, primals_4, buf5, 256, grid=grid(256), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf2; del buf2 # reuse buf8 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf10 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_0.run(buf6, buf7, buf8, buf10, 8, 32, grid=grid(8), stream=stream0) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.native_group_norm, aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_native_group_norm_relu_threshold_backward_2.run(buf6, buf7, buf8, primals_6, primals_7, primals_1, buf11, buf12, 256, grid=grid(256), stream=stream0) del buf8 del primals_7 return (buf11, primals_1, primals_2, primals_3, primals_5, primals_6, buf0, reinterpret_tensor(buf1, (4, 2), (2, 1), 0), reinterpret_tensor(buf4, (4, 2), (2, 1), 0), buf5, buf6, reinterpret_tensor(buf7, (4, 2), (2, 1), 0), reinterpret_tensor(buf10, (4, 2), (2, 1), 0), buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class BasicBlock(nn.Module): expansion = 1 def __init__(self, dim): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn1 = nn.GroupNorm(2, dim, eps=0.0001) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn2 = nn.GroupNorm(2, dim, eps=0.0001) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 8 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 32 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 32, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 32.0 tmp18 = tmp16 / tmp17 tmp19 = 0.0001 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tl.store(out_ptr2 + x0, tmp21, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) tl.store(out_ptr1 + x0, tmp16, xmask) @triton.jit def triton_poi_fused_native_group_norm_relu_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4 // 2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4 // 2, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 32.0 tmp5 = tmp3 / tmp4 tmp6 = 0.0001 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused_add_native_group_norm_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4 // 2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x4 // 2, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr5 + x3, xmask) tmp2 = tmp0 - tmp1 tmp4 = 32.0 tmp5 = tmp3 / tmp4 tmp6 = 0.0001 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp2 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tl.full([1], 0, tl.int32) tmp17 = triton_helpers.maximum(tmp16, tmp15) tmp18 = 0.0 tmp19 = tmp17 <= tmp18 tl.store(out_ptr0 + x3, tmp17, xmask) tl.store(out_ptr1 + x3, tmp19, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf2 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf4 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) get_raw_stream(0) triton_per_fused_native_group_norm_0[grid(8)](buf0, buf1, buf2, buf4, 8, 32, XBLOCK=1, num_warps=2, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_group_norm_relu_1[grid(256)](buf0, buf1, buf2, primals_3, primals_4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf6 = extern_kernels.convolution(buf5, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf2 del buf2 buf8 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf10 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) triton_per_fused_native_group_norm_0[grid(8)](buf6, buf7, buf8, buf10, 8, 32, XBLOCK=1, num_warps=2, num_stages=1) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_native_group_norm_relu_threshold_backward_2[grid (256)](buf6, buf7, buf8, primals_6, primals_7, primals_1, buf11, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_7 return (buf11, primals_1, primals_2, primals_3, primals_5, primals_6, buf0, reinterpret_tensor(buf1, (4, 2), (2, 1), 0), reinterpret_tensor(buf4, (4, 2), (2, 1), 0), buf5, buf6, reinterpret_tensor(buf7, (4, 2), (2, 1), 0), reinterpret_tensor( buf10, (4, 2), (2, 1), 0), buf12) class BasicBlockNew(nn.Module): expansion = 1 def __init__(self, dim): super(BasicBlockNew, self).__init__() self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn1 = nn.GroupNorm(2, dim, eps=0.0001) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn2 = nn.GroupNorm(2, dim, eps=0.0001) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.bn1.weight primals_4 = self.bn1.bias primals_5 = self.conv2.weight primals_6 = self.bn2.weight primals_7 = self.bn2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
musyoku/ffjord
BasicBlock
false
7,306
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): expansion = 1 def __init__(self, dim): super().__init__() self.conv1 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn1 = nn.GroupNorm(2, dim, eps=0.0001) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.bn2 = nn.GroupNorm(2, dim, eps=0.0001) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
PNTrainingSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yt/cyt2r7ev6xwoufkow4jasbaepeofdv4q2arrsxdjxlcc2iun7pwq.py # Topologically Sorted Source Nodes: [neg, sigmoid, mean, cost, sub, sigmoid_1, mean_1, mul_1, cost_1], Original ATen: [aten.neg, aten.sigmoid, aten.mean, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # cost => mul # cost_1 => add # mean => mean # mean_1 => mean_1 # mul_1 => mul_1 # neg => neg # sigmoid => sigmoid # sigmoid_1 => sigmoid_1 # sub => sub # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%neg,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sigmoid,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %mean), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg2_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sigmoid_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %mean_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0 = async_compile.triton('triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (r0), None) tmp11 = tl.load(in_ptr2 + (r0), None) tmp1 = -tmp0 tmp2 = tl.sigmoid(tmp1) tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp7 = tl.sigmoid(tmp6) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp12 = 256.0 tmp13 = tmp5 / tmp12 tmp14 = tmp11 * tmp13 tmp15 = 1.0 tmp16 = tmp15 - tmp11 tmp17 = tmp10 / tmp12 tmp18 = tmp16 * tmp17 tmp19 = tmp14 + tmp18 tl.store(out_ptr2 + (tl.broadcast_to(r0, [RBLOCK])), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [neg, sigmoid, mean, cost, sub, sigmoid_1, mean_1, mul_1, cost_1], Original ATen: [aten.neg, aten.sigmoid, aten.mean, aten.mul, aten.rsub, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0.run(arg0_1, arg2_1, arg1_1, buf2, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class PNTrainingSigmoid(nn.Module): def __init__(self): super(PNTrainingSigmoid, self).__init__() return def forward(self, output_p, output_n, prior): cost = prior * torch.mean(torch.sigmoid(-output_p)) cost = cost + (1 - prior) * torch.mean(torch.sigmoid(output_n)) return cost def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + r0, None) tmp11 = tl.load(in_ptr2 + r0, None) tmp1 = -tmp0 tmp2 = tl.sigmoid(tmp1) tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp7 = tl.sigmoid(tmp6) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp12 = 256.0 tmp13 = tmp5 / tmp12 tmp14 = tmp11 * tmp13 tmp15 = 1.0 tmp16 = tmp15 - tmp11 tmp17 = tmp10 / tmp12 tmp18 = tmp16 * tmp17 tmp19 = tmp14 + tmp18 tl.store(out_ptr2 + tl.broadcast_to(r0, [RBLOCK]), tmp19, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_mean_mul_neg_rsub_sigmoid_0[grid(1)](arg0_1, arg2_1, arg1_1, buf2, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class PNTrainingSigmoidNew(nn.Module): def __init__(self): super(PNTrainingSigmoidNew, self).__init__() return def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
mxuq/Imbalance-PU
PNTrainingSigmoid
false
7,307
[ "MIT" ]
1
fd4403b05f98ca6bc8156783e8275888d63f6435
https://github.com/mxuq/Imbalance-PU/tree/fd4403b05f98ca6bc8156783e8275888d63f6435
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() return def forward(self, output_p, output_n, prior): cost = prior * torch.mean(torch.sigmoid(-output_p)) cost = cost + (1 - prior) * torch.mean(torch.sigmoid(output_n)) return cost def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
TwoWordPSDProbe
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/qf/cqfsbij5fyvvptvaij7fdtghegxwkvlg5v6gxc2c7qrwytx5sxqw.py # Topologically Sorted Source Nodes: [diffs, squared_diffs, squared_distances], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # diffs => sub # squared_diffs => pow_1 # squared_distances => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %permute), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) triton_red_fused_pow_sub_sum_0 = async_compile.triton('triton_red_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[64, 1024], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 64 rnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x4 = (xindex // 4) x0 = xindex % 4 x2 = (xindex // 16) _tmp5 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x5 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp0 = tl.load(in_ptr0 + (r3 + (1024*x4)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr0 + (r3 + (1024*x0) + (4096*x2)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = _tmp5 + tmp4 _tmp5 = tl.where(rmask & xmask, tmp6, _tmp5) tmp5 = tl.sum(_tmp5, 1)[:, None] tl.store(out_ptr0 + (x5), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1024), (1024, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [transformed], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [diffs, squared_diffs, squared_distances], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_red_fused_pow_sub_sum_0.run(buf0, buf1, 64, 1024, grid=grid(64), stream=stream0) return (buf1, buf0, reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Probe(nn.Module): pass class TwoWordPSDProbe(Probe): """ Computes squared L2 distance after projection by a matrix. For a batch of sentences, computes all n^2 pairs of distances for each sentence in the batch. """ def __init__(self, model_dim, probe_rank=1024): None super(TwoWordPSDProbe, self).__init__() self.probe_rank = probe_rank self.model_dim = model_dim self.proj = nn.Parameter(data=torch.zeros(self.model_dim, self. probe_rank)) nn.init.uniform_(self.proj, -0.05, 0.05) def forward(self, batch): """ Computes all n^2 pairs of distances after projection for each sentence in a batch. Note that due to padding, some distances will be non-zero for pads. Computes (B(h_i-h_j))^T(B(h_i-h_j)) for all i,j Args: batch: a batch of word representations of the shape (batch_size, max_seq_len, representation_dim) Returns: A tensor of distances of shape (batch_size, max_seq_len, max_seq_len) """ transformed = torch.matmul(batch, self.proj) _batchlen, seqlen, _rank = transformed.size() transformed = transformed.unsqueeze(2) transformed = transformed.expand(-1, -1, seqlen, -1) transposed = transformed.transpose(1, 2) diffs = transformed - transposed squared_diffs = diffs.pow(2) squared_distances = torch.sum(squared_diffs, -1) return squared_distances def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'model_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_red_fused_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 64 rnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x4 = xindex // 4 x0 = xindex % 4 x2 = xindex // 16 _tmp5 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x5 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex tmp0 = tl.load(in_ptr0 + (r3 + 1024 * x4), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr0 + (r3 + 1024 * x0 + 4096 * x2), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = _tmp5 + tmp4 _tmp5 = tl.where(rmask & xmask, tmp6, _tmp5) tmp5 = tl.sum(_tmp5, 1)[:, None] tl.store(out_ptr0 + x5, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1024), (1024, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 1024), (1024, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_red_fused_pow_sub_sum_0[grid(64)](buf0, buf1, 64, 1024, XBLOCK=1, RBLOCK=1024, num_warps=8, num_stages=1) return buf1, buf0, reinterpret_tensor(primals_2, (4, 16), (1, 4), 0) class Probe(nn.Module): pass class TwoWordPSDProbeNew(Probe): """ Computes squared L2 distance after projection by a matrix. For a batch of sentences, computes all n^2 pairs of distances for each sentence in the batch. """ def __init__(self, model_dim, probe_rank=1024): None super(TwoWordPSDProbeNew, self).__init__() self.probe_rank = probe_rank self.model_dim = model_dim self.proj = nn.Parameter(data=torch.zeros(self.model_dim, self. probe_rank)) nn.init.uniform_(self.proj, -0.05, 0.05) def forward(self, input_0): primals_1 = self.proj primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
muziyongshixin/pytorch_SSRP
TwoWordPSDProbe
false
7,308
[ "MIT" ]
1
e54b3098927ba2ff16bdc8f64f3a2bf46d1f72c5
https://github.com/muziyongshixin/pytorch_SSRP/tree/e54b3098927ba2ff16bdc8f64f3a2bf46d1f72c5
import torch import torch.nn as nn class Probe(nn.Module): pass class Model(Probe): """ Computes squared L2 distance after projection by a matrix. For a batch of sentences, computes all n^2 pairs of distances for each sentence in the batch. """ def __init__(self, model_dim, probe_rank=1024): None super().__init__() self.probe_rank = probe_rank self.model_dim = model_dim self.proj = nn.Parameter(data=torch.zeros(self.model_dim, self. probe_rank)) nn.init.uniform_(self.proj, -0.05, 0.05) def forward(self, batch): """ Computes all n^2 pairs of distances after projection for each sentence in a batch. Note that due to padding, some distances will be non-zero for pads. Computes (B(h_i-h_j))^T(B(h_i-h_j)) for all i,j Args: batch: a batch of word representations of the shape (batch_size, max_seq_len, representation_dim) Returns: A tensor of distances of shape (batch_size, max_seq_len, max_seq_len) """ transformed = torch.matmul(batch, self.proj) _batchlen, seqlen, _rank = transformed.size() transformed = transformed.unsqueeze(2) transformed = transformed.expand(-1, -1, seqlen, -1) transposed = transformed.transpose(1, 2) diffs = transformed - transposed squared_diffs = diffs.pow(2) squared_distances = torch.sum(squared_diffs, -1) return squared_distances def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
GroupPointWise
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] # Source node to ATen node mapping: # out => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1, 1), (64, 16, 4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), out=buf1) del primals_2 return (reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 1, 16, 4, 1), 0), reinterpret_tensor(buf0, (1, 4, 64), (256, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GroupPointWise(nn.Module): def __init__(self, in_dim, n_heads=4, proj_factor=1, target_dim=None): super().__init__() if target_dim is not None: proj_ch = target_dim // proj_factor else: proj_ch = in_dim // proj_factor self.w = nn.Parameter(torch.Tensor(in_dim, n_heads, proj_ch // n_heads) ) nn.init.normal_(self.w, std=0.01) def forward(self, x): x = x.permute(0, 2, 3, 1) out = torch.einsum('bhwc,cnp->bnhwp', x, self.w) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 1, 1), (64, 16, 4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), out=buf1) del primals_2 return reinterpret_tensor(buf1, (4, 4, 4, 4, 1), (64, 1, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (1, 4, 64), (256, 1, 4), 0) class GroupPointWiseNew(nn.Module): def __init__(self, in_dim, n_heads=4, proj_factor=1, target_dim=None): super().__init__() if target_dim is not None: proj_ch = target_dim // proj_factor else: proj_ch = in_dim // proj_factor self.w = nn.Parameter(torch.Tensor(in_dim, n_heads, proj_ch // n_heads) ) nn.init.normal_(self.w, std=0.01) def forward(self, input_0): primals_2 = self.w primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
nachiket273/VisTrans
GroupPointWise
false
7,309
[ "MIT" ]
1
99129b02f275424ebff900189ec2055f26bb9912
https://github.com/nachiket273/VisTrans/tree/99129b02f275424ebff900189ec2055f26bb9912
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_dim, n_heads=4, proj_factor=1, target_dim=None): super().__init__() if target_dim is not None: proj_ch = target_dim // proj_factor else: proj_ch = in_dim // proj_factor self.w = nn.Parameter(torch.Tensor(in_dim, n_heads, proj_ch // n_heads) ) nn.init.normal_(self.w, std=0.01) def forward(self, x): x = x.permute(0, 2, 3, 1) out = torch.einsum('bhwc,cnp->bnhwp', x, self.w) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # score_1 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm_2, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # score_1 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), primals_3, out=buf0) del primals_3 buf1 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (1, 16, 4), (64, 4, 1), 0), primals_4, out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [qkt], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [score_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_6 return (reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_1, (1, 4, 16), (64, 1, 4), 0), reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1, score_function='scaled_dot_product', dropout=0): """ Attention Mechanism :param embed_dim: :param hidden_dim: :param out_dim: :param n_head: num of head (Multi-Head Attention) :param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot) :return (?, q_len, out_dim,) """ super(Attention, self).__init__() if hidden_dim is None: hidden_dim = embed_dim // n_head if out_dim is None: out_dim = embed_dim self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.n_head = n_head self.score_function = score_function self.w_kx = nn.Parameter(torch.FloatTensor(n_head, embed_dim, hidden_dim)) self.w_qx = nn.Parameter(torch.FloatTensor(n_head, embed_dim, hidden_dim)) self.proj = nn.Linear(n_head * hidden_dim, out_dim) self.dropout = nn.Dropout(dropout) if score_function == 'mlp': self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2)) elif self.score_function == 'bi_linear': self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_dim) self.w_kx.data.uniform_(-stdv, stdv) self.w_qx.data.uniform_(-stdv, stdv) if self.weight is not None: self.weight.data.uniform_(-stdv, stdv) def forward(self, k, q): if len(q.shape) == 2: q = torch.unsqueeze(q, dim=1) if len(k.shape) == 2: k = torch.unsqueeze(k, dim=1) mb_size = k.shape[0] k_len = k.shape[1] q_len = q.shape[1] kx = k.repeat(self.n_head, 1, 1).view(self.n_head, -1, self.embed_dim) qx = q.repeat(self.n_head, 1, 1).view(self.n_head, -1, self.embed_dim) kx = torch.bmm(kx, self.w_kx).view(-1, k_len, self.hidden_dim) qx = torch.bmm(qx, self.w_qx).view(-1, q_len, self.hidden_dim) if self.score_function == 'scaled_dot_product': kt = kx.permute(0, 2, 1) qkt = torch.bmm(qx, kt) score = torch.div(qkt, math.sqrt(self.hidden_dim)) elif self.score_function == 'mlp': kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1) qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1) kq = torch.cat((kxx, qxx), dim=-1) score = F.tanh(torch.matmul(kq, self.weight)) elif self.score_function == 'bi_linear': qw = torch.matmul(qx, self.weight) kt = kx.permute(0, 2, 1) score = torch.bmm(qw, kt) else: raise RuntimeError('invalid score_function') score = F.softmax(score, dim=-1) output = torch.bmm(score, kx) output = torch.cat(torch.split(output, mb_size, dim=0), dim=-1) output = self.proj(output) output = self.dropout(output) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), primals_3, out=buf0) del primals_3 buf1 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (1, 16, 4), (64, 4, 1), 0), primals_4, out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused__softmax_1[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf3 del buf3 extern_kernels.bmm(buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf5, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_6 return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0 ), buf4, reinterpret_tensor(buf5, (16, 4), (4, 1), 0 ), primals_5, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(primals_1, (1, 4, 16), (64, 1, 4), 0 ), reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0) class AttentionNew(nn.Module): def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1, score_function='scaled_dot_product', dropout=0): """ Attention Mechanism :param embed_dim: :param hidden_dim: :param out_dim: :param n_head: num of head (Multi-Head Attention) :param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot) :return (?, q_len, out_dim,) """ super(AttentionNew, self).__init__() if hidden_dim is None: hidden_dim = embed_dim // n_head if out_dim is None: out_dim = embed_dim self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.n_head = n_head self.score_function = score_function self.w_kx = nn.Parameter(torch.FloatTensor(n_head, embed_dim, hidden_dim)) self.w_qx = nn.Parameter(torch.FloatTensor(n_head, embed_dim, hidden_dim)) self.proj = nn.Linear(n_head * hidden_dim, out_dim) self.dropout = nn.Dropout(dropout) if score_function == 'mlp': self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2)) elif self.score_function == 'bi_linear': self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_dim) self.w_kx.data.uniform_(-stdv, stdv) self.w_qx.data.uniform_(-stdv, stdv) if self.weight is not None: self.weight.data.uniform_(-stdv, stdv) def forward(self, input_0, input_1): primals_3 = self.w_kx primals_4 = self.w_qx primals_5 = self.proj.weight primals_6 = self.proj.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
n-log-n/ABSA-PyTorch
Attention
false
7,310
[ "MIT" ]
1
27b37e05954940fe37369cc679c080d1d8717362
https://github.com/n-log-n/ABSA-PyTorch/tree/27b37e05954940fe37369cc679c080d1d8717362
import math import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, embed_dim, hidden_dim=None, out_dim=None, n_head=1, score_function='scaled_dot_product', dropout=0): """ Attention Mechanism :param embed_dim: :param hidden_dim: :param out_dim: :param n_head: num of head (Multi-Head Attention) :param score_function: scaled_dot_product / mlp (concat) / bi_linear (general dot) :return (?, q_len, out_dim,) """ super().__init__() if hidden_dim is None: hidden_dim = embed_dim // n_head if out_dim is None: out_dim = embed_dim self.embed_dim = embed_dim self.hidden_dim = hidden_dim self.n_head = n_head self.score_function = score_function self.w_kx = nn.Parameter(torch.FloatTensor(n_head, embed_dim, hidden_dim)) self.w_qx = nn.Parameter(torch.FloatTensor(n_head, embed_dim, hidden_dim)) self.proj = nn.Linear(n_head * hidden_dim, out_dim) self.dropout = nn.Dropout(dropout) if score_function == 'mlp': self.weight = nn.Parameter(torch.Tensor(hidden_dim * 2)) elif self.score_function == 'bi_linear': self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) else: self.register_parameter('weight', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_dim) self.w_kx.data.uniform_(-stdv, stdv) self.w_qx.data.uniform_(-stdv, stdv) if self.weight is not None: self.weight.data.uniform_(-stdv, stdv) def forward(self, k, q): if len(q.shape) == 2: q = torch.unsqueeze(q, dim=1) if len(k.shape) == 2: k = torch.unsqueeze(k, dim=1) mb_size = k.shape[0] k_len = k.shape[1] q_len = q.shape[1] kx = k.repeat(self.n_head, 1, 1).view(self.n_head, -1, self.embed_dim) qx = q.repeat(self.n_head, 1, 1).view(self.n_head, -1, self.embed_dim) kx = torch.bmm(kx, self.w_kx).view(-1, k_len, self.hidden_dim) qx = torch.bmm(qx, self.w_qx).view(-1, q_len, self.hidden_dim) if self.score_function == 'scaled_dot_product': kt = kx.permute(0, 2, 1) qkt = torch.bmm(qx, kt) score = torch.div(qkt, math.sqrt(self.hidden_dim)) elif self.score_function == 'mlp': kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1) qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1) kq = torch.cat((kxx, qxx), dim=-1) score = F.tanh(torch.matmul(kq, self.weight)) elif self.score_function == 'bi_linear': qw = torch.matmul(qx, self.weight) kt = kx.permute(0, 2, 1) score = torch.bmm(qw, kt) else: raise RuntimeError('invalid score_function') score = F.softmax(score, dim=-1) output = torch.bmm(score, kx) output = torch.cat(torch.split(output, mb_size, dim=0), dim=-1) output = self.proj(output) output = self.dropout(output) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
FitnetRegressor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3v/c3v7n6hzyrv5pn6uojl3hf6tko347a672spakigdzmqm7ebd4zwl.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf1, primals_1, primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class FitnetRegressor(torch.nn.Module): def __init__(self, in_feature, out_feature): super(FitnetRegressor, self).__init__() self.in_feature = in_feature self.out_feature = out_feature self.regressor = torch.nn.Conv2d(in_feature, out_feature, 1, bias=False ) torch.nn.init.kaiming_normal_(self.regressor.weight, mode='fan_out', nonlinearity='relu') self.regressor.weight.data.uniform_(-0.005, 0.005) def forward(self, feature): if feature.dim() == 2: feature = feature.unsqueeze(2).unsqueeze(3) return F.relu(self.regressor(feature)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_feature': 4, 'out_feature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf1, primals_1, primals_2, buf2 class FitnetRegressorNew(torch.nn.Module): def __init__(self, in_feature, out_feature): super(FitnetRegressorNew, self).__init__() self.in_feature = in_feature self.out_feature = out_feature self.regressor = torch.nn.Conv2d(in_feature, out_feature, 1, bias=False ) torch.nn.init.kaiming_normal_(self.regressor.weight, mode='fan_out', nonlinearity='relu') self.regressor.weight.data.uniform_(-0.005, 0.005) def forward(self, input_0): primals_2 = self.regressor.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
naver-ai/cgl_fairness
FitnetRegressor
false
7,311
[ "MIT" ]
1
00d3bec233c9b3e0f88496118abaed8321ca3159
https://github.com/naver-ai/cgl_fairness/tree/00d3bec233c9b3e0f88496118abaed8321ca3159
import torch import torch.nn.functional as F class Model(torch.nn.Module): def __init__(self, in_feature, out_feature): super().__init__() self.in_feature = in_feature self.out_feature = out_feature self.regressor = torch.nn.Conv2d(in_feature, out_feature, 1, bias=False ) torch.nn.init.kaiming_normal_(self.regressor.weight, mode='fan_out', nonlinearity='relu') self.regressor.weight.data.uniform_(-0.005, 0.005) def forward(self, feature): if feature.dim() == 2: feature = feature.unsqueeze(2).unsqueeze(3) return F.relu(self.regressor(feature)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ZeroOneTest
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/vx/cvxreiwqu3j36srlhcbhferosfm7fpntwgkaer7vdvdtvuem3j3r.py # Topologically Sorted Source Nodes: [sign, sub, truediv, mean, cost, sub_1, sign_1, add, truediv_1, mean_1, mul_1, cost_1], Original ATen: [aten.sign, aten.rsub, aten.div, aten.mean, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # cost => mul # cost_1 => add_1 # mean => mean # mean_1 => mean_1 # mul_1 => mul_1 # sign => sign # sign_1 => sign_1 # sub => sub # sub_1 => sub_1 # truediv => div # truediv_1 => div_1 # Graph fragment: # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sign), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %mean), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %sign_1 : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%arg2_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sign_1, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %mean_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_sign_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_sign_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_sign_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sign_0(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp15 = tl.load(in_ptr1 + (r0), None) tmp27 = tl.load(in_ptr2 + (r0), None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp1 < tmp0 tmp3 = tmp2.to(tl.int8) tmp4 = tmp0 < tmp1 tmp5 = tmp4.to(tl.int8) tmp6 = tmp3 - tmp5 tmp7 = tmp6.to(tmp0.dtype) tmp8 = 1.0 tmp9 = tmp8 - tmp7 tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp16 = tmp1 < tmp15 tmp17 = tmp16.to(tl.int8) tmp18 = tmp15 < tmp1 tmp19 = tmp18.to(tl.int8) tmp20 = tmp17 - tmp19 tmp21 = tmp20.to(tmp15.dtype) tmp22 = tmp21 + tmp8 tmp23 = tmp22 * tmp10 tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp28 = 256.0 tmp29 = tmp14 / tmp28 tmp30 = tmp27 * tmp29 tmp31 = tmp8 - tmp27 tmp32 = tmp26 / tmp28 tmp33 = tmp31 * tmp32 tmp34 = tmp30 + tmp33 tl.store(out_ptr2 + (tl.broadcast_to(r0, [RBLOCK])), tmp34, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sign, sub, truediv, mean, cost, sub_1, sign_1, add, truediv_1, mean_1, mul_1, cost_1], Original ATen: [aten.sign, aten.rsub, aten.div, aten.mean, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_rsub_sign_0.run(arg0_1, arg2_1, arg1_1, buf2, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ZeroOneTest(nn.Module): def __init__(self): super(ZeroOneTest, self).__init__() return def forward(self, output_p, output_n, prior): cost = prior * torch.mean((1 - torch.sign(output_p)) / 2) cost = cost + (1 - prior) * torch.mean((1 + torch.sign(output_n)) / 2) return cost def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sign_0(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp15 = tl.load(in_ptr1 + r0, None) tmp27 = tl.load(in_ptr2 + r0, None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp1 < tmp0 tmp3 = tmp2.to(tl.int8) tmp4 = tmp0 < tmp1 tmp5 = tmp4.to(tl.int8) tmp6 = tmp3 - tmp5 tmp7 = tmp6.to(tmp0.dtype) tmp8 = 1.0 tmp9 = tmp8 - tmp7 tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp16 = tmp1 < tmp15 tmp17 = tmp16.to(tl.int8) tmp18 = tmp15 < tmp1 tmp19 = tmp18.to(tl.int8) tmp20 = tmp17 - tmp19 tmp21 = tmp20.to(tmp15.dtype) tmp22 = tmp21 + tmp8 tmp23 = tmp22 * tmp10 tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp28 = 256.0 tmp29 = tmp14 / tmp28 tmp30 = tmp27 * tmp29 tmp31 = tmp8 - tmp27 tmp32 = tmp26 / tmp28 tmp33 = tmp31 * tmp32 tmp34 = tmp30 + tmp33 tl.store(out_ptr2 + tl.broadcast_to(r0, [RBLOCK]), tmp34, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_rsub_sign_0[grid(1)](arg0_1, arg2_1, arg1_1, buf2, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class ZeroOneTestNew(nn.Module): def __init__(self): super(ZeroOneTestNew, self).__init__() return def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
mxuq/Imbalance-PU
ZeroOneTest
false
7,312
[ "MIT" ]
1
fd4403b05f98ca6bc8156783e8275888d63f6435
https://github.com/mxuq/Imbalance-PU/tree/fd4403b05f98ca6bc8156783e8275888d63f6435
import torch from torch import nn class Model(nn.Module): def __init__(self): super().__init__() return def forward(self, output_p, output_n, prior): cost = prior * torch.mean((1 - torch.sign(output_p)) / 2) cost = cost + (1 - prior) * torch.mean((1 + torch.sign(output_n)) / 2) return cost def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
Landsat2ViirsNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/nr/cnr5lgijm7k6doqguie5wuabxlbddrcif6m52y5ztaiztmm5lcyy.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [1, 1], [2, 2], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 127008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3969) % 8 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4b/c4bz2cpervebzg4ppazym7mfhsu66vmmvrwxuls7xspzyojrcear.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [3, 3], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 28224 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 441) % 16 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7f/c7fy3q7oposmsrqhqhqkigih2vt5bwmjndsvncunqh3au6dpojja.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [3, 3], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 6272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 49) % 32 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/q5/cq52xqbok3l6ca7mgpgiietkweau2kddeft43cwd4iryhre3znj2.py # Topologically Sorted Source Nodes: [conv2d_3, x_3, adaptive_avg_pool2d], Original ATen: [aten.convolution, aten.leaky_relu, aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool2d => mean # conv2d_3 => convolution_3 # x_3 => gt_3, mul_3, where_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.01), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%where_3, [-1, -2], True), kwargs = {}) triton_poi_fused_convolution_leaky_relu_mean_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mean_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mean_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_mean_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = 1.0 tmp9 = tmp7 / tmp8 tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vx/cvxgikvf4odxfy443anpyiuj4co7fllc5yvys3hays4zemvnnsn2.py # Topologically Sorted Source Nodes: [mul, std, mul_1, sample], Original ATen: [aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # mul => mul_4 # mul_1 => mul_5 # sample => add # std => exp # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_2, 0.5), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_4,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%addmm_1, %mul_5), kwargs = {}) triton_poi_fused_add_exp_mul_4 = async_compile.triton('triton_poi_fused_add_exp_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tl.load(in_ptr2 + (x0), xmask) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cq/ccq2e5g5kvi7tfbcukwmpfajz5mdminbpvfxlic7hpri5wujde3c.py # Topologically Sorted Source Nodes: [conv_transpose2d, x_5], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv_transpose2d => convolution_4 # x_5 => gt_4, mul_6, where_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%view_1, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.01), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_6), kwargs = {}) triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ki/ckihgwoh3acikuliqzor6rewmvcf7cerswmb6huqltlyvmna3vw7.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_6], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_5 # x_6 => gt_5, mul_7, where_5 # Graph fragment: # %convolution_5 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_20, %primals_21, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_5 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_5, 0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_5, 0.01), kwargs = {}) # %where_5 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_5, %mul_7), kwargs = {}) triton_poi_fused_convolution_leaky_relu_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3q/c3qz2h27fy6qsibvqlmapk7ijyivrhipmhrk4oddspoivflvrfmz.py # Topologically Sorted Source Nodes: [conv_transpose2d_2, reconstruction], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv_transpose2d_2 => convolution_6 # reconstruction => sigmoid # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_5, %primals_22, %primals_23, [2, 2], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_sigmoid_7 = async_compile.triton('triton_poi_fused_convolution_sigmoid_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1764 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args args.clear() assert_size_stride(primals_1, (8, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 3, 256, 256), (196608, 65536, 256, 1)) assert_size_stride(primals_4, (16, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (32, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (64, 32, 7, 7), (1568, 49, 7, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64), (64, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (64, 128), (128, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 128), (128, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64), (64, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_19, (32, ), (1, )) assert_size_stride(primals_20, (32, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_21, (16, ), (1, )) assert_size_stride(primals_22, (16, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_23, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(1, 1), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 63, 63), (31752, 3969, 63, 1)) buf1 = empty_strided_cuda((4, 8, 63, 63), (31752, 3969, 63, 1), torch.bool) buf2 = empty_strided_cuda((4, 8, 63, 63), (31752, 3969, 63, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 127008, grid=grid(127008), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(3, 3), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 21, 21), (7056, 441, 21, 1)) buf4 = empty_strided_cuda((4, 16, 21, 21), (7056, 441, 21, 1), torch.bool) buf5 = empty_strided_cuda((4, 16, 21, 21), (7056, 441, 21, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 28224, grid=grid(28224), stream=stream0) del buf3 del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(3, 3), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 7, 7), (1568, 49, 7, 1)) buf7 = empty_strided_cuda((4, 32, 7, 7), (1568, 49, 7, 1), torch.bool) buf8 = empty_strided_cuda((4, 32, 7, 7), (1568, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 6272, grid=grid(6272), stream=stream0) del buf6 del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 1, 1), (64, 1, 1, 1)) buf10 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool) buf11 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, x_3, adaptive_avg_pool2d], Original ATen: [aten.convolution, aten.leaky_relu, aten.mean] triton_poi_fused_convolution_leaky_relu_mean_3.run(buf9, primals_9, buf10, buf11, 256, grid=grid(256), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 128), (1, 64), 0), alpha=1, beta=1, out=buf12) del primals_11 buf13 = reinterpret_tensor(buf9, (4, 64), (64, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf12, reinterpret_tensor(primals_12, (128, 64), (1, 128), 0), alpha=1, beta=1, out=buf13) del primals_13 buf14 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [log_var], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, buf12, reinterpret_tensor(primals_14, (128, 64), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_15 # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like] buf15 = torch.ops.aten.randn.default([4, 64], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf16 = buf15 del buf15 buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, std, mul_1, sample], Original ATen: [aten.mul, aten.exp, aten.add] triton_poi_fused_add_exp_mul_4.run(buf13, buf16, buf14, buf17, 256, grid=grid(256), stream=stream0) buf18 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, buf17, reinterpret_tensor(primals_16, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf18) del primals_17 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(reinterpret_tensor(buf18, (4, 64, 1, 1), (64, 1, 1, 1), 0), primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 32, 4, 4), (512, 16, 4, 1)) buf20 = empty_strided_cuda((4, 32, 4, 4), (512, 16, 4, 1), torch.bool) buf21 = empty_strided_cuda((4, 32, 4, 4), (512, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv_transpose2d, x_5], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_5.run(buf19, primals_19, buf20, buf21, 2048, grid=grid(2048), stream=stream0) del buf19 del primals_19 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_20, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 16, 10, 10), (1600, 100, 10, 1)) buf23 = empty_strided_cuda((4, 16, 10, 10), (1600, 100, 10, 1), torch.bool) buf24 = empty_strided_cuda((4, 16, 10, 10), (1600, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_6], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_6.run(buf22, primals_21, buf23, buf24, 6400, grid=grid(6400), stream=stream0) del buf22 del primals_21 # Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, primals_22, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 1, 21, 21), (441, 441, 21, 1)) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_2, reconstruction], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_7.run(buf26, primals_23, 1764, grid=grid(1764), stream=stream0) del primals_23 return (buf26, buf13, buf14, primals_1, primals_3, primals_4, primals_6, primals_8, primals_18, primals_20, primals_22, buf1, buf2, buf4, buf5, buf7, buf8, buf10, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), buf12, buf14, buf16, buf17, reinterpret_tensor(buf18, (4, 64, 1, 1), (64, 1, 1, 1), 0), buf20, buf21, buf23, buf24, buf26, primals_16, primals_14, primals_12, primals_10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 256, 256), (196608, 65536, 256, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((32, 16, 4, 4), (256, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((16, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class Landsat2ViirsNet(nn.Module): def __init__(self, latent_dim=64, init_channels=8, kernel_size=4, image_in_channels=3, image_out_channels=1): super(Landsat2ViirsNet, self).__init__() self.enc1 = nn.Conv2d(in_channels=image_in_channels, out_channels= init_channels, kernel_size=kernel_size, stride=4, padding=1, dilation=2) self.enc2 = nn.Conv2d(in_channels=init_channels, out_channels= init_channels * 2, kernel_size=kernel_size, stride=3, padding=1) self.enc3 = nn.Conv2d(in_channels=init_channels * 2, out_channels= init_channels * 4, kernel_size=kernel_size, stride=3, padding=1) self.enc4 = nn.Conv2d(in_channels=init_channels * 4, out_channels= 64, kernel_size=7, stride=2, padding=0) self.fc1 = nn.Linear(64, 128) self.fc_mu = nn.Linear(128, latent_dim) self.fc_log_var = nn.Linear(128, latent_dim) self.fc2 = nn.Linear(latent_dim, 64) self.dec1 = nn.ConvTranspose2d(in_channels=64, out_channels= init_channels * 4, kernel_size=kernel_size, stride=1, padding=0) self.dec2 = nn.ConvTranspose2d(in_channels=init_channels * 4, out_channels=init_channels * 2, kernel_size=kernel_size, stride =2, padding=0) self.dec3 = nn.ConvTranspose2d(in_channels=init_channels * 2, out_channels=image_out_channels, kernel_size=kernel_size + 1, stride=2, padding=1) def reparameterize(self, mu, log_var): """ :param mu: mean from the encoder's latent space :param log_var: log variance from the encoder's latent space """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) sample = mu + eps * std return sample def forward(self, x): x = F.leaky_relu(self.enc1(x)) x = F.leaky_relu(self.enc2(x)) x = F.leaky_relu(self.enc3(x)) x = F.leaky_relu(self.enc4(x)) batch, _, _, _ = x.shape x = F.adaptive_avg_pool2d(x, 1).reshape(batch, -1) hidden = self.fc1(x) mu = self.fc_mu(hidden) log_var = self.fc_log_var(hidden) z = self.reparameterize(mu, log_var) z = self.fc2(z) z = z.view(-1, 64, 1, 1) x = F.leaky_relu(self.dec1(z)) x = F.leaky_relu(self.dec2(x)) reconstruction = torch.sigmoid(self.dec3(x)) return reconstruction, mu, log_var def get_inputs(): return [torch.rand([4, 3, 256, 256])] def get_init_inputs(): return [[], {}]
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 127008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3969 % 8 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 28224 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 441 % 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 6272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 49 % 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_mean_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = 1.0 tmp9 = tmp7 / tmp8 tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_add_exp_mul_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tl.load(in_ptr2 + x0, xmask) tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tmp1 * tmp5 tmp7 = tmp0 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1764 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 ) = args args.clear() assert_size_stride(primals_1, (8, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 3, 256, 256), (196608, 65536, 256, 1)) assert_size_stride(primals_4, (16, 8, 4, 4), (128, 16, 4, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (32, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (64, 32, 7, 7), (1568, 49, 7, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64), (64, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (64, 128), (128, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 128), (128, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64), (64, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_19, (32,), (1,)) assert_size_stride(primals_20, (32, 16, 4, 4), (256, 16, 4, 1)) assert_size_stride(primals_21, (16,), (1,)) assert_size_stride(primals_22, (16, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_23, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(1, 1), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 63, 63), (31752, 3969, 63, 1)) buf1 = empty_strided_cuda((4, 8, 63, 63), (31752, 3969, 63, 1), torch.bool) buf2 = empty_strided_cuda((4, 8, 63, 63), (31752, 3969, 63, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(127008)](buf0, primals_2, buf1, buf2, 127008, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(3, 3), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 21, 21), (7056, 441, 21, 1)) buf4 = empty_strided_cuda((4, 16, 21, 21), (7056, 441, 21, 1), torch.bool) buf5 = empty_strided_cuda((4, 16, 21, 21), (7056, 441, 21, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_1[grid(28224)](buf3, primals_5, buf4, buf5, 28224, XBLOCK=256, num_warps=4, num_stages=1 ) del buf3 del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(3, 3), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 7, 7), (1568, 49, 7, 1)) buf7 = empty_strided_cuda((4, 32, 7, 7), (1568, 49, 7, 1), torch.bool) buf8 = empty_strided_cuda((4, 32, 7, 7), (1568, 49, 7, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_2[grid(6272)](buf6, primals_7, buf7, buf8, 6272, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_7 buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 1, 1), (64, 1, 1, 1)) buf10 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool) buf11 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 256, 256), torch. float32) triton_poi_fused_convolution_leaky_relu_mean_3[grid(256)](buf9, primals_9, buf10, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1 ) del primals_9 buf12 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 128), (1, 64), 0), alpha=1, beta=1, out=buf12) del primals_11 buf13 = reinterpret_tensor(buf9, (4, 64), (64, 1), 0) del buf9 extern_kernels.addmm(primals_13, buf12, reinterpret_tensor( primals_12, (128, 64), (1, 128), 0), alpha=1, beta=1, out=buf13) del primals_13 buf14 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.addmm(primals_15, buf12, reinterpret_tensor( primals_14, (128, 64), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_15 buf15 = torch.ops.aten.randn.default([4, 64], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf16 = buf15 del buf15 buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32) triton_poi_fused_add_exp_mul_4[grid(256)](buf13, buf16, buf14, buf17, 256, XBLOCK=128, num_warps=4, num_stages=1) buf18 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.addmm(primals_17, buf17, reinterpret_tensor( primals_16, (64, 64), (1, 64), 0), alpha=1, beta=1, out=buf18) del primals_17 buf19 = extern_kernels.convolution(reinterpret_tensor(buf18, (4, 64, 1, 1), (64, 1, 1, 1), 0), primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 32, 4, 4), (512, 16, 4, 1)) buf20 = empty_strided_cuda((4, 32, 4, 4), (512, 16, 4, 1), torch.bool) buf21 = empty_strided_cuda((4, 32, 4, 4), (512, 16, 4, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_5[grid(2048)](buf19, primals_19, buf20, buf21, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf19 del primals_19 buf22 = extern_kernels.convolution(buf21, primals_20, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 16, 10, 10), (1600, 100, 10, 1)) buf23 = empty_strided_cuda((4, 16, 10, 10), (1600, 100, 10, 1), torch.bool) buf24 = empty_strided_cuda((4, 16, 10, 10), (1600, 100, 10, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_6[grid(6400)](buf22, primals_21, buf23, buf24, 6400, XBLOCK=256, num_warps=4, num_stages=1) del buf22 del primals_21 buf25 = extern_kernels.convolution(buf24, primals_22, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 1, 21, 21), (441, 441, 21, 1)) buf26 = buf25 del buf25 triton_poi_fused_convolution_sigmoid_7[grid(1764)](buf26, primals_23, 1764, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 return (buf26, buf13, buf14, primals_1, primals_3, primals_4, primals_6, primals_8, primals_18, primals_20, primals_22, buf1, buf2, buf4, buf5, buf7, buf8, buf10, reinterpret_tensor(buf11, (4, 64), (64, 1), 0), buf12, buf14, buf16, buf17, reinterpret_tensor(buf18, (4, 64, 1, 1), (64, 1, 1, 1), 0), buf20, buf21, buf23, buf24, buf26, primals_16, primals_14, primals_12, primals_10) class Landsat2ViirsNetNew(nn.Module): def __init__(self, latent_dim=64, init_channels=8, kernel_size=4, image_in_channels=3, image_out_channels=1): super(Landsat2ViirsNetNew, self).__init__() self.enc1 = nn.Conv2d(in_channels=image_in_channels, out_channels= init_channels, kernel_size=kernel_size, stride=4, padding=1, dilation=2) self.enc2 = nn.Conv2d(in_channels=init_channels, out_channels= init_channels * 2, kernel_size=kernel_size, stride=3, padding=1) self.enc3 = nn.Conv2d(in_channels=init_channels * 2, out_channels= init_channels * 4, kernel_size=kernel_size, stride=3, padding=1) self.enc4 = nn.Conv2d(in_channels=init_channels * 4, out_channels= 64, kernel_size=7, stride=2, padding=0) self.fc1 = nn.Linear(64, 128) self.fc_mu = nn.Linear(128, latent_dim) self.fc_log_var = nn.Linear(128, latent_dim) self.fc2 = nn.Linear(latent_dim, 64) self.dec1 = nn.ConvTranspose2d(in_channels=64, out_channels= init_channels * 4, kernel_size=kernel_size, stride=1, padding=0) self.dec2 = nn.ConvTranspose2d(in_channels=init_channels * 4, out_channels=init_channels * 2, kernel_size=kernel_size, stride =2, padding=0) self.dec3 = nn.ConvTranspose2d(in_channels=init_channels * 2, out_channels=image_out_channels, kernel_size=kernel_size + 1, stride=2, padding=1) def reparameterize(self, mu, log_var): """ :param mu: mean from the encoder's latent space :param log_var: log variance from the encoder's latent space """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) sample = mu + eps * std return sample def forward(self, input_0): primals_1 = self.enc1.weight primals_2 = self.enc1.bias primals_4 = self.enc2.weight primals_5 = self.enc2.bias primals_6 = self.enc3.weight primals_7 = self.enc3.bias primals_8 = self.enc4.weight primals_9 = self.enc4.bias primals_10 = self.fc1.weight primals_11 = self.fc1.bias primals_12 = self.fc_mu.weight primals_13 = self.fc_mu.bias primals_14 = self.fc_log_var.weight primals_15 = self.fc_log_var.bias primals_16 = self.fc2.weight primals_17 = self.fc2.bias primals_18 = self.dec1.weight primals_19 = self.dec1.bias primals_20 = self.dec2.weight primals_21 = self.dec2.bias primals_22 = self.dec3.weight primals_23 = self.dec3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return output[0], output[1], output[2]
mrmauer/detecting_poverty
Landsat2ViirsNet
false
7,313
[ "MIT" ]
1
2c8a28295264674f5bfe06ef1fed6dd8b898b8b5
https://github.com/mrmauer/detecting_poverty/tree/2c8a28295264674f5bfe06ef1fed6dd8b898b8b5
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, latent_dim=64, init_channels=8, kernel_size=4, image_in_channels=3, image_out_channels=1): super().__init__() self.enc1 = nn.Conv2d(in_channels=image_in_channels, out_channels= init_channels, kernel_size=kernel_size, stride=4, padding=1, dilation=2) self.enc2 = nn.Conv2d(in_channels=init_channels, out_channels= init_channels * 2, kernel_size=kernel_size, stride=3, padding=1) self.enc3 = nn.Conv2d(in_channels=init_channels * 2, out_channels= init_channels * 4, kernel_size=kernel_size, stride=3, padding=1) self.enc4 = nn.Conv2d(in_channels=init_channels * 4, out_channels= 64, kernel_size=7, stride=2, padding=0) self.fc1 = nn.Linear(64, 128) self.fc_mu = nn.Linear(128, latent_dim) self.fc_log_var = nn.Linear(128, latent_dim) self.fc2 = nn.Linear(latent_dim, 64) self.dec1 = nn.ConvTranspose2d(in_channels=64, out_channels= init_channels * 4, kernel_size=kernel_size, stride=1, padding=0) self.dec2 = nn.ConvTranspose2d(in_channels=init_channels * 4, out_channels=init_channels * 2, kernel_size=kernel_size, stride =2, padding=0) self.dec3 = nn.ConvTranspose2d(in_channels=init_channels * 2, out_channels=image_out_channels, kernel_size=kernel_size + 1, stride=2, padding=1) def reparameterize(self, mu, log_var): """ :param mu: mean from the encoder's latent space :param log_var: log variance from the encoder's latent space """ std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) sample = mu + eps * std return sample def forward(self, x): x = F.leaky_relu(self.enc1(x)) x = F.leaky_relu(self.enc2(x)) x = F.leaky_relu(self.enc3(x)) x = F.leaky_relu(self.enc4(x)) batch, _, _, _ = x.shape x = F.adaptive_avg_pool2d(x, 1).reshape(batch, -1) hidden = self.fc1(x) mu = self.fc_mu(hidden) log_var = self.fc_log_var(hidden) z = self.reparameterize(mu, log_var) z = self.fc2(z) z = z.view(-1, 64, 1, 1) x = F.leaky_relu(self.dec1(z)) x = F.leaky_relu(self.dec2(x)) reconstruction = torch.sigmoid(self.dec3(x)) return reconstruction, mu, log_var def get_inputs(): return [torch.rand([4, 3, 256, 256])] def get_init_inputs(): return []
VertexDirectEmbedder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/xq/cxqinuparlha25j4geyv6tolvpah7qdqdkpecjesyn3kblysszql.py # Topologically Sorted Source Nodes: [norm, clamp, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div] # Source node to ATen node mapping: # clamp => clamp_min # norm => pow_1, pow_2, sum_1 # truediv => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {}) triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-06 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm, clamp, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_linalg_vector_norm_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch import nn def normalize_embeddings(embeddings: 'torch.Tensor', epsilon: 'float'=1e-06 ) ->torch.Tensor: """ Normalize N D-dimensional embedding vectors arranged in a tensor [N, D] Args: embeddings (tensor [N, D]): N D-dimensional embedding vectors epsilon (float): minimum value for a vector norm Return: Normalized embeddings (tensor [N, D]), such that L2 vector norms are all equal to 1. """ return embeddings / torch.clamp(embeddings.norm(p=None, dim=1, keepdim= True), min=epsilon) class VertexDirectEmbedder(nn.Module): """ Class responsible for embedding vertices. Vertex embeddings take the form of a tensor of size [N, D], where N = number of vertices D = number of dimensions in the embedding space """ def __init__(self, num_vertices: 'int', embed_dim: 'int'): """ Initialize embedder, set random embeddings Args: num_vertices (int): number of vertices to embed embed_dim (int): number of dimensions in the embedding space """ super(VertexDirectEmbedder, self).__init__() self.embeddings = nn.Parameter(torch.Tensor(num_vertices, embed_dim)) self.reset_parameters() @torch.no_grad() def reset_parameters(self): """ Reset embeddings to random values """ torch.nn.init.uniform_(self.embeddings, a=-0.5, b=0.5) def forward(self) ->torch.Tensor: """ Produce vertex embeddings, a tensor of shape [N, D] where: N = number of vertices D = number of dimensions in the embedding space Return: Full vertex embeddings, a tensor of shape [N, D] """ return normalize_embeddings(self.embeddings) @torch.no_grad() def load(self, fpath: 'str'): """ Load data from a file Args: fpath (str): file path to load data from """ with PathManager.open(fpath, 'rb') as hFile: data = pickle.load(hFile) for name in ['embeddings']: if name in data: getattr(self, name).copy_(torch.tensor(data[name]).float()) def get_inputs(): return [] def get_init_inputs(): return [[], {'num_vertices': 4, 'embed_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-06 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): primals_1, = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf0, primals_1 def normalize_embeddings(embeddings: 'torch.Tensor', epsilon: 'float'=1e-06 ) ->torch.Tensor: """ Normalize N D-dimensional embedding vectors arranged in a tensor [N, D] Args: embeddings (tensor [N, D]): N D-dimensional embedding vectors epsilon (float): minimum value for a vector norm Return: Normalized embeddings (tensor [N, D]), such that L2 vector norms are all equal to 1. """ return embeddings / torch.clamp(embeddings.norm(p=None, dim=1, keepdim= True), min=epsilon) class VertexDirectEmbedderNew(nn.Module): """ Class responsible for embedding vertices. Vertex embeddings take the form of a tensor of size [N, D], where N = number of vertices D = number of dimensions in the embedding space """ def __init__(self, num_vertices: 'int', embed_dim: 'int'): """ Initialize embedder, set random embeddings Args: num_vertices (int): number of vertices to embed embed_dim (int): number of dimensions in the embedding space """ super(VertexDirectEmbedderNew, self).__init__() self.embeddings = nn.Parameter(torch.Tensor(num_vertices, embed_dim)) self.reset_parameters() @torch.no_grad() def reset_parameters(self): """ Reset embeddings to random values """ torch.nn.init.uniform_(self.embeddings, a=-0.5, b=0.5) @torch.no_grad() def load(self, fpath: 'str'): """ Load data from a file Args: fpath (str): file path to load data from """ with PathManager.open(fpath, 'rb') as hFile: data = pickle.load(hFile) for name in ['embeddings']: if name in data: getattr(self, name).copy_(torch.tensor(data[name]).float()) def forward(self): primals_1 = self.embeddings output = call([primals_1]) return output[0]
nationaldronesau/detectron2
VertexDirectEmbedder
false
7,314
[ "Apache-2.0" ]
1
6afaee60eb6e0032b5b2edfbec1179f7e7b7b75f
https://github.com/nationaldronesau/detectron2/tree/6afaee60eb6e0032b5b2edfbec1179f7e7b7b75f
import torch import torch.utils.data from torch import nn def normalize_embeddings(embeddings: 'torch.Tensor', epsilon: 'float'=1e-06 ) ->torch.Tensor: """ Normalize N D-dimensional embedding vectors arranged in a tensor [N, D] Args: embeddings (tensor [N, D]): N D-dimensional embedding vectors epsilon (float): minimum value for a vector norm Return: Normalized embeddings (tensor [N, D]), such that L2 vector norms are all equal to 1. """ return embeddings / torch.clamp(embeddings.norm(p=None, dim=1, keepdim= True), min=epsilon) class Model(nn.Module): """ Class responsible for embedding vertices. Vertex embeddings take the form of a tensor of size [N, D], where N = number of vertices D = number of dimensions in the embedding space """ def __init__(self, num_vertices: 'int', embed_dim: 'int'): """ Initialize embedder, set random embeddings Args: num_vertices (int): number of vertices to embed embed_dim (int): number of dimensions in the embedding space """ super().__init__() self.embeddings = nn.Parameter(torch.Tensor(num_vertices, embed_dim)) self.reset_parameters() @torch.no_grad() def reset_parameters(self): """ Reset embeddings to random values """ torch.nn.init.uniform_(self.embeddings, a=-0.5, b=0.5) def forward(self) ->torch.Tensor: """ Produce vertex embeddings, a tensor of shape [N, D] where: N = number of vertices D = number of dimensions in the embedding space Return: Full vertex embeddings, a tensor of shape [N, D] """ return normalize_embeddings(self.embeddings) @torch.no_grad() def load(self, fpath: 'str'): """ Load data from a file Args: fpath (str): file path to load data from """ with PathManager.open(fpath, 'rb') as hFile: data = pickle.load(hFile) for name in ['embeddings']: if name in data: getattr(self, name).copy_(torch.tensor(data[name]).float()) def get_inputs(): return [] def get_init_inputs(): return [4, 4]
xTanH
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/5f/c5fec27nvlh3c6rdlcdnvokq2ou7ezxyojlesd7cvhvav5dyuta3.py # Topologically Sorted Source Nodes: [tanh, sub], Original ATen: [aten.tanh, aten.sub] # Source node to ATen node mapping: # sub => sub # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %tanh), kwargs = {}) triton_poi_fused_sub_tanh_0 = async_compile.triton('triton_poi_fused_sub_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, sub], Original ATen: [aten.tanh, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn class xTanH(torch.nn.Module): def forward(self, x: 'torch.Tensor'): return x - torch.tanh(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 return buf0, class xTanHNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
nayyarv/bayesnets
xTanH
false
7,315
[ "MIT" ]
1
090abd1a0a91c2b9d6d57a182ee5be1f65a22e11
https://github.com/nayyarv/bayesnets/tree/090abd1a0a91c2b9d6d57a182ee5be1f65a22e11
import torch import torch.nn class Model(torch.nn.Module): def forward(self, x: 'torch.Tensor'): return x - torch.tanh(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
LRN
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/5u/c5u7jgtbilvlp5oee3xzrm3bmkras7mb3t7afiv32pyh7z4mtdml.py # Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add => add # div => pow_1 # div_1 => avg_pool2d # div_2 => pow_2 # mul => mul # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [1, 1], [1, 1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 1.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1.0), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) triton_poi_fused_add_avg_pool2d_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_avg_pool2d_div_mul_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 + tmp2 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_avg_pool2d_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LRN(nn.Module): def __init__(self, local_size=1, alpha=1.0, beta=0.75, ACROSS_CHANNELS= False): super(LRN, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, x): if self.ACROSS_CHANNELS: div = x.pow(2).unsqueeze(1) div = self.average(div).squeeze(1) div = div.mul(self.alpha).add(1.0).pow(self.beta) else: div = x.pow(2) div = self.average(div) div = div.mul(self.alpha).add(1.0).pow(self.beta) x = x.div(div) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 + tmp2 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_avg_pool2d_div_mul_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class LRNNew(nn.Module): def __init__(self, local_size=1, alpha=1.0, beta=0.75, ACROSS_CHANNELS= False): super(LRNNew, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
nbswords/Paper-implemention-by-Pytorch
LRN
false
7,316
[ "MIT" ]
1
429514c4f51c41ec7b3013683fb79ad4b4ab4638
https://github.com/nbswords/Paper-implemention-by-Pytorch/tree/429514c4f51c41ec7b3013683fb79ad4b4ab4638
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, local_size=1, alpha=1.0, beta=0.75, ACROSS_CHANNELS= False): super().__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, x): if self.ACROSS_CHANNELS: div = x.pow(2).unsqueeze(1) div = self.average(div).squeeze(1) div = div.mul(self.alpha).add(1.0).pow(self.beta) else: div = x.pow(2) div = self.average(div) div = div.mul(self.alpha).add(1.0).pow(self.beta) x = x.div(div) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e4/ce4mrsutak55hdxdhpgam7tb7jmol4afzeboi3c3ftdbbg56ulio.py # Topologically Sorted Source Nodes: [cross_entropy, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mean] # Source node to ATen node mapping: # cross_entropy => exp, log, mul, neg, sub_1, sum_1, sum_2 # loss => mul_1 # mean => mean # neg => neg_1 # p => exp_1 # pow_1 => pow_1 # sub => sub_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%neg,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %neg), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {}) triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = libdevice.sqrt(tmp31) tmp33 = tmp32 * tmp27 tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.sum(tmp34, 1)[:, None] tmp37 = 64.0 tmp38 = tmp36 / tmp37 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp38, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [cross_entropy, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mean] triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1.run(buf3, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def focal_loss(input_values, gamma=10): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLoss(nn.Module): def __init__(self, weight=None, gamma=0.5): super(FocalLoss, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = libdevice.sqrt(tmp31) tmp33 = tmp32 * tmp27 tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.sum(tmp34, 1)[:, None] tmp37 = 64.0 tmp38 = tmp36 / tmp37 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp38, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1[grid(1)]( buf3, buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf3, def focal_loss(input_values, gamma=10): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLossNew(nn.Module): def __init__(self, weight=None, gamma=0.5): super(FocalLossNew, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
naver-ai/cgl_fairness
FocalLoss
false
7,317
[ "MIT" ]
1
00d3bec233c9b3e0f88496118abaed8321ca3159
https://github.com/naver-ai/cgl_fairness/tree/00d3bec233c9b3e0f88496118abaed8321ca3159
import torch import torch.nn as nn import torch.nn.functional as F def focal_loss(input_values, gamma=10): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class Model(nn.Module): def __init__(self, weight=None, gamma=0.5): super().__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MultiHeadSelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7q/c7qatvt7mqunxr7uiwohrunnhsrswmwm2muzdnbh6g5mxf3pbhas.py # Topologically Sorted Source Nodes: [attention_mask, attention_mask_1, truediv, attention_score, attention_score_1], Original ATen: [aten.full, aten.triu, aten.div, aten.add, aten._softmax] # Source node to ATen node mapping: # attention_mask => full_default # attention_mask_1 => full_default_1, ge, sub, where # attention_score => add # attention_score_1 => amax, exp, sub_1, sum_1 # truediv => div # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sub, 1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %full_default, %full_default_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %where), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_add_div_full_triu_1 = async_compile.triton('triton_poi_fused__softmax_add_div_full_triu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_full_triu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_full_triu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = (-1)*x0 tmp4 = tl.full([1], 1, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = float("-inf") tmp7 = 0.0 tmp8 = tl.where(tmp5, tmp6, tmp7) tmp9 = tmp2 + tmp8 tmp11 = tmp10 * tmp1 tmp12 = 1 + ((-1)*x0) tmp13 = tmp12 >= tmp4 tmp14 = tl.where(tmp13, tmp6, tmp7) tmp15 = tmp11 + tmp14 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp18 = tmp17 * tmp1 tmp19 = 2 + ((-1)*x0) tmp20 = tmp19 >= tmp4 tmp21 = tl.where(tmp20, tmp6, tmp7) tmp22 = tmp18 + tmp21 tmp23 = triton_helpers.maximum(tmp16, tmp22) tmp25 = tmp24 * tmp1 tmp26 = 3 + ((-1)*x0) tmp27 = tmp26 >= tmp4 tmp28 = tl.where(tmp27, tmp6, tmp7) tmp29 = tmp25 + tmp28 tmp30 = triton_helpers.maximum(tmp23, tmp29) tmp31 = tmp9 - tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp15 - tmp30 tmp34 = tl_math.exp(tmp33) tmp35 = tmp32 + tmp34 tmp36 = tmp22 - tmp30 tmp37 = tl_math.exp(tmp36) tmp38 = tmp35 + tmp37 tmp39 = tmp29 - tmp30 tmp40 = tl_math.exp(tmp39) tmp41 = tmp38 + tmp40 tl.store(out_ptr0 + (x2), tmp30, xmask) tl.store(out_ptr1 + (x2), tmp41, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7x/c7xn7qjh34kwi2jkyz5l7lkdaajxitzvw2a7xfapjnaswkkx3zrk.py # Topologically Sorted Source Nodes: [attention_mask, attention_mask_1, truediv, attention_score, attention_score_1], Original ATen: [aten.full, aten.triu, aten.div, aten.add, aten._softmax] # Source node to ATen node mapping: # attention_mask => full_default # attention_mask_1 => full_default_1, ge, sub, where # attention_score => add # attention_score_1 => div_1, exp, sub_1 # truediv => div # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sub, 1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %full_default, %full_default_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %where), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_add_div_full_triu_2 = async_compile.triton('triton_poi_fused__softmax_add_div_full_triu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_full_triu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_full_triu_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x1 = (xindex // 4) % 4 x4 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp10 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = x0 + ((-1)*x1) tmp4 = tl.full([1], 1, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = float("-inf") tmp7 = 0.0 tmp8 = tl.where(tmp5, tmp6, tmp7) tmp9 = tmp2 + tmp8 tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp14 = tmp12 / tmp13 tl.store(in_out_ptr0 + (x3), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [attention_mask, attention_mask_1, truediv, attention_score, attention_score_1], Original ATen: [aten.full, aten.triu, aten.div, aten.add, aten._softmax] triton_poi_fused__softmax_add_div_full_triu_1.run(buf5, buf6, buf7, 64, grid=grid(64), stream=stream0) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [attention_mask, attention_mask_1, truediv, attention_score, attention_score_1], Original ATen: [aten.full, aten.triu, aten.div, aten.add, aten._softmax] triton_poi_fused__softmax_add_div_full_triu_2.run(buf8, buf6, buf7, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [score], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_7, buf9, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10) buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [score_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_9 return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), primals_8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.distributed import torch.nn.functional as F import torch.nn as nn class MultiHeadSelfAttention(nn.Module): def __init__(self, config): super(MultiHeadSelfAttention, self).__init__() self.query = nn.Linear(config.hidden_size, config.hidden_size) self.key = nn.Linear(config.hidden_size, config.hidden_size) self.value = nn.Linear(config.hidden_size, config.hidden_size) self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) self.proj = nn.Linear(config.hidden_size, config.hidden_size) assert config.hidden_size % config.n_heads == 0, 'Hidden size should be multiple of n_heads' self.n_heads = config.n_heads self.head_size = config.hidden_size // self.n_heads def forward(self, x): batch_size, seq_length, hidden_size = x.size() q = self.query(x).view(batch_size, seq_length, self.n_heads, self. head_size).transpose(1, 2) k = self.key(x).view(batch_size, seq_length, self.head_size, self. n_heads).transpose(1, 3) v = self.value(x).view(batch_size, seq_length, self.n_heads, self. head_size).transpose(1, 2) attention_mask = torch.full((seq_length, seq_length), -float('inf'), device=x.device, dtype=x.dtype) attention_mask = torch.triu(attention_mask, diagonal=1) attention_score = torch.matmul(q, k) / math.sqrt(self.head_size ) + attention_mask attention_score = F.softmax(attention_score, dim=-1) attention_score = self.attn_drop(attention_score) score = torch.matmul(attention_score, v) score = score.transpose(1, 2).contiguous().view(batch_size, seq_length, hidden_size) score = self.proj(score) score = self.resid_drop(score) return score def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, attn_pdrop=0.5, resid_pdrop=0.5, n_heads=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.distributed import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__softmax_add_div_full_triu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = -1 * x0 tmp4 = tl.full([1], 1, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = float('-inf') tmp7 = 0.0 tmp8 = tl.where(tmp5, tmp6, tmp7) tmp9 = tmp2 + tmp8 tmp11 = tmp10 * tmp1 tmp12 = 1 + -1 * x0 tmp13 = tmp12 >= tmp4 tmp14 = tl.where(tmp13, tmp6, tmp7) tmp15 = tmp11 + tmp14 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp18 = tmp17 * tmp1 tmp19 = 2 + -1 * x0 tmp20 = tmp19 >= tmp4 tmp21 = tl.where(tmp20, tmp6, tmp7) tmp22 = tmp18 + tmp21 tmp23 = triton_helpers.maximum(tmp16, tmp22) tmp25 = tmp24 * tmp1 tmp26 = 3 + -1 * x0 tmp27 = tmp26 >= tmp4 tmp28 = tl.where(tmp27, tmp6, tmp7) tmp29 = tmp25 + tmp28 tmp30 = triton_helpers.maximum(tmp23, tmp29) tmp31 = tmp9 - tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp15 - tmp30 tmp34 = tl_math.exp(tmp33) tmp35 = tmp32 + tmp34 tmp36 = tmp22 - tmp30 tmp37 = tl_math.exp(tmp36) tmp38 = tmp35 + tmp37 tmp39 = tmp29 - tmp30 tmp40 = tl_math.exp(tmp39) tmp41 = tmp38 + tmp40 tl.store(out_ptr0 + x2, tmp30, xmask) tl.store(out_ptr1 + x2, tmp41, xmask) @triton.jit def triton_poi_fused__softmax_add_div_full_triu_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x1 = xindex // 4 % 4 x4 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp10 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = x0 + -1 * x1 tmp4 = tl.full([1], 1, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = float('-inf') tmp7 = 0.0 tmp8 = tl.where(tmp5, tmp6, tmp7) tmp9 = tmp2 + tmp8 tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp14 = tmp12 / tmp13 tl.store(in_out_ptr0 + x3, tmp14, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_add_div_full_triu_1[grid(64)](buf5, buf6, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_add_div_full_triu_2[grid(256)](buf8, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf9, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10) buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_3[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0) del buf10 extern_kernels.addmm(primals_9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_9 return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0 ), primals_8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class MultiHeadSelfAttentionNew(nn.Module): def __init__(self, config): super(MultiHeadSelfAttentionNew, self).__init__() self.query = nn.Linear(config.hidden_size, config.hidden_size) self.key = nn.Linear(config.hidden_size, config.hidden_size) self.value = nn.Linear(config.hidden_size, config.hidden_size) self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) self.proj = nn.Linear(config.hidden_size, config.hidden_size) assert config.hidden_size % config.n_heads == 0, 'Hidden size should be multiple of n_heads' self.n_heads = config.n_heads self.head_size = config.hidden_size // self.n_heads def forward(self, input_0): primals_2 = self.query.weight primals_3 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_6 = self.value.weight primals_7 = self.value.bias primals_8 = self.proj.weight primals_9 = self.proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
myoons/image-gpt-pytorch
MultiHeadSelfAttention
false
7,318
[ "Apache-2.0" ]
1
d05081250d01ce208796dfb246ea1c9a093237c5
https://github.com/myoons/image-gpt-pytorch/tree/d05081250d01ce208796dfb246ea1c9a093237c5
from _paritybench_helpers import _mock_config import math import torch import torch.distributed import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, config): super().__init__() self.query = nn.Linear(config.hidden_size, config.hidden_size) self.key = nn.Linear(config.hidden_size, config.hidden_size) self.value = nn.Linear(config.hidden_size, config.hidden_size) self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) self.proj = nn.Linear(config.hidden_size, config.hidden_size) assert config.hidden_size % config.n_heads == 0, 'Hidden size should be multiple of n_heads' self.n_heads = config.n_heads self.head_size = config.hidden_size // self.n_heads def forward(self, x): batch_size, seq_length, hidden_size = x.size() q = self.query(x).view(batch_size, seq_length, self.n_heads, self. head_size).transpose(1, 2) k = self.key(x).view(batch_size, seq_length, self.head_size, self. n_heads).transpose(1, 3) v = self.value(x).view(batch_size, seq_length, self.n_heads, self. head_size).transpose(1, 2) attention_mask = torch.full((seq_length, seq_length), -float('inf'), device=x.device, dtype=x.dtype) attention_mask = torch.triu(attention_mask, diagonal=1) attention_score = torch.matmul(q, k) / math.sqrt(self.head_size ) + attention_mask attention_score = F.softmax(attention_score, dim=-1) attention_score = self.attn_drop(attention_score) score = torch.matmul(attention_score, v) score = score.transpose(1, 2).contiguous().view(batch_size, seq_length, hidden_size) score = self.proj(score) score = self.resid_drop(score) return score def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, attn_pdrop=0.5, resid_pdrop=0.5, n_heads=4)}]
Matcher
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ht/chthqmd7ami6gjlbitivlw6j42l7ccuvzbocn5fett3pybu6vkio.py # Topologically Sorted Source Nodes: [res], Original ATen: [aten.clone] # Source node to ATen node mapping: # res => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex % 16 x0 = xindex % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x4 + (16*x3) + (64*x2)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x5), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2w/c2we4npvhka5swgyfnb3e645i3kzleot2woxqx4zqghwchtmbg4e.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_6, 2.0), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tx], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [res], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_2, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [res], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] triton_poi_fused_div_1.run(buf4, 256, grid=grid(256), stream=stream0) return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class Matcher(nn.Module): """ Matching between a pair of nodes to conduct link prediction. Use multi-head attention as matching model. """ def __init__(self, n_hid): super(Matcher, self).__init__() self.left_linear = nn.Linear(n_hid, n_hid) self.right_linear = nn.Linear(n_hid, n_hid) self.sqrt_hd = math.sqrt(n_hid) self.cache = None def forward(self, x, y, infer=False, pair=False): ty = self.right_linear(y) if infer: """ During testing, we will consider millions or even billions of nodes as candidates (x). It's not possible to calculate them again for different query (y) Since the model is fixed, we propose to cache them, and dirrectly use the results. """ if self.cache is not None: tx = self.cache else: tx = self.left_linear(x) self.cache = tx else: tx = self.left_linear(x) if pair: res = (tx * ty).sum(dim=-1) else: res = torch.matmul(tx, ty.transpose(0, 1)) return res / self.sqrt_hd def __repr__(self): return '{}(n_hid={})'.format(self.__class__.__name__, self.n_hid) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_hid': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex % 16 x0 = xindex % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3 + 64 * x2), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x5, tmp2, xmask) @triton.jit def triton_poi_fused_div_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](buf0, primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0) del buf0 extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_div_1[grid(256)](buf4, 256, XBLOCK=256, num_warps= 4, num_stages=1) return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0) class MatcherNew(nn.Module): """ Matching between a pair of nodes to conduct link prediction. Use multi-head attention as matching model. """ def __init__(self, n_hid): super(MatcherNew, self).__init__() self.left_linear = nn.Linear(n_hid, n_hid) self.right_linear = nn.Linear(n_hid, n_hid) self.sqrt_hd = math.sqrt(n_hid) self.cache = None def __repr__(self): return '{}(n_hid={})'.format(self.__class__.__name__, self.n_hid) def forward(self, input_0, input_1): primals_1 = self.left_linear.weight primals_2 = self.left_linear.bias primals_4 = self.right_linear.weight primals_5 = self.right_linear.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
nchungvh/pyhgt
Matcher
false
7,319
[ "MIT" ]
1
3cb08ea856ca02aaf1664aa7486024a8742c7567
https://github.com/nchungvh/pyhgt/tree/3cb08ea856ca02aaf1664aa7486024a8742c7567
import math import torch import torch.nn as nn class Model(nn.Module): """ Matching between a pair of nodes to conduct link prediction. Use multi-head attention as matching model. """ def __init__(self, n_hid): super().__init__() self.left_linear = nn.Linear(n_hid, n_hid) self.right_linear = nn.Linear(n_hid, n_hid) self.sqrt_hd = math.sqrt(n_hid) self.cache = None def forward(self, x, y, infer=False, pair=False): ty = self.right_linear(y) if infer: """ During testing, we will consider millions or even billions of nodes as candidates (x). It's not possible to calculate them again for different query (y) Since the model is fixed, we propose to cache them, and dirrectly use the results. """ if self.cache is not None: tx = self.cache else: tx = self.left_linear(x) self.cache = tx else: tx = self.left_linear(x) if pair: res = (tx * ty).sum(dim=-1) else: res = torch.matmul(tx, ty.transpose(0, 1)) return res / self.sqrt_hd def __repr__(self): return '{}(n_hid={})'.format(self.__class__.__name__, self.n_hid) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Q
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ff/cffi7vxidma5gei4f6wznc3qzapljmsv5w6dvkcys2pj7dzl4a37.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (50, 4), (4, 1)) assert_size_stride(primals_2, (50, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (50, 50), (50, 1)) assert_size_stride(primals_5, (50, ), (1, )) assert_size_stride(primals_6, (4, 50), (50, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 3200, grid=grid(3200), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 50), (1, 50), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 3200, grid=grid(3200), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 50), (50, 1), 0), reinterpret_tensor(primals_6, (50, 4), (1, 50), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(buf3, (64, 50), (50, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((50, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((50, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Q(nn.Module): """ Simple fully connected Q function. Also used for skip-Q when concatenating behaviour action and state together. Used for simpler environments such as mountain-car or lunar-lander. """ def __init__(self, state_dim, action_dim, non_linearity=F.relu, hidden_dim=50): super(Q, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, action_dim) self._non_linearity = non_linearity def forward(self, x): x = self._non_linearity(self.fc1(x)) x = self._non_linearity(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (50, 4), (4, 1)) assert_size_stride(primals_2, (50,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (50, 50), (50, 1)) assert_size_stride(primals_5, (50,), (1,)) assert_size_stride(primals_6, (4, 50), (50, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 50), (50, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 50), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 50), (800, 200, 50, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf1, primals_2, buf6, 3200, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 50), (50, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor(primals_4, (50, 50), (1, 50), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 50), (800, 200, 50, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 50), (800, 200, 50, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(3200)](buf3, primals_5, buf5, 3200, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 50), (50, 1), 0), reinterpret_tensor(primals_6, (50, 4), (1, 50), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 50), (50, 1), 0), reinterpret_tensor( buf3, (64, 50), (50, 1), 0), primals_6, buf5, primals_4, buf6 class QNew(nn.Module): """ Simple fully connected Q function. Also used for skip-Q when concatenating behaviour action and state together. Used for simpler environments such as mountain-car or lunar-lander. """ def __init__(self, state_dim, action_dim, non_linearity=F.relu, hidden_dim=50): super(QNew, self).__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, action_dim) self._non_linearity = non_linearity def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ndangtt/LeadingOnesDAC
Q
false
7,320
[ "Apache-2.0" ]
1
953747d8702f179851d7973c65779a1f830e03a1
https://github.com/ndangtt/LeadingOnesDAC/tree/953747d8702f179851d7973c65779a1f830e03a1
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Simple fully connected Q function. Also used for skip-Q when concatenating behaviour action and state together. Used for simpler environments such as mountain-car or lunar-lander. """ def __init__(self, state_dim, action_dim, non_linearity=F.relu, hidden_dim=50): super().__init__() self.fc1 = nn.Linear(state_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, action_dim) self._non_linearity = non_linearity def forward(self, x): x = self._non_linearity(self.fc1(x)) x = self._non_linearity(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
DropoutModel8x8
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/bt/cbtjbmr5m5c4mhbqxveibnhvbqjvrlxo2hhzizsqqqjncnkataks.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/v7/cv7gcfw662u7ngkptjdt6rpvhxgnpbp6chl34unrai3vjfdilka7.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3600) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gl/cgl6ves5ty3jwlbi6fjlzhdf377vzaqjlefere5arwdb454puopk.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3364) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bj/cbjbrcq2c4lnhq6lfkwbnisuiukkuysklcohvckvnqhyf2svdo6b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3364) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/od/code5feml4gavu33w47mbgt2wqi3jihgm7zvlbtlb5ps56qnbbff.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_4 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3600) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/g5/cg5lsjamxvv2aeqai5phnpjdf52tngyrfukzk3ljx5djh7pp66rl.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_5 => convolution_5 # Graph fragment: # %convolution_5 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6s/c6swfjx2l4pjvp3jilcida2kynci64icvero76ct3j2eygyj7uzn.py # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_6], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv_transpose2d_2 => convolution_6 # x_6 => sigmoid # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_sigmoid_6 = async_compile.triton('triton_poi_fused_convolution_sigmoid_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x3), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_13, (8, ), (1, )) assert_size_stride(primals_14, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_15, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 62, 62), (30752, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 123008, grid=grid(123008), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 230400, grid=grid(230400), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 58, 58), (107648, 3364, 58, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 430592, grid=grid(430592), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 58, 58), (107648, 3364, 58, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf7, primals_9, 430592, grid=grid(430592), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 60, 60), (57600, 3600, 60, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf9, primals_11, 230400, grid=grid(230400), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 8, 62, 62), (30752, 3844, 62, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf11, primals_13, 123008, grid=grid(123008), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_6], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_6.run(buf13, primals_15, 65536, grid=grid(65536), stream=stream0) del primals_15 return (buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((8, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as func class DropoutModel8x8(nn.Module): def __init__(self, channel): """ Define useful layers Argument: channel: number of channel, or depth or number of different sprite types """ super(DropoutModel8x8, self).__init__() self.dropout_1 = nn.Dropout2d(0.3) self.conv_1 = nn.Conv2d(channel, channel * 2, kernel_size=3, stride=1) self.conv_2 = nn.Conv2d(channel * 2, channel * 4, kernel_size=3, stride=1) self.conv_3 = nn.Conv2d(channel * 4, channel * 8, kernel_size=3, stride=1) self.conv_middle = nn.Conv2d(channel * 8, channel * 8, kernel_size= 3, stride=1, padding=1) self.conv_T1 = nn.ConvTranspose2d(channel * 8, channel * 4, kernel_size=3, stride=1) self.conv_T2 = nn.ConvTranspose2d(channel * 4, channel * 2, kernel_size=3, stride=1) self.conv_T3 = nn.ConvTranspose2d(channel * 2, channel, kernel_size =3, stride=1) def forward(self, x): if self.training: x = self.dropout_1(x) x = func.relu(self.conv_1(x)) x = func.relu(self.conv_2(x)) x = func.relu(self.conv_3(x)) x = self.conv_middle(x) x = self.conv_T1(x) x = self.conv_T2(x) x = torch.sigmoid(self.conv_T3(x)) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3600 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3364 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 430592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3364 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3600 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x3, tmp3, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_13, (8,), (1,)) assert_size_stride(primals_14, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_15, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 62, 62), (30752, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(123008)](buf1, primals_2, 123008, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(230400)](buf3, primals_5, 230400, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 58, 58), (107648, 3364, 58, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(430592)](buf5, primals_7, 430592, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 58, 58), (107648, 3364, 58, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_3[grid(430592)](buf7, primals_9, 430592, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 60, 60), (57600, 3600, 60, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_4[grid(230400)](buf9, primals_11, 230400, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 8, 62, 62), (30752, 3844, 62, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_5[grid(123008)](buf11, primals_13, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_sigmoid_6[grid(65536)](buf13, primals_15, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_15 return (buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11, buf13) class DropoutModel8x8New(nn.Module): def __init__(self, channel): """ Define useful layers Argument: channel: number of channel, or depth or number of different sprite types """ super(DropoutModel8x8New, self).__init__() self.dropout_1 = nn.Dropout2d(0.3) self.conv_1 = nn.Conv2d(channel, channel * 2, kernel_size=3, stride=1) self.conv_2 = nn.Conv2d(channel * 2, channel * 4, kernel_size=3, stride=1) self.conv_3 = nn.Conv2d(channel * 4, channel * 8, kernel_size=3, stride=1) self.conv_middle = nn.Conv2d(channel * 8, channel * 8, kernel_size= 3, stride=1, padding=1) self.conv_T1 = nn.ConvTranspose2d(channel * 8, channel * 4, kernel_size=3, stride=1) self.conv_T2 = nn.ConvTranspose2d(channel * 4, channel * 2, kernel_size=3, stride=1) self.conv_T3 = nn.ConvTranspose2d(channel * 2, channel, kernel_size =3, stride=1) def forward(self, input_0): primals_1 = self.conv_1.weight primals_2 = self.conv_1.bias primals_4 = self.conv_2.weight primals_5 = self.conv_2.bias primals_6 = self.conv_3.weight primals_7 = self.conv_3.bias primals_8 = self.conv_middle.weight primals_9 = self.conv_middle.bias primals_10 = self.conv_T1.weight primals_11 = self.conv_T1.bias primals_12 = self.conv_T2.weight primals_13 = self.conv_T2.bias primals_14 = self.conv_T3.weight primals_15 = self.conv_T3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
mwxely/Cross-domain-PCGML-Level-Generator
DropoutModel8x8
false
7,321
[ "MIT" ]
1
baa5d214d6cf22272d144aa6c444a778ac202afe
https://github.com/mwxely/Cross-domain-PCGML-Level-Generator/tree/baa5d214d6cf22272d144aa6c444a778ac202afe
import torch import torch.nn as nn import torch.nn.functional as func class Model(nn.Module): def __init__(self, channel): """ Define useful layers Argument: channel: number of channel, or depth or number of different sprite types """ super().__init__() self.dropout_1 = nn.Dropout2d(0.3) self.conv_1 = nn.Conv2d(channel, channel * 2, kernel_size=3, stride=1) self.conv_2 = nn.Conv2d(channel * 2, channel * 4, kernel_size=3, stride=1) self.conv_3 = nn.Conv2d(channel * 4, channel * 8, kernel_size=3, stride=1) self.conv_middle = nn.Conv2d(channel * 8, channel * 8, kernel_size= 3, stride=1, padding=1) self.conv_T1 = nn.ConvTranspose2d(channel * 8, channel * 4, kernel_size=3, stride=1) self.conv_T2 = nn.ConvTranspose2d(channel * 4, channel * 2, kernel_size=3, stride=1) self.conv_T3 = nn.ConvTranspose2d(channel * 2, channel, kernel_size =3, stride=1) def forward(self, x): if self.training: x = self.dropout_1(x) x = func.relu(self.conv_1(x)) x = func.relu(self.conv_2(x)) x = func.relu(self.conv_3(x)) x = self.conv_middle(x) x = self.conv_T1(x) x = self.conv_T2(x) x = torch.sigmoid(self.conv_T3(x)) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [4]
Attn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/bl/cblmokvcpsr2ttllzsqpn7e5if5ssmadzarqlyj626zemyxwynho.py # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%unsqueeze, [4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/el/celbwovrpqdj7xcqvgqem6nca5pczte5x37qb6upvds3ndwqwm5d.py # Topologically Sorted Source Nodes: [relu, attentions], Original ATen: [aten.relu, aten._softmax, aten.threshold_backward] # Source node to ATen node mapping: # attentions => amax, exp, sub # relu => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%relu, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused__softmax_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused__softmax_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_relu_threshold_backward_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp6 = triton_helpers.maximum(tmp1, tmp5) tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = triton_helpers.maximum(tmp1, tmp8) tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = triton_helpers.maximum(tmp1, tmp11) tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tl_math.exp(tmp14) tmp16 = 0.0 tmp17 = tmp2 <= tmp16 tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py # Topologically Sorted Source Nodes: [attentions], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attentions => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pa/cpatphiiryly7si3mmav4yhq6he4gwiz2bx745alhtxbbb5643hi.py # Topologically Sorted Source Nodes: [weighted_input], Original ATen: [aten.mul] # Source node to ATen node mapping: # weighted_input => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] stream0 = get_raw_stream(0) triton_poi_fused_repeat_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat, weights], Original ATen: [aten.repeat, aten.bmm] extern_kernels.bmm(primals_1, buf0, out=buf1) buf2 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu, attentions], Original ATen: [aten.relu, aten._softmax, aten.threshold_backward] triton_poi_fused__softmax_relu_threshold_backward_1.run(buf1, buf2, buf5, 16, grid=grid(16), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attentions], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0) del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weighted_input], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(primals_1, buf3, buf4, 64, grid=grid(64), stream=stream0) return (buf4, buf3, primals_1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from numpy import sqrt class Attn(nn.Module): def __init__(self, hidden_size, batch_first=True): super(Attn, self).__init__() self.hidden_size = hidden_size self.batch_first = batch_first self.weights = nn.Parameter(torch.Tensor(hidden_size, 1)) stdv = 1.0 / sqrt(self.hidden_size) for weight in self.weights: nn.init.uniform_(weight, -stdv, stdv) def forward(self, x): if self.batch_first: batch_size, _seq_size = x.size()[:2] else: _seq_size, batch_size = x.size()[:2] weights = torch.bmm(x, self.weights.unsqueeze(0).repeat(batch_size, 1, 1)) attentions = torch.softmax(F.relu(weights.squeeze()), dim=-1) weighted_input = torch.mul(x, attentions.unsqueeze(-1).expand_as(x)) return weighted_input, attentions def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from numpy import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused__softmax_relu_threshold_backward_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp6 = triton_helpers.maximum(tmp1, tmp5) tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = triton_helpers.maximum(tmp1, tmp8) tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = triton_helpers.maximum(tmp1, tmp11) tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tl_math.exp(tmp14) tmp16 = 0.0 tmp17 = tmp2 <= tmp16 tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_repeat_0[grid(16)](primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(primals_1, buf0, out=buf1) buf2 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused__softmax_relu_threshold_backward_1[grid(16)](buf1, buf2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_3[grid(64)](primals_1, buf3, buf4, 64, XBLOCK= 64, num_warps=1, num_stages=1) return buf4, buf3, primals_1, buf3, buf5 class AttnNew(nn.Module): def __init__(self, hidden_size, batch_first=True): super(AttnNew, self).__init__() self.hidden_size = hidden_size self.batch_first = batch_first self.weights = nn.Parameter(torch.Tensor(hidden_size, 1)) stdv = 1.0 / sqrt(self.hidden_size) for weight in self.weights: nn.init.uniform_(weight, -stdv, stdv) def forward(self, input_0): primals_2 = self.weights primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
nauhc/biLSTM-many-to-one
Attn
false
7,322
[ "MIT" ]
1
14dab1c75b395c88bdddfe751461af7dc30e1166
https://github.com/nauhc/biLSTM-many-to-one/tree/14dab1c75b395c88bdddfe751461af7dc30e1166
import torch import torch.nn as nn import torch.nn.functional as F from numpy import sqrt class Model(nn.Module): def __init__(self, hidden_size, batch_first=True): super().__init__() self.hidden_size = hidden_size self.batch_first = batch_first self.weights = nn.Parameter(torch.Tensor(hidden_size, 1)) stdv = 1.0 / sqrt(self.hidden_size) for weight in self.weights: nn.init.uniform_(weight, -stdv, stdv) def forward(self, x): if self.batch_first: batch_size, _seq_size = x.size()[:2] else: _seq_size, batch_size = x.size()[:2] weights = torch.bmm(x, self.weights.unsqueeze(0).repeat(batch_size, 1, 1)) attentions = torch.softmax(F.relu(weights.squeeze()), dim=-1) weighted_input = torch.mul(x, attentions.unsqueeze(-1).expand_as(x)) return weighted_input, attentions def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
VAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3q/c3qwr2d2rrpjzvnddomnmdy6cwva4hjlvrn2y5epemk4ak3k2m6c.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] # Source node to ATen node mapping: # h1 => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jd/cjdtedosfkoutmd76tpyaejxhpwspa7takf5bagemxu5kt4jquxx.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_11), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 784 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (400, 784), (784, 1)) assert_size_stride(primals_3, (400, ), (1, )) assert_size_stride(primals_4, (20, 400), (400, 1)) assert_size_stride(primals_5, (20, ), (1, )) assert_size_stride(primals_6, (20, 400), (400, 1)) assert_size_stride(primals_7, (20, ), (1, )) assert_size_stride(primals_8, (400, 20), (20, 1)) assert_size_stride(primals_9, (400, ), (1, )) assert_size_stride(primals_10, (784, 400), (400, 1)) assert_size_stride(primals_11, (784, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 400), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 1600, grid=grid(1600), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 20), (1, 400), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 20), (20, 1), torch.float32) # Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 20), (1, 400), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 400), (400, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_8, (20, 400), (1, 20), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf5, primals_9, 1600, grid=grid(1600), stream=stream0) del primals_9 buf6 = empty_strided_cuda((4, 784), (784, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_10, (400, 784), (1, 400), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf7, primals_11, 3136, grid=grid(3136), stream=stream0) del primals_11 return (buf7, buf2, buf3, primals_1, buf1, buf2, buf5, buf7, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((400, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((20, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((400, 20), (20, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((784, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((784, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class VAE(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def decode(self, z): h3 = F.relu(self.fc3(z)) return F.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(x.view(-1, 784)) z = self.reparameterize(mu, logvar) return self.decode(z), mu, logvar def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 400 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 784 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (400, 784), (784, 1)) assert_size_stride(primals_3, (400,), (1,)) assert_size_stride(primals_4, (20, 400), (400, 1)) assert_size_stride(primals_5, (20,), (1,)) assert_size_stride(primals_6, (20, 400), (400, 1)) assert_size_stride(primals_7, (20,), (1,)) assert_size_stride(primals_8, (400, 20), (20, 1)) assert_size_stride(primals_9, (400,), (1,)) assert_size_stride(primals_10, (784, 400), (400, 1)) assert_size_stride(primals_11, (784,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 400), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(1600)](buf1, primals_3, 1600, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 20), (20, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (400, 20), (1, 400), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 20), (20, 1), torch.float32) extern_kernels.addmm(primals_7, buf1, reinterpret_tensor(primals_6, (400, 20), (1, 400), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_8, (20, 400), (1, 20), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_0[grid(1600)](buf5, primals_9, 1600, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf6 = empty_strided_cuda((4, 784), (784, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_10, (400, 784), (1, 400), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_sigmoid_1[grid(3136)](buf7, primals_11, 3136, XBLOCK=128, num_warps=4, num_stages=1) del primals_11 return (buf7, buf2, buf3, primals_1, buf1, buf2, buf5, buf7, primals_10, primals_8, primals_6, primals_4) class VAENew(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def decode(self, z): h3 = F.relu(self.fc3(z)) return F.sigmoid(self.fc4(h3)) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc21.weight primals_5 = self.fc21.bias primals_6 = self.fc22.weight primals_7 = self.fc22.bias primals_8 = self.fc3.weight primals_9 = self.fc3.bias primals_10 = self.fc4.weight primals_11 = self.fc4.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1], output[2]
nd1511/argus
VAE
false
7,323
[ "MIT" ]
1
00aaed41ac1321d669ac7060f4d21b24cc3456f0
https://github.com/nd1511/argus/tree/00aaed41ac1321d669ac7060f4d21b24cc3456f0
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def decode(self, z): h3 = F.relu(self.fc3(z)) return F.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(x.view(-1, 784)) z = self.reparameterize(mu, logvar) return self.decode(z), mu, logvar def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return []
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/5r/c5rqrqkujbmkvgeup36fkdfjs6rct2qovadf2yme6qovehmb7klh.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # x => add # x_1 => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [pred], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # pred => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [pred], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # pred => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 16), (16, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (16, ), (1, )) assert_size_stride(primals_5, (16, 16), (16, 1)) assert_size_stride(primals_6, (16, ), (1, )) assert_size_stride(primals_7, (16, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf2, primals_4, 64, grid=grid(64), stream=stream0) del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf3, out=buf4) del buf3 buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.add, aten.relu] triton_poi_fused_add_relu_0.run(buf5, primals_6, 64, grid=grid(64), stream=stream0) del primals_6 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support_2], Original ATen: [aten.mm] extern_kernels.mm(buf5, primals_7, out=buf6) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.addmm(primals_8, primals_3, buf6, alpha=1, beta=1, out=buf7) del primals_8 buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [pred], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf7, buf8, 16, grid=grid(16), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [pred], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf8, buf9, 16, grid=grid(16), stream=stream0) del buf8 return (buf9, buf2, buf5, buf9, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), reinterpret_tensor(primals_5, (16, 16), (1, 16), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch from torch.nn.parameter import Parameter from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.functional as F class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, topology, bsize, i, n_class, bias=True): super(GraphConvolution, self).__init__() if i == 0: self.in_features = in_features else: self.in_features = topology[i - 1] * bsize if i == len(topology): self.out_features = n_class else: self.out_features = topology[i] * bsize self.weight = Parameter(torch.FloatTensor(self.in_features, self. out_features)) if bias: self.bias = Parameter(torch.FloatTensor(self.out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCN(nn.Module): def __init__(self, infeat, bsize, topology, n_class, dropout): super(GCN, self).__init__() self.num_layers = len(topology) self.layers = nn.ModuleDict({'gc{}'.format(i): GraphConvolution( infeat, topology, bsize, i, n_class) for i in range(self. num_layers)}) self.outlayer = GraphConvolution(infeat, topology, bsize, self. num_layers, n_class) self.dropout = dropout def forward(self, x, adj, ls=False): for i in range(self.num_layers): x = self.layers['gc' + str(i)](x, adj) x = F.relu(x) if i == 0: x = F.dropout(x, self.dropout, training=self.training) if ls: pred = x else: x = self.outlayer(x, adj) pred = F.log_softmax(x, dim=1) return pred def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'infeat': 4, 'bsize': 4, 'topology': [4, 4], 'n_class': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import math from torch.nn.parameter import Parameter from torch.nn.modules.module import Module import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 16), (16, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (16,), (1,)) assert_size_stride(primals_5, (16, 16), (16, 1)) assert_size_stride(primals_6, (16,), (1,)) assert_size_stride(primals_7, (16, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(64)](buf2, primals_4, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(primals_3, buf3, out=buf4) del buf3 buf5 = buf4 del buf4 triton_poi_fused_add_relu_0[grid(64)](buf5, primals_6, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_6 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, primals_7, out=buf6) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, primals_3, buf6, alpha=1, beta=1, out=buf7) del primals_8 buf8 = buf6 del buf6 triton_poi_fused__log_softmax_1[grid(16)](buf7, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__log_softmax_2[grid(16)](buf8, buf9, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf8 return buf9, buf2, buf5, buf9, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_7, (4, 16), (1, 4), 0 ), reinterpret_tensor(primals_5, (16, 16), (1, 16), 0 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, topology, bsize, i, n_class, bias=True): super(GraphConvolution, self).__init__() if i == 0: self.in_features = in_features else: self.in_features = topology[i - 1] * bsize if i == len(topology): self.out_features = n_class else: self.out_features = topology[i] * bsize self.weight = Parameter(torch.FloatTensor(self.in_features, self. out_features)) if bias: self.bias = Parameter(torch.FloatTensor(self.out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCNNew(nn.Module): def __init__(self, infeat, bsize, topology, n_class, dropout): super(GCNNew, self).__init__() self.num_layers = len(topology) self.layers = nn.ModuleDict({'gc{}'.format(i): GraphConvolution( infeat, topology, bsize, i, n_class) for i in range(self. num_layers)}) self.outlayer = GraphConvolution(infeat, topology, bsize, self. num_layers, n_class) self.dropout = dropout def forward(self, input_0, input_1): primals_1 = self.layers.gc0.weight primals_4 = self.layers.gc0.bias primals_5 = self.layers.gc1.weight primals_6 = self.layers.gc1.bias primals_7 = self.outlayer.weight primals_8 = self.outlayer.bias primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
negarhdr/PGCN
GCN
false
7,324
[ "MIT" ]
1
5143049afcfadc5ab0173e6083ebbb4fd8c8903d
https://github.com/negarhdr/PGCN/tree/5143049afcfadc5ab0173e6083ebbb4fd8c8903d
from torch.nn import Module import math import torch from torch.nn.parameter import Parameter from torch.nn.modules.module import Module import torch.nn as nn import torch.nn.functional as F class GraphConvolution(Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, topology, bsize, i, n_class, bias=True): super().__init__() if i == 0: self.in_features = in_features else: self.in_features = topology[i - 1] * bsize if i == len(topology): self.out_features = n_class else: self.out_features = topology[i] * bsize self.weight = Parameter(torch.FloatTensor(self.in_features, self. out_features)) if bias: self.bias = Parameter(torch.FloatTensor(self.out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class Model(nn.Module): def __init__(self, infeat, bsize, topology, n_class, dropout): super().__init__() self.num_layers = len(topology) self.layers = nn.ModuleDict({'gc{}'.format(i): GraphConvolution( infeat, topology, bsize, i, n_class) for i in range(self. num_layers)}) self.outlayer = GraphConvolution(infeat, topology, bsize, self. num_layers, n_class) self.dropout = dropout def forward(self, x, adj, ls=False): for i in range(self.num_layers): x = self.layers['gc' + str(i)](x, adj) x = F.relu(x) if i == 0: x = F.dropout(x, self.dropout, training=self.training) if ls: pred = x else: x = self.outlayer(x, adj) pred = F.log_softmax(x, dim=1) return pred def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'infeat': 4, 'bsize': 4, 'topology': [4, 4], 'n_class': 4, 'dropout': 0.5}]
Perceptron
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zi/czi6taqk3yywywfl3iwbejutxysbxi6hrg6s2rrrevzoemnmagnw.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6h/c6hgrncbhy7kjladlqflhqnw52mciqxt6qj53hxyw2giskevmcnl.py # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view] # Source node to ATen node mapping: # linear_1 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/uu/cuuzthplaeal57d4a7qc3d5glgcrm6drww2436xzjpxvtfwoxeym.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_8,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf4, 256, grid=grid(256), stream=stream0) return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf4, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Perceptron(nn.Module): """Implements a 1-layer perceptron.""" def __init__(self, input_dimension, hidden_dimension, output_dimension): super(Perceptron, self).__init__() self._layer1 = nn.Linear(input_dimension, hidden_dimension) self._layer2 = nn.Linear(hidden_dimension, output_dimension, bias=False ) def forward(self, inp): return F.sigmoid(self._layer2(F.relu(self._layer1(inp), inplace=True))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dimension': 4, 'hidden_dimension': 4, 'output_dimension': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0) del buf1 extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_sigmoid_2[grid(256)](buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, buf4, primals_4, buf5 class PerceptronNew(nn.Module): """Implements a 1-layer perceptron.""" def __init__(self, input_dimension, hidden_dimension, output_dimension): super(PerceptronNew, self).__init__() self._layer1 = nn.Linear(input_dimension, hidden_dimension) self._layer2 = nn.Linear(hidden_dimension, output_dimension, bias=False ) def forward(self, input_0): primals_1 = self._layer1.weight primals_2 = self._layer1.bias primals_4 = self._layer2.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
negotiatorvivian/SAT-Solver
Perceptron
false
7,325
[ "MIT" ]
1
acbf375ce73103e945aee3e2a225126684a19076
https://github.com/negotiatorvivian/SAT-Solver/tree/acbf375ce73103e945aee3e2a225126684a19076
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """Implements a 1-layer perceptron.""" def __init__(self, input_dimension, hidden_dimension, output_dimension): super().__init__() self._layer1 = nn.Linear(input_dimension, hidden_dimension) self._layer2 = nn.Linear(hidden_dimension, output_dimension, bias=False ) def forward(self, inp): return F.sigmoid(self._layer2(F.relu(self._layer1(inp), inplace=True))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dimension': 4, 'hidden_dimension': 4, 'output_dimension': 4}]
PerceptronTanh
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zi/czi6taqk3yywywfl3iwbejutxysbxi6hrg6s2rrrevzoemnmagnw.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6h/c6hgrncbhy7kjladlqflhqnw52mciqxt6qj53hxyw2giskevmcnl.py # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view] # Source node to ATen node mapping: # linear_1 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/go/cgopseyzzv3w63b5jv7s6dhjcmlplinmoz74mtsgq6oaberlqmbt.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_8,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf4, 256, grid=grid(256), stream=stream0) return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf4, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class PerceptronTanh(nn.Module): """Implements a 1-layer perceptron with Tanh activaton.""" def __init__(self, input_dimension, hidden_dimension, output_dimension): super(PerceptronTanh, self).__init__() self._layer1 = nn.Linear(input_dimension, hidden_dimension) self._layer2 = nn.Linear(hidden_dimension, output_dimension, bias=False ) def forward(self, inp): return F.tanh(self._layer2(F.relu(self._layer1(inp), inplace=True))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dimension': 4, 'hidden_dimension': 4, 'output_dimension': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0) del buf1 extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_tanh_2[grid(256)](buf4, 256, XBLOCK=128, num_warps =4, num_stages=1) return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, buf4, primals_4, buf5 class PerceptronTanhNew(nn.Module): """Implements a 1-layer perceptron with Tanh activaton.""" def __init__(self, input_dimension, hidden_dimension, output_dimension): super(PerceptronTanhNew, self).__init__() self._layer1 = nn.Linear(input_dimension, hidden_dimension) self._layer2 = nn.Linear(hidden_dimension, output_dimension, bias=False ) def forward(self, input_0): primals_1 = self._layer1.weight primals_2 = self._layer1.bias primals_4 = self._layer2.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
negotiatorvivian/SAT-Solver
PerceptronTanh
false
7,326
[ "MIT" ]
1
acbf375ce73103e945aee3e2a225126684a19076
https://github.com/negotiatorvivian/SAT-Solver/tree/acbf375ce73103e945aee3e2a225126684a19076
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """Implements a 1-layer perceptron with Tanh activaton.""" def __init__(self, input_dimension, hidden_dimension, output_dimension): super().__init__() self._layer1 = nn.Linear(input_dimension, hidden_dimension) self._layer2 = nn.Linear(hidden_dimension, output_dimension, bias=False ) def forward(self, inp): return F.tanh(self._layer2(F.relu(self._layer1(inp), inplace=True))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dimension': 4, 'hidden_dimension': 4, 'output_dimension': 4}]
ConfidentMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/od/codxjpk4dmqwyksxoe2mwv4ftwthsnntp4epjjoghk3xsimbr6ha.py # Topologically Sorted Source Nodes: [sub, diff, diff_conf, loss], Original ATen: [aten.sub, aten.pow, aten.mul, aten.mean] # Source node to ATen node mapping: # diff => pow_1 # diff_conf => mul # loss => mean # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %view_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 0.96 tmp5 = tmp1 > tmp4 tmp6 = tmp5.to(tl.float32) tmp7 = tmp3 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, diff, diff_conf, loss], Original ATen: [aten.sub, aten.pow, aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch class ConfidentMSELoss(Module): def __init__(self, threshold=0.96): self.threshold = threshold super().__init__() def forward(self, input, target): n = input.size(0) conf_mask = torch.gt(target, self.threshold).float() input_flat = input.view(n, -1) target_flat = target.view(n, -1) conf_mask_flat = conf_mask.view(n, -1) diff = (input_flat - target_flat) ** 2 diff_conf = diff * conf_mask_flat loss = diff_conf.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 0.96 tmp5 = tmp1 > tmp4 tmp6 = tmp5.to(tl.float32) tmp7 = tmp3 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class ConfidentMSELossNew(Module): def __init__(self, threshold=0.96): self.threshold = threshold super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
neuropoly/medicaltorch
ConfidentMSELoss
false
7,327
[ "Apache-2.0" ]
1
ac129fe894cb1906285dfe380ba4f0aa3bdec787
https://github.com/neuropoly/medicaltorch/tree/ac129fe894cb1906285dfe380ba4f0aa3bdec787
from torch.nn import Module import torch class Model(Module): def __init__(self, threshold=0.96): self.threshold = threshold super().__init__() def forward(self, input, target): n = input.size(0) conf_mask = torch.gt(target, self.threshold).float() input_flat = input.view(n, -1) target_flat = target.view(n, -1) conf_mask_flat = conf_mask.view(n, -1) diff = (input_flat - target_flat) ** 2 diff_conf = diff * conf_mask_flat loss = diff_conf.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Conv2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [2], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/l7/cl73m2z7ubizl4gjzahoztnfbxiinsybshrc4sjlnb7hovne23sz.py # Topologically Sorted Source Nodes: [sigmoid, tanh, mul], Original ATen: [aten.sigmoid, aten.tanh, aten.mul] # Source node to ATen node mapping: # mul => mul # sigmoid => sigmoid # tanh => tanh # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%getitem_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) triton_poi_fused_mul_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (8*x1)), xmask) tmp6 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (4 + x0 + (8*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp12 = tmp5 * tmp11 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (8, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (8, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 8, 1), (8, 1, 1)) del buf0 buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(primals_4, reinterpret_tensor(primals_5, (4, 8), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, tanh, mul], Original ATen: [aten.sigmoid, aten.tanh, aten.mul] triton_poi_fused_mul_sigmoid_tanh_1.run(buf1, primals_3, buf2, buf3, buf4, buf5, 16, grid=grid(16), stream=stream0) del buf1 del buf2 del primals_3 return (buf5, primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class Conv2(nn.Module): """ A convolution layer with the stride of 2. Input: x: (N, 2L+2, in_channels) numeric tensor global_cond: (N, global_cond_channels) numeric tensor Output: y: (N, L, out_channels) numeric tensor """ def __init__(self, in_channels, out_channels, global_cond_channels): super().__init__() ksz = 4 self.out_channels = out_channels if 0 < global_cond_channels: self.w_cond = nn.Linear(global_cond_channels, 2 * out_channels, bias=False) self.conv_wide = nn.Conv1d(in_channels, 2 * out_channels, ksz, stride=2 ) wsize = 2.967 / math.sqrt(ksz * in_channels) self.conv_wide.weight.data.uniform_(-wsize, wsize) self.conv_wide.bias.data.zero_() def forward(self, x, global_cond): x1 = self.conv_wide(x.transpose(1, 2)).transpose(1, 2) if global_cond is not None: x2 = self.w_cond(global_cond).unsqueeze(1).expand(-1, x1.size(1 ), -1) else: x2 = torch.zeros_like(x1) a, b = (x1 + x2).split(self.out_channels, dim=2) return torch.sigmoid(a) * torch.tanh(b) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'global_cond_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 8 * x1), xmask) tmp6 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp7 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (4 + x0 + 8 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp12 = tmp5 * tmp11 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (8, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (8, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 8, 1), (8, 1, 1)) del buf0 buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_4, reinterpret_tensor(primals_5, (4, 8), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_tanh_1[grid(16)](buf1, primals_3, buf2, buf3, buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del buf2 del primals_3 return buf5, primals_2, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf3, buf4 class Conv2New(nn.Module): """ A convolution layer with the stride of 2. Input: x: (N, 2L+2, in_channels) numeric tensor global_cond: (N, global_cond_channels) numeric tensor Output: y: (N, L, out_channels) numeric tensor """ def __init__(self, in_channels, out_channels, global_cond_channels): super().__init__() ksz = 4 self.out_channels = out_channels if 0 < global_cond_channels: self.w_cond = nn.Linear(global_cond_channels, 2 * out_channels, bias=False) self.conv_wide = nn.Conv1d(in_channels, 2 * out_channels, ksz, stride=2 ) wsize = 2.967 / math.sqrt(ksz * in_channels) self.conv_wide.weight.data.uniform_(-wsize, wsize) self.conv_wide.bias.data.zero_() def forward(self, input_0, input_1): primals_5 = self.w_cond.weight primals_2 = self.conv_wide.weight primals_3 = self.conv_wide.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
neverix/voice-conv
Conv2
false
7,328
[ "MIT" ]
1
6df0053a59aa26318bdbc096dd312ecc55596ac0
https://github.com/neverix/voice-conv/tree/6df0053a59aa26318bdbc096dd312ecc55596ac0
import math import torch import torch.nn as nn class Model(nn.Module): """ A convolution layer with the stride of 2. Input: x: (N, 2L+2, in_channels) numeric tensor global_cond: (N, global_cond_channels) numeric tensor Output: y: (N, L, out_channels) numeric tensor """ def __init__(self, in_channels, out_channels, global_cond_channels): super().__init__() ksz = 4 self.out_channels = out_channels if 0 < global_cond_channels: self.w_cond = nn.Linear(global_cond_channels, 2 * out_channels, bias=False) self.conv_wide = nn.Conv1d(in_channels, 2 * out_channels, ksz, stride=2 ) wsize = 2.967 / math.sqrt(ksz * in_channels) self.conv_wide.weight.data.uniform_(-wsize, wsize) self.conv_wide.bias.data.zero_() def forward(self, x, global_cond): x1 = self.conv_wide(x.transpose(1, 2)).transpose(1, 2) if global_cond is not None: x2 = self.w_cond(global_cond).unsqueeze(1).expand(-1, x1.size(1 ), -1) else: x2 = torch.zeros_like(x1) a, b = (x1 + x2).split(self.out_channels, dim=2) return torch.sigmoid(a) * torch.tanh(b) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'global_cond_channels': 4}]
Attention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(arg0_1, reinterpret_tensor(arg1_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn_out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), arg1_1, out=buf3) del arg1_1 return (buf3, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): """ Applies an attention mechanism on the query features from the decoder. .. math:: \\begin{array}{ll} x = context*query \\\\ attn_scores = exp(x_i) / sum_j exp(x_j) \\\\ attn_out = attn * context \\end{array} Args: dim(int): The number of expected features in the query Inputs: query, context - **query** (batch, query_len, dimensions): tensor containing the query features from the decoder. - **context** (batch, input_len, dimensions): tensor containing features of the encoded input sequence. Outputs: query, attn - **query** (batch, query_len, dimensions): tensor containing the attended query features from the decoder. - **attn** (batch, query_len, input_len): tensor containing attention weights. Attributes: mask (torch.Tensor, optional): applies a :math:`-inf` to the indices specified in the `Tensor`. """ def __init__(self): super(Attention, self).__init__() self.mask = None def set_mask(self, mask): """ Sets indices to be masked Args: mask (torch.Tensor): tensor containing indices to be masked """ self.mask = mask """ - query (batch, query_len, dimensions): tensor containing the query features from the decoder. - context (batch, input_len, dimensions): tensor containing features of the encoded input sequence. """ def forward(self, query, context): batch_size = query.size(0) query.size(2) in_len = context.size(1) attn = torch.bmm(query, context.transpose(1, 2)) if self.mask is not None: attn.data.masked_fill_(self.mask, -float('inf')) attn_scores = F.softmax(attn.view(-1, in_len), dim=1).view(batch_size, -1, in_len) attn_out = torch.bmm(attn_scores, context) return attn_out, attn_scores def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg0_1, reinterpret_tensor(arg1_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), arg1_1, out=buf3) del arg1_1 return buf3, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0) class AttentionNew(nn.Module): """ Applies an attention mechanism on the query features from the decoder. .. math:: \\begin{array}{ll} x = context*query \\\\ attn_scores = exp(x_i) / sum_j exp(x_j) \\\\ attn_out = attn * context \\end{array} Args: dim(int): The number of expected features in the query Inputs: query, context - **query** (batch, query_len, dimensions): tensor containing the query features from the decoder. - **context** (batch, input_len, dimensions): tensor containing features of the encoded input sequence. Outputs: query, attn - **query** (batch, query_len, dimensions): tensor containing the attended query features from the decoder. - **attn** (batch, query_len, input_len): tensor containing attention weights. Attributes: mask (torch.Tensor, optional): applies a :math:`-inf` to the indices specified in the `Tensor`. """ def __init__(self): super(AttentionNew, self).__init__() self.mask = None def set_mask(self, mask): """ Sets indices to be masked Args: mask (torch.Tensor): tensor containing indices to be masked """ self.mask = mask """ - query (batch, query_len, dimensions): tensor containing the query features from the decoder. - context (batch, input_len, dimensions): tensor containing features of the encoded input sequence. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
nguyenxuanhoi2903/SRSF_summarization
Attention
false
7,329
[ "MIT" ]
1
3d19e6b7669e0b22bab533fc637a434f379ed392
https://github.com/nguyenxuanhoi2903/SRSF_summarization/tree/3d19e6b7669e0b22bab533fc637a434f379ed392
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Applies an attention mechanism on the query features from the decoder. .. math:: \\begin{array}{ll} x = context*query \\\\ attn_scores = exp(x_i) / sum_j exp(x_j) \\\\ attn_out = attn * context \\end{array} Args: dim(int): The number of expected features in the query Inputs: query, context - **query** (batch, query_len, dimensions): tensor containing the query features from the decoder. - **context** (batch, input_len, dimensions): tensor containing features of the encoded input sequence. Outputs: query, attn - **query** (batch, query_len, dimensions): tensor containing the attended query features from the decoder. - **attn** (batch, query_len, input_len): tensor containing attention weights. Attributes: mask (torch.Tensor, optional): applies a :math:`-inf` to the indices specified in the `Tensor`. """ def __init__(self): super().__init__() self.mask = None def set_mask(self, mask): """ Sets indices to be masked Args: mask (torch.Tensor): tensor containing indices to be masked """ self.mask = mask """ - query (batch, query_len, dimensions): tensor containing the query features from the decoder. - context (batch, input_len, dimensions): tensor containing features of the encoded input sequence. """ def forward(self, query, context): batch_size = query.size(0) query.size(2) in_len = context.size(1) attn = torch.bmm(query, context.transpose(1, 2)) if self.mask is not None: attn.data.masked_fill_(self.mask, -float('inf')) attn_scores = F.softmax(attn.view(-1, in_len), dim=1).view(batch_size, -1, in_len) attn_out = torch.bmm(attn_scores, context) return attn_out, attn_scores def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return []
MinusRbfHSIC
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/e7/ce7xjdj2tvxcwlhhngstv777hdifvqsxqnkbqoex2db5kmz3pccu.py # Topologically Sorted Source Nodes: [Xn, X_1], Original ATen: [aten.linalg_vector_norm, aten.div] # Source node to ATen node mapping: # X_1 => div # Xn => pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %pow_2), kwargs = {}) triton_per_fused_div_linalg_vector_norm_0 = async_compile.triton('triton_per_fused_div_linalg_vector_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_linalg_vector_norm_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp0 / tmp6 tl.store(out_ptr1 + (r1 + (64*x0)), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gv/cgvqntvmbnygnswu42nmfoc5z5zjax6kxfpgxm6jtykcehwkrvi7.py # Topologically Sorted Source Nodes: [mul, add, X_L2, X_L2_1, mean, mul_1, gamma, neg, mul_2, kernel_XX, diag_2, tK, sum_1], Original ATen: [aten.mul, aten.add, aten.clamp, aten.mean, aten.reciprocal, aten.neg, aten.exp, aten.diagonal_copy, aten.sub, aten.sum] # Source node to ATen node mapping: # X_L2 => add_1 # X_L2_1 => clamp_min # add => add # diag_2 => diagonal_copy_2 # gamma => mul_2, reciprocal # kernel_XX => exp # mean => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_3 # neg => neg # sum_1 => sum_4 # tK => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, -2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %unsqueeze_1), kwargs = {}) # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, 1e-12), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 2), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %clamp_min), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_3,), kwargs = {}) # %diagonal_copy_2 : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%exp,), kwargs = {}) # %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%exp, %diagonal_copy_2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1 = async_compile.triton('triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1(in_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr0 + (5*r1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last') tmp1 = -2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 1e-12 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = 16.0 tmp13 = tmp11 / tmp12 tmp14 = 2.0 tmp15 = tmp13 * tmp14 tmp16 = tl.full([1, 1], 1, tl.int32) tmp17 = tmp16 / tmp15 tmp18 = 1.0 tmp19 = tmp17 * tmp18 tmp20 = -tmp19 tmp21 = tmp20 * tmp8 tmp22 = tl_math.exp(tmp21) tmp23 = tmp5 * tmp1 tmp24 = tmp23 + tmp5 tmp25 = tmp24 + tmp5 tmp26 = triton_helpers.maximum(tmp25, tmp7) tmp27 = tmp20 * tmp26 tmp28 = tl_math.exp(tmp27) tmp29 = tmp22 - tmp28 tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tl.store(out_ptr1 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp29, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp32, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sq/csq4ts4ymmp3skpjo5ndeq3xb7zhrbverearsk22gshhezg3xbgj.py # Topologically Sorted Source Nodes: [trace, mul_6, truediv_2, truediv_3, add_4, sum_3, sum_4, dot, mul_7, truediv_4, hsic, truediv_5, neg_2], Original ATen: [aten.trace, aten.mul, aten.div, aten.add, aten.sum, aten.dot, aten.sub, aten.neg] # Source node to ATen node mapping: # add_4 => add_4 # dot => mul_9, sum_8 # hsic => sub_2 # mul_6 => mul_8 # mul_7 => mul_10 # neg_2 => neg_2 # sum_3 => sum_6 # sum_4 => sum_7 # trace => diagonal_copy_4, sum_3 # truediv_2 => div_2 # truediv_3 => div_3 # truediv_4 => div_4 # truediv_5 => div_5 # Graph fragment: # %diagonal_copy_4 : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%mm_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%diagonal_copy_4,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, %sum_5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_8, 3), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div_2, 2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %div_3), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub, [0]), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_1, [0]), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_6, %sum_7), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_9,), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, 2), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_10, 2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_4, %div_4), kwargs = {}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, 4), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div_5,), kwargs = {}) triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2 = async_compile.triton('triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=(6,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (r0), None) tmp5 = tl.load(in_ptr1 + (4 + r0), None) tmp7 = tl.load(in_ptr1 + (8 + r0), None) tmp9 = tl.load(in_ptr1 + (12 + r0), None) tmp11 = tl.load(in_ptr2 + (r0), None) tmp12 = tl.load(in_ptr2 + (4 + r0), None) tmp14 = tl.load(in_ptr2 + (8 + r0), None) tmp16 = tl.load(in_ptr2 + (12 + r0), None) tmp22 = tl.load(in_ptr3 + (0)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, 1]) tmp24 = tl.load(in_ptr4 + (0)) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, 1]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp18 = tmp10 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp26 = tmp23 * tmp25 tmp27 = 0.3333333333333333 tmp28 = tmp26 * tmp27 tmp29 = 0.5 tmp30 = tmp28 * tmp29 tmp31 = tmp3 + tmp30 tmp32 = 2.0 tmp33 = tmp21 * tmp32 tmp34 = tmp33 * tmp29 tmp35 = tmp31 - tmp34 tmp36 = 0.25 tmp37 = tmp35 * tmp36 tmp38 = -tmp37 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp38, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [Xn, X_1], Original ATen: [aten.linalg_vector_norm, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_linalg_vector_norm_0.run(arg0_1, buf1, 4, 64, grid=grid(4), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [XX], Original ATen: [aten.mm] extern_kernels.mm(buf1, reinterpret_tensor(buf1, (64, 4), (1, 64), 0), out=buf2) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul, add, X_L2, X_L2_1, mean, mul_1, gamma, neg, mul_2, kernel_XX, diag_2, tK, sum_1], Original ATen: [aten.mul, aten.add, aten.clamp, aten.mean, aten.reciprocal, aten.neg, aten.exp, aten.diagonal_copy, aten.sub, aten.sum] triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1.run(buf2, buf4, buf12, 1, 16, grid=grid(1), stream=stream0) buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [Xn_1, X_3], Original ATen: [aten.linalg_vector_norm, aten.div] triton_per_fused_div_linalg_vector_norm_0.run(arg1_1, buf6, 4, 64, grid=grid(4), stream=stream0) del arg1_1 buf7 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [XX_1], Original ATen: [aten.mm] extern_kernels.mm(buf6, reinterpret_tensor(buf6, (64, 4), (1, 64), 0), out=buf7) del buf6 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf13 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul_3, add_2, X_L2_2, X_L2_3, mean_1, mul_4, gamma_1, neg_1, mul_5, kernel_XX_1, diag_3, tL, sum_2], Original ATen: [aten.mul, aten.add, aten.clamp, aten.mean, aten.reciprocal, aten.neg, aten.exp, aten.diagonal_copy, aten.sub, aten.sum] triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1.run(buf7, buf9, buf13, 1, 16, grid=grid(1), stream=stream0) buf10 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(buf4, buf9, out=buf10) buf11 = empty_strided_cuda((), (), torch.float32) buf15 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [trace, mul_6, truediv_2, truediv_3, add_4, sum_3, sum_4, dot, mul_7, truediv_4, hsic, truediv_5, neg_2], Original ATen: [aten.trace, aten.mul, aten.div, aten.add, aten.sum, aten.dot, aten.sub, aten.neg] triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2.run(buf15, buf10, buf4, buf9, buf12, buf13, 1, 4, grid=grid(1), stream=stream0) del buf10 del buf12 del buf13 del buf4 del buf9 return (buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HSIC(nn.Module): """Base class for the finite sample estimator of Hilbert-Schmidt Independence Criterion (HSIC) ..math:: HSIC (X, Y) := || C_{x, y} ||^2_{HS}, where HSIC (X, Y) = 0 iif X and Y are independent. Empirically, we use the finite sample estimator of HSIC (with m observations) by, (1) biased estimator (HSIC_0) Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. :math: (m - 1)^2 tr KHLH. where K_{ij} = kernel_x (x_i, x_j), L_{ij} = kernel_y (y_i, y_j), H = 1 - m^{-1} 1 1 (Hence, K, L, H are m by m matrices). (2) unbiased estimator (HSIC_1) Song, Le, et al. "Feature selection via dependence maximization." 2012. :math: rac{1}{m (m - 3)} igg[ tr ( ilde K ilde L) + rac{1^ op ilde K 1 1^ op ilde L 1}{(m-1)(m-2)} - rac{2}{m-2} 1^ op ilde K ilde L 1 igg]. where ilde K and ilde L are related to K and L by the diagonal entries of ilde K_{ij} and ilde L_{ij} are set to zero. Parameters ---------- sigma_x : float the kernel size of the kernel function for X. sigma_y : float the kernel size of the kernel function for Y. algorithm: str ('unbiased' / 'biased') the algorithm for the finite sample estimator. 'unbiased' is used for our paper. reduction: not used (for compatibility with other losses). """ def __init__(self, sigma_x, sigma_y=None, algorithm='unbiased', reduction=None): super(HSIC, self).__init__() if sigma_y is None: sigma_y = sigma_x self.sigma_x = sigma_x self.sigma_y = sigma_y if algorithm == 'biased': self.estimator = self.biased_estimator elif algorithm == 'unbiased': self.estimator = self.unbiased_estimator else: raise ValueError('invalid estimator: {}'.format(algorithm)) def _kernel_x(self, X): raise NotImplementedError def _kernel_y(self, Y): raise NotImplementedError def biased_estimator(self, input1, input2): """Biased estimator of Hilbert-Schmidt Independence Criterion Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. """ K = self._kernel_x(input1) L = self._kernel_y(input2) KH = K - K.mean(0, keepdim=True) LH = L - L.mean(0, keepdim=True) N = len(input1) return torch.trace(KH @ LH / (N - 1) ** 2) def unbiased_estimator(self, input1, input2): """Unbiased estimator of Hilbert-Schmidt Independence Criterion Song, Le, et al. "Feature selection via dependence maximization." 2012. """ kernel_XX = self._kernel_x(input1) kernel_YY = self._kernel_y(input2) tK = kernel_XX - torch.diag(kernel_XX) tL = kernel_YY - torch.diag(kernel_YY) N = len(input1) hsic = torch.trace(tK @ tL) + torch.sum(tK) * torch.sum(tL) / (N - 1 ) / (N - 2) - 2 * torch.sum(tK, 0).dot(torch.sum(tL, 0)) / (N - 2) return hsic / (N * (N - 3)) def forward(self, input1, input2, **kwargs): return self.estimator(input1, input2) class RbfHSIC(HSIC): """Radial Basis Function (RBF) kernel HSIC implementation. """ def _kernel(self, X, sigma): X = X.view(len(X), -1) Xn = X.norm(2, dim=1, keepdim=True) X = X.div(Xn) XX = X @ X.t() X_sqnorms = torch.diag(XX) X_L2 = -2 * XX + X_sqnorms.unsqueeze(1) + X_sqnorms.unsqueeze(0) X_L2 = X_L2.clamp(1e-12) sigma_avg = X_L2.mean().detach() gamma = 1 / (2 * sigma_avg) kernel_XX = torch.exp(-gamma * X_L2) return kernel_XX def _kernel_x(self, X): return self._kernel(X, self.sigma_x) def _kernel_y(self, Y): return self._kernel(Y, self.sigma_y) class MinusRbfHSIC(RbfHSIC): """``Minus'' RbfHSIC for the ``max'' optimization. """ def forward(self, input1, input2, **kwargs): return -self.estimator(input1, input2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'sigma_x': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_linalg_vector_norm_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp0 / tmp6 tl.store(out_ptr1 + (r1 + 64 * x0), tmp7, xmask) @triton.jit def triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1( in_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr0 + 5 * r1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last') tmp1 = -2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 1e-12 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = 16.0 tmp13 = tmp11 / tmp12 tmp14 = 2.0 tmp15 = tmp13 * tmp14 tmp16 = tl.full([1, 1], 1, tl.int32) tmp17 = tmp16 / tmp15 tmp18 = 1.0 tmp19 = tmp17 * tmp18 tmp20 = -tmp19 tmp21 = tmp20 * tmp8 tmp22 = tl_math.exp(tmp21) tmp23 = tmp5 * tmp1 tmp24 = tmp23 + tmp5 tmp25 = tmp24 + tmp5 tmp26 = triton_helpers.maximum(tmp25, tmp7) tmp27 = tmp20 * tmp26 tmp28 = tl_math.exp(tmp27) tmp29 = tmp22 - tmp28 tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tl.store(out_ptr1 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp29, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp32, None) @triton.jit def triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK: tl .constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + r0, None) tmp5 = tl.load(in_ptr1 + (4 + r0), None) tmp7 = tl.load(in_ptr1 + (8 + r0), None) tmp9 = tl.load(in_ptr1 + (12 + r0), None) tmp11 = tl.load(in_ptr2 + r0, None) tmp12 = tl.load(in_ptr2 + (4 + r0), None) tmp14 = tl.load(in_ptr2 + (8 + r0), None) tmp16 = tl.load(in_ptr2 + (12 + r0), None) tmp22 = tl.load(in_ptr3 + 0) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, 1]) tmp24 = tl.load(in_ptr4 + 0) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, 1]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp18 = tmp10 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp26 = tmp23 * tmp25 tmp27 = 0.3333333333333333 tmp28 = tmp26 * tmp27 tmp29 = 0.5 tmp30 = tmp28 * tmp29 tmp31 = tmp3 + tmp30 tmp32 = 2.0 tmp33 = tmp21 * tmp32 tmp34 = tmp33 * tmp29 tmp35 = tmp31 - tmp34 tmp36 = 0.25 tmp37 = tmp35 * tmp36 tmp38 = -tmp37 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp38, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 64), (64, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_linalg_vector_norm_0[grid(4)](arg0_1, buf1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(buf1, (64, 4), (1, 64), 0), out=buf2) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1[ grid(1)](buf2, buf4, buf12, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf6 = buf1 del buf1 triton_per_fused_div_linalg_vector_norm_0[grid(4)](arg1_1, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 buf7 = buf2 del buf2 extern_kernels.mm(buf6, reinterpret_tensor(buf6, (64, 4), (1, 64), 0), out=buf7) del buf6 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf13 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_clamp_diagonal_copy_exp_mean_mul_neg_reciprocal_sub_sum_1[ grid(1)](buf7, buf9, buf13, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf10 = buf7 del buf7 extern_kernels.mm(buf4, buf9, out=buf10) buf11 = empty_strided_cuda((), (), torch.float32) buf15 = buf11 del buf11 triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_2[grid(1)](buf15, buf10, buf4, buf9, buf12, buf13, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf10 del buf12 del buf13 del buf4 del buf9 return buf15, class HSIC(nn.Module): """Base class for the finite sample estimator of Hilbert-Schmidt Independence Criterion (HSIC) ..math:: HSIC (X, Y) := || C_{x, y} ||^2_{HS}, where HSIC (X, Y) = 0 iif X and Y are independent. Empirically, we use the finite sample estimator of HSIC (with m observations) by, (1) biased estimator (HSIC_0) Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. :math: (m - 1)^2 tr KHLH. where K_{ij} = kernel_x (x_i, x_j), L_{ij} = kernel_y (y_i, y_j), H = 1 - m^{-1} 1 1 (Hence, K, L, H are m by m matrices). (2) unbiased estimator (HSIC_1) Song, Le, et al. "Feature selection via dependence maximization." 2012. :math: rac{1}{m (m - 3)} igg[ tr ( ilde K ilde L) + rac{1^ op ilde K 1 1^ op ilde L 1}{(m-1)(m-2)} - rac{2}{m-2} 1^ op ilde K ilde L 1 igg]. where ilde K and ilde L are related to K and L by the diagonal entries of ilde K_{ij} and ilde L_{ij} are set to zero. Parameters ---------- sigma_x : float the kernel size of the kernel function for X. sigma_y : float the kernel size of the kernel function for Y. algorithm: str ('unbiased' / 'biased') the algorithm for the finite sample estimator. 'unbiased' is used for our paper. reduction: not used (for compatibility with other losses). """ def __init__(self, sigma_x, sigma_y=None, algorithm='unbiased', reduction=None): super(HSIC, self).__init__() if sigma_y is None: sigma_y = sigma_x self.sigma_x = sigma_x self.sigma_y = sigma_y if algorithm == 'biased': self.estimator = self.biased_estimator elif algorithm == 'unbiased': self.estimator = self.unbiased_estimator else: raise ValueError('invalid estimator: {}'.format(algorithm)) def _kernel_x(self, X): raise NotImplementedError def _kernel_y(self, Y): raise NotImplementedError def biased_estimator(self, input1, input2): """Biased estimator of Hilbert-Schmidt Independence Criterion Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. """ K = self._kernel_x(input1) L = self._kernel_y(input2) KH = K - K.mean(0, keepdim=True) LH = L - L.mean(0, keepdim=True) N = len(input1) return torch.trace(KH @ LH / (N - 1) ** 2) def unbiased_estimator(self, input1, input2): """Unbiased estimator of Hilbert-Schmidt Independence Criterion Song, Le, et al. "Feature selection via dependence maximization." 2012. """ kernel_XX = self._kernel_x(input1) kernel_YY = self._kernel_y(input2) tK = kernel_XX - torch.diag(kernel_XX) tL = kernel_YY - torch.diag(kernel_YY) N = len(input1) hsic = torch.trace(tK @ tL) + torch.sum(tK) * torch.sum(tL) / (N - 1 ) / (N - 2) - 2 * torch.sum(tK, 0).dot(torch.sum(tL, 0)) / (N - 2) return hsic / (N * (N - 3)) def forward(self, input1, input2, **kwargs): return self.estimator(input1, input2) class RbfHSIC(HSIC): """Radial Basis Function (RBF) kernel HSIC implementation. """ def _kernel(self, X, sigma): X = X.view(len(X), -1) Xn = X.norm(2, dim=1, keepdim=True) X = X.div(Xn) XX = X @ X.t() X_sqnorms = torch.diag(XX) X_L2 = -2 * XX + X_sqnorms.unsqueeze(1) + X_sqnorms.unsqueeze(0) X_L2 = X_L2.clamp(1e-12) sigma_avg = X_L2.mean().detach() gamma = 1 / (2 * sigma_avg) kernel_XX = torch.exp(-gamma * X_L2) return kernel_XX def _kernel_x(self, X): return self._kernel(X, self.sigma_x) def _kernel_y(self, Y): return self._kernel(Y, self.sigma_y) class MinusRbfHSICNew(RbfHSIC): """``Minus'' RbfHSIC for the ``max'' optimization. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
naver-ai/cgl_fairness
MinusRbfHSIC
false
7,330
[ "MIT" ]
1
00d3bec233c9b3e0f88496118abaed8321ca3159
https://github.com/naver-ai/cgl_fairness/tree/00d3bec233c9b3e0f88496118abaed8321ca3159
import torch import torch.nn as nn class HSIC(nn.Module): """Base class for the finite sample estimator of Hilbert-Schmidt Independence Criterion (HSIC) ..math:: HSIC (X, Y) := || C_{x, y} ||^2_{HS}, where HSIC (X, Y) = 0 iif X and Y are independent. Empirically, we use the finite sample estimator of HSIC (with m observations) by, (1) biased estimator (HSIC_0) Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. :math: (m - 1)^2 tr KHLH. where K_{ij} = kernel_x (x_i, x_j), L_{ij} = kernel_y (y_i, y_j), H = 1 - m^{-1} 1 1 (Hence, K, L, H are m by m matrices). (2) unbiased estimator (HSIC_1) Song, Le, et al. "Feature selection via dependence maximization." 2012. :math: rac{1}{m (m - 3)} igg[ tr ( ilde K ilde L) + rac{1^ op ilde K 1 1^ op ilde L 1}{(m-1)(m-2)} - rac{2}{m-2} 1^ op ilde K ilde L 1 igg]. where ilde K and ilde L are related to K and L by the diagonal entries of ilde K_{ij} and ilde L_{ij} are set to zero. Parameters ---------- sigma_x : float the kernel size of the kernel function for X. sigma_y : float the kernel size of the kernel function for Y. algorithm: str ('unbiased' / 'biased') the algorithm for the finite sample estimator. 'unbiased' is used for our paper. reduction: not used (for compatibility with other losses). """ def __init__(self, sigma_x, sigma_y=None, algorithm='unbiased', reduction=None): super().__init__() if sigma_y is None: sigma_y = sigma_x self.sigma_x = sigma_x self.sigma_y = sigma_y if algorithm == 'biased': self.estimator = self.biased_estimator elif algorithm == 'unbiased': self.estimator = self.unbiased_estimator else: raise ValueError('invalid estimator: {}'.format(algorithm)) def _kernel_x(self, X): raise NotImplementedError def _kernel_y(self, Y): raise NotImplementedError def biased_estimator(self, input1, input2): """Biased estimator of Hilbert-Schmidt Independence Criterion Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. """ K = self._kernel_x(input1) L = self._kernel_y(input2) KH = K - K.mean(0, keepdim=True) LH = L - L.mean(0, keepdim=True) N = len(input1) return torch.trace(KH @ LH / (N - 1) ** 2) def unbiased_estimator(self, input1, input2): """Unbiased estimator of Hilbert-Schmidt Independence Criterion Song, Le, et al. "Feature selection via dependence maximization." 2012. """ kernel_XX = self._kernel_x(input1) kernel_YY = self._kernel_y(input2) tK = kernel_XX - torch.diag(kernel_XX) tL = kernel_YY - torch.diag(kernel_YY) N = len(input1) hsic = torch.trace(tK @ tL) + torch.sum(tK) * torch.sum(tL) / (N - 1 ) / (N - 2) - 2 * torch.sum(tK, 0).dot(torch.sum(tL, 0)) / (N - 2) return hsic / (N * (N - 3)) def forward(self, input1, input2, **kwargs): return self.estimator(input1, input2) class RbfHSIC(HSIC): """Radial Basis Function (RBF) kernel HSIC implementation. """ def _kernel(self, X, sigma): X = X.view(len(X), -1) Xn = X.norm(2, dim=1, keepdim=True) X = X.div(Xn) XX = X @ X.t() X_sqnorms = torch.diag(XX) X_L2 = -2 * XX + X_sqnorms.unsqueeze(1) + X_sqnorms.unsqueeze(0) X_L2 = X_L2.clamp(1e-12) sigma_avg = X_L2.mean().detach() gamma = 1 / (2 * sigma_avg) kernel_XX = torch.exp(-gamma * X_L2) return kernel_XX def _kernel_x(self, X): return self._kernel(X, self.sigma_x) def _kernel_y(self, Y): return self._kernel(Y, self.sigma_y) class Model(RbfHSIC): """``Minus'' RbfHSIC for the ``max'' optimization. """ # ... truncated (>4000 chars) for memory efficiency
LayerNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ol/colqxuikz5paponukbqdxclupy3w5be5gltp5osrvuaalfughrw4.py # Topologically Sorted Source Nodes: [mean, sub_1, sub, pow_1, var, add, sqrt, truediv], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # pow_1 => pow_1 # sqrt => sqrt # sub => sub # sub_1 => sub_1 # truediv => div # var => mean_1 # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %sqrt), kwargs = {}) triton_poi_fused_add_div_mean_pow_sqrt_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp21 / tmp8 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp10 / tmp25 tl.store(out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub_1, sub, pow_1, var, add, sqrt, truediv], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_pow_sqrt_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class LayerNorm(torch.nn.Module): """ A vanilla implementation of layer normalization https://arxiv.org/pdf/1607.06450.pdf norm_x = (x - mean) / sqrt((x - mean) ^ 2) This does not include the trainable parameters gamma and beta for performance speed. Typically, this is norm_x * gamma + beta """ def forward(self, layer_activations: 'torch.Tensor') ->torch.Tensor: mean = torch.mean(layer_activations, dim=-1, keepdim=True) var = torch.mean((layer_activations - mean) ** 2, dim=-1, keepdim=True) return (layer_activations - mean) / torch.sqrt(var + 1e-05) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp21 / tmp8 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp10 / tmp25 tl.store(out_ptr0 + x2, tmp26, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_pow_sqrt_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class LayerNormNew(torch.nn.Module): """ A vanilla implementation of layer normalization https://arxiv.org/pdf/1607.06450.pdf norm_x = (x - mean) / sqrt((x - mean) ^ 2) This does not include the trainable parameters gamma and beta for performance speed. Typically, this is norm_x * gamma + beta """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
netdrones/ml-agents
LayerNorm
false
7,331
[ "Apache-2.0" ]
1
7d7d6f149c92ea2067d7cea364d92c8c3b8db3f4
https://github.com/netdrones/ml-agents/tree/7d7d6f149c92ea2067d7cea364d92c8c3b8db3f4
import torch class Model(torch.nn.Module): """ A vanilla implementation of layer normalization https://arxiv.org/pdf/1607.06450.pdf norm_x = (x - mean) / sqrt((x - mean) ^ 2) This does not include the trainable parameters gamma and beta for performance speed. Typically, this is norm_x * gamma + beta """ def forward(self, layer_activations: 'torch.Tensor') ->torch.Tensor: mean = torch.mean(layer_activations, dim=-1, keepdim=True) var = torch.mean((layer_activations - mean) ** 2, dim=-1, keepdim=True) return (layer_activations - mean) / torch.sqrt(var + 1e-05) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TokenClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py # Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # output_states_2 => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32vfxouqe74ea5scuzrdhpd7r6adxwu4bzarm4icjfnb47jbizg.py # Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # output_states_2 => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_states_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) del buf1 return (buf2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def transformer_weights_init(module, std_init_range=0.02, xavier=True): """ Initialize different weights in Transformer model. Args: module: torch.nn.Module to be initialized std_init_range: standard deviation of normal initializer xavier: if True, xavier initializer will be used in Linear layers as was proposed in AIAYN paper, otherwise normal initializer will be used (like in BERT paper) """ if isinstance(module, nn.Linear): if xavier: nn.init.xavier_uniform_(module.weight) else: nn.init.normal_(module.weight, mean=0.0, std=std_init_range) if module.bias is not None: nn.init.constant_(module.bias, 0.0) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=std_init_range) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1.0) nn.init.constant_(module.bias, 0.0) class MultiLayerPerceptron(torch.nn.Module): """ A simple MLP that can either be used independently or put on top of pretrained models (such as BERT) and act as a classifier. Args: hidden_size (int): the size of each layer num_classes (int): number of output classes num_layers (int): number of layers activation (str): type of activations for layers in between log_softmax (bool): whether to add a log_softmax layer before output """ def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers: 'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True): super().__init__() self.layers = 0 activations = {'relu': nn.ReLU(), 'gelu': nn.GELU(), 'sigmoid': nn. Sigmoid(), 'tanh': nn.Tanh()} for _ in range(num_layers - 1): layer = torch.nn.Linear(hidden_size, hidden_size) setattr(self, f'layer{self.layers}', layer) setattr(self, f'layer{self.layers + 1}', activations[activation]) self.layers += 2 layer = torch.nn.Linear(hidden_size, num_classes) setattr(self, f'layer{self.layers}', layer) self.layers += 1 self.log_softmax = log_softmax @property def last_linear_layer(self): return getattr(self, f'layer{self.layers - 1}') def forward(self, hidden_states): output_states = hidden_states[:] for i in range(self.layers): output_states = getattr(self, f'layer{i}')(output_states) if self.log_softmax: output_states = torch.log_softmax(output_states, dim=-1) else: output_states = torch.softmax(output_states, dim=-1) return output_states class TokenClassifier(nn.Module): """ A module to perform token level classification tasks such as Named entity recognition. """ def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers: 'int'=1, activation: 'str'='relu', log_softmax: 'bool'=True, dropout: 'float'=0.0, use_transformer_init: 'bool'=True) ->None: """ Initializes the Token Classifier module. Args: hidden_size: the size of the hidden dimension num_classes: number of classes num_layers: number of fully connected layers in the multilayer perceptron (MLP) activation: activation to usee between fully connected layers in the MLP log_softmax: whether to apply softmax to the output of the MLP dropout: dropout to apply to the input hidden states use_transformer_init: whether to initialize the weights of the classifier head with the same approach used in Transformer """ super().__init__() self.log_softmax = log_softmax self.mlp = MultiLayerPerceptron(hidden_size, num_classes, num_layers=num_layers, activation=activation, log_softmax= log_softmax) self.dropout = nn.Dropout(dropout) if use_transformer_init: self.apply(lambda module: transformer_weights_init(module, xavier=False)) def forward(self, hidden_states): """ Performs the forward step of the module. Args: hidden_states: batch of hidden states (for example, from the BERT encoder module) [BATCH_SIZE x SEQ_LENGTH x HIDDEN_SIZE] Returns: logits value for each class [BATCH_SIZE x SEQ_LENGTH x NUM_CLASSES] """ hidden_states = self.dropout(hidden_states) logits = self.mlp(hidden_states) return logits def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](buf0, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused__log_softmax_1[grid(256)](buf1, buf2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf1 return buf2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2 def transformer_weights_init(module, std_init_range=0.02, xavier=True): """ Initialize different weights in Transformer model. Args: module: torch.nn.Module to be initialized std_init_range: standard deviation of normal initializer xavier: if True, xavier initializer will be used in Linear layers as was proposed in AIAYN paper, otherwise normal initializer will be used (like in BERT paper) """ if isinstance(module, nn.Linear): if xavier: nn.init.xavier_uniform_(module.weight) else: nn.init.normal_(module.weight, mean=0.0, std=std_init_range) if module.bias is not None: nn.init.constant_(module.bias, 0.0) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=std_init_range) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1.0) nn.init.constant_(module.bias, 0.0) class MultiLayerPerceptron(torch.nn.Module): """ A simple MLP that can either be used independently or put on top of pretrained models (such as BERT) and act as a classifier. Args: hidden_size (int): the size of each layer num_classes (int): number of output classes num_layers (int): number of layers activation (str): type of activations for layers in between log_softmax (bool): whether to add a log_softmax layer before output """ def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers: 'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True): super().__init__() self.layers = 0 activations = {'relu': nn.ReLU(), 'gelu': nn.GELU(), 'sigmoid': nn. Sigmoid(), 'tanh': nn.Tanh()} for _ in range(num_layers - 1): layer = torch.nn.Linear(hidden_size, hidden_size) setattr(self, f'layer{self.layers}', layer) setattr(self, f'layer{self.layers + 1}', activations[activation]) self.layers += 2 layer = torch.nn.Linear(hidden_size, num_classes) setattr(self, f'layer{self.layers}', layer) self.layers += 1 self.log_softmax = log_softmax @property def last_linear_layer(self): return getattr(self, f'layer{self.layers - 1}') def forward(self, hidden_states): output_states = hidden_states[:] for i in range(self.layers): output_states = getattr(self, f'layer{i}')(output_states) if self.log_softmax: output_states = torch.log_softmax(output_states, dim=-1) else: output_states = torch.softmax(output_states, dim=-1) return output_states class TokenClassifierNew(nn.Module): """ A module to perform token level classification tasks such as Named entity recognition. """ def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers: 'int'=1, activation: 'str'='relu', log_softmax: 'bool'=True, dropout: 'float'=0.0, use_transformer_init: 'bool'=True) ->None: """ Initializes the Token Classifier module. Args: hidden_size: the size of the hidden dimension num_classes: number of classes num_layers: number of fully connected layers in the multilayer perceptron (MLP) activation: activation to usee between fully connected layers in the MLP log_softmax: whether to apply softmax to the output of the MLP dropout: dropout to apply to the input hidden states use_transformer_init: whether to initialize the weights of the classifier head with the same approach used in Transformer """ super().__init__() self.log_softmax = log_softmax self.mlp = MultiLayerPerceptron(hidden_size, num_classes, num_layers=num_layers, activation=activation, log_softmax= log_softmax) self.dropout = nn.Dropout(dropout) if use_transformer_init: self.apply(lambda module: transformer_weights_init(module, xavier=False)) def forward(self, input_0): primals_2 = self.mlp.layer0.weight primals_3 = self.mlp.layer0.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ngxingyu/Domain-Transfer-for-Punctuation-Retrieval
TokenClassifier
false
7,332
[ "Apache-2.0" ]
1
f5aa0ea0946c68aaf7fcf49a5085e6c823766a2f
https://github.com/ngxingyu/Domain-Transfer-for-Punctuation-Retrieval/tree/f5aa0ea0946c68aaf7fcf49a5085e6c823766a2f
import torch import torch.nn as nn def transformer_weights_init(module, std_init_range=0.02, xavier=True): """ Initialize different weights in Transformer model. Args: module: torch.nn.Module to be initialized std_init_range: standard deviation of normal initializer xavier: if True, xavier initializer will be used in Linear layers as was proposed in AIAYN paper, otherwise normal initializer will be used (like in BERT paper) """ if isinstance(module, nn.Linear): if xavier: nn.init.xavier_uniform_(module.weight) else: nn.init.normal_(module.weight, mean=0.0, std=std_init_range) if module.bias is not None: nn.init.constant_(module.bias, 0.0) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0.0, std=std_init_range) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.weight, 1.0) nn.init.constant_(module.bias, 0.0) class MultiLayerPerceptron(torch.nn.Module): """ A simple MLP that can either be used independently or put on top of pretrained models (such as BERT) and act as a classifier. Args: hidden_size (int): the size of each layer num_classes (int): number of output classes num_layers (int): number of layers activation (str): type of activations for layers in between log_softmax (bool): whether to add a log_softmax layer before output """ def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers: 'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True): super().__init__() self.layers = 0 activations = {'relu': nn.ReLU(), 'gelu': nn.GELU(), 'sigmoid': nn. Sigmoid(), 'tanh': nn.Tanh()} for _ in range(num_layers - 1): layer = torch.nn.Linear(hidden_size, hidden_size) setattr(self, f'layer{self.layers}', layer) setattr(self, f'layer{self.layers + 1}', activations[activation]) self.layers += 2 layer = torch.nn.Linear(hidden_size, num_classes) setattr(self, f'layer{self.layers}', layer) self.layers += 1 self.log_softmax = log_softmax @property def last_linear_layer(self): return getattr(self, f'layer{self.layers - 1}') def forward(self, hidden_states): output_states = hidden_states[:] for i in range(self.layers): output_states = getattr(self, f'layer{i}')(output_states) if self.log_softmax: output_states = torch.log_softmax(output_states, dim=-1) else: output_states = torch.softmax(output_states, dim=-1) return output_states class Model(nn.Module): """ A module to perform token level classification tasks such as Named entity recognition. """ def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers: 'int'=1, activation: 'str'='relu', log_softmax: 'bool'=True, dropout: 'float'=0.0, use_transformer_init: 'bool'=True) ->None: """ Initializes the Token Classifier module. Args: hidden_size: the size of the hidden dimension num_classes: number of classes num_layers: number of fully connected layers in the multilayer perceptron (MLP) activation: activation to usee between fully connected layers in the MLP log_softmax: whether to apply softmax to the output of the MLP dropout: dropout to apply to the input hidden states use_transformer_init: whether to initialize the weights of the classifier head with the same approach used in Transformer """ super().__init__() self.log_softmax = log_softmax self.mlp = MultiLayerPerceptron(hidden_size, num_classes, num_layers=num_layers, activation=activation, log_softmax= log_softmax) self # ... truncated (>4000 chars) for memory efficiency
MultichannelIamge
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3f/c3fzeyeopdwc2ltlmlivpocuknebcj6ej2cz3ueq4yldr3lwgorg.py # Topologically Sorted Source Nodes: [modulation, x], Original ATen: [aten.mul] # Source node to ATen node mapping: # modulation => mul # x => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 0.5), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 16) x1 = (xindex // 16) % 4 x0 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/at/catyivxdqgliwunkrygqmudtr3fumc4lgfzxwaogch2z5s2rnn7a.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] # Source node to ATen node mapping: # out => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_6), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [modulation, x], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf0, primals_2, primals_4, buf1, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf3, primals_6, 256, grid=grid(256), stream=stream0) del primals_6 return (buf3, primals_3, primals_4, primals_5, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F class ModulatedConv2d(nn.Module): def __init__(self, channels_in, channels_out, style_dim, kernel_size, demodulate=True): super().__init__() self.weight = nn.Parameter(torch.randn(channels_out, channels_in, kernel_size, kernel_size)) self.modulation = nn.Linear(style_dim, channels_in, bias=True) self.modulation.bias.data.fill_(1.0) self.demodulate = demodulate if self.demodulate: self.register_buffer('style_inv', torch.randn(1, 1, channels_in, 1, 1)) self.scale = 1.0 / math.sqrt(channels_in * kernel_size ** 2) self.padding = kernel_size // 2 def forward(self, x, style): modulation = self.get_modulation(style) x = modulation * x x = F.conv2d(x, self.weight, padding=self.padding) if self.demodulate: demodulation = self.get_demodulation(style) x = demodulation * x return x def get_modulation(self, style): style = self.modulation(style).view(style.size(0), -1, 1, 1) modulation = self.scale * style return modulation def get_demodulation(self, style): w = self.weight.unsqueeze(0) norm = torch.rsqrt((self.scale * self.style_inv * w).pow(2).sum([2, 3, 4]) + 1e-08) demodulation = norm return demodulation.view(*demodulation.size(), 1, 1) class MultichannelIamge(nn.Module): def __init__(self, channels_in, channels_out, style_dim, kernel_size=1): super().__init__() self.conv = ModulatedConv2d(channels_in, channels_out, style_dim, kernel_size, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, channels_out, 1, 1)) def forward(self, hidden, style): out = self.conv(hidden, style) out = out + self.bias return out def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'channels_in': 4, 'channels_out': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 16 x1 = xindex // 16 % 4 x0 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](buf0, primals_2, primals_4, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = extern_kernels.convolution(buf1, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_1[grid(256)](buf3, primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 return buf3, primals_3, primals_4, primals_5, buf1 class ModulatedConv2d(nn.Module): def __init__(self, channels_in, channels_out, style_dim, kernel_size, demodulate=True): super().__init__() self.weight = nn.Parameter(torch.randn(channels_out, channels_in, kernel_size, kernel_size)) self.modulation = nn.Linear(style_dim, channels_in, bias=True) self.modulation.bias.data.fill_(1.0) self.demodulate = demodulate if self.demodulate: self.register_buffer('style_inv', torch.randn(1, 1, channels_in, 1, 1)) self.scale = 1.0 / math.sqrt(channels_in * kernel_size ** 2) self.padding = kernel_size // 2 def forward(self, x, style): modulation = self.get_modulation(style) x = modulation * x x = F.conv2d(x, self.weight, padding=self.padding) if self.demodulate: demodulation = self.get_demodulation(style) x = demodulation * x return x def get_modulation(self, style): style = self.modulation(style).view(style.size(0), -1, 1, 1) modulation = self.scale * style return modulation def get_demodulation(self, style): w = self.weight.unsqueeze(0) norm = torch.rsqrt((self.scale * self.style_inv * w).pow(2).sum([2, 3, 4]) + 1e-08) demodulation = norm return demodulation.view(*demodulation.size(), 1, 1) class MultichannelIamgeNew(nn.Module): def __init__(self, channels_in, channels_out, style_dim, kernel_size=1): super().__init__() self.conv = ModulatedConv2d(channels_in, channels_out, style_dim, kernel_size, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, channels_out, 1, 1)) def forward(self, input_0, input_1): primals_6 = self.bias primals_5 = self.conv.weight primals_1 = self.conv.modulation.weight primals_2 = self.conv.modulation.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
nhorton04/mobile_styletransfer
MultichannelIamge
false
7,333
[ "Apache-2.0" ]
1
db8b9a61b67fd58b9e4d61457ee58e36800cfbbe
https://github.com/nhorton04/mobile_styletransfer/tree/db8b9a61b67fd58b9e4d61457ee58e36800cfbbe
import math import torch import torch.nn as nn import torch.nn.functional as F class ModulatedConv2d(nn.Module): def __init__(self, channels_in, channels_out, style_dim, kernel_size, demodulate=True): super().__init__() self.weight = nn.Parameter(torch.randn(channels_out, channels_in, kernel_size, kernel_size)) self.modulation = nn.Linear(style_dim, channels_in, bias=True) self.modulation.bias.data.fill_(1.0) self.demodulate = demodulate if self.demodulate: self.register_buffer('style_inv', torch.randn(1, 1, channels_in, 1, 1)) self.scale = 1.0 / math.sqrt(channels_in * kernel_size ** 2) self.padding = kernel_size // 2 def forward(self, x, style): modulation = self.get_modulation(style) x = modulation * x x = F.conv2d(x, self.weight, padding=self.padding) if self.demodulate: demodulation = self.get_demodulation(style) x = demodulation * x return x def get_modulation(self, style): style = self.modulation(style).view(style.size(0), -1, 1, 1) modulation = self.scale * style return modulation def get_demodulation(self, style): w = self.weight.unsqueeze(0) norm = torch.rsqrt((self.scale * self.style_inv * w).pow(2).sum([2, 3, 4]) + 1e-08) demodulation = norm return demodulation.view(*demodulation.size(), 1, 1) class Model(nn.Module): def __init__(self, channels_in, channels_out, style_dim, kernel_size=1): super().__init__() self.conv = ModulatedConv2d(channels_in, channels_out, style_dim, kernel_size, demodulate=False) self.bias = nn.Parameter(torch.zeros(1, channels_out, 1, 1)) def forward(self, hidden, style): out = self.conv(hidden, style) out = out + self.bias return out def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e7/ce7ewq7bv76ie5hdmfxjj46viiuxlajdhtbost7f4gwclfa3hk4i.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rh/crhy65nd36tqy72rqqtbfjscgqa26ipbvjxps22h7ynhb26pc4bz.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zf/czfbs2xajbtbvyrzhxkchwr5kxngfkmy2bwzhuhrjiyfd6thjazn.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {}) triton_poi_fused__log_softmax_3 = async_compile.triton('triton_poi_fused__log_softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/t7/ct7hbs7gpwy35jd64a3bsugmje7rjpsv76ux66eunbdu6dinfuun.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_4 = async_compile.triton('triton_poi_fused__log_softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, 4), (4, 1)) assert_size_stride(primals_3, (128, ), (1, )) assert_size_stride(primals_4, (256, 128), (128, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (512, 256), (256, 1)) assert_size_stride(primals_7, (512, ), (1, )) assert_size_stride(primals_8, (256, 512), (512, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (128, 256), (256, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (4, 128), (128, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf17 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf17, 8192, grid=grid(8192), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 256), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse buf16 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf16, 16384, grid=grid(16384), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 512), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf4 # reuse buf15 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf15, 32768, grid=grid(32768), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 256), (1, 512), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf6 # reuse buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf7, primals_9, buf14, 16384, grid=grid(16384), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 256), (256, 1), 0), reinterpret_tensor(primals_10, (256, 128), (1, 256), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf8 # reuse buf13 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf9, primals_11, buf13, 8192, grid=grid(8192), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 128), (128, 1), 0), reinterpret_tensor(primals_12, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf10) del primals_13 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_3.run(buf10, buf11, 256, grid=grid(256), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_4.run(buf11, buf12, 256, grid=grid(256), stream=stream0) del buf11 return (buf12, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(buf5, (64, 512), (512, 1), 0), reinterpret_tensor(buf7, (64, 256), (256, 1), 0), reinterpret_tensor(buf9, (64, 128), (128, 1), 0), buf12, primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((512, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.utils.data class Net(nn.Module): def __init__(self, input_size, num_classes): super(Net, self).__init__() self.linear1 = nn.Linear(input_size, 128) self.linear2 = nn.Linear(128, 256) self.linear3 = nn.Linear(256, 512) self.linear4 = nn.Linear(512, 256) self.linear5 = nn.Linear(256, 128) self.linear6 = nn.Linear(128, num_classes) def forward(self, x): x = x.float() x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = F.relu(self.linear3(x)) x = F.relu(self.linear4(x)) x = F.relu(self.linear5(x)) x = self.linear6(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, 4), (4, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (256, 128), (128, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (512, 256), (256, 1)) assert_size_stride(primals_7, (512,), (1,)) assert_size_stride(primals_8, (256, 512), (512, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (128, 256), (256, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (4, 128), (128, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf17 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_3, buf17, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 256), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf16 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16384)](buf3, primals_5, buf16, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 512), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 512), (8192, 2048, 512, 1), 0 ) del buf4 buf15 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(32768)](buf5, primals_7, buf15, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 256), (1, 512), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf6 buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16384)](buf7, primals_9, buf14, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 256), (256, 1), 0), reinterpret_tensor(primals_10, (256, 128), (1, 256), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf8 buf13 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf9, primals_11, buf13, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf9, (64, 128), (128, 1), 0), reinterpret_tensor(primals_12, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf10) del primals_13 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_3[grid(256)](buf10, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf10 triton_poi_fused__log_softmax_4[grid(256)](buf11, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf11 return (buf12, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(buf5, (64, 512), (512, 1), 0), reinterpret_tensor(buf7, (64, 256), (256, 1), 0), reinterpret_tensor(buf9, (64, 128), (128, 1), 0), buf12, primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17) class NetNew(nn.Module): def __init__(self, input_size, num_classes): super(NetNew, self).__init__() self.linear1 = nn.Linear(input_size, 128) self.linear2 = nn.Linear(128, 256) self.linear3 = nn.Linear(256, 512) self.linear4 = nn.Linear(512, 256) self.linear5 = nn.Linear(256, 128) self.linear6 = nn.Linear(128, num_classes) def forward(self, input_0): primals_2 = self.linear1.weight primals_3 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_8 = self.linear4.weight primals_9 = self.linear4.bias primals_10 = self.linear5.weight primals_11 = self.linear5.bias primals_12 = self.linear6.weight primals_13 = self.linear6.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
nce3xin/spam
Net
false
7,334
[ "MIT" ]
1
908421d5cf2dd103e2a7044bf1c8586aaf5f2ada
https://github.com/nce3xin/spam/tree/908421d5cf2dd103e2a7044bf1c8586aaf5f2ada
import torch import torch.nn.functional as F import torch.nn as nn import torch.utils.data class Model(nn.Module): def __init__(self, input_size, num_classes): super().__init__() self.linear1 = nn.Linear(input_size, 128) self.linear2 = nn.Linear(128, 256) self.linear3 = nn.Linear(256, 512) self.linear4 = nn.Linear(512, 256) self.linear5 = nn.Linear(256, 128) self.linear6 = nn.Linear(128, num_classes) def forward(self, x): x = x.float() x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = F.relu(self.linear3(x)) x = F.relu(self.linear4(x)) x = F.relu(self.linear5(x)) x = self.linear6(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ResidualBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/v6/cv6oewqqnsshd7he7ylh2kikzu4smtrhj2dmv6nb5csosp7g6vw5.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/t6/ct6syu6rq3n7yx3zuog2yujcrfreefdccraqz7zj2m3c5xhvp5vl.py # Topologically Sorted Source Nodes: [out_1, instance_norm], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # instance_norm => add, rsqrt, var_mean # out_1 => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3g/c3gbhm3y6wldudvsxdmmjh5ssg2uys5qqk3dd3k7bxnuot4xhndp.py # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] # Source node to ATen node mapping: # instance_norm => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {}) triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6x/c6xlvvnj6ftmp7jka4547n3hpffcz5xr3op3wtbpv5povsb6rjue.py # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # out_2 => relu # out_3 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2f/c2f3zyag2m4izdxiesppicmusepkhrwzgzb6br4znurpwo5cahc2.py # Topologically Sorted Source Nodes: [out_4, out_5, out_6, out_7], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_4 => convolution_1 # out_5 => add_2, repeat_2, rsqrt_1, var_mean_1 # out_6 => add_4 # out_7 => relu_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_4,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: 'i32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + (16*x0)), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr3 + (r3 + (16*x0)), xmask, other=0.0) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.full([XBLOCK, 1], 16, tl.int32) tmp12 = tmp11.to(tl.float32) tmp13 = tmp10 / tmp12 tmp14 = tmp4 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(xmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tmp20 = tmp3 - tmp13 tmp21 = 16.0 tmp22 = tmp19 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp26 * tmp0 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp32 = tl.full([1, 1], 0, tl.int32) tmp33 = triton_helpers.maximum(tmp32, tmp31) tmp34 = 0.0 tmp35 = tmp33 <= tmp34 tl.store(out_ptr0 + (x0), tmp0, xmask) tl.store(in_out_ptr0 + (r3 + (16*x0)), tmp3, xmask) tl.store(out_ptr3 + (r3 + (16*x0)), tmp33, xmask) tl.store(out_ptr4 + (r3 + (16*x0)), tmp35, xmask) tl.store(out_ptr5 + (x0), tmp25, xmask) tl.store(out_ptr1 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf8 = reinterpret_tensor(buf6, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [out_1, instance_norm], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_1.run(buf2, buf8, primals_3, buf5, 16, 16, grid=grid(16), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_4, buf3, 16, grid=grid(16), stream=stream0) del primals_4 buf4 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_5, buf4, 16, grid=grid(16), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_3.run(buf2, buf5, buf8, buf3, buf4, buf9, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = empty_strided_cuda((16, ), (1, ), torch.float32) buf11 = buf10; del buf10 # reuse buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [out_4, out_5, out_6, out_7], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add, aten.relu, aten.threshold_backward] triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4.run(buf11, primals_8, primals_7, primals_9, primals_1, buf12, buf13, buf17, buf18, buf16, 16, 16, grid=grid(16), stream=stream0) del primals_1 del primals_7 del primals_8 del primals_9 return (buf17, primals_2, primals_6, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, reinterpret_tensor(buf16, (16, ), (1, ), 0), buf18, reinterpret_tensor(buf13, (1, 16, 1, 1), (16, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() padding = kernel_size // 2 self.reflection_pad = nn.ReflectionPad2d(padding) self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class ResidualBlock(nn.Module): def __init__(self, channels): super(ResidualBlock, self).__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = nn.InstanceNorm2d(channels, affine=True) self.relu = nn.ReLU() self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = nn.InstanceNorm2d(channels, affine=True) def forward(self, x): residual = x out = self.relu(self.in1(self.conv1(x))) out = self.in2(self.conv2(out)) out = out + residual out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 4, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, out_ptr5, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 4 tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + 16 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr3 + (r3 + 16 * x0), xmask, other=0.0) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tl.where(xmask, tmp4, 0) tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.full([XBLOCK, 1], 16, tl.int32) tmp12 = tmp11.to(tl.float32) tmp13 = tmp10 / tmp12 tmp14 = tmp4 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(xmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tmp20 = tmp3 - tmp13 tmp21 = 16.0 tmp22 = tmp19 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp26 * tmp0 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp32 = tl.full([1, 1], 0, tl.int32) tmp33 = triton_helpers.maximum(tmp32, tmp31) tmp34 = 0.0 tmp35 = tmp33 <= tmp34 tl.store(out_ptr0 + x0, tmp0, xmask) tl.store(in_out_ptr0 + (r3 + 16 * x0), tmp3, xmask) tl.store(out_ptr3 + (r3 + 16 * x0), tmp33, xmask) tl.store(out_ptr4 + (r3 + 16 * x0), tmp35, xmask) tl.store(out_ptr5 + x0, tmp25, xmask) tl.store(out_ptr1 + x0, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf8 = reinterpret_tensor(buf6, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf6 triton_per_fused__native_batch_norm_legit_convolution_1[grid(16)](buf2, buf8, primals_3, buf5, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(16)](primals_4, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf4 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(16)](primals_5, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_3[grid(576)](buf2, buf5, buf8, buf3, buf4, buf9, 576, XBLOCK=128, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = empty_strided_cuda((16,), (1,), torch.float32) buf11 = buf10 del buf10 buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) triton_per_fused__native_batch_norm_legit_add_convolution_relu_repeat_threshold_backward_4[ grid(16)](buf11, primals_8, primals_7, primals_9, primals_1, buf12, buf13, buf17, buf18, buf16, 16, 16, XBLOCK=8, num_warps= 2, num_stages=1) del primals_1 del primals_7 del primals_8 del primals_9 return (buf17, primals_2, primals_6, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, reinterpret_tensor(buf16, (16,), (1,), 0), buf18, reinterpret_tensor(buf13, (1, 16, 1, 1), (16, 1, 1, 1), 0)) class ConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() padding = kernel_size // 2 self.reflection_pad = nn.ReflectionPad2d(padding) self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class ResidualBlockNew(nn.Module): def __init__(self, channels): super(ResidualBlockNew, self).__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = nn.InstanceNorm2d(channels, affine=True) self.relu = nn.ReLU() self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = nn.InstanceNorm2d(channels, affine=True) def forward(self, input_0): primals_2 = self.conv1.conv2d.weight primals_3 = self.conv1.conv2d.bias primals_4 = self.in1.weight primals_5 = self.in1.bias primals_6 = self.conv2.conv2d.weight primals_7 = self.conv2.conv2d.bias primals_8 = self.in2.weight primals_9 = self.in2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
naver-ai/cgl_fairness
ResidualBlock
false
7,335
[ "MIT" ]
1
00d3bec233c9b3e0f88496118abaed8321ca3159
https://github.com/naver-ai/cgl_fairness/tree/00d3bec233c9b3e0f88496118abaed8321ca3159
import torch import torch.nn as nn class ConvLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super().__init__() padding = kernel_size // 2 self.reflection_pad = nn.ReflectionPad2d(padding) self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class Model(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = nn.InstanceNorm2d(channels, affine=True) self.relu = nn.ReLU() self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = nn.InstanceNorm2d(channels, affine=True) def forward(self, x): residual = x out = self.relu(self.in1(self.conv1(x))) out = self.in2(self.conv2(out)) out = out + residual out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
PositionGenerator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/df/cdfcie57v6pcdd6oeaz4mvlgksxgyuxzmlv5bklwemyulqhtcxta.py # Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mul => mul # std => sqrt, var # sub => sub # truediv => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_2, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_2, [-1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_4), kwargs = {}) triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-06 tmp28 = tmp26 + tmp27 tmp29 = tmp12 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x2), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tt/ctttzgnguystw446sgeisgiema54yz5d5wmngsz4pinf7chzr4i7.py # Topologically Sorted Source Nodes: [out_masked], Original ATen: [aten.mul] # Source node to ATen node mapping: # out_masked => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %unsqueeze), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 256 x4 = (xindex // 4) x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x5), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (3, 4), (4, 1)) assert_size_stride(primals_6, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, std, sub, mul, add, truediv, add_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_3, primals_2, primals_4, buf0, 256, grid=grid(256), stream=stream0) del primals_3 del primals_4 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_masked], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf0, primals_1, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 buf2 = empty_strided_cuda((256, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [projected], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 3), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 return (reinterpret_tensor(buf2, (4, 4, 4, 4, 3), (192, 48, 12, 3, 1), 0), primals_1, primals_2, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-06): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class PositionGenerator(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, d_model): super(PositionGenerator, self).__init__() self.norm = LayerNorm(d_model) self.proj = nn.Linear(d_model, 3) def forward(self, x, mask): mask = mask.unsqueeze(-1).float() out_masked = self.norm(x) * mask projected = self.proj(out_masked) return projected def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-06 tmp28 = tmp26 + tmp27 tmp29 = tmp12 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 256 x4 = xindex // 4 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x5, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (3, 4), (4, 1)) assert_size_stride(primals_6, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_3, primals_2, primals_4, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 del primals_4 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(1024)](buf0, primals_1, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 buf2 = empty_strided_cuda((256, 3), (3, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (256, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 3), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 return reinterpret_tensor(buf2, (4, 4, 4, 4, 3), (192, 48, 12, 3, 1), 0 ), primals_1, primals_2, reinterpret_tensor(buf1, (256, 4), (4, 1), 0 ), primals_5 class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-06): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class PositionGeneratorNew(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, d_model): super(PositionGeneratorNew, self).__init__() self.norm = LayerNorm(d_model) self.proj = nn.Linear(d_model, 3) def forward(self, input_0, input_1): primals_3 = self.norm.a_2 primals_4 = self.norm.b_2 primals_5 = self.proj.weight primals_6 = self.proj.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
nigelnnk/MATCh-sensitivity
PositionGenerator
false
7,336
[ "MIT" ]
1
aaf2b924ac98c8c5925bbf431481724d11a102f8
https://github.com/nigelnnk/MATCh-sensitivity/tree/aaf2b924ac98c8c5925bbf431481724d11a102f8
import torch import torch.nn as nn class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-06): super().__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class Model(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, d_model): super().__init__() self.norm = LayerNorm(d_model) self.proj = nn.Linear(d_model, 3) def forward(self, x, mask): mask = mask.unsqueeze(-1).float() out_masked = self.norm(x) * mask projected = self.proj(out_masked) return projected def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
EdgeFeaturesLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lx/clxenpwkl4qtcky22cudzrb6ruwgm2vjfzwtegj2siml77dc4lga.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 1, 4, 1), 0); del buf1 # reuse buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class EdgeFeaturesLayer(nn.Module): def __init__(self, d_model, d_edge, h, dropout): super(EdgeFeaturesLayer, self).__init__() assert d_model % h == 0 d_model // h self.linear = nn.Linear(d_edge, 1, bias=False) with torch.no_grad(): self.linear.weight.fill_(0.25) def forward(self, x): p_edge = x.permute(0, 2, 3, 1) p_edge = self.linear(p_edge).permute(0, 3, 1, 2) return torch.relu(p_edge) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_edge': 4, 'h': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf1 buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3 class EdgeFeaturesLayerNew(nn.Module): def __init__(self, d_model, d_edge, h, dropout): super(EdgeFeaturesLayerNew, self).__init__() assert d_model % h == 0 d_model // h self.linear = nn.Linear(d_edge, 1, bias=False) with torch.no_grad(): self.linear.weight.fill_(0.25) def forward(self, input_0): primals_2 = self.linear.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
nigelnnk/MATCh-sensitivity
EdgeFeaturesLayer
false
7,337
[ "MIT" ]
1
aaf2b924ac98c8c5925bbf431481724d11a102f8
https://github.com/nigelnnk/MATCh-sensitivity/tree/aaf2b924ac98c8c5925bbf431481724d11a102f8
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, d_model, d_edge, h, dropout): super().__init__() assert d_model % h == 0 d_model // h self.linear = nn.Linear(d_edge, 1, bias=False) with torch.no_grad(): self.linear.weight.fill_(0.25) def forward(self, x): p_edge = x.permute(0, 2, 3, 1) p_edge = self.linear(p_edge).permute(0, 3, 1, 2) return torch.relu(p_edge) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 0.5]
Generator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/pj/cpjtaps4dusmzrrvkgal3gobvvp6pxqqx5zvwpjyzgdjffmdihfr.py # Topologically Sorted Source Nodes: [out_masked, out_sum, mask_sum, out_avg_pooling], Original ATen: [aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # mask_sum => sum_2 # out_avg_pooling => div # out_masked => mul # out_sum => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %unsqueeze), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%unsqueeze, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_poi_fused_div_mul_sum_0 = async_compile.triton('triton_poi_fused_div_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x1 = (xindex // 4) % 16 x2 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (128 + x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x1 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tmp1 + tmp4 tmp16 = tmp15 + tmp8 tmp17 = tmp16 + tmp12 tmp18 = tmp14 / tmp17 tl.store(out_ptr0 + (x4), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) assert_size_stride(primals_4, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_masked, out_sum, mask_sum, out_avg_pooling], Original ATen: [aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_sum_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [projected], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 return (reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-06): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class ScaleNorm(nn.Module): """ScaleNorm""" """All g’s in SCALE NORM are initialized to sqrt(d)""" def __init__(self, scale, eps=1e-05): super(ScaleNorm, self).__init__() self.scale = nn.Parameter(torch.tensor(math.sqrt(scale))) self.eps = eps def forward(self, x): norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min= self.eps) return x * norm class Generator(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, d_model, aggregation_type='mean', n_output=1, n_layers=1, leaky_relu_slope=0.01, dropout=0.0, scale_norm=False): super(Generator, self).__init__() if n_layers == 1: self.proj = nn.Linear(d_model, n_output) else: self.proj = [] for i in range(n_layers - 1): self.proj.append(nn.Linear(d_model, d_model)) self.proj.append(nn.LeakyReLU(leaky_relu_slope)) self.proj.append(ScaleNorm(d_model) if scale_norm else LayerNorm(d_model)) self.proj.append(nn.Dropout(dropout)) self.proj.append(nn.Linear(d_model, n_output)) self.proj = torch.nn.Sequential(*self.proj) self.aggregation_type = aggregation_type def forward(self, x, mask): mask = mask.unsqueeze(-1).float() out_masked = x * mask if self.aggregation_type == 'mean': out_sum = out_masked.sum(dim=1) mask_sum = mask.sum(dim=1) out_avg_pooling = out_sum / mask_sum elif self.aggregation_type == 'sum': out_sum = out_masked.sum(dim=1) out_avg_pooling = out_sum elif self.aggregation_type == 'dummy_node': out_avg_pooling = out_masked[:, 0] projected = self.proj(out_avg_pooling) return projected def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 64 x1 = xindex // 4 % 16 x2 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (16 + x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + (128 + x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (192 + x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x1 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = tmp1 + tmp4 tmp16 = tmp15 + tmp8 tmp17 = tmp16 + tmp12 tmp18 = tmp14 / tmp17 tl.store(out_ptr0 + x4, tmp18, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) assert_size_stride(primals_4, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_sum_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_3, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_3 del primals_4 return reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0) class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-06): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class ScaleNorm(nn.Module): """ScaleNorm""" """All g’s in SCALE NORM are initialized to sqrt(d)""" def __init__(self, scale, eps=1e-05): super(ScaleNorm, self).__init__() self.scale = nn.Parameter(torch.tensor(math.sqrt(scale))) self.eps = eps def forward(self, x): norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min= self.eps) return x * norm class GeneratorNew(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, d_model, aggregation_type='mean', n_output=1, n_layers=1, leaky_relu_slope=0.01, dropout=0.0, scale_norm=False): super(GeneratorNew, self).__init__() if n_layers == 1: self.proj = nn.Linear(d_model, n_output) else: self.proj = [] for i in range(n_layers - 1): self.proj.append(nn.Linear(d_model, d_model)) self.proj.append(nn.LeakyReLU(leaky_relu_slope)) self.proj.append(ScaleNorm(d_model) if scale_norm else LayerNorm(d_model)) self.proj.append(nn.Dropout(dropout)) self.proj.append(nn.Linear(d_model, n_output)) self.proj = torch.nn.Sequential(*self.proj) self.aggregation_type = aggregation_type def forward(self, input_0, input_1): primals_3 = self.proj.weight primals_4 = self.proj.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
nigelnnk/MATCh-sensitivity
Generator
false
7,338
[ "MIT" ]
1
aaf2b924ac98c8c5925bbf431481724d11a102f8
https://github.com/nigelnnk/MATCh-sensitivity/tree/aaf2b924ac98c8c5925bbf431481724d11a102f8
import math import torch import torch.nn as nn class LayerNorm(nn.Module): """Construct a layernorm module (See citation for details).""" def __init__(self, features, eps=1e-06): super().__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class ScaleNorm(nn.Module): """ScaleNorm""" """All g’s in SCALE NORM are initialized to sqrt(d)""" def __init__(self, scale, eps=1e-05): super().__init__() self.scale = nn.Parameter(torch.tensor(math.sqrt(scale))) self.eps = eps def forward(self, x): norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min= self.eps) return x * norm class Model(nn.Module): """Define standard linear + softmax generation step.""" def __init__(self, d_model, aggregation_type='mean', n_output=1, n_layers=1, leaky_relu_slope=0.01, dropout=0.0, scale_norm=False): super().__init__() if n_layers == 1: self.proj = nn.Linear(d_model, n_output) else: self.proj = [] for i in range(n_layers - 1): self.proj.append(nn.Linear(d_model, d_model)) self.proj.append(nn.LeakyReLU(leaky_relu_slope)) self.proj.append(ScaleNorm(d_model) if scale_norm else LayerNorm(d_model)) self.proj.append(nn.Dropout(dropout)) self.proj.append(nn.Linear(d_model, n_output)) self.proj = torch.nn.Sequential(*self.proj) self.aggregation_type = aggregation_type def forward(self, x, mask): mask = mask.unsqueeze(-1).float() out_masked = x * mask if self.aggregation_type == 'mean': out_sum = out_masked.sum(dim=1) mask_sum = mask.sum(dim=1) out_avg_pooling = out_sum / mask_sum elif self.aggregation_type == 'sum': out_sum = out_masked.sum(dim=1) out_avg_pooling = out_sum elif self.aggregation_type == 'dummy_node': out_avg_pooling = out_masked[:, 0] projected = self.proj(out_avg_pooling) return projected def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SqueezeNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ze/czeyd3qjsq546c7ea763ybzbn4sb4zzidmbxe2coosrykwwb4pit.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 288 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (147*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sf/csfphurxkfilliqpsa7cfr3pqkfaef7yr7uzm2nhhxuzpah3kv4x.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (144*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k6/ck6mpoqrm3een2gnzk3q7avn7if4q5njkh6yuf2lcdtfooev6ukp.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e3/ce3476wuixbg7whdmceldres75gmr262efy4sgv4xcritwmi4xir.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 9216 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 48 y1 = (yindex // 48) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (48*x2) + (432*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wa/cwasc5xshefzagbizx6nhfjaifdz7vqj4evbpydruvtdugd4lhfp.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4j/c4jshfefqkzdtvcidkjhrzjj55ta4bzr5nwbf2nuzdoc75mmiayw.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_1 => convolution # input_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 322944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hn/chn7w4dttiseahpxxhjjrfcqpaj5jhrmdzbhyzmmkrkwf57xro7q.py # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_3 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 75264 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 96 x1 = (xindex // 96) % 14 x2 = (xindex // 1344) % 14 x3 = (xindex // 18816) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp1 = tl.load(in_ptr0 + (96 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp3 = tl.load(in_ptr0 + (192 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp5 = tl.load(in_ptr0 + (2784 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp7 = tl.load(in_ptr0 + (2880 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp9 = tl.load(in_ptr0 + (2976 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp11 = tl.load(in_ptr0 + (5568 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp13 = tl.load(in_ptr0 + (5664 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp15 = tl.load(in_ptr0 + (5760 + x0 + (192*x1) + (5568*x2) + (80736*x3)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + (x4), tmp16, xmask) tl.store(out_ptr1 + (x4), tmp41, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/n2/cn2zhaw5q6d3p7elstsunhq6ybcjaqtshcx4id6mvj7r7pp6muc7.py # Topologically Sorted Source Nodes: [conv2d_1, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/56/c56yi7b4gudcyxqcuy62nlzwkpzyvbfci2mdojw3gbunflpxfmwb.py # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_4 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_2, %relu_3], 1), kwargs = {}) triton_poi_fused_cat_9 = async_compile.triton('triton_poi_fused_cat_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 128, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((64*x1) + ((-64) + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((-64) + x0), tmp12, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x2), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qe/cqeo4l5igb7ssqpg4qcf256ohiqzstzkbcwi5m3qi4a33t2cbk6c.py # Topologically Sorted Source Nodes: [conv2d_7, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # x_2 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fj/cfj6u5lcpgelhrmdirkhqtdee5oy6idtzgzhl5xjlut6mwmcq5ez.py # Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_6 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_8, %relu_9], 1), kwargs = {}) triton_poi_fused_cat_11 = async_compile.triton('triton_poi_fused_cat_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 200704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 256, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((128*x1) + ((-128) + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((-128) + x0), tmp12, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x2), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/l3/cl3lx4bd6l5at6p2m7izsqz2tw7jh6dw7dimwozxxwufrimtfiqz.py # Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_7 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 1792) % 7 x1 = (xindex // 256) % 7 x0 = xindex % 256 x5 = (xindex // 1792) x6 = xindex tmp0 = 2*x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 14, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (512*x1) + (7168*x5)), tmp10 & xmask, other=float("-inf")) tmp12 = 1 + (2*x1) tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (7168*x5)), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + (2*x1) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (512 + x0 + (512*x1) + (7168*x5)), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + (2*x2) tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3584 + x0 + (512*x1) + (7168*x5)), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (3840 + x0 + (512*x1) + (7168*x5)), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (7168*x5)), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + (2*x2) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (7168 + x0 + (512*x1) + (7168*x5)), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (7424 + x0 + (512*x1) + (7168*x5)), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (7680 + x0 + (512*x1) + (7168*x5)), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, xmask) tl.store(out_ptr1 + (x6), tmp76, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/my/cmyhxeiv3z2ual3ueuhemlx25ba554moz6ij24ubkagg3qxd2jmk.py # Topologically Sorted Source Nodes: [conv2d_10, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # x_3 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/b2/cb2xdk2o6mgvhtsoy5gptyuqevcymafmzpecvobhsolx4covjirs.py # Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_8 => cat_3 # Graph fragment: # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_11, %relu_12], 1), kwargs = {}) triton_poi_fused_cat_14 = async_compile.triton('triton_poi_fused_cat_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 256 x1 = (xindex // 256) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 256, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((128*x1) + ((-128) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((-128) + x0), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pa/cpazhbfndas4amtcw2kihst5qrnlydkbieelfyb5h22pw4z5wwqp.py # Topologically Sorted Source Nodes: [conv2d_13, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # x_4 => relu_13 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_28, %primals_29, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_13 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {}) triton_poi_fused_convolution_relu_15 = async_compile.triton('triton_poi_fused_convolution_relu_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wb/cwbn5mqw2v2zzldjs4ac7oua67izn3hsaqm62k4yghm3yuppsilx.py # Topologically Sorted Source Nodes: [input_9], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_9 => cat_4 # Graph fragment: # %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_14, %relu_15], 1), kwargs = {}) triton_poi_fused_cat_16 = async_compile.triton('triton_poi_fused_cat_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 75264 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 384 x1 = (xindex // 384) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 192, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((192*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((192*x1) + ((-192) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((-192) + x0), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5c/c5cxr2sgesuh3ykfbyxbkhz6ci32ejiuiodkmjw2os5hw3xwjxoh.py # Topologically Sorted Source Nodes: [conv2d_19, x_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_19 => convolution_19 # x_6 => relu_19 # Graph fragment: # %convolution_19 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_5, %primals_40, %primals_41, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_19 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_19,), kwargs = {}) triton_poi_fused_convolution_relu_17 = async_compile.triton('triton_poi_fused_convolution_relu_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/go/cgog67rtzwolkpyjsykd37vy6ax6lzk7vkr6q33ga6ewlzj7xpgx.py # Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_11 => cat_6 # Graph fragment: # %cat_6 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_20, %relu_21], 1), kwargs = {}) triton_poi_fused_cat_18 = async_compile.triton('triton_poi_fused_cat_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 512, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((256*x1) + ((-256) + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((-256) + x0), tmp12, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x2), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pp/cppl4cftexd7sjwxqm6twssr34eku3qwgtvw3vck2g5ezk5nery6.py # Topologically Sorted Source Nodes: [input_12], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_12 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_19 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_19(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) % 3 x2 = (xindex // 1536) % 3 x3 = (xindex // 4608) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp5 = tl.load(in_ptr0 + (3584 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp9 = tl.load(in_ptr0 + (4608 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp11 = tl.load(in_ptr0 + (7168 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp13 = tl.load(in_ptr0 + (7680 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp15 = tl.load(in_ptr0 + (8192 + x0 + (1024*x1) + (7168*x2) + (25088*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + (x4), tmp16, None) tl.store(out_ptr1 + (x4), tmp41, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/45/c45jgdzesyuhk6beyhfbmirm3tamhabwhi5pwvke7xes3jeijxrf.py # Topologically Sorted Source Nodes: [conv2d_22, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_22 => convolution_22 # x_7 => relu_22 # Graph fragment: # %convolution_22 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_46, %primals_47, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_22 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_22,), kwargs = {}) triton_poi_fused_convolution_relu_20 = async_compile.triton('triton_poi_fused_convolution_relu_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_20', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5r/c5rz37wlpjddqpmthp3dlgcpqap4tjp7gah53ngg3v3clqnewuwd.py # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_13 => cat_7 # Graph fragment: # %cat_7 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_23, %relu_24], 1), kwargs = {}) triton_poi_fused_cat_21 = async_compile.triton('triton_poi_fused_cat_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 512, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((256*x1) + ((-256) + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + ((-256) + x0), tmp12, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + (x2), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mg/cmgqvp7lrzfft3pjfzc6h6aiqy7lluxn5tlkddijz66oiza6wngk.py # Topologically Sorted Source Nodes: [input_15, input_16, input_17], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # input_15 => convolution_25 # input_16 => relu_25 # input_17 => mean # Graph fragment: # %convolution_25 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_7, %primals_52, %primals_53, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_25 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_25,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_25, [-1, -2], True), kwargs = {}) triton_per_fused_convolution_mean_relu_22 = async_compile.triton('triton_per_fused_convolution_mean_relu_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4096, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_relu_22', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_mean_relu_22(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4000 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = rindex x0 = xindex % 1000 x1 = (xindex // 1000) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (1000*r2) + (9000*x1)), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(rmask & xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = 9.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/u7/cu7dpusjnm7yt3b5etrxmm4vvsl2ugywwulnxuijjlly4x34mfz4.py # Topologically Sorted Source Nodes: [input_15, input_16], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # input_15 => convolution_25 # input_16 => relu_25 # Graph fragment: # %convolution_25 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_7, %primals_52, %primals_53, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_25 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_25,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_25, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_23 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_23(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3q/c3qoii36do2jtam7m3jhlytuykkypmcqmr7twk4w5stkyslqhvdx.py # Topologically Sorted Source Nodes: [conv2d_24, relu_24], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_24 => convolution_24 # relu_24 => relu_24 # Graph fragment: # %convolution_24 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_22, %primals_50, %primals_51, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_24 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_24,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_24, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_24 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_24(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ll/cllrnxsks4gdn3w6tf5gxd2u2stzyjmsqql4o7rrn4l4ga7j2fmq.py # Topologically Sorted Source Nodes: [conv2d_21, relu_21], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_21 => convolution_21 # relu_21 => relu_21 # Graph fragment: # %convolution_21 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_19, %primals_44, %primals_45, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_21 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_21,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_21, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_25 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_25(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hx/chx7vabdpspv3vt5tkxlo5dyphcmzc6xudpgw3n4harfu77ycpw5.py # Topologically Sorted Source Nodes: [conv2d_18, relu_18], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_18 => convolution_18 # relu_18 => relu_18 # Graph fragment: # %convolution_18 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_16, %primals_38, %primals_39, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_18 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_18,), kwargs = {}) # %le_7 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_18, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_26 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_26(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 37632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/t2/ct22ibtznsxt52xgmjekx6wdrldib6bgixp2xemxlkpijdgasznb.py # Topologically Sorted Source Nodes: [conv2d_12, relu_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # relu_12 => relu_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_12,), kwargs = {}) # %le_13 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_12, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_27 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_27', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_27(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vf/cvfcywcoir6zz63sb5ykrqafgtqsyn4rbib4xawb7ugv3tk5pirj.py # Topologically Sorted Source Nodes: [conv2d_9, relu_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # relu_9 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_7, %primals_20, %primals_21, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %le_16 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_28 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/o6/co6j4d6e2424ff7a23ugfqqsp3f7dkkmpauq2qrab36olqyt25hs.py # Topologically Sorted Source Nodes: [conv2d_6, relu_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # relu_6 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %le_19 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_29 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_29(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53 = args args.clear() assert_size_stride(primals_1, (96, 3, 7, 7), (147, 49, 7, 1)) assert_size_stride(primals_2, (96, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (16, 96, 1, 1), (96, 1, 1, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (64, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (16, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (64, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (32, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_17, (32, ), (1, )) assert_size_stride(primals_18, (128, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_19, (128, ), (1, )) assert_size_stride(primals_20, (128, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (32, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_23, (32, ), (1, )) assert_size_stride(primals_24, (128, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (128, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_27, (128, ), (1, )) assert_size_stride(primals_28, (48, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_29, (48, ), (1, )) assert_size_stride(primals_30, (192, 48, 1, 1), (48, 1, 1, 1)) assert_size_stride(primals_31, (192, ), (1, )) assert_size_stride(primals_32, (192, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_33, (192, ), (1, )) assert_size_stride(primals_34, (48, 384, 1, 1), (384, 1, 1, 1)) assert_size_stride(primals_35, (48, ), (1, )) assert_size_stride(primals_36, (192, 48, 1, 1), (48, 1, 1, 1)) assert_size_stride(primals_37, (192, ), (1, )) assert_size_stride(primals_38, (192, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_39, (192, ), (1, )) assert_size_stride(primals_40, (64, 384, 1, 1), (384, 1, 1, 1)) assert_size_stride(primals_41, (64, ), (1, )) assert_size_stride(primals_42, (256, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_43, (256, ), (1, )) assert_size_stride(primals_44, (256, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_45, (256, ), (1, )) assert_size_stride(primals_46, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_47, (64, ), (1, )) assert_size_stride(primals_48, (256, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_49, (256, ), (1, )) assert_size_stride(primals_50, (256, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_51, (256, ), (1, )) assert_size_stride(primals_52, (1000, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_53, (1000, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((96, 3, 7, 7), (147, 1, 21, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 288, 49, grid=grid(288, 49), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 16, 3, 3), (144, 1, 48, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf2, 1024, 9, grid=grid(1024, 9), stream=stream0) del primals_8 buf3 = empty_strided_cuda((64, 16, 3, 3), (144, 1, 48, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_14, buf3, 1024, 9, grid=grid(1024, 9), stream=stream0) del primals_14 buf4 = empty_strided_cuda((128, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_20, buf4, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_20 buf5 = empty_strided_cuda((128, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_26, buf5, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_26 buf6 = empty_strided_cuda((192, 48, 3, 3), (432, 1, 144, 48), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_32, buf6, 9216, 9, grid=grid(9216, 9), stream=stream0) del primals_32 buf7 = empty_strided_cuda((192, 48, 3, 3), (432, 1, 144, 48), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_38, buf7, 9216, 9, grid=grid(9216, 9), stream=stream0) del primals_38 buf8 = empty_strided_cuda((256, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_44, buf8, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_44 buf9 = empty_strided_cuda((256, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_50, buf9, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_50 # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 96, 29, 29), (80736, 1, 2784, 96)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf11, primals_2, 322944, grid=grid(322944), stream=stream0) del primals_2 buf12 = empty_strided_cuda((4, 96, 14, 14), (18816, 1, 1344, 96), torch.float32) buf13 = empty_strided_cuda((4, 96, 14, 14), (18816, 1, 1344, 96), torch.int8) # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_7.run(buf11, buf12, buf13, 75264, grid=grid(75264), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf12, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 16, 14, 14), (3136, 1, 224, 16)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf15, primals_5, 12544, grid=grid(12544), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 14, 14), (12544, 1, 896, 64)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 14, 14), (12544, 1, 896, 64)) buf18 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.float32) # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf16, primals_7, buf17, primals_9, buf18, 100352, grid=grid(100352), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 16, 14, 14), (3136, 1, 224, 16)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf20, primals_11, 12544, grid=grid(12544), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 14, 14), (12544, 1, 896, 64)) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf20, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 64, 14, 14), (12544, 1, 896, 64)) buf23 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.float32) # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.cat] triton_poi_fused_cat_9.run(buf21, primals_13, buf22, primals_15, buf23, 100352, grid=grid(100352), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 14, 14), (6272, 1, 448, 32)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf25, primals_17, 25088, grid=grid(25088), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 14, 14), (25088, 1, 1792, 128)) # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf25, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 128, 14, 14), (25088, 1, 1792, 128)) buf28 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256), torch.float32) # Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.cat] triton_poi_fused_cat_11.run(buf26, primals_19, buf27, primals_21, buf28, 200704, grid=grid(200704), stream=stream0) buf29 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.float32) buf30 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.int8) # Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf28, buf29, buf30, 50176, grid=grid(50176), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf29, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 32, 7, 7), (1568, 1, 224, 32)) buf32 = buf31; del buf31 # reuse # Topologically Sorted Source Nodes: [conv2d_10, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf32, primals_23, 6272, grid=grid(6272), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 128, 7, 7), (6272, 1, 896, 128)) # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf32, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 128, 7, 7), (6272, 1, 896, 128)) buf35 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.float32) # Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.cat] triton_poi_fused_cat_14.run(buf33, primals_25, buf34, primals_27, buf35, 50176, grid=grid(50176), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 48, 7, 7), (2352, 1, 336, 48)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [conv2d_13, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf37, primals_29, 9408, grid=grid(9408), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 192, 7, 7), (9408, 1, 1344, 192)) # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf37, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 192, 7, 7), (9408, 1, 1344, 192)) buf40 = empty_strided_cuda((4, 384, 7, 7), (18816, 1, 2688, 384), torch.float32) # Topologically Sorted Source Nodes: [input_9], Original ATen: [aten.cat] triton_poi_fused_cat_16.run(buf38, primals_31, buf39, primals_33, buf40, 75264, grid=grid(75264), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] buf41 = extern_kernels.convolution(buf40, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 48, 7, 7), (2352, 1, 336, 48)) buf42 = buf41; del buf41 # reuse # Topologically Sorted Source Nodes: [conv2d_16, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf42, primals_35, 9408, grid=grid(9408), stream=stream0) del primals_35 # Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf42, primals_36, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 192, 7, 7), (9408, 1, 1344, 192)) # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] buf44 = extern_kernels.convolution(buf42, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 192, 7, 7), (9408, 1, 1344, 192)) buf45 = empty_strided_cuda((4, 384, 7, 7), (18816, 1, 2688, 384), torch.float32) # Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.cat] triton_poi_fused_cat_16.run(buf43, primals_37, buf44, primals_39, buf45, 75264, grid=grid(75264), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf45, primals_40, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 64, 7, 7), (3136, 1, 448, 64)) buf47 = buf46; del buf46 # reuse # Topologically Sorted Source Nodes: [conv2d_19, x_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf47, primals_41, 12544, grid=grid(12544), stream=stream0) del primals_41 # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] buf48 = extern_kernels.convolution(buf47, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 256, 7, 7), (12544, 1, 1792, 256)) # Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution] buf49 = extern_kernels.convolution(buf47, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf49, (4, 256, 7, 7), (12544, 1, 1792, 256)) buf50 = empty_strided_cuda((4, 512, 7, 7), (25088, 1, 3584, 512), torch.float32) # Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.cat] triton_poi_fused_cat_18.run(buf48, primals_43, buf49, primals_45, buf50, 100352, grid=grid(100352), stream=stream0) buf51 = empty_strided_cuda((4, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) buf52 = empty_strided_cuda((4, 512, 3, 3), (4608, 1, 1536, 512), torch.int8) # Topologically Sorted Source Nodes: [input_12], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_19.run(buf50, buf51, buf52, 18432, grid=grid(18432), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution] buf53 = extern_kernels.convolution(buf51, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 64, 3, 3), (576, 1, 192, 64)) buf54 = buf53; del buf53 # reuse # Topologically Sorted Source Nodes: [conv2d_22, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_20.run(buf54, primals_47, 2304, grid=grid(2304), stream=stream0) del primals_47 # Topologically Sorted Source Nodes: [conv2d_23], Original ATen: [aten.convolution] buf55 = extern_kernels.convolution(buf54, primals_48, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 256, 3, 3), (2304, 1, 768, 256)) # Topologically Sorted Source Nodes: [conv2d_24], Original ATen: [aten.convolution] buf56 = extern_kernels.convolution(buf54, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 256, 3, 3), (2304, 1, 768, 256)) buf57 = empty_strided_cuda((4, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.cat] triton_poi_fused_cat_21.run(buf55, primals_49, buf56, primals_51, buf57, 18432, grid=grid(18432), stream=stream0) # Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.convolution] buf58 = extern_kernels.convolution(buf57, primals_52, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 1000, 3, 3), (9000, 1, 3000, 1000)) buf59 = empty_strided_cuda((4, 1000, 1, 1), (1000, 1, 4000, 4000), torch.float32) buf60 = reinterpret_tensor(buf59, (4, 1000, 1, 1), (1000, 1, 1, 1), 0); del buf59 # reuse # Topologically Sorted Source Nodes: [input_15, input_16, input_17], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_per_fused_convolution_mean_relu_22.run(buf60, buf58, primals_53, 4000, 9, grid=grid(4000), stream=stream0) buf61 = empty_strided_cuda((4, 1000, 3, 3), (9000, 1, 3000, 1000), torch.bool) # Topologically Sorted Source Nodes: [input_15, input_16], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_23.run(buf58, primals_53, buf61, 36000, grid=grid(36000), stream=stream0) del buf58 del primals_53 buf62 = empty_strided_cuda((4, 256, 3, 3), (2304, 1, 768, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_24, relu_24], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_24.run(buf56, primals_51, buf62, 9216, grid=grid(9216), stream=stream0) del buf56 del primals_51 buf63 = empty_strided_cuda((4, 256, 3, 3), (2304, 1, 768, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_23, relu_23], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_24.run(buf55, primals_49, buf63, 9216, grid=grid(9216), stream=stream0) del buf55 del primals_49 buf64 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_21, relu_21], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_25.run(buf49, primals_45, buf64, 50176, grid=grid(50176), stream=stream0) del buf49 del primals_45 buf65 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_20, relu_20], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_25.run(buf48, primals_43, buf65, 50176, grid=grid(50176), stream=stream0) del buf48 del primals_43 buf66 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) # Topologically Sorted Source Nodes: [conv2d_18, relu_18], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_26.run(buf44, primals_39, buf66, 37632, grid=grid(37632), stream=stream0) del buf44 del primals_39 buf67 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) # Topologically Sorted Source Nodes: [conv2d_17, relu_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_26.run(buf43, primals_37, buf67, 37632, grid=grid(37632), stream=stream0) del buf43 del primals_37 buf68 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) # Topologically Sorted Source Nodes: [conv2d_15, relu_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_26.run(buf39, primals_33, buf68, 37632, grid=grid(37632), stream=stream0) del buf39 del primals_33 buf69 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) # Topologically Sorted Source Nodes: [conv2d_14, relu_14], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_26.run(buf38, primals_31, buf69, 37632, grid=grid(37632), stream=stream0) del buf38 del primals_31 buf70 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_12, relu_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_27.run(buf34, primals_27, buf70, 25088, grid=grid(25088), stream=stream0) del buf34 del primals_27 buf71 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, relu_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_27.run(buf33, primals_25, buf71, 25088, grid=grid(25088), stream=stream0) del buf33 del primals_25 buf72 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, relu_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_28.run(buf27, primals_21, buf72, 100352, grid=grid(100352), stream=stream0) del buf27 del primals_21 buf73 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_8, relu_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_28.run(buf26, primals_19, buf73, 100352, grid=grid(100352), stream=stream0) del buf26 del primals_19 buf74 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, relu_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_29.run(buf22, primals_15, buf74, 50176, grid=grid(50176), stream=stream0) del buf22 del primals_15 buf75 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, relu_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_29.run(buf21, primals_13, buf75, 50176, grid=grid(50176), stream=stream0) del buf21 del primals_13 buf76 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, relu_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_29.run(buf17, primals_9, buf76, 50176, grid=grid(50176), stream=stream0) del buf17 del primals_9 buf77 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_29.run(buf16, primals_7, buf77, 50176, grid=grid(50176), stream=stream0) del buf16 del primals_7 return (buf60, buf0, buf1, primals_4, primals_6, buf2, primals_10, primals_12, buf3, primals_16, primals_18, buf4, primals_22, primals_24, buf5, primals_28, primals_30, buf6, primals_34, primals_36, buf7, primals_40, primals_42, buf8, primals_46, primals_48, buf9, primals_52, buf11, buf12, buf13, buf15, buf18, buf20, buf23, buf25, buf28, buf29, buf30, buf32, buf35, buf37, buf40, buf42, buf45, buf47, buf50, buf51, buf52, buf54, buf57, buf61, buf62, buf63, buf64, buf65, buf66, buf67, buf68, buf69, buf70, buf71, buf72, buf73, buf74, buf75, buf76, buf77, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((96, 3, 7, 7), (147, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 96, 1, 1), (96, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((32, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((32, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((128, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((48, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((192, 48, 1, 1), (48, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((192, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((48, 384, 1, 1), (384, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((192, 48, 1, 1), (48, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((192, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((64, 384, 1, 1), (384, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((256, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((256, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((64, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((256, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((256, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((1000, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((1000, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import copy import torch import torch.nn as nn import torch.utils.data from torchvision.models.squeezenet import squeezenet1_0 from torchvision.models.squeezenet import squeezenet1_1 import torch.nn.modules.activation class GramMatrix(nn.Module): def forward(self, x): b, c, h, w = x.size() F = x.view(b, c, h * w) G = torch.bmm(F, F.transpose(1, 2)) G.div_(h * w) return G class GramDiag(nn.Module): """ docstring for GramDiag """ def __init__(self, gram_diagonal_squared=False): super().__init__() self.__gram_diagonal_squared = gram_diagonal_squared def forward(self, x): b, c, h, w = x.size() x = x.view(b, c, 1, h * w) gram_diag = None for b in range(x.size(0)): if self.__gram_diagonal_squared: z = torch.bmm(x[b] * x[b], (x[b] * x[b]).transpose(2, 1)) else: z = torch.bmm(x[b], x[b].transpose(2, 1)) if isinstance(gram_diag, torch.Tensor): gram_diag = torch.cat(gram_diag, z) else: gram_diag = z gram_diag = torch.squeeze(gram_diag).unsqueeze(0) return gram_diag.div_(h * w) class SqueezeNet(nn.Module): def __init__(self, version=1.0, num_classes=1000, pretrained=False, layer='', gram=False, gram_diag=False, gram_diagonal_squared=False): super().__init__() if version not in [1.0, 1.1]: raise ValueError( 'Unsupported SqueezeNet version {version}:1.0 or 1.1 expected' .format(version=version)) self.num_classes = num_classes if version == 1.0: pytorch_squeeze = squeezenet1_0(pretrained, num_classes=num_classes ) features_names = ['conv_1', 'relu_1', 'maxpool_1', 'fire_2', 'fire_3', 'fire_4', 'maxpool_4', 'fire_5', 'fire_6', 'fire_7', 'fire_8', 'maxpool_8', 'fire_9'] else: pytorch_squeeze = squeezenet1_1(pretrained, num_classes=num_classes ) features_names = ['conv_1', 'relu_1', 'maxpool_1', 'fire_2', 'fire_3', 'maxpool_3', 'fire_4', 'fire_5', 'maxpool_5', 'fire_6', 'fire_7', 'fire_8', 'fire_9'] classifier_names = ['drop_10', 'conv_10', 'relu_10', 'avgpool_10'] self.features = torch.nn.Sequential() for name, module in zip(features_names, pytorch_squeeze.features): self.features.add_module(name, copy.deepcopy(module)) if layer is name: break if len(features_names) == len(self.features ) and layer != features_names[-1]: for name, module in zip(classifier_names, pytorch_squeeze. classifier): self.features.add_module(name, copy.deepcopy(module)) if layer is name: break del pytorch_squeeze if gram: self.features.add_module('gram matrix', GramMatrix()) elif gram_diag: self.features.add_module('gram diagonal', GramDiag( gram_diagonal_squared)) def forward(self, x): return self.features(x) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import copy import torch.nn as nn import torch.utils.data from torchvision.models.squeezenet import squeezenet1_0 from torchvision.models.squeezenet import squeezenet1_1 import torch.nn.modules.activation assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 288 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 147 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 48 y1 = yindex // 48 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 48 * x2 + 432 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 322944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 75264 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 96 x1 = xindex // 96 % 14 x2 = xindex // 1344 % 14 x3 = xindex // 18816 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 192 * x1 + 5568 * x2 + 80736 * x3), xmask) tmp1 = tl.load(in_ptr0 + (96 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3), xmask) tmp3 = tl.load(in_ptr0 + (192 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3), xmask) tmp5 = tl.load(in_ptr0 + (2784 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3 ), xmask) tmp7 = tl.load(in_ptr0 + (2880 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3 ), xmask) tmp9 = tl.load(in_ptr0 + (2976 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3 ), xmask) tmp11 = tl.load(in_ptr0 + (5568 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3), xmask) tmp13 = tl.load(in_ptr0 + (5664 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3), xmask) tmp15 = tl.load(in_ptr0 + (5760 + x0 + 192 * x1 + 5568 * x2 + 80736 * x3), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + x4, tmp16, xmask) tl.store(out_ptr1 + x4, tmp41, xmask) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 128, tl.int64) tmp15 = tl.load(in_ptr2 + (64 * x1 + (-64 + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (-64 + x0), tmp12, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x2, tmp21, None) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 256, tl.int64) tmp15 = tl.load(in_ptr2 + (128 * x1 + (-128 + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (-128 + x0), tmp12, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x2, tmp21, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 1792 % 7 x1 = xindex // 256 % 7 x0 = xindex % 256 x5 = xindex // 1792 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 14, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 512 * x1 + 7168 * x5), tmp10 & xmask, other=float('-inf')) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 7168 * x5), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + 2 * x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (512 + x0 + 512 * x1 + 7168 * x5), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + 2 * x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3584 + x0 + 512 * x1 + 7168 * x5), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (3840 + x0 + 512 * x1 + 7168 * x5), tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 7168 * x5), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + 2 * x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (7168 + x0 + 512 * x1 + 7168 * x5), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (7424 + x0 + 512 * x1 + 7168 * x5), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (7680 + x0 + 512 * x1 + 7168 * x5), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, xmask) tl.store(out_ptr1 + x6, tmp76, xmask) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 256 x1 = xindex // 256 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 256, tl.int64) tmp15 = tl.load(in_ptr2 + (128 * x1 + (-128 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (-128 + x0), tmp12 & xmask, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x2, tmp21, xmask) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 75264 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 384 x1 = xindex // 384 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 192, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (192 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 384, tl.int64) tmp15 = tl.load(in_ptr2 + (192 * x1 + (-192 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (-192 + x0), tmp12 & xmask, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x2, tmp21, xmask) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 512, tl.int64) tmp15 = tl.load(in_ptr2 + (256 * x1 + (-256 + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (-256 + x0), tmp12, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x2, tmp21, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_19(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 % 3 x2 = xindex // 1536 % 3 x3 = xindex // 4608 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3 ), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp5 = tl.load(in_ptr0 + (3584 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp9 = tl.load(in_ptr0 + (4608 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp11 = tl.load(in_ptr0 + (7168 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp13 = tl.load(in_ptr0 + (7680 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp15 = tl.load(in_ptr0 + (8192 + x0 + 1024 * x1 + 7168 * x2 + 25088 * x3), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tmp1 > tmp0 tmp18 = tl.full([1], 1, tl.int8) tmp19 = tl.full([1], 0, tl.int8) tmp20 = tl.where(tmp17, tmp18, tmp19) tmp21 = tmp3 > tmp2 tmp22 = tl.full([1], 2, tl.int8) tmp23 = tl.where(tmp21, tmp22, tmp20) tmp24 = tmp5 > tmp4 tmp25 = tl.full([1], 3, tl.int8) tmp26 = tl.where(tmp24, tmp25, tmp23) tmp27 = tmp7 > tmp6 tmp28 = tl.full([1], 4, tl.int8) tmp29 = tl.where(tmp27, tmp28, tmp26) tmp30 = tmp9 > tmp8 tmp31 = tl.full([1], 5, tl.int8) tmp32 = tl.where(tmp30, tmp31, tmp29) tmp33 = tmp11 > tmp10 tmp34 = tl.full([1], 6, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp13 > tmp12 tmp37 = tl.full([1], 7, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp15 > tmp14 tmp40 = tl.full([1], 8, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tl.store(out_ptr0 + x4, tmp16, None) tl.store(out_ptr1 + x4, tmp41, None) @triton.jit def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 512, tl.int64) tmp15 = tl.load(in_ptr2 + (256 * x1 + (-256 + x0)), tmp12, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr3 + (-256 + x0), tmp12, eviction_policy= 'evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = triton_helpers.maximum(tmp8, tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp12, tmp18, tmp19) tmp21 = tl.where(tmp4, tmp11, tmp20) tl.store(out_ptr0 + x2, tmp21, None) @triton.jit def triton_per_fused_convolution_mean_relu_22(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4000 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex x0 = xindex % 1000 x1 = xindex // 1000 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 1000 * r2 + 9000 * x1), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.where(rmask & xmask, tmp5, 0) tmp8 = tl.sum(tmp7, 1)[:, None] tmp9 = 9.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_23(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 36000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_24(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_25(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_26(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 37632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_27(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_29(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53 ) = args args.clear() assert_size_stride(primals_1, (96, 3, 7, 7), (147, 49, 7, 1)) assert_size_stride(primals_2, (96,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (16, 96, 1, 1), (96, 1, 1, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (64, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (16, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (64, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (32, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_17, (32,), (1,)) assert_size_stride(primals_18, (128, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_19, (128,), (1,)) assert_size_stride(primals_20, (128, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (32, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_23, (32,), (1,)) assert_size_stride(primals_24, (128, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (128, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_27, (128,), (1,)) assert_size_stride(primals_28, (48, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_29, (48,), (1,)) assert_size_stride(primals_30, (192, 48, 1, 1), (48, 1, 1, 1)) assert_size_stride(primals_31, (192,), (1,)) assert_size_stride(primals_32, (192, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_33, (192,), (1,)) assert_size_stride(primals_34, (48, 384, 1, 1), (384, 1, 1, 1)) assert_size_stride(primals_35, (48,), (1,)) assert_size_stride(primals_36, (192, 48, 1, 1), (48, 1, 1, 1)) assert_size_stride(primals_37, (192,), (1,)) assert_size_stride(primals_38, (192, 48, 3, 3), (432, 9, 3, 1)) assert_size_stride(primals_39, (192,), (1,)) assert_size_stride(primals_40, (64, 384, 1, 1), (384, 1, 1, 1)) assert_size_stride(primals_41, (64,), (1,)) assert_size_stride(primals_42, (256, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_43, (256,), (1,)) assert_size_stride(primals_44, (256, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_45, (256,), (1,)) assert_size_stride(primals_46, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_47, (64,), (1,)) assert_size_stride(primals_48, (256, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_49, (256,), (1,)) assert_size_stride(primals_50, (256, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_51, (256,), (1,)) assert_size_stride(primals_52, (1000, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_53, (1000,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((96, 3, 7, 7), (147, 1, 21, 3), torch.float32 ) get_raw_stream(0) triton_poi_fused_0[grid(288, 49)](primals_1, buf0, 288, 49, XBLOCK= 32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_2[grid(1024, 9)](primals_8, buf2, 1024, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((64, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_2[grid(1024, 9)](primals_14, buf3, 1024, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf4 = empty_strided_cuda((128, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_3[grid(4096, 9)](primals_20, buf4, 4096, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_20 buf5 = empty_strided_cuda((128, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_3[grid(4096, 9)](primals_26, buf5, 4096, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_26 buf6 = empty_strided_cuda((192, 48, 3, 3), (432, 1, 144, 48), torch .float32) triton_poi_fused_4[grid(9216, 9)](primals_32, buf6, 9216, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_32 buf7 = empty_strided_cuda((192, 48, 3, 3), (432, 1, 144, 48), torch .float32) triton_poi_fused_4[grid(9216, 9)](primals_38, buf7, 9216, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_38 buf8 = empty_strided_cuda((256, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_5[grid(16384, 9)](primals_44, buf8, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_44 buf9 = empty_strided_cuda((256, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_5[grid(16384, 9)](primals_50, buf9, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_50 buf10 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 96, 29, 29), (80736, 1, 2784, 96)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_6[grid(322944)](buf11, primals_2, 322944, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf12 = empty_strided_cuda((4, 96, 14, 14), (18816, 1, 1344, 96), torch.float32) buf13 = empty_strided_cuda((4, 96, 14, 14), (18816, 1, 1344, 96), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(75264)](buf11, buf12, buf13, 75264, XBLOCK=512, num_warps=8, num_stages=1) buf14 = extern_kernels.convolution(buf12, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 16, 14, 14), (3136, 1, 224, 16)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_8[grid(12544)](buf15, primals_5, 12544, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf16 = extern_kernels.convolution(buf15, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 14, 14), (12544, 1, 896, 64)) buf17 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 14, 14), (12544, 1, 896, 64)) buf18 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.float32) triton_poi_fused_cat_9[grid(100352)](buf16, primals_7, buf17, primals_9, buf18, 100352, XBLOCK=512, num_warps=8, num_stages=1) buf19 = extern_kernels.convolution(buf18, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 16, 14, 14), (3136, 1, 224, 16)) buf20 = buf19 del buf19 triton_poi_fused_convolution_relu_8[grid(12544)](buf20, primals_11, 12544, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf21 = extern_kernels.convolution(buf20, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 14, 14), (12544, 1, 896, 64)) buf22 = extern_kernels.convolution(buf20, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 64, 14, 14), (12544, 1, 896, 64)) buf23 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.float32) triton_poi_fused_cat_9[grid(100352)](buf21, primals_13, buf22, primals_15, buf23, 100352, XBLOCK=512, num_warps=8, num_stages=1) buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 14, 14), (6272, 1, 448, 32)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_10[grid(25088)](buf25, primals_17, 25088, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf26 = extern_kernels.convolution(buf25, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 14, 14), (25088, 1, 1792, 128)) buf27 = extern_kernels.convolution(buf25, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 128, 14, 14), (25088, 1, 1792, 128)) buf28 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256), torch.float32) triton_poi_fused_cat_11[grid(200704)](buf26, primals_19, buf27, primals_21, buf28, 200704, XBLOCK=512, num_warps=8, num_stages=1) buf29 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.float32) buf30 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_12[grid(50176)](buf28, buf29, buf30, 50176, XBLOCK=256, num_warps=4, num_stages=1) buf31 = extern_kernels.convolution(buf29, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 32, 7, 7), (1568, 1, 224, 32)) buf32 = buf31 del buf31 triton_poi_fused_convolution_relu_13[grid(6272)](buf32, primals_23, 6272, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf33 = extern_kernels.convolution(buf32, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 128, 7, 7), (6272, 1, 896, 128)) buf34 = extern_kernels.convolution(buf32, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 128, 7, 7), (6272, 1, 896, 128)) buf35 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.float32) triton_poi_fused_cat_14[grid(50176)](buf33, primals_25, buf34, primals_27, buf35, 50176, XBLOCK=512, num_warps=4, num_stages=1) buf36 = extern_kernels.convolution(buf35, primals_28, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 48, 7, 7), (2352, 1, 336, 48)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_15[grid(9408)](buf37, primals_29, 9408, XBLOCK=256, num_warps=4, num_stages=1) del primals_29 buf38 = extern_kernels.convolution(buf37, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 192, 7, 7), (9408, 1, 1344, 192)) buf39 = extern_kernels.convolution(buf37, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 192, 7, 7), (9408, 1, 1344, 192)) buf40 = empty_strided_cuda((4, 384, 7, 7), (18816, 1, 2688, 384), torch.float32) triton_poi_fused_cat_16[grid(75264)](buf38, primals_31, buf39, primals_33, buf40, 75264, XBLOCK=512, num_warps=8, num_stages=1) buf41 = extern_kernels.convolution(buf40, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 48, 7, 7), (2352, 1, 336, 48)) buf42 = buf41 del buf41 triton_poi_fused_convolution_relu_15[grid(9408)](buf42, primals_35, 9408, XBLOCK=256, num_warps=4, num_stages=1) del primals_35 buf43 = extern_kernels.convolution(buf42, primals_36, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 192, 7, 7), (9408, 1, 1344, 192)) buf44 = extern_kernels.convolution(buf42, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 192, 7, 7), (9408, 1, 1344, 192)) buf45 = empty_strided_cuda((4, 384, 7, 7), (18816, 1, 2688, 384), torch.float32) triton_poi_fused_cat_16[grid(75264)](buf43, primals_37, buf44, primals_39, buf45, 75264, XBLOCK=512, num_warps=8, num_stages=1) buf46 = extern_kernels.convolution(buf45, primals_40, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 64, 7, 7), (3136, 1, 448, 64)) buf47 = buf46 del buf46 triton_poi_fused_convolution_relu_17[grid(12544)](buf47, primals_41, 12544, XBLOCK=256, num_warps=4, num_stages=1) del primals_41 buf48 = extern_kernels.convolution(buf47, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 256, 7, 7), (12544, 1, 1792, 256)) buf49 = extern_kernels.convolution(buf47, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf49, (4, 256, 7, 7), (12544, 1, 1792, 256)) buf50 = empty_strided_cuda((4, 512, 7, 7), (25088, 1, 3584, 512), torch.float32) triton_poi_fused_cat_18[grid(100352)](buf48, primals_43, buf49, primals_45, buf50, 100352, XBLOCK=512, num_warps=8, num_stages=1) buf51 = empty_strided_cuda((4, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) buf52 = empty_strided_cuda((4, 512, 3, 3), (4608, 1, 1536, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_19[grid(18432)](buf50, buf51, buf52, 18432, XBLOCK=256, num_warps=4, num_stages=1) buf53 = extern_kernels.convolution(buf51, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf53, (4, 64, 3, 3), (576, 1, 192, 64)) buf54 = buf53 del buf53 triton_poi_fused_convolution_relu_20[grid(2304)](buf54, primals_47, 2304, XBLOCK=256, num_warps=4, num_stages=1) del primals_47 buf55 = extern_kernels.convolution(buf54, primals_48, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 256, 3, 3), (2304, 1, 768, 256)) buf56 = extern_kernels.convolution(buf54, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 256, 3, 3), (2304, 1, 768, 256)) buf57 = empty_strided_cuda((4, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_cat_21[grid(18432)](buf55, primals_49, buf56, primals_51, buf57, 18432, XBLOCK=256, num_warps=4, num_stages=1) buf58 = extern_kernels.convolution(buf57, primals_52, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 1000, 3, 3), (9000, 1, 3000, 1000)) buf59 = empty_strided_cuda((4, 1000, 1, 1), (1000, 1, 4000, 4000), torch.float32) buf60 = reinterpret_tensor(buf59, (4, 1000, 1, 1), (1000, 1, 1, 1), 0) del buf59 triton_per_fused_convolution_mean_relu_22[grid(4000)](buf60, buf58, primals_53, 4000, 9, XBLOCK=32, num_warps=4, num_stages=1) buf61 = empty_strided_cuda((4, 1000, 3, 3), (9000, 1, 3000, 1000), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_23[grid(36000)]( buf58, primals_53, buf61, 36000, XBLOCK=256, num_warps=4, num_stages=1) del buf58 del primals_53 buf62 = empty_strided_cuda((4, 256, 3, 3), (2304, 1, 768, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_24[grid(9216)]( buf56, primals_51, buf62, 9216, XBLOCK=128, num_warps=4, num_stages=1) del buf56 del primals_51 buf63 = empty_strided_cuda((4, 256, 3, 3), (2304, 1, 768, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_24[grid(9216)]( buf55, primals_49, buf63, 9216, XBLOCK=128, num_warps=4, num_stages=1) del buf55 del primals_49 buf64 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_25[grid(50176)]( buf49, primals_45, buf64, 50176, XBLOCK=512, num_warps=4, num_stages=1) del buf49 del primals_45 buf65 = empty_strided_cuda((4, 256, 7, 7), (12544, 1, 1792, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_25[grid(50176)]( buf48, primals_43, buf65, 50176, XBLOCK=512, num_warps=4, num_stages=1) del buf48 del primals_43 buf66 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_26[grid(37632)]( buf44, primals_39, buf66, 37632, XBLOCK=512, num_warps=4, num_stages=1) del buf44 del primals_39 buf67 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_26[grid(37632)]( buf43, primals_37, buf67, 37632, XBLOCK=512, num_warps=4, num_stages=1) del buf43 del primals_37 buf68 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_26[grid(37632)]( buf39, primals_33, buf68, 37632, XBLOCK=512, num_warps=4, num_stages=1) del buf39 del primals_33 buf69 = empty_strided_cuda((4, 192, 7, 7), (9408, 1, 1344, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_26[grid(37632)]( buf38, primals_31, buf69, 37632, XBLOCK=512, num_warps=4, num_stages=1) del buf38 del primals_31 buf70 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_27[grid(25088)]( buf34, primals_27, buf70, 25088, XBLOCK=128, num_warps=4, num_stages=1) del buf34 del primals_27 buf71 = empty_strided_cuda((4, 128, 7, 7), (6272, 1, 896, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_27[grid(25088)]( buf33, primals_25, buf71, 25088, XBLOCK=128, num_warps=4, num_stages=1) del buf33 del primals_25 buf72 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_28[grid(100352)]( buf27, primals_21, buf72, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del buf27 del primals_21 buf73 = empty_strided_cuda((4, 128, 14, 14), (25088, 1, 1792, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_28[grid(100352)]( buf26, primals_19, buf73, 100352, XBLOCK=1024, num_warps=4, num_stages=1) del buf26 del primals_19 buf74 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_29[grid(50176)]( buf22, primals_15, buf74, 50176, XBLOCK=256, num_warps=4, num_stages=1) del buf22 del primals_15 buf75 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_29[grid(50176)]( buf21, primals_13, buf75, 50176, XBLOCK=256, num_warps=4, num_stages=1) del buf21 del primals_13 buf76 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_29[grid(50176)]( buf17, primals_9, buf76, 50176, XBLOCK=256, num_warps=4, num_stages=1) del buf17 del primals_9 buf77 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_29[grid(50176)]( buf16, primals_7, buf77, 50176, XBLOCK=256, num_warps=4, num_stages=1) del buf16 del primals_7 return (buf60, buf0, buf1, primals_4, primals_6, buf2, primals_10, primals_12, buf3, primals_16, primals_18, buf4, primals_22, primals_24, buf5, primals_28, primals_30, buf6, primals_34, primals_36, buf7, primals_40, primals_42, buf8, primals_46, primals_48, buf9, primals_52, buf11, buf12, buf13, buf15, buf18, buf20, buf23, buf25, buf28, buf29, buf30, buf32, buf35, buf37, buf40, buf42, buf45, buf47, buf50, buf51, buf52, buf54, buf57, buf61, buf62, buf63, buf64, buf65, buf66, buf67, buf68, buf69, buf70, buf71, buf72, buf73, buf74, buf75, buf76, buf77) class GramMatrix(nn.Module): def forward(self, x): b, c, h, w = x.size() F = x.view(b, c, h * w) G = torch.bmm(F, F.transpose(1, 2)) G.div_(h * w) return G class GramDiag(nn.Module): """ docstring for GramDiag """ def __init__(self, gram_diagonal_squared=False): super().__init__() self.__gram_diagonal_squared = gram_diagonal_squared def forward(self, x): b, c, h, w = x.size() x = x.view(b, c, 1, h * w) gram_diag = None for b in range(x.size(0)): if self.__gram_diagonal_squared: z = torch.bmm(x[b] * x[b], (x[b] * x[b]).transpose(2, 1)) else: z = torch.bmm(x[b], x[b].transpose(2, 1)) if isinstance(gram_diag, torch.Tensor): gram_diag = torch.cat(gram_diag, z) else: gram_diag = z gram_diag = torch.squeeze(gram_diag).unsqueeze(0) return gram_diag.div_(h * w) class SqueezeNetNew(nn.Module): def __init__(self, version=1.0, num_classes=1000, pretrained=False, layer='', gram=False, gram_diag=False, gram_diagonal_squared=False): super().__init__() if version not in [1.0, 1.1]: raise ValueError( 'Unsupported SqueezeNet version {version}:1.0 or 1.1 expected' .format(version=version)) self.num_classes = num_classes if version == 1.0: pytorch_squeeze = squeezenet1_0(pretrained, num_classes=num_classes ) features_names = ['conv_1', 'relu_1', 'maxpool_1', 'fire_2', 'fire_3', 'fire_4', 'maxpool_4', 'fire_5', 'fire_6', 'fire_7', 'fire_8', 'maxpool_8', 'fire_9'] else: pytorch_squeeze = squeezenet1_1(pretrained, num_classes=num_classes ) features_names = ['conv_1', 'relu_1', 'maxpool_1', 'fire_2', 'fire_3', 'maxpool_3', 'fire_4', 'fire_5', 'maxpool_5', 'fire_6', 'fire_7', 'fire_8', 'fire_9'] classifier_names = ['drop_10', 'conv_10', 'relu_10', 'avgpool_10'] self.features = torch.nn.Sequential() for name, module in zip(features_names, pytorch_squeeze.features): self.features.add_module(name, copy.deepcopy(module)) if layer is name: break if len(features_names) == len(self.features ) and layer != features_names[-1]: for name, module in zip(classifier_names, pytorch_squeeze. classifier): self.features.add_module(name, copy.deepcopy(module)) if layer is name: break del pytorch_squeeze if gram: self.features.add_module('gram matrix', GramMatrix()) elif gram_diag: self.features.add_module('gram diagonal', GramDiag( gram_diagonal_squared)) def forward(self, input_0): primals_1 = self.features.conv_1.weight primals_2 = self.features.conv_1.bias primals_4 = self.features.fire_2.squeeze.weight primals_5 = self.features.fire_2.squeeze.bias primals_6 = self.features.fire_2.expand1x1.weight primals_7 = self.features.fire_2.expand1x1.bias primals_8 = self.features.fire_2.expand3x3.weight primals_9 = self.features.fire_2.expand3x3.bias primals_10 = self.features.fire_3.squeeze.weight primals_11 = self.features.fire_3.squeeze.bias primals_12 = self.features.fire_3.expand1x1.weight primals_13 = self.features.fire_3.expand1x1.bias primals_14 = self.features.fire_3.expand3x3.weight primals_15 = self.features.fire_3.expand3x3.bias primals_16 = self.features.fire_4.squeeze.weight primals_17 = self.features.fire_4.squeeze.bias primals_18 = self.features.fire_4.expand1x1.weight primals_19 = self.features.fire_4.expand1x1.bias primals_20 = self.features.fire_4.expand3x3.weight primals_21 = self.features.fire_4.expand3x3.bias primals_22 = self.features.fire_5.squeeze.weight primals_23 = self.features.fire_5.squeeze.bias primals_24 = self.features.fire_5.expand1x1.weight primals_25 = self.features.fire_5.expand1x1.bias primals_26 = self.features.fire_5.expand3x3.weight primals_27 = self.features.fire_5.expand3x3.bias primals_28 = self.features.fire_6.squeeze.weight primals_29 = self.features.fire_6.squeeze.bias primals_30 = self.features.fire_6.expand1x1.weight primals_31 = self.features.fire_6.expand1x1.bias primals_32 = self.features.fire_6.expand3x3.weight primals_33 = self.features.fire_6.expand3x3.bias primals_34 = self.features.fire_7.squeeze.weight primals_35 = self.features.fire_7.squeeze.bias primals_36 = self.features.fire_7.expand1x1.weight primals_37 = self.features.fire_7.expand1x1.bias primals_38 = self.features.fire_7.expand3x3.weight primals_39 = self.features.fire_7.expand3x3.bias primals_40 = self.features.fire_8.squeeze.weight primals_41 = self.features.fire_8.squeeze.bias primals_42 = self.features.fire_8.expand1x1.weight primals_43 = self.features.fire_8.expand1x1.bias primals_44 = self.features.fire_8.expand3x3.weight primals_45 = self.features.fire_8.expand3x3.bias primals_46 = self.features.fire_9.squeeze.weight primals_47 = self.features.fire_9.squeeze.bias primals_48 = self.features.fire_9.expand1x1.weight primals_49 = self.features.fire_9.expand1x1.bias primals_50 = self.features.fire_9.expand3x3.weight primals_51 = self.features.fire_9.expand3x3.bias primals_52 = self.features.conv_10.weight primals_53 = self.features.conv_10.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53]) return output[0]
matherm/ummon3
SqueezeNet
false
7,339
[ "BSD-3-Clause" ]
1
08476d21ce17cc95180525d48202a1690dfc8a08
https://github.com/matherm/ummon3/tree/08476d21ce17cc95180525d48202a1690dfc8a08
import copy import torch import torch.nn as nn import torch.utils.data from torchvision.models.squeezenet import squeezenet1_0 from torchvision.models.squeezenet import squeezenet1_1 import torch.nn.modules.activation class GramMatrix(nn.Module): def forward(self, x): b, c, h, w = x.size() F = x.view(b, c, h * w) G = torch.bmm(F, F.transpose(1, 2)) G.div_(h * w) return G class GramDiag(nn.Module): """ docstring for GramDiag """ def __init__(self, gram_diagonal_squared=False): super().__init__() self.__gram_diagonal_squared = gram_diagonal_squared def forward(self, x): b, c, h, w = x.size() x = x.view(b, c, 1, h * w) gram_diag = None for b in range(x.size(0)): if self.__gram_diagonal_squared: z = torch.bmm(x[b] * x[b], (x[b] * x[b]).transpose(2, 1)) else: z = torch.bmm(x[b], x[b].transpose(2, 1)) if isinstance(gram_diag, torch.Tensor): gram_diag = torch.cat(gram_diag, z) else: gram_diag = z gram_diag = torch.squeeze(gram_diag).unsqueeze(0) return gram_diag.div_(h * w) class Model(nn.Module): def __init__(self, version=1.0, num_classes=1000, pretrained=False, layer='', gram=False, gram_diag=False, gram_diagonal_squared=False): super().__init__() if version not in [1.0, 1.1]: raise ValueError( 'Unsupported SqueezeNet version {version}:1.0 or 1.1 expected' .format(version=version)) self.num_classes = num_classes if version == 1.0: pytorch_squeeze = squeezenet1_0(pretrained, num_classes=num_classes ) features_names = ['conv_1', 'relu_1', 'maxpool_1', 'fire_2', 'fire_3', 'fire_4', 'maxpool_4', 'fire_5', 'fire_6', 'fire_7', 'fire_8', 'maxpool_8', 'fire_9'] else: pytorch_squeeze = squeezenet1_1(pretrained, num_classes=num_classes ) features_names = ['conv_1', 'relu_1', 'maxpool_1', 'fire_2', 'fire_3', 'maxpool_3', 'fire_4', 'fire_5', 'maxpool_5', 'fire_6', 'fire_7', 'fire_8', 'fire_9'] classifier_names = ['drop_10', 'conv_10', 'relu_10', 'avgpool_10'] self.features = torch.nn.Sequential() for name, module in zip(features_names, pytorch_squeeze.features): self.features.add_module(name, copy.deepcopy(module)) if layer is name: break if len(features_names) == len(self.features ) and layer != features_names[-1]: for name, module in zip(classifier_names, pytorch_squeeze. classifier): self.features.add_module(name, copy.deepcopy(module)) if layer is name: break del pytorch_squeeze if gram: self.features.add_module('gram matrix', GramMatrix()) elif gram_diag: self.features.add_module('gram diagonal', GramDiag( gram_diagonal_squared)) def forward(self, x): return self.features(x) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []