entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
torch_uint8_to_float
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/p7/cp7xzeyl6japtnkojqx5iupjksot3nuocbambsy2o3yflsevkl5j.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unsqueeze,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 4, 16, grid=grid(4, 16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class torch_uint8_to_float(torch.nn.Module): def __init__(self): super(torch_uint8_to_float, self).__init__() def forward(self, x): return x.permute(2, 0, 1).unsqueeze(0).contiguous() def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4, 16)](arg0_1, buf0, 4, 16, XBLOCK= 16, YBLOCK=4, num_warps=1, num_stages=1) del arg0_1 return buf0, class torch_uint8_to_floatNew(torch.nn.Module): def __init__(self): super(torch_uint8_to_floatNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ozendelait/pytorch-semseg
torch_uint8_to_float
false
7,440
[ "MIT" ]
1
200491febd653bd26befcd5b3d52c614aa832b7e
https://github.com/ozendelait/pytorch-semseg/tree/200491febd653bd26befcd5b3d52c614aa832b7e
import torch class Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.permute(2, 0, 1).unsqueeze(0).contiguous() def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return []
LearnedSigmoid
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/4u/c4uqr2o5zuy73ngfickam5sodjf6gkkoqb5auf4ohwmnlsi4dwuw.py # Topologically Sorted Source Nodes: [sigmoid, multiply], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # multiply => mul # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_2), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp1 = tl.sigmoid(tmp0) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, multiply], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LearnedSigmoid(nn.Module): def __init__(self, slope=1): super().__init__() self.q = torch.nn.Parameter(torch.ones(slope)) self.q.requiresGrad = True def forward(self, x): return torch.multiply(torch.sigmoid(x), self.q) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp1 = tl.sigmoid(tmp0) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class LearnedSigmoidNew(nn.Module): def __init__(self, slope=1): super().__init__() self.q = torch.nn.Parameter(torch.ones(slope)) self.q.requiresGrad = True def forward(self, input_0): primals_2 = self.q primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
pabloguarda/NeuralTransportationNetworks
LearnedSigmoid
false
7,441
[ "MIT" ]
1
0461c26128b09488aff237b760068b43d131f8a9
https://github.com/pabloguarda/NeuralTransportationNetworks/tree/0461c26128b09488aff237b760068b43d131f8a9
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, slope=1): super().__init__() self.q = torch.nn.Parameter(torch.ones(slope)) self.q.requiresGrad = True def forward(self, x): return torch.multiply(torch.sigmoid(x), self.q) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Lenet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/sr/csrn4qxcxtzfqas5u5t7jpcfol2qdc6gg77k3rn6x5d5zxp4njj4.py # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # input_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 524288, grid=grid(524288), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 131072), (131072, 1), 0), primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import Sequential from torch.nn import Conv2d import torch.nn import torch.optim class Lenet(nn.Module): def __init__(self): super(Lenet, self).__init__() layer1 = Sequential() layer1.add_module('conv1', Conv2d(3, 32, 3, 1, padding=1)) self.layer1 = layer1 def forward(self, x): rt = self.layer1(x) rt = rt.view(rt.size(0), -1) return rt def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import Sequential from torch.nn import Conv2d import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(524288)](buf1, primals_2, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 131072), (131072, 1), 0 ), primals_1, primals_3 class LenetNew(nn.Module): def __init__(self): super(LenetNew, self).__init__() layer1 = Sequential() layer1.add_module('conv1', Conv2d(3, 32, 3, 1, padding=1)) self.layer1 = layer1 def forward(self, input_0): primals_1 = self.layer1.conv1.weight primals_2 = self.layer1.conv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
partnernetsoftware/openlab
Lenet
false
7,442
[ "MIT" ]
1
faa4e58486a7bc4140ad3d56545bfb736cb86696
https://github.com/partnernetsoftware/openlab/tree/faa4e58486a7bc4140ad3d56545bfb736cb86696
import torch from torch import nn from torch.nn import Sequential from torch.nn import Conv2d import torch.nn import torch.optim class Model(nn.Module): def __init__(self): super().__init__() layer1 = Sequential() layer1.add_module('conv1', Conv2d(3, 32, 3, 1, padding=1)) self.layer1 = layer1 def forward(self, x): rt = self.layer1(x) rt = rt.view(rt.size(0), -1) return rt def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
SilogLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/su/csuls3e5t7qiiptamdgq6xvfoa2jh4fdsioco2m4khc26gapt4du.py # Topologically Sorted Source Nodes: [mul, log, mul_1, log_1, log_diff, pow_1, silog1, mean_1, pow_2, silog2, sub_1, sqrt, silog_loss], Original ATen: [aten.mul, aten.log, aten.sub, aten.pow, aten.mean, aten.sqrt] # Source node to ATen node mapping: # log => log # log_1 => log_1 # log_diff => sub # mean_1 => mean_1 # mul => mul # mul_1 => mul_1 # pow_1 => pow_1 # pow_2 => pow_2 # silog1 => mean # silog2 => mul_2 # silog_loss => mul_3 # sqrt => sqrt # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 10), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 10), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%mul_1,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mean_1, 2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.85), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean, %mul_2), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sub_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, 10), kwargs = {}) triton_per_fused_log_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_log_mean_mul_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp4 = tl.load(in_ptr1 + (r0), None) tmp1 = 10.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.log(tmp2) tmp5 = tmp4 * tmp1 tmp6 = tl_math.log(tmp5) tmp7 = tmp3 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tl.broadcast_to(tmp7, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp11 / tmp15 tmp17 = tmp14 / tmp15 tmp18 = tmp17 * tmp17 tmp19 = 0.85 tmp20 = tmp18 * tmp19 tmp21 = tmp16 - tmp20 tmp22 = libdevice.sqrt(tmp21) tmp23 = tmp22 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, log, mul_1, log_1, log_diff, pow_1, silog1, mean_1, pow_2, silog2, sub_1, sqrt, silog_loss], Original ATen: [aten.mul, aten.log, aten.sub, aten.pow, aten.mean, aten.sqrt] stream0 = get_raw_stream(0) triton_per_fused_log_mean_mul_pow_sqrt_sub_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SilogLoss(nn.Module): def __init__(self, ratio=10, ratio2=0.85): super().__init__() self.ratio = ratio self.ratio2 = ratio2 def forward(self, pred, gt): log_diff = torch.log(pred * self.ratio) - torch.log(gt * self.ratio) silog1 = torch.mean(log_diff ** 2) silog2 = self.ratio2 * log_diff.mean() ** 2 silog_loss = torch.sqrt(silog1 - silog2) * self.ratio return silog_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp4 = tl.load(in_ptr1 + r0, None) tmp1 = 10.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.log(tmp2) tmp5 = tmp4 * tmp1 tmp6 = tl_math.log(tmp5) tmp7 = tmp3 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tl.broadcast_to(tmp7, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp11 / tmp15 tmp17 = tmp14 / tmp15 tmp18 = tmp17 * tmp17 tmp19 = 0.85 tmp20 = tmp18 * tmp19 tmp21 = tmp16 - tmp20 tmp22 = libdevice.sqrt(tmp21) tmp23 = tmp22 * tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_log_mean_mul_pow_sqrt_sub_0[grid(1)](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class SilogLossNew(nn.Module): def __init__(self, ratio=10, ratio2=0.85): super().__init__() self.ratio = ratio self.ratio2 = ratio2 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
pection/packnet-sfm
SilogLoss
false
7,443
[ "MIT" ]
1
d5673567b649e6bfda292c894cacdeb06aa80913
https://github.com/pection/packnet-sfm/tree/d5673567b649e6bfda292c894cacdeb06aa80913
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, ratio=10, ratio2=0.85): super().__init__() self.ratio = ratio self.ratio2 = ratio2 def forward(self, pred, gt): log_diff = torch.log(pred * self.ratio) - torch.log(gt * self.ratio) silog1 = torch.mean(log_diff ** 2) silog2 = self.ratio2 * log_diff.mean() ** 2 silog_loss = torch.sqrt(silog1 - silog2) * self.ratio return silog_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BerHuLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3n/c3nn7pajoxiafwabsw5ktrcn5kldqxdu5nmr56evztrobzglrfvy.py # Topologically Sorted Source Nodes: [sub_1, diff, sub, huber_c, huber_c_1, gt], Original ATen: [aten.sub, aten.abs, aten.max, aten.mul, aten.gt] # Source node to ATen node mapping: # diff => abs_1 # gt => gt # huber_c => max_1 # huber_c_1 => mul # sub => sub # sub_1 => sub_1 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=2] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%max_1, 0.2), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%abs_1, %mul), kwargs = {}) triton_per_fused_abs_gt_max_mul_sub_0 = async_compile.triton('triton_per_fused_abs_gt_max_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_gt_max_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_gt_max_mul_sub_0(in_ptr0, in_ptr1, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = triton_helpers.max2(tmp3, 1)[:, None] tmp6 = tl_math.abs(tmp2) tmp7 = 0.2 tmp8 = tmp5 * tmp7 tmp9 = tmp6 > tmp8 tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp6, None) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, ), (1, )) assert_size_stride(arg1_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf2 = empty_strided_cuda((4, ), (1, ), torch.bool) # Topologically Sorted Source Nodes: [sub_1, diff, sub, huber_c, huber_c_1, gt], Original ATen: [aten.sub, aten.abs, aten.max, aten.mul, aten.gt] stream0 = get_raw_stream(0) triton_per_fused_abs_gt_max_mul_sub_0.run(arg0_1, arg1_1, buf0, buf2, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BerHuLoss(nn.Module): """Class implementing the BerHu loss.""" def __init__(self, threshold=0.2): """ Initializes the BerHuLoss class. Parameters ---------- threshold : float Mask parameter """ super().__init__() self.threshold = threshold def forward(self, pred, gt): """ Calculates the BerHu loss. Parameters ---------- pred : torch.Tensor [B,1,H,W] Predicted inverse depth map gt : torch.Tensor [B,1,H,W] Ground-truth inverse depth map Returns ------- loss : torch.Tensor [1] BerHu loss """ huber_c = torch.max(pred - gt) huber_c = self.threshold * huber_c diff = (pred - gt).abs() huber_mask = (diff > huber_c).detach() diff2 = diff[huber_mask] diff2 = diff2 ** 2 return torch.cat((diff, diff2)).mean() def get_inputs(): return [torch.rand([4]), torch.rand([4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_gt_max_mul_sub_0(in_ptr0, in_ptr1, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = triton_helpers.max2(tmp3, 1)[:, None] tmp6 = tl_math.abs(tmp2) tmp7 = 0.2 tmp8 = tmp5 * tmp7 tmp9 = tmp6 > tmp8 tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp6, None) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4,), (1,)) assert_size_stride(arg1_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.bool) get_raw_stream(0) triton_per_fused_abs_gt_max_mul_sub_0[grid(1)](arg0_1, arg1_1, buf0, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, buf2 class BerHuLossNew(nn.Module): """Class implementing the BerHu loss.""" def __init__(self, threshold=0.2): """ Initializes the BerHuLoss class. Parameters ---------- threshold : float Mask parameter """ super().__init__() self.threshold = threshold def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
pection/packnet-sfm
BerHuLoss
false
7,444
[ "MIT" ]
1
d5673567b649e6bfda292c894cacdeb06aa80913
https://github.com/pection/packnet-sfm/tree/d5673567b649e6bfda292c894cacdeb06aa80913
import torch import torch.nn as nn class Model(nn.Module): """Class implementing the BerHu loss.""" def __init__(self, threshold=0.2): """ Initializes the BerHuLoss class. Parameters ---------- threshold : float Mask parameter """ super().__init__() self.threshold = threshold def forward(self, pred, gt): """ Calculates the BerHu loss. Parameters ---------- pred : torch.Tensor [B,1,H,W] Predicted inverse depth map gt : torch.Tensor [B,1,H,W] Ground-truth inverse depth map Returns ------- loss : torch.Tensor [1] BerHu loss """ huber_c = torch.max(pred - gt) huber_c = self.threshold * huber_c diff = (pred - gt).abs() huber_mask = (diff > huber_c).detach() diff2 = diff[huber_mask] diff2 = diff2 ** 2 return torch.cat((diff, diff2)).mean() def get_inputs(): return [torch.rand([4]), torch.rand([4])] def get_init_inputs(): return []
_ImpalaCNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/p3/cp32zuxrp2cknaaat4l46gcxlkrjzggsmqqhfyznul7wqfb4ebec.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cs/ccsphvax73slmzhl3wuqqsisn2q7egr45fozxckgmyaw4oii5rig.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets, getitem_1 # x_2 => relu # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x4 = (xindex // 2) x3 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x4)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x4)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x4)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2*x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x4)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x4)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x4)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + (2*x1) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x4)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x4)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x4)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.full([1], 0, tl.int32) tmp78 = triton_helpers.maximum(tmp77, tmp51) tl.store(out_ptr0 + (x3), tmp51, xmask) tl.store(out_ptr1 + (x3), tmp76, xmask) tl.store(out_ptr2 + (x3), tmp78, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/is/ciswnsgoxwzttnk3n4uptq5a77i3prr6wqkpzjhju7e4d6ki4jvh.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6g/c6gqgbhc6colpsq5bwrig3pp5ylm5unbsa3sub7z7jzvqj2vy2fe.py # Topologically Sorted Source Nodes: [x_5, x_6, x_7], Original ATen: [aten.convolution, aten.add, aten.relu] # Source node to ATen node mapping: # x_5 => convolution_2 # x_6 => add # x_7 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %getitem), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_convolution_relu_3 = async_compile.triton('triton_poi_fused_add_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 16 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ow/cowbgn37zd6wh3uwsixq3wqtni77mcrz35iykqorsd2qrvq5mujx.py # Topologically Sorted Source Nodes: [x_5, x_6, x_10, x_11], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # x_10 => convolution_4 # x_11 => add_1 # x_5 => convolution_2 # x_6 => add # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %getitem), kwargs = {}) # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %add), kwargs = {}) triton_poi_fused_add_convolution_4 = async_compile.triton('triton_poi_fused_add_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ta/ctauusxavmcsj7mzf4zf5wczseoznh6yzcav4moa5k4zkbxtjcyr.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_12 => convolution_5 # Graph fragment: # %convolution_5 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2o/c2ot46hvyk4de5rwrzvseaq4hq53p4a73ww4klukxxuheo2l3oep.py # Topologically Sorted Source Nodes: [x_13, x_14], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # x_13 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # x_14 => relu_4 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_5, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + ((-3) + (4*x0)), tmp6 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + ((-2) + (4*x0)), tmp11 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + ((-1) + (4*x0)), tmp18 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + ((-1) + (4*x0)), tmp21 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + (4*x0), tmp24 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + (4*x0)), tmp27 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + (4*x0)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + (4*x0)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + (4*x0)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tmp64 = tl.full([1], 0, tl.int32) tmp65 = triton_helpers.maximum(tmp64, tmp38) tl.store(out_ptr0 + (x0), tmp38, xmask) tl.store(out_ptr1 + (x0), tmp63, xmask) tl.store(out_ptr2 + (x0), tmp65, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5y/c5yyttfrhv2ou2fhwjnxz4chlxqcvuz3rucn57sotnlsmf5uq6lw.py # Topologically Sorted Source Nodes: [x_15, x_16], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_15 => convolution_6 # x_16 => relu_5 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ge/cge7fil3vfiusrrsjiiqrt7wr2kgpbfdtsndejrukqmfoezmcrav.py # Topologically Sorted Source Nodes: [x_17, x_18, x_19], Original ATen: [aten.convolution, aten.add, aten.relu] # Source node to ATen node mapping: # x_17 => convolution_7 # x_18 => add_2 # x_19 => relu_6 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_7, %getitem_2), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {}) triton_poi_fused_add_convolution_relu_8 = async_compile.triton('triton_poi_fused_add_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/x7/cx7kd3ncvwtjwnss662agytvklfufornfihoosrebwgii2jawwdc.py # Topologically Sorted Source Nodes: [x_17, x_18, x_22, x_23], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # x_17 => convolution_7 # x_18 => add_2 # x_22 => convolution_9 # x_23 => add_3 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_7, %getitem_2), kwargs = {}) # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_7, %primals_20, %primals_21, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_9, %add_2), kwargs = {}) triton_poi_fused_add_convolution_9 = async_compile.triton('triton_poi_fused_add_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kp/ckpafxaac7wltyxmae5qjmrvo6sxerzqxc6tgtkkxdtdeuvleqjn.py # Topologically Sorted Source Nodes: [x_24, x_25, x_26], Original ATen: [aten.convolution, aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # x_24 => convolution_10 # x_25 => _low_memory_max_pool2d_with_offsets_2, getitem_5 # x_26 => relu_8 # Graph fragment: # %convolution_10 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_3, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_10, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_4,), kwargs = {}) triton_poi_fused_convolution_max_pool2d_with_indices_relu_10 = async_compile.triton('triton_poi_fused_convolution_max_pool2d_with_indices_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i8', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_max_pool2d_with_indices_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_max_pool2d_with_indices_relu_10(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], -1, tl.int64) tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = tl.full([1], 1, tl.int64) tmp7 = tmp3 < tmp6 tmp8 = tmp5 & tmp7 tmp9 = tmp8 & tmp8 tmp10 = tmp4 >= tmp4 tmp11 = tmp4 < tmp6 tmp12 = tmp10 & tmp11 tmp13 = tmp8 & tmp12 tmp14 = triton_helpers.maximum(tmp2, tmp2) tmp15 = tmp6 >= tmp4 tmp16 = tmp6 < tmp6 tmp17 = tmp15 & tmp16 tmp18 = tmp8 & tmp17 tmp19 = triton_helpers.maximum(tmp2, tmp14) tmp20 = tmp12 & tmp8 tmp21 = triton_helpers.maximum(tmp2, tmp19) tmp22 = tmp12 & tmp12 tmp23 = triton_helpers.maximum(tmp2, tmp21) tmp24 = tmp12 & tmp17 tmp25 = triton_helpers.maximum(tmp2, tmp23) tmp26 = tmp17 & tmp8 tmp27 = triton_helpers.maximum(tmp2, tmp25) tmp28 = tmp17 & tmp12 tmp29 = triton_helpers.maximum(tmp2, tmp27) tmp30 = tmp17 & tmp17 tmp31 = triton_helpers.maximum(tmp2, tmp29) tmp32 = tmp2 > tmp2 tmp33 = tl.full([1], 1, tl.int8) tmp34 = tl.full([1], 0, tl.int8) tmp35 = tl.where(tmp32, tmp33, tmp34) tmp36 = tmp2 > tmp14 tmp37 = tl.full([1], 2, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp2 > tmp19 tmp40 = tl.full([1], 3, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tmp42 = tmp2 > tmp21 tmp43 = tl.full([1], 4, tl.int8) tmp44 = tl.where(tmp42, tmp43, tmp41) tmp45 = tmp2 > tmp23 tmp46 = tl.full([1], 5, tl.int8) tmp47 = tl.where(tmp45, tmp46, tmp44) tmp48 = tmp2 > tmp25 tmp49 = tl.full([1], 6, tl.int8) tmp50 = tl.where(tmp48, tmp49, tmp47) tmp51 = tmp2 > tmp27 tmp52 = tl.full([1], 7, tl.int8) tmp53 = tl.where(tmp51, tmp52, tmp50) tmp54 = tmp2 > tmp29 tmp55 = tl.full([1], 8, tl.int8) tmp56 = tl.where(tmp54, tmp55, tmp53) tmp57 = tl.full([1], 0, tl.int32) tmp58 = triton_helpers.maximum(tmp57, tmp31) tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp31, xmask) tl.store(out_ptr1 + (x2), tmp56, xmask) tl.store(out_ptr2 + (x2), tmp58, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sw/cswkw7np6nq6lllsu3tsrlcx2ewxt5uu3q5m44y7es3bi2h27rqs.py # Topologically Sorted Source Nodes: [x_29, x_30, x_34, x_35, x_36], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_29 => convolution_12 # x_30 => add_4 # x_34 => convolution_14 # x_35 => add_5 # x_36 => relu_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_12, %getitem_4), kwargs = {}) # %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_11, %primals_30, %primals_31, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_14, %add_4), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_5,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_12, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(in_out_ptr0 + (x2), tmp10, xmask) tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/q7/cq7lmtsf26t4w6axlec4fwdsigwqxcdhqh6atfur3chgzvpwha2l.py # Topologically Sorted Source Nodes: [x_39], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_39 => relu_13 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_33), kwargs = {}) # %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_13, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_12 = async_compile.triton('triton_poi_fused_relu_threshold_backward_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_12(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33 = args args.clear() assert_size_stride(primals_1, (16, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_13, (32, ), (1, )) assert_size_stride(primals_14, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (32, ), (1, )) assert_size_stride(primals_16, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_17, (32, ), (1, )) assert_size_stride(primals_18, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_19, (32, ), (1, )) assert_size_stride(primals_20, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_21, (32, ), (1, )) assert_size_stride(primals_22, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_23, (32, ), (1, )) assert_size_stride(primals_24, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_25, (32, ), (1, )) assert_size_stride(primals_26, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_27, (32, ), (1, )) assert_size_stride(primals_28, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_29, (32, ), (1, )) assert_size_stride(primals_30, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_31, (32, ), (1, )) assert_size_stride(primals_32, (256, 32), (32, 1)) assert_size_stride(primals_33, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 1024, grid=grid(1024), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.int8) buf4 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, buf4, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 16, 2, 2), (64, 4, 2, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf6, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 16, 2, 2), (64, 4, 2, 1)) buf8 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5, x_6, x_7], Original ATen: [aten.convolution, aten.add, aten.relu] triton_poi_fused_add_convolution_relu_3.run(buf7, primals_7, buf2, buf8, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 16, 2, 2), (64, 4, 2, 1)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf10, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 2, 2), (64, 4, 2, 1)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [x_5, x_6, x_10, x_11], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_4.run(buf12, primals_11, buf7, primals_7, buf2, 256, grid=grid(256), stream=stream0) del buf2 del buf7 del primals_11 del primals_7 # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 32, 2, 2), (128, 4, 2, 1)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf14, primals_13, 512, grid=grid(512), stream=stream0) del primals_13 buf15 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32) buf16 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.int8) buf17 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13, x_14], Original ATen: [aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_max_pool2d_with_indices_relu_6.run(buf14, buf15, buf16, buf17, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 1, 1), (32, 1, 1, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_15, x_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf19, primals_15, 128, grid=grid(128), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 32, 1, 1), (32, 1, 1, 1)) buf21 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_17, x_18, x_19], Original ATen: [aten.convolution, aten.add, aten.relu] triton_poi_fused_add_convolution_relu_8.run(buf20, primals_17, buf15, buf21, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 32, 1, 1), (32, 1, 1, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [x_20, x_21], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf23, primals_19, 128, grid=grid(128), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 1, 1), (32, 1, 1, 1)) buf25 = reinterpret_tensor(buf15, (4, 32, 1, 1), (32, 1, 1, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [x_17, x_18, x_22, x_23], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_9.run(buf25, buf24, primals_21, buf20, primals_17, 128, grid=grid(128), stream=stream0) del primals_17 del primals_21 # Topologically Sorted Source Nodes: [x_24], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 32, 1, 1), (32, 1, 1, 1)) buf27 = buf26; del buf26 # reuse buf28 = reinterpret_tensor(buf24, (4, 32, 1, 1), (32, 1, 128, 128), 0); del buf24 # reuse buf29 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.int8) buf30 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [x_24, x_25, x_26], Original ATen: [aten.convolution, aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_convolution_max_pool2d_with_indices_relu_10.run(buf27, primals_23, buf28, buf29, buf30, 128, grid=grid(128), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [x_27], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf30, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 32, 1, 1), (32, 1, 1, 1)) buf32 = buf31; del buf31 # reuse # Topologically Sorted Source Nodes: [x_27, x_28], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf32, primals_25, 128, grid=grid(128), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [x_29], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 32, 1, 1), (32, 1, 1, 1)) buf34 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_29, x_30, x_31], Original ATen: [aten.convolution, aten.add, aten.relu] triton_poi_fused_add_convolution_relu_8.run(buf33, primals_27, buf28, buf34, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [x_32], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 32, 1, 1), (32, 1, 1, 1)) buf36 = buf35; del buf35 # reuse # Topologically Sorted Source Nodes: [x_32, x_33], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf36, primals_29, 128, grid=grid(128), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.convolution] buf37 = extern_kernels.convolution(buf36, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 32, 1, 1), (32, 1, 1, 1)) buf38 = reinterpret_tensor(buf28, (4, 32, 1, 1), (32, 1, 1, 1), 0); del buf28 # reuse buf42 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [x_29, x_30, x_34, x_35, x_36], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_11.run(buf38, buf37, primals_31, buf33, primals_27, buf42, 128, grid=grid(128), stream=stream0) del buf33 del buf37 del primals_27 del primals_31 buf39 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf38, (4, 32), (32, 1), 0), reinterpret_tensor(primals_32, (32, 256), (1, 32), 0), out=buf39) buf40 = buf39; del buf39 # reuse buf41 = empty_strided_cuda((4, 256), (256, 1), torch.bool) # Topologically Sorted Source Nodes: [x_39], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_12.run(buf40, primals_33, buf41, 1024, grid=grid(1024), stream=stream0) del primals_33 return (buf40, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, buf1, buf3, buf4, buf6, buf8, buf10, buf12, buf14, buf16, buf17, buf19, buf21, buf23, buf25, buf27, buf29, buf30, buf32, buf34, buf36, reinterpret_tensor(buf38, (4, 32), (32, 1), 0), buf41, primals_32, buf42, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((256, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Tuple from torch import nn class _ImpalaResBlock(nn.Module): def __init__(self, n_channels: 'int'): super().__init__() self.n_channels = n_channels kernel_size = 3 padding = 1 self.relu = nn.ReLU() self.relu_inplace = nn.ReLU() self.conv1 = nn.Conv2d(n_channels, n_channels, kernel_size, padding =padding) self.conv2 = nn.Conv2d(n_channels, n_channels, kernel_size, padding =padding) def forward(self, inputs): x = self.relu(inputs) x = self.conv1(x) x = self.relu_inplace(x) x = self.conv2(x) x += inputs return x class _ImpalaBlock(nn.Module): def __init__(self, n_channels_in: 'int', n_channels_out: 'int'): super().__init__() self.n_channels_in = n_channels_in self.n_channels_out = n_channels_out kernel_size = 3 padding = 1 self.conv1 = nn.Conv2d(n_channels_in, n_channels_out, kernel_size, padding=padding) self.pool = nn.MaxPool2d(kernel_size, stride=2, padding=padding) self.res1 = _ImpalaResBlock(n_channels_out) self.res2 = _ImpalaResBlock(n_channels_out) def forward(self, x): x = self.conv1(x) x = self.pool(x) x = self.res1(x) x = self.res2(x) return x class _ImpalaCNN(nn.Module): def __init__(self, img_shape: 'Tuple[int, int, int]', n_extra_feats: 'int'=0, n_outputs: 'int'=256): super().__init__() self.n_outputs = n_outputs h, w, c = img_shape self.block1 = _ImpalaBlock(c, 16) self.block2 = _ImpalaBlock(16, 32) self.block3 = _ImpalaBlock(32, 32) self.relu = nn.ReLU() self.flatten = nn.Flatten() test_img = torch.empty(c, h, w)[None] n_feats = self.block3(self.block2(self.block1(test_img))).numel() self.linear = nn.Linear(n_feats + n_extra_feats, self.n_outputs) def forward(self, x, extra_obs=None): x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.relu(x) x = self.flatten(x) if extra_obs is not None: x = torch.cat((x, extra_obs), -1) x = self.linear(x) x = self.relu(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'img_shape': [4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from typing import Tuple from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x4 = xindex // 2 x3 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x4), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x4), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x4), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 * x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x4), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x4), tmp33 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x4), tmp36 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + 2 * x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x4), tmp43 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x4), tmp46 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x4), tmp49 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.full([1], 0, tl.int32) tmp78 = triton_helpers.maximum(tmp77, tmp51) tl.store(out_ptr0 + x3, tmp51, xmask) tl.store(out_ptr1 + x3, tmp76, xmask) tl.store(out_ptr2 + x3, tmp78, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x3, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + (-3 + 4 * x0), tmp6 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + (-2 + 4 * x0), tmp11 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp18 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp21 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + 4 * x0, tmp24 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + 4 * x0), tmp27 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + 4 * x0), tmp30 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + 4 * x0), tmp33 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + 4 * x0), tmp36 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tmp64 = tl.full([1], 0, tl.int32) tmp65 = triton_helpers.maximum(tmp64, tmp38) tl.store(out_ptr0 + x0, tmp38, xmask) tl.store(out_ptr1 + x0, tmp63, xmask) tl.store(out_ptr2 + x0, tmp65, xmask) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_max_pool2d_with_indices_relu_10(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], -1, tl.int64) tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 >= tmp4 tmp6 = tl.full([1], 1, tl.int64) tmp7 = tmp3 < tmp6 tmp8 = tmp5 & tmp7 tmp8 & tmp8 tmp10 = tmp4 >= tmp4 tmp11 = tmp4 < tmp6 tmp12 = tmp10 & tmp11 tmp8 & tmp12 tmp14 = triton_helpers.maximum(tmp2, tmp2) tmp15 = tmp6 >= tmp4 tmp16 = tmp6 < tmp6 tmp17 = tmp15 & tmp16 tmp8 & tmp17 tmp19 = triton_helpers.maximum(tmp2, tmp14) tmp12 & tmp8 tmp21 = triton_helpers.maximum(tmp2, tmp19) tmp12 & tmp12 tmp23 = triton_helpers.maximum(tmp2, tmp21) tmp12 & tmp17 tmp25 = triton_helpers.maximum(tmp2, tmp23) tmp17 & tmp8 tmp27 = triton_helpers.maximum(tmp2, tmp25) tmp17 & tmp12 tmp29 = triton_helpers.maximum(tmp2, tmp27) tmp17 & tmp17 tmp31 = triton_helpers.maximum(tmp2, tmp29) tmp32 = tmp2 > tmp2 tmp33 = tl.full([1], 1, tl.int8) tmp34 = tl.full([1], 0, tl.int8) tmp35 = tl.where(tmp32, tmp33, tmp34) tmp36 = tmp2 > tmp14 tmp37 = tl.full([1], 2, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tmp39 = tmp2 > tmp19 tmp40 = tl.full([1], 3, tl.int8) tmp41 = tl.where(tmp39, tmp40, tmp38) tmp42 = tmp2 > tmp21 tmp43 = tl.full([1], 4, tl.int8) tmp44 = tl.where(tmp42, tmp43, tmp41) tmp45 = tmp2 > tmp23 tmp46 = tl.full([1], 5, tl.int8) tmp47 = tl.where(tmp45, tmp46, tmp44) tmp48 = tmp2 > tmp25 tmp49 = tl.full([1], 6, tl.int8) tmp50 = tl.where(tmp48, tmp49, tmp47) tmp51 = tmp2 > tmp27 tmp52 = tl.full([1], 7, tl.int8) tmp53 = tl.where(tmp51, tmp52, tmp50) tmp54 = tmp2 > tmp29 tmp55 = tl.full([1], 8, tl.int8) tmp56 = tl.where(tmp54, tmp55, tmp53) tmp57 = tl.full([1], 0, tl.int32) tmp58 = triton_helpers.maximum(tmp57, tmp31) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp31, xmask) tl.store(out_ptr1 + x2, tmp56, xmask) tl.store(out_ptr2 + x2, tmp58, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(in_out_ptr0 + x2, tmp10, xmask) tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_12(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33 ) = args args.clear() assert_size_stride(primals_1, (16, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_13, (32,), (1,)) assert_size_stride(primals_14, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_15, (32,), (1,)) assert_size_stride(primals_16, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_17, (32,), (1,)) assert_size_stride(primals_18, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_19, (32,), (1,)) assert_size_stride(primals_20, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_21, (32,), (1,)) assert_size_stride(primals_22, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_23, (32,), (1,)) assert_size_stride(primals_24, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_25, (32,), (1,)) assert_size_stride(primals_26, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_27, (32,), (1,)) assert_size_stride(primals_28, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_29, (32,), (1,)) assert_size_stride(primals_30, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_31, (32,), (1,)) assert_size_stride(primals_32, (256, 32), (32, 1)) assert_size_stride(primals_33, (256,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(1024)](buf1, primals_2, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.int8) buf4 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_1[grid(256)](buf1, buf2, buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 16, 2, 2), (64, 4, 2, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_2[grid(256)](buf6, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 16, 2, 2), (64, 4, 2, 1)) buf8 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32) triton_poi_fused_add_convolution_relu_3[grid(256)](buf7, primals_7, buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 16, 2, 2), (64, 4, 2, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_2[grid(256)](buf10, primals_9, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 2, 2), (64, 4, 2, 1)) buf12 = buf11 del buf11 triton_poi_fused_add_convolution_4[grid(256)](buf12, primals_11, buf7, primals_7, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf2 del buf7 del primals_11 del primals_7 buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 32, 2, 2), (128, 4, 2, 1)) buf14 = buf13 del buf13 triton_poi_fused_convolution_5[grid(512)](buf14, primals_13, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf15 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch. float32) buf16 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.int8) buf17 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_6[grid(128)](buf14, buf15, buf16, buf17, 128, XBLOCK=128, num_warps=4, num_stages=1) buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 1, 1), (32, 1, 1, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_7[grid(128)](buf19, primals_15, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 32, 1, 1), (32, 1, 1, 1)) buf21 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.float32) triton_poi_fused_add_convolution_relu_8[grid(128)](buf20, primals_17, buf15, buf21, 128, XBLOCK=128, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 32, 1, 1), (32, 1, 1, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_7[grid(128)](buf23, primals_19, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_19 buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 1, 1), (32, 1, 1, 1)) buf25 = reinterpret_tensor(buf15, (4, 32, 1, 1), (32, 1, 1, 1), 0) del buf15 triton_poi_fused_add_convolution_9[grid(128)](buf25, buf24, primals_21, buf20, primals_17, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_17 del primals_21 buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 32, 1, 1), (32, 1, 1, 1)) buf27 = buf26 del buf26 buf28 = reinterpret_tensor(buf24, (4, 32, 1, 1), (32, 1, 128, 128), 0) del buf24 buf29 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.int8) buf30 = buf20 del buf20 triton_poi_fused_convolution_max_pool2d_with_indices_relu_10[grid(128) ](buf27, primals_23, buf28, buf29, buf30, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_23 buf31 = extern_kernels.convolution(buf30, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 32, 1, 1), (32, 1, 1, 1)) buf32 = buf31 del buf31 triton_poi_fused_convolution_relu_7[grid(128)](buf32, primals_25, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_25 buf33 = extern_kernels.convolution(buf32, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 32, 1, 1), (32, 1, 1, 1)) buf34 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.float32) triton_poi_fused_add_convolution_relu_8[grid(128)](buf33, primals_27, buf28, buf34, 128, XBLOCK=128, num_warps=4, num_stages=1) buf35 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 32, 1, 1), (32, 1, 1, 1)) buf36 = buf35 del buf35 triton_poi_fused_convolution_relu_7[grid(128)](buf36, primals_29, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_29 buf37 = extern_kernels.convolution(buf36, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 32, 1, 1), (32, 1, 1, 1)) buf38 = reinterpret_tensor(buf28, (4, 32, 1, 1), (32, 1, 1, 1), 0) del buf28 buf42 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_11[grid(128)]( buf38, buf37, primals_31, buf33, primals_27, buf42, 128, XBLOCK =128, num_warps=4, num_stages=1) del buf33 del buf37 del primals_27 del primals_31 buf39 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf38, (4, 32), (32, 1), 0), reinterpret_tensor(primals_32, (32, 256), (1, 32), 0), out=buf39) buf40 = buf39 del buf39 buf41 = empty_strided_cuda((4, 256), (256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_12[grid(1024)](buf40, primals_33, buf41, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_33 return (buf40, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, buf1, buf3, buf4, buf6, buf8, buf10, buf12, buf14, buf16, buf17, buf19, buf21, buf23, buf25, buf27, buf29, buf30, buf32, buf34, buf36, reinterpret_tensor(buf38, (4, 32), (32, 1), 0), buf41, primals_32, buf42) class _ImpalaResBlock(nn.Module): def __init__(self, n_channels: 'int'): super().__init__() self.n_channels = n_channels kernel_size = 3 padding = 1 self.relu = nn.ReLU() self.relu_inplace = nn.ReLU() self.conv1 = nn.Conv2d(n_channels, n_channels, kernel_size, padding =padding) self.conv2 = nn.Conv2d(n_channels, n_channels, kernel_size, padding =padding) def forward(self, inputs): x = self.relu(inputs) x = self.conv1(x) x = self.relu_inplace(x) x = self.conv2(x) x += inputs return x class _ImpalaBlock(nn.Module): def __init__(self, n_channels_in: 'int', n_channels_out: 'int'): super().__init__() self.n_channels_in = n_channels_in self.n_channels_out = n_channels_out kernel_size = 3 padding = 1 self.conv1 = nn.Conv2d(n_channels_in, n_channels_out, kernel_size, padding=padding) self.pool = nn.MaxPool2d(kernel_size, stride=2, padding=padding) self.res1 = _ImpalaResBlock(n_channels_out) self.res2 = _ImpalaResBlock(n_channels_out) def forward(self, x): x = self.conv1(x) x = self.pool(x) x = self.res1(x) x = self.res2(x) return x class _ImpalaCNNNew(nn.Module): def __init__(self, img_shape: 'Tuple[int, int, int]', n_extra_feats: 'int'=0, n_outputs: 'int'=256): super().__init__() self.n_outputs = n_outputs h, w, c = img_shape self.block1 = _ImpalaBlock(c, 16) self.block2 = _ImpalaBlock(16, 32) self.block3 = _ImpalaBlock(32, 32) self.relu = nn.ReLU() self.flatten = nn.Flatten() test_img = torch.empty(c, h, w)[None] n_feats = self.block3(self.block2(self.block1(test_img))).numel() self.linear = nn.Linear(n_feats + n_extra_feats, self.n_outputs) def forward(self, input_0): primals_1 = self.block1.conv1.weight primals_2 = self.block1.conv1.bias primals_4 = self.block1.res1.conv1.weight primals_5 = self.block1.res1.conv1.bias primals_6 = self.block1.res1.conv2.weight primals_7 = self.block1.res1.conv2.bias primals_8 = self.block1.res2.conv1.weight primals_9 = self.block1.res2.conv1.bias primals_10 = self.block1.res2.conv2.weight primals_11 = self.block1.res2.conv2.bias primals_12 = self.block2.conv1.weight primals_13 = self.block2.conv1.bias primals_14 = self.block2.res1.conv1.weight primals_15 = self.block2.res1.conv1.bias primals_16 = self.block2.res1.conv2.weight primals_17 = self.block2.res1.conv2.bias primals_18 = self.block2.res2.conv1.weight primals_19 = self.block2.res2.conv1.bias primals_20 = self.block2.res2.conv2.weight primals_21 = self.block2.res2.conv2.bias primals_22 = self.block3.conv1.weight primals_23 = self.block3.conv1.bias primals_24 = self.block3.res1.conv1.weight primals_25 = self.block3.res1.conv1.bias primals_26 = self.block3.res1.conv2.weight primals_27 = self.block3.res1.conv2.bias primals_28 = self.block3.res2.conv1.weight primals_29 = self.block3.res2.conv1.bias primals_30 = self.block3.res2.conv2.weight primals_31 = self.block3.res2.conv2.bias primals_32 = self.linear.weight primals_33 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33]) return output[0]
nrfulton/vsrl-framework
_ImpalaCNN
false
7,445
[ "MIT" ]
1
c778824b3285e3e994a4c5846c7b1c2ac03c669b
https://github.com/nrfulton/vsrl-framework/tree/c778824b3285e3e994a4c5846c7b1c2ac03c669b
import torch from typing import Tuple from torch import nn class _ImpalaResBlock(nn.Module): def __init__(self, n_channels: 'int'): super().__init__() self.n_channels = n_channels kernel_size = 3 padding = 1 self.relu = nn.ReLU() self.relu_inplace = nn.ReLU() self.conv1 = nn.Conv2d(n_channels, n_channels, kernel_size, padding =padding) self.conv2 = nn.Conv2d(n_channels, n_channels, kernel_size, padding =padding) def forward(self, inputs): x = self.relu(inputs) x = self.conv1(x) x = self.relu_inplace(x) x = self.conv2(x) x += inputs return x class _ImpalaBlock(nn.Module): def __init__(self, n_channels_in: 'int', n_channels_out: 'int'): super().__init__() self.n_channels_in = n_channels_in self.n_channels_out = n_channels_out kernel_size = 3 padding = 1 self.conv1 = nn.Conv2d(n_channels_in, n_channels_out, kernel_size, padding=padding) self.pool = nn.MaxPool2d(kernel_size, stride=2, padding=padding) self.res1 = _ImpalaResBlock(n_channels_out) self.res2 = _ImpalaResBlock(n_channels_out) def forward(self, x): x = self.conv1(x) x = self.pool(x) x = self.res1(x) x = self.res2(x) return x class Model(nn.Module): def __init__(self, img_shape: 'Tuple[int, int, int]', n_extra_feats: 'int'=0, n_outputs: 'int'=256): super().__init__() self.n_outputs = n_outputs h, w, c = img_shape self.block1 = _ImpalaBlock(c, 16) self.block2 = _ImpalaBlock(16, 32) self.block3 = _ImpalaBlock(32, 32) self.relu = nn.ReLU() self.flatten = nn.Flatten() test_img = torch.empty(c, h, w)[None] n_feats = self.block3(self.block2(self.block1(test_img))).numel() self.linear = nn.Linear(n_feats + n_extra_feats, self.n_outputs) def forward(self, x, extra_obs=None): x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.relu(x) x = self.flatten(x) if extra_obs is not None: x = torch.cat((x, extra_obs), -1) x = self.linear(x) x = self.relu(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/db/cdbtp2ptn7jrozfnwu37s4iesu4mvf4behbnfh4mt4vw3ye7g3pz.py # Topologically Sorted Source Nodes: [conv_transpose2d, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 25) % 20 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qd/cqdyi4bqfvm7eqeqnd227m6m6pdhizrfutk6wx33tv2r4hjrq2iv.py # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv_transpose2d_1 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6760 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 169) % 10 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/76/c76naobwdazz46xvizsga7mo3krkybniroce3rka3zmnx5rtpd7d.py # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_4], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv_transpose2d_2 => convolution_2 # x_4 => sigmoid # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3364 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (40, 4), (4, 1)) assert_size_stride(primals_2, (40, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (40, 20, 5, 5), (500, 25, 5, 1)) assert_size_stride(primals_5, (20, ), (1, )) assert_size_stride(primals_6, (20, 10, 5, 5), (250, 25, 5, 1)) assert_size_stride(primals_7, (10, ), (1, )) assert_size_stride(primals_8, (10, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 40), (40, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 40), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 40, 1, 1), (40, 1, 1, 1), 0), primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 20, 5, 5), (500, 25, 5, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d, x_2], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf2, primals_5, 2000, grid=grid(2000), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 10, 13, 13), (1690, 169, 13, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_1, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf4, primals_7, 6760, grid=grid(6760), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_8, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 29, 29), (841, 841, 29, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv_transpose2d_2, x_4], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_2.run(buf6, primals_9, 3364, grid=grid(3364), stream=stream0) del primals_9 return (buf6, primals_3, primals_4, primals_6, primals_8, reinterpret_tensor(buf0, (4, 40, 1, 1), (40, 1, 1, 1), 0), buf2, buf4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((40, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((40, 20, 5, 5), (500, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((20, 10, 5, 5), (250, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self, input_size): super(Decoder, self).__init__() self.fully = nn.Linear(input_size, 40) self.conv1 = nn.ConvTranspose2d(40, 20, kernel_size=5, stride=2) self.conv2 = nn.ConvTranspose2d(20, 10, kernel_size=5, stride=2) self.conv3 = nn.ConvTranspose2d(10, 1, kernel_size=5, stride=2) def forward(self, x): x = self.fully(x) x = x.view(x.data.shape[0], 40, 1, 1) x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.sigmoid(self.conv3(x)) return x def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 25 % 20 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6760 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 169 % 10 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3364 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (40, 4), (4, 1)) assert_size_stride(primals_2, (40,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (40, 20, 5, 5), (500, 25, 5, 1)) assert_size_stride(primals_5, (20,), (1,)) assert_size_stride(primals_6, (20, 10, 5, 5), (250, 25, 5, 1)) assert_size_stride(primals_7, (10,), (1,)) assert_size_stride(primals_8, (10, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 40), (40, 1), torch.float32) extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor( primals_1, (4, 40), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 40, 1, 1), (40, 1, 1, 1), 0), primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 20, 5, 5), (500, 25, 5, 1)) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(2000)](buf2, primals_5, 2000, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf3 = extern_kernels.convolution(buf2, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 10, 13, 13), (1690, 169, 13, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_1[grid(6760)](buf4, primals_7, 6760, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf5 = extern_kernels.convolution(buf4, primals_8, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 29, 29), (841, 841, 29, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_sigmoid_2[grid(3364)](buf6, primals_9, 3364, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 return (buf6, primals_3, primals_4, primals_6, primals_8, reinterpret_tensor(buf0, (4, 40, 1, 1), (40, 1, 1, 1), 0), buf2, buf4, buf6) class DecoderNew(nn.Module): def __init__(self, input_size): super(DecoderNew, self).__init__() self.fully = nn.Linear(input_size, 40) self.conv1 = nn.ConvTranspose2d(40, 20, kernel_size=5, stride=2) self.conv2 = nn.ConvTranspose2d(20, 10, kernel_size=5, stride=2) self.conv3 = nn.ConvTranspose2d(10, 1, kernel_size=5, stride=2) def forward(self, input_0): primals_1 = self.fully.weight primals_2 = self.fully.bias primals_4 = self.conv1.weight primals_5 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_8 = self.conv3.weight primals_9 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
pacslab/serverless-ml-serving
Decoder
false
7,446
[ "MIT" ]
1
03a4cd5f1739aa4710ef886edd9332b3d755efbd
https://github.com/pacslab/serverless-ml-serving/tree/03a4cd5f1739aa4710ef886edd9332b3d755efbd
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_size): super().__init__() self.fully = nn.Linear(input_size, 40) self.conv1 = nn.ConvTranspose2d(40, 20, kernel_size=5, stride=2) self.conv2 = nn.ConvTranspose2d(20, 10, kernel_size=5, stride=2) self.conv3 = nn.ConvTranspose2d(10, 1, kernel_size=5, stride=2) def forward(self, x): x = self.fully(x) x = x.view(x.data.shape[0], 40, 1, 1) x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = torch.sigmoid(self.conv3(x)) return x def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4]
InvDepth
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qj/cqjyffxbqx5v3ctgslj6o2fu3pv67cshoa7xswc2b57behdgff35.py # Topologically Sorted Source Nodes: [x, sigmoid, truediv], Original ATen: [aten.convolution, aten.sigmoid, aten.div] # Source node to ATen node mapping: # sigmoid => sigmoid # truediv => div # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sigmoid, 0.5), kwargs = {}) triton_poi_fused_convolution_div_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_div_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_div_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_div_sigmoid_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 2.0 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + (x0), tmp3, xmask) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, sigmoid, truediv], Original ATen: [aten.convolution, aten.sigmoid, aten.div] triton_poi_fused_convolution_div_sigmoid_1.run(buf2, primals_3, buf3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf3, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class InvDepth(nn.Module): """Inverse depth layer""" def __init__(self, in_channels, out_channels=1, min_depth=0.5): """ Initializes an InvDepth object. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels min_depth : float Minimum depth value to calculate """ super().__init__() self.min_depth = min_depth self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1) self.pad = nn.ConstantPad2d([1] * 4, value=0) self.activ = nn.Sigmoid() def forward(self, x): """Runs the InvDepth layer.""" x = self.conv1(self.pad(x)) return self.activ(x) / self.min_depth def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_convolution_div_sigmoid_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 2.0 tmp6 = tmp4 * tmp5 tl.store(in_out_ptr0 + x0, tmp3, xmask) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) triton_poi_fused_convolution_div_sigmoid_1[grid(64)](buf2, primals_3, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf3, primals_2, buf0, buf2 class InvDepthNew(nn.Module): """Inverse depth layer""" def __init__(self, in_channels, out_channels=1, min_depth=0.5): """ Initializes an InvDepth object. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels min_depth : float Minimum depth value to calculate """ super().__init__() self.min_depth = min_depth self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1) self.pad = nn.ConstantPad2d([1] * 4, value=0) self.activ = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
pection/packnet-sfm
InvDepth
false
7,447
[ "MIT" ]
1
d5673567b649e6bfda292c894cacdeb06aa80913
https://github.com/pection/packnet-sfm/tree/d5673567b649e6bfda292c894cacdeb06aa80913
import torch import torch.nn as nn class Model(nn.Module): """Inverse depth layer""" def __init__(self, in_channels, out_channels=1, min_depth=0.5): """ Initializes an InvDepth object. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels min_depth : float Minimum depth value to calculate """ super().__init__() self.min_depth = min_depth self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1) self.pad = nn.ConstantPad2d([1] * 4, value=0) self.activ = nn.Sigmoid() def forward(self, x): """Runs the InvDepth layer.""" x = self.conv1(self.pad(x)) return self.activ(x) / self.min_depth def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
StackedAutoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/f3/cf3wjo3codglmel3mdjaodbq3s3viwdoc74iaz5e3kntwsnjtjqi.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), (1, 1), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class StackedAutoencoder(nn.Module): """ 1-hidden layer AE trained with MSE loss """ def __init__(self, input_size, hidden_layer_size): super(StackedAutoencoder, self).__init__() self.encoder = nn.Linear(input_size, hidden_layer_size) self.decoder = nn.Linear(hidden_layer_size, input_size) def embedding(self, x): return self.encoder(x) def forward(self, x): x = self.encoder(x) x = torch.sigmoid(x) return self.decoder(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_layer_size': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), ( 1, 1), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4 class StackedAutoencoderNew(nn.Module): """ 1-hidden layer AE trained with MSE loss """ def __init__(self, input_size, hidden_layer_size): super(StackedAutoencoderNew, self).__init__() self.encoder = nn.Linear(input_size, hidden_layer_size) self.decoder = nn.Linear(hidden_layer_size, input_size) def embedding(self, x): return self.encoder(x) def forward(self, input_0): primals_1 = self.encoder.weight primals_2 = self.encoder.bias primals_4 = self.decoder.weight primals_5 = self.decoder.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pemami4911/ppi-with-stacked-autoencoders
StackedAutoencoder
false
7,448
[ "MIT" ]
1
c09aba827ac6991da3dbf1b2628ac5d0f5041548
https://github.com/pemami4911/ppi-with-stacked-autoencoders/tree/c09aba827ac6991da3dbf1b2628ac5d0f5041548
import torch import torch.nn as nn class Model(nn.Module): """ 1-hidden layer AE trained with MSE loss """ def __init__(self, input_size, hidden_layer_size): super().__init__() self.encoder = nn.Linear(input_size, hidden_layer_size) self.decoder = nn.Linear(hidden_layer_size, input_size) def embedding(self, x): return self.encoder(x) def forward(self, x): x = self.encoder(x) x = torch.sigmoid(x) return self.decoder(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 1]
HardGRUCellNUAPT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/l4/cl4boort6vfsvh6h6bfd4lck36kbmtipkqcrnhckuuxer6sfib77.py # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.zeros] # Source node to ATen node mapping: # hx => full_default # Graph fragment: # %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_0 = async_compile.triton('triton_poi_fused_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/h6/ch6u555ix6c7ghvepbptanp4nygfrp2uxx4723ebrv72fmc5z3sk.py # Topologically Sorted Source Nodes: [resetgate_in, updategate_in, mul, resetgate, mul_1, updategate, mul_2, newgate_in, newgate, sub, mul_3, mul_4, hy], Original ATen: [aten.add, aten.mul, aten.hardsigmoid, aten.hardtanh, aten.rsub] # Source node to ATen node mapping: # hy => add_5 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # newgate => clamp_max_2, clamp_min_2 # newgate_in => add_4 # resetgate => add_2, clamp_max, clamp_min, div # resetgate_in => add # sub => sub # updategate => add_3, clamp_max_1, clamp_min_1, div_1 # updategate_in => add_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_1, %getitem_4), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_2, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 3), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 3), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_3, 0), kwargs = {}) # %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 6), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max_1, 6), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %getitem_5), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul_2), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_4, -1.0), kwargs = {}) # %clamp_max_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %clamp_max_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %full_default), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %mul_4), kwargs = {}) triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1 = async_compile.triton('triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4 + x0 + (12*x1)), xmask) tmp7 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask) tmp8 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask) tmp13 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask) tmp14 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 3.0 tmp6 = tmp4 * tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp11 * tmp5 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp5 tmp17 = 0.0 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = 6.0 tmp20 = triton_helpers.minimum(tmp18, tmp19) tmp21 = 0.16666666666666666 tmp22 = tmp20 * tmp21 tmp24 = tmp22 * tmp23 tmp25 = tmp15 + tmp24 tmp26 = tmp6 + tmp5 tmp27 = triton_helpers.maximum(tmp26, tmp17) tmp28 = triton_helpers.minimum(tmp27, tmp19) tmp29 = tmp28 * tmp21 tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = -1.0 tmp33 = triton_helpers.maximum(tmp25, tmp32) tmp34 = triton_helpers.minimum(tmp33, tmp30) tmp35 = tmp31 * tmp34 tmp36 = tmp29 * tmp17 tmp37 = tmp35 + tmp36 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp12, xmask) tl.store(out_ptr2 + (x2), tmp25, xmask) tl.store(out_ptr3 + (x2), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.zeros] stream0 = get_raw_stream(0) triton_poi_fused_zeros_0.run(buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [gate_h], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [resetgate_in, updategate_in, mul, resetgate, mul_1, updategate, mul_2, newgate_in, newgate, sub, mul_3, mul_4, hy], Original ATen: [aten.add, aten.mul, aten.hardsigmoid, aten.hardtanh, aten.rsub] triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1.run(buf1, primals_3, buf2, buf4, buf3, buf5, buf6, 16, grid=grid(16), stream=stream0) del buf1 del primals_3 return (buf6, primals_1, buf0, reinterpret_tensor(buf2, (4, 4), (12, 1), 8), buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super(ScaleHardsigmoid, self).__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class HardGRUCellNUAPT(torch.nn.RNNCellBase): """ This is a standard GRUCell by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. This module is not fully unary computing aware (NUA), i.e., not all intermediate data are bounded to the legal unary range. This module follows the PyTorch implementation style (PT). """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super(HardGRUCellNUAPT, self).__init__(input_size, hidden_size, bias, num_chunks=3) self.hard = hard if hard is True: self.resetgate_sigmoid = ScaleHardsigmoid() self.updategate_sigmoid = ScaleHardsigmoid() self.newgate_tanh = nn.Hardtanh() else: self.resetgate_sigmoid = nn.Sigmoid() self.updategate_sigmoid = nn.Sigmoid() self.newgate_tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input: 'Tensor', hx: 'Optional[Tensor]'=None) ->Tensor: if hx is None: hx = torch.zeros(input.size()[0], self.hidden_size, dtype=input .dtype, device=input.device) gate_i = F.linear(input, self.weight_ih, self.bias_ih) gate_h = F.linear(hx, self.weight_hh, self.bias_hh) i_r, i_z, i_n = gate_i.chunk(3, 1) h_r, h_z, h_n = gate_h.chunk(3, 1) resetgate_in = i_r + h_r updategate_in = i_z + h_z resetgate = self.resetgate_sigmoid(resetgate_in) updategate = self.updategate_sigmoid(updategate_in) newgate_in = i_n + resetgate * h_n newgate = self.newgate_tanh(newgate_in) hy = (1 - updategate) * newgate + updategate * hx return hy def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4 + x0 + 12 * x1), xmask) tmp7 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask) tmp8 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask) tmp13 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask) tmp14 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = 3.0 tmp6 = tmp4 * tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp11 * tmp5 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp5 tmp17 = 0.0 tmp18 = triton_helpers.maximum(tmp16, tmp17) tmp19 = 6.0 tmp20 = triton_helpers.minimum(tmp18, tmp19) tmp21 = 0.16666666666666666 tmp22 = tmp20 * tmp21 tmp24 = tmp22 * tmp23 tmp25 = tmp15 + tmp24 tmp26 = tmp6 + tmp5 tmp27 = triton_helpers.maximum(tmp26, tmp17) tmp28 = triton_helpers.minimum(tmp27, tmp19) tmp29 = tmp28 * tmp21 tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = -1.0 tmp33 = triton_helpers.maximum(tmp25, tmp32) tmp34 = triton_helpers.minimum(tmp33, tmp30) tmp35 = tmp31 * tmp34 tmp36 = tmp29 * tmp17 tmp37 = tmp35 + tmp36 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp12, xmask) tl.store(out_ptr2 + x2, tmp25, xmask) tl.store(out_ptr3 + x2, tmp37, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_zeros_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 12), (12, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_hardsigmoid_hardtanh_mul_rsub_1[grid(16)](buf1, primals_3, buf2, buf4, buf3, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del primals_3 return buf6, primals_1, buf0, reinterpret_tensor(buf2, (4, 4), (12, 1), 8 ), buf3, buf4, buf5 def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super(ScaleHardsigmoid, self).__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class HardGRUCellNUAPTNew(torch.nn.RNNCellBase): """ This is a standard GRUCell by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. This module is not fully unary computing aware (NUA), i.e., not all intermediate data are bounded to the legal unary range. This module follows the PyTorch implementation style (PT). """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super(HardGRUCellNUAPTNew, self).__init__(input_size, hidden_size, bias, num_chunks=3) self.hard = hard if hard is True: self.resetgate_sigmoid = ScaleHardsigmoid() self.updategate_sigmoid = ScaleHardsigmoid() self.newgate_tanh = nn.Hardtanh() else: self.resetgate_sigmoid = nn.Sigmoid() self.updategate_sigmoid = nn.Sigmoid() self.newgate_tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input_0): primals_2 = self.weight_ih primals_4 = self.weight_hh primals_3 = self.bias_ih primals_5 = self.bias_hh primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pan185/UnarySim
HardGRUCellNUAPT
false
7,449
[ "MIT" ]
1
c03386efdbb8151f3c33f34b44d1d6a6fc960434
https://github.com/pan185/UnarySim/tree/c03386efdbb8151f3c33f34b44d1d6a6fc960434
import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super().__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class Model(torch.nn.RNNCellBase): """ This is a standard GRUCell by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. This module is not fully unary computing aware (NUA), i.e., not all intermediate data are bounded to the legal unary range. This module follows the PyTorch implementation style (PT). """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super().__init__(input_size, hidden_size, bias, num_chunks=3) self.hard = hard if hard is True: self.resetgate_sigmoid = ScaleHardsigmoid() self.updategate_sigmoid = ScaleHardsigmoid() self.newgate_tanh = nn.Hardtanh() else: self.resetgate_sigmoid = nn.Sigmoid() self.updategate_sigmoid = nn.Sigmoid() self.newgate_tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input: 'Tensor', hx: 'Optional[Tensor]'=None) ->Tensor: if hx is None: hx = torch.zeros(input.size()[0], self.hidden_size, dtype=input .dtype, device=input.device) gate_i = F.linear(input, self.weight_ih, self.bias_ih) gate_h = F.linear(hx, self.weight_hh, self.bias_hh) i_r, i_z, i_n = gate_i.chunk(3, 1) h_r, h_z, h_n = gate_h.chunk(3, 1) resetgate_in = i_r + h_r updategate_in = i_z + h_z resetgate = self.resetgate_sigmoid(resetgate_in) updategate = self.updategate_sigmoid(updategate_in) newgate_in = i_n + resetgate * h_n newgate = self.newgate_tanh(newgate_in) hy = (1 - updategate) * newgate + updategate * hx return hy def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
InstanceNormLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/bt/cbty6aktspcpn2i4hqhd57tuurtxy7jyiq6n7smwcnjcrfghdp6t.py # Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # mean_1 => mean_1 # pow_1 => pow_1 # sqrt => sqrt # x => sub # x_1 => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [2, 3], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [2, 3], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) triton_per_fused_add_div_mean_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp7 / tmp16 tl.store(out_ptr2 + (r1 + (16*x0)), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, x, pow_1, mean_1, add, sqrt, x_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_pow_sqrt_sub_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class InstanceNormLayer(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, x): if len(x.shape) != 4: raise ValueError( f'The input tensor should be with shape [batch_size, num_channels, height, width], but {x.shape} received!' ) x = x - torch.mean(x, dim=[2, 3], keepdim=True) x = x / torch.sqrt(torch.mean(x ** 2, dim=[2, 3], keepdim=True) + self.epsilon) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_pow_sqrt_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp12 / tmp5 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp7 / tmp16 tl.store(out_ptr2 + (r1 + 16 * x0), tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_pow_sqrt_sub_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class InstanceNormLayerNew(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
perladoubinsky/balanced_sampling_gan_controls
InstanceNormLayer
false
7,450
[ "MIT" ]
1
cbec7a38176406c0e19d4b6ebbc6c6b52d268036
https://github.com/perladoubinsky/balanced_sampling_gan_controls/tree/cbec7a38176406c0e19d4b6ebbc6c6b52d268036
import torch import torch.nn as nn class Model(nn.Module): """Implements instance normalization layer.""" def __init__(self, epsilon=1e-08): super().__init__() self.epsilon = epsilon def forward(self, x): if len(x.shape) != 4: raise ValueError( f'The input tensor should be with shape [batch_size, num_channels, height, width], but {x.shape} received!' ) x = x - torch.mean(x, dim=[2, 3], keepdim=True) x = x / torch.sqrt(torch.mean(x ** 2, dim=[2, 3], keepdim=True) + self.epsilon) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ModelNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2j/c2jdoj4tcaujecuntbzcpssdm46qqc55mrqjpjrmi7wwyblphesm.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # input_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 512), (512, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 32768, grid=grid(32768), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 2), (1, 512), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 512), (512, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ModelNet(nn.Module): def __init__(self, input_size, num_hidden_layers=1, hidden_layer_size= 512, num_labels=2): super(ModelNet, self).__init__() self.model = nn.Sequential() for i in range(num_hidden_layers): self.model.add_module(f'ff_{i}', nn.Linear(input_size, hidden_layer_size)) self.model.add_module(f'relu{i}', nn.ReLU()) input_size = hidden_layer_size self.model.add_module('classification', nn.Linear(hidden_layer_size, num_labels)) def forward(self, x): return self.model(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 512), (512, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0 ) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(32768)](buf1, primals_2, buf3, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 2), (1, 512), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 512), (512, 1), 0), primals_4, buf3 class ModelNetNew(nn.Module): def __init__(self, input_size, num_hidden_layers=1, hidden_layer_size= 512, num_labels=2): super(ModelNetNew, self).__init__() self.model = nn.Sequential() for i in range(num_hidden_layers): self.model.add_module(f'ff_{i}', nn.Linear(input_size, hidden_layer_size)) self.model.add_module(f'relu{i}', nn.ReLU()) input_size = hidden_layer_size self.model.add_module('classification', nn.Linear(hidden_layer_size, num_labels)) def forward(self, input_0): primals_1 = self.model.ff_0.weight primals_2 = self.model.ff_0.bias primals_4 = self.model.classification.weight primals_5 = self.model.classification.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
patelrajnath/makeesy-deep-learning
ModelNet
false
7,451
[ "Apache-2.0" ]
1
172f8a4301d6b60927824a56648d60559ba3f14e
https://github.com/patelrajnath/makeesy-deep-learning/tree/172f8a4301d6b60927824a56648d60559ba3f14e
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, input_size, num_hidden_layers=1, hidden_layer_size= 512, num_labels=2): super().__init__() self.model = nn.Sequential() for i in range(num_hidden_layers): self.model.add_module(f'ff_{i}', nn.Linear(input_size, hidden_layer_size)) self.model.add_module(f'relu{i}', nn.ReLU()) input_size = hidden_layer_size self.model.add_module('classification', nn.Linear(hidden_layer_size, num_labels)) def forward(self, x): return self.model(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LocalDictionaryLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fm/cfmvovdu4azexql6idxaik5bkl4lwmmw7nzqi4if7mdrhxk2e4gh.py # Topologically Sorted Source Nodes: [sub, pow_1, weight, mul_1], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # pow_1 => pow_1 # sub => sub # weight => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, %arg2_1), kwargs = {}) triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x1 = (xindex // 16) % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp20 = tmp18 * tmp19 tl.store(out_ptr0 + (x3), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/en/cenaaeuxsel4mmbxeabiks7aqnusvcoxlmwllxajtcc5lkf3mcxn.py # Topologically Sorted Source Nodes: [sub_1, pow_2, sum_2, mean, a, sum_3, b, mul_2, add], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mean, aten.mul, aten.add] # Source node to ATen node mapping: # a => mul # add => add # b => mean_1 # mean => mean # mul_2 => mul_2 # pow_2 => pow_2 # sub_1 => sub_1 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %view_2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {}) triton_per_fused_add_mean_mul_pow_sub_sum_1 = async_compile.triton('triton_per_fused_add_mean_mul_pow_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp9 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp10 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp14 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp15 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp22 = tl.load(in_ptr2 + (r0 + (64*r1)), None) tmp23 = tl.load(in_ptr2 + (16 + r0 + (64*r1)), None) tmp25 = tl.load(in_ptr2 + (32 + r0 + (64*r1)), None) tmp27 = tl.load(in_ptr2 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp24 = tmp22 + tmp23 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = 64.0 tmp33 = tmp21 / tmp32 tmp34 = 0.5 tmp35 = tmp33 * tmp34 tmp36 = tmp31 / tmp32 tmp37 = 4.0 tmp38 = tmp36 * tmp37 tmp39 = tmp35 + tmp38 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp39, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, weight, mul_1], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_pow_sub_sum_0.run(arg0_1, arg1_1, arg2_1, buf2, 256, grid=grid(256), stream=stream0) del arg1_1 del arg2_1 buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub_1, pow_2, sum_2, mean, a, sum_3, b, mul_2, add], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mean, aten.mul, aten.add] triton_per_fused_add_mean_mul_pow_sub_sum_1.run(buf4, arg0_1, buf0, buf2, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn class LocalDictionaryLoss(torch.nn.Module): def __init__(self, penalty): super(LocalDictionaryLoss, self).__init__() self.penalty = penalty def forward(self, A, y, x): return self.forward_detailed(A, y, x)[2] def forward_detailed(self, A, y, x): weight = (y.unsqueeze(1) - A.unsqueeze(0)).pow(2).sum(dim=2) a = 0.5 * (y - x @ A).pow(2).sum(dim=1).mean() b = (weight * x).sum(dim=1).mean() return a, b, a + b * self.penalty def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'penalty': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x1 = xindex // 16 % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp20 = tmp18 * tmp19 tl.store(out_ptr0 + x3, tmp20, xmask) @triton.jit def triton_per_fused_add_mean_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp9 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp10 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp14 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp15 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp22 = tl.load(in_ptr2 + (r0 + 64 * r1), None) tmp23 = tl.load(in_ptr2 + (16 + r0 + 64 * r1), None) tmp25 = tl.load(in_ptr2 + (32 + r0 + 64 * r1), None) tmp27 = tl.load(in_ptr2 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp24 = tmp22 + tmp23 tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = 64.0 tmp33 = tmp21 / tmp32 tmp34 = 0.5 tmp35 = tmp33 * tmp34 tmp36 = tmp31 / tmp32 tmp37 = 4.0 tmp38 = tmp36 * tmp37 tmp39 = tmp35 + tmp38 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp39, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1 ), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_pow_sub_sum_0[grid(256)](arg0_1, arg1_1, arg2_1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 del arg2_1 buf1 = empty_strided_cuda((), (), torch.float32) buf4 = buf1 del buf1 triton_per_fused_add_mean_mul_pow_sub_sum_1[grid(1)](buf4, arg0_1, buf0, buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 del buf2 return buf4, class LocalDictionaryLossNew(torch.nn.Module): def __init__(self, penalty): super(LocalDictionaryLossNew, self).__init__() self.penalty = penalty def forward_detailed(self, A, y, x): weight = (y.unsqueeze(1) - A.unsqueeze(0)).pow(2).sum(dim=2) a = 0.5 * (y - x @ A).pow(2).sum(dim=1).mean() b = (weight * x).sum(dim=1).mean() return a, b, a + b * self.penalty def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
pbt17/manifold-learning-with-simplex-constraints
LocalDictionaryLoss
false
7,452
[ "MIT" ]
1
36609e2d05600965ee1331823547a077ba7b5a51
https://github.com/pbt17/manifold-learning-with-simplex-constraints/tree/36609e2d05600965ee1331823547a077ba7b5a51
import torch import torch.nn class Model(torch.nn.Module): def __init__(self, penalty): super().__init__() self.penalty = penalty def forward(self, A, y, x): return self.forward_detailed(A, y, x)[2] def forward_detailed(self, A, y, x): weight = (y.unsqueeze(1) - A.unsqueeze(0)).pow(2).sum(dim=2) a = 0.5 * (y - x @ A).pow(2).sum(dim=1).mean() b = (weight * x).sum(dim=1).mean() return a, b, a + b * self.penalty def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4]
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1) del primals_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [features], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf2 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.data from collections import * class Discriminator(nn.Module): def __init__(self, n_hidden): super(Discriminator, self).__init__() self.weight = nn.Parameter(torch.Tensor(n_hidden, n_hidden)) self.reset_parameters() def uniform(self, size, tensor): bound = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-bound, bound) def reset_parameters(self): size = self.weight.size(0) self.uniform(size, self.weight) def forward(self, features, summary): features = torch.matmul(features, torch.matmul(self.weight, summary)) return features def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.utils.data from collections import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1) del primals_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(primals_3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del buf2 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor( primals_3, (16, 4, 4), (16, 1, 4), 0) class DiscriminatorNew(nn.Module): def __init__(self, n_hidden): super(DiscriminatorNew, self).__init__() self.weight = nn.Parameter(torch.Tensor(n_hidden, n_hidden)) self.reset_parameters() def uniform(self, size, tensor): bound = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-bound, bound) def reset_parameters(self): size = self.weight.size(0) self.uniform(size, self.weight) def forward(self, input_0, input_1): primals_1 = self.weight primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
pgplus1628/dgl
Discriminator
false
7,453
[ "Apache-2.0" ]
1
bf3994eea68b5841349f1616f41d0f70123a11ec
https://github.com/pgplus1628/dgl/tree/bf3994eea68b5841349f1616f41d0f70123a11ec
import math import torch import torch.nn as nn import torch.utils.data from collections import * class Model(nn.Module): def __init__(self, n_hidden): super().__init__() self.weight = nn.Parameter(torch.Tensor(n_hidden, n_hidden)) self.reset_parameters() def uniform(self, size, tensor): bound = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-bound, bound) def reset_parameters(self): size = self.weight.size(0) self.uniform(size, self.weight) def forward(self, features, summary): features = torch.matmul(features, torch.matmul(self.weight, summary)) return features def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
baseline
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zv/czvfpj3ah2lefbwpcuw4esv23bxs5a3ab63ply3ntgbsdktepd5v.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 6 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/v7/cv7qi7gg3bpfwb3hj7zgy5jlgh7x7wdgqsfsodkjsoverxdjlf6z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = (xindex // 14) x2 = (xindex // 1176) x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + (1184*x2)), tmp6, xmask) tl.store(out_ptr1 + (x4 + (1280*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6m/c6m6u2ctjb4r4ra3sizrwezzkzegfp2ombflmfg3dwjfci2pen7h.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oe/coe5fbad666mj2ssv6qjvlujkiju3ii2sfouwej6fr2l5cytibgw.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_6 => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_6 = async_compile.triton('triton_per_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_6(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (10*x0)), tmp11, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120, ), (1, )) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84, ), (1, )) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 18816, grid=grid(18816), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 4704, grid=grid(4704), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf11, primals_9, 336, grid=grid(336), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf15 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten._softmax] triton_per_fused__softmax_6.run(buf12, buf15, 4, 10, grid=grid(4), stream=stream0) del buf12 return (buf15, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf15, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 6, 5, 5), (150, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 84), (84, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class baseline(torch.nn.Module): def __init__(self): super(baseline, self).__init__() self.conv1 = torch.nn.Conv2d(3, 6, 5) self.pool = torch.nn.MaxPool2d(2, 2) self.conv2 = torch.nn.Conv2d(6, 16, 5) self.fc1 = torch.nn.Linear(16 * 5 * 5, 120) self.fc2 = torch.nn.Linear(120, 84) self.fc3 = torch.nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) x = F.softmax(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__softmax_6(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 10 * x0), tmp11, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf15 = empty_strided_cuda((4, 10), (10, 1), torch.float32) triton_per_fused__softmax_6[grid(4)](buf12, buf15, 4, 10, XBLOCK=1, num_warps=2, num_stages=1) del buf12 return (buf15, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf15, primals_10, primals_8, primals_6) class baselineNew(torch.nn.Module): def __init__(self): super(baselineNew, self).__init__() self.conv1 = torch.nn.Conv2d(3, 6, 5) self.pool = torch.nn.MaxPool2d(2, 2) self.conv2 = torch.nn.Conv2d(6, 16, 5) self.fc1 = torch.nn.Linear(16 * 5 * 5, 120) self.fc2 = torch.nn.Linear(120, 84) self.fc3 = torch.nn.Linear(84, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
patrickjdarrow/unsupervised_augmentations
baseline
false
7,454
[ "MIT" ]
1
5a81fa45865f2537c4c73e9307f83a873928e5ae
https://github.com/patrickjdarrow/unsupervised_augmentations/tree/5a81fa45865f2537c4c73e9307f83a873928e5ae
import torch import torch.nn.functional as F class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(3, 6, 5) self.pool = torch.nn.MaxPool2d(2, 2) self.conv2 = torch.nn.Conv2d(6, 16, 5) self.fc1 = torch.nn.Linear(16 * 5 * 5, 120) self.fc2 = torch.nn.Linear(120, 84) self.fc3 = torch.nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) x = F.softmax(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return []
HaltingUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xr/cxrxf4nkydknjv7xhdecpyrprhviagsqwicrk4lpp64qv2hkzaxp.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del primals_1 del primals_2 buf3 = reinterpret_tensor(buf1, (64, 1), (1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 return (buf4, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch as th import torch.utils.data from collections import * import torch.nn.init as INIT from torch.nn import LayerNorm class HaltingUnit(nn.Module): halting_bias_init = 1.0 def __init__(self, dim_model): super(HaltingUnit, self).__init__() self.linear = nn.Linear(dim_model, 1) self.norm = LayerNorm(dim_model) INIT.constant_(self.linear.bias, self.halting_bias_init) def forward(self, x): return th.sigmoid(self.linear(self.norm(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data from collections import * import torch.nn.init as INIT from torch.nn import LayerNorm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_1 del primals_2 buf3 = reinterpret_tensor(buf1, (64, 1), (1, 1), 0) del buf1 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf3 triton_poi_fused_sigmoid_2[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return buf4, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf4, primals_4 class HaltingUnitNew(nn.Module): halting_bias_init = 1.0 def __init__(self, dim_model): super(HaltingUnitNew, self).__init__() self.linear = nn.Linear(dim_model, 1) self.norm = LayerNorm(dim_model) INIT.constant_(self.linear.bias, self.halting_bias_init) def forward(self, input_0): primals_4 = self.linear.weight primals_5 = self.linear.bias primals_1 = self.norm.weight primals_2 = self.norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pgplus1628/dgl
HaltingUnit
false
7,455
[ "Apache-2.0" ]
1
bf3994eea68b5841349f1616f41d0f70123a11ec
https://github.com/pgplus1628/dgl/tree/bf3994eea68b5841349f1616f41d0f70123a11ec
import torch import torch.nn as nn import torch as th import torch.utils.data from collections import * import torch.nn.init as INIT from torch.nn import LayerNorm class Model(nn.Module): halting_bias_init = 1.0 def __init__(self, dim_model): super().__init__() self.linear = nn.Linear(dim_model, 1) self.norm = LayerNorm(dim_model) INIT.constant_(self.linear.bias, self.halting_bias_init) def forward(self, x): return th.sigmoid(self.linear(self.norm(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
EuclideanGMM
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ze/czetl2lnlymajgf44kwgzndhmj7dfbh53efotptquu26u7kszbuy.py # Topologically Sorted Source Nodes: [sub, mul, sub_1, mul_1, sub_2, mul_2], Original ATen: [aten.sub, aten.mul] # Source node to ATen node mapping: # mul => mul_1 # mul_1 => mul_3 # mul_2 => mul_5 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %expand_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_4, -0.5), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_8, %expand_9), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_11, -0.5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_16, %expand_17), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_18, -0.5), kwargs = {}) triton_poi_fused_mul_sub_0 = async_compile.triton('triton_poi_fused_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = (xindex // 16) x3 = (xindex // 64) x5 = xindex % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (x5 + (16*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + (4*x4)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (x5 + (16*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = -0.5 tmp4 = tmp2 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp3 tmp9 = tmp0 - tmp6 tmp10 = tmp9 * tmp3 tl.store(out_ptr0 + (x6), tmp4, xmask) tl.store(out_ptr1 + (x6), tmp2, xmask) tl.store(out_ptr2 + (x6), tmp8, xmask) tl.store(out_ptr3 + (x6), tmp7, xmask) tl.store(out_ptr4 + (x6), tmp10, xmask) tl.store(out_ptr5 + (x6), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dc/cdccm75rscnek67vl76op7chvgrztmrcqbicbtpdhlpzrniyw6ne.py # Topologically Sorted Source Nodes: [sigma_inv, sigma_inv_1, sigma_inv_2], Original ATen: [aten.diag_embed] # Source node to ATen node mapping: # sigma_inv => full_default, where # sigma_inv_1 => full_default_1, where_1 # sigma_inv_2 => full_default_2, where_2 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view, %permute, %full_default), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_7, %permute_2, %full_default_1), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_14, %permute_4, %full_default_2), kwargs = {}) triton_poi_fused_diag_embed_1 = async_compile.triton('triton_poi_fused_diag_embed_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_diag_embed_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_diag_embed_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = (xindex // 4) % 4 x6 = (xindex // 64) x2 = (xindex // 16) % 4 x4 = (xindex // 256) x7 = xindex tmp3 = tl.load(in_ptr0 + (x0 + (4*x6)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x4)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (x0 + (4*x6)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x0 + (4*x2) + (16*x4)), None, eviction_policy='evict_last') tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp6 / tmp5 tmp8 = 1.0 tmp9 = tmp7 * tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp2, tmp9, tmp10) tmp14 = tmp12 + tmp13 tmp15 = tmp6 / tmp14 tmp16 = tmp15 * tmp8 tmp17 = tl.where(tmp2, tmp16, tmp10) tmp18 = tmp3 + tmp13 tmp19 = tmp6 / tmp18 tmp20 = tmp19 * tmp8 tmp21 = tl.where(tmp2, tmp20, tmp10) tl.store(out_ptr0 + (x7), tmp11, None) tl.store(out_ptr1 + (x7), tmp17, None) tl.store(out_ptr2 + (x7), tmp21, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nk/cnk3jqn6qx3e35kewqnmgkp63i5s2tlqppjouxpbe6xzm2eri6lj.py # Topologically Sorted Source Nodes: [mul_3, mul_4, add_3, mul_5, mul_6, L2, L2_1], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum] # Source node to ATen node mapping: # L2 => sub_3 # L2_1 => sum_1 # add_3 => add_3 # mul_3 => mul_6 # mul_4 => mul_7 # mul_5 => mul_8 # mul_6 => mul_9 # Graph fragment: # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_23, %select_1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_26, %select_3), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, %mul_7), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_29, 2), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_8, %select_5), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %mul_9), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_3, [-2, -1]), kwargs = {}) triton_per_fused_add_mul_sub_sum_2 = async_compile.triton('triton_per_fused_add_mul_sub_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_sub_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_sub_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + (16*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr2 + (r2 + (16*x3)), xmask, other=0.0) tmp5 = tl.load(in_ptr3 + (r2 + (16*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr4 + (r2 + (16*x3)), xmask, other=0.0) tmp12 = tl.load(in_ptr5 + (r2 + (16*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp10 = 2.0 tmp11 = tmp9 * tmp10 tmp13 = tl_math.exp(tmp12) tmp14 = tmp11 * tmp13 tmp15 = tmp8 - tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(xmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tl.store(out_ptr0 + (x3), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j3/cj3rjanwhrokncxqzelpshcwemj6ytvab74b32utvu3rezmkjl52.py # Topologically Sorted Source Nodes: [L2_2], Original ATen: [aten.mean] # Source node to ATen node mapping: # L2_2 => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_mean_3 = async_compile.triton('triton_per_fused_mean_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_3(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 64.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [w1_w1_cross], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg4_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg4_1, (64, 1, 4), (4, 4, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 4, 4, 1, 4), (256, 64, 16, 4, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4, 1, 4), (256, 64, 16, 4, 4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4, 1, 4), (256, 64, 16, 4, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, sub_1, mul_1, sub_2, mul_2], Original ATen: [aten.sub, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sub_0.run(arg0_1, arg2_1, buf1, buf4, buf7, buf10, buf13, buf16, 1024, grid=grid(1024), stream=stream0) del arg0_1 del arg2_1 buf2 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigma_inv, sigma_inv_1, sigma_inv_2], Original ATen: [aten.diag_embed] triton_poi_fused_diag_embed_1.run(arg1_1, arg3_1, buf2, buf8, buf14, 4096, grid=grid(4096), stream=stream0) del arg1_1 del arg3_1 buf3 = empty_strided_cuda((256, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (256, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf2, (256, 4, 4), (16, 4, 1), 0), out=buf3) del buf1 del buf2 buf5 = empty_strided_cuda((256, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf4, (256, 4, 1), (4, 1, 0), 0), out=buf5) buf6 = reinterpret_tensor(buf4, (64, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [w2_w2_cross], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg5_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg5_1, (64, 1, 4), (4, 4, 1), 0), out=buf6) buf9 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (256, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf8, (256, 4, 4), (16, 4, 1), 0), out=buf9) del buf7 del buf8 buf11 = empty_strided_cuda((256, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf10, (256, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf9, (64, 4, 4), (16, 4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [w1_w2_cross], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg4_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg5_1, (64, 1, 4), (4, 4, 1), 0), out=buf12) del arg4_1 del arg5_1 buf15 = reinterpret_tensor(buf10, (256, 1, 4), (4, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf13, (256, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf14, (256, 4, 4), (16, 4, 1), 0), out=buf15) del buf13 del buf14 buf17 = empty_strided_cuda((256, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_5], Original ATen: [aten.bmm] extern_kernels.bmm(buf15, reinterpret_tensor(buf16, (256, 4, 1), (4, 1, 0), 0), out=buf17) del buf15 del buf16 buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_3, mul_4, add_3, mul_5, mul_6, L2, L2_1], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum] triton_per_fused_add_mul_sub_sum_2.run(buf0, buf5, buf6, buf11, buf12, buf17, buf18, 64, 16, grid=grid(64), stream=stream0) del buf0 del buf11 del buf12 del buf17 del buf5 del buf6 buf19 = empty_strided_cuda((), (), torch.float32) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [L2_2], Original ATen: [aten.mean] triton_per_fused_mean_3.run(buf20, buf18, 1, 64, grid=grid(1), stream=stream0) del buf18 return (buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg5_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn def gaussian_prob_density(x, mu, sigma, normalized=False): if normalized: k = mu.shape[-1] scaler = (2 * math.pi) ** (-k / 2) sigma_det = torch.prod(sigma, dim=-1) ** -0.5 bias = (x - mu).unsqueeze(-2) sigma_inv = torch.diag_embed(1 / sigma) exp = torch.exp(-0.5 * bias @ sigma_inv @ bias.transpose(-1, -2)) if normalized: return (scaler * sigma_det * exp)[..., 0, 0] else: return exp[..., 0, 0] class EuclideanGMM(nn.Module): def __init__(self, reduction='mean'): super().__init__() self.reduction = reduction def forward(self, w1, mu1, sigma1, w2, mu2, sigma2): """Compute Euclidean distance between two mixtures of Gaussian Parameters ---------- w1/w2 : torch.Tensor (*, M, N) where * is one or more batch dimensions. The weight for the GMM mu1/mu2 : torch.Tensor (*, M, N) where * is one or more batch dimensions. The mean vectors for the GMM sigma1/sigma2: torch.Tensor (*, M, N) where * is one or more batch dimensions. The diagonal covariance matrix for the GMM Returns ---------- torch.Tensor """ density_1 = EuclideanGMM.gaussian_cross_product(mu1, sigma1, mu1, sigma1) density_2 = EuclideanGMM.gaussian_cross_product(mu2, sigma2, mu2, sigma2) density_x = EuclideanGMM.gaussian_cross_product(mu1, sigma1, mu2, sigma2) w1_w1_cross = w1.unsqueeze(-1) @ w1.unsqueeze(-2) w2_w2_cross = w2.unsqueeze(-1) @ w2.unsqueeze(-2) w1_w2_cross = w1.unsqueeze(-1) @ w2.unsqueeze(-2) L2 = (w1_w1_cross * density_1 + w2_w2_cross * density_2 - 2 * w1_w2_cross * density_x) L2 = torch.sum(L2, dim=[-2, -1]) if self.reduction == 'sum': L2 = torch.sum(L2) elif self.reduction == 'mean': L2 = torch.mean(L2) return L2 @staticmethod def gaussian_cross_product(mu1, sigma1, mu2, sigma2): n_gauss_1 = mu1.shape[-2] n_gauss_2 = mu2.shape[-2] batch_size = mu1.shape[:-2] mu1 = mu1.unsqueeze(-2).expand(*batch_size, -1, n_gauss_2, -1) mu2 = mu2.unsqueeze(-3).expand(*batch_size, n_gauss_1, -1, -1) sigma1 = sigma1.unsqueeze(-2).expand(*batch_size, -1, n_gauss_2, -1) sigma2 = sigma2.unsqueeze(-3).expand(*batch_size, n_gauss_1, -1, -1) return gaussian_prob_density(mu1, mu2, sigma1 + sigma2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex // 16 x3 = xindex // 64 x5 = xindex % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr0 + (x5 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (x0 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp6 = tl.load(in_ptr1 + (x5 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp3 = -0.5 tmp4 = tmp2 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp3 tmp9 = tmp0 - tmp6 tmp10 = tmp9 * tmp3 tl.store(out_ptr0 + x6, tmp4, xmask) tl.store(out_ptr1 + x6, tmp2, xmask) tl.store(out_ptr2 + x6, tmp8, xmask) tl.store(out_ptr3 + x6, tmp7, xmask) tl.store(out_ptr4 + x6, tmp10, xmask) tl.store(out_ptr5 + x6, tmp9, xmask) @triton.jit def triton_poi_fused_diag_embed_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = xindex // 4 % 4 x6 = xindex // 64 x2 = xindex // 16 % 4 x4 = xindex // 256 x7 = xindex tmp3 = tl.load(in_ptr0 + (x0 + 4 * x6), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x4), None, eviction_policy ='evict_last') tmp12 = tl.load(in_ptr1 + (x0 + 4 * x6), None, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (x0 + 4 * x2 + 16 * x4), None, eviction_policy='evict_last') tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp6 / tmp5 tmp8 = 1.0 tmp9 = tmp7 * tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp2, tmp9, tmp10) tmp14 = tmp12 + tmp13 tmp15 = tmp6 / tmp14 tmp16 = tmp15 * tmp8 tmp17 = tl.where(tmp2, tmp16, tmp10) tmp18 = tmp3 + tmp13 tmp19 = tmp6 / tmp18 tmp20 = tmp19 * tmp8 tmp21 = tl.where(tmp2, tmp20, tmp10) tl.store(out_ptr0 + x7, tmp11, None) tl.store(out_ptr1 + x7, tmp17, None) tl.store(out_ptr2 + x7, tmp21, None) @triton.jit def triton_per_fused_add_mul_sub_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + 16 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp4 = tl.load(in_ptr2 + (r2 + 16 * x3), xmask, other=0.0) tmp5 = tl.load(in_ptr3 + (r2 + 16 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tl.load(in_ptr4 + (r2 + 16 * x3), xmask, other=0.0) tmp12 = tl.load(in_ptr5 + (r2 + 16 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp10 = 2.0 tmp11 = tmp9 * tmp10 tmp13 = tl_math.exp(tmp12) tmp14 = tmp11 * tmp13 tmp15 = tmp8 - tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(xmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tl.store(out_ptr0 + x3, tmp19, xmask) @triton.jit def triton_per_fused_mean_3(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 64.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg5_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg4_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg4_1, (64, 1, 4), (4, 4, 1), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 4, 4, 1, 4), (256, 64, 16, 4, 4, 1 ), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 4, 1, 4), (256, 64, 16, 4, 4, 1 ), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4, 1, 4), (256, 64, 16, 4, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sub_0[grid(1024)](arg0_1, arg2_1, buf1, buf4, buf7, buf10, buf13, buf16, 1024, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg2_1 buf2 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) triton_poi_fused_diag_embed_1[grid(4096)](arg1_1, arg3_1, buf2, buf8, buf14, 4096, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 del arg3_1 buf3 = empty_strided_cuda((256, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (256, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf2, (256, 4, 4), (16, 4, 1), 0), out=buf3) del buf1 del buf2 buf5 = empty_strided_cuda((256, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf4, (256, 4, 1), (4, 1, 0), 0), out=buf5) buf6 = reinterpret_tensor(buf4, (64, 4, 4), (16, 4, 1), 0) del buf4 extern_kernels.bmm(reinterpret_tensor(arg5_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg5_1, (64, 1, 4), (4, 4, 1), 0), out=buf6) buf9 = buf3 del buf3 extern_kernels.bmm(reinterpret_tensor(buf7, (256, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf8, (256, 4, 4), (16, 4, 1), 0), out=buf9) del buf7 del buf8 buf11 = empty_strided_cuda((256, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf10, (256, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf9, (64, 4, 4), (16, 4, 1), 0) del buf9 extern_kernels.bmm(reinterpret_tensor(arg4_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg5_1, (64, 1, 4), (4, 4, 1), 0), out=buf12 ) del arg4_1 del arg5_1 buf15 = reinterpret_tensor(buf10, (256, 1, 4), (4, 4, 1), 0) del buf10 extern_kernels.bmm(reinterpret_tensor(buf13, (256, 1, 4), (4, 0, 1), 0), reinterpret_tensor(buf14, (256, 4, 4), (16, 4, 1), 0), out= buf15) del buf13 del buf14 buf17 = empty_strided_cuda((256, 1, 1), (1, 1, 1), torch.float32) extern_kernels.bmm(buf15, reinterpret_tensor(buf16, (256, 4, 1), (4, 1, 0), 0), out=buf17) del buf15 del buf16 buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_per_fused_add_mul_sub_sum_2[grid(64)](buf0, buf5, buf6, buf11, buf12, buf17, buf18, 64, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf11 del buf12 del buf17 del buf5 del buf6 buf19 = empty_strided_cuda((), (), torch.float32) buf20 = buf19 del buf19 triton_per_fused_mean_3[grid(1)](buf20, buf18, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del buf18 return buf20, def gaussian_prob_density(x, mu, sigma, normalized=False): if normalized: k = mu.shape[-1] scaler = (2 * math.pi) ** (-k / 2) sigma_det = torch.prod(sigma, dim=-1) ** -0.5 bias = (x - mu).unsqueeze(-2) sigma_inv = torch.diag_embed(1 / sigma) exp = torch.exp(-0.5 * bias @ sigma_inv @ bias.transpose(-1, -2)) if normalized: return (scaler * sigma_det * exp)[..., 0, 0] else: return exp[..., 0, 0] class EuclideanGMMNew(nn.Module): def __init__(self, reduction='mean'): super().__init__() self.reduction = reduction @staticmethod def gaussian_cross_product(mu1, sigma1, mu2, sigma2): n_gauss_1 = mu1.shape[-2] n_gauss_2 = mu2.shape[-2] batch_size = mu1.shape[:-2] mu1 = mu1.unsqueeze(-2).expand(*batch_size, -1, n_gauss_2, -1) mu2 = mu2.unsqueeze(-3).expand(*batch_size, n_gauss_1, -1, -1) sigma1 = sigma1.unsqueeze(-2).expand(*batch_size, -1, n_gauss_2, -1) sigma2 = sigma2.unsqueeze(-3).expand(*batch_size, n_gauss_1, -1, -1) return gaussian_prob_density(mu1, mu2, sigma1 + sigma2) def forward(self, input_0, input_1, input_2, input_3, input_4, input_5): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 arg4_1 = input_4 arg5_1 = input_5 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1]) return output[0]
ownzonefeng/Graph-based-text-representations
EuclideanGMM
false
7,456
[ "MIT" ]
1
4ddac6980d2741284474778dae2c2afa0adb5cda
https://github.com/ownzonefeng/Graph-based-text-representations/tree/4ddac6980d2741284474778dae2c2afa0adb5cda
import math import torch import torch.nn as nn def gaussian_prob_density(x, mu, sigma, normalized=False): if normalized: k = mu.shape[-1] scaler = (2 * math.pi) ** (-k / 2) sigma_det = torch.prod(sigma, dim=-1) ** -0.5 bias = (x - mu).unsqueeze(-2) sigma_inv = torch.diag_embed(1 / sigma) exp = torch.exp(-0.5 * bias @ sigma_inv @ bias.transpose(-1, -2)) if normalized: return (scaler * sigma_det * exp)[..., 0, 0] else: return exp[..., 0, 0] class Model(nn.Module): def __init__(self, reduction='mean'): super().__init__() self.reduction = reduction def forward(self, w1, mu1, sigma1, w2, mu2, sigma2): """Compute Euclidean distance between two mixtures of Gaussian Parameters ---------- w1/w2 : torch.Tensor (*, M, N) where * is one or more batch dimensions. The weight for the GMM mu1/mu2 : torch.Tensor (*, M, N) where * is one or more batch dimensions. The mean vectors for the GMM sigma1/sigma2: torch.Tensor (*, M, N) where * is one or more batch dimensions. The diagonal covariance matrix for the GMM Returns ---------- torch.Tensor """ density_1 = EuclideanGMM.gaussian_cross_product(mu1, sigma1, mu1, sigma1) density_2 = EuclideanGMM.gaussian_cross_product(mu2, sigma2, mu2, sigma2) density_x = EuclideanGMM.gaussian_cross_product(mu1, sigma1, mu2, sigma2) w1_w1_cross = w1.unsqueeze(-1) @ w1.unsqueeze(-2) w2_w2_cross = w2.unsqueeze(-1) @ w2.unsqueeze(-2) w1_w2_cross = w1.unsqueeze(-1) @ w2.unsqueeze(-2) L2 = (w1_w1_cross * density_1 + w2_w2_cross * density_2 - 2 * w1_w2_cross * density_x) L2 = torch.sum(L2, dim=[-2, -1]) if self.reduction == 'sum': L2 = torch.sum(L2) elif self.reduction == 'mean': L2 = torch.mean(L2) return L2 @staticmethod def gaussian_cross_product(mu1, sigma1, mu2, sigma2): n_gauss_1 = mu1.shape[-2] n_gauss_2 = mu2.shape[-2] batch_size = mu1.shape[:-2] mu1 = mu1.unsqueeze(-2).expand(*batch_size, -1, n_gauss_2, -1) mu2 = mu2.unsqueeze(-3).expand(*batch_size, n_gauss_1, -1, -1) sigma1 = sigma1.unsqueeze(-2).expand(*batch_size, -1, n_gauss_2, -1) sigma2 = sigma2.unsqueeze(-3).expand(*batch_size, n_gauss_1, -1, -1) return gaussian_prob_density(mu1, mu2, sigma1 + sigma2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
HardMGUCellNUA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2y/c2yegdgextnbn5jgy4cz2lj6jlwuiko5e2ct3dyp33g6oilmvbqk.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%full_default, %primals_1], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 0.0 tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype) tmp7 = tl.where(tmp4, tmp5, tmp6) tmp8 = tmp0 >= tmp3 tmp9 = tl.full([1], 8, tl.int64) tmp10 = tmp0 < tmp9 tmp11 = tl.load(in_ptr0 + ((4*x1) + ((-4) + x0)), tmp8 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.where(tmp4, tmp7, tmp11) tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ii/cii7ggs5pvxl5lnbbsqcehvud4jb7rc4tyaj2m66gvilxz5ewowk.py # Topologically Sorted Source Nodes: [hx, mul, hardsigmoid, mul_1], Original ATen: [aten.zeros, aten.mul, aten.hardsigmoid, aten.hardsigmoid_backward] # Source node to ATen node mapping: # hardsigmoid => add, clamp_max, clamp_min, div # hx => full_default # mul => mul # mul_1 => mul_1 # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm, 3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6), kwargs = {}) # %mul_1 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %full_default), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, -3.0), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%mul, 3.0), kwargs = {}) # %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%gt, %lt), kwargs = {}) triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1 = async_compile.triton('triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 + tmp1 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = 6.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tmp10 = tmp9 * tmp4 tmp11 = -3.0 tmp12 = tmp2 > tmp11 tmp13 = tmp2 < tmp1 tmp14 = tmp12 & tmp13 tl.store(out_ptr0 + (x0), tmp9, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) tl.store(out_ptr2 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mul_1, %primals_1], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fg/cfgmltpqdozye5aohfs3t2rsmjkulno5b7sdy7ctsnxsy6xjwgu2.py # Topologically Sorted Source Nodes: [hardtanh, sub, mul_2, add, hy], Original ATen: [aten.hardtanh, aten.rsub, aten.mul, aten.add, aten.hardtanh_backward] # Source node to ATen node mapping: # add => add_1 # hardtanh => clamp_max_1, clamp_min_1 # hy => add_2 # mul_2 => mul_2 # sub => sub # Graph fragment: # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%addmm_1, -1.0), kwargs = {}) # %clamp_max_1 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (0, %div), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %clamp_max_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max_1, %mul_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%addmm_1, -1.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%addmm_1, 1.0), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3 = async_compile.triton('triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp10 = tl.load(in_ptr2 + (x0), xmask) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp6 = 0.0 tmp7 = tmp6 - tmp5 tmp8 = tmp7 * tmp4 tmp9 = tmp4 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp0 <= tmp1 tmp13 = tmp0 >= tmp3 tmp14 = tmp12 | tmp13 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) tl.store(out_ptr2 + (x0), tmp8, xmask) tl.store(out_ptr3 + (x0), tmp11, xmask) tl.store(out_ptr4 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 8), (8, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, buf0, reinterpret_tensor(primals_2, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [hx, mul, hardsigmoid, mul_1], Original ATen: [aten.zeros, aten.mul, aten.hardsigmoid, aten.hardsigmoid_backward] triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1.run(buf1, buf2, buf3, buf11, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 32, grid=grid(32), stream=stream0) del primals_1 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf4, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [hardtanh, sub, mul_2, add, hy], Original ATen: [aten.hardtanh, aten.rsub, aten.mul, aten.add, aten.hardtanh_backward] triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3.run(buf5, buf2, buf3, buf6, buf7, buf8, buf9, buf10, 16, grid=grid(16), stream=stream0) return (buf9, buf8, buf6, buf5, buf4, buf3, buf2, buf1, buf0, buf0, buf4, buf6, buf7, buf10, primals_4, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super(ScaleHardsigmoid, self).__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class HardMGUCellNUA(torch.nn.Module): """ This is a minimal gated unit by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. Refer to "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks" and "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks" for more details. Hardtanh is to bound data to the legal unary range. This module follows the uBrain implementation style to maximize hardware reuse. """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super(HardMGUCellNUA, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.hard = hard if hard is True: self.fg_sigmoid = ScaleHardsigmoid() self.ng_tanh = nn.Hardtanh() else: self.fg_sigmoid = nn.Sigmoid() self.ng_tanh = nn.Tanh() self.weight_f = nn.Parameter(torch.empty((hidden_size, hidden_size + input_size))) self.weight_n = nn.Parameter(torch.empty((hidden_size, hidden_size + input_size))) if bias: self.bias_f = nn.Parameter(torch.empty(hidden_size)) self.bias_n = nn.Parameter(torch.empty(hidden_size)) else: self.register_parameter('bias_f', None) self.register_parameter('bias_n', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input: 'Tensor', hx: 'Optional[Tensor]'=None) ->Tensor: if hx is None: hx = torch.zeros(input.size()[0], self.hidden_size, dtype=input .dtype, device=input.device) self.fg_ug_in = torch.cat((hx, input), 1) self.fg_in = F.linear(self.fg_ug_in, self.weight_f, self.bias_f) self.fg = self.fg_sigmoid(self.fg_in) self.fg_hx = self.fg * hx self.ng_ug_in = torch.cat((self.fg_hx, input), 1) self.ng_in = F.linear(self.ng_ug_in, self.weight_n, self.bias_n) self.ng = self.ng_tanh(self.ng_in) self.fg_ng_inv = (0 - self.fg) * self.ng hy = self.ng + self.fg_ng_inv + self.fg_hx return hy def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 0.0 tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype) tmp7 = tl.where(tmp4, tmp5, tmp6) tmp8 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp11 = tl.load(in_ptr0 + (4 * x1 + (-4 + x0)), tmp8 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.where(tmp4, tmp7, tmp11) tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 + tmp1 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = 6.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tmp10 = tmp9 * tmp4 tmp11 = -3.0 tmp12 = tmp2 > tmp11 tmp13 = tmp2 < tmp1 tmp14 = tmp12 & tmp13 tl.store(out_ptr0 + x0, tmp9, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) tl.store(out_ptr2 + x0, tmp14, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp10 = tl.load(in_ptr2 + x0, xmask) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp6 = 0.0 tmp7 = tmp6 - tmp5 tmp8 = tmp7 * tmp4 tmp9 = tmp4 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp0 <= tmp1 tmp13 = tmp0 >= tmp3 tmp14 = tmp12 | tmp13 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) tl.store(out_ptr2 + x0, tmp8, xmask) tl.store(out_ptr3 + x0, tmp11, xmask) tl.store(out_ptr4 + x0, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 8), (8, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, buf0, reinterpret_tensor(primals_2, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_hardsigmoid_hardsigmoid_backward_mul_zeros_1[grid(16) ](buf1, buf2, buf3, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1 ) buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_2[grid(32)](buf3, primals_1, buf4, 32, XBLOCK= 32, num_warps=1, num_stages=1) del primals_1 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf4, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_hardtanh_hardtanh_backward_mul_rsub_3[grid(16)]( buf5, buf2, buf3, buf6, buf7, buf8, buf9, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) return (buf9, buf8, buf6, buf5, buf4, buf3, buf2, buf1, buf0, buf0, buf4, buf6, buf7, buf10, primals_4, buf11) def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super(ScaleHardsigmoid, self).__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class HardMGUCellNUANew(torch.nn.Module): """ This is a minimal gated unit by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. Refer to "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks" and "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks" for more details. Hardtanh is to bound data to the legal unary range. This module follows the uBrain implementation style to maximize hardware reuse. """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super(HardMGUCellNUANew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.hard = hard if hard is True: self.fg_sigmoid = ScaleHardsigmoid() self.ng_tanh = nn.Hardtanh() else: self.fg_sigmoid = nn.Sigmoid() self.ng_tanh = nn.Tanh() self.weight_f = nn.Parameter(torch.empty((hidden_size, hidden_size + input_size))) self.weight_n = nn.Parameter(torch.empty((hidden_size, hidden_size + input_size))) if bias: self.bias_f = nn.Parameter(torch.empty(hidden_size)) self.bias_n = nn.Parameter(torch.empty(hidden_size)) else: self.register_parameter('bias_f', None) self.register_parameter('bias_n', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input_0): primals_2 = self.weight_f primals_4 = self.weight_n primals_3 = self.bias_f primals_5 = self.bias_n primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pan185/UnarySim
HardMGUCellNUA
false
7,457
[ "MIT" ]
1
c03386efdbb8151f3c33f34b44d1d6a6fc960434
https://github.com/pan185/UnarySim/tree/c03386efdbb8151f3c33f34b44d1d6a6fc960434
import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super().__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class Model(torch.nn.Module): """ This is a minimal gated unit by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. Refer to "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks" and "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks" for more details. Hardtanh is to bound data to the legal unary range. This module follows the uBrain implementation style to maximize hardware reuse. """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.hard = hard if hard is True: self.fg_sigmoid = ScaleHardsigmoid() self.ng_tanh = nn.Hardtanh() else: self.fg_sigmoid = nn.Sigmoid() self.ng_tanh = nn.Tanh() self.weight_f = nn.Parameter(torch.empty((hidden_size, hidden_size + input_size))) self.weight_n = nn.Parameter(torch.empty((hidden_size, hidden_size + input_size))) if bias: self.bias_f = nn.Parameter(torch.empty(hidden_size)) self.bias_n = nn.Parameter(torch.empty(hidden_size)) else: self.register_parameter('bias_f', None) self.register_parameter('bias_n', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input: 'Tensor', hx: 'Optional[Tensor]'=None) ->Tensor: if hx is None: hx = torch.zeros(input.size()[0], self.hidden_size, dtype=input .dtype, device=input.device) self.fg_ug_in = torch.cat((hx, input), 1) self.fg_in = F.linear(self.fg_ug_in, self.weight_f, self.bias_f) self.fg = self.fg_sigmoid(self.fg_in) self.fg_hx = self.fg * hx self.ng_ug_in = torch.cat((self.fg_hx, input), 1) self.ng_in = F.linear(self.ng_ug_in, self.weight_n, self.bias_n) self.ng = self.ng_tanh(self.ng_in) self.fg_ng_inv = (0 - self.fg) * self.ng hy = self.ng + self.fg_ng_inv + self.fg_hx return hy def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
UnpackLayerConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/st/cstyisijjjcom4h3fmnm5l3jk6rnlzjwhirorf3vpbk7do6htdzs.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [2, 2, 2, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = (-2) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-2) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-10) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/th/cth2ocuys7pc7ywjntvhwtk6ot2bldkofkbhkq4mun25cfscmwm4.py # Topologically Sorted Source Nodes: [x, group_norm, x_2], Original ATen: [aten.convolution, aten.native_group_norm, aten.pixel_shuffle] # Source node to ATen node mapping: # group_norm => add, add_1, mul_1, rsqrt, var_mean # x => convolution # x_2 => clone # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_per_fused_convolution_native_group_norm_pixel_shuffle_1 = async_compile.triton('triton_per_fused_convolution_native_group_norm_pixel_shuffle_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 32], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_pixel_shuffle_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_native_group_norm_pixel_shuffle_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 25 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r2 = rindex x3 = xindex x0 = xindex % 16 r7 = rindex % 5 r8 = (rindex // 5) x4 = xindex % 2 x5 = (xindex // 2) % 2 x6 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (r2 + (25*x3)), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(rmask & xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 25, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(rmask & xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 25.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp2 - tmp12 tmp25 = tmp24 * tmp23 tmp27 = tmp25 * tmp26 tmp29 = tmp27 + tmp28 tmp30 = 0.0 tmp31 = tmp29 > tmp30 tmp32 = 1.0 tmp33 = tmp29 * tmp32 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp32 tmp36 = tl.where(tmp31, tmp33, tmp35) tl.store(in_out_ptr0 + (r2 + (25*x3)), tmp2, rmask & xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr2 + (x4 + (2*r7) + (10*x5) + (20*r8) + (100*x6)), tmp36, rmask & xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (16, ), (1, )) assert_size_stride(primals_5, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 5, 5), (400, 25, 5, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf4 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 64, 64), torch.float32) buf6 = reinterpret_tensor(buf4, (4, 16, 1, 1), (16, 1, 1, 1), 0); del buf4 # reuse buf8 = empty_strided_cuda((4, 4, 5, 2, 5, 2), (400, 100, 20, 10, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x, group_norm, x_2], Original ATen: [aten.convolution, aten.native_group_norm, aten.pixel_shuffle] triton_per_fused_convolution_native_group_norm_pixel_shuffle_1.run(buf2, buf6, primals_3, primals_4, primals_5, buf3, buf8, 64, 25, grid=grid(64), stream=stream0) del primals_3 return (reinterpret_tensor(buf8, (4, 4, 10, 10), (400, 100, 10, 1), 0), primals_2, primals_4, primals_5, buf0, buf2, buf3, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv2D(nn.Module): """ 2D convolution with GroupNorm and ELU Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels kernel_size : int Kernel size stride : int Stride """ def __init__(self, in_channels, out_channels, kernel_size, stride): super().__init__() self.kernel_size = kernel_size self.conv_base = nn.Conv2d(in_channels, out_channels, kernel_size= kernel_size, stride=stride) self.pad = nn.ConstantPad2d([kernel_size // 2] * 4, value=0) self.normalize = torch.nn.GroupNorm(16, out_channels) self.activ = nn.ELU(inplace=True) def forward(self, x): """Runs the Conv2D layer.""" x = self.conv_base(self.pad(x)) return self.activ(self.normalize(x)) class UnpackLayerConv2d(nn.Module): """ Unpacking layer with 2d convolutions. Takes a [B,C,H,W] tensor, convolves it to produce [B,(r^2)C,H,W] and then unpacks it to produce [B,C,rH,rW]. """ def __init__(self, in_channels, out_channels, kernel_size, r=2): """ Initializes a UnpackLayerConv2d object. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels kernel_size : int Kernel size r : int Packing ratio """ super().__init__() self.conv = Conv2D(in_channels, out_channels * r ** 2, kernel_size, 1) self.unpack = nn.PixelShuffle(r) def forward(self, x): """Runs the UnpackLayerConv2d layer.""" x = self.conv(x) x = self.unpack(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = -2 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -2 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-10 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_per_fused_convolution_native_group_norm_pixel_shuffle_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 rnumel = 25 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r2 = rindex x3 = xindex x0 = xindex % 16 r7 = rindex % 5 r8 = rindex // 5 x4 = xindex % 2 x5 = xindex // 2 % 2 x6 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 25 * x3), rmask & xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(rmask & xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 25, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(rmask & xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 25.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp2 - tmp12 tmp25 = tmp24 * tmp23 tmp27 = tmp25 * tmp26 tmp29 = tmp27 + tmp28 tmp30 = 0.0 tmp31 = tmp29 > tmp30 tmp32 = 1.0 tmp33 = tmp29 * tmp32 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp32 tmp36 = tl.where(tmp31, tmp33, tmp35) tl.store(in_out_ptr0 + (r2 + 25 * x3), tmp2, rmask & xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr2 + (x4 + 2 * r7 + 10 * x5 + 20 * r8 + 100 * x6), tmp36, rmask & xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (16,), (1,)) assert_size_stride(primals_5, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 5, 5), (400, 25, 5, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf4 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 64, 64), torch.float32 ) buf6 = reinterpret_tensor(buf4, (4, 16, 1, 1), (16, 1, 1, 1), 0) del buf4 buf8 = empty_strided_cuda((4, 4, 5, 2, 5, 2), (400, 100, 20, 10, 2, 1), torch.float32) triton_per_fused_convolution_native_group_norm_pixel_shuffle_1[grid(64) ](buf2, buf6, primals_3, primals_4, primals_5, buf3, buf8, 64, 25, XBLOCK=8, num_warps=2, num_stages=1) del primals_3 return reinterpret_tensor(buf8, (4, 4, 10, 10), (400, 100, 10, 1), 0 ), primals_2, primals_4, primals_5, buf0, buf2, buf3, buf6 class Conv2D(nn.Module): """ 2D convolution with GroupNorm and ELU Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels kernel_size : int Kernel size stride : int Stride """ def __init__(self, in_channels, out_channels, kernel_size, stride): super().__init__() self.kernel_size = kernel_size self.conv_base = nn.Conv2d(in_channels, out_channels, kernel_size= kernel_size, stride=stride) self.pad = nn.ConstantPad2d([kernel_size // 2] * 4, value=0) self.normalize = torch.nn.GroupNorm(16, out_channels) self.activ = nn.ELU(inplace=True) def forward(self, x): """Runs the Conv2D layer.""" x = self.conv_base(self.pad(x)) return self.activ(self.normalize(x)) class UnpackLayerConv2dNew(nn.Module): """ Unpacking layer with 2d convolutions. Takes a [B,C,H,W] tensor, convolves it to produce [B,(r^2)C,H,W] and then unpacks it to produce [B,C,rH,rW]. """ def __init__(self, in_channels, out_channels, kernel_size, r=2): """ Initializes a UnpackLayerConv2d object. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels kernel_size : int Kernel size r : int Packing ratio """ super().__init__() self.conv = Conv2D(in_channels, out_channels * r ** 2, kernel_size, 1) self.unpack = nn.PixelShuffle(r) def forward(self, input_0): primals_2 = self.conv.conv_base.weight primals_3 = self.conv.conv_base.bias primals_4 = self.conv.normalize.weight primals_5 = self.conv.normalize.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pection/packnet-sfm
UnpackLayerConv2d
false
7,459
[ "MIT" ]
1
d5673567b649e6bfda292c894cacdeb06aa80913
https://github.com/pection/packnet-sfm/tree/d5673567b649e6bfda292c894cacdeb06aa80913
import torch import torch.nn as nn class Conv2D(nn.Module): """ 2D convolution with GroupNorm and ELU Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels kernel_size : int Kernel size stride : int Stride """ def __init__(self, in_channels, out_channels, kernel_size, stride): super().__init__() self.kernel_size = kernel_size self.conv_base = nn.Conv2d(in_channels, out_channels, kernel_size= kernel_size, stride=stride) self.pad = nn.ConstantPad2d([kernel_size // 2] * 4, value=0) self.normalize = torch.nn.GroupNorm(16, out_channels) self.activ = nn.ELU(inplace=True) def forward(self, x): """Runs the Conv2D layer.""" x = self.conv_base(self.pad(x)) return self.activ(self.normalize(x)) class Model(nn.Module): """ Unpacking layer with 2d convolutions. Takes a [B,C,H,W] tensor, convolves it to produce [B,(r^2)C,H,W] and then unpacks it to produce [B,C,rH,rW]. """ def __init__(self, in_channels, out_channels, kernel_size, r=2): """ Initializes a UnpackLayerConv2d object. Parameters ---------- in_channels : int Number of input channels out_channels : int Number of output channels kernel_size : int Kernel size r : int Packing ratio """ super().__init__() self.conv = Conv2D(in_channels, out_channels * r ** 2, kernel_size, 1) self.unpack = nn.PixelShuffle(r) def forward(self, x): """Runs the UnpackLayerConv2d layer.""" x = self.conv(x) x = self.unpack(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Conv2dLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ue/cuecegnhgafe2dsjwb2idu7ooicbmsi2pwlqk5kxrayxsv6nzpux.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => expm1, gt, mul, mul_2, where # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_elu_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf1, primals_1, primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Conv2dLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='elu', norm= 'none', sn=False): super(Conv2dLayer, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU(inplace=True) elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) def forward(self, x): x = self.pad(x) x = self.conv2d(x) if self.norm: x = self.norm(x) if self.activation: x = self.activation(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_elu_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf1, primals_1, primals_2, buf1 def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Conv2dLayerNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='elu', norm= 'none', sn=False): super(Conv2dLayerNew, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU(inplace=True) elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) def forward(self, input_0): primals_1 = self.conv2d.weight primals_3 = self.conv2d.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
piggy2303/DeepFillv2_Pytorch
Conv2dLayer
false
7,460
[ "MIT" ]
1
dd35299f11704f878ed7a33e14ccd51a9d64baaf
https://github.com/piggy2303/DeepFillv2_Pytorch/tree/dd35299f11704f878ed7a33e14ccd51a9d64baaf
import torch import torch.nn as nn from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super().__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super().__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='elu', norm= 'none', sn=False): super().__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation # ... truncated (>4000 chars) for memory efficiency
Contracting_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jx/cjx4mzuiz4tmnrqadhwcskslq3cjulos3cv5m45t7hnxysbxc7zw.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 61504 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6w/c6wsnkgpvs5w5kdurou644jouqueingwejvq73o2yoweb4wuifjc.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3600) % 4 x0 = xindex % 3600 x4 = (xindex // 3600) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/uu/cuuu32brcgi2okyztzw7xxlqdv4agfiagcg3p3rpreurnmbd3kqk.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 14400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = (xindex // 30) % 30 x2 = (xindex // 900) x5 = xindex x4 = (xindex // 3600) x6 = xindex % 3600 tmp0 = tl.load(in_ptr0 + ((2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (60 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (61 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x5), tmp6, xmask) tl.store(out_ptr1 + (x6 + (3712*x4)), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 62, 62), (15376, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 61504, grid=grid(61504), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 60, 60), (14400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 4, 60, 60), (14464, 3616, 60, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_5, buf3, 57600, grid=grid(57600), stream=stream0) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_2.run(buf3, buf4, buf5, 14400, grid=grid(14400), stream=stream0) return (buf4, primals_1, primals_3, primals_4, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Contracting_Block(nn.Module): def __init__(self, in_channels, out_channels): super(Contracting_Block, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3) self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.max_pool(x) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 61504 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 57600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3600 % 4 x0 = xindex % 3600 x4 = xindex // 3600 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 14400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = xindex // 30 % 30 x2 = xindex // 900 x5 = xindex x4 = xindex // 3600 x6 = xindex % 3600 tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x5, tmp6, xmask) tl.store(out_ptr1 + (x6 + 3712 * x4), tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 62, 62), (15376, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(61504)](buf1, primals_2, 61504, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 60, 60), (14400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 4, 60, 60), (14464, 3616, 60, 1), torch.float32) triton_poi_fused_convolution_relu_1[grid(57600)](buf2, primals_5, buf3, 57600, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch .float32) buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_2[grid(14400)](buf3, buf4, buf5, 14400, XBLOCK=256, num_warps=4, num_stages=1) return buf4, primals_1, primals_3, primals_4, buf1, buf3, buf5 class Contracting_BlockNew(nn.Module): def __init__(self, in_channels, out_channels): super(Contracting_BlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3) self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
parth2035/U-Net-Implementation
Contracting_Block
false
7,461
[ "MIT" ]
1
36ed8d140ef8a0031f63f2d1f577dcef92c4dab6
https://github.com/parth2035/U-Net-Implementation/tree/36ed8d140ef8a0031f63f2d1f577dcef92c4dab6
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3) self.max_pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.max_pool(x) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [4, 4]
Differencial_SMAPE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6e/c6e5hz4zspfdujn5ojhdf4q3dwr3fasvpvjumtsxw7ygqtgrywgs.py # Topologically Sorted Source Nodes: [sub, abs_3, abs_1, abs_2, add, add_1, summ, truediv, smape, sum_1], Original ATen: [aten.sub, aten.abs, aten.add, aten.clamp, aten.div, aten.mul, aten.sum] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # abs_3 => abs_3 # add => add # add_1 => add_1 # smape => mul # sub => sub # sum_1 => sum_1 # summ => clamp_min # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, %abs_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 0.1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, 0.6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_3, %clamp_min), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) triton_per_fused_abs_add_clamp_div_mul_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_clamp_div_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_clamp_div_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_clamp_div_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl_math.abs(tmp1) tmp5 = tl_math.abs(tmp0) tmp6 = tmp4 + tmp5 tmp7 = 0.1 tmp8 = tmp6 + tmp7 tmp9 = 0.6 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = tmp3 / tmp10 tmp12 = 2.0 tmp13 = tmp11 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sub, abs_3, abs_1, abs_2, add, add_1, summ, truediv, smape, sum_1], Original ATen: [aten.sub, aten.abs, aten.add, aten.clamp, aten.div, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_abs_add_clamp_div_mul_sub_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Differencial_SMAPE(nn.Module): def __init__(self): super(Differencial_SMAPE, self).__init__() def forward(self, true, predicted): epsilon = 0.1 summ = torch.clamp(torch.abs(true) + torch.abs(predicted) + epsilon, min=0.5 + epsilon) smape = torch.abs(predicted - true) / summ * 2.0 return torch.sum(smape) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_clamp_div_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl_math.abs(tmp1) tmp5 = tl_math.abs(tmp0) tmp6 = tmp4 + tmp5 tmp7 = 0.1 tmp8 = tmp6 + tmp7 tmp9 = 0.6 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = tmp3 / tmp10 tmp12 = 2.0 tmp13 = tmp11 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_abs_add_clamp_div_mul_sub_sum_0[grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class Differencial_SMAPENew(nn.Module): def __init__(self): super(Differencial_SMAPENew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
pixel-ports/PV_prod_predic
Differencial_SMAPE
false
7,462
[ "Apache-2.0" ]
1
2ceb4cf8218f43f3ea94c5520b1904663cfb0de1
https://github.com/pixel-ports/PV_prod_predic/tree/2ceb4cf8218f43f3ea94c5520b1904663cfb0de1
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, true, predicted): epsilon = 0.1 summ = torch.clamp(torch.abs(true) + torch.abs(predicted) + epsilon, min=0.5 + epsilon) smape = torch.abs(predicted - true) / summ * 2.0 return torch.sum(smape) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
HardMGUCellPT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/l4/cl4boort6vfsvh6h6bfd4lck36kbmtipkqcrnhckuuxer6sfib77.py # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.zeros] # Source node to ATen node mapping: # hx => full_default # Graph fragment: # %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_0 = async_compile.triton('triton_poi_fused_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cx/ccxtxuhhtbpyre4ztyn5jyjura3cwyurdlbfmhvdn4b3s6ilb5sg.py # Topologically Sorted Source Nodes: [hardtanh], Original ATen: [aten.hardtanh, aten.hardtanh_backward] # Source node to ATen node mapping: # hardtanh => clamp_max, clamp_min # Graph fragment: # %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_tensor_1, -1.0), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add_tensor_1, -1.0), kwargs = {}) # %ge_4 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_tensor_1, 1.0), kwargs = {}) # %bitwise_or_4 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_4, %ge_4), kwargs = {}) triton_poi_fused_hardtanh_hardtanh_backward_1 = async_compile.triton('triton_poi_fused_hardtanh_hardtanh_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_hardtanh_hardtanh_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_hardtanh_hardtanh_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bi/cbiewmjd2wkd5fkg7ozf5dbnelv7yvwzfdkby27pfs4zavkxjz5l.py # Topologically Sorted Source Nodes: [add, hardtanh_2, mul, hardsigmoid, mul_1, add_1, hardtanh_3, sub, mul_2, mul_3, add_2, add_3, hy], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.hardsigmoid, aten.rsub, aten.hardtanh_backward, aten.hardsigmoid_backward] # Source node to ATen node mapping: # add => add # add_1 => add_2 # add_2 => add_3 # add_3 => add_4 # hardsigmoid => add_1, clamp_max_3, clamp_min_3, div # hardtanh_2 => clamp_max_2, clamp_min_2 # hardtanh_3 => clamp_max_4, clamp_min_4 # hy => clamp_max_5, clamp_min_5 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # sub => sub # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_2), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, -1.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max_2, 3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 3), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, 0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 6), kwargs = {}) # %div : [num_users=4] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max_3, 6), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %getitem_3), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_1, %mul_1), kwargs = {}) # %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_2, -1.0), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_4, 1.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (0, %div), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %clamp_max_4), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %full_default), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_max_4, %mul_2), kwargs = {}) # %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_3), kwargs = {}) # %clamp_min_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_4, -1.0), kwargs = {}) # %clamp_max_5 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_5, 1.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add_4, -1.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_4, 1.0), kwargs = {}) # %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le, %ge), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add_2, -1.0), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_2, 1.0), kwargs = {}) # %bitwise_or_1 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_1, %ge_1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, -3.0), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%mul, 3.0), kwargs = {}) # %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%gt, %lt), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, -1.0), kwargs = {}) # %ge_2 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add, 1.0), kwargs = {}) # %bitwise_or_2 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%le_2, %ge_2), kwargs = {}) triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2 = async_compile.triton('triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*i1', 12: '*i1', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (8*x1)), xmask) tmp19 = tl.load(in_ptr1 + (4 + x0 + (8*x1)), xmask) tmp21 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp2 = tmp0 + tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tmp10 = 3.0 tmp11 = tmp6 * tmp10 tmp12 = tmp11 + tmp10 tmp13 = 0.0 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = 6.0 tmp16 = triton_helpers.minimum(tmp14, tmp15) tmp17 = 0.16666666666666666 tmp18 = tmp16 * tmp17 tmp20 = tmp18 * tmp19 tmp22 = tmp21 + tmp20 tmp23 = triton_helpers.maximum(tmp22, tmp3) tmp24 = triton_helpers.minimum(tmp23, tmp5) tmp25 = tmp22 <= tmp3 tmp26 = tmp22 >= tmp5 tmp27 = tmp25 | tmp26 tmp28 = tmp18 * tmp13 tmp29 = tmp13 - tmp18 tmp30 = tmp29 * tmp24 tmp31 = tmp24 + tmp30 tmp32 = tmp31 + tmp28 tmp33 = triton_helpers.maximum(tmp32, tmp3) tmp34 = triton_helpers.minimum(tmp33, tmp5) tmp35 = tmp32 <= tmp3 tmp36 = tmp32 >= tmp5 tmp37 = tmp35 | tmp36 tmp38 = -3.0 tmp39 = tmp11 > tmp38 tmp40 = tmp11 < tmp10 tmp41 = tmp39 & tmp40 tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp9, xmask) tl.store(out_ptr2 + (x2), tmp18, xmask) tl.store(out_ptr3 + (x2), tmp20, xmask) tl.store(out_ptr4 + (x2), tmp24, xmask) tl.store(out_ptr5 + (x2), tmp27, xmask) tl.store(out_ptr6 + (x2), tmp28, xmask) tl.store(out_ptr7 + (x2), tmp30, xmask) tl.store(out_ptr8 + (x2), tmp34, xmask) tl.store(out_ptr9 + (x2), tmp37, xmask) tl.store(out_ptr10 + (x2), tmp41, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hx], Original ATen: [aten.zeros] stream0 = get_raw_stream(0) triton_poi_fused_zeros_0.run(buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf17 = empty_strided_cuda((4, 8), (8, 1), torch.bool) # Topologically Sorted Source Nodes: [hardtanh], Original ATen: [aten.hardtanh, aten.hardtanh_backward] triton_poi_fused_hardtanh_hardtanh_backward_1.run(buf1, primals_3, buf2, buf17, 32, grid=grid(32), stream=stream0) del primals_3 buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf3) del primals_4 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf16 = empty_strided_cuda((4, 8), (8, 1), torch.bool) # Topologically Sorted Source Nodes: [hardtanh_1], Original ATen: [aten.hardtanh, aten.hardtanh_backward] triton_poi_fused_hardtanh_hardtanh_backward_1.run(buf3, primals_5, buf4, buf16, 32, grid=grid(32), stream=stream0) del buf3 del primals_5 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, hardtanh_2, mul, hardsigmoid, mul_1, add_1, hardtanh_3, sub, mul_2, mul_3, add_2, add_3, hy], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.hardsigmoid, aten.rsub, aten.hardtanh_backward, aten.hardsigmoid_backward] triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2.run(buf2, buf4, buf5, buf15, buf6, buf7, buf8, buf13, buf10, buf9, buf11, buf12, buf14, 16, grid=grid(16), stream=stream0) return (buf11, buf10, buf9, buf8, buf7, buf6, buf5, reinterpret_tensor(buf4, (4, 4), (8, 1), 4), reinterpret_tensor(buf4, (4, 4), (8, 1), 0), reinterpret_tensor(buf2, (4, 4), (8, 1), 4), reinterpret_tensor(buf2, (4, 4), (8, 1), 0), buf4, buf2, primals_1, buf0, reinterpret_tensor(buf4, (4, 4), (8, 1), 4), buf6, buf8, buf12, buf13, buf14, buf15, buf16, buf17, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super(ScaleHardsigmoid, self).__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class HardMGUCellPT(torch.nn.RNNCellBase): """ This is a minimal gated unit by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. Refer to "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks" and "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks" for more details. Hardtanh is to bound data to the legal unary range. This module is fully unary computing aware, i.e., all intermediate data are bounded to the legal unary range. This module follows the PyTorch implementation style (PT). """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super(HardMGUCellPT, self).__init__(input_size, hidden_size, bias, num_chunks=2) self.hard = hard if hard is True: self.forgetgate_sigmoid = ScaleHardsigmoid() self.newgate_tanh = nn.Hardtanh() else: self.forgetgate_sigmoid = nn.Sigmoid() self.newgate_tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input: 'Tensor', hx: 'Optional[Tensor]'=None) ->Tensor: if hx is None: hx = torch.zeros(input.size()[0], self.hidden_size, dtype=input .dtype, device=input.device) self.gate_i = nn.Hardtanh()(F.linear(input, self.weight_ih, self. bias_ih)) self.gate_h = nn.Hardtanh()(F.linear(hx, self.weight_hh, self.bias_hh)) self.i_f, self.i_n = self.gate_i.chunk(2, 1) self.h_f, self.h_n = self.gate_h.chunk(2, 1) self.forgetgate_in = nn.Hardtanh()(self.i_f + self.h_f) self.forgetgate = self.forgetgate_sigmoid(self.forgetgate_in) self.newgate_prod = self.forgetgate * self.h_n self.newgate = self.newgate_tanh(self.i_n + self.newgate_prod) self.forgetgate_inv_prod = (0 - self.forgetgate) * self.newgate self.forgetgate_prod = self.forgetgate * hx hy = nn.Hardtanh()(self.newgate + self.forgetgate_inv_prod + self. forgetgate_prod) return hy def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_hardtanh_hardtanh_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2( in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 8 * x1), xmask) tmp19 = tl.load(in_ptr1 + (4 + x0 + 8 * x1), xmask) tmp21 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp2 = tmp0 + tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tmp10 = 3.0 tmp11 = tmp6 * tmp10 tmp12 = tmp11 + tmp10 tmp13 = 0.0 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = 6.0 tmp16 = triton_helpers.minimum(tmp14, tmp15) tmp17 = 0.16666666666666666 tmp18 = tmp16 * tmp17 tmp20 = tmp18 * tmp19 tmp22 = tmp21 + tmp20 tmp23 = triton_helpers.maximum(tmp22, tmp3) tmp24 = triton_helpers.minimum(tmp23, tmp5) tmp25 = tmp22 <= tmp3 tmp26 = tmp22 >= tmp5 tmp27 = tmp25 | tmp26 tmp28 = tmp18 * tmp13 tmp29 = tmp13 - tmp18 tmp30 = tmp29 * tmp24 tmp31 = tmp24 + tmp30 tmp32 = tmp31 + tmp28 tmp33 = triton_helpers.maximum(tmp32, tmp3) tmp34 = triton_helpers.minimum(tmp33, tmp5) tmp35 = tmp32 <= tmp3 tmp36 = tmp32 >= tmp5 tmp37 = tmp35 | tmp36 tmp38 = -3.0 tmp39 = tmp11 > tmp38 tmp40 = tmp11 < tmp10 tmp41 = tmp39 & tmp40 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp9, xmask) tl.store(out_ptr2 + x2, tmp18, xmask) tl.store(out_ptr3 + x2, tmp20, xmask) tl.store(out_ptr4 + x2, tmp24, xmask) tl.store(out_ptr5 + x2, tmp27, xmask) tl.store(out_ptr6 + x2, tmp28, xmask) tl.store(out_ptr7 + x2, tmp30, xmask) tl.store(out_ptr8 + x2, tmp34, xmask) tl.store(out_ptr9 + x2, tmp37, xmask) tl.store(out_ptr10 + x2, tmp41, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_zeros_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf17 = empty_strided_cuda((4, 8), (8, 1), torch.bool) triton_poi_fused_hardtanh_hardtanh_backward_1[grid(32)](buf1, primals_3, buf2, buf17, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_3 buf3 = buf1 del buf1 extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 8), (1, 4 ), 0), out=buf3) del primals_4 buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf16 = empty_strided_cuda((4, 8), (8, 1), torch.bool) triton_poi_fused_hardtanh_hardtanh_backward_1[grid(32)](buf3, primals_5, buf4, buf16, 32, XBLOCK=32, num_warps=1, num_stages=1) del buf3 del primals_5 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_add_hardsigmoid_hardsigmoid_backward_hardtanh_hardtanh_backward_mul_rsub_2[ grid(16)](buf2, buf4, buf5, buf15, buf6, buf7, buf8, buf13, buf10, buf9, buf11, buf12, buf14, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf11, buf10, buf9, buf8, buf7, buf6, buf5, reinterpret_tensor(buf4, (4, 4), (8, 1), 4), reinterpret_tensor(buf4, (4, 4), (8, 1), 0 ), reinterpret_tensor(buf2, (4, 4), (8, 1), 4), reinterpret_tensor(buf2 , (4, 4), (8, 1), 0), buf4, buf2, primals_1, buf0, reinterpret_tensor( buf4, (4, 4), (8, 1), 4 ), buf6, buf8, buf12, buf13, buf14, buf15, buf16, buf17 def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super(ScaleHardsigmoid, self).__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class HardMGUCellPTNew(torch.nn.RNNCellBase): """ This is a minimal gated unit by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. Refer to "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks" and "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks" for more details. Hardtanh is to bound data to the legal unary range. This module is fully unary computing aware, i.e., all intermediate data are bounded to the legal unary range. This module follows the PyTorch implementation style (PT). """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super(HardMGUCellPTNew, self).__init__(input_size, hidden_size, bias, num_chunks=2) self.hard = hard if hard is True: self.forgetgate_sigmoid = ScaleHardsigmoid() self.newgate_tanh = nn.Hardtanh() else: self.forgetgate_sigmoid = nn.Sigmoid() self.newgate_tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input_0): primals_2 = self.weight_ih primals_4 = self.weight_hh primals_3 = self.bias_ih primals_5 = self.bias_hh primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pan185/UnarySim
HardMGUCellPT
false
7,463
[ "MIT" ]
1
c03386efdbb8151f3c33f34b44d1d6a6fc960434
https://github.com/pan185/UnarySim/tree/c03386efdbb8151f3c33f34b44d1d6a6fc960434
import math import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F from typing import Optional import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed def truncated_normal(t, mean=0.0, std=0.01): torch.nn.init.normal_(t, mean=mean, std=std) while True: cond = torch.logical_or(t < mean - 2 * std, t > mean + 2 * std) if torch.sum(cond): t = torch.where(cond, torch.nn.init.normal_(torch.ones_like(t), mean=mean, std=std), t) else: break return t class ScaleHardsigmoid(torch.nn.Module): """ This is a scaled addition (x+1)/2. """ def __init__(self, scale=3): super().__init__() self.scale = scale def forward(self, x) ->str: return torch.nn.Hardsigmoid()(x * self.scale) class Model(torch.nn.RNNCellBase): """ This is a minimal gated unit by replacing sigmoid and tanh with scalehardsigmoid and hardtanh if hard is set to True. Batch is always the dim[0]. Refer to "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks" and "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks" for more details. Hardtanh is to bound data to the legal unary range. This module is fully unary computing aware, i.e., all intermediate data are bounded to the legal unary range. This module follows the PyTorch implementation style (PT). """ def __init__(self, input_size: 'int', hidden_size: 'int', bias: 'bool'= True, hard: 'bool'=True) ->None: super().__init__(input_size, hidden_size, bias, num_chunks=2) self.hard = hard if hard is True: self.forgetgate_sigmoid = ScaleHardsigmoid() self.newgate_tanh = nn.Hardtanh() else: self.forgetgate_sigmoid = nn.Sigmoid() self.newgate_tanh = nn.Tanh() self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): weight.data = truncated_normal(weight, mean=0, std=stdv) def forward(self, input: 'Tensor', hx: 'Optional[Tensor]'=None) ->Tensor: if hx is None: hx = torch.zeros(input.size()[0], self.hidden_size, dtype=input .dtype, device=input.device) self.gate_i = nn.Hardtanh()(F.linear(input, self.weight_ih, self. bias_ih)) self.gate_h = nn.Hardtanh()(F.linear(hx, self.weight_hh, self.bias_hh)) self.i_f, self.i_n = self.gate_i.chunk(2, 1) self.h_f, self.h_n = self.gate_h.chunk(2, 1) self.forgetgate_in = nn.Hardtanh()(self.i_f + self.h_f) self.forgetgate = self.forgetgate_sigmoid(self.forgetgate_in) self.newgate_prod = self.forgetgate * self.h_n self.newgate = self.newgate_tanh(self.i_n + self.newgate_prod) self.forgetgate_inv_prod = (0 - self.forgetgate) * self.newgate self.forgetgate_prod = self.forgetgate * hx hy = nn.Hardtanh()(self.newgate + self.forgetgate_inv_prod + self. forgetgate_prod) return hy def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
BertMixedLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default_12, 1.0), kwargs = {}) # %clone_default_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_14, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_14, %amax_default_1), kwargs = {}) # %exp_default_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor_1,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default_1, [-1], True), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default_1, %sum_dim_int_list_2), kwargs = {}) # %eq_scalar_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_14, -inf), kwargs = {}) # %logical_not_default_2 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar_1,), kwargs = {}) # %any_dim_1 : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default_2, -1, True), kwargs = {}) # %logical_not_default_3 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim_1,), kwargs = {}) # %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_3, %full_default_1, %div_tensor_1), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_5 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # hidden_states_2 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_33, %primals_3), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub_2 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_33, %primals_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_17), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_18), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4, ), (1, )) assert_size_stride(primals_21, (4, ), (1, )) assert_size_stride(primals_22, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf10) del primals_9 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf11) del primals_11 buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf12) del primals_13 buf13 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf10, primals_10, buf13, 16, 4, grid=grid(16, 4), stream=stream0) del primals_10 buf14 = reinterpret_tensor(buf10, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf11, primals_12, buf14, 16, 4, grid=grid(16, 4), stream=stream0) del primals_12 buf15 = reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf14, (16, 1, 4), (4, 0, 1), 0), out=buf15) buf16 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf15, buf16, 256, grid=grid(256), stream=stream0) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf15, buf16, buf17, 256, grid=grid(256), stream=stream0) del buf15 del buf16 buf18 = reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf12, primals_14, buf18, 16, 4, grid=grid(16, 4), stream=stream0) del primals_14 buf19 = reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), out=buf19) buf20 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf20, 16, 4, grid=grid(16, 4), stream=stream0) buf21 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_16, reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf21) del primals_16 buf22 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf21, primals_3, buf22, buf23, 16, grid=grid(16), stream=stream0) buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf21, primals_3, buf22, buf23, primals_17, primals_18, buf24, 64, grid=grid(64), stream=stream0) del primals_18 buf25 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_4], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf19, buf25, 16, 4, grid=grid(16, 4), stream=stream0) buf26 = reinterpret_tensor(buf19, (16, 4), (4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_20, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf26) del primals_20 buf27 = buf23; del buf23 # reuse buf28 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [add_1, hidden_states_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf26, primals_6, buf27, buf28, 16, grid=grid(16), stream=stream0) buf29 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_1, hidden_states_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf26, primals_6, buf27, buf28, primals_21, primals_22, buf29, 64, grid=grid(64), stream=stream0) del buf27 del buf28 del primals_22 return (buf24, buf29, primals_3, primals_6, primals_17, primals_21, buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), buf17, reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf13, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf14, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), buf21, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf26, primals_19, primals_15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch import torch.nn import torch.nn as nn class BertAttention(nn.Module): """BERT attention layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_probs = self.dropout(nn.Softmax(dim=-1)(attention_scores)) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertOutput(nn.Module): """BERT output layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertMixedLayer(nn.Module): """BERT cross attention layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.att_x = BertAttention(config) self.output_x = BertOutput(config) self.att_y = BertAttention(config) self.output_y = BertOutput(config) def forward(self, x, y): output_x = self.att_x(x, y) output_y = self.att_y(y, x) return self.output_x(output_x, x), self.output_y(output_y, y) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(num_attention_heads=4, hidden_size= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4,), (1,)) assert_size_stride(primals_21, (4,), (1,)) assert_size_stride(primals_22, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_8 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf10) del primals_9 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf11) del primals_11 buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf12) del primals_13 buf13 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_0[grid(16, 4)](buf10, primals_10, buf13, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_10 buf14 = reinterpret_tensor(buf10, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf10 triton_poi_fused_0[grid(16, 4)](buf11, primals_12, buf14, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_12 buf15 = reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0) del buf6 extern_kernels.bmm(reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf14, (16, 1, 4), (4, 0, 1), 0), out=buf15) buf16 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_1[grid(256)](buf15, buf16, 256, XBLOCK=128, num_warps=4, num_stages=1) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf15, buf16, buf17, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf15 del buf16 buf18 = reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf11 triton_poi_fused_3[grid(16, 4)](buf12, primals_14, buf18, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_14 buf19 = reinterpret_tensor(buf12, (16, 4, 1), (4, 1, 1), 0) del buf12 extern_kernels.bmm(reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), out=buf19) buf20 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf9, buf20, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf21 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_16, reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf21) del primals_16 buf22 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf21, primals_3, buf22, buf23, 16, XBLOCK=16, num_warps=1, num_stages=1) buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf21, primals_3, buf22, buf23, primals_17, primals_18, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_18 buf25 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf19, buf25, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf26 = reinterpret_tensor(buf19, (16, 4), (4, 1), 0) del buf19 extern_kernels.addmm(primals_20, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf26) del primals_20 buf27 = buf23 del buf23 buf28 = buf22 del buf22 triton_poi_fused_add_native_layer_norm_5[grid(16)](buf26, primals_6, buf27, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) buf29 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf26, primals_6, buf27, buf28, primals_21, primals_22, buf29, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf27 del buf28 del primals_22 return (buf24, buf29, primals_3, primals_6, primals_17, primals_21, buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), buf17, reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf13, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf14, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), buf21, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf26, primals_19, primals_15) class BertAttention(nn.Module): """BERT attention layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_probs = self.dropout(nn.Softmax(dim=-1)(attention_scores)) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertOutput(nn.Module): """BERT output layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertMixedLayerNew(nn.Module): """BERT cross attention layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.att_x = BertAttention(config) self.output_x = BertOutput(config) self.att_y = BertAttention(config) self.output_y = BertOutput(config) def forward(self, input_0, input_1): primals_1 = self.att_x.query.weight primals_2 = self.att_x.query.bias primals_4 = self.att_x.key.weight primals_5 = self.att_x.key.bias primals_7 = self.att_x.value.weight primals_8 = self.att_x.value.bias primals_9 = self.output_x.dense.weight primals_10 = self.output_x.dense.bias primals_12 = self.output_x.LayerNorm.weight primals_14 = self.output_x.LayerNorm.bias primals_11 = self.att_y.query.weight primals_16 = self.att_y.query.bias primals_13 = self.att_y.key.weight primals_17 = self.att_y.key.bias primals_15 = self.att_y.value.weight primals_18 = self.att_y.value.bias primals_19 = self.output_y.dense.weight primals_20 = self.output_y.dense.bias primals_21 = self.output_y.LayerNorm.weight primals_22 = self.output_y.LayerNorm.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return output[0], output[1]
Jianrong-Lu/MONAI
BertMixedLayer
false
7,464
[ "Apache-2.0" ]
1
c319ca8ff31aa980a045f1b913fb2eb22aadb080
https://github.com/Jianrong-Lu/MONAI/tree/c319ca8ff31aa980a045f1b913fb2eb22aadb080
from _paritybench_helpers import _mock_config import math import torch import torch.nn import torch.nn as nn class BertAttention(nn.Module): """BERT attention layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) attention_probs = self.dropout(nn.Softmax(dim=-1)(attention_scores)) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class BertOutput(nn.Module): """BERT output layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class Model(nn.Module): """BERT cross attention layer. Based on: BERT (pytorch-transformer) https://github.com/huggingface/transformers """ def __init__(self, config) ->None: super().__init__() self.att_x = BertAttention(config) self.output_x = BertOutput(config) self.att_y = BertAttention(config) self.output_y = BertOutput(config) def forward(self, x, y): output_x = self.att_x(x, y) output_y = self.att_y(y, x) return self.output_x(output_x, x), self.output_y(output_y, y) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(num_attention_heads=4, hidden_size= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
SmoothL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6j/c6jfepznpyw27icx3r43btm73cvmjgsugaqhhbluj37jhqqgggsz.py # Topologically Sorted Source Nodes: [sub, x, ge, l1, pow_1, mul, l2, where], Original ATen: [aten.sub, aten.abs, aten.ge, aten.pow, aten.mul, aten.div, aten.where] # Source node to ATen node mapping: # ge => ge # l1 => sub_1 # l2 => div # mul => mul # pow_1 => pow_1 # sub => sub # where => where # x => abs_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%abs_1, 0.11), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.055), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.11), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %sub_1, %div), kwargs = {}) triton_poi_fused_abs_div_ge_mul_pow_sub_where_0 = async_compile.triton('triton_poi_fused_abs_div_ge_mul_pow_sub_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_ge_mul_pow_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_div_ge_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 0.11 tmp5 = tmp3 >= tmp4 tmp6 = 0.055 tmp7 = tmp3 - tmp6 tmp8 = tmp3 * tmp3 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = 9.090909090909092 tmp12 = tmp10 * tmp11 tmp13 = tl.where(tmp5, tmp7, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, x, ge, l1, pow_1, mul, l2, where], Original ATen: [aten.sub, aten.abs, aten.ge, aten.pow, aten.mul, aten.div, aten.where] stream0 = get_raw_stream(0) triton_poi_fused_abs_div_ge_mul_pow_sub_where_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.cuda import torch.distributed import torch.multiprocessing class SmoothL1Loss(nn.Module): """Smooth L1 Loss""" def __init__(self, beta=0.11): super().__init__() self.beta = beta def forward(self, pred, target): x = (pred - target).abs() l1 = x - 0.5 * self.beta l2 = 0.5 * x ** 2 / self.beta return torch.where(x >= self.beta, l1, l2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.cuda import torch.distributed import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_div_ge_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 0.11 tmp5 = tmp3 >= tmp4 tmp6 = 0.055 tmp7 = tmp3 - tmp6 tmp8 = tmp3 * tmp3 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = 9.090909090909092 tmp12 = tmp10 * tmp11 tmp13 = tl.where(tmp5, tmp7, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_div_ge_mul_pow_sub_where_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class SmoothL1LossNew(nn.Module): """Smooth L1 Loss""" def __init__(self, beta=0.11): super().__init__() self.beta = beta def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
pkashinkunti/retinanet-examples
SmoothL1Loss
false
7,465
[ "BSD-3-Clause" ]
1
30466522c018d4d0bd921485024e871b32ec4e73
https://github.com/pkashinkunti/retinanet-examples/tree/30466522c018d4d0bd921485024e871b32ec4e73
import torch import torch.nn as nn import torch.cuda import torch.distributed import torch.multiprocessing class Model(nn.Module): """Smooth L1 Loss""" def __init__(self, beta=0.11): super().__init__() self.beta = beta def forward(self, pred, target): x = (pred - target).abs() l1 = x - 0.5 * self.beta l2 = 0.5 * x ** 2 / self.beta return torch.where(x >= self.beta, l1, l2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ConvBatchNorm2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/kv/ckvmc3q7zfowi5cf4dn3u6jeqe422ioelbssb6exln56ghj664am.py # Topologically Sorted Source Nodes: [x, add, pow_1, x_1], Original ATen: [aten.sub, aten.add, aten.pow, aten.div] # Source node to ATen node mapping: # add => add # pow_1 => pow_1 # x => sub # x_1 => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %expand), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 1e-05), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %pow_1), kwargs = {}) triton_poi_fused_add_div_pow_sub_0 = async_compile.triton('triton_poi_fused_add_div_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1e-05 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 / tmp6 tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, ), (1, )) assert_size_stride(arg1_1, (4, ), (1, )) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, add, pow_1, x_1], Original ATen: [aten.sub, aten.add, aten.pow, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_pow_sub_0.run(arg2_1, arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ConvBatchNorm2d(nn.BatchNorm2d): def __init__(self, num_features, momentum=0.9, epsilon=1e-05): """ input: assume 4D input (mini_batch_size, # channel, w, h) momentum: momentum for exponential average """ super(nn.BatchNorm2d, self).__init__(num_features) self.momentum = momentum self.insize = num_features self.epsilon = epsilon self.register_buffer('running_mean', torch.zeros(self.insize)) self.register_buffer('running_var', torch.ones(self.insize)) self.reset_parameters() def reset_parameters(self): self.running_mean.zero_() self.running_var.fill_(1) def forward(self, x, gamma=None, beta=None): if self.training is True: mean = x.mean([0, 2, 3]) var = x.var([0, 2, 3]) if self.track_running_stats is True: with torch.no_grad(): self.running_mean = self.momentum * self.running_mean + ( 1.0 - self.momentum) * mean self.running_var = self.momentum * self.running_var + ( 1.0 - self.momentum) * (x.shape[0] / (x.shape[0] - 1) * var) else: mean = self.running_mean var = self.running_var current_mean = mean.view([1, self.insize, 1, 1]).expand_as(x) current_var = var.view([1, self.insize, 1, 1]).expand_as(x) x = x - current_mean x = x / (current_var + self.eps) ** 0.5 return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = 1e-05 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 / tmp6 tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4,), (1,)) assert_size_stride(arg1_1, (4,), (1,)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_pow_sub_0[grid(256)](arg2_1, arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class ConvBatchNorm2dNew(nn.BatchNorm2d): def __init__(self, num_features, momentum=0.9, epsilon=1e-05): """ input: assume 4D input (mini_batch_size, # channel, w, h) momentum: momentum for exponential average """ super(nn.BatchNorm2d, self).__init__(num_features) self.momentum = momentum self.insize = num_features self.epsilon = epsilon self.register_buffer('running_mean', torch.zeros(self.insize)) self.register_buffer('running_var', torch.ones(self.insize)) self.reset_parameters() def reset_parameters(self): self.running_mean.zero_() self.running_var.fill_(1) def forward(self, input_0): arg0_1 = self.weight arg1_1 = self.bias arg2_1 = input_0 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
pigunther/Self-Correction-Human-Parsing-Updated
ConvBatchNorm2d
false
7,466
[ "MIT" ]
1
17331eaa5d6586a1ebb633eb61ed810d00d30a2f
https://github.com/pigunther/Self-Correction-Human-Parsing-Updated/tree/17331eaa5d6586a1ebb633eb61ed810d00d30a2f
import torch import torch.nn as nn class Model(nn.BatchNorm2d): def __init__(self, num_features, momentum=0.9, epsilon=1e-05): """ input: assume 4D input (mini_batch_size, # channel, w, h) momentum: momentum for exponential average """ super(nn.BatchNorm2d, self).__init__(num_features) self.momentum = momentum self.insize = num_features self.epsilon = epsilon self.register_buffer('running_mean', torch.zeros(self.insize)) self.register_buffer('running_var', torch.ones(self.insize)) self.reset_parameters() def reset_parameters(self): self.running_mean.zero_() self.running_var.fill_(1) def forward(self, x, gamma=None, beta=None): if self.training is True: mean = x.mean([0, 2, 3]) var = x.var([0, 2, 3]) if self.track_running_stats is True: with torch.no_grad(): self.running_mean = self.momentum * self.running_mean + ( 1.0 - self.momentum) * mean self.running_var = self.momentum * self.running_var + ( 1.0 - self.momentum) * (x.shape[0] / (x.shape[0] - 1) * var) else: mean = self.running_mean var = self.running_var current_mean = mean.view([1, self.insize, 1, 1]).expand_as(x) current_var = var.view([1, self.insize, 1, 1]).expand_as(x) x = x - current_mean x = x / (current_var + self.eps) ** 0.5 return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
AdaIN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/7v/c7vka2znqtp5ayxhjpvmqdtv6nlabfgsnkhlpsokjs2z7tviw3qs.py # Topologically Sorted Source Nodes: [xm_mean, xm_centered, mul, mean_1, xm_std_rev, xm_norm, mul_1, xm_scaled], Original ATen: [aten.mean, aten.sub, aten.mul, aten.rsqrt, aten.add] # Source node to ATen node mapping: # mean_1 => mean_1 # mul => mul # mul_1 => mul_1 # xm_centered => sub # xm_mean => mean # xm_norm => sub_1 # xm_scaled => add # xm_std_rev => rsqrt # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [2], True), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%mean_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_1), kwargs = {}) triton_poi_fused_add_mean_mul_rsqrt_sub_0 = async_compile.triton('triton_poi_fused_add_mean_mul_rsqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_rsqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp8 = tl.load(in_out_ptr0 + (x2), xmask) tmp9 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (x2), xmask) tmp13 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp4 / tmp1 tmp6 = libdevice.rsqrt(tmp5) tmp7 = tmp3 - tmp6 tmp10 = tmp8 + tmp9 tmp11 = tmp7 * tmp10 tmp14 = tmp12 + tmp13 tmp15 = tmp11 + tmp14 tl.store(in_out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [xm_mean, xm_centered, mul, mean_1, xm_std_rev, xm_norm, mul_1, xm_scaled], Original ATen: [aten.mean, aten.sub, aten.mul, aten.rsqrt, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_sub_0.run(buf2, primals_6, primals_2, buf1, primals_5, 16, grid=grid(16), stream=stream0) del buf1 del primals_2 del primals_5 return (reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_3, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class AdaIN(torch.nn.Module): def __init__(self, channels_in, channels_out, norm=True): super(AdaIN, self).__init__() self.channels_in = channels_in self.channels_out = channels_out self.norm = norm self.affine_scale = torch.nn.Linear(channels_in, channels_out, bias =True) self.affine_bias = torch.nn.Linear(channels_in, channels_out, bias=True ) def forward(self, x, w): ys = self.affine_scale(w) yb = self.affine_bias(w) ys = torch.unsqueeze(ys, -1) yb = torch.unsqueeze(yb, -1) xm = torch.reshape(x, shape=(x.shape[0], x.shape[1], -1)) if self.norm: xm_mean = torch.mean(xm, dim=2, keepdims=True) xm_centered = xm - xm_mean xm_std_rev = torch.rsqrt(torch.mean(torch.mul(xm_centered, xm_centered), dim=2, keepdims=True)) xm_norm = xm_centered - xm_std_rev else: xm_norm = xm xm_scaled = xm_norm * ys + yb return torch.reshape(xm_scaled, x.shape) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'channels_in': 4, 'channels_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp8 = tl.load(in_out_ptr0 + x2, xmask) tmp9 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + x2, xmask) tmp13 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = tmp0 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp4 / tmp1 tmp6 = libdevice.rsqrt(tmp5) tmp7 = tmp3 - tmp6 tmp10 = tmp8 + tmp9 tmp11 = tmp7 * tmp10 tmp14 = tmp12 + tmp13 tmp15 = tmp11 + tmp14 tl.store(in_out_ptr0 + x2, tmp15, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_sub_0[grid(16)](buf2, primals_6, primals_2, buf1, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del primals_2 del primals_5 return reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_3, primals_6 class AdaINNew(torch.nn.Module): def __init__(self, channels_in, channels_out, norm=True): super(AdaINNew, self).__init__() self.channels_in = channels_in self.channels_out = channels_out self.norm = norm self.affine_scale = torch.nn.Linear(channels_in, channels_out, bias =True) self.affine_bias = torch.nn.Linear(channels_in, channels_out, bias=True ) def forward(self, input_0, input_1): primals_1 = self.affine_scale.weight primals_2 = self.affine_scale.bias primals_3 = self.affine_bias.weight primals_5 = self.affine_bias.bias primals_4 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
pigunther/Self-Correction-Human-Parsing-Updated
AdaIN
false
7,467
[ "MIT" ]
1
17331eaa5d6586a1ebb633eb61ed810d00d30a2f
https://github.com/pigunther/Self-Correction-Human-Parsing-Updated/tree/17331eaa5d6586a1ebb633eb61ed810d00d30a2f
import torch class Model(torch.nn.Module): def __init__(self, channels_in, channels_out, norm=True): super().__init__() self.channels_in = channels_in self.channels_out = channels_out self.norm = norm self.affine_scale = torch.nn.Linear(channels_in, channels_out, bias =True) self.affine_bias = torch.nn.Linear(channels_in, channels_out, bias=True ) def forward(self, x, w): ys = self.affine_scale(w) yb = self.affine_bias(w) ys = torch.unsqueeze(ys, -1) yb = torch.unsqueeze(yb, -1) xm = torch.reshape(x, shape=(x.shape[0], x.shape[1], -1)) if self.norm: xm_mean = torch.mean(xm, dim=2, keepdims=True) xm_centered = xm - xm_mean xm_std_rev = torch.rsqrt(torch.mean(torch.mul(xm_centered, xm_centered), dim=2, keepdims=True)) xm_norm = xm_centered - xm_std_rev else: xm_norm = xm xm_scaled = xm_norm * ys + yb return torch.reshape(xm_scaled, x.shape) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
TransposeConv2dLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/uo/cuoiyqgsyrfp53lkw4hij4ulyfkzax64rqr6gxumyfhn6ponmpoc.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_2 => convolution # x_3 => gt, mul_4, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_4), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 25) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(in_out_ptr0 + (x3), tmp7, xmask) tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1.run(buf2, primals_3, buf3, 400, grid=grid(400), stream=stream0) del primals_3 return (buf2, primals_2, buf0, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Conv2dLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='elu', norm= 'none', sn=False): super(Conv2dLayer, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU(inplace=True) elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) def forward(self, x): x = self.pad(x) x = self.conv2d(x) if self.norm: x = self.norm(x) if self.activation: x = self.activation(x) return x class TransposeConv2dLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='lrelu', norm= 'none', sn=False, scale_factor=2): super(TransposeConv2dLayer, self).__init__() self.scale_factor = scale_factor self.conv2d = Conv2dLayer(in_channels, out_channels, kernel_size, stride, padding, dilation, pad_type, activation, norm, sn) def forward(self, x): x = F.interpolate(x, scale_factor=self.scale_factor, mode='nearest') x = self.conv2d(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 25 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(in_out_ptr0 + x3, tmp7, xmask) tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_1[grid(400) ](buf2, primals_3, buf3, 400, XBLOCK=128, num_warps=4, num_stages=1 ) del primals_3 return buf2, primals_2, buf0, buf3 def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Conv2dLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='elu', norm= 'none', sn=False): super(Conv2dLayer, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU(inplace=True) elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) def forward(self, x): x = self.pad(x) x = self.conv2d(x) if self.norm: x = self.norm(x) if self.activation: x = self.activation(x) return x class TransposeConv2dLayerNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='lrelu', norm= 'none', sn=False, scale_factor=2): super(TransposeConv2dLayerNew, self).__init__() self.scale_factor = scale_factor self.conv2d = Conv2dLayer(in_channels, out_channels, kernel_size, stride, padding, dilation, pad_type, activation, norm, sn) def forward(self, input_0): primals_1 = self.conv2d.conv2d.weight primals_3 = self.conv2d.conv2d.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
piggy2303/DeepFillv2_Pytorch
TransposeConv2dLayer
false
7,468
[ "MIT" ]
1
dd35299f11704f878ed7a33e14ccd51a9d64baaf
https://github.com/piggy2303/DeepFillv2_Pytorch/tree/dd35299f11704f878ed7a33e14ccd51a9d64baaf
import torch import torch.nn as nn from torch.nn import functional as F from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super().__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super().__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Conv2dLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='elu', norm= 'none', sn=False): super().__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activati # ... truncated (>4000 chars) for memory efficiency
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/z4/cz4rdmnjzva3wxtwkxdq32ntpuxr4xa3itqmggsv52y455k5rfxs.py # Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits] # Source node to ATen node mapping: # alpha => add # ce => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2 # eq => eq # mul => mul_1 # mul_1 => mul_2 # mul_2 => mul_3 # mul_3 => mul_4 # pow_1 => pow_1 # pred => sigmoid # pt => where # sub => sub_3 # sub_1 => sub_4 # sub_2 => sub_5 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 0.75), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %sigmoid, %sub_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %where), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_2), kwargs = {}) triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0 = async_compile.triton('triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp9 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp0 tmp5 = 0.75 tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = tmp0 == tmp3 tmp10 = tl.sigmoid(tmp9) tmp11 = tmp3 - tmp10 tmp12 = tl.where(tmp8, tmp10, tmp11) tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp7 * tmp14 tmp16 = tmp4 * tmp9 tmp17 = 0.0 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl_math.abs(tmp9) tmp20 = -tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = libdevice.log1p(tmp21) tmp23 = tmp18 - tmp22 tmp24 = tmp16 - tmp23 tmp25 = tmp15 * tmp24 tl.store(out_ptr0 + (x0), tmp25, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits] stream0 = get_raw_stream(0) triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed import torch.multiprocessing class FocalLoss(nn.Module): """Focal Loss - https://arxiv.org/abs/1708.02002""" def __init__(self, alpha=0.25, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, pred_logits, target): pred = pred_logits.sigmoid() ce = F.binary_cross_entropy_with_logits(pred_logits, target, reduction='none') alpha = target * self.alpha + (1.0 - target) * (1.0 - self.alpha) pt = torch.where(target == 1, pred, 1 - pred) return alpha * (1.0 - pt) ** self.gamma * ce def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.cuda import torch.distributed import torch.multiprocessing assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0( in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp9 = tl.load(in_ptr1 + x0, xmask) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp0 tmp5 = 0.75 tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = tmp0 == tmp3 tmp10 = tl.sigmoid(tmp9) tmp11 = tmp3 - tmp10 tmp12 = tl.where(tmp8, tmp10, tmp11) tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp7 * tmp14 tmp16 = tmp4 * tmp9 tmp17 = 0.0 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl_math.abs(tmp9) tmp20 = -tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = libdevice.log1p(tmp21) tmp23 = tmp18 - tmp22 tmp24 = tmp16 - tmp23 tmp25 = tmp15 * tmp24 tl.store(out_ptr0 + x0, tmp25, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0[ grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class FocalLossNew(nn.Module): """Focal Loss - https://arxiv.org/abs/1708.02002""" def __init__(self, alpha=0.25, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
pkashinkunti/retinanet-examples
FocalLoss
false
7,469
[ "BSD-3-Clause" ]
1
30466522c018d4d0bd921485024e871b32ec4e73
https://github.com/pkashinkunti/retinanet-examples/tree/30466522c018d4d0bd921485024e871b32ec4e73
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed import torch.multiprocessing class Model(nn.Module): """Focal Loss - https://arxiv.org/abs/1708.02002""" def __init__(self, alpha=0.25, gamma=2): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, pred_logits, target): pred = pred_logits.sigmoid() ce = F.binary_cross_entropy_with_logits(pred_logits, target, reduction='none') alpha = target * self.alpha + (1.0 - target) * (1.0 - self.alpha) pt = torch.where(target == 1, pred, 1 - pred) return alpha * (1.0 - pt) ** self.gamma * ce def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
sobel_net
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/et/cetn7rmsx6tivm45ec3fj2gtj5hjbn26gb6o6nprv5mippdvfh5b.py # Topologically Sorted Source Nodes: [mul, mul_1, add, mul_2, add_1], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 0.299), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 0.587), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, 0.114), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_2), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp1 = 0.299 tmp2 = tmp0 * tmp1 tmp4 = 0.587 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = 0.114 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/4f/c4fjzuz675f2kz7y7n6ofr7suximzytj4whwtg3arydfso2bvlu4.py # Topologically Sorted Source Nodes: [pow_1, pow_2, add_2, x_1, min_1, max_1, min_2], Original ATen: [aten.pow, aten.add, aten.min, aten.max] # Source node to ATen node mapping: # add_2 => add_2 # max_1 => max_1 # min_1 => min_1 # min_2 => min_2 # pow_1 => pow_1 # pow_2 => pow_2 # x_1 => pow_3 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%convolution, 2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%convolution_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {}) # %pow_3 : [num_users=4] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_2, 0.5), kwargs = {}) # %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.default](args = (%pow_3,), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%pow_3,), kwargs = {}) # %min_2 : [num_users=1] = call_function[target=torch.ops.aten.min.default](args = (%pow_3,), kwargs = {}) triton_per_fused_add_max_min_pow_1 = async_compile.triton('triton_per_fused_add_max_min_pow_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_max_min_pow_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_max_min_pow_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp5 = libdevice.sqrt(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = triton_helpers.min2(tmp6, 1)[:, None] tmp10 = triton_helpers.max2(tmp6, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp10, None) tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2g/c2gcliugfqrmhgxgfxkeop7kku2cer54jg4aqp257fhigudythgg.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_4 => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %constant_pad_nd], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jd/cjdzp6d74icsvf5plstv3riz52kw4dpgs5f4soc4dvecrag7yv56.py # Topologically Sorted Source Nodes: [pow_1, pow_2, add_2, x_1, sub, sub_1, x_2, x_3], Original ATen: [aten.pow, aten.add, aten.sub, aten.div, aten.constant_pad_nd] # Source node to ATen node mapping: # add_2 => add_2 # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # x_1 => pow_3 # x_2 => div # x_3 => constant_pad_nd # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%convolution, 2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%convolution_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {}) # %pow_3 : [num_users=4] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_2, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_3, %min_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%max_1, %min_2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sub_1), kwargs = {}) # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%div, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_add_constant_pad_nd_div_pow_sub_3 = async_compile.triton('triton_poi_fused_add_constant_pad_nd_div_pow_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_constant_pad_nd_div_pow_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_constant_pad_nd_div_pow_sub_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex % 16 tmp17 = tl.load(in_ptr2 + (0)) tmp18 = tl.broadcast_to(tmp17, [XBLOCK]) tmp20 = tl.load(in_ptr3 + (0)) tmp21 = tl.broadcast_to(tmp20, [XBLOCK]) tmp22 = tl.load(in_ptr4 + (0)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-3) + x0 + (2*x1) + (4*x2)), tmp10 & xmask, other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tl.load(in_ptr1 + ((-3) + x0 + (2*x1) + (4*x2)), tmp10 & xmask, other=0.0) tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp19 = tmp16 - tmp18 tmp24 = tmp21 - tmp23 tmp25 = tmp19 / tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp10, tmp25, tmp26) tl.store(out_ptr0 + (x4 + (80*x2)), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg2_1, (1, 1, 3, 3), (9, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, add, mul_2, add_1], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [gradx], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 0, 4, 1), 0), arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1)) del arg1_1 # Topologically Sorted Source Nodes: [grady], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1)) del arg2_1 del buf0 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [pow_1, pow_2, add_2, x_1, min_1, max_1, min_2], Original ATen: [aten.pow, aten.add, aten.min, aten.max] triton_per_fused_add_max_min_pow_1.run(buf1, buf2, buf3, buf4, buf5, 1, 16, grid=grid(1), stream=stream0) buf8 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf6 = reinterpret_tensor(buf8, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(arg0_1, buf6, 256, grid=grid(256), stream=stream0) del arg0_1 buf7 = reinterpret_tensor(buf8, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias # Topologically Sorted Source Nodes: [pow_1, pow_2, add_2, x_1, sub, sub_1, x_2, x_3], Original ATen: [aten.pow, aten.add, aten.sub, aten.div, aten.constant_pad_nd] triton_poi_fused_add_constant_pad_nd_div_pow_sub_3.run(buf1, buf2, buf3, buf4, buf5, buf7, 64, grid=grid(64), stream=stream0) del buf1 del buf2 del buf3 del buf4 del buf5 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.nn.functional as F class sobel_net(nn.Module): def __init__(self): super().__init__() self.conv_opx = nn.Conv2d(1, 1, 3, bias=False) self.conv_opy = nn.Conv2d(1, 1, 3, bias=False) sobel_kernelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype='float32').reshape((1, 1, 3, 3)) sobel_kernely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype='float32').reshape((1, 1, 3, 3)) self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx) self.conv_opy.weight.data = torch.from_numpy(sobel_kernely) for p in self.parameters(): p.requires_grad = False def forward(self, im): x = (0.299 * im[:, 0, :, :] + 0.587 * im[:, 1, :, :] + 0.114 * im[:, 2, :, :]).unsqueeze(1) gradx = self.conv_opx(x) grady = self.conv_opy(x) x = (gradx ** 2 + grady ** 2) ** 0.5 x = (x - x.min()) / (x.max() - x.min()) x = F.pad(x, (1, 1, 1, 1)) x = torch.cat([im, x], dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp1 = 0.299 tmp2 = tmp0 * tmp1 tmp4 = 0.587 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = 0.114 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_per_fused_add_max_min_pow_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp5 = libdevice.sqrt(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = triton_helpers.min2(tmp6, 1)[:, None] tmp10 = triton_helpers.max2(tmp6, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None) tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None) @triton.jit def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_add_constant_pad_nd_div_pow_sub_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex % 16 tmp17 = tl.load(in_ptr2 + 0) tmp18 = tl.broadcast_to(tmp17, [XBLOCK]) tmp20 = tl.load(in_ptr3 + 0) tmp21 = tl.broadcast_to(tmp20, [XBLOCK]) tmp22 = tl.load(in_ptr4 + 0) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-3 + x0 + 2 * x1 + 4 * x2), tmp10 & xmask, other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tl.load(in_ptr1 + (-3 + x0 + 2 * x1 + 4 * x2), tmp10 & xmask, other=0.0) tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp19 = tmp16 - tmp18 tmp24 = tmp21 - tmp23 tmp25 = tmp19 / tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp10, tmp25, tmp26) tl.store(out_ptr0 + (x4 + 80 * x2), tmp27, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg2_1, (1, 1, 3, 3), (9, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 0, 4, 1), 0), arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1)) del arg1_1 buf2 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1)) del arg2_1 del buf0 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_max_min_pow_1[grid(1)](buf1, buf2, buf3, buf4, buf5, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf8 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf6 = reinterpret_tensor(buf8, (4, 4, 4, 4), (80, 16, 4, 1), 0) triton_poi_fused_cat_2[grid(256)](arg0_1, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf7 = reinterpret_tensor(buf8, (4, 1, 4, 4), (80, 16, 4, 1), 64) triton_poi_fused_add_constant_pad_nd_div_pow_sub_3[grid(64)](buf1, buf2, buf3, buf4, buf5, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del buf2 del buf3 del buf4 del buf5 return buf8, class sobel_netNew(nn.Module): def __init__(self): super().__init__() self.conv_opx = nn.Conv2d(1, 1, 3, bias=False) self.conv_opy = nn.Conv2d(1, 1, 3, bias=False) sobel_kernelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype='float32').reshape((1, 1, 3, 3)) sobel_kernely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype='float32').reshape((1, 1, 3, 3)) self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx) self.conv_opy.weight.data = torch.from_numpy(sobel_kernely) for p in self.parameters(): p.requires_grad = False def forward(self, input_0): arg1_1 = self.conv_opx.weight arg2_1 = self.conv_opy.weight arg0_1 = input_0 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
phonhay103/DocTr
sobel_net
false
7,470
[ "MIT" ]
1
f052703976e2558633027907af48ecb1dc7718ff
https://github.com/phonhay103/DocTr/tree/f052703976e2558633027907af48ecb1dc7718ff
import torch import numpy as np from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv_opx = nn.Conv2d(1, 1, 3, bias=False) self.conv_opy = nn.Conv2d(1, 1, 3, bias=False) sobel_kernelx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype='float32').reshape((1, 1, 3, 3)) sobel_kernely = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype='float32').reshape((1, 1, 3, 3)) self.conv_opx.weight.data = torch.from_numpy(sobel_kernelx) self.conv_opy.weight.data = torch.from_numpy(sobel_kernely) for p in self.parameters(): p.requires_grad = False def forward(self, im): x = (0.299 * im[:, 0, :, :] + 0.587 * im[:, 1, :, :] + 0.114 * im[:, 2, :, :]).unsqueeze(1) gradx = self.conv_opx(x) grady = self.conv_opy(x) x = (gradx ** 2 + grady ** 2) ** 0.5 x = (x - x.min()) / (x.max() - x.min()) x = F.pad(x, (1, 1, 1, 1)) x = torch.cat([im, x], dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
TrendNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/64/c64ahxnpt5ixqrlolbug3qf6y4u2zqmcjekif2yu4ba4hcze2fom.py # Topologically Sorted Source Nodes: [xout], Original ATen: [aten.clone] # Source node to ATen node mapping: # xout => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 4 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2) + (64*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/l5/cl5pnvzx4u5mfq6rb7rde7gpp4mv6r6ez7cauursjtrplefsq4ax.py # Topologically Sorted Source Nodes: [xout], Original ATen: [aten.add] # Source node to ATen node mapping: # xout => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (16, 16), (16, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (1, 16), (16, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [xout], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [xout], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [xout], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 1024, grid=grid(1024), stream=stream0) del primals_3 buf3 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [xout_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), alpha=1, beta=1, out=buf3) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [xout_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf5) del primals_7 return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 16), (16, 1), 0), buf3, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TrendNet(nn.Module): def __init__(self, feature_size): super(TrendNet, self).__init__() self.hidden_size1 = 16 self.hidden_size2 = 16 self.output_size = 1 self.fc1 = nn.Linear(feature_size, self.hidden_size1) self.fc2 = nn.Linear(self.hidden_size1, self.hidden_size2) self.fc3 = nn.Linear(self.hidden_size2, self.output_size) def forward(self, input_data): input_data = input_data.transpose(0, 1) xout = self.fc1(input_data) xout = self.fc2(xout) xout = self.fc3(xout) return xout def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'feature_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 4 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2 + 64 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (16, 16), (16, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (1, 16), (16, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf1 triton_poi_fused_add_1[grid(1024)](buf2, primals_3, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0 ), alpha=1, beta=1, out=buf3) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf5) del primals_7 return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor( buf2, (64, 16), (16, 1), 0), buf3, primals_6, primals_4 class TrendNetNew(nn.Module): def __init__(self, feature_size): super(TrendNetNew, self).__init__() self.hidden_size1 = 16 self.hidden_size2 = 16 self.output_size = 1 self.fc1 = nn.Linear(feature_size, self.hidden_size1) self.fc2 = nn.Linear(self.hidden_size1, self.hidden_size2) self.fc3 = nn.Linear(self.hidden_size2, self.output_size) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
pixel-ports/PV_prod_predic
TrendNet
false
7,471
[ "Apache-2.0" ]
1
2ceb4cf8218f43f3ea94c5520b1904663cfb0de1
https://github.com/pixel-ports/PV_prod_predic/tree/2ceb4cf8218f43f3ea94c5520b1904663cfb0de1
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, feature_size): super().__init__() self.hidden_size1 = 16 self.hidden_size2 = 16 self.output_size = 1 self.fc1 = nn.Linear(feature_size, self.hidden_size1) self.fc2 = nn.Linear(self.hidden_size1, self.hidden_size2) self.fc3 = nn.Linear(self.hidden_size2, self.output_size) def forward(self, input_data): input_data = input_data.transpose(0, 1) xout = self.fc1(input_data) xout = self.fc2(xout) xout = self.fc3(xout) return xout def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
FlowHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3p/c3pccxgnuu4ndvejdrgnnzzkvckhydfsbcaf7lwd5g3lofpww4cc.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sc/cscsiwn4jzs35kmdkiqiai55z42bpakheiazewur3x5beq7teiv3.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 2 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_4, (2, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 256, 64, 64), (1048576, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 4194304, grid=grid(4194304), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 64, 64), (8192, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 32768, grid=grid(32768), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class FlowHead(nn.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHead, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) def get_inputs(): return [torch.rand([4, 128, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 2 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_4, (2, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 256, 64, 64), (1048576, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(4194304)](buf1, primals_2, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 64, 64), (8192, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(32768)](buf3, primals_5, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class FlowHeadNew(nn.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHeadNew, self).__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
phonhay103/DocTr
FlowHead
false
7,472
[ "MIT" ]
1
f052703976e2558633027907af48ecb1dc7718ff
https://github.com/phonhay103/DocTr/tree/f052703976e2558633027907af48ecb1dc7718ff
import torch from torch import nn class Model(nn.Module): def __init__(self, input_dim=128, hidden_dim=256): super().__init__() self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) def get_inputs(): return [torch.rand([4, 128, 64, 64])] def get_init_inputs(): return []
GatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/r3/cr3hlg2dj2d3nmsli5wlcbgrfym3b6ux3uuxd7pl3rggj6domt5d.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e2/ce2cdkzdgfs7x35ywqy3cnp5gbzraaqnnk3zmuic27ohalb55dzx.py # Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_1], Original ATen: [aten.convolution, aten.sigmoid, aten.elu, aten.mul] # Source node to ATen node mapping: # conv => convolution # conv_1 => expm1, gt, mul, mul_2, where # gated_mask => sigmoid # mask => convolution_1 # x_1 => mul_3 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid), kwargs = {}) triton_poi_fused_convolution_elu_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_elu_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = tmp2 > tmp6 tmp8 = 1.0 tmp9 = tmp2 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.sigmoid(tmp5) tmp14 = tmp12 * tmp13 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(in_out_ptr1 + (x2), tmp5, xmask) tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [mask], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_1], Original ATen: [aten.convolution, aten.sigmoid, aten.elu, aten.mul] triton_poi_fused_convolution_elu_mul_sigmoid_1.run(buf2, buf4, primals_3, primals_5, buf5, 16, grid=grid(16), stream=stream0) del primals_3 del primals_5 return (buf5, primals_2, primals_4, buf0, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class GatedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super(GatedConv2d, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation= dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.mask_conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): x = self.pad(x) conv = self.conv2d(x) mask = self.mask_conv2d(x) gated_mask = self.sigmoid(mask) if self.activation: conv = self.activation(conv) x = conv * gated_mask return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math .abs(-3 + x1) + 16 * x2), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_elu_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = tmp2 > tmp6 tmp8 = 1.0 tmp9 = tmp2 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.sigmoid(tmp5) tmp14 = tmp12 * tmp13 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(in_out_ptr1 + x2, tmp5, xmask) tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_convolution_elu_mul_sigmoid_1[grid(16)](buf2, buf4, primals_3, primals_5, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 del primals_5 return buf5, primals_2, primals_4, buf0, buf2, buf4 def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class GatedConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super(GatedConv2dNew, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation= dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.mask_conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.sigmoid = torch.nn.Sigmoid() def forward(self, input_0): primals_1 = self.conv2d.weight primals_3 = self.conv2d.bias primals_2 = self.mask_conv2d.weight primals_5 = self.mask_conv2d.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
piggy2303/DeepFillv2_Pytorch
GatedConv2d
false
7,473
[ "MIT" ]
1
dd35299f11704f878ed7a33e14ccd51a9d64baaf
https://github.com/piggy2303/DeepFillv2_Pytorch/tree/dd35299f11704f878ed7a33e14ccd51a9d64baaf
import torch import torch.nn as nn from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super().__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super().__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super().__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activati # ... truncated (>4000 chars) for memory efficiency
ContinuousActor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del primals_5 buf6 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf7, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf7, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ContinuousActor(nn.Module): """ContinuousActor network :param state_size: the size of the state space :type state_size: int :param hidden1_size: the size of the first hidden network :type hidden1_size: int :param hidden2_size: the size of the second hidden network :type hidden2_size: int :param action_size: the size of the action space :type action_size: int """ def __init__(self, state_size, hidden1_size, hidden2_size, action_size): super(ContinuousActor, self).__init__() self.fc1 = nn.Linear(state_size, hidden1_size) self.fc2 = nn.Linear(hidden1_size, hidden2_size) self.fc3 = nn.Linear(hidden2_size, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor network that maps states to actions. :param state: the state :type state: :class:`torch.Tensor` :return: action tensor :rtype: :class:`torch.Tensor` """ x = F.leaky_relu(self.fc1(state)) x = F.leaky_relu(self.fc2(x)) return torch.tanh(self.fc3(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'hidden1_size': 4, 'hidden2_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf6 = buf3 del buf3 extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused_tanh_1[grid(256)](buf7, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0 ), buf7, primals_6, primals_4 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ContinuousActorNew(nn.Module): """ContinuousActor network :param state_size: the size of the state space :type state_size: int :param hidden1_size: the size of the first hidden network :type hidden1_size: int :param hidden2_size: the size of the second hidden network :type hidden2_size: int :param action_size: the size of the action space :type action_size: int """ def __init__(self, state_size, hidden1_size, hidden2_size, action_size): super(ContinuousActorNew, self).__init__() self.fc1 = nn.Linear(state_size, hidden1_size) self.fc2 = nn.Linear(hidden1_size, hidden2_size) self.fc3 = nn.Linear(hidden2_size, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
pjordan/rlcc
ContinuousActor
false
7,474
[ "Apache-2.0" ]
1
e84b8b5c14680dbad2efae22756fb40606b2384a
https://github.com/pjordan/rlcc/tree/e84b8b5c14680dbad2efae22756fb40606b2384a
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Model(nn.Module): """ContinuousActor network :param state_size: the size of the state space :type state_size: int :param hidden1_size: the size of the first hidden network :type hidden1_size: int :param hidden2_size: the size of the second hidden network :type hidden2_size: int :param action_size: the size of the action space :type action_size: int """ def __init__(self, state_size, hidden1_size, hidden2_size, action_size): super().__init__() self.fc1 = nn.Linear(state_size, hidden1_size) self.fc2 = nn.Linear(hidden1_size, hidden2_size) self.fc3 = nn.Linear(hidden2_size, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor network that maps states to actions. :param state: the state :type state: :class:`torch.Tensor` :return: action tensor :rtype: :class:`torch.Tensor` """ x = F.leaky_relu(self.fc1(state)) x = F.leaky_relu(self.fc2(x)) return torch.tanh(self.fc3(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'hidden1_size': 4, 'hidden2_size': 4, 'action_size': 4}]
PositionwiseFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fg/cfgseyxhpu7b6i4xtsiblktsjg6wbg2mlcsyld7lmr4dhbh7u4xc.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.glu] # Source node to ATen node mapping: # x_1 => glu # Graph fragment: # %glu : [num_users=1] = call_function[target=torch.ops.aten.glu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_glu_0 = async_compile.triton('triton_poi_fused_glu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_glu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_glu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.glu] stream0 = get_raw_stream(0) triton_poi_fused_glu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class PositionwiseFeedForward(nn.Module): """Positionwise feed forward :param int idim: input dimenstion :param int hidden_units: number of hidden units :param float dropout_rate: dropout rate """ def __init__(self, idim, hidden_units, dropout_rate=0.0): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(idim, hidden_units * 2) self.w_2 = nn.Linear(hidden_units, idim) self.dropout = nn.Dropout(dropout_rate) def forward(self, x): x = self.w_1(x) x = F.glu(x) return self.w_2(self.dropout(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'idim': 4, 'hidden_units': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_glu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_glu_0[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4, 8), (128, 32, 8, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4 class PositionwiseFeedForwardNew(nn.Module): """Positionwise feed forward :param int idim: input dimenstion :param int hidden_units: number of hidden units :param float dropout_rate: dropout rate """ def __init__(self, idim, hidden_units, dropout_rate=0.0): super(PositionwiseFeedForwardNew, self).__init__() self.w_1 = nn.Linear(idim, hidden_units * 2) self.w_2 = nn.Linear(hidden_units, idim) self.dropout = nn.Dropout(dropout_rate) def forward(self, input_0): primals_1 = self.w_1.weight primals_2 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pkufool/DaVinci-Speech
PositionwiseFeedForward
false
7,475
[ "MIT" ]
1
98602363168476356d492852093adbe65c65ac95
https://github.com/pkufool/DaVinci-Speech/tree/98602363168476356d492852093adbe65c65ac95
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """Positionwise feed forward :param int idim: input dimenstion :param int hidden_units: number of hidden units :param float dropout_rate: dropout rate """ def __init__(self, idim, hidden_units, dropout_rate=0.0): super().__init__() self.w_1 = nn.Linear(idim, hidden_units * 2) self.w_2 = nn.Linear(hidden_units, idim) self.dropout = nn.Dropout(dropout_rate) def forward(self, x): x = self.w_1(x) x = F.glu(x) return self.w_2(self.dropout(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
BertPooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] # Source node to ATen node mapping: # pooled_output => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2g/c2gw7362i2a6wsfdx2sxyywx4o6ronjg6goebvdn44w6gpjsxpbc.py # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # pooled_output => add # pooled_output_1 => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2 class BertPoolerNew(nn.Module): def __init__(self, config): super(BertPoolerNew, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
AlanFokCo/bert-chinese-horovod-elastic
BertPooler
false
7,476
[ "Apache-2.0" ]
1
02317d0857e0e8e313dd63ead61ca9996b25548e
https://github.com/AlanFokCo/bert-chinese-horovod-elastic/tree/02317d0857e0e8e313dd63ead61ca9996b25548e
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
VariableBoxMLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/mi/cmi476zw6ohnah2zxegdqc6fvw4ui6ahcdpt576v245i6ehle2hj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] # Source node to ATen node mapping: # x => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 1), (1, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_elu_0.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 1), (1, 0), 0), primals_4, alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 1), (1, 0), 0), reinterpret_tensor(primals_6, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf6) del primals_7 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 1), (1, 1), 0), buf4, reinterpret_tensor(buf5, (64, 1), (1, 1), 0), primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.jit import torch.nn as nn class VariableBoxMLP(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int', neurons_per_layer: 'int', hidden_layers: 'int'): super(VariableBoxMLP, self).__init__() self.hidden_layers = hidden_layers self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features= neurons_per_layer) for i in range(0, hidden_layers): layer = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) torch.nn.init.xavier_normal_(layer.weight) torch.nn.init.zeros_(layer.bias) setattr(self, 'l' + str(i), layer) self.l_out = nn.Linear(in_features=neurons_per_layer, out_features= num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, x): x = self.act(self.l_in(x)) for i in range(self.hidden_layers): x = self.act(getattr(self, 'l' + str(i)).__call__(x)) x = self.l_out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_features': 4, 'num_out_features': 4, 'neurons_per_layer': 1, 'hidden_layers': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.optim import torch.jit import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 1), (1, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 1), ( 1, 0), 0), primals_4, alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 1), ( 1, 0), 0), reinterpret_tensor(primals_6, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf6) del primals_7 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 1), (1, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 1), (1, 1), 0 ), primals_6, primals_4 class VariableBoxMLPNew(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int', neurons_per_layer: 'int', hidden_layers: 'int'): super(VariableBoxMLPNew, self).__init__() self.hidden_layers = hidden_layers self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features= neurons_per_layer) for i in range(0, hidden_layers): layer = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) torch.nn.init.xavier_normal_(layer.weight) torch.nn.init.zeros_(layer.bias) setattr(self, 'l' + str(i), layer) self.l_out = nn.Linear(in_features=neurons_per_layer, out_features= num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, input_0): primals_1 = self.l_in.weight primals_2 = self.l_in.bias primals_4 = self.l0.weight primals_5 = self.l0.bias primals_6 = self.l_out.weight primals_7 = self.l_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
plaveczlambert/deep_euler_tests
VariableBoxMLP
false
7,477
[ "MIT" ]
1
a3ceef98ba76bd7a00ccd3c773cd9850311b3b1a
https://github.com/plaveczlambert/deep_euler_tests/tree/a3ceef98ba76bd7a00ccd3c773cd9850311b3b1a
import torch import torch.optim import torch.jit import torch.nn as nn class Model(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int', neurons_per_layer: 'int', hidden_layers: 'int'): super().__init__() self.hidden_layers = hidden_layers self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features= neurons_per_layer) for i in range(0, hidden_layers): layer = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) torch.nn.init.xavier_normal_(layer.weight) torch.nn.init.zeros_(layer.bias) setattr(self, 'l' + str(i), layer) self.l_out = nn.Linear(in_features=neurons_per_layer, out_features= num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, x): x = self.act(self.l_in(x)) for i in range(self.hidden_layers): x = self.act(getattr(self, 'l' + str(i)).__call__(x)) x = self.l_out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_features': 4, 'num_out_features': 4, 'neurons_per_layer': 1, 'hidden_layers': 1}]
SimpleMLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/mi/cmi476zw6ohnah2zxegdqc6fvw4ui6ahcdpt576v245i6ehle2hj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] # Source node to ATen node mapping: # x => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (1, 1), (1, 1)) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (1, 1), (1, 1)) assert_size_stride(primals_9, (1, ), (1, )) assert_size_stride(primals_10, (1, 1), (1, 1)) assert_size_stride(primals_11, (1, ), (1, )) assert_size_stride(primals_12, (1, 1), (1, 1)) assert_size_stride(primals_13, (1, ), (1, )) assert_size_stride(primals_14, (1, 1), (1, 1)) assert_size_stride(primals_15, (1, ), (1, )) assert_size_stride(primals_16, (4, 1), (1, 1)) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_elu_0.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 1), (1, 0), 0), primals_4, alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 1), (1, 0), 0), primals_6, alpha=1, beta=1, out=buf7) del primals_7 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf8, (64, 1), (1, 0), 0), primals_8, alpha=1, beta=1, out=buf10) del primals_9 buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf10, buf11, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (64, 1), (1, 0), 0), primals_10, alpha=1, beta=1, out=buf13) del primals_11 buf14 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf13, buf14, 64, grid=grid(64), stream=stream0) buf16 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf14, (64, 1), (1, 0), 0), primals_12, alpha=1, beta=1, out=buf16) del primals_13 buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf16, buf17, 64, grid=grid(64), stream=stream0) buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, reinterpret_tensor(buf17, (64, 1), (1, 0), 0), primals_14, alpha=1, beta=1, out=buf19) del primals_15 buf20 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.elu] triton_poi_fused_elu_0.run(buf19, buf20, 64, grid=grid(64), stream=stream0) buf21 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, reinterpret_tensor(buf20, (64, 1), (1, 0), 0), reinterpret_tensor(primals_16, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf21) del primals_17 return (reinterpret_tensor(buf21, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 1), (1, 1), 0), buf4, reinterpret_tensor(buf5, (64, 1), (1, 1), 0), buf7, reinterpret_tensor(buf8, (64, 1), (1, 1), 0), buf10, reinterpret_tensor(buf11, (64, 1), (1, 1), 0), buf13, reinterpret_tensor(buf14, (64, 1), (1, 1), 0), buf16, reinterpret_tensor(buf17, (64, 1), (1, 1), 0), buf19, reinterpret_tensor(buf20, (64, 1), (1, 1), 0), primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.jit import torch.nn as nn class SimpleMLP(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int', neurons_per_layer: 'int'): super(SimpleMLP, self).__init__() self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features= neurons_per_layer) self.l1 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l2 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l3 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l4 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l5 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l6 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l_out = nn.Linear(in_features=neurons_per_layer, out_features= num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l1.weight) torch.nn.init.zeros_(self.l1.bias) torch.nn.init.xavier_normal_(self.l2.weight) torch.nn.init.zeros_(self.l2.bias) torch.nn.init.xavier_normal_(self.l3.weight) torch.nn.init.zeros_(self.l3.bias) torch.nn.init.xavier_normal_(self.l4.weight) torch.nn.init.zeros_(self.l4.bias) torch.nn.init.xavier_normal_(self.l5.weight) torch.nn.init.zeros_(self.l5.bias) torch.nn.init.xavier_normal_(self.l6.weight) torch.nn.init.zeros_(self.l6.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, x): x = self.act(self.l_in(x)) x = self.act(self.l1(x)) x = self.act(self.l2(x)) x = self.act(self.l3(x)) x = self.act(self.l4(x)) x = self.act(self.l5(x)) x = self.act(self.l6(x)) x = self.l_out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_features': 4, 'num_out_features': 4, 'neurons_per_layer': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.optim import torch.jit import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 1), (1, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (1, 1), (1, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (1, 1), (1, 1)) assert_size_stride(primals_9, (1,), (1,)) assert_size_stride(primals_10, (1, 1), (1, 1)) assert_size_stride(primals_11, (1,), (1,)) assert_size_stride(primals_12, (1, 1), (1, 1)) assert_size_stride(primals_13, (1,), (1,)) assert_size_stride(primals_14, (1, 1), (1, 1)) assert_size_stride(primals_15, (1,), (1,)) assert_size_stride(primals_16, (4, 1), (1, 1)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 1), ( 1, 0), 0), primals_4, alpha=1, beta=1, out=buf4) del primals_5 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 1), ( 1, 0), 0), primals_6, alpha=1, beta=1, out=buf7) del primals_7 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf8, (64, 1), ( 1, 0), 0), primals_8, alpha=1, beta=1, out=buf10) del primals_9 buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (64, 1), (1, 0), 0), primals_10, alpha=1, beta=1, out=buf13) del primals_11 buf14 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf13, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf14, (64, 1), (1, 0), 0), primals_12, alpha=1, beta=1, out=buf16) del primals_13 buf17 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf16, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_15, reinterpret_tensor(buf17, (64, 1), (1, 0), 0), primals_14, alpha=1, beta=1, out=buf19) del primals_15 buf20 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_elu_0[grid(64)](buf19, buf20, 64, XBLOCK=64, num_warps=1, num_stages=1) buf21 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_17, reinterpret_tensor(buf20, (64, 1), (1, 0), 0), reinterpret_tensor(primals_16, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf21) del primals_17 return (reinterpret_tensor(buf21, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 1), (1, 1), 0), buf4, reinterpret_tensor(buf5, (64, 1), (1, 1), 0), buf7, reinterpret_tensor(buf8, (64, 1), (1, 1), 0), buf10, reinterpret_tensor(buf11, (64, 1), (1, 1), 0), buf13, reinterpret_tensor(buf14, (64, 1), (1, 1), 0), buf16, reinterpret_tensor(buf17, (64, 1), (1, 1), 0), buf19, reinterpret_tensor(buf20, (64, 1), (1, 1), 0), primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4) class SimpleMLPNew(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int', neurons_per_layer: 'int'): super(SimpleMLPNew, self).__init__() self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features= neurons_per_layer) self.l1 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l2 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l3 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l4 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l5 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l6 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l_out = nn.Linear(in_features=neurons_per_layer, out_features= num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l1.weight) torch.nn.init.zeros_(self.l1.bias) torch.nn.init.xavier_normal_(self.l2.weight) torch.nn.init.zeros_(self.l2.bias) torch.nn.init.xavier_normal_(self.l3.weight) torch.nn.init.zeros_(self.l3.bias) torch.nn.init.xavier_normal_(self.l4.weight) torch.nn.init.zeros_(self.l4.bias) torch.nn.init.xavier_normal_(self.l5.weight) torch.nn.init.zeros_(self.l5.bias) torch.nn.init.xavier_normal_(self.l6.weight) torch.nn.init.zeros_(self.l6.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, input_0): primals_1 = self.l_in.weight primals_2 = self.l_in.bias primals_4 = self.l1.weight primals_5 = self.l1.bias primals_6 = self.l2.weight primals_7 = self.l2.bias primals_8 = self.l3.weight primals_9 = self.l3.bias primals_10 = self.l4.weight primals_11 = self.l4.bias primals_12 = self.l5.weight primals_13 = self.l5.bias primals_14 = self.l6.weight primals_15 = self.l6.bias primals_16 = self.l_out.weight primals_17 = self.l_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
plaveczlambert/deep_euler_tests
SimpleMLP
false
7,478
[ "MIT" ]
1
a3ceef98ba76bd7a00ccd3c773cd9850311b3b1a
https://github.com/plaveczlambert/deep_euler_tests/tree/a3ceef98ba76bd7a00ccd3c773cd9850311b3b1a
import torch import torch.optim import torch.jit import torch.nn as nn class Model(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int', neurons_per_layer: 'int'): super().__init__() self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features= neurons_per_layer) self.l1 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l2 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l3 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l4 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l5 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l6 = nn.Linear(in_features=neurons_per_layer, out_features= neurons_per_layer) self.l_out = nn.Linear(in_features=neurons_per_layer, out_features= num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l1.weight) torch.nn.init.zeros_(self.l1.bias) torch.nn.init.xavier_normal_(self.l2.weight) torch.nn.init.zeros_(self.l2.bias) torch.nn.init.xavier_normal_(self.l3.weight) torch.nn.init.zeros_(self.l3.bias) torch.nn.init.xavier_normal_(self.l4.weight) torch.nn.init.zeros_(self.l4.bias) torch.nn.init.xavier_normal_(self.l5.weight) torch.nn.init.zeros_(self.l5.bias) torch.nn.init.xavier_normal_(self.l6.weight) torch.nn.init.zeros_(self.l6.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, x): x = self.act(self.l_in(x)) x = self.act(self.l1(x)) x = self.act(self.l2(x)) x = self.act(self.l3(x)) x = self.act(self.l4(x)) x = self.act(self.l5(x)) x = self.act(self.l6(x)) x = self.l_out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_features': 4, 'num_out_features': 4, 'neurons_per_layer': 1}]
TransposeGatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ya/cya2grnbhraytq2wzrkx5sd2ottwnbrnd5ohd2xstcxyryneuc25.py # Topologically Sorted Source Nodes: [mv, norm, add, truediv], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div] # Source node to ATen node mapping: # add => add_4 # mv => mul_4, sum_1 # norm => pow_1, pow_2, sum_2 # truediv => div # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-12), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_4), kwargs = {}) triton_per_fused_add_div_linalg_vector_norm_mv_1 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mv_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mv_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.load(in_ptr0 + (64 + r0), None) tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp9 = tl.load(in_ptr0 + (128 + r0), None) tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (192 + r0), None) tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-12 tmp25 = tmp23 + tmp24 tmp26 = tmp18 / tmp25 tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp25, None) tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp26, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qi/cqiozgecuvqtnurxrggbllqpuci3n65ycew5qi5gdqg44ypxzegy.py # Topologically Sorted Source Nodes: [truediv, mv_1], Original ATen: [aten.div, aten.mv] # Source node to ATen node mapping: # mv_1 => mul_5, sum_3 # truediv => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {}) # %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [1]), kwargs = {}) triton_per_fused_div_mv_2 = async_compile.triton('triton_per_fused_div_mv_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mv_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mv_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4 = tmp1 / tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qa/cqaed4ios3xqwlv4d3cciikkdz7d73vhwkegurd5cxca3y7htmvg.py # Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div] # Source node to ATen node mapping: # add_1 => add_5 # norm_1 => pow_3, pow_4, sum_4 # truediv_1 => div_1 # Graph fragment: # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 1e-12), kwargs = {}) # %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_5), kwargs = {}) triton_per_fused_add_div_linalg_vector_norm_3 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/c2/cc2arficwjs4sforhl25gdfmb3uzfg7hkw46gq3mxgv57jy52z32.py # Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.dot] # Source node to ATen node mapping: # sigma => mul_7, sum_6 # Graph fragment: # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sum_3), kwargs = {}) # %sum_6 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_7,), kwargs = {}) triton_per_fused_dot_4 = async_compile.triton('triton_per_fused_dot_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_dot_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_dot_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kw/ckwzptlssdpmtxi6pt23ik63xcuqar2giaakuqtgizxlg5weagc7.py # Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv_2 => div_2 # Graph fragment: # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_4, %expand), kwargs = {}) triton_poi_fused_div_5 = async_compile.triton('triton_poi_fused_div_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2w/c2wlnlirhh2nibaimsmrfiriqyr7m3r6ij6r2vrxypktuy5hni2x.py # Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_2], Original ATen: [aten.convolution, aten.sigmoid, aten.leaky_relu, aten.mul] # Source node to ATen node mapping: # conv => convolution # conv_1 => gt, mul_12, where # gated_mask => sigmoid # mask => convolution_1 # x_2 => mul_13 # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_2, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_5, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_12), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid), kwargs = {}) triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 25) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = tmp2 > tmp6 tmp8 = 0.2 tmp9 = tmp2 * tmp8 tmp10 = tl.where(tmp7, tmp2, tmp9) tmp11 = tl.sigmoid(tmp5) tmp12 = tmp10 * tmp11 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, ), (1, ), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse buf27 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mv, norm, add, truediv], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_mv_1.run(buf3, primals_4, primals_2, buf1, buf27, 1, 64, grid=grid(1), stream=stream0) buf4 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [truediv, mv_1], Original ATen: [aten.div, aten.mv] triton_per_fused_div_mv_2.run(primals_4, buf1, buf3, buf4, 4, 64, grid=grid(4), stream=stream0) buf6 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_3.run(buf4, buf6, 1, 4, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.dot] triton_per_fused_dot_4.run(buf6, buf4, buf7, 1, 4, grid=grid(1), stream=stream0) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div] triton_poi_fused_div_5.run(primals_4, buf7, buf8, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf0, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 5, 5), (100, 25, 5, 1)) buf11 = empty_strided_cuda((64, ), (1, ), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) buf13 = buf12; del buf12 # reuse buf36 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mv_3, norm_2, add_2, truediv_3], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_mv_1.run(buf13, primals_8, primals_6, buf11, buf36, 1, 64, grid=grid(1), stream=stream0) buf14 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [truediv_3, mv_4], Original ATen: [aten.div, aten.mv] triton_per_fused_div_mv_2.run(primals_8, buf11, buf13, buf14, 4, 64, grid=grid(4), stream=stream0) buf16 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [norm_3, add_3, truediv_4], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_3.run(buf14, buf16, 1, 4, grid=grid(1), stream=stream0) buf17 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sigma_1], Original ATen: [aten.dot] triton_per_fused_dot_4.run(buf16, buf14, buf17, 1, 4, grid=grid(1), stream=stream0) del buf14 buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div] triton_poi_fused_div_5.run(primals_8, buf17, buf18, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [mask], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf0, buf18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 4, 5, 5), (100, 25, 5, 1)) buf10 = buf9; del buf9 # reuse buf20 = buf19; del buf19 # reuse buf21 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_2], Original ATen: [aten.convolution, aten.sigmoid, aten.leaky_relu, aten.mul] triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6.run(buf10, buf20, primals_5, primals_9, buf21, 400, grid=grid(400), stream=stream0) del primals_5 del primals_9 # Topologically Sorted Source Nodes: [], Original ATen: [] buf22 = torch.ops.aten.set_.source_Tensor(primals_2, buf6) assert_size_stride(buf22, (4, ), (1, )) del buf1 # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] buf28 = torch.ops.aten.set_.source_Tensor(primals_3, buf27) assert_size_stride(buf28, (64, ), (1, )) del primals_3 # Topologically Sorted Source Nodes: [], Original ATen: [] buf31 = torch.ops.aten.set_.source_Tensor(primals_6, buf16) assert_size_stride(buf31, (4, ), (1, )) del buf11 # Topologically Sorted Source Nodes: [truediv_3], Original ATen: [aten.div] buf37 = torch.ops.aten.set_.source_Tensor(primals_7, buf36) assert_size_stride(buf37, (64, ), (1, )) del primals_7 return (buf21, buf8, buf18, primals_2, primals_4, primals_6, primals_8, buf0, buf3, buf6, buf7, buf8, buf10, buf13, buf16, buf17, buf18, buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class GatedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super(GatedConv2d, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation= dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.mask_conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): x = self.pad(x) conv = self.conv2d(x) mask = self.mask_conv2d(x) gated_mask = self.sigmoid(mask) if self.activation: conv = self.activation(conv) x = conv * gated_mask return x class TransposeGatedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='lrelu', norm= 'none', sn=True, scale_factor=2): super(TransposeGatedConv2d, self).__init__() self.scale_factor = scale_factor self.gated_conv2d = GatedConv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, pad_type, activation, norm, sn) def forward(self, x): x = F.interpolate(x, scale_factor=self.scale_factor, mode='nearest') x = self.gated_conv2d(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.load(in_ptr0 + (64 + r0), None) tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp9 = tl.load(in_ptr0 + (128 + r0), None) tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (192 + r0), None) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-12 tmp25 = tmp23 + tmp24 tmp26 = tmp18 / tmp25 tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp25, None) tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp26, None) @triton.jit def triton_per_fused_div_mv_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4 = tmp1 / tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp8, None) @triton.jit def triton_per_fused_dot_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) @triton.jit def triton_poi_fused_div_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 25 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = tmp2 > tmp6 tmp8 = 0.2 tmp9 = tmp2 * tmp8 tmp10 = tl.where(tmp7, tmp2, tmp9) tmp11 = tl.sigmoid(tmp5) tmp12 = tmp10 * tmp11 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64,), (1,), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 buf27 = empty_strided_cuda((64,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_mv_1[grid(1)](buf3, primals_4, primals_2, buf1, buf27, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf4 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_div_mv_2[grid(4)](primals_4, buf1, buf3, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf6 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_3[grid(1)](buf4, buf6, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((), (), torch.float32) triton_per_fused_dot_4[grid(1)](buf6, buf4, buf7, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_5[grid(256)](primals_4, buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = extern_kernels.convolution(buf0, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 5, 5), (100, 25, 5, 1)) buf11 = empty_strided_cuda((64,), (1,), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) buf13 = buf12 del buf12 buf36 = empty_strided_cuda((64,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_mv_1[grid(1)](buf13, primals_8, primals_6, buf11, buf36, 1, 64, XBLOCK=1, num_warps= 2, num_stages=1) buf14 = buf4 del buf4 triton_per_fused_div_mv_2[grid(4)](primals_8, buf11, buf13, buf14, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf16 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_3[grid(1)](buf14, buf16, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf17 = empty_strided_cuda((), (), torch.float32) triton_per_fused_dot_4[grid(1)](buf16, buf14, buf17, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf14 buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_5[grid(256)](primals_8, buf17, buf18, 256, XBLOCK=256, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf0, buf18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 4, 5, 5), (100, 25, 5, 1)) buf10 = buf9 del buf9 buf20 = buf19 del buf19 buf21 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32 ) triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6[grid(400)](buf10, buf20, primals_5, primals_9, buf21, 400, XBLOCK=256, num_warps= 4, num_stages=1) del primals_5 del primals_9 buf22 = torch.ops.aten.set_.source_Tensor(primals_2, buf6) assert_size_stride(buf22, (4,), (1,)) del buf1 buf28 = torch.ops.aten.set_.source_Tensor(primals_3, buf27) assert_size_stride(buf28, (64,), (1,)) del primals_3 buf31 = torch.ops.aten.set_.source_Tensor(primals_6, buf16) assert_size_stride(buf31, (4,), (1,)) del buf11 buf37 = torch.ops.aten.set_.source_Tensor(primals_7, buf36) assert_size_stride(buf37, (64,), (1,)) del primals_7 return (buf21, buf8, buf18, primals_2, primals_4, primals_6, primals_8, buf0, buf3, buf6, buf7, buf8, buf10, buf13, buf16, buf17, buf18, buf20) def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class GatedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super(GatedConv2d, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation= dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.mask_conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): x = self.pad(x) conv = self.conv2d(x) mask = self.mask_conv2d(x) gated_mask = self.sigmoid(mask) if self.activation: conv = self.activation(conv) x = conv * gated_mask return x class TransposeGatedConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='lrelu', norm= 'none', sn=True, scale_factor=2): super(TransposeGatedConv2dNew, self).__init__() self.scale_factor = scale_factor self.gated_conv2d = GatedConv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, pad_type, activation, norm, sn) def forward(self, input_0): primals_2 = self.gated_conv2d.conv2d.module.bias primals_5 = self.gated_conv2d.conv2d.module.weight_u primals_3 = self.gated_conv2d.conv2d.module.weight_v primals_1 = self.gated_conv2d.conv2d.module.weight_bar primals_6 = self.gated_conv2d.mask_conv2d.module.bias primals_9 = self.gated_conv2d.mask_conv2d.module.weight_u primals_7 = self.gated_conv2d.mask_conv2d.module.weight_v primals_4 = self.gated_conv2d.mask_conv2d.module.weight_bar primals_8 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
piggy2303/DeepFillv2_Pytorch
TransposeGatedConv2d
false
7,479
[ "MIT" ]
1
dd35299f11704f878ed7a33e14ccd51a9d64baaf
https://github.com/piggy2303/DeepFillv2_Pytorch/tree/dd35299f11704f878ed7a33e14ccd51a9d64baaf
import torch import torch.nn as nn from torch.nn import functional as F from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super().__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super().__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class GatedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super().__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activ # ... truncated (>4000 chars) for memory efficiency
BasePolicy
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2e/c2eyuga3je2l5ecpzbnctpheqbb5qecdta4gn7n6aqk6finzwko5.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # h1 => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 4096, grid=grid(4096), stream=stream0) del primals_3 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [h2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 4096, grid=grid(4096), stream=stream0) del buf3 del primals_5 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf6) del primals_7 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 64), (64, 1), 0), buf4, reinterpret_tensor(buf5, (64, 64), (64, 1), 0), primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class BasePolicy(nn.Module): """ Base policy network """ def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F. leaky_relu, norm_in=False, onehot_dim=0): """ Inputs: input_dim (int): Number of dimensions in input out_dim (int): Number of dimensions in output hidden_dim (int): Number of hidden dimensions nonlin (PyTorch function): Nonlinearity to apply to hidden layers """ super(BasePolicy, self).__init__() if norm_in: self.in_fn = nn.BatchNorm1d(input_dim, affine=False) else: self.in_fn = lambda x: x self.fc1 = nn.Linear(input_dim + onehot_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, out_dim) self.nonlin = nonlin return def forward(self, X): """ Inputs: X (PyTorch Matrix): Batch of observations (optionally a tuple that additionally includes a onehot label) Outputs: out (PyTorch Matrix): Actions """ onehot = None if isinstance(X, tuple): X, onehot = X inp = self.in_fn(X) if onehot is not None: inp = torch.cat((onehot, inp), dim=1) h1 = self.nonlin(self.fc1(inp)) h2 = self.nonlin(self.fc2(h1)) out = self.fc3(h2) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) buf2 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(4096)](buf0, primals_3, buf1, buf2, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) buf5 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch. float32) triton_poi_fused_leaky_relu_0[grid(4096)](buf3, primals_5, buf4, buf5, 4096, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf6) del primals_7 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 64), (64, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 64), (64, 1), 0 ), primals_6, primals_4 class BasePolicyNew(nn.Module): """ Base policy network """ def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F. leaky_relu, norm_in=False, onehot_dim=0): """ Inputs: input_dim (int): Number of dimensions in input out_dim (int): Number of dimensions in output hidden_dim (int): Number of hidden dimensions nonlin (PyTorch function): Nonlinearity to apply to hidden layers """ super(BasePolicyNew, self).__init__() if norm_in: self.in_fn = nn.BatchNorm1d(input_dim, affine=False) else: self.in_fn = lambda x: x self.fc1 = nn.Linear(input_dim + onehot_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, out_dim) self.nonlin = nonlin return def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
pohanchi/DL_final_project
BasePolicy
false
7,480
[ "Apache-2.0" ]
1
8ade422f61a2e8bd4256523ebda56e19b189fe91
https://github.com/pohanchi/DL_final_project/tree/8ade422f61a2e8bd4256523ebda56e19b189fe91
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Base policy network """ def __init__(self, input_dim, out_dim, hidden_dim=64, nonlin=F. leaky_relu, norm_in=False, onehot_dim=0): """ Inputs: input_dim (int): Number of dimensions in input out_dim (int): Number of dimensions in output hidden_dim (int): Number of hidden dimensions nonlin (PyTorch function): Nonlinearity to apply to hidden layers """ super().__init__() if norm_in: self.in_fn = nn.BatchNorm1d(input_dim, affine=False) else: self.in_fn = lambda x: x self.fc1 = nn.Linear(input_dim + onehot_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, out_dim) self.nonlin = nonlin return def forward(self, X): """ Inputs: X (PyTorch Matrix): Batch of observations (optionally a tuple that additionally includes a onehot label) Outputs: out (PyTorch Matrix): Actions """ onehot = None if isinstance(X, tuple): X, onehot = X inp = self.in_fn(X) if onehot is not None: inp = torch.cat((onehot, inp), dim=1) h1 = self.nonlin(self.fc1(inp)) h2 = self.nonlin(self.fc2(h1)) out = self.fc3(h2) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ContinuousCritic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/kl/cklavgyaxelw2ihmkryucjzcy7ivqitvorsuzouwelpuez37zeqo.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # xs => gt # Graph fragment: # %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ba/cbatyxx5vjiz5j3tyse2qzkfxpmuwnqnmboam3kyud67nqhscemf.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 8, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yw/cywvcn5jhwrecajdhm5e6ew4izc4omyqtcc5zcrjddlkdnycqwo7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, 0.01), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_tensor, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf0, primals_2, primals_4, buf2, 32, grid=grid(32), stream=stream0) del primals_2 del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf3, primals_6, buf4, buf5, 16, grid=grid(16), stream=stream0) del buf3 del primals_6 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf5, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_8 return (buf7, primals_3, buf1, buf2, buf4, buf5, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ContinuousCritic(nn.Module): """ContinuousCritic network :param state_size: the size of the state space :type state_size: int :param hidden1_size: the size of the first hidden network :type hidden1_size: int :param hidden2_size: the size of the second hidden network :type hidden2_size: int :param action_size: the size of the action space :type action_size: int """ def __init__(self, state_size, hidden1_size, hidden2_size, action_size): super(ContinuousCritic, self).__init__() self.fc1 = nn.Linear(state_size, hidden1_size) self.fc2 = nn.Linear(hidden1_size + action_size, hidden2_size) self.fc3 = nn.Linear(hidden2_size, 1) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.0003, 0.0003) def forward(self, state, action): """Build a critic network that maps (state,action) to utility. :param state: the state :type state: :class:`torch.Tensor` :param action: action tensor :type action: :class:`torch.Tensor` :return: utility tensor :rtype: :class:`torch.Tensor` """ xs = F.leaky_relu(self.fc1(state)) x = torch.cat((xs, action), dim=1) x = F.leaky_relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'hidden1_size': 4, 'hidden2_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp17 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(16)](buf0, primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](buf1, buf0, primals_2, primals_4, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 4), (1, 8 ), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(16)](buf3, primals_6, buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf3 del primals_6 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf5, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_8 return buf7, primals_3, buf1, buf2, buf4, buf5, primals_7, primals_5 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ContinuousCriticNew(nn.Module): """ContinuousCritic network :param state_size: the size of the state space :type state_size: int :param hidden1_size: the size of the first hidden network :type hidden1_size: int :param hidden2_size: the size of the second hidden network :type hidden2_size: int :param action_size: the size of the action space :type action_size: int """ def __init__(self, state_size, hidden1_size, hidden2_size, action_size): super(ContinuousCriticNew, self).__init__() self.fc1 = nn.Linear(state_size, hidden1_size) self.fc2 = nn.Linear(hidden1_size + action_size, hidden2_size) self.fc3 = nn.Linear(hidden2_size, 1) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.0003, 0.0003) def forward(self, input_0, input_1): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
pjordan/rlcc
ContinuousCritic
false
7,481
[ "Apache-2.0" ]
1
e84b8b5c14680dbad2efae22756fb40606b2384a
https://github.com/pjordan/rlcc/tree/e84b8b5c14680dbad2efae22756fb40606b2384a
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Model(nn.Module): """ContinuousCritic network :param state_size: the size of the state space :type state_size: int :param hidden1_size: the size of the first hidden network :type hidden1_size: int :param hidden2_size: the size of the second hidden network :type hidden2_size: int :param action_size: the size of the action space :type action_size: int """ def __init__(self, state_size, hidden1_size, hidden2_size, action_size): super().__init__() self.fc1 = nn.Linear(state_size, hidden1_size) self.fc2 = nn.Linear(hidden1_size + action_size, hidden2_size) self.fc3 = nn.Linear(hidden2_size, 1) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.0003, 0.0003) def forward(self, state, action): """Build a critic network that maps (state,action) to utility. :param state: the state :type state: :class:`torch.Tensor` :param action: action tensor :type action: :class:`torch.Tensor` :return: utility tensor :rtype: :class:`torch.Tensor` """ xs = F.leaky_relu(self.fc1(state)) x = torch.cat((xs, action), dim=1) x = F.leaky_relu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'hidden1_size': 4, 'hidden2_size': 4, 'action_size': 4}]
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/7h/c7hsuhxfgdczgeztltlo5m7kiteei7s2xgw3ej446h3dbcs4ungo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/d6/cd64tvmaj5eezbfrlnce6btrzicae53lx2t7juywlnxfhfjrcvl5.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = (xindex // 14) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vl/cvlrefuy5ynzebcyzofsxblfg4q43lm2uvh3jjskbutlkfruuwn4.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/im/cimviywfv3u6bv3hht5mvffaymyca64h66pct6hqq5wkgsm4nixk.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_3 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (3, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (3, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (3, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_5, (3, ), (1, )) assert_size_stride(primals_6, (10, 75), (75, 1)) assert_size_stride(primals_7, (10, ), (1, )) assert_size_stride(primals_8, (2, 10), (10, 1)) assert_size_stride(primals_9, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 28, 28), (2352, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 9408, grid=grid(9408), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 3, 14, 14), (588, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 3, 14, 14), (588, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 2352, grid=grid(2352), stream=stream0) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 10, 10), (300, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 1200, grid=grid(1200), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 3, 5, 5), (75, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 3, 5, 5), (75, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 300, grid=grid(300), stream=stream0) buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 75), (75, 1), 0), reinterpret_tensor(primals_6, (75, 10), (1, 75), 0), alpha=1, beta=1, out=buf8) del primals_7 buf9 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (10, 2), (1, 10), 0), alpha=1, beta=1, out=buf9) del primals_9 return (buf9, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 75), (75, 1), 0), buf8, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((3, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((3, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((10, 75), (75, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2, 10), (10, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(kernel_size=5, in_channels=3, out_channels=3) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(kernel_size=5, in_channels=3, out_channels=3) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.lin1 = nn.Linear(in_features=75, out_features=10) self.lin2 = nn.Linear(in_features=10, out_features=2) def forward(self, x): x = self.conv1(x) x = self.pool1(x) x = self.conv2(x) x = self.pool2(x) x = x.view(-1, 75) x = self.lin1(x) x = self.lin2(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 2352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = xindex // 14 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x1), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 300 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (3, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (3,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (3, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_5, (3,), (1,)) assert_size_stride(primals_6, (10, 75), (75, 1)) assert_size_stride(primals_7, (10,), (1,)) assert_size_stride(primals_8, (2, 10), (10, 1)) assert_size_stride(primals_9, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 3, 28, 28), (2352, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(9408)](buf1, primals_2, 9408, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 3, 14, 14), (588, 196, 14, 1), torch. float32) buf3 = empty_strided_cuda((4, 3, 14, 14), (588, 196, 14, 1), torch.int8 ) triton_poi_fused_max_pool2d_with_indices_1[grid(2352)](buf1, buf2, buf3, 2352, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 10, 10), (300, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(1200)](buf5, primals_5, 1200, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 3, 5, 5), (75, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 3, 5, 5), (75, 25, 5, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_3[grid(300)](buf5, buf6, buf7, 300, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 75), ( 75, 1), 0), reinterpret_tensor(primals_6, (75, 10), (1, 75), 0), alpha=1, beta=1, out=buf8) del primals_7 buf9 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (10, 2), (1, 10), 0), alpha=1, beta=1, out=buf9) del primals_9 return (buf9, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 75), (75, 1), 0), buf8, primals_8, primals_6) class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(kernel_size=5, in_channels=3, out_channels=3) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(kernel_size=5, in_channels=3, out_channels=3) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.lin1 = nn.Linear(in_features=75, out_features=10) self.lin2 = nn.Linear(in_features=10, out_features=2) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.lin1.weight primals_7 = self.lin1.bias primals_8 = self.lin2.weight primals_9 = self.lin2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
pippinhio/image-recognition
Net
false
7,482
[ "MIT" ]
1
89569a0d66ae144d2f6e6f2d73a8577ef8b2272b
https://github.com/pippinhio/image-recognition/tree/89569a0d66ae144d2f6e6f2d73a8577ef8b2272b
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(kernel_size=5, in_channels=3, out_channels=3) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(kernel_size=5, in_channels=3, out_channels=3) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.lin1 = nn.Linear(in_features=75, out_features=10) self.lin2 = nn.Linear(in_features=10, out_features=2) def forward(self, x): x = self.conv1(x) x = self.pool1(x) x = self.conv2(x) x = self.pool2(x) x = x.view(-1, 75) x = self.lin1(x) x = self.lin2(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return []
AddBroadcastPosEmbed
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/st/cstwzn5l7bhlj4n4vagkfouihy7mrpgfnmrscgux5h4odyej6347.py # Topologically Sorted Source Nodes: [embs, add], Original ATen: [aten.cat, aten.add] # Source node to ATen node mapping: # add => add # embs => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand, %expand_1], -1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %cat), kwargs = {}) triton_poi_fused_add_cat_0 = async_compile.triton('triton_poi_fused_add_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = x0 tmp2 = tl.full([1], 0, tl.int64) tmp3 = tmp1 >= tmp2 tmp4 = tl.full([1], 2, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr1 + ((2*x2) + x0), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1], 4, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tl.load(in_ptr2 + ((2*x1) + ((-2) + x0)), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.where(tmp5, tmp6, tmp10) tmp12 = tmp0 + tmp11 tl.store(out_ptr0 + (x4), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 2), (2, 1)) assert_size_stride(primals_2, (4, 2), (2, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [embs, add], Original ATen: [aten.cat, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_cat_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 del primals_3 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def tensor_slice(x, begin, size): assert all([(b >= 0) for b in begin]) size = [(l - b if s == -1 else s) for s, b, l in zip(size, begin, x.shape)] assert all([(s >= 0) for s in size]) slices = [slice(b, b + s) for b, s in zip(begin, size)] return x[slices] class AddBroadcastPosEmbed(nn.Module): def __init__(self, shape, embd_dim, dim=-1): super().__init__() assert dim in [-1, 1] self.shape = shape self.n_dim = n_dim = len(shape) self.embd_dim = embd_dim self.dim = dim assert embd_dim % n_dim == 0, f'{embd_dim} % {n_dim} != 0' self.emb = nn.ParameterDict({f'd_{i}': nn.Parameter(torch.randn( shape[i], embd_dim // n_dim) * 0.01 if dim == -1 else torch. randn(embd_dim // n_dim, shape[i]) * 0.01) for i in range(n_dim)}) def forward(self, x, decode_step=None, decode_idx=None): embs = [] for i in range(self.n_dim): e = self.emb[f'd_{i}'] if self.dim == -1: e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self. n_dim - i - 1)), -1) e = e.expand(1, *self.shape, -1) else: e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * ( self.n_dim - i - 1))) e = e.expand(1, -1, *self.shape) embs.append(e) embs = torch.cat(embs, dim=self.dim) if decode_step is not None: embs = tensor_slice(embs, [0, *decode_idx, 0], [x.shape[0], *(( 1,) * self.n_dim), x.shape[-1]]) return x + embs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'shape': [4, 4], 'embd_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = x0 tl.full([1], 0, tl.int64) tmp4 = tl.full([1], 2, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr1 + (2 * x2 + x0), tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tl.full([1], 4, tl.int64) tmp10 = tl.load(in_ptr2 + (2 * x1 + (-2 + x0)), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.where(tmp5, tmp6, tmp10) tmp12 = tmp0 + tmp11 tl.store(out_ptr0 + x4, tmp12, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 2), (2, 1)) assert_size_stride(primals_2, (4, 2), (2, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_cat_0[grid(256)](primals_3, primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 del primals_3 return buf0, def tensor_slice(x, begin, size): assert all([(b >= 0) for b in begin]) size = [(l - b if s == -1 else s) for s, b, l in zip(size, begin, x.shape)] assert all([(s >= 0) for s in size]) slices = [slice(b, b + s) for b, s in zip(begin, size)] return x[slices] class AddBroadcastPosEmbedNew(nn.Module): def __init__(self, shape, embd_dim, dim=-1): super().__init__() assert dim in [-1, 1] self.shape = shape self.n_dim = n_dim = len(shape) self.embd_dim = embd_dim self.dim = dim assert embd_dim % n_dim == 0, f'{embd_dim} % {n_dim} != 0' self.emb = nn.ParameterDict({f'd_{i}': nn.Parameter(torch.randn( shape[i], embd_dim // n_dim) * 0.01 if dim == -1 else torch. randn(embd_dim // n_dim, shape[i]) * 0.01) for i in range(n_dim)}) def forward(self, input_0): primals_1 = self.emb.d_0 primals_2 = self.emb.d_1 primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
pointoflight/VideoGPT
AddBroadcastPosEmbed
false
7,483
[ "MIT" ]
1
85f19d8cb0d251238f295f0294e69b9299c13e21
https://github.com/pointoflight/VideoGPT/tree/85f19d8cb0d251238f295f0294e69b9299c13e21
import torch import torch.nn as nn def tensor_slice(x, begin, size): assert all([(b >= 0) for b in begin]) size = [(l - b if s == -1 else s) for s, b, l in zip(size, begin, x.shape)] assert all([(s >= 0) for s in size]) slices = [slice(b, b + s) for b, s in zip(begin, size)] return x[slices] class Model(nn.Module): def __init__(self, shape, embd_dim, dim=-1): super().__init__() assert dim in [-1, 1] self.shape = shape self.n_dim = n_dim = len(shape) self.embd_dim = embd_dim self.dim = dim assert embd_dim % n_dim == 0, f'{embd_dim} % {n_dim} != 0' self.emb = nn.ParameterDict({f'd_{i}': nn.Parameter(torch.randn( shape[i], embd_dim // n_dim) * 0.01 if dim == -1 else torch. randn(embd_dim // n_dim, shape[i]) * 0.01) for i in range(n_dim)}) def forward(self, x, decode_step=None, decode_idx=None): embs = [] for i in range(self.n_dim): e = self.emb[f'd_{i}'] if self.dim == -1: e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self. n_dim - i - 1)), -1) e = e.expand(1, *self.shape, -1) else: e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * ( self.n_dim - i - 1))) e = e.expand(1, -1, *self.shape) embs.append(e) embs = torch.cat(embs, dim=self.dim) if decode_step is not None: embs = tensor_slice(embs, [0, *decode_idx, 0], [x.shape[0], *(( 1,) * self.n_dim), x.shape[-1]]) return x + embs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/5x/c5xganiyseolx5yslwppgbtmqvu2pfwebkjwttb3dzahjyz2enft.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (147*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ua/cuavn5bv7hzpp7xu5jqjmc5pbnd7wxufncppn5lqn5mflxhkwjg2.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12288 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/h4/ch4uoh3mzi4i7weltah76e4mccreaz2fkhbpmn6zbi4gstwkux5p.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12288 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = (yindex // 96) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (96*x2) + (864*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cq/ccqtyu5643i72f2a7pi3uvilfgk4v7myxqbxf3wfxs4uu7xz35d4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (400*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fj/cfjplei3ytsir5cul74uga74dtc2a4r23gqnn6bw3d6ce6ccaudh.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 24576 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qc/cqchdl37oyay7yn2eblpynm736x3tz3y2ilbge44rrpstlkcn6uj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 3072 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (800*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/v4/cv4poschbmc3sp6p5vklf3pjifyqjynfomdy4hmsbi2tmzocv7rn.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 19968 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = (yindex // 96) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (96*x2) + (864*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vd/cvdqa3vkuipo2wevdcnshypxv57fejwganjwf3np5on3wptfqp76.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 768 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (400*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/si/csix37pqhrfoz6tuoqihn233vnexh2xi7tp2pov33snloxcahiiu.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_9 = async_compile.triton('triton_poi_fused_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 25088 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 112 y1 = (yindex // 112) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (112*x2) + (1008*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xt/cxthnutoay7xyot3qtdomwzv2eeptddk66xxwrmqq457okqc5grn.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_10 = async_compile.triton('triton_poi_fused_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1536 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 24 y1 = (yindex // 24) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (24*x2) + (600*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lz/clzav4c6oaz2s2kscqqruexfvxvv4pserkoed5rrd3ii3v4f47ju.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_11 = async_compile.triton('triton_poi_fused_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_11(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/u5/cu5i7qntyxm6226lssiwfjdrfmsglqnvh2dcxnjk3bqivl43nxl5.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_12 = async_compile.triton('triton_poi_fused_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_12(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 41472 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 144 y1 = (yindex // 144) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (144*x2) + (1296*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k2/ck25yhpvtmnv4n76w6kryot7g74pysgidjoa2xuxfh6asv7jding.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_13 = async_compile.triton('triton_poi_fused_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_13(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (800*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zw/czwulh3oq2ohpglozvolnvae5r5wt2w65rnxdmc6mymnphd4nof4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_14 = async_compile.triton('triton_poi_fused_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_14(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 51200 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 160 y1 = (yindex // 160) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (160*x2) + (1440*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e3/ce3stbpdf6ri6ex45zspimvlpx6i2fg3tkcladgvmcseuzfqjuxc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_15 = async_compile.triton('triton_poi_fused_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_15(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (800*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6c/c6czlz376f7boycqkbs5muqbvm44m2smzk7almrl3cgjq627ldit.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_16 = async_compile.triton('triton_poi_fused_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_16(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 73728 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = (yindex // 192) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (192*x2) + (1728*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7q/c7qrxbfkwq6dd65x4adb7ug2m74scjvl3zm3gva4qvdbyfno3j34.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_17 = async_compile.triton('triton_poi_fused_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_17(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 6144 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 48 y1 = (yindex // 48) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (48*x2) + (1200*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/be/cbeytcckcm7l2yqd4cffrf24xd6mgcbjl5ghrbteq642gaae2qry.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_18 = async_compile.triton('triton_poi_fused_convolution_relu_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vv/cvvntm227olizdtywydo2n3ml62k4s6glghvpongovff3nzol2ug.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_19 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_19(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1024) % 16 x1 = (xindex // 64) % 16 x0 = xindex % 64 x5 = (xindex // 1024) x6 = xindex tmp0 = 2*x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (128*x1) + (4096*x5)), tmp10, other=float("-inf")) tmp12 = 1 + (2*x1) tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (4096*x5)), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + (2*x1) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (128 + x0 + (128*x1) + (4096*x5)), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + (2*x2) tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (2048 + x0 + (128*x1) + (4096*x5)), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2112 + x0 + (128*x1) + (4096*x5)), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (2176 + x0 + (128*x1) + (4096*x5)), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + (2*x2) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (4096*x5)), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (4096*x5)), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (4224 + x0 + (128*x1) + (4096*x5)), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ks/ckspu5alcmbbcgfal5ir72vsqvmnqbjs7b36pnqklzimnufmr6x6.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x_2 => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%view, [0, 0, 0, 0, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_20 = async_compile.triton('triton_poi_fused_constant_pad_nd_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 128], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_20(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 65 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = (-1) + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-1) + x2 + (64*y3)), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tmp3 * tmp3 tmp5 = tl.full(tmp4.shape, 0.0, tmp4.dtype) tmp6 = tl.where(tmp2, tmp4, tmp5) tl.store(out_ptr0 + (y0 + (256*x2) + (16640*y1)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ex/cexnxamnxw5jms2gc34s74wb5kgxyvp6awurvhomiyhj64zilu4y.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.avg_pool3d] # Source node to ATen node mapping: # x_2 => avg_pool3d # Graph fragment: # %avg_pool3d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool3d.default](args = (%constant_pad_nd, [2, 1, 1], [1, 1, 1]), kwargs = {}) triton_poi_fused_avg_pool3d_21 = async_compile.triton('triton_poi_fused_avg_pool3d_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool3d_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool3d_21(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16384 x1 = (xindex // 16384) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16640*x1)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (16640*x1)), None) tmp2 = tmp1 + tmp0 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kq/ckqgtnaajxnxjq5ep6cxupccozranoho3hzdoja63lq33vgftvzb.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mul, aten.add, aten.pow, aten.div] # Source node to ATen node mapping: # x_2 => add, div, mul_1, pow_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 1.99999994948e-05), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%getitem, %pow_1), kwargs = {}) triton_poi_fused_add_div_mul_pow_22 = async_compile.triton('triton_poi_fused_add_div_mul_pow_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_22(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (64*y3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0 + (256*x2) + (16384*y1)), xmask, eviction_policy='evict_last') tmp2 = 1.99999994948e-05 tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp3 + tmp4 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + (64*y3)), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/47/c47izgiwwp43yhaswfmeiin54dmmq2opy5rp3ej3qnuu44s3aohi.py # Topologically Sorted Source Nodes: [conv2d_1, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_23 = async_compile.triton('triton_poi_fused_convolution_relu_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_23', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_23(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oa/coangoyelb4xckboutbo22jjwpwbdpiqx4g34h7kvljrleviwfll.py # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_24 = async_compile.triton('triton_poi_fused_convolution_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_24', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_24(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wv/cwvnkznhgt565xdmagd7vaoowgohg2blffunvnvc65pk6naqc2em.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x_5 => constant_pad_nd_1 # Graph fragment: # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%view_2, [0, 0, 0, 0, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_25 = async_compile.triton('triton_poi_fused_constant_pad_nd_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 256], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_25(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 193 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = (-1) + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-1) + x2 + (192*y3)), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.full([1, 1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp5 * tmp5 tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype) tmp8 = tl.where(tmp2, tmp6, tmp7) tl.store(out_ptr0 + (y0 + (256*x2) + (49408*y1)), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fc/cfcqthuj2bfs47jlsyb77c3knuclqkj3gvgpw7liaxv5zqcy2fci.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.avg_pool3d] # Source node to ATen node mapping: # x_5 => avg_pool3d_1 # Graph fragment: # %avg_pool3d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool3d.default](args = (%constant_pad_nd_1, [2, 1, 1], [1, 1, 1]), kwargs = {}) triton_poi_fused_avg_pool3d_26 = async_compile.triton('triton_poi_fused_avg_pool3d_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool3d_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool3d_26(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 196608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 49152 x1 = (xindex // 49152) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (49408*x1)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (49408*x1)), None) tmp2 = tmp1 + tmp0 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nb/cnbfpirvkm6t5vvvjfuxs6h3kmoidklgm4yzaldegmfwxnfit5ek.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.relu, aten.mul, aten.add, aten.pow, aten.div] # Source node to ATen node mapping: # x_4 => relu_2 # x_5 => add_1, div_1, mul_3, pow_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 1.99999994948e-05), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1.0), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 0.75), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu_2, %pow_2), kwargs = {}) triton_poi_fused_add_div_mul_pow_relu_27 = async_compile.triton('triton_poi_fused_add_div_mul_pow_relu_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_relu_27', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_relu_27(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 192 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (192*y3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y0 + (256*x2) + (49152*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = 1.99999994948e-05 tmp5 = tmp3 * tmp4 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = 0.75 tmp9 = libdevice.pow(tmp7, tmp8) tmp10 = tmp2 / tmp9 tl.store(out_ptr0 + (x2 + (192*y3)), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/q7/cq72t4jpmaok4tfvzqs4slvoztsu7jhgl5ky2fy7wfcy2uzgufi4.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_6 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=5] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_28 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_28(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1536) % 8 x1 = (xindex // 192) % 8 x0 = xindex % 192 x5 = (xindex // 1536) x6 = xindex tmp0 = 2*x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (384*x1) + (6144*x5)), tmp10, other=float("-inf")) tmp12 = 1 + (2*x1) tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (192 + x0 + (384*x1) + (6144*x5)), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + (2*x1) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (384 + x0 + (384*x1) + (6144*x5)), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + (2*x2) tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3072 + x0 + (384*x1) + (6144*x5)), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (3264 + x0 + (384*x1) + (6144*x5)), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (3456 + x0 + (384*x1) + (6144*x5)), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + (2*x2) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (6144 + x0 + (384*x1) + (6144*x5)), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (6336 + x0 + (384*x1) + (6144*x5)), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (6528 + x0 + (384*x1) + (6144*x5)), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ot/cothzxmdki6lys5xjayfabezfauwibzozjzs62opsenqbapfmtlw.py # Topologically Sorted Source Nodes: [conv2d_4, x2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x2 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_29 = async_compile.triton('triton_poi_fused_convolution_relu_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_29', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_29(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 24576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2s/c2s2mdsadfbbsfk4eisjx4fr3mhyt4r44mhuu3ryv3oaeczhy5lr.py # Topologically Sorted Source Nodes: [conv2d_6, x3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x3 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_30 = async_compile.triton('triton_poi_fused_convolution_relu_30', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_30', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_30(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3h/c3hxqgqs3dxtumvgr4cwzwruhpy2fwnhmadry5zd6l7powu24d2l.py # Topologically Sorted Source Nodes: [x4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x4 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_31 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_31', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_31(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1536) % 8 x1 = (xindex // 192) % 8 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-1728) + x6), tmp10, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-1536) + x6), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1344) + x6), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-192) + x6), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (192 + x6), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1344 + x6), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (1536 + x6), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (1728 + x6), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ne/cne4htqv2egmr4fsnjnhlfyqcu73btlq7fwxmgxmft3ybcpqz3js.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_7 => cat # Graph fragment: # %cat : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_3, %relu_5, %relu_7, %relu_8], 1), kwargs = {}) triton_poi_fused_cat_32 = async_compile.triton('triton_poi_fused_cat_32', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_32(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 192, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((128*x1) + ((-64) + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-64) + x0), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 224, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((32*x1) + ((-192) + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-192) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 256, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((32*x1) + ((-224) + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-224) + x0), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e6/ce6dplpw3hfg5x3nb3adudcf4mzd24q4tli7sw7cyoodsnytehhe.py # Topologically Sorted Source Nodes: [conv2d_10, x2_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # x2_2 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_33 = async_compile.triton('triton_poi_fused_convolution_relu_33', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_33', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_33(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xc/cxc6dp5snt3hsn554ody2mcehu5vz2bsub6hb2v2qsyyhvn75jyv.py # Topologically Sorted Source Nodes: [conv2d_12, x3_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # x3_2 => relu_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_12 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_12,), kwargs = {}) triton_poi_fused_convolution_relu_34 = async_compile.triton('triton_poi_fused_convolution_relu_34', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_34', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_34(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5g/c5gcnrx2aghc75tjw3b5hlpli3bl4eump4v4p24ge4mxvkxxcm7z.py # Topologically Sorted Source Nodes: [x4_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x4_2 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_35 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_35', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_35(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 2048) % 8 x1 = (xindex // 256) % 8 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-2304) + x6), tmp10, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-2048) + x6), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1792) + x6), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-256) + x6), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (256 + x6), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1792 + x6), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2048 + x6), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2304 + x6), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/b3/cb3vzslj6r7ydnhwpaglmgtjjfn7ujxajwzlkbwwcpnvfafi77ps.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_8 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_9, %relu_11, %relu_13, %relu_14], 1), kwargs = {}) triton_poi_fused_cat_36 = async_compile.triton('triton_poi_fused_cat_36', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_36(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 122880 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 480 x1 = (xindex // 480) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 320, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((192*x1) + ((-128) + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-128) + x0), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 416, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((96*x1) + ((-320) + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-320) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 480, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((64*x1) + ((-416) + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-416) + x0), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/24/c24t2q5pzchfku5cuz6syjn6ekj6442obchyw7mhvpgsou7de6gk.py # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_9 => getitem_8, getitem_9 # Graph fragment: # %getitem_8 : [num_users=5] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 0), kwargs = {}) # %getitem_9 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_4, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_37 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_37', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_37', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_37(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 30720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1920) % 4 x1 = (xindex // 480) % 4 x0 = xindex % 480 x5 = (xindex // 1920) x6 = xindex tmp0 = 2*x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (960*x1) + (7680*x5)), tmp10, other=float("-inf")) tmp12 = 1 + (2*x1) tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (480 + x0 + (960*x1) + (7680*x5)), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + (2*x1) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (960 + x0 + (960*x1) + (7680*x5)), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + (2*x2) tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3840 + x0 + (960*x1) + (7680*x5)), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (4320 + x0 + (960*x1) + (7680*x5)), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4800 + x0 + (960*x1) + (7680*x5)), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + (2*x2) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (7680 + x0 + (960*x1) + (7680*x5)), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (8160 + x0 + (960*x1) + (7680*x5)), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (8640 + x0 + (960*x1) + (7680*x5)), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/li/cli2wwxqflvhaic7zxeoq2y2onkccaqoaol72nxi2njllc4hg55k.py # Topologically Sorted Source Nodes: [conv2d_16, x2_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_16 => convolution_16 # x2_4 => relu_16 # Graph fragment: # %convolution_16 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_8, %primals_34, %primals_35, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_16 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_16,), kwargs = {}) triton_poi_fused_convolution_relu_38 = async_compile.triton('triton_poi_fused_convolution_relu_38', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_38', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_38(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/73/c73sgw4gca7lkprqyo42avmjg3umpvglfhwhnvhlshdq6ivz5e6l.py # Topologically Sorted Source Nodes: [conv2d_18, x3_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_18 => convolution_18 # x3_4 => relu_18 # Graph fragment: # %convolution_18 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_8, %primals_38, %primals_39, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_18 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_18,), kwargs = {}) triton_poi_fused_convolution_relu_39 = async_compile.triton('triton_poi_fused_convolution_relu_39', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_39', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_39(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/vt/cvt2pdlek7hpqptfajz2z5qs7hgi4miqf6bg7ljjvfwaecidiunh.py # Topologically Sorted Source Nodes: [x4_4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x4_4 => getitem_10, getitem_11 # Graph fragment: # %getitem_10 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_5, 0), kwargs = {}) # %getitem_11 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_5, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_40 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_40', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_40(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 30720 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1920) % 4 x1 = (xindex // 480) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-2400) + x6), tmp10, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-1920) + x6), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1440) + x6), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-480) + x6), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (480 + x6), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1440 + x6), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (1920 + x6), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2400 + x6), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6e/c6e7uz2bak4l4ly62pgf64q4h6rixy75iwkbpn5s5a2x24qnxo3e.py # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_10 => cat_2 # Graph fragment: # %cat_2 : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_15, %relu_17, %relu_19, %relu_20], 1), kwargs = {}) triton_poi_fused_cat_41 = async_compile.triton('triton_poi_fused_cat_41', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 192, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((192*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 400, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((208*x1) + ((-192) + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-192) + x0), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 448, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((48*x1) + ((-400) + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-400) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 512, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((64*x1) + ((-448) + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-448) + x0), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/og/cogtet4f4kmljhode3gtjxbrrxpamf4g3wc53hwzpollat54ardm.py # Topologically Sorted Source Nodes: [conv2d_22, x2_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_22 => convolution_22 # x2_6 => relu_22 # Graph fragment: # %convolution_22 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_46, %primals_47, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_22 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_22,), kwargs = {}) triton_poi_fused_convolution_relu_42 = async_compile.triton('triton_poi_fused_convolution_relu_42', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_42', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_42(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 7168 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 112 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7i/c7inc5bgv2cnymkwwedecrv62eeqld2eqcnxvhbi7j3bxlvpezhc.py # Topologically Sorted Source Nodes: [conv2d_24, x3_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_24 => convolution_24 # x3_6 => relu_24 # Graph fragment: # %convolution_24 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_50, %primals_51, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_24 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_24,), kwargs = {}) triton_poi_fused_convolution_relu_43 = async_compile.triton('triton_poi_fused_convolution_relu_43', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_43', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_43(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gv/cgvwxgrsd2k5fkm3gtgfockjw2a5qtqooetanxs3a6weezki3qhy.py # Topologically Sorted Source Nodes: [x4_6], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x4_6 => getitem_12, getitem_13 # Graph fragment: # %getitem_12 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_6, 0), kwargs = {}) # %getitem_13 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_6, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_44 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_44', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_44', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_44(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 2048) % 4 x1 = (xindex // 512) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-2560) + x6), tmp10, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-2048) + x6), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1536) + x6), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-512) + x6), tmp30, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1536 + x6), tmp43, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2048 + x6), tmp46, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2560 + x6), tmp49, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, None) tl.store(out_ptr1 + (x6), tmp76, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xl/cxl3ox6mxfsfscomkbgkzxunslivlr56rrlfrg4feru7izg3h3v4.py # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_11 => cat_3 # Graph fragment: # %cat_3 : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_21, %relu_23, %relu_25, %relu_26], 1), kwargs = {}) triton_poi_fused_cat_45 = async_compile.triton('triton_poi_fused_cat_45', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_45', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_45(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 160, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((160*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((224*x1) + ((-160) + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-160) + x0), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 448, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((64*x1) + ((-384) + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-384) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 512, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((64*x1) + ((-448) + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-448) + x0), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zi/czieujfiznszmu3ghm4w4zl7c5esbuoqtd5n3x564gzc6rpe5ok4.py # Topologically Sorted Source Nodes: [conv2d_28, x2_8], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_28 => convolution_28 # x2_8 => relu_28 # Graph fragment: # %convolution_28 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_58, %primals_59, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_28 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_28,), kwargs = {}) triton_poi_fused_convolution_relu_46 = async_compile.triton('triton_poi_fused_convolution_relu_46', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_46', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_46(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/i7/ci76hnnb4g5bneykrsulw5dbo2vg2lm2sy2uu4bdtmxyxosrxf3y.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_12 => cat_4 # Graph fragment: # %cat_4 : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_27, %relu_29, %relu_31, %relu_32], 1), kwargs = {}) triton_poi_fused_cat_47 = async_compile.triton('triton_poi_fused_cat_47', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_47', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_47(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((256*x1) + ((-128) + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-128) + x0), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 448, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((64*x1) + ((-384) + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-384) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 512, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((64*x1) + ((-448) + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-448) + x0), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/le/clexfkiuwdfuykxgdvxetk7c6o5molfvgmbptehktwfrasjiv56h.py # Topologically Sorted Source Nodes: [conv2d_34, x2_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_34 => convolution_34 # x2_10 => relu_34 # Graph fragment: # %convolution_34 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_4, %primals_70, %primals_71, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_34 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_34,), kwargs = {}) triton_poi_fused_convolution_relu_48 = async_compile.triton('triton_poi_fused_convolution_relu_48', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_48', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_48(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 144 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/df/cdfc2eokvb2jx2hvl4pswhmiov2w56yp7hahekphpjtmfstsgsfo.py # Topologically Sorted Source Nodes: [conv2d_36, x3_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_36 => convolution_36 # x3_10 => relu_36 # Graph fragment: # %convolution_36 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_4, %primals_74, %primals_75, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_36 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_36,), kwargs = {}) triton_poi_fused_convolution_relu_49 = async_compile.triton('triton_poi_fused_convolution_relu_49', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_49', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_49(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kw/ckwzryqvfnvx6sido7zr5yt6rmkwwkljvsouxwvdudtuupjzt77j.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_13 => cat_5 # Graph fragment: # %cat_5 : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_33, %relu_35, %relu_37, %relu_38], 1), kwargs = {}) triton_poi_fused_cat_50 = async_compile.triton('triton_poi_fused_cat_50', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_50', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_50(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 33792 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 528 x1 = (xindex // 528) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 112, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((112*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 400, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((288*x1) + ((-112) + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-112) + x0), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 464, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((64*x1) + ((-400) + x0)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-400) + x0), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 528, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((64*x1) + ((-464) + x0)), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-464) + x0), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wh/cwhzuuauhtp2rimwnoxyesvgp5eoiywzqwq75nunoyui6ppz2p7e.py # Topologically Sorted Source Nodes: [conv2d_40, x2_12], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_40 => convolution_40 # x2_12 => relu_40 # Graph fragment: # %convolution_40 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_5, %primals_82, %primals_83, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_40 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_40,), kwargs = {}) triton_poi_fused_convolution_relu_51 = async_compile.triton('triton_poi_fused_convolution_relu_51', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_51', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_51(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 10240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rb/crbmdtls47cyfpwd2drv5ik3ytb73a3m5nlhtjt7systlwadwsxk.py # Topologically Sorted Source Nodes: [x4_12], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x4_12 => getitem_18, getitem_19 # Graph fragment: # %getitem_18 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_9, 0), kwargs = {}) # %getitem_19 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_9, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_52 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_52', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_52', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_52(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 33792 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 2112) % 4 x1 = (xindex // 528) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-2640) + x6), tmp10 & xmask, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-2112) + x6), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-1584) + x6), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-528) + x6), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (528 + x6), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1584 + x6), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2112 + x6), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2640 + x6), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, xmask) tl.store(out_ptr1 + (x6), tmp76, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j7/cj7omyr5eumbbo3ghurrx4uiznmrvgsgo3szyhz7f22sof2bfpp5.py # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_14 => cat_6 # Graph fragment: # %cat_6 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_39, %relu_41, %relu_43, %relu_44], 1), kwargs = {}) triton_poi_fused_cat_53 = async_compile.triton('triton_poi_fused_cat_53', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_53', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_53(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 53248 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 832 x1 = (xindex // 832) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 576, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((320*x1) + ((-256) + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-256) + x0), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 704, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((128*x1) + ((-576) + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-576) + x0), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 832, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((128*x1) + ((-704) + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-704) + x0), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fz/cfzperkeweeogswbr22bggx3zelzciswzdewrdj27kmkwupojfyq.py # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_15 => getitem_20, getitem_21 # Graph fragment: # %getitem_20 : [num_users=5] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_10, 0), kwargs = {}) # %getitem_21 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_10, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_54 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_54', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_54', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_54(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 1664) % 2 x1 = (xindex // 832) % 2 x0 = xindex % 832 x5 = (xindex // 1664) x6 = xindex tmp0 = 2*x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (1664*x1) + (6656*x5)), tmp10 & xmask, other=float("-inf")) tmp12 = 1 + (2*x1) tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (832 + x0 + (1664*x1) + (6656*x5)), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + (2*x1) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (1664 + x0 + (1664*x1) + (6656*x5)), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + (2*x2) tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3328 + x0 + (1664*x1) + (6656*x5)), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (4160 + x0 + (1664*x1) + (6656*x5)), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4992 + x0 + (1664*x1) + (6656*x5)), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + (2*x2) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (6656 + x0 + (1664*x1) + (6656*x5)), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (7488 + x0 + (1664*x1) + (6656*x5)), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (8320 + x0 + (1664*x1) + (6656*x5)), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, xmask) tl.store(out_ptr1 + (x6), tmp76, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yu/cyulou773icgrpkg5ifmmtbznec4d3zm3euwicnk3tdnldmawh6d.py # Topologically Sorted Source Nodes: [conv2d_46, x2_14], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_46 => convolution_46 # x2_14 => relu_46 # Graph fragment: # %convolution_46 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_20, %primals_94, %primals_95, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_46 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_46,), kwargs = {}) triton_poi_fused_convolution_relu_55 = async_compile.triton('triton_poi_fused_convolution_relu_55', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_55', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_55(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rm/crmtc3ii4m7vrbryghimsoxmdvssrg3zcgkyeovj6h5ep4xcn2kw.py # Topologically Sorted Source Nodes: [conv2d_48, x3_14], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_48 => convolution_48 # x3_14 => relu_48 # Graph fragment: # %convolution_48 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_20, %primals_98, %primals_99, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_48 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_48,), kwargs = {}) triton_poi_fused_convolution_relu_56 = async_compile.triton('triton_poi_fused_convolution_relu_56', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_56', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_56(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/si/csiyfh5ukmnggrtqvslo4xwp3oswuxvvz2h6ftt5gsbjiuwtrsa4.py # Topologically Sorted Source Nodes: [x4_14], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x4_14 => getitem_22, getitem_23 # Graph fragment: # %getitem_22 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_11, 0), kwargs = {}) # %getitem_23 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_11, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_57 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_57', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_57', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_57(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 1664) % 2 x1 = (xindex // 832) % 2 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-2496) + x6), tmp10 & xmask, other=float("-inf")) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-1664) + x6), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-832) + x6), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-832) + x6), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33 & xmask, other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (832 + x6), tmp36 & xmask, other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (832 + x6), tmp43 & xmask, other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (1664 + x6), tmp46 & xmask, other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2496 + x6), tmp49 & xmask, other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + (x6), tmp51, xmask) tl.store(out_ptr1 + (x6), tmp76, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k5/ck5sqqhm73amr3yvvq45m4nxahyuc2dsxjz26zqnknvllju6ljix.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_16 => cat_7 # Graph fragment: # %cat_7 : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_45, %relu_47, %relu_49, %relu_50], 1), kwargs = {}) triton_poi_fused_cat_58 = async_compile.triton('triton_poi_fused_cat_58', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_58', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_58(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 832 x1 = (xindex // 832) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 576, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((320*x1) + ((-256) + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-256) + x0), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 704, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((128*x1) + ((-576) + x0)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-576) + x0), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 832, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((128*x1) + ((-704) + x0)), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-704) + x0), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x2), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/e5/ce5zh4uhpcmqaucsgvelozz7vyzfmzh7funrwgdn6jxpd3srrxei.py # Topologically Sorted Source Nodes: [conv2d_52, x2_16], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_52 => convolution_52 # x2_16 => relu_52 # Graph fragment: # %convolution_52 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_7, %primals_106, %primals_107, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_52 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_52,), kwargs = {}) triton_poi_fused_convolution_relu_59 = async_compile.triton('triton_poi_fused_convolution_relu_59', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_59', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_59(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lw/clw4ehcugbam35knzj4zq56dzaili5avtjw6rjg7oudlov34ltvz.py # Topologically Sorted Source Nodes: [conv2d_54, x3_16], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_54 => convolution_54 # x3_16 => relu_54 # Graph fragment: # %convolution_54 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_7, %primals_110, %primals_111, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_54 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_54,), kwargs = {}) triton_poi_fused_convolution_relu_60 = async_compile.triton('triton_poi_fused_convolution_relu_60', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_60', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_60(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dl/cdlnoan7stswaxhnymxhe35lfdmfjkaid4tmwkdolvpmige2sv5z.py # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_17 => cat_8 # Graph fragment: # %cat_8 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_51, %relu_53, %relu_55, %relu_56], 1), kwargs = {}) triton_poi_fused_cat_61 = async_compile.triton('triton_poi_fused_cat_61', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_61', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_61(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 1024 x0 = xindex % 4 x2 = (xindex // 4096) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((384*x0) + (1536*x2) + x1), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 768, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((384*x0) + (1536*x2) + ((-384) + x1)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-384) + x1), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 896, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((128*x0) + (512*x2) + ((-768) + x1)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-768) + x1), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 1024, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((128*x0) + (512*x2) + ((-896) + x1)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-896) + x1), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x3), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wt/cwte7ltifxhpeiqrss57vhguwaxe6yeoczwcaqvzotuybga5wf5z.py # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.mean] # Source node to ATen node mapping: # x_18 => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%cat_8, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_62 = async_compile.triton('triton_poi_fused_mean_62', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_62', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_62(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zi/cziz47ual6zvsdvme2n4iplf7lnqykrv3aevuybqjl4cs4ja6wan.py # Topologically Sorted Source Nodes: [conv2d_56, x4_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_56 => convolution_56 # x4_17 => relu_56 # Graph fragment: # %convolution_56 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_24, %primals_114, %primals_115, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_56 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_56,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_56, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_63 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_63', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_63', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_63(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gl/cgltiwxrw4cfdvnoaikqnt5jlkfkf5elsljyqtlizualgrq7j3uj.py # Topologically Sorted Source Nodes: [conv2d_53, x2_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_53 => convolution_53 # x2_17 => relu_53 # Graph fragment: # %convolution_53 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_52, %primals_108, %primals_109, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_53 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_53,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_53, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_64 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_64', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_64', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_64(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3x/c3xetihmevqmyjos6uxfi5px3suxu2eul3xe5ic32v5zgzavwnt6.py # Topologically Sorted Source Nodes: [conv2d_47, x2_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_47 => convolution_47 # x2_15 => relu_47 # Graph fragment: # %convolution_47 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_46, %primals_96, %primals_97, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_47 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_47,), kwargs = {}) # %le_9 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_47, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_65 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_65', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_65', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_65(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k7/ck7cw6lsxp5jq7xpnsdokylu7nstfohnbk764zseasd264fknrin.py # Topologically Sorted Source Nodes: [conv2d_45, x1_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_45 => convolution_45 # x1_7 => relu_45 # Graph fragment: # %convolution_45 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_20, %primals_92, %primals_93, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_45 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_45,), kwargs = {}) # %le_11 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_45, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_66 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_66', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_66', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_66(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/iu/ciuf4cxmfjgvmxfipl5mtgmcz3uwk5nopzcrzobbv6jn3pwi6jnk.py # Topologically Sorted Source Nodes: [conv2d_44, x4_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_44 => convolution_44 # x4_13 => relu_44 # Graph fragment: # %convolution_44 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_18, %primals_90, %primals_91, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_44 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_44,), kwargs = {}) # %le_12 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_44, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_67 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_67', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_67', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_67(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/es/cesq67vhv6f4y35nm66dkm5ffhgibnfllkvj3h4j55ujt2e6xu2p.py # Topologically Sorted Source Nodes: [conv2d_41, x2_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_41 => convolution_41 # x2_13 => relu_41 # Graph fragment: # %convolution_41 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_40, %primals_84, %primals_85, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_41 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_41,), kwargs = {}) # %le_15 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_41, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_68 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_68', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_68', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_68(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wc/cwc2pnnnubz5yfzm3tuz4mqdyhdersxki7jvjsi3e2ylmaad2iq2.py # Topologically Sorted Source Nodes: [conv2d_39, x1_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_39 => convolution_39 # x1_6 => relu_39 # Graph fragment: # %convolution_39 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_5, %primals_80, %primals_81, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_39 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_39,), kwargs = {}) # %le_17 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_39, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_69 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_69', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_69', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_69(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6r/c6rtkppfsq3ck42c7eiee433wdvzsqcom5ptezsrwbnpa5k6inec.py # Topologically Sorted Source Nodes: [conv2d_38, x4_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_38 => convolution_38 # x4_11 => relu_38 # Graph fragment: # %convolution_38 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_16, %primals_78, %primals_79, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_38 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_38,), kwargs = {}) # %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_38, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_70 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_70', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_70', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_70(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qh/cqhbyb3jza5c6pfe2uu2idkz7gvtzqwrsrowaulmth7wrrnm5bmj.py # Topologically Sorted Source Nodes: [conv2d_35, x2_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_35 => convolution_35 # x2_11 => relu_35 # Graph fragment: # %convolution_35 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_34, %primals_72, %primals_73, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_35 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_35,), kwargs = {}) # %le_21 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_35, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_71 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_71', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_71', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_71(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 288 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yy/cyy5s66j2lmz7cqmsx4wgqgr43q4shruvzh2fhqrdwwphpudq3dv.py # Topologically Sorted Source Nodes: [conv2d_33, x1_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_33 => convolution_33 # x1_5 => relu_33 # Graph fragment: # %convolution_33 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_4, %primals_68, %primals_69, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_33 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_33,), kwargs = {}) # %le_23 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_33, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_72 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_72', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_72', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_72(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 7168 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 112 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gg/cggp3k4bfr4vtmgy2q7glwtyujidy2bgfiw6ppzygp56fr4wvbsg.py # Topologically Sorted Source Nodes: [conv2d_23, x2_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_23 => convolution_23 # x2_7 => relu_23 # Graph fragment: # %convolution_23 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_22, %primals_48, %primals_49, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_23 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_23,), kwargs = {}) # %le_33 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_23, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_73 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_73', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_73', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_73(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 14336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 224 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hs/chsjljr6pudaoylmbbufcq4xodxds5jofu7p5bgml6lldydtvlza.py # Topologically Sorted Source Nodes: [conv2d_21, x1_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_21 => convolution_21 # x1_3 => relu_21 # Graph fragment: # %convolution_21 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_44, %primals_45, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_21 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_21,), kwargs = {}) # %le_35 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_21, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_74 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_74', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_74', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_74(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 10240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bi/cbifj4cjh2zksrk37z7oeso5uqazfzs4iczgub2fiqcirfel56v7.py # Topologically Sorted Source Nodes: [conv2d_19, x3_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_19 => convolution_19 # x3_5 => relu_19 # Graph fragment: # %convolution_19 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_18, %primals_40, %primals_41, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_19 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_19,), kwargs = {}) # %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_19, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_75 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_75', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_75', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_75(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dk/cdkecmjoapzid2j3ciuyicgbyjvqfnncjsmxkwccs44bcqts56lc.py # Topologically Sorted Source Nodes: [conv2d_17, x2_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_17 => convolution_17 # x2_5 => relu_17 # Graph fragment: # %convolution_17 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_16, %primals_36, %primals_37, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_17 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_17,), kwargs = {}) # %le_39 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_17, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_76 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_76', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_76', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_76(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 208 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jy/cjyw7spqv5mighzgvgorjxvhto4m5saiorix65inqmmcotx5dtex.py # Topologically Sorted Source Nodes: [conv2d_15, x1_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_15 => convolution_15 # x1_2 => relu_15 # Graph fragment: # %convolution_15 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_8, %primals_32, %primals_33, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_15 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_15,), kwargs = {}) # %le_41 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_15, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_77 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_77', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_77', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_77(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ni/cni4c37oksjkfgqg5btilm4l2o5q5yfkzqxbxunwsk7rr4hvcmlf.py # Topologically Sorted Source Nodes: [conv2d_14, x4_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_14 => convolution_14 # x4_3 => relu_14 # Graph fragment: # %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_30, %primals_31, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_14,), kwargs = {}) # %le_42 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_14, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_78 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_78', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_78', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_78(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/u2/cu2t3tr57xkiepjo7rgx53tudd2avkk7vccqwqtpnsjby6vcosb4.py # Topologically Sorted Source Nodes: [conv2d_13, x3_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # x3_3 => relu_13 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_12, %primals_28, %primals_29, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_13,), kwargs = {}) # %le_43 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_13, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_79 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_79', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_79', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_79(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 24576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ap/capjg7nttwbils43jv7i5wbzys4nrujc7oepl25xpawllcy7aibo.py # Topologically Sorted Source Nodes: [conv2d_11, x2_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # x2_3 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) # %le_45 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_80 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_80', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_80', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_80(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/c2/cc2z4vsqpr53obzqqlh4ptoyabe2k34fzh4ib2jfop45kfoh4od5.py # Topologically Sorted Source Nodes: [conv2d_9, x1_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_9 => convolution_9 # x1_1 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %le_47 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_81 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_81', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_81', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_81(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/y2/cy2tnfmwxenheg2tczzykpljugueadnpuastkpfrzspgiihzujm6.py # Topologically Sorted Source Nodes: [conv2d_8, x4_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # x4_1 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %le_48 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_8, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_82 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_82', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_82', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_82(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117 = args args.clear() assert_size_stride(primals_1, (64, 3, 7, 7), (147, 49, 7, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (192, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (192, ), (1, )) assert_size_stride(primals_8, (64, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (96, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_11, (96, ), (1, )) assert_size_stride(primals_12, (128, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (16, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_15, (16, ), (1, )) assert_size_stride(primals_16, (32, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_17, (32, ), (1, )) assert_size_stride(primals_18, (32, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_19, (32, ), (1, )) assert_size_stride(primals_20, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_21, (128, ), (1, )) assert_size_stride(primals_22, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_23, (128, ), (1, )) assert_size_stride(primals_24, (192, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_25, (192, ), (1, )) assert_size_stride(primals_26, (32, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_27, (32, ), (1, )) assert_size_stride(primals_28, (96, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_29, (96, ), (1, )) assert_size_stride(primals_30, (64, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_31, (64, ), (1, )) assert_size_stride(primals_32, (192, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_33, (192, ), (1, )) assert_size_stride(primals_34, (96, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_35, (96, ), (1, )) assert_size_stride(primals_36, (208, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_37, (208, ), (1, )) assert_size_stride(primals_38, (16, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_39, (16, ), (1, )) assert_size_stride(primals_40, (48, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_41, (48, ), (1, )) assert_size_stride(primals_42, (64, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_43, (64, ), (1, )) assert_size_stride(primals_44, (160, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_45, (160, ), (1, )) assert_size_stride(primals_46, (112, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_47, (112, ), (1, )) assert_size_stride(primals_48, (224, 112, 3, 3), (1008, 9, 3, 1)) assert_size_stride(primals_49, (224, ), (1, )) assert_size_stride(primals_50, (24, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_51, (24, ), (1, )) assert_size_stride(primals_52, (64, 24, 5, 5), (600, 25, 5, 1)) assert_size_stride(primals_53, (64, ), (1, )) assert_size_stride(primals_54, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_55, (64, ), (1, )) assert_size_stride(primals_56, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_57, (128, ), (1, )) assert_size_stride(primals_58, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_59, (128, ), (1, )) assert_size_stride(primals_60, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_61, (256, ), (1, )) assert_size_stride(primals_62, (24, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_63, (24, ), (1, )) assert_size_stride(primals_64, (64, 24, 5, 5), (600, 25, 5, 1)) assert_size_stride(primals_65, (64, ), (1, )) assert_size_stride(primals_66, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_67, (64, ), (1, )) assert_size_stride(primals_68, (112, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_69, (112, ), (1, )) assert_size_stride(primals_70, (144, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_71, (144, ), (1, )) assert_size_stride(primals_72, (288, 144, 3, 3), (1296, 9, 3, 1)) assert_size_stride(primals_73, (288, ), (1, )) assert_size_stride(primals_74, (32, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_75, (32, ), (1, )) assert_size_stride(primals_76, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_77, (64, ), (1, )) assert_size_stride(primals_78, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_79, (64, ), (1, )) assert_size_stride(primals_80, (256, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_81, (256, ), (1, )) assert_size_stride(primals_82, (160, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_83, (160, ), (1, )) assert_size_stride(primals_84, (320, 160, 3, 3), (1440, 9, 3, 1)) assert_size_stride(primals_85, (320, ), (1, )) assert_size_stride(primals_86, (32, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_87, (32, ), (1, )) assert_size_stride(primals_88, (128, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_89, (128, ), (1, )) assert_size_stride(primals_90, (128, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_91, (128, ), (1, )) assert_size_stride(primals_92, (256, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_93, (256, ), (1, )) assert_size_stride(primals_94, (160, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_95, (160, ), (1, )) assert_size_stride(primals_96, (320, 160, 3, 3), (1440, 9, 3, 1)) assert_size_stride(primals_97, (320, ), (1, )) assert_size_stride(primals_98, (32, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_99, (32, ), (1, )) assert_size_stride(primals_100, (128, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_101, (128, ), (1, )) assert_size_stride(primals_102, (128, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_103, (128, ), (1, )) assert_size_stride(primals_104, (384, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_105, (384, ), (1, )) assert_size_stride(primals_106, (192, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_107, (192, ), (1, )) assert_size_stride(primals_108, (384, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_109, (384, ), (1, )) assert_size_stride(primals_110, (48, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_111, (48, ), (1, )) assert_size_stride(primals_112, (128, 48, 5, 5), (1200, 25, 5, 1)) assert_size_stride(primals_113, (128, ), (1, )) assert_size_stride(primals_114, (128, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_115, (128, ), (1, )) assert_size_stride(primals_116, (61, 1024), (1024, 1)) assert_size_stride(primals_117, (61, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 7, 7), (147, 1, 21, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 192, 49, grid=grid(192, 49), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((192, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf2, 12288, 9, grid=grid(12288, 9), stream=stream0) del primals_6 buf3 = empty_strided_cuda((128, 96, 3, 3), (864, 1, 288, 96), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_12, buf3, 12288, 9, grid=grid(12288, 9), stream=stream0) del primals_12 buf4 = empty_strided_cuda((32, 16, 5, 5), (400, 1, 80, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_16, buf4, 512, 25, grid=grid(512, 25), stream=stream0) del primals_16 buf5 = empty_strided_cuda((192, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_24, buf5, 24576, 9, grid=grid(24576, 9), stream=stream0) del primals_24 buf6 = empty_strided_cuda((96, 32, 5, 5), (800, 1, 160, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_28, buf6, 3072, 25, grid=grid(3072, 25), stream=stream0) del primals_28 buf7 = empty_strided_cuda((208, 96, 3, 3), (864, 1, 288, 96), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_7.run(primals_36, buf7, 19968, 9, grid=grid(19968, 9), stream=stream0) del primals_36 buf8 = empty_strided_cuda((48, 16, 5, 5), (400, 1, 80, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_40, buf8, 768, 25, grid=grid(768, 25), stream=stream0) del primals_40 buf9 = empty_strided_cuda((224, 112, 3, 3), (1008, 1, 336, 112), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_9.run(primals_48, buf9, 25088, 9, grid=grid(25088, 9), stream=stream0) del primals_48 buf10 = empty_strided_cuda((64, 24, 5, 5), (600, 1, 120, 24), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_10.run(primals_52, buf10, 1536, 25, grid=grid(1536, 25), stream=stream0) del primals_52 buf11 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_11.run(primals_60, buf11, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_60 buf12 = empty_strided_cuda((64, 24, 5, 5), (600, 1, 120, 24), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_10.run(primals_64, buf12, 1536, 25, grid=grid(1536, 25), stream=stream0) del primals_64 buf13 = empty_strided_cuda((288, 144, 3, 3), (1296, 1, 432, 144), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_12.run(primals_72, buf13, 41472, 9, grid=grid(41472, 9), stream=stream0) del primals_72 buf14 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_13.run(primals_76, buf14, 2048, 25, grid=grid(2048, 25), stream=stream0) del primals_76 buf15 = empty_strided_cuda((320, 160, 3, 3), (1440, 1, 480, 160), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_14.run(primals_84, buf15, 51200, 9, grid=grid(51200, 9), stream=stream0) del primals_84 buf16 = empty_strided_cuda((128, 32, 5, 5), (800, 1, 160, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_15.run(primals_88, buf16, 4096, 25, grid=grid(4096, 25), stream=stream0) del primals_88 buf17 = empty_strided_cuda((320, 160, 3, 3), (1440, 1, 480, 160), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_14.run(primals_96, buf17, 51200, 9, grid=grid(51200, 9), stream=stream0) del primals_96 buf18 = empty_strided_cuda((128, 32, 5, 5), (800, 1, 160, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_15.run(primals_100, buf18, 4096, 25, grid=grid(4096, 25), stream=stream0) del primals_100 buf19 = empty_strided_cuda((384, 192, 3, 3), (1728, 1, 576, 192), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_16.run(primals_108, buf19, 73728, 9, grid=grid(73728, 9), stream=stream0) del primals_108 buf20 = empty_strided_cuda((128, 48, 5, 5), (1200, 1, 240, 48), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_17.run(primals_112, buf20, 6144, 25, grid=grid(6144, 25), stream=stream0) del primals_112 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_18.run(buf22, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 buf23 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) buf24 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_19.run(buf22, buf23, buf24, 65536, grid=grid(65536), stream=stream0) buf25 = empty_strided_cuda((4, 1, 65, 16, 16), (16640, 16640, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_20.run(buf23, buf25, 1024, 65, grid=grid(1024, 65), stream=stream0) buf26 = empty_strided_cuda((4, 1, 64, 16, 16), (16384, 16384, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.avg_pool3d] triton_poi_fused_avg_pool3d_21.run(buf25, buf26, 65536, grid=grid(65536), stream=stream0) buf27 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mul, aten.add, aten.pow, aten.div] triton_poi_fused_add_div_mul_pow_22.run(buf23, buf26, buf27, 1024, 64, grid=grid(1024, 64), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_23.run(buf29, primals_5, 65536, grid=grid(65536), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 192, 16, 16), (49152, 1, 3072, 192)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_24.run(buf31, primals_7, 196608, grid=grid(196608), stream=stream0) del primals_7 buf32 = empty_strided_cuda((4, 1, 193, 16, 16), (49408, 49408, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_25.run(buf31, buf32, 1024, 193, grid=grid(1024, 193), stream=stream0) buf33 = empty_strided_cuda((4, 1, 192, 16, 16), (49152, 49152, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.avg_pool3d] triton_poi_fused_avg_pool3d_26.run(buf32, buf33, 196608, grid=grid(196608), stream=stream0) buf34 = empty_strided_cuda((4, 192, 16, 16), (49152, 1, 3072, 192), torch.float32) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.relu, aten.mul, aten.add, aten.pow, aten.div] triton_poi_fused_add_div_mul_pow_relu_27.run(buf31, buf33, buf34, 1024, 192, grid=grid(1024, 192), stream=stream0) buf35 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.float32) buf36 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.int8) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_28.run(buf34, buf35, buf36, 49152, grid=grid(49152), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf37 = extern_kernels.convolution(buf35, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 64, 8, 8), (4096, 1, 512, 64)) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf35, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 96, 8, 8), (6144, 1, 768, 96)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_29.run(buf39, primals_11, 24576, grid=grid(24576), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf40 = extern_kernels.convolution(buf39, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 128, 8, 8), (8192, 1, 1024, 128)) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf41 = extern_kernels.convolution(buf35, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 16, 8, 8), (1024, 1, 128, 16)) buf42 = buf41; del buf41 # reuse # Topologically Sorted Source Nodes: [conv2d_6, x3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_30.run(buf42, primals_15, 4096, grid=grid(4096), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf42, buf4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 32, 8, 8), (2048, 1, 256, 32)) buf44 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.float32) buf45 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.int8) # Topologically Sorted Source Nodes: [x4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_31.run(buf35, buf44, buf45, 49152, grid=grid(49152), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf44, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 32, 8, 8), (2048, 1, 256, 32)) buf47 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.cat] triton_poi_fused_cat_32.run(buf37, primals_9, buf40, primals_13, buf43, primals_17, buf46, primals_19, buf47, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf48 = extern_kernels.convolution(buf47, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 128, 8, 8), (8192, 1, 1024, 128)) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf49 = extern_kernels.convolution(buf47, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf49, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf50 = buf49; del buf49 # reuse # Topologically Sorted Source Nodes: [conv2d_10, x2_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_33.run(buf50, primals_23, 32768, grid=grid(32768), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf51 = extern_kernels.convolution(buf50, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 192, 8, 8), (12288, 1, 1536, 192)) # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf52 = extern_kernels.convolution(buf47, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 32, 8, 8), (2048, 1, 256, 32)) buf53 = buf52; del buf52 # reuse # Topologically Sorted Source Nodes: [conv2d_12, x3_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_34.run(buf53, primals_27, 8192, grid=grid(8192), stream=stream0) del primals_27 # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf54 = extern_kernels.convolution(buf53, buf6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 96, 8, 8), (6144, 1, 768, 96)) buf55 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf56 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [x4_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_35.run(buf47, buf55, buf56, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf57 = extern_kernels.convolution(buf55, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 64, 8, 8), (4096, 1, 512, 64)) buf58 = empty_strided_cuda((4, 480, 8, 8), (30720, 1, 3840, 480), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.cat] triton_poi_fused_cat_36.run(buf48, primals_21, buf51, primals_25, buf54, primals_29, buf57, primals_31, buf58, 122880, grid=grid(122880), stream=stream0) buf59 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.float32) buf60 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.int8) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_37.run(buf58, buf59, buf60, 30720, grid=grid(30720), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf61 = extern_kernels.convolution(buf59, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 192, 4, 4), (3072, 1, 768, 192)) # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] buf62 = extern_kernels.convolution(buf59, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 96, 4, 4), (1536, 1, 384, 96)) buf63 = buf62; del buf62 # reuse # Topologically Sorted Source Nodes: [conv2d_16, x2_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_38.run(buf63, primals_35, 6144, grid=grid(6144), stream=stream0) del primals_35 # Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution] buf64 = extern_kernels.convolution(buf63, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 208, 4, 4), (3328, 1, 832, 208)) # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] buf65 = extern_kernels.convolution(buf59, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 16, 4, 4), (256, 1, 64, 16)) buf66 = buf65; del buf65 # reuse # Topologically Sorted Source Nodes: [conv2d_18, x3_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_39.run(buf66, primals_39, 1024, grid=grid(1024), stream=stream0) del primals_39 # Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution] buf67 = extern_kernels.convolution(buf66, buf8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 48, 4, 4), (768, 1, 192, 48)) buf68 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.float32) buf69 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.int8) # Topologically Sorted Source Nodes: [x4_4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_40.run(buf59, buf68, buf69, 30720, grid=grid(30720), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] buf70 = extern_kernels.convolution(buf68, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 64, 4, 4), (1024, 1, 256, 64)) buf71 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.cat] triton_poi_fused_cat_41.run(buf61, primals_33, buf64, primals_37, buf67, primals_41, buf70, primals_43, buf71, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution] buf72 = extern_kernels.convolution(buf71, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf72, (4, 160, 4, 4), (2560, 1, 640, 160)) # Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution] buf73 = extern_kernels.convolution(buf71, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf73, (4, 112, 4, 4), (1792, 1, 448, 112)) buf74 = buf73; del buf73 # reuse # Topologically Sorted Source Nodes: [conv2d_22, x2_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_42.run(buf74, primals_47, 7168, grid=grid(7168), stream=stream0) del primals_47 # Topologically Sorted Source Nodes: [conv2d_23], Original ATen: [aten.convolution] buf75 = extern_kernels.convolution(buf74, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf75, (4, 224, 4, 4), (3584, 1, 896, 224)) # Topologically Sorted Source Nodes: [conv2d_24], Original ATen: [aten.convolution] buf76 = extern_kernels.convolution(buf71, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf76, (4, 24, 4, 4), (384, 1, 96, 24)) buf77 = buf76; del buf76 # reuse # Topologically Sorted Source Nodes: [conv2d_24, x3_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_43.run(buf77, primals_51, 1536, grid=grid(1536), stream=stream0) del primals_51 # Topologically Sorted Source Nodes: [conv2d_25], Original ATen: [aten.convolution] buf78 = extern_kernels.convolution(buf77, buf10, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf78, (4, 64, 4, 4), (1024, 1, 256, 64)) buf79 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf80 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [x4_6], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_44.run(buf71, buf79, buf80, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_26], Original ATen: [aten.convolution] buf81 = extern_kernels.convolution(buf79, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf81, (4, 64, 4, 4), (1024, 1, 256, 64)) buf82 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.cat] triton_poi_fused_cat_45.run(buf72, primals_45, buf75, primals_49, buf78, primals_53, buf81, primals_55, buf82, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_27], Original ATen: [aten.convolution] buf83 = extern_kernels.convolution(buf82, primals_56, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 4, 4), (2048, 1, 512, 128)) # Topologically Sorted Source Nodes: [conv2d_28], Original ATen: [aten.convolution] buf84 = extern_kernels.convolution(buf82, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf84, (4, 128, 4, 4), (2048, 1, 512, 128)) buf85 = buf84; del buf84 # reuse # Topologically Sorted Source Nodes: [conv2d_28, x2_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_46.run(buf85, primals_59, 8192, grid=grid(8192), stream=stream0) del primals_59 # Topologically Sorted Source Nodes: [conv2d_29], Original ATen: [aten.convolution] buf86 = extern_kernels.convolution(buf85, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 256, 4, 4), (4096, 1, 1024, 256)) # Topologically Sorted Source Nodes: [conv2d_30], Original ATen: [aten.convolution] buf87 = extern_kernels.convolution(buf82, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf87, (4, 24, 4, 4), (384, 1, 96, 24)) buf88 = buf87; del buf87 # reuse # Topologically Sorted Source Nodes: [conv2d_30, x3_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_43.run(buf88, primals_63, 1536, grid=grid(1536), stream=stream0) del primals_63 # Topologically Sorted Source Nodes: [conv2d_31], Original ATen: [aten.convolution] buf89 = extern_kernels.convolution(buf88, buf12, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf89, (4, 64, 4, 4), (1024, 1, 256, 64)) buf90 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf91 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [x4_8], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_44.run(buf82, buf90, buf91, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_32], Original ATen: [aten.convolution] buf92 = extern_kernels.convolution(buf90, primals_66, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf92, (4, 64, 4, 4), (1024, 1, 256, 64)) buf93 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.cat] triton_poi_fused_cat_47.run(buf83, primals_57, buf86, primals_61, buf89, primals_65, buf92, primals_67, buf93, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_33], Original ATen: [aten.convolution] buf94 = extern_kernels.convolution(buf93, primals_68, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf94, (4, 112, 4, 4), (1792, 1, 448, 112)) # Topologically Sorted Source Nodes: [conv2d_34], Original ATen: [aten.convolution] buf95 = extern_kernels.convolution(buf93, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf95, (4, 144, 4, 4), (2304, 1, 576, 144)) buf96 = buf95; del buf95 # reuse # Topologically Sorted Source Nodes: [conv2d_34, x2_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_48.run(buf96, primals_71, 9216, grid=grid(9216), stream=stream0) del primals_71 # Topologically Sorted Source Nodes: [conv2d_35], Original ATen: [aten.convolution] buf97 = extern_kernels.convolution(buf96, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf97, (4, 288, 4, 4), (4608, 1, 1152, 288)) # Topologically Sorted Source Nodes: [conv2d_36], Original ATen: [aten.convolution] buf98 = extern_kernels.convolution(buf93, primals_74, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf98, (4, 32, 4, 4), (512, 1, 128, 32)) buf99 = buf98; del buf98 # reuse # Topologically Sorted Source Nodes: [conv2d_36, x3_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_49.run(buf99, primals_75, 2048, grid=grid(2048), stream=stream0) del primals_75 # Topologically Sorted Source Nodes: [conv2d_37], Original ATen: [aten.convolution] buf100 = extern_kernels.convolution(buf99, buf14, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf100, (4, 64, 4, 4), (1024, 1, 256, 64)) buf101 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf102 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [x4_10], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_44.run(buf93, buf101, buf102, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_38], Original ATen: [aten.convolution] buf103 = extern_kernels.convolution(buf101, primals_78, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf103, (4, 64, 4, 4), (1024, 1, 256, 64)) buf104 = empty_strided_cuda((4, 528, 4, 4), (8448, 1, 2112, 528), torch.float32) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.cat] triton_poi_fused_cat_50.run(buf94, primals_69, buf97, primals_73, buf100, primals_77, buf103, primals_79, buf104, 33792, grid=grid(33792), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_39], Original ATen: [aten.convolution] buf105 = extern_kernels.convolution(buf104, primals_80, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf105, (4, 256, 4, 4), (4096, 1, 1024, 256)) # Topologically Sorted Source Nodes: [conv2d_40], Original ATen: [aten.convolution] buf106 = extern_kernels.convolution(buf104, primals_82, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf106, (4, 160, 4, 4), (2560, 1, 640, 160)) buf107 = buf106; del buf106 # reuse # Topologically Sorted Source Nodes: [conv2d_40, x2_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_51.run(buf107, primals_83, 10240, grid=grid(10240), stream=stream0) del primals_83 # Topologically Sorted Source Nodes: [conv2d_41], Original ATen: [aten.convolution] buf108 = extern_kernels.convolution(buf107, buf15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf108, (4, 320, 4, 4), (5120, 1, 1280, 320)) # Topologically Sorted Source Nodes: [conv2d_42], Original ATen: [aten.convolution] buf109 = extern_kernels.convolution(buf104, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 32, 4, 4), (512, 1, 128, 32)) buf110 = buf109; del buf109 # reuse # Topologically Sorted Source Nodes: [conv2d_42, x3_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_49.run(buf110, primals_87, 2048, grid=grid(2048), stream=stream0) del primals_87 # Topologically Sorted Source Nodes: [conv2d_43], Original ATen: [aten.convolution] buf111 = extern_kernels.convolution(buf110, buf16, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf111, (4, 128, 4, 4), (2048, 1, 512, 128)) buf112 = empty_strided_cuda((4, 528, 4, 4), (8448, 1, 2112, 528), torch.float32) buf113 = empty_strided_cuda((4, 528, 4, 4), (8448, 1, 2112, 528), torch.int8) # Topologically Sorted Source Nodes: [x4_12], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_52.run(buf104, buf112, buf113, 33792, grid=grid(33792), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_44], Original ATen: [aten.convolution] buf114 = extern_kernels.convolution(buf112, primals_90, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf114, (4, 128, 4, 4), (2048, 1, 512, 128)) buf115 = empty_strided_cuda((4, 832, 4, 4), (13312, 1, 3328, 832), torch.float32) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.cat] triton_poi_fused_cat_53.run(buf105, primals_81, buf108, primals_85, buf111, primals_89, buf114, primals_91, buf115, 53248, grid=grid(53248), stream=stream0) buf116 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) buf117 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.int8) # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_54.run(buf115, buf116, buf117, 13312, grid=grid(13312), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_45], Original ATen: [aten.convolution] buf118 = extern_kernels.convolution(buf116, primals_92, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 256, 2, 2), (1024, 1, 512, 256)) # Topologically Sorted Source Nodes: [conv2d_46], Original ATen: [aten.convolution] buf119 = extern_kernels.convolution(buf116, primals_94, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf119, (4, 160, 2, 2), (640, 1, 320, 160)) buf120 = buf119; del buf119 # reuse # Topologically Sorted Source Nodes: [conv2d_46, x2_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_55.run(buf120, primals_95, 2560, grid=grid(2560), stream=stream0) del primals_95 # Topologically Sorted Source Nodes: [conv2d_47], Original ATen: [aten.convolution] buf121 = extern_kernels.convolution(buf120, buf17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 320, 2, 2), (1280, 1, 640, 320)) # Topologically Sorted Source Nodes: [conv2d_48], Original ATen: [aten.convolution] buf122 = extern_kernels.convolution(buf116, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf122, (4, 32, 2, 2), (128, 1, 64, 32)) buf123 = buf122; del buf122 # reuse # Topologically Sorted Source Nodes: [conv2d_48, x3_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_56.run(buf123, primals_99, 512, grid=grid(512), stream=stream0) del primals_99 # Topologically Sorted Source Nodes: [conv2d_49], Original ATen: [aten.convolution] buf124 = extern_kernels.convolution(buf123, buf18, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf124, (4, 128, 2, 2), (512, 1, 256, 128)) buf125 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) buf126 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.int8) # Topologically Sorted Source Nodes: [x4_14], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_57.run(buf116, buf125, buf126, 13312, grid=grid(13312), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_50], Original ATen: [aten.convolution] buf127 = extern_kernels.convolution(buf125, primals_102, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf127, (4, 128, 2, 2), (512, 1, 256, 128)) buf128 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.cat] triton_poi_fused_cat_58.run(buf118, primals_93, buf121, primals_97, buf124, primals_101, buf127, primals_103, buf128, 13312, grid=grid(13312), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_51], Original ATen: [aten.convolution] buf129 = extern_kernels.convolution(buf128, primals_104, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf129, (4, 384, 2, 2), (1536, 1, 768, 384)) # Topologically Sorted Source Nodes: [conv2d_52], Original ATen: [aten.convolution] buf130 = extern_kernels.convolution(buf128, primals_106, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf130, (4, 192, 2, 2), (768, 1, 384, 192)) buf131 = buf130; del buf130 # reuse # Topologically Sorted Source Nodes: [conv2d_52, x2_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_59.run(buf131, primals_107, 3072, grid=grid(3072), stream=stream0) del primals_107 # Topologically Sorted Source Nodes: [conv2d_53], Original ATen: [aten.convolution] buf132 = extern_kernels.convolution(buf131, buf19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf132, (4, 384, 2, 2), (1536, 1, 768, 384)) # Topologically Sorted Source Nodes: [conv2d_54], Original ATen: [aten.convolution] buf133 = extern_kernels.convolution(buf128, primals_110, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf133, (4, 48, 2, 2), (192, 1, 96, 48)) buf134 = buf133; del buf133 # reuse # Topologically Sorted Source Nodes: [conv2d_54, x3_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_60.run(buf134, primals_111, 768, grid=grid(768), stream=stream0) del primals_111 # Topologically Sorted Source Nodes: [conv2d_55], Original ATen: [aten.convolution] buf135 = extern_kernels.convolution(buf134, buf20, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf135, (4, 128, 2, 2), (512, 1, 256, 128)) buf136 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) buf137 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.int8) # Topologically Sorted Source Nodes: [x4_16], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_57.run(buf128, buf136, buf137, 13312, grid=grid(13312), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_56], Original ATen: [aten.convolution] buf138 = extern_kernels.convolution(buf136, primals_114, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf138, (4, 128, 2, 2), (512, 1, 256, 128)) buf139 = empty_strided_cuda((4, 1024, 2, 2), (4096, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.cat] triton_poi_fused_cat_61.run(buf129, primals_105, buf132, primals_109, buf135, primals_113, buf138, primals_115, buf139, 16384, grid=grid(16384), stream=stream0) buf140 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096), torch.float32) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.mean] triton_poi_fused_mean_62.run(buf139, buf140, 4096, grid=grid(4096), stream=stream0) del buf139 buf141 = empty_strided_cuda((4, 61), (61, 1), torch.float32) # Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.addmm] extern_kernels.addmm(primals_117, reinterpret_tensor(buf140, (4, 1024), (1024, 1), 0), reinterpret_tensor(primals_116, (1024, 61), (1, 1024), 0), alpha=1, beta=1, out=buf141) del primals_117 buf142 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_56, x4_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_63.run(buf138, primals_115, buf142, 2048, grid=grid(2048), stream=stream0) del buf138 del primals_115 buf143 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_55, x3_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_63.run(buf135, primals_113, buf143, 2048, grid=grid(2048), stream=stream0) del buf135 del primals_113 buf144 = empty_strided_cuda((4, 384, 2, 2), (1536, 1, 768, 384), torch.bool) # Topologically Sorted Source Nodes: [conv2d_53, x2_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_64.run(buf132, primals_109, buf144, 6144, grid=grid(6144), stream=stream0) del buf132 del primals_109 buf145 = empty_strided_cuda((4, 384, 2, 2), (1536, 1, 768, 384), torch.bool) # Topologically Sorted Source Nodes: [conv2d_51, x1_8], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_64.run(buf129, primals_105, buf145, 6144, grid=grid(6144), stream=stream0) del buf129 del primals_105 buf146 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_50, x4_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_63.run(buf127, primals_103, buf146, 2048, grid=grid(2048), stream=stream0) del buf127 del primals_103 buf147 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_49, x3_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_63.run(buf124, primals_101, buf147, 2048, grid=grid(2048), stream=stream0) del buf124 del primals_101 buf148 = empty_strided_cuda((4, 320, 2, 2), (1280, 1, 640, 320), torch.bool) # Topologically Sorted Source Nodes: [conv2d_47, x2_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_65.run(buf121, primals_97, buf148, 5120, grid=grid(5120), stream=stream0) del buf121 del primals_97 buf149 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_45, x1_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_66.run(buf118, primals_93, buf149, 4096, grid=grid(4096), stream=stream0) del buf118 del primals_93 buf150 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_44, x4_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_67.run(buf114, primals_91, buf150, 8192, grid=grid(8192), stream=stream0) del buf114 del primals_91 buf151 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_43, x3_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_67.run(buf111, primals_89, buf151, 8192, grid=grid(8192), stream=stream0) del buf111 del primals_89 buf152 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.bool) # Topologically Sorted Source Nodes: [conv2d_41, x2_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_68.run(buf108, primals_85, buf152, 20480, grid=grid(20480), stream=stream0) del buf108 del primals_85 buf153 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_39, x1_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_69.run(buf105, primals_81, buf153, 16384, grid=grid(16384), stream=stream0) del buf105 del primals_81 buf154 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_38, x4_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf103, primals_79, buf154, 4096, grid=grid(4096), stream=stream0) del buf103 del primals_79 buf155 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_37, x3_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf100, primals_77, buf155, 4096, grid=grid(4096), stream=stream0) del buf100 del primals_77 buf156 = empty_strided_cuda((4, 288, 4, 4), (4608, 1, 1152, 288), torch.bool) # Topologically Sorted Source Nodes: [conv2d_35, x2_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_71.run(buf97, primals_73, buf156, 18432, grid=grid(18432), stream=stream0) del buf97 del primals_73 buf157 = empty_strided_cuda((4, 112, 4, 4), (1792, 1, 448, 112), torch.bool) # Topologically Sorted Source Nodes: [conv2d_33, x1_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_72.run(buf94, primals_69, buf157, 7168, grid=grid(7168), stream=stream0) del buf94 del primals_69 buf158 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_32, x4_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf92, primals_67, buf158, 4096, grid=grid(4096), stream=stream0) del buf92 del primals_67 buf159 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_31, x3_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf89, primals_65, buf159, 4096, grid=grid(4096), stream=stream0) del buf89 del primals_65 buf160 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_29, x2_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_69.run(buf86, primals_61, buf160, 16384, grid=grid(16384), stream=stream0) del buf86 del primals_61 buf161 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_27, x1_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_67.run(buf83, primals_57, buf161, 8192, grid=grid(8192), stream=stream0) del buf83 del primals_57 buf162 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_26, x4_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf81, primals_55, buf162, 4096, grid=grid(4096), stream=stream0) del buf81 del primals_55 buf163 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_25, x3_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf78, primals_53, buf163, 4096, grid=grid(4096), stream=stream0) del buf78 del primals_53 buf164 = empty_strided_cuda((4, 224, 4, 4), (3584, 1, 896, 224), torch.bool) # Topologically Sorted Source Nodes: [conv2d_23, x2_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_73.run(buf75, primals_49, buf164, 14336, grid=grid(14336), stream=stream0) del buf75 del primals_49 buf165 = empty_strided_cuda((4, 160, 4, 4), (2560, 1, 640, 160), torch.bool) # Topologically Sorted Source Nodes: [conv2d_21, x1_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_74.run(buf72, primals_45, buf165, 10240, grid=grid(10240), stream=stream0) del buf72 del primals_45 buf166 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_20, x4_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_70.run(buf70, primals_43, buf166, 4096, grid=grid(4096), stream=stream0) del buf70 del primals_43 buf167 = empty_strided_cuda((4, 48, 4, 4), (768, 1, 192, 48), torch.bool) # Topologically Sorted Source Nodes: [conv2d_19, x3_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_75.run(buf67, primals_41, buf167, 3072, grid=grid(3072), stream=stream0) del buf67 del primals_41 buf168 = empty_strided_cuda((4, 208, 4, 4), (3328, 1, 832, 208), torch.bool) # Topologically Sorted Source Nodes: [conv2d_17, x2_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_76.run(buf64, primals_37, buf168, 13312, grid=grid(13312), stream=stream0) del buf64 del primals_37 buf169 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) # Topologically Sorted Source Nodes: [conv2d_15, x1_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_77.run(buf61, primals_33, buf169, 12288, grid=grid(12288), stream=stream0) del buf61 del primals_33 buf170 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_14, x4_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_78.run(buf57, primals_31, buf170, 16384, grid=grid(16384), stream=stream0) del buf57 del primals_31 buf171 = empty_strided_cuda((4, 96, 8, 8), (6144, 1, 768, 96), torch.bool) # Topologically Sorted Source Nodes: [conv2d_13, x3_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_79.run(buf54, primals_29, buf171, 24576, grid=grid(24576), stream=stream0) del buf54 del primals_29 buf172 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, x2_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_80.run(buf51, primals_25, buf172, 49152, grid=grid(49152), stream=stream0) del buf51 del primals_25 buf173 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, x1_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_81.run(buf48, primals_21, buf173, 32768, grid=grid(32768), stream=stream0) del buf48 del primals_21 buf174 = empty_strided_cuda((4, 32, 8, 8), (2048, 1, 256, 32), torch.bool) # Topologically Sorted Source Nodes: [conv2d_8, x4_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_82.run(buf46, primals_19, buf174, 8192, grid=grid(8192), stream=stream0) del buf46 del primals_19 buf175 = empty_strided_cuda((4, 32, 8, 8), (2048, 1, 256, 32), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, x3_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_82.run(buf43, primals_17, buf175, 8192, grid=grid(8192), stream=stream0) del buf43 del primals_17 buf176 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_5, x2_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_81.run(buf40, primals_13, buf176, 32768, grid=grid(32768), stream=stream0) del buf40 del primals_13 buf177 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_78.run(buf37, primals_9, buf177, 16384, grid=grid(16384), stream=stream0) del buf37 del primals_9 return (buf141, buf0, buf1, primals_4, buf2, primals_8, primals_10, buf3, primals_14, buf4, primals_18, primals_20, primals_22, buf5, primals_26, buf6, primals_30, primals_32, primals_34, buf7, primals_38, buf8, primals_42, primals_44, primals_46, buf9, primals_50, buf10, primals_54, primals_56, primals_58, buf11, primals_62, buf12, primals_66, primals_68, primals_70, buf13, primals_74, buf14, primals_78, primals_80, primals_82, buf15, primals_86, buf16, primals_90, primals_92, primals_94, buf17, primals_98, buf18, primals_102, primals_104, primals_106, buf19, primals_110, buf20, primals_114, buf22, buf23, buf24, buf25, buf26, buf27, buf29, buf31, buf32, buf33, buf34, buf35, buf36, buf39, buf42, buf44, buf45, buf47, buf50, buf53, buf55, buf56, buf58, buf59, buf60, buf63, buf66, buf68, buf69, buf71, buf74, buf77, buf79, buf80, buf82, buf85, buf88, buf90, buf91, buf93, buf96, buf99, buf101, buf102, buf104, buf107, buf110, buf112, buf113, buf115, buf116, buf117, buf120, buf123, buf125, buf126, buf128, buf131, buf134, buf136, buf137, reinterpret_tensor(buf140, (4, 1024), (1024, 1), 0), primals_116, buf142, buf143, buf144, buf145, buf146, buf147, buf148, buf149, buf150, buf151, buf152, buf153, buf154, buf155, buf156, buf157, buf158, buf159, buf160, buf161, buf162, buf163, buf164, buf165, buf166, buf167, buf168, buf169, buf170, buf171, buf172, buf173, buf174, buf175, buf176, buf177, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 7, 7), (147, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((192, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 192, 1, 1), (192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((96, 192, 1, 1), (192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((16, 192, 1, 1), (192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((32, 16, 5, 5), (400, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((32, 192, 1, 1), (192, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((192, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((32, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((96, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((64, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((192, 480, 1, 1), (480, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((96, 480, 1, 1), (480, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((208, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((208, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((16, 480, 1, 1), (480, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((48, 16, 5, 5), (400, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((64, 480, 1, 1), (480, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((160, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((160, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((112, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((112, ), (1, ), device='cuda:0', dtype=torch.float32) primals_48 = rand_strided((224, 112, 3, 3), (1008, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_49 = rand_strided((224, ), (1, ), device='cuda:0', dtype=torch.float32) primals_50 = rand_strided((24, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_51 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_52 = rand_strided((64, 24, 5, 5), (600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_53 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_54 = rand_strided((64, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_55 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_56 = rand_strided((128, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_57 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_58 = rand_strided((128, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_59 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_60 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_61 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_62 = rand_strided((24, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_63 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_64 = rand_strided((64, 24, 5, 5), (600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_65 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_66 = rand_strided((64, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_67 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_68 = rand_strided((112, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_69 = rand_strided((112, ), (1, ), device='cuda:0', dtype=torch.float32) primals_70 = rand_strided((144, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_71 = rand_strided((144, ), (1, ), device='cuda:0', dtype=torch.float32) primals_72 = rand_strided((288, 144, 3, 3), (1296, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_73 = rand_strided((288, ), (1, ), device='cuda:0', dtype=torch.float32) primals_74 = rand_strided((32, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_75 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_76 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_77 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_78 = rand_strided((64, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_79 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_80 = rand_strided((256, 528, 1, 1), (528, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_81 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_82 = rand_strided((160, 528, 1, 1), (528, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_83 = rand_strided((160, ), (1, ), device='cuda:0', dtype=torch.float32) primals_84 = rand_strided((320, 160, 3, 3), (1440, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_85 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_86 = rand_strided((32, 528, 1, 1), (528, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_87 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_88 = rand_strided((128, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_89 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_90 = rand_strided((128, 528, 1, 1), (528, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_91 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_92 = rand_strided((256, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_93 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_94 = rand_strided((160, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_95 = rand_strided((160, ), (1, ), device='cuda:0', dtype=torch.float32) primals_96 = rand_strided((320, 160, 3, 3), (1440, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_97 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_98 = rand_strided((32, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_99 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_100 = rand_strided((128, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_101 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_102 = rand_strided((128, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_103 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_104 = rand_strided((384, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_105 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_106 = rand_strided((192, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_107 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_108 = rand_strided((384, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_109 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_110 = rand_strided((48, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_111 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_112 = rand_strided((128, 48, 5, 5), (1200, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_113 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_114 = rand_strided((128, 832, 1, 1), (832, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_115 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_116 = rand_strided((61, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_117 = rand_strided((61, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1_7x7_s2 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3 ) self.pool1_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.pool1_norm1 = nn.LocalResponseNorm(2, 1.99999994948e-05, 0.75) self.conv2_3x3_reduce = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0) self.conv2_3x3 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1) self.conv2_norm2 = nn.LocalResponseNorm(2, 1.99999994948e-05, 0.75) self.pool2_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_3a_1x1 = nn.Conv2d(192, 64, kernel_size=1, stride=1, padding=0) self.inception_3a_3x3_reduce = nn.Conv2d(192, 96, kernel_size=1, stride=1, padding=0) self.inception_3a_3x3 = nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1) self.inception_3a_5x5_reduce = nn.Conv2d(192, 16, kernel_size=1, stride=1, padding=0) self.inception_3a_5x5 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2) self.inception_3a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_3a_pool_proj = nn.Conv2d(192, 32, kernel_size=1, stride=1, padding=0) self.inception_3b_1x1 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) self.inception_3b_3x3_reduce = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) self.inception_3b_3x3 = nn.Conv2d(128, 192, kernel_size=3, stride=1, padding=1) self.inception_3b_5x5_reduce = nn.Conv2d(256, 32, kernel_size=1, stride=1, padding=0) self.inception_3b_5x5 = nn.Conv2d(32, 96, kernel_size=5, stride=1, padding=2) self.inception_3b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_3b_pool_proj = nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0) self.pool3_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_4a_1x1 = nn.Conv2d(480, 192, kernel_size=1, stride=1, padding=0) self.inception_4a_3x3_reduce = nn.Conv2d(480, 96, kernel_size=1, stride=1, padding=0) self.inception_4a_3x3 = nn.Conv2d(96, 208, kernel_size=3, stride=1, padding=1) self.inception_4a_5x5_reduce = nn.Conv2d(480, 16, kernel_size=1, stride=1, padding=0) self.inception_4a_5x5 = nn.Conv2d(16, 48, kernel_size=5, stride=1, padding=2) self.inception_4a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4a_pool_proj = nn.Conv2d(480, 64, kernel_size=1, stride=1, padding=0) self.inception_4b_1x1 = nn.Conv2d(512, 160, kernel_size=1, stride=1, padding=0) self.inception_4b_3x3_reduce = nn.Conv2d(512, 112, kernel_size=1, stride=1, padding=0) self.inception_4b_3x3 = nn.Conv2d(112, 224, kernel_size=3, stride=1, padding=1) self.inception_4b_5x5_reduce = nn.Conv2d(512, 24, kernel_size=1, stride=1, padding=0) self.inception_4b_5x5 = nn.Conv2d(24, 64, kernel_size=5, stride=1, padding=2) self.inception_4b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4b_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4c_1x1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.inception_4c_3x3_reduce = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.inception_4c_3x3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.inception_4c_5x5_reduce = nn.Conv2d(512, 24, kernel_size=1, stride=1, padding=0) self.inception_4c_5x5 = nn.Conv2d(24, 64, kernel_size=5, stride=1, padding=2) self.inception_4c_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4c_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4d_1x1 = nn.Conv2d(512, 112, kernel_size=1, stride=1, padding=0) self.inception_4d_3x3_reduce = nn.Conv2d(512, 144, kernel_size=1, stride=1, padding=0) self.inception_4d_3x3 = nn.Conv2d(144, 288, kernel_size=3, stride=1, padding=1) self.inception_4d_5x5_reduce = nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0) self.inception_4d_5x5 = nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2) self.inception_4d_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4d_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4e_1x1 = nn.Conv2d(528, 256, kernel_size=1, stride=1, padding=0) self.inception_4e_3x3_reduce = nn.Conv2d(528, 160, kernel_size=1, stride=1, padding=0) self.inception_4e_3x3 = nn.Conv2d(160, 320, kernel_size=3, stride=1, padding=1) self.inception_4e_5x5_reduce = nn.Conv2d(528, 32, kernel_size=1, stride=1, padding=0) self.inception_4e_5x5 = nn.Conv2d(32, 128, kernel_size=5, stride=1, padding=2) self.inception_4e_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4e_pool_proj = nn.Conv2d(528, 128, kernel_size=1, stride=1, padding=0) self.pool4_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_5a_1x1 = nn.Conv2d(832, 256, kernel_size=1, stride=1, padding=0) self.inception_5a_3x3_reduce = nn.Conv2d(832, 160, kernel_size=1, stride=1, padding=0) self.inception_5a_3x3 = nn.Conv2d(160, 320, kernel_size=3, stride=1, padding=1) self.inception_5a_5x5_reduce = nn.Conv2d(832, 32, kernel_size=1, stride=1, padding=0) self.inception_5a_5x5 = nn.Conv2d(32, 128, kernel_size=5, stride=1, padding=2) self.inception_5a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_5a_pool_proj = nn.Conv2d(832, 128, kernel_size=1, stride=1, padding=0) self.inception_5b_1x1 = nn.Conv2d(832, 384, kernel_size=1, stride=1, padding=0) self.inception_5b_3x3_reduce = nn.Conv2d(832, 192, kernel_size=1, stride=1, padding=0) self.inception_5b_3x3 = nn.Conv2d(192, 384, kernel_size=3, stride=1, padding=1) self.inception_5b_5x5_reduce = nn.Conv2d(832, 48, kernel_size=1, stride=1, padding=0) self.inception_5b_5x5 = nn.Conv2d(48, 128, kernel_size=5, stride=1, padding=2) self.inception_5b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_5b_pool_proj = nn.Conv2d(832, 128, kernel_size=1, stride=1, padding=0) self.pool5_7x7_s1 = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(0.2) self.loss3_SLclassifier = nn.Linear(1024, 61) def forward(self, x): x = F.relu(self.conv1_7x7_s2(x)) x = self.pool1_3x3_s2(x) x = self.pool1_norm1(x) x = F.relu(self.conv2_3x3_reduce(x)) x = F.relu(self.conv2_3x3(x)) x = self.conv2_norm2(x) x = self.pool2_3x3_s2(x) x1 = F.relu(self.inception_3a_1x1(x)) x2 = F.relu(self.inception_3a_3x3_reduce(x)) x2 = F.relu(self.inception_3a_3x3(x2)) x3 = F.relu(self.inception_3a_5x5_reduce(x)) x3 = F.relu(self.inception_3a_5x5(x3)) x4 = self.inception_3a_pool(x) x4 = F.relu(self.inception_3a_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x1 = F.relu(self.inception_3b_1x1(x)) x2 = F.relu(self.inception_3b_3x3_reduce(x)) x2 = F.relu(self.inception_3b_3x3(x2)) x3 = F.relu(self.inception_3b_5x5_reduce(x)) x3 = F.relu(self.inception_3b_5x5(x3)) x4 = self.inception_3b_pool(x) x4 = F.relu(self.inception_3b_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x = self.pool3_3x3_s2(x) x1 = F.relu(self.inception_4a_1x1(x)) x2 = F.relu(self.inception_4a_3x3_reduce(x)) x2 = F.relu(self.inception_4a_3x3(x2)) x3 = F.relu(self.inception_4a_5x5_reduce(x)) x3 = F.relu(self.inception_4a_5x5(x3)) x4 = self.inception_4a_pool(x) x4 = F.relu(self.inception_4a_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x1 = F.relu(self.inception_4b_1x1(x)) x2 = F.relu(self.inception_4b_3x3_reduce(x)) x2 = F.relu(self.inception_4b_3x3(x2)) x3 = F.relu(self.inception_4b_5x5_reduce(x)) x3 = F.relu(self.inception_4b_5x5(x3)) x4 = self.inception_4b_pool(x) x4 = F.relu(self.inception_4b_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x1 = F.relu(self.inception_4c_1x1(x)) x2 = F.relu(self.inception_4c_3x3_reduce(x)) x2 = F.relu(self.inception_4c_3x3(x2)) x3 = F.relu(self.inception_4c_5x5_reduce(x)) x3 = F.relu(self.inception_4c_5x5(x3)) x4 = self.inception_4c_pool(x) x4 = F.relu(self.inception_4c_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x1 = F.relu(self.inception_4d_1x1(x)) x2 = F.relu(self.inception_4d_3x3_reduce(x)) x2 = F.relu(self.inception_4d_3x3(x2)) x3 = F.relu(self.inception_4d_5x5_reduce(x)) x3 = F.relu(self.inception_4d_5x5(x3)) x4 = self.inception_4d_pool(x) x4 = F.relu(self.inception_4d_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x1 = F.relu(self.inception_4e_1x1(x)) x2 = F.relu(self.inception_4e_3x3_reduce(x)) x2 = F.relu(self.inception_4e_3x3(x2)) x3 = F.relu(self.inception_4e_5x5_reduce(x)) x3 = F.relu(self.inception_4e_5x5(x3)) x4 = self.inception_4e_pool(x) x4 = F.relu(self.inception_4e_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x = self.pool4_3x3_s2(x) x1 = F.relu(self.inception_5a_1x1(x)) x2 = F.relu(self.inception_5a_3x3_reduce(x)) x2 = F.relu(self.inception_5a_3x3(x2)) x3 = F.relu(self.inception_5a_5x5_reduce(x)) x3 = F.relu(self.inception_5a_5x5(x3)) x4 = self.inception_5a_pool(x) x4 = F.relu(self.inception_5a_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x1 = F.relu(self.inception_5b_1x1(x)) x2 = F.relu(self.inception_5b_3x3_reduce(x)) x2 = F.relu(self.inception_5b_3x3(x2)) x3 = F.relu(self.inception_5b_5x5_reduce(x)) x3 = F.relu(self.inception_5b_5x5(x3)) x4 = self.inception_5b_pool(x) x4 = F.relu(self.inception_5b_pool_proj(x4)) x = torch.cat((x1, x2, x3, x4), dim=1) x = self.pool5_7x7_s1(x) x = torch.flatten(x, 1) x = self.dropout(x) x = self.loss3_SLclassifier(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 49 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 147 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = yindex // 96 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 96 * x2 + 864 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 400 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 19968 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = yindex // 96 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 96 * x2 + 864 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 768 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 400 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 25088 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 112 y1 = yindex // 112 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 112 * x2 + 1008 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 1536 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 24 y1 = yindex // 24 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 24 * x2 + 600 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_11(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_12(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 41472 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 144 y1 = yindex // 144 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 144 * x2 + 1296 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_13(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_14(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 160 y1 = yindex // 160 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 160 * x2 + 1440 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_15(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_16(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = yindex // 192 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 192 * x2 + 1728 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_17(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 48 y1 = yindex // 48 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 48 * x2 + 1200 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_19(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1024 % 16 x1 = xindex // 64 % 16 x0 = xindex % 64 x5 = xindex // 1024 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 128 * x1 + 4096 * x5), tmp10, other= float('-inf')) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 4096 * x5), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + 2 * x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (128 + x0 + 128 * x1 + 4096 * x5), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + 2 * x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (2048 + x0 + 128 * x1 + 4096 * x5), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2112 + x0 + 128 * x1 + 4096 * x5), tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (2176 + x0 + 128 * x1 + 4096 * x5), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + 2 * x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 4096 * x5), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 4096 * x5), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (4224 + x0 + 128 * x1 + 4096 * x5), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_constant_pad_nd_20(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 65 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = -1 + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-1 + x2 + 64 * y3), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tmp3 * tmp3 tmp5 = tl.full(tmp4.shape, 0.0, tmp4.dtype) tmp6 = tl.where(tmp2, tmp4, tmp5) tl.store(out_ptr0 + (y0 + 256 * x2 + 16640 * y1), tmp6, xmask) @triton.jit def triton_poi_fused_avg_pool3d_21(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16384 x1 = xindex // 16384 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16640 * x1), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 16640 * x1), None) tmp2 = tmp1 + tmp0 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_add_div_mul_pow_22(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 64 * y3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (y0 + 256 * x2 + 16384 * y1), xmask, eviction_policy='evict_last') tmp2 = 1.99999994948e-05 tmp3 = tmp1 * tmp2 tmp4 = 1.0 tmp5 = tmp3 + tmp4 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2 + 64 * y3), tmp8, xmask) @triton.jit def triton_poi_fused_convolution_relu_23(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_24(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_poi_fused_constant_pad_nd_25(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 193 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = -1 + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-1 + x2 + 192 * y3), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.full([1, 1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp5 * tmp5 tmp7 = tl.full(tmp6.shape, 0.0, tmp6.dtype) tmp8 = tl.where(tmp2, tmp6, tmp7) tl.store(out_ptr0 + (y0 + 256 * x2 + 49408 * y1), tmp8, xmask) @triton.jit def triton_poi_fused_avg_pool3d_26(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 49152 x1 = xindex // 49152 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 49408 * x1), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 49408 * x1), None) tmp2 = tmp1 + tmp0 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_add_div_mul_pow_relu_27(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 192 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 192 * y3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (y0 + 256 * x2 + 49152 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = 1.99999994948e-05 tmp5 = tmp3 * tmp4 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = 0.75 tmp9 = libdevice.pow(tmp7, tmp8) tmp10 = tmp2 / tmp9 tl.store(out_ptr0 + (x2 + 192 * y3), tmp10, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_28(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1536 % 8 x1 = xindex // 192 % 8 x0 = xindex % 192 x5 = xindex // 1536 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 384 * x1 + 6144 * x5), tmp10, other= float('-inf')) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (192 + x0 + 384 * x1 + 6144 * x5), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + 2 * x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (384 + x0 + 384 * x1 + 6144 * x5), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + 2 * x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3072 + x0 + 384 * x1 + 6144 * x5), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (3264 + x0 + 384 * x1 + 6144 * x5), tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (3456 + x0 + 384 * x1 + 6144 * x5), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + 2 * x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (6144 + x0 + 384 * x1 + 6144 * x5), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (6336 + x0 + 384 * x1 + 6144 * x5), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (6528 + x0 + 384 * x1 + 6144 * x5), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_convolution_relu_29(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_30(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_31(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1536 % 8 x1 = xindex // 192 % 8 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-1728 + x6), tmp10, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-1536 + x6), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1344 + x6), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-192 + x6), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (192 + x6), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1344 + x6), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (1536 + x6), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (1728 + x6), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_cat_32(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 192, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (128 * x1 + (-64 + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-64 + x0), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 224, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (32 * x1 + (-192 + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-192 + x0), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 256, tl.int64) tmp35 = tl.load(in_ptr6 + (32 * x1 + (-224 + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-224 + x0), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, None) @triton.jit def triton_poi_fused_convolution_relu_33(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_34(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_35(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 2048 % 8 x1 = xindex // 256 % 8 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-2304 + x6), tmp10, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-2048 + x6), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1792 + x6), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-256 + x6), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (256 + x6), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1792 + x6), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2048 + x6), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2304 + x6), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_cat_36(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 480 x1 = xindex // 480 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 320, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (192 * x1 + (-128 + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-128 + x0), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 416, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (96 * x1 + (-320 + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-320 + x0), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 480, tl.int64) tmp35 = tl.load(in_ptr6 + (64 * x1 + (-416 + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-416 + x0), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_37(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1920 % 4 x1 = xindex // 480 % 4 x0 = xindex % 480 x5 = xindex // 1920 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 960 * x1 + 7680 * x5), tmp10, other= float('-inf')) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (480 + x0 + 960 * x1 + 7680 * x5), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + 2 * x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (960 + x0 + 960 * x1 + 7680 * x5), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + 2 * x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3840 + x0 + 960 * x1 + 7680 * x5), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (4320 + x0 + 960 * x1 + 7680 * x5), tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4800 + x0 + 960 * x1 + 7680 * x5), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + 2 * x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (7680 + x0 + 960 * x1 + 7680 * x5), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (8160 + x0 + 960 * x1 + 7680 * x5), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (8640 + x0 + 960 * x1 + 7680 * x5), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_convolution_relu_38(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_39(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_40(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1920 % 4 x1 = xindex // 480 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-2400 + x6), tmp10, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-1920 + x6), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1440 + x6), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-480 + x6), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (480 + x6), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1440 + x6), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (1920 + x6), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2400 + x6), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 192, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (192 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 400, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (208 * x1 + (-192 + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-192 + x0), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 448, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (48 * x1 + (-400 + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-400 + x0), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 512, tl.int64) tmp35 = tl.load(in_ptr6 + (64 * x1 + (-448 + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-448 + x0), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, None) @triton.jit def triton_poi_fused_convolution_relu_42(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 7168 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 112 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_43(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_44(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 2048 % 4 x1 = xindex // 512 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-2560 + x6), tmp10, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-2048 + x6), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1536 + x6), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-512 + x6), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (512 + x6), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1536 + x6), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2048 + x6), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2560 + x6), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, None) tl.store(out_ptr1 + x6, tmp76, None) @triton.jit def triton_poi_fused_cat_45(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 160, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (160 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (224 * x1 + (-160 + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-160 + x0), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 448, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (64 * x1 + (-384 + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-384 + x0), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 512, tl.int64) tmp35 = tl.load(in_ptr6 + (64 * x1 + (-448 + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-448 + x0), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, None) @triton.jit def triton_poi_fused_convolution_relu_46(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_cat_47(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (256 * x1 + (-128 + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-128 + x0), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 448, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (64 * x1 + (-384 + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-384 + x0), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 512, tl.int64) tmp35 = tl.load(in_ptr6 + (64 * x1 + (-448 + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-448 + x0), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, None) @triton.jit def triton_poi_fused_convolution_relu_48(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 144 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_49(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_cat_50(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 33792 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 528 x1 = xindex // 528 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 112, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (112 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 400, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (288 * x1 + (-112 + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-112 + x0), tmp15 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 464, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (64 * x1 + (-400 + x0)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-400 + x0), tmp25 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 528, tl.int64) tmp35 = tl.load(in_ptr6 + (64 * x1 + (-464 + x0)), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-464 + x0), tmp32 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, xmask) @triton.jit def triton_poi_fused_convolution_relu_51(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_52(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 33792 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 2112 % 4 x1 = xindex // 528 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-2640 + x6), tmp10 & xmask, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-2112 + x6), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-1584 + x6), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-528 + x6), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (528 + x6), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (1584 + x6), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (2112 + x6), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2640 + x6), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, xmask) tl.store(out_ptr1 + x6, tmp76, xmask) @triton.jit def triton_poi_fused_cat_53(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 832 x1 = xindex // 832 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 576, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (320 * x1 + (-256 + x0)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-256 + x0), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 704, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (128 * x1 + (-576 + x0)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-576 + x0), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 832, tl.int64) tmp35 = tl.load(in_ptr6 + (128 * x1 + (-704 + x0)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-704 + x0), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_54(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 1664 % 2 x1 = xindex // 832 % 2 x0 = xindex % 832 x5 = xindex // 1664 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 1664 * x1 + 6656 * x5), tmp10 & xmask, other=float('-inf')) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (832 + x0 + 1664 * x1 + 6656 * x5), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 2 + 2 * x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (1664 + x0 + 1664 * x1 + 6656 * x5), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + 2 * x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (3328 + x0 + 1664 * x1 + 6656 * x5), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (4160 + x0 + 1664 * x1 + 6656 * x5), tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4992 + x0 + 1664 * x1 + 6656 * x5), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 2 + 2 * x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (6656 + x0 + 1664 * x1 + 6656 * x5), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (7488 + x0 + 1664 * x1 + 6656 * x5), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (8320 + x0 + 1664 * x1 + 6656 * x5), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, xmask) tl.store(out_ptr1 + x6, tmp76, xmask) @triton.jit def triton_poi_fused_convolution_relu_55(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_56(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_57(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 1664 % 2 x1 = xindex // 832 % 2 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-2496 + x6), tmp10 & xmask, other=float('-inf')) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-1664 + x6), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-832 + x6), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-832 + x6), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33 & xmask, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (832 + x6), tmp36 & xmask, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (832 + x6), tmp43 & xmask, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (1664 + x6), tmp46 & xmask, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (2496 + x6), tmp49 & xmask, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x6, tmp51, xmask) tl.store(out_ptr1 + x6, tmp76, xmask) @triton.jit def triton_poi_fused_cat_58(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 832 x1 = xindex // 832 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 576, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (320 * x1 + (-256 + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-256 + x0), tmp15 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 704, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (128 * x1 + (-576 + x0)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-576 + x0), tmp25 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 832, tl.int64) tmp35 = tl.load(in_ptr6 + (128 * x1 + (-704 + x0)), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-704 + x0), tmp32 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x2, tmp43, xmask) @triton.jit def triton_poi_fused_convolution_relu_59(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_60(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_61(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 1024 x0 = xindex % 4 x2 = xindex // 4096 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (384 * x0 + 1536 * x2 + x1), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 768, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (384 * x0 + 1536 * x2 + (-384 + x1)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-384 + x1), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 896, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (128 * x0 + 512 * x2 + (-768 + x1)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-768 + x1), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 1024, tl.int64) tmp35 = tl.load(in_ptr6 + (128 * x0 + 512 * x2 + (-896 + x1)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-896 + x1), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x3, tmp43, None) @triton.jit def triton_poi_fused_mean_62(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_63(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_64(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_65(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_66(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_67(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_68(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_69(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_70(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_71(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 288 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_72(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 7168 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 112 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_73(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 224 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_74(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_75(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_76(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13312 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 208 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_77(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_78(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_79(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_80(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_81(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_82(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117) = args args.clear() assert_size_stride(primals_1, (64, 3, 7, 7), (147, 49, 7, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (192, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (192,), (1,)) assert_size_stride(primals_8, (64, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (96, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_11, (96,), (1,)) assert_size_stride(primals_12, (128, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (16, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_15, (16,), (1,)) assert_size_stride(primals_16, (32, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_17, (32,), (1,)) assert_size_stride(primals_18, (32, 192, 1, 1), (192, 1, 1, 1)) assert_size_stride(primals_19, (32,), (1,)) assert_size_stride(primals_20, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_21, (128,), (1,)) assert_size_stride(primals_22, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_23, (128,), (1,)) assert_size_stride(primals_24, (192, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_25, (192,), (1,)) assert_size_stride(primals_26, (32, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_27, (32,), (1,)) assert_size_stride(primals_28, (96, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_29, (96,), (1,)) assert_size_stride(primals_30, (64, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_31, (64,), (1,)) assert_size_stride(primals_32, (192, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_33, (192,), (1,)) assert_size_stride(primals_34, (96, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_35, (96,), (1,)) assert_size_stride(primals_36, (208, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_37, (208,), (1,)) assert_size_stride(primals_38, (16, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_39, (16,), (1,)) assert_size_stride(primals_40, (48, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_41, (48,), (1,)) assert_size_stride(primals_42, (64, 480, 1, 1), (480, 1, 1, 1)) assert_size_stride(primals_43, (64,), (1,)) assert_size_stride(primals_44, (160, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_45, (160,), (1,)) assert_size_stride(primals_46, (112, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_47, (112,), (1,)) assert_size_stride(primals_48, (224, 112, 3, 3), (1008, 9, 3, 1)) assert_size_stride(primals_49, (224,), (1,)) assert_size_stride(primals_50, (24, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_51, (24,), (1,)) assert_size_stride(primals_52, (64, 24, 5, 5), (600, 25, 5, 1)) assert_size_stride(primals_53, (64,), (1,)) assert_size_stride(primals_54, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_55, (64,), (1,)) assert_size_stride(primals_56, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_57, (128,), (1,)) assert_size_stride(primals_58, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_59, (128,), (1,)) assert_size_stride(primals_60, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_61, (256,), (1,)) assert_size_stride(primals_62, (24, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_63, (24,), (1,)) assert_size_stride(primals_64, (64, 24, 5, 5), (600, 25, 5, 1)) assert_size_stride(primals_65, (64,), (1,)) assert_size_stride(primals_66, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_67, (64,), (1,)) assert_size_stride(primals_68, (112, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_69, (112,), (1,)) assert_size_stride(primals_70, (144, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_71, (144,), (1,)) assert_size_stride(primals_72, (288, 144, 3, 3), (1296, 9, 3, 1)) assert_size_stride(primals_73, (288,), (1,)) assert_size_stride(primals_74, (32, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_75, (32,), (1,)) assert_size_stride(primals_76, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_77, (64,), (1,)) assert_size_stride(primals_78, (64, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_79, (64,), (1,)) assert_size_stride(primals_80, (256, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_81, (256,), (1,)) assert_size_stride(primals_82, (160, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_83, (160,), (1,)) assert_size_stride(primals_84, (320, 160, 3, 3), (1440, 9, 3, 1)) assert_size_stride(primals_85, (320,), (1,)) assert_size_stride(primals_86, (32, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_87, (32,), (1,)) assert_size_stride(primals_88, (128, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_89, (128,), (1,)) assert_size_stride(primals_90, (128, 528, 1, 1), (528, 1, 1, 1)) assert_size_stride(primals_91, (128,), (1,)) assert_size_stride(primals_92, (256, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_93, (256,), (1,)) assert_size_stride(primals_94, (160, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_95, (160,), (1,)) assert_size_stride(primals_96, (320, 160, 3, 3), (1440, 9, 3, 1)) assert_size_stride(primals_97, (320,), (1,)) assert_size_stride(primals_98, (32, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_99, (32,), (1,)) assert_size_stride(primals_100, (128, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_101, (128,), (1,)) assert_size_stride(primals_102, (128, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_103, (128,), (1,)) assert_size_stride(primals_104, (384, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_105, (384,), (1,)) assert_size_stride(primals_106, (192, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_107, (192,), (1,)) assert_size_stride(primals_108, (384, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_109, (384,), (1,)) assert_size_stride(primals_110, (48, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_111, (48,), (1,)) assert_size_stride(primals_112, (128, 48, 5, 5), (1200, 25, 5, 1)) assert_size_stride(primals_113, (128,), (1,)) assert_size_stride(primals_114, (128, 832, 1, 1), (832, 1, 1, 1)) assert_size_stride(primals_115, (128,), (1,)) assert_size_stride(primals_116, (61, 1024), (1024, 1)) assert_size_stride(primals_117, (61,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 7, 7), (147, 1, 21, 3), torch.float32 ) get_raw_stream(0) triton_poi_fused_0[grid(192, 49)](primals_1, buf0, 192, 49, XBLOCK= 32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((192, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_2[grid(12288, 9)](primals_6, buf2, 12288, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((128, 96, 3, 3), (864, 1, 288, 96), torch .float32) triton_poi_fused_3[grid(12288, 9)](primals_12, buf3, 12288, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf4 = empty_strided_cuda((32, 16, 5, 5), (400, 1, 80, 16), torch. float32) triton_poi_fused_4[grid(512, 25)](primals_16, buf4, 512, 25, XBLOCK =32, YBLOCK=32, num_warps=4, num_stages=1) del primals_16 buf5 = empty_strided_cuda((192, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_5[grid(24576, 9)](primals_24, buf5, 24576, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_24 buf6 = empty_strided_cuda((96, 32, 5, 5), (800, 1, 160, 32), torch. float32) triton_poi_fused_6[grid(3072, 25)](primals_28, buf6, 3072, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_28 buf7 = empty_strided_cuda((208, 96, 3, 3), (864, 1, 288, 96), torch .float32) triton_poi_fused_7[grid(19968, 9)](primals_36, buf7, 19968, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_36 buf8 = empty_strided_cuda((48, 16, 5, 5), (400, 1, 80, 16), torch. float32) triton_poi_fused_8[grid(768, 25)](primals_40, buf8, 768, 25, XBLOCK =32, YBLOCK=32, num_warps=4, num_stages=1) del primals_40 buf9 = empty_strided_cuda((224, 112, 3, 3), (1008, 1, 336, 112), torch.float32) triton_poi_fused_9[grid(25088, 9)](primals_48, buf9, 25088, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_48 buf10 = empty_strided_cuda((64, 24, 5, 5), (600, 1, 120, 24), torch .float32) triton_poi_fused_10[grid(1536, 25)](primals_52, buf10, 1536, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_52 buf11 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_11[grid(32768, 9)](primals_60, buf11, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_60 buf12 = empty_strided_cuda((64, 24, 5, 5), (600, 1, 120, 24), torch .float32) triton_poi_fused_10[grid(1536, 25)](primals_64, buf12, 1536, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_64 buf13 = empty_strided_cuda((288, 144, 3, 3), (1296, 1, 432, 144), torch.float32) triton_poi_fused_12[grid(41472, 9)](primals_72, buf13, 41472, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_72 buf14 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch .float32) triton_poi_fused_13[grid(2048, 25)](primals_76, buf14, 2048, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_76 buf15 = empty_strided_cuda((320, 160, 3, 3), (1440, 1, 480, 160), torch.float32) triton_poi_fused_14[grid(51200, 9)](primals_84, buf15, 51200, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_84 buf16 = empty_strided_cuda((128, 32, 5, 5), (800, 1, 160, 32), torch.float32) triton_poi_fused_15[grid(4096, 25)](primals_88, buf16, 4096, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_88 buf17 = empty_strided_cuda((320, 160, 3, 3), (1440, 1, 480, 160), torch.float32) triton_poi_fused_14[grid(51200, 9)](primals_96, buf17, 51200, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_96 buf18 = empty_strided_cuda((128, 32, 5, 5), (800, 1, 160, 32), torch.float32) triton_poi_fused_15[grid(4096, 25)](primals_100, buf18, 4096, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_100 buf19 = empty_strided_cuda((384, 192, 3, 3), (1728, 1, 576, 192), torch.float32) triton_poi_fused_16[grid(73728, 9)](primals_108, buf19, 73728, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_108 buf20 = empty_strided_cuda((128, 48, 5, 5), (1200, 1, 240, 48), torch.float32) triton_poi_fused_17[grid(6144, 25)](primals_112, buf20, 6144, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_112 buf21 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_18[grid(262144)](buf22, primals_2, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf23 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) buf24 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_19[grid(65536)](buf22, buf23, buf24, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf25 = empty_strided_cuda((4, 1, 65, 16, 16), (16640, 16640, 256, 16, 1), torch.float32) triton_poi_fused_constant_pad_nd_20[grid(1024, 65)](buf23, buf25, 1024, 65, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) buf26 = empty_strided_cuda((4, 1, 64, 16, 16), (16384, 16384, 256, 16, 1), torch.float32) triton_poi_fused_avg_pool3d_21[grid(65536)](buf25, buf26, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf27 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) triton_poi_fused_add_div_mul_pow_22[grid(1024, 64)](buf23, buf26, buf27, 1024, 64, XBLOCK=64, YBLOCK=8, num_warps=4, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_23[grid(65536)](buf29, primals_5, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf30 = extern_kernels.convolution(buf29, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 192, 16, 16), (49152, 1, 3072, 192)) buf31 = buf30 del buf30 triton_poi_fused_convolution_24[grid(196608)](buf31, primals_7, 196608, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf32 = empty_strided_cuda((4, 1, 193, 16, 16), (49408, 49408, 256, 16, 1), torch.float32) triton_poi_fused_constant_pad_nd_25[grid(1024, 193)](buf31, buf32, 1024, 193, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) buf33 = empty_strided_cuda((4, 1, 192, 16, 16), (49152, 49152, 256, 16, 1), torch.float32) triton_poi_fused_avg_pool3d_26[grid(196608)](buf32, buf33, 196608, XBLOCK=1024, num_warps=4, num_stages=1) buf34 = empty_strided_cuda((4, 192, 16, 16), (49152, 1, 3072, 192), torch.float32) triton_poi_fused_add_div_mul_pow_relu_27[grid(1024, 192)](buf31, buf33, buf34, 1024, 192, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) buf35 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.float32) buf36 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.int8) triton_poi_fused_max_pool2d_with_indices_28[grid(49152)](buf34, buf35, buf36, 49152, XBLOCK=256, num_warps=4, num_stages=1) buf37 = extern_kernels.convolution(buf35, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf37, (4, 64, 8, 8), (4096, 1, 512, 64)) buf38 = extern_kernels.convolution(buf35, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 96, 8, 8), (6144, 1, 768, 96)) buf39 = buf38 del buf38 triton_poi_fused_convolution_relu_29[grid(24576)](buf39, primals_11, 24576, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf40 = extern_kernels.convolution(buf39, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf41 = extern_kernels.convolution(buf35, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf41, (4, 16, 8, 8), (1024, 1, 128, 16)) buf42 = buf41 del buf41 triton_poi_fused_convolution_relu_30[grid(4096)](buf42, primals_15, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf43 = extern_kernels.convolution(buf42, buf4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 32, 8, 8), (2048, 1, 256, 32)) buf44 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.float32) buf45 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.int8) triton_poi_fused_max_pool2d_with_indices_31[grid(49152)](buf35, buf44, buf45, 49152, XBLOCK=256, num_warps=4, num_stages=1) buf46 = extern_kernels.convolution(buf44, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 32, 8, 8), (2048, 1, 256, 32)) buf47 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) triton_poi_fused_cat_32[grid(65536)](buf37, primals_9, buf40, primals_13, buf43, primals_17, buf46, primals_19, buf47, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf48 = extern_kernels.convolution(buf47, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf49 = extern_kernels.convolution(buf47, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf49, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf50 = buf49 del buf49 triton_poi_fused_convolution_relu_33[grid(32768)](buf50, primals_23, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf51 = extern_kernels.convolution(buf50, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 192, 8, 8), (12288, 1, 1536, 192)) buf52 = extern_kernels.convolution(buf47, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 32, 8, 8), (2048, 1, 256, 32)) buf53 = buf52 del buf52 triton_poi_fused_convolution_relu_34[grid(8192)](buf53, primals_27, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 buf54 = extern_kernels.convolution(buf53, buf6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 96, 8, 8), (6144, 1, 768, 96)) buf55 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf56 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_35[grid(65536)](buf47, buf55, buf56, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf57 = extern_kernels.convolution(buf55, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 64, 8, 8), (4096, 1, 512, 64)) buf58 = empty_strided_cuda((4, 480, 8, 8), (30720, 1, 3840, 480), torch.float32) triton_poi_fused_cat_36[grid(122880)](buf48, primals_21, buf51, primals_25, buf54, primals_29, buf57, primals_31, buf58, 122880, XBLOCK=512, num_warps=8, num_stages=1) buf59 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.float32) buf60 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.int8) triton_poi_fused_max_pool2d_with_indices_37[grid(30720)](buf58, buf59, buf60, 30720, XBLOCK=256, num_warps=4, num_stages=1) buf61 = extern_kernels.convolution(buf59, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 192, 4, 4), (3072, 1, 768, 192)) buf62 = extern_kernels.convolution(buf59, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 96, 4, 4), (1536, 1, 384, 96)) buf63 = buf62 del buf62 triton_poi_fused_convolution_relu_38[grid(6144)](buf63, primals_35, 6144, XBLOCK=256, num_warps=4, num_stages=1) del primals_35 buf64 = extern_kernels.convolution(buf63, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 208, 4, 4), (3328, 1, 832, 208)) buf65 = extern_kernels.convolution(buf59, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 16, 4, 4), (256, 1, 64, 16)) buf66 = buf65 del buf65 triton_poi_fused_convolution_relu_39[grid(1024)](buf66, primals_39, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_39 buf67 = extern_kernels.convolution(buf66, buf8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 48, 4, 4), (768, 1, 192, 48)) buf68 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.float32) buf69 = empty_strided_cuda((4, 480, 4, 4), (7680, 1, 1920, 480), torch.int8) triton_poi_fused_max_pool2d_with_indices_40[grid(30720)](buf59, buf68, buf69, 30720, XBLOCK=256, num_warps=4, num_stages=1) buf70 = extern_kernels.convolution(buf68, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 64, 4, 4), (1024, 1, 256, 64)) buf71 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) triton_poi_fused_cat_41[grid(32768)](buf61, primals_33, buf64, primals_37, buf67, primals_41, buf70, primals_43, buf71, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf72 = extern_kernels.convolution(buf71, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf72, (4, 160, 4, 4), (2560, 1, 640, 160)) buf73 = extern_kernels.convolution(buf71, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf73, (4, 112, 4, 4), (1792, 1, 448, 112)) buf74 = buf73 del buf73 triton_poi_fused_convolution_relu_42[grid(7168)](buf74, primals_47, 7168, XBLOCK=256, num_warps=4, num_stages=1) del primals_47 buf75 = extern_kernels.convolution(buf74, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf75, (4, 224, 4, 4), (3584, 1, 896, 224)) buf76 = extern_kernels.convolution(buf71, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf76, (4, 24, 4, 4), (384, 1, 96, 24)) buf77 = buf76 del buf76 triton_poi_fused_convolution_relu_43[grid(1536)](buf77, primals_51, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_51 buf78 = extern_kernels.convolution(buf77, buf10, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf78, (4, 64, 4, 4), (1024, 1, 256, 64)) buf79 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf80 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_44[grid(32768)](buf71, buf79, buf80, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf81 = extern_kernels.convolution(buf79, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf81, (4, 64, 4, 4), (1024, 1, 256, 64)) buf82 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) triton_poi_fused_cat_45[grid(32768)](buf72, primals_45, buf75, primals_49, buf78, primals_53, buf81, primals_55, buf82, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf83 = extern_kernels.convolution(buf82, primals_56, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 4, 4), (2048, 1, 512, 128)) buf84 = extern_kernels.convolution(buf82, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf84, (4, 128, 4, 4), (2048, 1, 512, 128)) buf85 = buf84 del buf84 triton_poi_fused_convolution_relu_46[grid(8192)](buf85, primals_59, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_59 buf86 = extern_kernels.convolution(buf85, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf87 = extern_kernels.convolution(buf82, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf87, (4, 24, 4, 4), (384, 1, 96, 24)) buf88 = buf87 del buf87 triton_poi_fused_convolution_relu_43[grid(1536)](buf88, primals_63, 1536, XBLOCK=256, num_warps=4, num_stages=1) del primals_63 buf89 = extern_kernels.convolution(buf88, buf12, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf89, (4, 64, 4, 4), (1024, 1, 256, 64)) buf90 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf91 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_44[grid(32768)](buf82, buf90, buf91, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf92 = extern_kernels.convolution(buf90, primals_66, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf92, (4, 64, 4, 4), (1024, 1, 256, 64)) buf93 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) triton_poi_fused_cat_47[grid(32768)](buf83, primals_57, buf86, primals_61, buf89, primals_65, buf92, primals_67, buf93, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf94 = extern_kernels.convolution(buf93, primals_68, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf94, (4, 112, 4, 4), (1792, 1, 448, 112)) buf95 = extern_kernels.convolution(buf93, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf95, (4, 144, 4, 4), (2304, 1, 576, 144)) buf96 = buf95 del buf95 triton_poi_fused_convolution_relu_48[grid(9216)](buf96, primals_71, 9216, XBLOCK=256, num_warps=4, num_stages=1) del primals_71 buf97 = extern_kernels.convolution(buf96, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf97, (4, 288, 4, 4), (4608, 1, 1152, 288)) buf98 = extern_kernels.convolution(buf93, primals_74, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf98, (4, 32, 4, 4), (512, 1, 128, 32)) buf99 = buf98 del buf98 triton_poi_fused_convolution_relu_49[grid(2048)](buf99, primals_75, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_75 buf100 = extern_kernels.convolution(buf99, buf14, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf100, (4, 64, 4, 4), (1024, 1, 256, 64)) buf101 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf102 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_44[grid(32768)](buf93, buf101, buf102, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf103 = extern_kernels.convolution(buf101, primals_78, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf103, (4, 64, 4, 4), (1024, 1, 256, 64)) buf104 = empty_strided_cuda((4, 528, 4, 4), (8448, 1, 2112, 528), torch.float32) triton_poi_fused_cat_50[grid(33792)](buf94, primals_69, buf97, primals_73, buf100, primals_77, buf103, primals_79, buf104, 33792, XBLOCK=512, num_warps=4, num_stages=1) buf105 = extern_kernels.convolution(buf104, primals_80, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf105, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf106 = extern_kernels.convolution(buf104, primals_82, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf106, (4, 160, 4, 4), (2560, 1, 640, 160)) buf107 = buf106 del buf106 triton_poi_fused_convolution_relu_51[grid(10240)](buf107, primals_83, 10240, XBLOCK=256, num_warps=4, num_stages=1) del primals_83 buf108 = extern_kernels.convolution(buf107, buf15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf108, (4, 320, 4, 4), (5120, 1, 1280, 320)) buf109 = extern_kernels.convolution(buf104, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf109, (4, 32, 4, 4), (512, 1, 128, 32)) buf110 = buf109 del buf109 triton_poi_fused_convolution_relu_49[grid(2048)](buf110, primals_87, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_87 buf111 = extern_kernels.convolution(buf110, buf16, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf111, (4, 128, 4, 4), (2048, 1, 512, 128)) buf112 = empty_strided_cuda((4, 528, 4, 4), (8448, 1, 2112, 528), torch.float32) buf113 = empty_strided_cuda((4, 528, 4, 4), (8448, 1, 2112, 528), torch.int8) triton_poi_fused_max_pool2d_with_indices_52[grid(33792)](buf104, buf112, buf113, 33792, XBLOCK=512, num_warps=4, num_stages=1) buf114 = extern_kernels.convolution(buf112, primals_90, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf114, (4, 128, 4, 4), (2048, 1, 512, 128)) buf115 = empty_strided_cuda((4, 832, 4, 4), (13312, 1, 3328, 832), torch.float32) triton_poi_fused_cat_53[grid(53248)](buf105, primals_81, buf108, primals_85, buf111, primals_89, buf114, primals_91, buf115, 53248, XBLOCK=256, num_warps=4, num_stages=1) buf116 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) buf117 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.int8) triton_poi_fused_max_pool2d_with_indices_54[grid(13312)](buf115, buf116, buf117, 13312, XBLOCK=128, num_warps=4, num_stages=1) buf118 = extern_kernels.convolution(buf116, primals_92, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 256, 2, 2), (1024, 1, 512, 256)) buf119 = extern_kernels.convolution(buf116, primals_94, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf119, (4, 160, 2, 2), (640, 1, 320, 160)) buf120 = buf119 del buf119 triton_poi_fused_convolution_relu_55[grid(2560)](buf120, primals_95, 2560, XBLOCK=256, num_warps=4, num_stages=1) del primals_95 buf121 = extern_kernels.convolution(buf120, buf17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 320, 2, 2), (1280, 1, 640, 320)) buf122 = extern_kernels.convolution(buf116, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf122, (4, 32, 2, 2), (128, 1, 64, 32)) buf123 = buf122 del buf122 triton_poi_fused_convolution_relu_56[grid(512)](buf123, primals_99, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_99 buf124 = extern_kernels.convolution(buf123, buf18, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf124, (4, 128, 2, 2), (512, 1, 256, 128)) buf125 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) buf126 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.int8) triton_poi_fused_max_pool2d_with_indices_57[grid(13312)](buf116, buf125, buf126, 13312, XBLOCK=128, num_warps=4, num_stages=1) buf127 = extern_kernels.convolution(buf125, primals_102, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf127, (4, 128, 2, 2), (512, 1, 256, 128)) buf128 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) triton_poi_fused_cat_58[grid(13312)](buf118, primals_93, buf121, primals_97, buf124, primals_101, buf127, primals_103, buf128, 13312, XBLOCK=128, num_warps=4, num_stages=1) buf129 = extern_kernels.convolution(buf128, primals_104, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf129, (4, 384, 2, 2), (1536, 1, 768, 384)) buf130 = extern_kernels.convolution(buf128, primals_106, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf130, (4, 192, 2, 2), (768, 1, 384, 192)) buf131 = buf130 del buf130 triton_poi_fused_convolution_relu_59[grid(3072)](buf131, primals_107, 3072, XBLOCK=256, num_warps=4, num_stages=1) del primals_107 buf132 = extern_kernels.convolution(buf131, buf19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf132, (4, 384, 2, 2), (1536, 1, 768, 384)) buf133 = extern_kernels.convolution(buf128, primals_110, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf133, (4, 48, 2, 2), (192, 1, 96, 48)) buf134 = buf133 del buf133 triton_poi_fused_convolution_relu_60[grid(768)](buf134, primals_111, 768, XBLOCK=128, num_warps=4, num_stages=1) del primals_111 buf135 = extern_kernels.convolution(buf134, buf20, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf135, (4, 128, 2, 2), (512, 1, 256, 128)) buf136 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.float32) buf137 = empty_strided_cuda((4, 832, 2, 2), (3328, 1, 1664, 832), torch.int8) triton_poi_fused_max_pool2d_with_indices_57[grid(13312)](buf128, buf136, buf137, 13312, XBLOCK=128, num_warps=4, num_stages=1) buf138 = extern_kernels.convolution(buf136, primals_114, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf138, (4, 128, 2, 2), (512, 1, 256, 128)) buf139 = empty_strided_cuda((4, 1024, 2, 2), (4096, 4, 2, 1), torch .float32) triton_poi_fused_cat_61[grid(16384)](buf129, primals_105, buf132, primals_109, buf135, primals_113, buf138, primals_115, buf139, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf140 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096), torch.float32) triton_poi_fused_mean_62[grid(4096)](buf139, buf140, 4096, XBLOCK= 256, num_warps=4, num_stages=1) del buf139 buf141 = empty_strided_cuda((4, 61), (61, 1), torch.float32) extern_kernels.addmm(primals_117, reinterpret_tensor(buf140, (4, 1024), (1024, 1), 0), reinterpret_tensor(primals_116, (1024, 61 ), (1, 1024), 0), alpha=1, beta=1, out=buf141) del primals_117 buf142 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_63[grid(2048)]( buf138, primals_115, buf142, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf138 del primals_115 buf143 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_63[grid(2048)]( buf135, primals_113, buf143, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf135 del primals_113 buf144 = empty_strided_cuda((4, 384, 2, 2), (1536, 1, 768, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_64[grid(6144)]( buf132, primals_109, buf144, 6144, XBLOCK=256, num_warps=4, num_stages=1) del buf132 del primals_109 buf145 = empty_strided_cuda((4, 384, 2, 2), (1536, 1, 768, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_64[grid(6144)]( buf129, primals_105, buf145, 6144, XBLOCK=256, num_warps=4, num_stages=1) del buf129 del primals_105 buf146 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_63[grid(2048)]( buf127, primals_103, buf146, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf127 del primals_103 buf147 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_63[grid(2048)]( buf124, primals_101, buf147, 2048, XBLOCK=256, num_warps=4, num_stages=1) del buf124 del primals_101 buf148 = empty_strided_cuda((4, 320, 2, 2), (1280, 1, 640, 320), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_65[grid(5120)]( buf121, primals_97, buf148, 5120, XBLOCK=256, num_warps=4, num_stages=1) del buf121 del primals_97 buf149 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_66[grid(4096)]( buf118, primals_93, buf149, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf118 del primals_93 buf150 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_67[grid(8192)]( buf114, primals_91, buf150, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf114 del primals_91 buf151 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_67[grid(8192)]( buf111, primals_89, buf151, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf111 del primals_89 buf152 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_68[grid(20480)]( buf108, primals_85, buf152, 20480, XBLOCK=256, num_warps=4, num_stages=1) del buf108 del primals_85 buf153 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_69[grid(16384)]( buf105, primals_81, buf153, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf105 del primals_81 buf154 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf103, primals_79, buf154, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf103 del primals_79 buf155 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf100, primals_77, buf155, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf100 del primals_77 buf156 = empty_strided_cuda((4, 288, 4, 4), (4608, 1, 1152, 288), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_71[grid(18432)]( buf97, primals_73, buf156, 18432, XBLOCK=256, num_warps=4, num_stages=1) del buf97 del primals_73 buf157 = empty_strided_cuda((4, 112, 4, 4), (1792, 1, 448, 112), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_72[grid(7168)]( buf94, primals_69, buf157, 7168, XBLOCK=256, num_warps=4, num_stages=1) del buf94 del primals_69 buf158 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf92, primals_67, buf158, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf92 del primals_67 buf159 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf89, primals_65, buf159, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf89 del primals_65 buf160 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_69[grid(16384)]( buf86, primals_61, buf160, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf86 del primals_61 buf161 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_67[grid(8192)]( buf83, primals_57, buf161, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf83 del primals_57 buf162 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf81, primals_55, buf162, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf81 del primals_55 buf163 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf78, primals_53, buf163, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf78 del primals_53 buf164 = empty_strided_cuda((4, 224, 4, 4), (3584, 1, 896, 224), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_73[grid(14336)]( buf75, primals_49, buf164, 14336, XBLOCK=256, num_warps=4, num_stages=1) del buf75 del primals_49 buf165 = empty_strided_cuda((4, 160, 4, 4), (2560, 1, 640, 160), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_74[grid(10240)]( buf72, primals_45, buf165, 10240, XBLOCK=128, num_warps=4, num_stages=1) del buf72 del primals_45 buf166 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_70[grid(4096)]( buf70, primals_43, buf166, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf70 del primals_43 buf167 = empty_strided_cuda((4, 48, 4, 4), (768, 1, 192, 48), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_75[grid(3072)]( buf67, primals_41, buf167, 3072, XBLOCK=256, num_warps=4, num_stages=1) del buf67 del primals_41 buf168 = empty_strided_cuda((4, 208, 4, 4), (3328, 1, 832, 208), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_76[grid(13312)]( buf64, primals_37, buf168, 13312, XBLOCK=256, num_warps=4, num_stages=1) del buf64 del primals_37 buf169 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_77[grid(12288)]( buf61, primals_33, buf169, 12288, XBLOCK=256, num_warps=4, num_stages=1) del buf61 del primals_33 buf170 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_78[grid(16384)]( buf57, primals_31, buf170, 16384, XBLOCK=128, num_warps=4, num_stages=1) del buf57 del primals_31 buf171 = empty_strided_cuda((4, 96, 8, 8), (6144, 1, 768, 96), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_79[grid(24576)]( buf54, primals_29, buf171, 24576, XBLOCK=256, num_warps=4, num_stages=1) del buf54 del primals_29 buf172 = empty_strided_cuda((4, 192, 8, 8), (12288, 1, 1536, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_80[grid(49152)]( buf51, primals_25, buf172, 49152, XBLOCK=512, num_warps=4, num_stages=1) del buf51 del primals_25 buf173 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_81[grid(32768)]( buf48, primals_21, buf173, 32768, XBLOCK=128, num_warps=4, num_stages=1) del buf48 del primals_21 buf174 = empty_strided_cuda((4, 32, 8, 8), (2048, 1, 256, 32), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_82[grid(8192)]( buf46, primals_19, buf174, 8192, XBLOCK=256, num_warps=4, num_stages=1) del buf46 del primals_19 buf175 = empty_strided_cuda((4, 32, 8, 8), (2048, 1, 256, 32), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_82[grid(8192)]( buf43, primals_17, buf175, 8192, XBLOCK=256, num_warps=4, num_stages=1) del buf43 del primals_17 buf176 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_81[grid(32768)]( buf40, primals_13, buf176, 32768, XBLOCK=128, num_warps=4, num_stages=1) del buf40 del primals_13 buf177 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_78[grid(16384)]( buf37, primals_9, buf177, 16384, XBLOCK=128, num_warps=4, num_stages=1) del buf37 del primals_9 return (buf141, buf0, buf1, primals_4, buf2, primals_8, primals_10, buf3, primals_14, buf4, primals_18, primals_20, primals_22, buf5, primals_26, buf6, primals_30, primals_32, primals_34, buf7, primals_38, buf8, primals_42, primals_44, primals_46, buf9, primals_50, buf10, primals_54, primals_56, primals_58, buf11, primals_62, buf12, primals_66, primals_68, primals_70, buf13, primals_74, buf14, primals_78, primals_80, primals_82, buf15, primals_86, buf16, primals_90, primals_92, primals_94, buf17, primals_98, buf18, primals_102, primals_104, primals_106, buf19, primals_110, buf20, primals_114, buf22, buf23, buf24, buf25, buf26, buf27, buf29, buf31, buf32, buf33, buf34, buf35, buf36, buf39, buf42, buf44, buf45, buf47, buf50, buf53, buf55, buf56, buf58, buf59, buf60, buf63, buf66, buf68, buf69, buf71, buf74, buf77, buf79, buf80, buf82, buf85, buf88, buf90, buf91, buf93, buf96, buf99, buf101, buf102, buf104, buf107, buf110, buf112, buf113, buf115, buf116, buf117, buf120, buf123, buf125, buf126, buf128, buf131, buf134, buf136, buf137, reinterpret_tensor(buf140, (4, 1024 ), (1024, 1), 0), primals_116, buf142, buf143, buf144, buf145, buf146, buf147, buf148, buf149, buf150, buf151, buf152, buf153, buf154, buf155, buf156, buf157, buf158, buf159, buf160, buf161, buf162, buf163, buf164, buf165, buf166, buf167, buf168, buf169, buf170, buf171, buf172, buf173, buf174, buf175, buf176, buf177) class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() self.conv1_7x7_s2 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3 ) self.pool1_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.pool1_norm1 = nn.LocalResponseNorm(2, 1.99999994948e-05, 0.75) self.conv2_3x3_reduce = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0) self.conv2_3x3 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1) self.conv2_norm2 = nn.LocalResponseNorm(2, 1.99999994948e-05, 0.75) self.pool2_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_3a_1x1 = nn.Conv2d(192, 64, kernel_size=1, stride=1, padding=0) self.inception_3a_3x3_reduce = nn.Conv2d(192, 96, kernel_size=1, stride=1, padding=0) self.inception_3a_3x3 = nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1) self.inception_3a_5x5_reduce = nn.Conv2d(192, 16, kernel_size=1, stride=1, padding=0) self.inception_3a_5x5 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2) self.inception_3a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_3a_pool_proj = nn.Conv2d(192, 32, kernel_size=1, stride=1, padding=0) self.inception_3b_1x1 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) self.inception_3b_3x3_reduce = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) self.inception_3b_3x3 = nn.Conv2d(128, 192, kernel_size=3, stride=1, padding=1) self.inception_3b_5x5_reduce = nn.Conv2d(256, 32, kernel_size=1, stride=1, padding=0) self.inception_3b_5x5 = nn.Conv2d(32, 96, kernel_size=5, stride=1, padding=2) self.inception_3b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_3b_pool_proj = nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0) self.pool3_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_4a_1x1 = nn.Conv2d(480, 192, kernel_size=1, stride=1, padding=0) self.inception_4a_3x3_reduce = nn.Conv2d(480, 96, kernel_size=1, stride=1, padding=0) self.inception_4a_3x3 = nn.Conv2d(96, 208, kernel_size=3, stride=1, padding=1) self.inception_4a_5x5_reduce = nn.Conv2d(480, 16, kernel_size=1, stride=1, padding=0) self.inception_4a_5x5 = nn.Conv2d(16, 48, kernel_size=5, stride=1, padding=2) self.inception_4a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4a_pool_proj = nn.Conv2d(480, 64, kernel_size=1, stride=1, padding=0) self.inception_4b_1x1 = nn.Conv2d(512, 160, kernel_size=1, stride=1, padding=0) self.inception_4b_3x3_reduce = nn.Conv2d(512, 112, kernel_size=1, stride=1, padding=0) self.inception_4b_3x3 = nn.Conv2d(112, 224, kernel_size=3, stride=1, padding=1) self.inception_4b_5x5_reduce = nn.Conv2d(512, 24, kernel_size=1, stride=1, padding=0) self.inception_4b_5x5 = nn.Conv2d(24, 64, kernel_size=5, stride=1, padding=2) self.inception_4b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4b_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4c_1x1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.inception_4c_3x3_reduce = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.inception_4c_3x3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.inception_4c_5x5_reduce = nn.Conv2d(512, 24, kernel_size=1, stride=1, padding=0) self.inception_4c_5x5 = nn.Conv2d(24, 64, kernel_size=5, stride=1, padding=2) self.inception_4c_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4c_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4d_1x1 = nn.Conv2d(512, 112, kernel_size=1, stride=1, padding=0) self.inception_4d_3x3_reduce = nn.Conv2d(512, 144, kernel_size=1, stride=1, padding=0) self.inception_4d_3x3 = nn.Conv2d(144, 288, kernel_size=3, stride=1, padding=1) self.inception_4d_5x5_reduce = nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0) self.inception_4d_5x5 = nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2) self.inception_4d_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4d_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4e_1x1 = nn.Conv2d(528, 256, kernel_size=1, stride=1, padding=0) self.inception_4e_3x3_reduce = nn.Conv2d(528, 160, kernel_size=1, stride=1, padding=0) self.inception_4e_3x3 = nn.Conv2d(160, 320, kernel_size=3, stride=1, padding=1) self.inception_4e_5x5_reduce = nn.Conv2d(528, 32, kernel_size=1, stride=1, padding=0) self.inception_4e_5x5 = nn.Conv2d(32, 128, kernel_size=5, stride=1, padding=2) self.inception_4e_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4e_pool_proj = nn.Conv2d(528, 128, kernel_size=1, stride=1, padding=0) self.pool4_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_5a_1x1 = nn.Conv2d(832, 256, kernel_size=1, stride=1, padding=0) self.inception_5a_3x3_reduce = nn.Conv2d(832, 160, kernel_size=1, stride=1, padding=0) self.inception_5a_3x3 = nn.Conv2d(160, 320, kernel_size=3, stride=1, padding=1) self.inception_5a_5x5_reduce = nn.Conv2d(832, 32, kernel_size=1, stride=1, padding=0) self.inception_5a_5x5 = nn.Conv2d(32, 128, kernel_size=5, stride=1, padding=2) self.inception_5a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_5a_pool_proj = nn.Conv2d(832, 128, kernel_size=1, stride=1, padding=0) self.inception_5b_1x1 = nn.Conv2d(832, 384, kernel_size=1, stride=1, padding=0) self.inception_5b_3x3_reduce = nn.Conv2d(832, 192, kernel_size=1, stride=1, padding=0) self.inception_5b_3x3 = nn.Conv2d(192, 384, kernel_size=3, stride=1, padding=1) self.inception_5b_5x5_reduce = nn.Conv2d(832, 48, kernel_size=1, stride=1, padding=0) self.inception_5b_5x5 = nn.Conv2d(48, 128, kernel_size=5, stride=1, padding=2) self.inception_5b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_5b_pool_proj = nn.Conv2d(832, 128, kernel_size=1, stride=1, padding=0) self.pool5_7x7_s1 = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(0.2) self.loss3_SLclassifier = nn.Linear(1024, 61) def forward(self, input_0): primals_1 = self.conv1_7x7_s2.weight primals_2 = self.conv1_7x7_s2.bias primals_4 = self.conv2_3x3_reduce.weight primals_5 = self.conv2_3x3_reduce.bias primals_6 = self.conv2_3x3.weight primals_7 = self.conv2_3x3.bias primals_8 = self.inception_3a_1x1.weight primals_9 = self.inception_3a_1x1.bias primals_10 = self.inception_3a_3x3_reduce.weight primals_11 = self.inception_3a_3x3_reduce.bias primals_12 = self.inception_3a_3x3.weight primals_13 = self.inception_3a_3x3.bias primals_14 = self.inception_3a_5x5_reduce.weight primals_15 = self.inception_3a_5x5_reduce.bias primals_16 = self.inception_3a_5x5.weight primals_17 = self.inception_3a_5x5.bias primals_18 = self.inception_3a_pool_proj.weight primals_19 = self.inception_3a_pool_proj.bias primals_20 = self.inception_3b_1x1.weight primals_21 = self.inception_3b_1x1.bias primals_22 = self.inception_3b_3x3_reduce.weight primals_23 = self.inception_3b_3x3_reduce.bias primals_24 = self.inception_3b_3x3.weight primals_25 = self.inception_3b_3x3.bias primals_26 = self.inception_3b_5x5_reduce.weight primals_27 = self.inception_3b_5x5_reduce.bias primals_28 = self.inception_3b_5x5.weight primals_29 = self.inception_3b_5x5.bias primals_30 = self.inception_3b_pool_proj.weight primals_31 = self.inception_3b_pool_proj.bias primals_32 = self.inception_4a_1x1.weight primals_33 = self.inception_4a_1x1.bias primals_34 = self.inception_4a_3x3_reduce.weight primals_35 = self.inception_4a_3x3_reduce.bias primals_36 = self.inception_4a_3x3.weight primals_37 = self.inception_4a_3x3.bias primals_38 = self.inception_4a_5x5_reduce.weight primals_39 = self.inception_4a_5x5_reduce.bias primals_40 = self.inception_4a_5x5.weight primals_41 = self.inception_4a_5x5.bias primals_42 = self.inception_4a_pool_proj.weight primals_43 = self.inception_4a_pool_proj.bias primals_44 = self.inception_4b_1x1.weight primals_45 = self.inception_4b_1x1.bias primals_46 = self.inception_4b_3x3_reduce.weight primals_47 = self.inception_4b_3x3_reduce.bias primals_48 = self.inception_4b_3x3.weight primals_49 = self.inception_4b_3x3.bias primals_50 = self.inception_4b_5x5_reduce.weight primals_51 = self.inception_4b_5x5_reduce.bias primals_52 = self.inception_4b_5x5.weight primals_53 = self.inception_4b_5x5.bias primals_54 = self.inception_4b_pool_proj.weight primals_55 = self.inception_4b_pool_proj.bias primals_56 = self.inception_4c_1x1.weight primals_57 = self.inception_4c_1x1.bias primals_58 = self.inception_4c_3x3_reduce.weight primals_59 = self.inception_4c_3x3_reduce.bias primals_60 = self.inception_4c_3x3.weight primals_61 = self.inception_4c_3x3.bias primals_62 = self.inception_4c_5x5_reduce.weight primals_63 = self.inception_4c_5x5_reduce.bias primals_64 = self.inception_4c_5x5.weight primals_65 = self.inception_4c_5x5.bias primals_66 = self.inception_4c_pool_proj.weight primals_67 = self.inception_4c_pool_proj.bias primals_68 = self.inception_4d_1x1.weight primals_69 = self.inception_4d_1x1.bias primals_70 = self.inception_4d_3x3_reduce.weight primals_71 = self.inception_4d_3x3_reduce.bias primals_72 = self.inception_4d_3x3.weight primals_73 = self.inception_4d_3x3.bias primals_74 = self.inception_4d_5x5_reduce.weight primals_75 = self.inception_4d_5x5_reduce.bias primals_76 = self.inception_4d_5x5.weight primals_77 = self.inception_4d_5x5.bias primals_78 = self.inception_4d_pool_proj.weight primals_79 = self.inception_4d_pool_proj.bias primals_80 = self.inception_4e_1x1.weight primals_81 = self.inception_4e_1x1.bias primals_82 = self.inception_4e_3x3_reduce.weight primals_83 = self.inception_4e_3x3_reduce.bias primals_84 = self.inception_4e_3x3.weight primals_85 = self.inception_4e_3x3.bias primals_86 = self.inception_4e_5x5_reduce.weight primals_87 = self.inception_4e_5x5_reduce.bias primals_88 = self.inception_4e_5x5.weight primals_89 = self.inception_4e_5x5.bias primals_90 = self.inception_4e_pool_proj.weight primals_91 = self.inception_4e_pool_proj.bias primals_92 = self.inception_5a_1x1.weight primals_93 = self.inception_5a_1x1.bias primals_94 = self.inception_5a_3x3_reduce.weight primals_95 = self.inception_5a_3x3_reduce.bias primals_96 = self.inception_5a_3x3.weight primals_97 = self.inception_5a_3x3.bias primals_98 = self.inception_5a_5x5_reduce.weight primals_99 = self.inception_5a_5x5_reduce.bias primals_100 = self.inception_5a_5x5.weight primals_101 = self.inception_5a_5x5.bias primals_102 = self.inception_5a_pool_proj.weight primals_103 = self.inception_5a_pool_proj.bias primals_104 = self.inception_5b_1x1.weight primals_105 = self.inception_5b_1x1.bias primals_106 = self.inception_5b_3x3_reduce.weight primals_107 = self.inception_5b_3x3_reduce.bias primals_108 = self.inception_5b_3x3.weight primals_109 = self.inception_5b_3x3.bias primals_110 = self.inception_5b_5x5_reduce.weight primals_111 = self.inception_5b_5x5_reduce.bias primals_112 = self.inception_5b_5x5.weight primals_113 = self.inception_5b_5x5.bias primals_114 = self.inception_5b_pool_proj.weight primals_115 = self.inception_5b_pool_proj.bias primals_116 = self.loss3_SLclassifier.weight primals_117 = self.loss3_SLclassifier.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117]) return output[0]
m-decoster/DeepHand-PyTorch
Model
false
7,484
[ "MIT" ]
1
ece77e04ec261a540b011fd00584bfc6d7337dc5
https://github.com/m-decoster/DeepHand-PyTorch/tree/ece77e04ec261a540b011fd00584bfc6d7337dc5
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1_7x7_s2 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3 ) self.pool1_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.pool1_norm1 = nn.LocalResponseNorm(2, 1.99999994948e-05, 0.75) self.conv2_3x3_reduce = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=0) self.conv2_3x3 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1) self.conv2_norm2 = nn.LocalResponseNorm(2, 1.99999994948e-05, 0.75) self.pool2_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_3a_1x1 = nn.Conv2d(192, 64, kernel_size=1, stride=1, padding=0) self.inception_3a_3x3_reduce = nn.Conv2d(192, 96, kernel_size=1, stride=1, padding=0) self.inception_3a_3x3 = nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1) self.inception_3a_5x5_reduce = nn.Conv2d(192, 16, kernel_size=1, stride=1, padding=0) self.inception_3a_5x5 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2) self.inception_3a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_3a_pool_proj = nn.Conv2d(192, 32, kernel_size=1, stride=1, padding=0) self.inception_3b_1x1 = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) self.inception_3b_3x3_reduce = nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) self.inception_3b_3x3 = nn.Conv2d(128, 192, kernel_size=3, stride=1, padding=1) self.inception_3b_5x5_reduce = nn.Conv2d(256, 32, kernel_size=1, stride=1, padding=0) self.inception_3b_5x5 = nn.Conv2d(32, 96, kernel_size=5, stride=1, padding=2) self.inception_3b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_3b_pool_proj = nn.Conv2d(256, 64, kernel_size=1, stride=1, padding=0) self.pool3_3x3_s2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) self.inception_4a_1x1 = nn.Conv2d(480, 192, kernel_size=1, stride=1, padding=0) self.inception_4a_3x3_reduce = nn.Conv2d(480, 96, kernel_size=1, stride=1, padding=0) self.inception_4a_3x3 = nn.Conv2d(96, 208, kernel_size=3, stride=1, padding=1) self.inception_4a_5x5_reduce = nn.Conv2d(480, 16, kernel_size=1, stride=1, padding=0) self.inception_4a_5x5 = nn.Conv2d(16, 48, kernel_size=5, stride=1, padding=2) self.inception_4a_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4a_pool_proj = nn.Conv2d(480, 64, kernel_size=1, stride=1, padding=0) self.inception_4b_1x1 = nn.Conv2d(512, 160, kernel_size=1, stride=1, padding=0) self.inception_4b_3x3_reduce = nn.Conv2d(512, 112, kernel_size=1, stride=1, padding=0) self.inception_4b_3x3 = nn.Conv2d(112, 224, kernel_size=3, stride=1, padding=1) self.inception_4b_5x5_reduce = nn.Conv2d(512, 24, kernel_size=1, stride=1, padding=0) self.inception_4b_5x5 = nn.Conv2d(24, 64, kernel_size=5, stride=1, padding=2) self.inception_4b_pool = nn.MaxPool2d(3, stride=1, padding=1, ceil_mode=True) self.inception_4b_pool_proj = nn.Conv2d(512, 64, kernel_size=1, stride=1, padding=0) self.inception_4c_1x1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.inception_4c_3x3_reduce = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.inception_4c_3x3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.inception_4c_5x5_reduce = nn.Conv2d(512, # ... truncated (>4000 chars) for memory efficiency
SamePadConv3d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/os/coslqwvho44erxzzjds34i4gp4eijmmnr2uxhw6cfvd3hxcjq7kq.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [2, 1, 2, 1, 2, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1372 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 49) % 7 x1 = (xindex // 7) % 7 x0 = xindex % 7 x3 = (xindex // 343) x7 = xindex tmp0 = (-2) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-2) + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = (-2) + x0 tmp9 = tmp8 >= tmp1 tmp10 = tmp8 < tmp3 tmp11 = tmp2 & tmp4 tmp12 = tmp11 & tmp6 tmp13 = tmp12 & tmp7 tmp14 = tmp13 & tmp9 tmp15 = tmp14 & tmp10 tmp16 = tl.load(in_ptr0 + ((-42) + x0 + (4*x1) + (16*x2) + (64*x3)), tmp15 & xmask, other=0.0) tl.store(out_ptr0 + (x7), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k4/ck4rl3bwj3xj3vzqgyajenblv3ghtfzm34v3ftulr7inni3fptfq.py # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv3d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_2, %primals_3, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7, 7, 7), (343, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 1372, grid=grid(1372), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (0, 343, 49, 7, 1), 0), primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (1372, 343, 49, 7, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SamePadConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([(k - s) for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias) def forward(self, x): return self.conv(F.pad(x, self.pad_input)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1372 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 49 % 7 x1 = xindex // 7 % 7 x0 = xindex % 7 x3 = xindex // 343 x7 = xindex tmp0 = -2 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -2 + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = -2 + x0 tmp9 = tmp8 >= tmp1 tmp10 = tmp8 < tmp3 tmp11 = tmp2 & tmp4 tmp12 = tmp11 & tmp6 tmp13 = tmp12 & tmp7 tmp14 = tmp13 & tmp9 tmp15 = tmp14 & tmp10 tmp16 = tl.load(in_ptr0 + (-42 + x0 + 4 * x1 + 16 * x2 + 64 * x3), tmp15 & xmask, other=0.0) tl.store(out_ptr0 + x7, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7, 7, 7), (343, 49, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1372)](primals_1, buf0, 1372, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (0, 343, 49, 7, 1), 0), primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_2, reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (1372, 343, 49, 7, 1), 0) class SamePadConv3dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([(k - s) for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
pointoflight/VideoGPT
SamePadConv3d
false
7,485
[ "MIT" ]
1
85f19d8cb0d251238f295f0294e69b9299c13e21
https://github.com/pointoflight/VideoGPT/tree/85f19d8cb0d251238f295f0294e69b9299c13e21
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([(k - s) for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=0, bias=bias) def forward(self, x): return self.conv(F.pad(x, self.pad_input)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
SamePadConvTranspose3d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/os/coslqwvho44erxzzjds34i4gp4eijmmnr2uxhw6cfvd3hxcjq7kq.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [2, 1, 2, 1, 2, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1372 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 49) % 7 x1 = (xindex // 7) % 7 x0 = xindex % 7 x3 = (xindex // 343) x7 = xindex tmp0 = (-2) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-2) + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = (-2) + x0 tmp9 = tmp8 >= tmp1 tmp10 = tmp8 < tmp3 tmp11 = tmp2 & tmp4 tmp12 = tmp11 & tmp6 tmp13 = tmp12 & tmp7 tmp14 = tmp13 & tmp9 tmp15 = tmp14 & tmp10 tmp16 = tl.load(in_ptr0 + ((-42) + x0 + (4*x1) + (16*x2) + (64*x3)), tmp15 & xmask, other=0.0) tl.store(out_ptr0 + (x7), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k4/ck4rl3bwj3xj3vzqgyajenblv3ghtfzm34v3ftulr7inni3fptfq.py # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv_transpose3d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_2, %primals_3, [1, 1, 1], [3, 3, 3], [1, 1, 1], True, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7, 7, 7), (343, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 1372, grid=grid(1372), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (0, 343, 49, 7, 1), 0), primals_2, stride=(1, 1, 1), padding=(3, 3, 3), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (1372, 343, 49, 7, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SamePadConvTranspose3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([(k - s) for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, bias=bias, padding=tuple([(k - 1) for k in kernel_size])) def forward(self, x): return self.convt(F.pad(x, self.pad_input)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1372 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 49 % 7 x1 = xindex // 7 % 7 x0 = xindex % 7 x3 = xindex // 343 x7 = xindex tmp0 = -2 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -2 + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = -2 + x0 tmp9 = tmp8 >= tmp1 tmp10 = tmp8 < tmp3 tmp11 = tmp2 & tmp4 tmp12 = tmp11 & tmp6 tmp13 = tmp12 & tmp7 tmp14 = tmp13 & tmp9 tmp15 = tmp14 & tmp10 tmp16 = tl.load(in_ptr0 + (-42 + x0 + 4 * x1 + 16 * x2 + 64 * x3), tmp15 & xmask, other=0.0) tl.store(out_ptr0 + x7, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7, 7, 7), (343, 49, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(1372)](primals_1, buf0, 1372, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (0, 343, 49, 7, 1), 0), primals_2, stride=(1, 1, 1), padding=(3, 3, 3), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_2, reinterpret_tensor(buf0, (1, 4, 7, 7, 7), (1372, 343, 49, 7, 1), 0) class SamePadConvTranspose3dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([(k - s) for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, bias=bias, padding=tuple([(k - 1) for k in kernel_size])) def forward(self, input_0): primals_2 = self.convt.weight primals_3 = self.convt.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
pointoflight/VideoGPT
SamePadConvTranspose3d
false
7,486
[ "MIT" ]
1
85f19d8cb0d251238f295f0294e69b9299c13e21
https://github.com/pointoflight/VideoGPT/tree/85f19d8cb0d251238f295f0294e69b9299c13e21
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 if isinstance(stride, int): stride = (stride,) * 3 total_pad = tuple([(k - s) for k, s in zip(kernel_size, stride)]) pad_input = [] for p in total_pad[::-1]: pad_input.append((p // 2 + p % 2, p // 2)) pad_input = sum(pad_input, tuple()) self.pad_input = pad_input self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, bias=bias, padding=tuple([(k - 1) for k in kernel_size])) def forward(self, x): return self.convt(F.pad(x, self.pad_input)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Pooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] # Source node to ATen node mapping: # pooled_output => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7b/c7bf34fgn2dhohe7ejneqlees25vyq6sbe4c5lfvoehzliak2nz6.py # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.add] # Source node to ATen node mapping: # pooled_output => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import * def linear(x): return x def activation(func_a): """Activation function wrapper """ try: f = eval(func_a) except: f = linear return f class DropoutWrapper(nn.Module): """ This is a dropout wrapper which supports the fix mask dropout """ def __init__(self, dropout_p=0, enable_vbp=True): super(DropoutWrapper, self).__init__() """variational dropout means fix dropout mask ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11 """ self.enable_variational_dropout = enable_vbp self.dropout_p = dropout_p def forward(self, x): """ :param x: batch * len * input_size """ if self.training is False or self.dropout_p == 0: return x if len(x.size()) == 3: mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self. dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1)) mask.requires_grad = False return mask.unsqueeze(1).expand_as(x) * x else: return F.dropout(x, p=self.dropout_p, training=self.training) class Pooler(nn.Module): def __init__(self, hidden_size, dropout_p=0.1, actf='tanh'): super(Pooler, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = activation(actf) self.dropout = DropoutWrapper(dropout_p=dropout_p) def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] first_token_tensor = self.dropout(first_token_tensor) pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0) def linear(x): return x def activation(func_a): """Activation function wrapper """ try: f = eval(func_a) except: f = linear return f class DropoutWrapper(nn.Module): """ This is a dropout wrapper which supports the fix mask dropout """ def __init__(self, dropout_p=0, enable_vbp=True): super(DropoutWrapper, self).__init__() """variational dropout means fix dropout mask ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11 """ self.enable_variational_dropout = enable_vbp self.dropout_p = dropout_p def forward(self, x): """ :param x: batch * len * input_size """ if self.training is False or self.dropout_p == 0: return x if len(x.size()) == 3: mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self. dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1)) mask.requires_grad = False return mask.unsqueeze(1).expand_as(x) * x else: return F.dropout(x, p=self.dropout_p, training=self.training) class PoolerNew(nn.Module): def __init__(self, hidden_size, dropout_p=0.1, actf='tanh'): super(PoolerNew, self).__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = activation(actf) self.dropout = DropoutWrapper(dropout_p=dropout_p) def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
praj000/DeepPavlov
Pooler
false
7,487
[ "Apache-2.0" ]
1
3c9e4c989c6f6b89cd187f0ec2e2b7c71d1e3bf3
https://github.com/praj000/DeepPavlov/tree/3c9e4c989c6f6b89cd187f0ec2e2b7c71d1e3bf3
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import * def linear(x): return x def activation(func_a): """Activation function wrapper """ try: f = eval(func_a) except: f = linear return f class DropoutWrapper(nn.Module): """ This is a dropout wrapper which supports the fix mask dropout """ def __init__(self, dropout_p=0, enable_vbp=True): super().__init__() """variational dropout means fix dropout mask ref: https://discuss.pytorch.org/t/dropout-for-rnns/633/11 """ self.enable_variational_dropout = enable_vbp self.dropout_p = dropout_p def forward(self, x): """ :param x: batch * len * input_size """ if self.training is False or self.dropout_p == 0: return x if len(x.size()) == 3: mask = 1.0 / (1 - self.dropout_p) * torch.bernoulli((1 - self. dropout_p) * (x.data.new(x.size(0), x.size(2)).zero_() + 1)) mask.requires_grad = False return mask.unsqueeze(1).expand_as(x) * x else: return F.dropout(x, p=self.dropout_p, training=self.training) class Model(nn.Module): def __init__(self, hidden_size, dropout_p=0.1, actf='tanh'): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.activation = activation(actf) self.dropout = DropoutWrapper(dropout_p=dropout_p) def forward(self, hidden_states): first_token_tensor = hidden_states[:, 0] first_token_tensor = self.dropout(first_token_tensor) pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ReconstructionLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ns/cnsfro2m3yop7hctt3gzvfo72pqdjpjyciiysmo6j2eroh6wibzp.py # Topologically Sorted Source Nodes: [sub, L, L_1, L_2], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # L => pow_1 # L_1 => sum_1 # L_2 => sum_2 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [-1]), kwargs = {}) triton_poi_fused_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (16*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr1 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr1 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr1 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp48 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp49 = tl.load(in_ptr1 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp53 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp54 = tl.load(in_ptr1 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp59 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp60 = tl.load(in_ptr1 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp63 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr1 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp68 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp69 = tl.load(in_ptr1 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp73 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr1 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp25 = tmp23 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tmp22 + tmp26 tmp30 = tmp28 - tmp29 tmp31 = tmp30 * tmp30 tmp32 = tmp27 + tmp31 tmp35 = tmp33 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tmp32 + tmp36 tmp38 = tmp18 + tmp37 tmp41 = tmp39 - tmp40 tmp42 = tmp41 * tmp41 tmp45 = tmp43 - tmp44 tmp46 = tmp45 * tmp45 tmp47 = tmp42 + tmp46 tmp50 = tmp48 - tmp49 tmp51 = tmp50 * tmp50 tmp52 = tmp47 + tmp51 tmp55 = tmp53 - tmp54 tmp56 = tmp55 * tmp55 tmp57 = tmp52 + tmp56 tmp58 = tmp38 + tmp57 tmp61 = tmp59 - tmp60 tmp62 = tmp61 * tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp67 = tmp62 + tmp66 tmp70 = tmp68 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tmp67 + tmp71 tmp75 = tmp73 - tmp74 tmp76 = tmp75 * tmp75 tmp77 = tmp72 + tmp76 tmp78 = tmp58 + tmp77 tl.store(out_ptr0 + (x0), tmp78, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ek/cekiz6m3gkht2yp3ztmcbsd3p5puikacrotgfo47gez257wxla3s.py # Topologically Sorted Source Nodes: [L_3, mean], Original ATen: [aten.sum, aten.mean] # Source node to ATen node mapping: # L_3 => sum_3 # mean => mean # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_2, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {}) triton_per_fused_mean_sum_1 = async_compile.triton('triton_per_fused_mean_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 4.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, L, L_1, L_2], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_pow_sub_sum_0.run(arg0_1, arg1_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [L_3, mean], Original ATen: [aten.sum, aten.mean] triton_per_fused_mean_sum_1.run(buf2, buf0, 1, 4, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from functools import reduce import torch.utils.data class BaseModule(nn.Module): """ Implements the basic module. All other modules inherit from this one """ def load_w(self, checkpoint_path): """ Loads a checkpoint into the state_dict. :param checkpoint_path: the checkpoint file to be loaded. """ self.load_state_dict(torch.load(checkpoint_path)) def __repr__(self): """ String representation """ good_old = super(BaseModule, self).__repr__() addition = 'Total number of parameters: {:,}'.format(self.n_parameters) return good_old + '\n' + addition def __call__(self, *args, **kwargs): return super(BaseModule, self).__call__(*args, **kwargs) @property def n_parameters(self): """ Number of parameters of the model. """ n_parameters = 0 for p in self.parameters(): if hasattr(p, 'mask'): n_parameters += torch.sum(p.mask).item() else: n_parameters += reduce(mul, p.shape) return int(n_parameters) class ReconstructionLoss(BaseModule): """ Implements the reconstruction loss. """ def __init__(self): """ Class constructor. """ super(ReconstructionLoss, self).__init__() def forward(self, x, x_r): """ Forward propagation. :param x: the batch of input samples. :param x_r: the batch of reconstructions. :return: the mean reconstruction loss (averaged along the batch axis). """ L = torch.pow(x - x_r, 2) while L.dim() > 1: L = torch.sum(L, dim=-1) return torch.mean(L) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from functools import reduce import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 16 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr1 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr1 + (2 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (4 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr1 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr1 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr1 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp39 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp40 = tl.load(in_ptr1 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp43 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr1 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp48 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp49 = tl.load(in_ptr1 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp53 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp54 = tl.load(in_ptr1 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp59 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp60 = tl.load(in_ptr1 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp63 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp64 = tl.load(in_ptr1 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp68 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp69 = tl.load(in_ptr1 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp73 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp74 = tl.load(in_ptr1 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp25 = tmp23 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tmp22 + tmp26 tmp30 = tmp28 - tmp29 tmp31 = tmp30 * tmp30 tmp32 = tmp27 + tmp31 tmp35 = tmp33 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tmp32 + tmp36 tmp38 = tmp18 + tmp37 tmp41 = tmp39 - tmp40 tmp42 = tmp41 * tmp41 tmp45 = tmp43 - tmp44 tmp46 = tmp45 * tmp45 tmp47 = tmp42 + tmp46 tmp50 = tmp48 - tmp49 tmp51 = tmp50 * tmp50 tmp52 = tmp47 + tmp51 tmp55 = tmp53 - tmp54 tmp56 = tmp55 * tmp55 tmp57 = tmp52 + tmp56 tmp58 = tmp38 + tmp57 tmp61 = tmp59 - tmp60 tmp62 = tmp61 * tmp61 tmp65 = tmp63 - tmp64 tmp66 = tmp65 * tmp65 tmp67 = tmp62 + tmp66 tmp70 = tmp68 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tmp67 + tmp71 tmp75 = tmp73 - tmp74 tmp76 = tmp75 * tmp75 tmp77 = tmp72 + tmp76 tmp78 = tmp58 + tmp77 tl.store(out_ptr0 + x0, tmp78, xmask) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 4.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_sub_sum_0[grid(16)](arg0_1, arg1_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_sum_1[grid(1)](buf2, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class BaseModule(nn.Module): """ Implements the basic module. All other modules inherit from this one """ def load_w(self, checkpoint_path): """ Loads a checkpoint into the state_dict. :param checkpoint_path: the checkpoint file to be loaded. """ self.load_state_dict(torch.load(checkpoint_path)) def __repr__(self): """ String representation """ good_old = super(BaseModule, self).__repr__() addition = 'Total number of parameters: {:,}'.format(self.n_parameters) return good_old + '\n' + addition def __call__(self, *args, **kwargs): return super(BaseModule, self).__call__(*args, **kwargs) @property def n_parameters(self): """ Number of parameters of the model. """ n_parameters = 0 for p in self.parameters(): if hasattr(p, 'mask'): n_parameters += torch.sum(p.mask).item() else: n_parameters += reduce(mul, p.shape) return int(n_parameters) class ReconstructionLossNew(BaseModule): """ Implements the reconstruction loss. """ def __init__(self): """ Class constructor. """ super(ReconstructionLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
ppalaupuigdevall/moments-vae
ReconstructionLoss
false
7,488
[ "MIT" ]
1
99384094b5b7213e7669ad492f1b56216045b190
https://github.com/ppalaupuigdevall/moments-vae/tree/99384094b5b7213e7669ad492f1b56216045b190
import torch import torch.nn as nn from functools import reduce import torch.utils.data class BaseModule(nn.Module): """ Implements the basic module. All other modules inherit from this one """ def load_w(self, checkpoint_path): """ Loads a checkpoint into the state_dict. :param checkpoint_path: the checkpoint file to be loaded. """ self.load_state_dict(torch.load(checkpoint_path)) def __repr__(self): """ String representation """ good_old = super(BaseModule, self).__repr__() addition = 'Total number of parameters: {:,}'.format(self.n_parameters) return good_old + '\n' + addition def __call__(self, *args, **kwargs): return super(BaseModule, self).__call__(*args, **kwargs) @property def n_parameters(self): """ Number of parameters of the model. """ n_parameters = 0 for p in self.parameters(): if hasattr(p, 'mask'): n_parameters += torch.sum(p.mask).item() else: n_parameters += reduce(mul, p.shape) return int(n_parameters) class Model(BaseModule): """ Implements the reconstruction loss. """ def __init__(self): """ Class constructor. """ super().__init__() def forward(self, x, x_r): """ Forward propagation. :param x: the batch of input samples. :param x_r: the batch of reconstructions. :return: the mean reconstruction loss (averaged along the batch axis). """ L = torch.pow(x - x_r, 2) while L.dim() > 1: L = torch.sum(L, dim=-1) return torch.mean(L) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
_DQN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gi/cgini6af4rvehl2o75dby6uanmtog4uuu7lqcssyhyxvucwuyul4.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ry/cry4f2nttlkmbnyhjtkprxnvlxg4oz3ajlgvq6h4vuzgx5mvjgnk.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_3, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 512, grid=grid(512), stream=stream0) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del primals_5 buf6 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_7 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 8), (8, 1), 0), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class _DQN(nn.Module): def __init__(self, observation_space, action_space): super(_DQN, self).__init__() self.fc1 = nn.Linear(observation_space, 8) self.fc2 = nn.Linear(8, 4) self.fc3 = nn.Linear(4, action_space) def forward(self, x): x = F.leaky_relu(self.fc1(x), negative_slope=0.1) x = F.leaky_relu(self.fc2(x), negative_slope=0.1) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'observation_space': 4, 'action_space': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(512)](buf0, primals_2, buf1, buf2, 512, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = buf3 del buf3 extern_kernels.addmm(primals_7, reinterpret_tensor(buf5, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_7 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 8), (8, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 4), (4, 1), 0 ), primals_6, primals_4 class _DQNNew(nn.Module): def __init__(self, observation_space, action_space): super(_DQNNew, self).__init__() self.fc1 = nn.Linear(observation_space, 8) self.fc2 = nn.Linear(8, 4) self.fc3 = nn.Linear(4, action_space) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
pouyan9675/DeepFlappyBird
_DQN
false
7,489
[ "MIT" ]
1
3dc727cc7fb2ce9e0e665d26770c08d3e924f6c2
https://github.com/pouyan9675/DeepFlappyBird/tree/3dc727cc7fb2ce9e0e665d26770c08d3e924f6c2
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, observation_space, action_space): super().__init__() self.fc1 = nn.Linear(observation_space, 8) self.fc2 = nn.Linear(8, 4) self.fc3 = nn.Linear(4, action_space) def forward(self, x): x = F.leaky_relu(self.fc1(x), negative_slope=0.1) x = F.leaky_relu(self.fc2(x), negative_slope=0.1) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Advantage_estimate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/x3/cx3vj33z3tpfqf7y5eyq5z5jjba7dgt7ne7hw4gjsclwj5porq6x.py # Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # leaky_relu => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, 4), (4, 1)) assert_size_stride(primals_3, (128, ), (1, )) assert_size_stride(primals_4, (4, 128), (128, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 8192, grid=grid(8192), stream=stream0) del buf0 del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 128), (128, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Advantage_estimate(nn.Module): def __init__(self, input_shape, output_shape, device, hidden_shape=128): super(Advantage_estimate, self).__init__() self.device = device self.dropout = nn.Dropout(p=0.01) self.input_shape = input_shape self.hidden_shape = hidden_shape self.output_shape = output_shape self.l1 = nn.Linear(self.input_shape, self.hidden_shape) self.l2 = nn.Linear(self.hidden_shape, self.output_shape) def forward(self, x): x = x x = self.dropout(F.leaky_relu(self.l1(x))) x = self.l2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_shape': 4, 'output_shape': 4, 'device': 0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, 4), (4, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (4, 128), (128, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(8192)](buf0, primals_3, buf1, buf2, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 128), (128, 1), 0), primals_4 class Advantage_estimateNew(nn.Module): def __init__(self, input_shape, output_shape, device, hidden_shape=128): super(Advantage_estimateNew, self).__init__() self.device = device self.dropout = nn.Dropout(p=0.01) self.input_shape = input_shape self.hidden_shape = hidden_shape self.output_shape = output_shape self.l1 = nn.Linear(self.input_shape, self.hidden_shape) self.l2 = nn.Linear(self.hidden_shape, self.output_shape) def forward(self, input_0): primals_2 = self.l1.weight primals_3 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pupupue/Deep-RL-atari
Advantage_estimate
false
7,490
[ "MIT" ]
1
9b97157f87826feafcf272761d7eef9693a2b2c4
https://github.com/pupupue/Deep-RL-atari/tree/9b97157f87826feafcf272761d7eef9693a2b2c4
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_shape, output_shape, device, hidden_shape=128): super().__init__() self.device = device self.dropout = nn.Dropout(p=0.01) self.input_shape = input_shape self.hidden_shape = hidden_shape self.output_shape = output_shape self.l1 = nn.Linear(self.input_shape, self.hidden_shape) self.l2 = nn.Linear(self.hidden_shape, self.output_shape) def forward(self, x): x = x x = self.dropout(F.leaky_relu(self.l1(x))) x = self.l2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0]
InverseSigmoidTransformer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/73/c73fwtdxiqcgwspmaxrdqyjdi5pnnj2swld7uoyicmze5dgijb42.py # Topologically Sorted Source Nodes: [ps_clamped, log, neg, log1p, inputs, neg_1, softplus, log_p, neg_4, softplus_1, log_q, sub_1], Original ATen: [aten.clamp, aten.log, aten.neg, aten.log1p, aten.sub, aten.softplus] # Source node to ATen node mapping: # inputs => sub # log => log # log1p => log1p # log_p => neg_2 # log_q => neg_3 # neg => neg # neg_1 => neg_1 # neg_4 => neg_4 # ps_clamped => clamp_max, clamp_min # softplus => exp, gt, log1p_1, where # softplus_1 => exp_1, gt_1, log1p_2, where_1 # sub_1 => sub_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 1.1920928955078125e-07), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 0.9999998807907104), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_max,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_max,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %sub : [num_users=5] = call_function[target=torch.ops.aten.sub.Tensor](args = (%log, %log1p), kwargs = {}) # %neg_1 : [num_users=3] = call_function[target=torch.ops.aten.neg.default](args = (%sub,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%neg_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %neg_1, %log1p_1), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%where,), kwargs = {}) # %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%neg_2,), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sub, 20), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %log1p_2 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %sub, %log1p_2), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%where_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg_4, %neg_3), kwargs = {}) triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0 = async_compile.triton('triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.1920928955078125e-07 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 0.9999998807907104 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tl_math.log(tmp4) tmp6 = -tmp4 tmp7 = libdevice.log1p(tmp6) tmp8 = tmp5 - tmp7 tmp9 = -tmp8 tmp10 = 20.0 tmp11 = tmp9 > tmp10 tmp12 = tl_math.exp(tmp9) tmp13 = libdevice.log1p(tmp12) tmp14 = tl.where(tmp11, tmp9, tmp13) tmp15 = -tmp14 tmp16 = -tmp15 tmp17 = tmp8 > tmp10 tmp18 = tl_math.exp(tmp8) tmp19 = libdevice.log1p(tmp18) tmp20 = tl.where(tmp17, tmp8, tmp19) tmp21 = -tmp20 tmp22 = tmp16 - tmp21 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ps_clamped, log, neg, log1p, inputs, neg_1, softplus, log_p, neg_4, softplus_1, log_q, sub_1], Original ATen: [aten.clamp, aten.log, aten.neg, aten.log1p, aten.sub, aten.softplus] stream0 = get_raw_stream(0) triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.nn.functional as F from torch.distributions.utils import probs_to_logits class Bijection(nn.Module): """ An invertible transformation. """ def __init__(self): super().__init__() def forward(self, inputs, context): """ :param inputs: [..., D] :param context: [..., H] or None :return: [..., D] outputs and [..., D] log determinant of Jacobian """ raise NotImplementedError('Implement me!') def inverse(self, outputs, context): """ :param outputs: [..., D] :param context: [..., H] or None :return: [..., D] inputs and [..., D] log determinant of Jacobian of inverse transform """ raise NotImplementedError('Implement me!') class InverseSigmoidTransformer(Bijection): """ Maps inputs from R to (0, 1) using a sigmoid. """ def __init__(self): super().__init__() def forward(self, outputs, context=None): inputs = probs_to_logits(outputs, is_binary=True) log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) return inputs, -log_p - log_q def inverse(self, inputs, context=None): log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) outputs = torch.sigmoid(inputs) return outputs, log_p + log_q def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils.data import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.1920928955078125e-07 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 0.9999998807907104 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tl_math.log(tmp4) tmp6 = -tmp4 tmp7 = libdevice.log1p(tmp6) tmp8 = tmp5 - tmp7 tmp9 = -tmp8 tmp10 = 20.0 tmp11 = tmp9 > tmp10 tmp12 = tl_math.exp(tmp9) tmp13 = libdevice.log1p(tmp12) tmp14 = tl.where(tmp11, tmp9, tmp13) tmp15 = -tmp14 tmp16 = -tmp15 tmp17 = tmp8 > tmp10 tmp18 = tl_math.exp(tmp8) tmp19 = libdevice.log1p(tmp18) tmp20 = tl.where(tmp17, tmp8, tmp19) tmp21 = -tmp20 tmp22 = tmp16 - tmp21 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp22, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_log_log1p_neg_softplus_sub_0[grid(256)](arg0_1, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, buf1 class Bijection(nn.Module): """ An invertible transformation. """ def __init__(self): super().__init__() def forward(self, inputs, context): """ :param inputs: [..., D] :param context: [..., H] or None :return: [..., D] outputs and [..., D] log determinant of Jacobian """ raise NotImplementedError('Implement me!') def inverse(self, outputs, context): """ :param outputs: [..., D] :param context: [..., H] or None :return: [..., D] inputs and [..., D] log determinant of Jacobian of inverse transform """ raise NotImplementedError('Implement me!') class InverseSigmoidTransformerNew(Bijection): """ Maps inputs from R to (0, 1) using a sigmoid. """ def __init__(self): super().__init__() def inverse(self, inputs, context=None): log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) outputs = torch.sigmoid(inputs) return outputs, log_p + log_q def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
probabll/dgm.pt
InverseSigmoidTransformer
false
7,491
[ "MIT" ]
1
95b5b1eb798b87c3d621e7416cc1c423c076c865
https://github.com/probabll/dgm.pt/tree/95b5b1eb798b87c3d621e7416cc1c423c076c865
import torch import torch.nn as nn import torch.utils.data import torch.nn.functional as F from torch.distributions.utils import probs_to_logits class Bijection(nn.Module): """ An invertible transformation. """ def __init__(self): super().__init__() def forward(self, inputs, context): """ :param inputs: [..., D] :param context: [..., H] or None :return: [..., D] outputs and [..., D] log determinant of Jacobian """ raise NotImplementedError('Implement me!') def inverse(self, outputs, context): """ :param outputs: [..., D] :param context: [..., H] or None :return: [..., D] inputs and [..., D] log determinant of Jacobian of inverse transform """ raise NotImplementedError('Implement me!') class Model(Bijection): """ Maps inputs from R to (0, 1) using a sigmoid. """ def __init__(self): super().__init__() def forward(self, outputs, context=None): inputs = probs_to_logits(outputs, is_binary=True) log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) return inputs, -log_p - log_q def inverse(self, inputs, context=None): log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) outputs = torch.sigmoid(inputs) return outputs, log_p + log_q def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Value_estimate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, 4), (4, 1)) assert_size_stride(primals_3, (128, ), (1, )) assert_size_stride(primals_4, (1, 128), (128, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf4, 8192, grid=grid(8192), stream=stream0) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Value_estimate(nn.Module): def __init__(self, input_shape, device, output_shape=1, hidden_shape=128): super(Value_estimate, self).__init__() self.device = device self.dropout = nn.Dropout(p=0.01) self.input_shape = input_shape self.hidden_shape = hidden_shape self.output_shape = output_shape self.l1 = nn.Linear(self.input_shape, self.hidden_shape) self.l2 = nn.Linear(self.hidden_shape, self.output_shape) def forward(self, x): x = x x = self.dropout(F.relu(self.l1(x))) x = self.l2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_shape': 4, 'device': 0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (128, 4), (4, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (1, 128), (128, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 128), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1, primals_3, buf4, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), primals_4, buf4 class Value_estimateNew(nn.Module): def __init__(self, input_shape, device, output_shape=1, hidden_shape=128): super(Value_estimateNew, self).__init__() self.device = device self.dropout = nn.Dropout(p=0.01) self.input_shape = input_shape self.hidden_shape = hidden_shape self.output_shape = output_shape self.l1 = nn.Linear(self.input_shape, self.hidden_shape) self.l2 = nn.Linear(self.hidden_shape, self.output_shape) def forward(self, input_0): primals_2 = self.l1.weight primals_3 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
pupupue/Deep-RL-atari
Value_estimate
false
7,492
[ "MIT" ]
1
9b97157f87826feafcf272761d7eef9693a2b2c4
https://github.com/pupupue/Deep-RL-atari/tree/9b97157f87826feafcf272761d7eef9693a2b2c4
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_shape, device, output_shape=1, hidden_shape=128): super().__init__() self.device = device self.dropout = nn.Dropout(p=0.01) self.input_shape = input_shape self.hidden_shape = hidden_shape self.output_shape = output_shape self.l1 = nn.Linear(self.input_shape, self.hidden_shape) self.l2 = nn.Linear(self.hidden_shape, self.output_shape) def forward(self, x): x = x x = self.dropout(F.relu(self.l1(x))) x = self.l2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 0]
SigmoidTransformer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/an/canpskione3w7zishbgbkm2resagzxqrlwssukfto4ibmfun4f4u.py # Topologically Sorted Source Nodes: [outputs, neg, softplus, log_p, softplus_1, log_q, add], Original ATen: [aten.sigmoid, aten.neg, aten.softplus, aten.add] # Source node to ATen node mapping: # add => add # log_p => neg_1 # log_q => neg_2 # neg => neg # outputs => sigmoid # softplus => exp, gt, log1p, where # softplus_1 => exp_1, gt_1, log1p_1, where_1 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=3] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%neg, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %neg, %log1p), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%where,), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %arg0_1, %log1p_1), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%where_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg_1, %neg_2), kwargs = {}) triton_poi_fused_add_neg_sigmoid_softplus_0 = async_compile.triton('triton_poi_fused_add_neg_sigmoid_softplus_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_neg_sigmoid_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_neg_sigmoid_softplus_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = -tmp0 tmp3 = 20.0 tmp4 = tmp2 > tmp3 tmp5 = tl_math.exp(tmp2) tmp6 = libdevice.log1p(tmp5) tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = -tmp7 tmp9 = tmp0 > tmp3 tmp10 = tl_math.exp(tmp0) tmp11 = libdevice.log1p(tmp10) tmp12 = tl.where(tmp9, tmp0, tmp11) tmp13 = -tmp12 tmp14 = tmp8 + tmp13 tl.store(out_ptr0 + (x0), tmp1, xmask) tl.store(out_ptr1 + (x0), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs, neg, softplus, log_p, softplus_1, log_q, add], Original ATen: [aten.sigmoid, aten.neg, aten.softplus, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_neg_sigmoid_softplus_0.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.nn.functional as F from torch.distributions.utils import probs_to_logits class Bijection(nn.Module): """ An invertible transformation. """ def __init__(self): super().__init__() def forward(self, inputs, context): """ :param inputs: [..., D] :param context: [..., H] or None :return: [..., D] outputs and [..., D] log determinant of Jacobian """ raise NotImplementedError('Implement me!') def inverse(self, outputs, context): """ :param outputs: [..., D] :param context: [..., H] or None :return: [..., D] inputs and [..., D] log determinant of Jacobian of inverse transform """ raise NotImplementedError('Implement me!') class SigmoidTransformer(Bijection): """ Maps inputs from R to (0, 1) using a sigmoid. """ def __init__(self): super().__init__() def forward(self, inputs, context=None): log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) outputs = torch.sigmoid(inputs) return outputs, log_p + log_q def inverse(self, outputs, context=None): inputs = probs_to_logits(outputs, is_binary=True) log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) return inputs, -log_p - log_q def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.utils.data import torch.nn.functional as F from torch.distributions.utils import probs_to_logits assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_neg_sigmoid_softplus_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = -tmp0 tmp3 = 20.0 tmp4 = tmp2 > tmp3 tmp5 = tl_math.exp(tmp2) tmp6 = libdevice.log1p(tmp5) tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = -tmp7 tmp9 = tmp0 > tmp3 tmp10 = tl_math.exp(tmp0) tmp11 = libdevice.log1p(tmp10) tmp12 = tl.where(tmp9, tmp0, tmp11) tmp13 = -tmp12 tmp14 = tmp8 + tmp13 tl.store(out_ptr0 + x0, tmp1, xmask) tl.store(out_ptr1 + x0, tmp14, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_neg_sigmoid_softplus_0[grid(256)](arg0_1, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, buf1 class Bijection(nn.Module): """ An invertible transformation. """ def __init__(self): super().__init__() def forward(self, inputs, context): """ :param inputs: [..., D] :param context: [..., H] or None :return: [..., D] outputs and [..., D] log determinant of Jacobian """ raise NotImplementedError('Implement me!') def inverse(self, outputs, context): """ :param outputs: [..., D] :param context: [..., H] or None :return: [..., D] inputs and [..., D] log determinant of Jacobian of inverse transform """ raise NotImplementedError('Implement me!') class SigmoidTransformerNew(Bijection): """ Maps inputs from R to (0, 1) using a sigmoid. """ def __init__(self): super().__init__() def inverse(self, outputs, context=None): inputs = probs_to_logits(outputs, is_binary=True) log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) return inputs, -log_p - log_q def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0], output[1]
probabll/dgm.pt
SigmoidTransformer
false
7,493
[ "MIT" ]
1
95b5b1eb798b87c3d621e7416cc1c423c076c865
https://github.com/probabll/dgm.pt/tree/95b5b1eb798b87c3d621e7416cc1c423c076c865
import torch import torch.nn as nn import torch.utils.data import torch.nn.functional as F from torch.distributions.utils import probs_to_logits class Bijection(nn.Module): """ An invertible transformation. """ def __init__(self): super().__init__() def forward(self, inputs, context): """ :param inputs: [..., D] :param context: [..., H] or None :return: [..., D] outputs and [..., D] log determinant of Jacobian """ raise NotImplementedError('Implement me!') def inverse(self, outputs, context): """ :param outputs: [..., D] :param context: [..., H] or None :return: [..., D] inputs and [..., D] log determinant of Jacobian of inverse transform """ raise NotImplementedError('Implement me!') class Model(Bijection): """ Maps inputs from R to (0, 1) using a sigmoid. """ def __init__(self): super().__init__() def forward(self, inputs, context=None): log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) outputs = torch.sigmoid(inputs) return outputs, log_p + log_q def inverse(self, outputs, context=None): inputs = probs_to_logits(outputs, is_binary=True) log_p, log_q = -F.softplus(-inputs), -F.softplus(inputs) return inputs, -log_p - log_q def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
distLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/m6/cm645lheesrjji6wgkstt4nu675ugbbjruised3fke4juyuyosol.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => pow_3, pow_4, sum_2 # Graph fragment: # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) triton_poi_fused__weight_norm_interface_0 = async_compile.triton('triton_poi_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dp/cdpmihjazxc2dpfye4tlkemiovtq5jgmt3cquzgrtbm3gn32us7u.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div_1, mul # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_4), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div_1), kwargs = {}) triton_poi_fused__weight_norm_interface_1 = async_compile.triton('triton_poi_fused__weight_norm_interface_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/v2/cv2bongkb2dgiiqtf7a3gfmvfar5me3uzhr5tfvzijs3i7yi2oub.py # Topologically Sorted Source Nodes: [add, x_normalized], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # add => add # x_normalized => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %add), kwargs = {}) triton_poi_fused_add_div_2 = async_compile.triton('triton_poi_fused_add_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-05 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nq/cnqverg3qpl5ed2t36fkymquzuwlsmkpmbft4egnvgh24e2ct6wu.py # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.mul] # Source node to ATen node mapping: # scores => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2), kwargs = {}) triton_poi_fused_mul_3 = async_compile.triton('triton_poi_fused_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_poi_fused__weight_norm_interface_0.run(primals_3, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] triton_poi_fused__weight_norm_interface_1.run(primals_3, primals_2, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, x_normalized], Original ATen: [aten.add, aten.div] triton_poi_fused_add_div_2.run(primals_1, buf2, 256, grid=grid(256), stream=stream0) del primals_1 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cos_dist], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.mul] triton_poi_fused_mul_3.run(buf4, 256, grid=grid(256), stream=stream0) return (buf4, buf1, primals_2, primals_3, buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.utils.weight_norm import WeightNorm import torch.optim class distLinear(nn.Module): def __init__(self, indim, outdim): super(distLinear, self).__init__() self.L = nn.Linear(indim, outdim, bias=False) self.class_wise_learnable_norm = True if self.class_wise_learnable_norm: WeightNorm.apply(self.L, 'weight', dim=0) if outdim <= 200: self.scale_factor = 2 else: self.scale_factor = 10 def forward(self, x): x_norm = torch.norm(x, p=2, dim=1).unsqueeze(1).expand_as(x) x_normalized = x.div(x_norm + 1e-05) if not self.class_wise_learnable_norm: L_norm = torch.norm(self.L.weight.data, p=2, dim=1).unsqueeze(1 ).expand_as(self.L.weight.data) self.L.weight.data = self.L.weight.data.div(L_norm + 1e-05) cos_dist = self.L(x_normalized) scores = self.scale_factor * cos_dist return scores def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'indim': 4, 'outdim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.utils.weight_norm import WeightNorm import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-05 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__weight_norm_interface_0[grid(4)](primals_3, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__weight_norm_interface_1[grid(16)](primals_3, primals_2, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_2[grid(256)](primals_1, buf2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_1 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 triton_poi_fused_mul_3[grid(256)](buf4, 256, XBLOCK=256, num_warps= 4, num_stages=1) return buf4, buf1, primals_2, primals_3, buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0) class distLinearNew(nn.Module): def __init__(self, indim, outdim): super(distLinearNew, self).__init__() self.L = nn.Linear(indim, outdim, bias=False) self.class_wise_learnable_norm = True if self.class_wise_learnable_norm: WeightNorm.apply(self.L, 'weight', dim=0) if outdim <= 200: self.scale_factor = 2 else: self.scale_factor = 10 def forward(self, input_0): primals_2 = self.L.weight_g primals_3 = self.L.weight_v primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
prabhat1081/self-supervision-cs221
distLinear
false
7,494
[ "Apache-2.0" ]
1
41912c01dd7bf44d45a27d7c715a8db2ee9bbc28
https://github.com/prabhat1081/self-supervision-cs221/tree/41912c01dd7bf44d45a27d7c715a8db2ee9bbc28
import torch import torch.nn as nn from torch.nn.utils.weight_norm import WeightNorm import torch.optim class Model(nn.Module): def __init__(self, indim, outdim): super().__init__() self.L = nn.Linear(indim, outdim, bias=False) self.class_wise_learnable_norm = True if self.class_wise_learnable_norm: WeightNorm.apply(self.L, 'weight', dim=0) if outdim <= 200: self.scale_factor = 2 else: self.scale_factor = 10 def forward(self, x): x_norm = torch.norm(x, p=2, dim=1).unsqueeze(1).expand_as(x) x_normalized = x.div(x_norm + 1e-05) if not self.class_wise_learnable_norm: L_norm = torch.norm(self.L.weight.data, p=2, dim=1).unsqueeze(1 ).expand_as(self.L.weight.data) self.L.weight.data = self.L.weight.data.div(L_norm + 1e-05) cos_dist = self.L(x_normalized) scores = self.scale_factor * cos_dist return scores def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GumbelSoftmaxLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jd/cjdnaobowqernajenb4axacuvfjpuu3bnchwmpvbem4jevqy6y4v.py # Topologically Sorted Source Nodes: [indexes], Original ATen: [aten.argmax] # Source node to ATen node mapping: # indexes => argmax # Graph fragment: # %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, -1), kwargs = {}) triton_poi_fused_argmax_0 = async_compile.triton('triton_poi_fused_argmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/if/cifak5fetarqn6wy6kapdta3ra37zxer74aicozekjrdjtc73bfd.py # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] # Source node to ATen node mapping: # scatter_ => scatter_upon_const_tensor # Graph fragment: # %scatter_upon_const_tensor : [num_users=1] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [64, 4], background_val: 0.0, dtype: torch.float32, dim: 1, selector: %view_1, val: 1}) # %view_6 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_5, [4, 4, 4, 4]), kwargs = {}) triton_poi_fused_scatter_1 = async_compile.triton('triton_poi_fused_scatter_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_scatter_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(in_out_ptr0 + (x4), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [indexes], Original ATen: [aten.argmax] stream0 = get_raw_stream(0) triton_poi_fused_argmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] triton_poi_fused_scatter_1.run(buf2, buf0, 256, grid=grid(256), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.distributions import RelaxedOneHotCategorical import torch.nn.parallel import torch.utils.data import torch.distributions def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0, training: 'bool'=True, straight_through: 'bool'=False): size = logits.size() if not training: indexes = logits.argmax(dim=-1) one_hot = torch.zeros_like(logits).view(-1, size[-1]) one_hot.scatter_(1, indexes.view(-1, 1), 1) one_hot = one_hot.view(*size) return one_hot sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature ).rsample() if straight_through: size = sample.size() indexes = sample.argmax(dim=-1) hard_sample = torch.zeros_like(sample).view(-1, size[-1]) hard_sample.scatter_(1, indexes.view(-1, 1), 1) hard_sample = hard_sample.view(*size) sample = sample + (hard_sample - sample).detach() return sample class GumbelSoftmaxLayer(nn.Module): def __init__(self, temperature: 'float'=1.0, trainable_temperature: 'bool'=False, straight_through: 'bool'=False): super(GumbelSoftmaxLayer, self).__init__() self.straight_through = straight_through if not trainable_temperature: self.temperature = temperature else: self.temperature = torch.nn.Parameter(torch.tensor([temperature ]), requires_grad=True) def forward(self, logits: 'torch.Tensor'): return gumbel_softmax_sample(logits, self.temperature, self. training, self.straight_through) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.distributions import RelaxedOneHotCategorical import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused_scatter_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(in_out_ptr0 + x4, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused_argmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_scatter_1[grid(256)](buf2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 return buf2, def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0, training: 'bool'=True, straight_through: 'bool'=False): size = logits.size() if not training: indexes = logits.argmax(dim=-1) one_hot = torch.zeros_like(logits).view(-1, size[-1]) one_hot.scatter_(1, indexes.view(-1, 1), 1) one_hot = one_hot.view(*size) return one_hot sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature ).rsample() if straight_through: size = sample.size() indexes = sample.argmax(dim=-1) hard_sample = torch.zeros_like(sample).view(-1, size[-1]) hard_sample.scatter_(1, indexes.view(-1, 1), 1) hard_sample = hard_sample.view(*size) sample = sample + (hard_sample - sample).detach() return sample class GumbelSoftmaxLayerNew(nn.Module): def __init__(self, temperature: 'float'=1.0, trainable_temperature: 'bool'=False, straight_through: 'bool'=False): super(GumbelSoftmaxLayerNew, self).__init__() self.straight_through = straight_through if not trainable_temperature: self.temperature = temperature else: self.temperature = torch.nn.Parameter(torch.tensor([temperature ]), requires_grad=True) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ptigas/EGG
GumbelSoftmaxLayer
false
7,495
[ "MIT" ]
1
5319cc9de2c17bc72de717737cfbb5be2285c59b
https://github.com/ptigas/EGG/tree/5319cc9de2c17bc72de717737cfbb5be2285c59b
import torch import torch.nn as nn from torch.distributions import RelaxedOneHotCategorical import torch.nn.parallel import torch.utils.data import torch.distributions def gumbel_softmax_sample(logits: 'torch.Tensor', temperature: 'float'=1.0, training: 'bool'=True, straight_through: 'bool'=False): size = logits.size() if not training: indexes = logits.argmax(dim=-1) one_hot = torch.zeros_like(logits).view(-1, size[-1]) one_hot.scatter_(1, indexes.view(-1, 1), 1) one_hot = one_hot.view(*size) return one_hot sample = RelaxedOneHotCategorical(logits=logits, temperature=temperature ).rsample() if straight_through: size = sample.size() indexes = sample.argmax(dim=-1) hard_sample = torch.zeros_like(sample).view(-1, size[-1]) hard_sample.scatter_(1, indexes.view(-1, 1), 1) hard_sample = hard_sample.view(*size) sample = sample + (hard_sample - sample).detach() return sample class Model(nn.Module): def __init__(self, temperature: 'float'=1.0, trainable_temperature: 'bool'=False, straight_through: 'bool'=False): super().__init__() self.straight_through = straight_through if not trainable_temperature: self.temperature = temperature else: self.temperature = torch.nn.Parameter(torch.tensor([temperature ]), requires_grad=True) def forward(self, logits: 'torch.Tensor'): return gumbel_softmax_sample(logits, self.temperature, self. training, self.straight_through) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Crop
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/b7/cb7i6jnv6xo2ulzwpmsrlewwpkyzqqbumpdf2sko43kruciwe5yw.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # img => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_2, [0, 4, 0, 4], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (20 + x3), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import cast from torch import nn from torchvision.transforms import functional as F import torch.nn.functional as F import torchvision.transforms.functional as F import torch.autograd class Crop(nn.Module): def __init__(self, *, top: int, left: int, height: int, width: int) ->None: super().__init__() self.top = top self.left = left self.height = height self.width = width def forward(self, image: 'torch.Tensor') ->torch.Tensor: return cast(torch.Tensor, F.crop(image, top=self.top, left=self. left, height=self.height, width=self.width)) def extra_repr(self) ->str: return ', '.join([f'top={self.top}', f'left={self.left}', f'height={self.height}', f'width={self.width}']) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'top': 4, 'left': 4, 'height': 4, 'width': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (20 + x3), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class CropNew(nn.Module): def __init__(self, *, top: int, left: int, height: int, width: int) ->None: super().__init__() self.top = top self.left = left self.height = height self.width = width def extra_repr(self) ->str: return ', '.join([f'top={self.top}', f'left={self.left}', f'height={self.height}', f'width={self.width}']) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
pystiche/papers
Crop
false
7,496
[ "BSD-3-Clause" ]
1
0d8179dc51f6eda0b27fa525dc0b86b866bc88e1
https://github.com/pystiche/papers/tree/0d8179dc51f6eda0b27fa525dc0b86b866bc88e1
import torch from typing import cast from torch import nn from torchvision.transforms import functional as F import torch.nn.functional as F import torchvision.transforms.functional as F import torch.autograd class Model(nn.Module): def __init__(self, *, top: int, left: int, height: int, width: int) ->None: super().__init__() self.top = top self.left = left self.height = height self.width = width def forward(self, image: 'torch.Tensor') ->torch.Tensor: return cast(torch.Tensor, F.crop(image, top=self.top, left=self. left, height=self.height, width=self.width)) def extra_repr(self) ->str: return ', '.join([f'top={self.top}', f'left={self.left}', f'height={self.height}', f'width={self.width}']) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4]
TonemappedRelativeMSE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/cr/ccruw7x52le4t657w2axakkoe6vv3zcgh5bytysvompkonfewo67.py # Topologically Sorted Source Nodes: [im, add, im_1, im_2, add_1, ref, sub, mse, pow_2, add_2, loss, mean, loss_1], Original ATen: [aten.clamp, aten.add, aten.div, aten.sub, aten.pow, aten.mean, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # im => clamp_min # im_1 => div # im_2 => clamp_min_1 # loss => div_2 # loss_1 => mul # mean => mean # mse => pow_1 # pow_2 => pow_2 # ref => div_1 # sub => sub # Graph fragment: # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_min, %add), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg1_1, 0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min_1, 1), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_min_1, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 0.01), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_1, %add_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) triton_per_fused_add_clamp_div_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_clamp_div_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_div_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_div_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = tmp2 + tmp3 tmp5 = tmp2 / tmp4 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp7 + tmp3 tmp9 = tmp7 / tmp8 tmp10 = tmp5 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp9 * tmp9 tmp13 = 0.01 tmp14 = tmp12 + tmp13 tmp15 = tmp11 / tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = 256.0 tmp20 = tmp18 / tmp19 tmp21 = 0.5 tmp22 = tmp20 * tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [im, add, im_1, im_2, add_1, ref, sub, mse, pow_2, add_2, loss, mean, loss_1], Original ATen: [aten.clamp, aten.add, aten.div, aten.sub, aten.pow, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_div_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def _tonemap(im): """Helper Reinhards tonemapper. Args: im(torch.Tensor): image to tonemap. Returns: (torch.Tensor) tonemaped image. """ im = torch.clamp(im, min=0) return im / (1 + im) class TonemappedRelativeMSE(torch.nn.Module): """Relative mean-squared error on tonemaped images. Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super(TonemappedRelativeMSE, self).__init__() self.eps = eps def forward(self, im, ref): im = _tonemap(im) ref = _tonemap(ref) mse = torch.pow(im - ref, 2) loss = mse / (torch.pow(ref, 2) + self.eps) loss = 0.5 * torch.mean(loss) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_div_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + r0, None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = tmp2 + tmp3 tmp5 = tmp2 / tmp4 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp7 + tmp3 tmp9 = tmp7 / tmp8 tmp10 = tmp5 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp9 * tmp9 tmp13 = 0.01 tmp14 = tmp12 + tmp13 tmp15 = tmp11 / tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = 256.0 tmp20 = tmp18 / tmp19 tmp21 = 0.5 tmp22 = tmp20 * tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_div_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def _tonemap(im): """Helper Reinhards tonemapper. Args: im(torch.Tensor): image to tonemap. Returns: (torch.Tensor) tonemaped image. """ im = torch.clamp(im, min=0) return im / (1 + im) class TonemappedRelativeMSENew(torch.nn.Module): """Relative mean-squared error on tonemaped images. Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super(TonemappedRelativeMSENew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qbhan/pathembed
TonemappedRelativeMSE
false
7,497
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch def _tonemap(im): """Helper Reinhards tonemapper. Args: im(torch.Tensor): image to tonemap. Returns: (torch.Tensor) tonemaped image. """ im = torch.clamp(im, min=0) return im / (1 + im) class Model(torch.nn.Module): """Relative mean-squared error on tonemaped images. Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super().__init__() self.eps = eps def forward(self, im, ref): im = _tonemap(im) ref = _tonemap(ref) mse = torch.pow(im - ref, 2) loss = mse / (torch.pow(ref, 2) + self.eps) loss = 0.5 * torch.mean(loss) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ReinforcedReceiver
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/4o/c4ogi2senpwcpw6txtj5wtbczsxx4tpnaiobsgnww74a4sg5v4tv.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%addmm, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mw/cmwzknalwxktanoh44ufubtjqx2krdcfovayd5pouztckog24vas.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt, mul, where # Graph fragment: # %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ww/cwwjihozrbvgbotl7lstvjlcjsn7z2sg2hm2ibtgdzkrluulifjb.py # Topologically Sorted Source Nodes: [probs], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # probs => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (8, 8), (8, 1)) assert_size_stride(primals_6, (8, ), (1, )) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf0 = reinterpret_tensor(buf2, (4, 4), (8, 1), 0) # alias # Topologically Sorted Source Nodes: [embedded_bits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = reinterpret_tensor(buf2, (4, 4), (8, 1), 4) # alias # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_4, buf1, 16, grid=grid(16), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 8), (1, 8), 0), out=buf3) buf4 = empty_strided_cuda((4, 8), (8, 1), torch.bool) buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, primals_6, buf4, buf5, 32, grid=grid(32), stream=stream0) del buf3 del primals_6 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [probs], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf7, primals_8, 16, grid=grid(16), stream=stream0) del primals_8 return (buf7, buf7, primals_1, buf2, buf4, buf5, buf7, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data from torch.distributions import Bernoulli import torch.distributions class ReinforcedReceiver(nn.Module): def __init__(self, n_bits, n_hidden): super(ReinforcedReceiver, self).__init__() self.emb_column = nn.Linear(n_bits, n_hidden) self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden) self.fc2 = nn.Linear(2 * n_hidden, n_bits) def forward(self, embedded_message, bits): embedded_bits = self.emb_column(bits.float()) x = torch.cat([embedded_bits, embedded_message], dim=1) x = self.fc1(x) x = F.leaky_relu(x) x = self.fc2(x) probs = x.sigmoid() distr = Bernoulli(probs=probs) entropy = distr.entropy() if self.training: sample = distr.sample() else: sample = (probs > 0.5).float() log_prob = distr.log_prob(sample).sum(dim=1) return sample, log_prob, entropy def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_bits': 4, 'n_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (8, 8), (8, 1)) assert_size_stride(primals_6, (8,), (1,)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf0 = reinterpret_tensor(buf2, (4, 4), (8, 1), 0) extern_kernels.addmm(primals_3, primals_1, reinterpret_tensor( primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = reinterpret_tensor(buf2, (4, 4), (8, 1), 4) get_raw_stream(0) triton_poi_fused_cat_0[grid(16)](primals_4, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 8), (1, 8 ), 0), out=buf3) buf4 = empty_strided_cuda((4, 8), (8, 1), torch.bool) buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(32)](buf3, primals_6, buf4, buf5, 32, XBLOCK=32, num_warps=1, num_stages=1) del buf3 del primals_6 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (8, 4), (1, 8 ), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_sigmoid_2[grid(16)](buf7, primals_8, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_8 return buf7, buf7, primals_1, buf2, buf4, buf5, buf7, primals_7, primals_5 class ReinforcedReceiverNew(nn.Module): def __init__(self, n_bits, n_hidden): super(ReinforcedReceiverNew, self).__init__() self.emb_column = nn.Linear(n_bits, n_hidden) self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden) self.fc2 = nn.Linear(2 * n_hidden, n_bits) def forward(self, input_0, input_1): primals_1 = self.emb_column.weight primals_3 = self.emb_column.bias primals_5 = self.fc1.weight primals_6 = self.fc1.bias primals_7 = self.fc2.weight primals_8 = self.fc2.bias primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1], output[2]
ptigas/EGG
ReinforcedReceiver
false
7,498
[ "MIT" ]
1
5319cc9de2c17bc72de717737cfbb5be2285c59b
https://github.com/ptigas/EGG/tree/5319cc9de2c17bc72de717737cfbb5be2285c59b
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data from torch.distributions import Bernoulli import torch.distributions class Model(nn.Module): def __init__(self, n_bits, n_hidden): super().__init__() self.emb_column = nn.Linear(n_bits, n_hidden) self.fc1 = nn.Linear(2 * n_hidden, 2 * n_hidden) self.fc2 = nn.Linear(2 * n_hidden, n_bits) def forward(self, embedded_message, bits): embedded_bits = self.emb_column(bits.float()) x = torch.cat([embedded_bits, embedded_message], dim=1) x = self.fc1(x) x = F.leaky_relu(x) x = self.fc2(x) probs = x.sigmoid() distr = Bernoulli(probs=probs) entropy = distr.entropy() if self.training: sample = distr.sample() else: sample = (probs > 0.5).float() log_prob = distr.log_prob(sample).sum(dim=1) return sample, log_prob, entropy def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
Luong_Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/m6/cm645lheesrjji6wgkstt4nu675ugbbjruised3fke4juyuyosol.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_4, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused__weight_norm_interface_0 = async_compile.triton('triton_poi_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dp/cdpmihjazxc2dpfye4tlkemiovtq5jgmt3cquzgrtbm3gn32us7u.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div, mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_3, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div), kwargs = {}) triton_poi_fused__weight_norm_interface_1 = async_compile.triton('triton_poi_fused__weight_norm_interface_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rf/crfak3xwtcxl3e3iusec5um7dft7y7iszppp24mpofmozl4mon63.py # Topologically Sorted Source Nodes: [encoder_outputs], Original ATen: [aten.clone] # Source node to ATen node mapping: # encoder_outputs => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/l2/cl2yw6sjxtub4w3rtm3hibln7izkfvxk4mkojbk3cnisqvskob3u.py # Topologically Sorted Source Nodes: [hidden_state], Original ATen: [aten.clone] # Source node to ATen node mapping: # hidden_state => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nf/cnfvgv7fl5fxfux2fx6tk4wyhotz7e4dwak6fiftx64krem2ghzu.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ee/ceebcqqhc3q4r2b3m42o7l24nfjyi4cocvj4m4gu6sb6r4lxgjxv.py # Topologically Sorted Source Nodes: [ne, mask, softmax, attn_weights], Original ATen: [aten.ne, aten._to_copy, aten._softmax, aten.mul] # Source node to ATen node mapping: # attn_weights => mul_1 # mask => convert_element_type # ne => ne # softmax => div_1, sum_2 # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%bmm, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.float32), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %convert_element_type), kwargs = {}) triton_poi_fused__softmax__to_copy_mul_ne_5 = async_compile.triton('triton_poi_fused__softmax__to_copy_mul_ne_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax__to_copy_mul_ne_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax__to_copy_mul_ne_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = 0.0 tmp11 = tmp9 != tmp10 tmp12 = tmp11.to(tl.float32) tmp13 = tmp8 * tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/k2/ck2hl5rlnknsn5g73oimoaevjsgwtcwl3i34gi4to2jep7jeymdy.py # Topologically Sorted Source Nodes: [attn_weights_1], Original ATen: [aten.div] # Source node to ATen node mapping: # attn_weights_1 => div_2 # Graph fragment: # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %unsqueeze), kwargs = {}) triton_poi_fused_div_6 = async_compile.triton('triton_poi_fused_div_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_poi_fused__weight_norm_interface_0.run(primals_4, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] triton_poi_fused__weight_norm_interface_1.run(primals_4, primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [encoder_outputs], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_2 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_state], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(primals_1, buf4, 64, grid=grid(64), stream=stream0) del primals_1 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_state, grid], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ne, mask, softmax, attn_weights], Original ATen: [aten.ne, aten._to_copy, aten._softmax, aten.mul] triton_poi_fused__softmax__to_copy_mul_ne_5.run(buf6, buf5, buf7, 64, grid=grid(64), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [attn_weights_1], Original ATen: [aten.div] triton_poi_fused_div_6.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4, 4), (16, 1, 4), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [aten.transpose] triton_poi_fused_clone_2.run(buf4, buf9, 64, grid=grid(64), stream=stream0) del buf4 return (buf8, buf1, primals_3, primals_4, buf0, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf5, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Luong_Attention(nn.Module): def __init__(self, hidden_size, score='general'): super(Luong_Attention, self).__init__() assert score.lower() in ['concat', 'general', 'dot'] self.score = score.lower() def wn(x): return nn.utils.weight_norm(x) if self.score == 'general': self.attn = wn(nn.Linear(hidden_size, hidden_size)) elif self.score == 'concat': raise Exception('concat disabled for now. results are poor') self.attn = wn(nn.Linear(2 * hidden_size, hidden_size)) self.v = wn(nn.Linear(hidden_size, 1)) def forward(self, hidden_state, encoder_outputs): assert hidden_state.size(1) == encoder_outputs.size(1) assert len(hidden_state.size()) == 3 hidden_state = hidden_state.transpose(1, 0).contiguous() encoder_outputs = encoder_outputs.transpose(1, 0).contiguous() if self.score == 'dot': grid = torch.bmm(hidden_state, encoder_outputs.transpose(2, 1)) elif self.score == 'general': grid = torch.bmm(hidden_state, self.attn(encoder_outputs). transpose(2, 1)) elif self.score == 'concat': cc = self.attn(torch.cat((hidden_state.expand(encoder_outputs. size()), encoder_outputs), 2)) grid = self.v(cc) grid = grid.permute(0, 2, 1) mask = (grid != 0).float() attn_weights = F.softmax(grid, dim=2) * mask normalizer = attn_weights.sum(dim=2).unsqueeze(2) attn_weights /= normalizer return attn_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__weight_norm_interface_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__weight_norm_interface_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 / tmp2 tmp4 = tmp0 * tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax__to_copy_mul_ne_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + x2, xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp10 = 0.0 tmp11 = tmp9 != tmp10 tmp12 = tmp11.to(tl.float32) tmp13 = tmp8 * tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_div_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__weight_norm_interface_0[grid(4)](primals_4, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__weight_norm_interface_1[grid(16)](primals_4, primals_3, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(64)](primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), ( 4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) triton_poi_fused_clone_3[grid(64)](primals_1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 triton_poi_fused__softmax_4[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax__to_copy_mul_ne_5[grid(64)](buf6, buf5, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_div_6[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4, 4), (16, 1, 4), 0) del buf7 triton_poi_fused_clone_2[grid(64)](buf4, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf4 return buf8, buf1, primals_3, primals_4, buf0, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf5, buf9 class Luong_AttentionNew(nn.Module): def __init__(self, hidden_size, score='general'): super(Luong_AttentionNew, self).__init__() assert score.lower() in ['concat', 'general', 'dot'] self.score = score.lower() def wn(x): return nn.utils.weight_norm(x) if self.score == 'general': self.attn = wn(nn.Linear(hidden_size, hidden_size)) elif self.score == 'concat': raise Exception('concat disabled for now. results are poor') self.attn = wn(nn.Linear(2 * hidden_size, hidden_size)) self.v = wn(nn.Linear(hidden_size, 1)) def forward(self, input_0, input_1): primals_5 = self.attn.bias primals_3 = self.attn.weight_g primals_4 = self.attn.weight_v primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
placaille/nmt-comp550
Luong_Attention
false
7,499
[ "MIT" ]
1
5809ca68dbd7e5452361700f905740a783f9451c
https://github.com/placaille/nmt-comp550/tree/5809ca68dbd7e5452361700f905740a783f9451c
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, hidden_size, score='general'): super().__init__() assert score.lower() in ['concat', 'general', 'dot'] self.score = score.lower() def wn(x): return nn.utils.weight_norm(x) if self.score == 'general': self.attn = wn(nn.Linear(hidden_size, hidden_size)) elif self.score == 'concat': raise Exception('concat disabled for now. results are poor') self.attn = wn(nn.Linear(2 * hidden_size, hidden_size)) self.v = wn(nn.Linear(hidden_size, 1)) def forward(self, hidden_state, encoder_outputs): assert hidden_state.size(1) == encoder_outputs.size(1) assert len(hidden_state.size()) == 3 hidden_state = hidden_state.transpose(1, 0).contiguous() encoder_outputs = encoder_outputs.transpose(1, 0).contiguous() if self.score == 'dot': grid = torch.bmm(hidden_state, encoder_outputs.transpose(2, 1)) elif self.score == 'general': grid = torch.bmm(hidden_state, self.attn(encoder_outputs). transpose(2, 1)) elif self.score == 'concat': cc = self.attn(torch.cat((hidden_state.expand(encoder_outputs. size()), encoder_outputs), 2)) grid = self.v(cc) grid = grid.permute(0, 2, 1) mask = (grid != 0).float() attn_weights = F.softmax(grid, dim=2) * mask normalizer = attn_weights.sum(dim=2).unsqueeze(2) attn_weights /= normalizer return attn_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
TensorPermute
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/64/c64ahxnpt5ixqrlolbug3qf6y4u2zqmcjekif2yu4ba4hcze2fom.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 4 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2) + (64*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data class TensorPermute(torch.nn.Module): """ Convert a torch.FloatTensor of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) to a torch.FloatTensor of shape (CHANNELS x NUM_IMAGES x HEIGHT x WIDTH). """ def forward(self, tensor): return tensor.permute(1, 0, 2, 3).contiguous() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 4 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2 + 64 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorPermuteNew(torch.nn.Module): """ Convert a torch.FloatTensor of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) to a torch.FloatTensor of shape (CHANNELS x NUM_IMAGES x HEIGHT x WIDTH). """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
pz-white/pykale
TensorPermute
false
7,500
[ "MIT" ]
1
de40d1e8a88aa824ffbd1e072b02fe92b57b7c69
https://github.com/pz-white/pykale/tree/de40d1e8a88aa824ffbd1e072b02fe92b57b7c69
import torch import torch.utils.data class Model(torch.nn.Module): """ Convert a torch.FloatTensor of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) to a torch.FloatTensor of shape (CHANNELS x NUM_IMAGES x HEIGHT x WIDTH). """ def forward(self, tensor): return tensor.permute(1, 0, 2, 3).contiguous() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
OptimizedMLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zj/czj4ppkgbg4fclrgfpg4n4iwm2tpdjvpwtqwdf3msd4qm6yl6tvm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] # Source node to ATen node mapping: # x => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6848 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1712 x1 = (xindex // 1712) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0 + (1728*x1)), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/iv/civkou2n6kqkqpmnvthoyfpsak37qzg475ip7fzmiudk3hubjfbi.py # Topologically Sorted Source Nodes: [x, linear_1], Original ATen: [aten.elu, aten.view] # Source node to ATen node mapping: # linear_1 => view_2 # x => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%where, [64, 107]), kwargs = {}) triton_poi_fused_elu_view_1 = async_compile.triton('triton_poi_fused_elu_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6848 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 107 x1 = (xindex // 107) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (107*(x1 % 16)) + (1728*(x1 // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/5b/c5babtscwzpr6lxxnzafygax5iuya75imdizytjwpkpre4ubecha.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_1 => expm1_1, gt_1, mul_3, mul_5, where_1 # Graph fragment: # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {}) triton_poi_fused_elu_2 = async_compile.triton('triton_poi_fused_elu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 11456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2864 x1 = (xindex // 2864) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0 + (2880*x1)), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bh/cbhhbi6ibpsuf5kveogvylgxcbo2u2fr63t36mm7z4ka63hmof5a.py # Topologically Sorted Source Nodes: [x_1, linear_2], Original ATen: [aten.elu, aten.view] # Source node to ATen node mapping: # linear_2 => view_4 # x_1 => expm1_1, gt_1, mul_3, mul_5, where_1 # Graph fragment: # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%where_1, [64, 179]), kwargs = {}) triton_poi_fused_elu_view_3 = async_compile.triton('triton_poi_fused_elu_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 11456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 179 x1 = (xindex // 179) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (179*(x1 % 16)) + (2880*(x1 // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/eh/cehokvi2pbt6ltr7igforlfzos6uumnasads7ro6o3jt5x7yaort.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_3 => expm1_3, gt_3, mul_11, mul_9, where_3 # Graph fragment: # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 0), kwargs = {}) # %mul_9 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, 1.0), kwargs = {}) # %expm1_3 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_9,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_3, 1.0), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %mul_9, %mul_11), kwargs = {}) triton_poi_fused_elu_4 = async_compile.triton('triton_poi_fused_elu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 11776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sn/csnz3smusu26ady3wsymfhtrdvmjbq2my7ijxowxeukxou2k5pox.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_4 => expm1_4, gt_4, mul_12, mul_14, where_4 # Graph fragment: # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_9, 0), kwargs = {}) # %mul_12 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 1.0), kwargs = {}) # %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_12,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %mul_12, %mul_14), kwargs = {}) triton_poi_fused_elu_5 = async_compile.triton('triton_poi_fused_elu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 7360 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1840 x1 = (xindex // 1840) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0 + (1856*x1)), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sz/csz32npwa5zyn7szwu2yxqjrpg5rsmkv3mykg5k2ybkixcyy3cle.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.elu, aten.view] # Source node to ATen node mapping: # x_4 => expm1_4, gt_4, mul_12, mul_14, where_4 # x_5 => view_10 # Graph fragment: # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_9, 0), kwargs = {}) # %mul_12 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 1.0), kwargs = {}) # %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_12,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %mul_12, %mul_14), kwargs = {}) # %view_10 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%where_4, [64, 115]), kwargs = {}) triton_poi_fused_elu_view_6 = async_compile.triton('triton_poi_fused_elu_view_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_view_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_view_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 7360 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 115 x1 = (xindex // 115) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (115*(x1 % 16)) + (1856*(x1 // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (107, 4), (4, 1)) assert_size_stride(primals_2, (107, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (179, 107), (107, 1)) assert_size_stride(primals_5, (179, ), (1, )) assert_size_stride(primals_6, (179, 179), (179, 1)) assert_size_stride(primals_7, (179, ), (1, )) assert_size_stride(primals_8, (184, 179), (179, 1)) assert_size_stride(primals_9, (184, ), (1, )) assert_size_stride(primals_10, (115, 184), (184, 1)) assert_size_stride(primals_11, (115, ), (1, )) assert_size_stride(primals_12, (4, 115), (115, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 107), (107, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 107), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 107), (1728, 428, 107, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_elu_0.run(buf0, buf1, 6848, grid=grid(6848), stream=stream0) buf2 = empty_strided_cuda((64, 107), (107, 1), torch.float32) # Topologically Sorted Source Nodes: [x, linear_1], Original ATen: [aten.elu, aten.view] triton_poi_fused_elu_view_1.run(buf1, buf2, 6848, grid=grid(6848), stream=stream0) del buf1 buf3 = empty_strided_cuda((64, 179), (179, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (107, 179), (1, 107), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 179), (2880, 716, 179, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] triton_poi_fused_elu_2.run(buf3, buf4, 11456, grid=grid(11456), stream=stream0) buf5 = empty_strided_cuda((64, 179), (179, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, linear_2], Original ATen: [aten.elu, aten.view] triton_poi_fused_elu_view_3.run(buf4, buf5, 11456, grid=grid(11456), stream=stream0) buf6 = empty_strided_cuda((64, 179), (179, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf5, reinterpret_tensor(primals_6, (179, 179), (1, 179), 0), alpha=1, beta=1, out=buf6) del primals_7 buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.elu] triton_poi_fused_elu_2.run(buf6, buf7, 11456, grid=grid(11456), stream=stream0) buf8 = empty_strided_cuda((64, 179), (179, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, linear_3], Original ATen: [aten.elu, aten.view] triton_poi_fused_elu_view_3.run(buf7, buf8, 11456, grid=grid(11456), stream=stream0) del buf7 buf9 = empty_strided_cuda((64, 184), (184, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (179, 184), (1, 179), 0), alpha=1, beta=1, out=buf9) del primals_9 buf10 = empty_strided_cuda((4, 4, 4, 184), (2944, 736, 184, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu] triton_poi_fused_elu_4.run(buf9, buf10, 11776, grid=grid(11776), stream=stream0) buf11 = empty_strided_cuda((64, 115), (115, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (64, 184), (184, 1), 0), reinterpret_tensor(primals_10, (184, 115), (1, 184), 0), alpha=1, beta=1, out=buf11) del primals_11 buf12 = empty_strided_cuda((4, 4, 4, 115), (1856, 460, 115, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.elu] triton_poi_fused_elu_5.run(buf11, buf12, 7360, grid=grid(7360), stream=stream0) buf13 = empty_strided_cuda((64, 115), (115, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.elu, aten.view] triton_poi_fused_elu_view_6.run(buf12, buf13, 7360, grid=grid(7360), stream=stream0) del buf12 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf13, reinterpret_tensor(primals_12, (115, 4), (1, 115), 0), alpha=1, beta=1, out=buf14) del primals_13 return (reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, buf2, buf3, buf5, buf6, buf8, buf9, reinterpret_tensor(buf10, (64, 184), (184, 1), 0), buf11, buf13, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((107, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((107, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((179, 107), (107, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((179, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((179, 179), (179, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((179, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((184, 179), (179, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((184, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((115, 184), (184, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((115, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 115), (115, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.jit import torch.nn as nn class OptimizedMLP(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int'): super(OptimizedMLP, self).__init__() self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features=107) self.l1 = nn.Linear(in_features=107, out_features=179) self.l2 = nn.Linear(in_features=179, out_features=179) self.l3 = nn.Linear(in_features=179, out_features=184) self.l4 = nn.Linear(in_features=184, out_features=115) self.l_out = nn.Linear(in_features=115, out_features=num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l1.weight) torch.nn.init.zeros_(self.l1.bias) torch.nn.init.xavier_normal_(self.l2.weight) torch.nn.init.zeros_(self.l2.bias) torch.nn.init.xavier_normal_(self.l3.weight) torch.nn.init.zeros_(self.l3.bias) torch.nn.init.xavier_normal_(self.l4.weight) torch.nn.init.zeros_(self.l4.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, x): x = self.act(self.l_in(x)) x = self.act(self.l1(x)) x = self.act(self.l2(x)) x = self.act(self.l3(x)) x = self.act(self.l4(x)) x = self.l_out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_in_features': 4, 'num_out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.optim import torch.jit import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6848 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1712 x1 = xindex // 1712 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0 + 1728 * x1), tmp7, xmask) @triton.jit def triton_poi_fused_elu_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 6848 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 107 x1 = xindex // 107 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 107 * (x1 % 16) + 1728 * (x1 // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_elu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 11456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2864 x1 = xindex // 2864 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0 + 2880 * x1), tmp7, xmask) @triton.jit def triton_poi_fused_elu_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 11456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 179 x1 = xindex // 179 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 179 * (x1 % 16) + 2880 * (x1 // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_elu_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 11776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_elu_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 7360 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1840 x1 = xindex // 1840 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0 + 1856 * x1), tmp7, xmask) @triton.jit def triton_poi_fused_elu_view_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 7360 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 115 x1 = xindex // 115 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 115 * (x1 % 16) + 1856 * (x1 // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (107, 4), (4, 1)) assert_size_stride(primals_2, (107,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (179, 107), (107, 1)) assert_size_stride(primals_5, (179,), (1,)) assert_size_stride(primals_6, (179, 179), (179, 1)) assert_size_stride(primals_7, (179,), (1,)) assert_size_stride(primals_8, (184, 179), (179, 1)) assert_size_stride(primals_9, (184,), (1,)) assert_size_stride(primals_10, (115, 184), (184, 1)) assert_size_stride(primals_11, (115,), (1,)) assert_size_stride(primals_12, (4, 115), (115, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 107), (107, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 107), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 107), (1728, 428, 107, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(6848)](buf0, buf1, 6848, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 107), (107, 1), torch.float32) triton_poi_fused_elu_view_1[grid(6848)](buf1, buf2, 6848, XBLOCK= 256, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((64, 179), (179, 1), torch.float32) extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (107, 179), (1, 107), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 179), (2880, 716, 179, 1), torch.float32) triton_poi_fused_elu_2[grid(11456)](buf3, buf4, 11456, XBLOCK=128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((64, 179), (179, 1), torch.float32) triton_poi_fused_elu_view_3[grid(11456)](buf4, buf5, 11456, XBLOCK= 256, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((64, 179), (179, 1), torch.float32) extern_kernels.addmm(primals_7, buf5, reinterpret_tensor(primals_6, (179, 179), (1, 179), 0), alpha=1, beta=1, out=buf6) del primals_7 buf7 = buf4 del buf4 triton_poi_fused_elu_2[grid(11456)](buf6, buf7, 11456, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((64, 179), (179, 1), torch.float32) triton_poi_fused_elu_view_3[grid(11456)](buf7, buf8, 11456, XBLOCK= 256, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((64, 184), (184, 1), torch.float32) extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (179, 184), (1, 179), 0), alpha=1, beta=1, out=buf9) del primals_9 buf10 = empty_strided_cuda((4, 4, 4, 184), (2944, 736, 184, 1), torch.float32) triton_poi_fused_elu_4[grid(11776)](buf9, buf10, 11776, XBLOCK=128, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((64, 115), (115, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (64, 184 ), (184, 1), 0), reinterpret_tensor(primals_10, (184, 115), (1, 184), 0), alpha=1, beta=1, out=buf11) del primals_11 buf12 = empty_strided_cuda((4, 4, 4, 115), (1856, 460, 115, 1), torch.float32) triton_poi_fused_elu_5[grid(7360)](buf11, buf12, 7360, XBLOCK=256, num_warps=4, num_stages=1) buf13 = empty_strided_cuda((64, 115), (115, 1), torch.float32) triton_poi_fused_elu_view_6[grid(7360)](buf12, buf13, 7360, XBLOCK= 256, num_warps=4, num_stages=1) del buf12 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, buf13, reinterpret_tensor( primals_12, (115, 4), (1, 115), 0), alpha=1, beta=1, out=buf14) del primals_13 return reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, buf2, buf3, buf5, buf6, buf8, buf9, reinterpret_tensor(buf10, (64, 184), (184, 1), 0 ), buf11, buf13, primals_12, primals_10, primals_8, primals_6, primals_4 class OptimizedMLPNew(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int'): super(OptimizedMLPNew, self).__init__() self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features=107) self.l1 = nn.Linear(in_features=107, out_features=179) self.l2 = nn.Linear(in_features=179, out_features=179) self.l3 = nn.Linear(in_features=179, out_features=184) self.l4 = nn.Linear(in_features=184, out_features=115) self.l_out = nn.Linear(in_features=115, out_features=num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l1.weight) torch.nn.init.zeros_(self.l1.bias) torch.nn.init.xavier_normal_(self.l2.weight) torch.nn.init.zeros_(self.l2.bias) torch.nn.init.xavier_normal_(self.l3.weight) torch.nn.init.zeros_(self.l3.bias) torch.nn.init.xavier_normal_(self.l4.weight) torch.nn.init.zeros_(self.l4.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, input_0): primals_1 = self.l_in.weight primals_2 = self.l_in.bias primals_4 = self.l1.weight primals_5 = self.l1.bias primals_6 = self.l2.weight primals_7 = self.l2.bias primals_8 = self.l3.weight primals_9 = self.l3.bias primals_10 = self.l4.weight primals_11 = self.l4.bias primals_12 = self.l_out.weight primals_13 = self.l_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
plaveczlambert/deep_euler_tests
OptimizedMLP
false
7,501
[ "MIT" ]
1
a3ceef98ba76bd7a00ccd3c773cd9850311b3b1a
https://github.com/plaveczlambert/deep_euler_tests/tree/a3ceef98ba76bd7a00ccd3c773cd9850311b3b1a
import torch import torch.optim import torch.jit import torch.nn as nn class Model(nn.Module): def __init__(self, num_in_features: 'int', num_out_features: 'int'): super().__init__() self.act = nn.ELU() self.l_in = nn.Linear(in_features=num_in_features, out_features=107) self.l1 = nn.Linear(in_features=107, out_features=179) self.l2 = nn.Linear(in_features=179, out_features=179) self.l3 = nn.Linear(in_features=179, out_features=184) self.l4 = nn.Linear(in_features=184, out_features=115) self.l_out = nn.Linear(in_features=115, out_features=num_out_features) torch.nn.init.xavier_normal_(self.l_in.weight) torch.nn.init.zeros_(self.l_in.bias) torch.nn.init.xavier_normal_(self.l1.weight) torch.nn.init.zeros_(self.l1.bias) torch.nn.init.xavier_normal_(self.l2.weight) torch.nn.init.zeros_(self.l2.bias) torch.nn.init.xavier_normal_(self.l3.weight) torch.nn.init.zeros_(self.l3.bias) torch.nn.init.xavier_normal_(self.l4.weight) torch.nn.init.zeros_(self.l4.bias) torch.nn.init.xavier_normal_(self.l_out.weight) torch.nn.init.zeros_(self.l_out.bias) def forward(self, x): x = self.act(self.l_in(x)) x = self.act(self.l1(x)) x = self.act(self.l2(x)) x = self.act(self.l3(x)) x = self.act(self.l4(x)) x = self.l_out(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/55/c557jmlab6qu6pnzzhglt7obp2gs6irgiorb4my377v4j57ymzrr.py # Topologically Sorted Source Nodes: [weights, mul, x, x_1], Original ATen: [aten.index, aten.mul, aten.sum, aten.sigmoid] # Source node to ATen node mapping: # mul => mul # weights => index # x => sum_1 # x_1 => sigmoid # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_1, [%primals_2]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %primals_3), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sum_1,), kwargs = {}) triton_poi_fused_index_mul_sigmoid_sum_0 = async_compile.triton('triton_poi_fused_index_mul_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_mul_sigmoid_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_mul_sigmoid_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x4 + (64*x2)), xmask) tmp9 = tl.load(in_ptr2 + (16 + x4 + (64*x2)), xmask) tmp12 = tl.load(in_ptr2 + (32 + x4 + (64*x2)), xmask) tmp15 = tl.load(in_ptr2 + (48 + x4 + (64*x2)), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tmp8 = tmp6 * tmp7 tmp10 = tmp6 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp6 * tmp12 tmp14 = tmp11 + tmp13 tmp16 = tmp6 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tl.sigmoid(tmp17) tl.store(out_ptr0 + (x5), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weights, mul, x, x_1], Original ATen: [aten.index, aten.mul, aten.sum, aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_index_mul_sigmoid_sum_0.run(primals_2, primals_1, primals_3, buf0, 64, grid=grid(64), stream=stream0) del primals_1 return (buf0, primals_2, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Net(nn.Module): def __init__(self, input_size, output_size, num_emojis, dropout): super().__init__() self.V = torch.nn.Parameter(torch.empty(num_emojis, output_size). uniform_(-0.1, 0.1)) self.dropout = torch.nn.Dropout(p=dropout) if not input_size == output_size: self.is_proj = True self.W = torch.nn.Parameter(torch.empty(input_size, output_size ).uniform_(-0.1, 0.1)) self.tanh = torch.nn.Tanh() else: self.is_proj = False def forward(self, x, emoji_ids): if self.is_proj: proj = torch.mm(x, self.W) x = self.tanh(proj) weights = self.V[emoji_ids] weights = self.dropout(weights) x = torch.sum(torch.mul(weights, x), 1) x = torch.sigmoid(x) return x def project_embeddings(self, embeddings_array): return self.tanh(torch.mm(torch.Tensor(embeddings_array), self.W) ).detach().numpy() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'num_emojis': 4, 'dropout': 0.5}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_index_mul_sigmoid_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex % 16 x5 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x4 + 64 * x2), xmask) tmp9 = tl.load(in_ptr2 + (16 + x4 + 64 * x2), xmask) tmp12 = tl.load(in_ptr2 + (32 + x4 + 64 * x2), xmask) tmp15 = tl.load(in_ptr2 + (48 + x4 + 64 * x2), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tmp8 = tmp6 * tmp7 tmp10 = tmp6 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp6 * tmp12 tmp14 = tmp11 + tmp13 tmp16 = tmp6 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tl.sigmoid(tmp17) tl.store(out_ptr0 + x5, tmp18, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_index_mul_sigmoid_sum_0[grid(64)](primals_2, primals_1, primals_3, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 return buf0, primals_2, primals_3, buf0 class NetNew(nn.Module): def __init__(self, input_size, output_size, num_emojis, dropout): super().__init__() self.V = torch.nn.Parameter(torch.empty(num_emojis, output_size). uniform_(-0.1, 0.1)) self.dropout = torch.nn.Dropout(p=dropout) if not input_size == output_size: self.is_proj = True self.W = torch.nn.Parameter(torch.empty(input_size, output_size ).uniform_(-0.1, 0.1)) self.tanh = torch.nn.Tanh() else: self.is_proj = False def project_embeddings(self, embeddings_array): return self.tanh(torch.mm(torch.Tensor(embeddings_array), self.W) ).detach().numpy() def forward(self, input_0, input_1): primals_1 = self.V primals_3 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
pwiercinski/emoji2vec_pytorch
Net
false
7,502
[ "MIT" ]
1
be7c3297998baa85a9542c0d2183d1dbed0f3adb
https://github.com/pwiercinski/emoji2vec_pytorch/tree/be7c3297998baa85a9542c0d2183d1dbed0f3adb
import torch from torch import nn class Model(nn.Module): def __init__(self, input_size, output_size, num_emojis, dropout): super().__init__() self.V = torch.nn.Parameter(torch.empty(num_emojis, output_size). uniform_(-0.1, 0.1)) self.dropout = torch.nn.Dropout(p=dropout) if not input_size == output_size: self.is_proj = True self.W = torch.nn.Parameter(torch.empty(input_size, output_size ).uniform_(-0.1, 0.1)) self.tanh = torch.nn.Tanh() else: self.is_proj = False def forward(self, x, emoji_ids): if self.is_proj: proj = torch.mm(x, self.W) x = self.tanh(proj) weights = self.V[emoji_ids] weights = self.dropout(weights) x = torch.sum(torch.mul(weights, x), 1) x = torch.sigmoid(x) return x def project_embeddings(self, embeddings_array): return self.tanh(torch.mm(torch.Tensor(embeddings_array), self.W) ).detach().numpy() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'num_emojis': 4, 'dropout': 0.5}]
Rotate
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/64/c64wcolc5y2n37sxtnpnhr2dzw4gq7giy4xyi4ub5z3kplhqckpr.py # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] # Source node to ATen node mapping: # fill_ => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %select_scatter_default_2 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %full_default, 3, 2), kwargs = {}) triton_poi_fused_fill_0 = async_compile.triton('triton_poi_fused_fill_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fill_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = (xindex // 12) x1 = (xindex // 3) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x2) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + ((-1)*x1) tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float("nan") tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/se/cseku5skh5hydixwsucoob25sv4ybjibfc7mxegblt23gh7szjzr.py # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] # Source node to ATen node mapping: # rescaled_theta => div # tensor_1 => lift_fresh_copy_1 # Graph fragment: # %lift_fresh_copy_1 : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%_tensor_constant1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute, %lift_fresh_copy_1), kwargs = {}) triton_poi_fused_div_lift_fresh_1 = async_compile.triton('triton_poi_fused_div_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x1 + (3*x0) tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = -0.06975647062063217 tmp8 = 0.0 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = 0.9975640773773193 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp8) tmp17 = 0.06975647062063217 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zf/czfnj57ejqlqojplqt6piz7sosofcvzqdxhskwatgn32njr7acz7.py # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # img => add_2, add_3, full_default_3, full_default_4, ge, ge_1, index, logical_and, logical_and_1, logical_and_2, lt_2, lt_3, mul_4, mul_5, mul_6, round_1, round_2, where_4 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, 2.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %round_1 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_2,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_1, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_1, 4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_9, 2.0), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 1.5), kwargs = {}) # %round_2 : [num_users=3] = call_function[target=torch.ops.aten.round.default](args = (%add_3,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%round_2, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%round_2, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_3), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_2, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_5, %view_6, %where_3, %where_2]), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %full_default_4, %full_default_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_4), kwargs = {}) triton_poi_fused_grid_sampler_2d_2 = async_compile.triton('triton_poi_fused_grid_sampler_2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x4 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert(((0 <= tmp25) & (tmp25 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp25 < 4") tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert(((0 <= tmp31) & (tmp31 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp31 < 4") tmp33 = tl.load(in_ptr1 + (tmp31 + (4*tmp25) + (16*x3)), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + (x4), tmp37, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [fill_], Original ATen: [aten.fill] stream0 = get_raw_stream(0) triton_poi_fused_fill_0.run(buf2, 48, grid=grid(48), stream=stream0) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta], Original ATen: [aten.lift_fresh, aten.div] triton_poi_fused_div_lift_fresh_1.run(buf3, 6, grid=grid(6), stream=stream0) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1, rescaled_theta, output_grid], Original ATen: [aten.lift_fresh, aten.div, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [img], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_2.run(buf4, arg0_1, buf5, 256, grid=grid(256), stream=stream0) del arg0_1 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import cast from torch import nn from torchvision.transforms import functional as F import torch.nn.functional as F import torchvision.transforms.functional as F import torch.autograd class Rotate(nn.Module): def __init__(self, angle: 'float') ->None: super().__init__() self.angle = angle def forward(self, image: 'torch.Tensor') ->torch.Tensor: return cast(torch.Tensor, F.rotate(image, self.angle)) def extra_repr(self) ->str: return f'factor={self.angle}' def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'angle': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_fill_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x2 = xindex // 12 x1 = xindex // 3 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 1, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = x2 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 1.0 tmp10 = tmp6 * tmp9 tmp11 = -1.5 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x2 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.5 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tl.full([1], 0, tl.int32) tmp20 = tmp0 == tmp19 tmp21 = x1 tmp22 = tmp21.to(tl.float32) tmp23 = tmp22 < tmp7 tmp24 = tmp22 * tmp9 tmp25 = tmp24 + tmp11 tmp26 = 3 + -1 * x1 tmp27 = tmp26.to(tl.float32) tmp28 = tmp27 * tmp9 tmp29 = tmp16 - tmp28 tmp30 = tl.where(tmp23, tmp25, tmp29) tmp31 = float('nan') tmp32 = tl.where(tmp20, tmp30, tmp31) tmp33 = tl.where(tmp4, tmp18, tmp32) tmp34 = tl.where(tmp2, tmp9, tmp33) tl.store(out_ptr0 + x4, tmp34, xmask) @triton.jit def triton_poi_fused_div_lift_fresh_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x1 + 3 * x0 tmp1 = tl.full([1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = -0.06975647062063217 tmp8 = 0.0 tmp9 = tl.where(tmp6, tmp7, tmp8) tmp10 = 0.9975640773773193 tmp11 = tl.where(tmp4, tmp10, tmp9) tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.full([1], 5, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tl.where(tmp15, tmp10, tmp8) tmp17 = 0.06975647062063217 tmp18 = tl.where(tmp13, tmp17, tmp16) tmp19 = tl.where(tmp2, tmp11, tmp18) tmp20 = x0 tmp21 = tmp20 < tmp3 tmp22 = 2.0 tmp23 = tl.where(tmp21, tmp22, tmp22) tmp24 = tmp19 / tmp23 tl.store(out_ptr0 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x4 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1.5 tmp4 = tmp2 + tmp3 tmp5 = libdevice.nearbyint(tmp4) tmp6 = 0.0 tmp7 = tmp5 >= tmp6 tmp8 = 4.0 tmp9 = tmp5 < tmp8 tmp11 = tmp10 * tmp1 tmp12 = tmp11 + tmp3 tmp13 = libdevice.nearbyint(tmp12) tmp14 = tmp13 >= tmp6 tmp15 = tmp13 < tmp8 tmp16 = tmp14 & tmp15 tmp17 = tmp9 & tmp16 tmp18 = tmp7 & tmp17 tmp19 = tmp13.to(tl.int64) tmp20 = tl.full([1], 0, tl.int64) tmp21 = tl.where(tmp18, tmp19, tmp20) tmp22 = tl.full([XBLOCK], 4, tl.int32) tmp23 = tmp21 + tmp22 tmp24 = tmp21 < 0 tmp25 = tl.where(tmp24, tmp23, tmp21) tl.device_assert((0 <= tmp25) & (tmp25 < 4) | ~xmask, 'index out of bounds: 0 <= tmp25 < 4') tmp27 = tmp5.to(tl.int64) tmp28 = tl.where(tmp18, tmp27, tmp20) tmp29 = tmp28 + tmp22 tmp30 = tmp28 < 0 tmp31 = tl.where(tmp30, tmp29, tmp28) tl.device_assert((0 <= tmp31) & (tmp31 < 4) | ~xmask, 'index out of bounds: 0 <= tmp31 < 4') tmp33 = tl.load(in_ptr1 + (tmp31 + 4 * tmp25 + 16 * x3), xmask, eviction_policy='evict_last') tmp34 = tl.full([1], 1, tl.int64) tmp35 = tl.where(tmp18, tmp34, tmp20) tmp36 = tmp35.to(tl.float32) tmp37 = tmp33 * tmp36 tl.store(out_ptr0 + x4, tmp37, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((1, 4, 4, 3), (48, 12, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_fill_0[grid(48)](buf2, 48, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((1, 3, 2), (6, 2, 1), torch.float32) triton_poi_fused_div_lift_fresh_1[grid(6)](buf3, 6, XBLOCK=8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((1, 16, 2), (32, 2, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (1, 16, 3), (48, 3, 1), 0), buf3, out=buf4) del buf2 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_grid_sampler_2d_2[grid(256)](buf4, arg0_1, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del buf4 return buf5, class RotateNew(nn.Module): def __init__(self, angle: 'float') ->None: super().__init__() self.angle = angle def extra_repr(self) ->str: return f'factor={self.angle}' def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
pystiche/papers
Rotate
false
7,503
[ "BSD-3-Clause" ]
1
0d8179dc51f6eda0b27fa525dc0b86b866bc88e1
https://github.com/pystiche/papers/tree/0d8179dc51f6eda0b27fa525dc0b86b866bc88e1
import torch from typing import cast from torch import nn from torchvision.transforms import functional as F import torch.nn.functional as F import torchvision.transforms.functional as F import torch.autograd class Model(nn.Module): def __init__(self, angle: 'float') ->None: super().__init__() self.angle = angle def forward(self, image: 'torch.Tensor') ->torch.Tensor: return cast(torch.Tensor, F.rotate(image, self.angle)) def extra_repr(self) ->str: return f'factor={self.angle}' def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
srcEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class srcEncoder(nn.Module): def __init__(self, in_ch, hid_ch): super(srcEncoder, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return self.conv2(self.act(self.conv1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'hid_ch': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class srcEncoderNew(nn.Module): def __init__(self, in_ch, hid_ch): super(srcEncoderNew, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qbhan/pathembed
srcEncoder
false
7,504
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_ch, hid_ch): super().__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return self.conv2(self.act(self.conv1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
TonemappedMSE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/g5/cg5s7jkfonx6gypu45tajbtehlgaghmmxceflzftb27iuduhnuyj.py # Topologically Sorted Source Nodes: [im, add, im_1, im_2, add_1, ref, sub, loss, mean, loss_1], Original ATen: [aten.clamp, aten.add, aten.div, aten.sub, aten.pow, aten.mean, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # im => clamp_min # im_1 => div # im_2 => clamp_min_1 # loss => pow_1 # loss_1 => mul # mean => mean # ref => div_1 # sub => sub # Graph fragment: # %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_min, %add), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg1_1, 0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min_1, 1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_min_1, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) triton_per_fused_add_clamp_div_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_clamp_div_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_div_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_div_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = tmp2 + tmp3 tmp5 = tmp2 / tmp4 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp7 + tmp3 tmp9 = tmp7 / tmp8 tmp10 = tmp5 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [im, add, im_1, im_2, add_1, ref, sub, loss, mean, loss_1], Original ATen: [aten.clamp, aten.add, aten.div, aten.sub, aten.pow, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_div_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def _tonemap(im): """Helper Reinhards tonemapper. Args: im(torch.Tensor): image to tonemap. Returns: (torch.Tensor) tonemaped image. """ im = torch.clamp(im, min=0) return im / (1 + im) class TonemappedMSE(torch.nn.Module): """Mean-squared error on tonemaped images. Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super(TonemappedMSE, self).__init__() self.eps = eps def forward(self, im, ref): im = _tonemap(im) ref = _tonemap(ref) loss = torch.pow(im - ref, 2) loss = 0.5 * torch.mean(loss) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_div_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + r0, None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = tmp2 + tmp3 tmp5 = tmp2 / tmp4 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp7 + tmp3 tmp9 = tmp7 / tmp8 tmp10 = tmp5 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 256.0 tmp16 = tmp14 / tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_div_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def _tonemap(im): """Helper Reinhards tonemapper. Args: im(torch.Tensor): image to tonemap. Returns: (torch.Tensor) tonemaped image. """ im = torch.clamp(im, min=0) return im / (1 + im) class TonemappedMSENew(torch.nn.Module): """Mean-squared error on tonemaped images. Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super(TonemappedMSENew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qbhan/pathembed
TonemappedMSE
false
7,505
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch def _tonemap(im): """Helper Reinhards tonemapper. Args: im(torch.Tensor): image to tonemap. Returns: (torch.Tensor) tonemaped image. """ im = torch.clamp(im, min=0) return im / (1 + im) class Model(torch.nn.Module): """Mean-squared error on tonemaped images. Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super().__init__() self.eps = eps def forward(self, im, ref): im = _tonemap(im) ref = _tonemap(ref) loss = torch.pow(im - ref, 2) loss = 0.5 * torch.mean(loss) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Residual_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/hx/chx6hwekqfsfzmudpk64o5gmtqmlzzvledcsa5kwwqd6izhap2fa.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4288 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 67 y1 = (yindex // 67) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (67*x2) + (603*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fa/cfaety6wuwfs2uekvzt7r2sm5jfxqsurmtnt26s4ohs4qae6cyea.py # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.cat] # Source node to ATen node mapping: # ret => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %device_put, %device_put_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1081344 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 4096) % 66 x3 = (xindex // 270336) x4 = xindex % 4096 x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = xindex % 270336 tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + (4096*x2) + (262144*x3)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 65, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = x1 tmp11 = tmp10.to(tl.float32) tmp12 = 0.015873015873015872 tmp13 = tmp11 * tmp12 tmp14 = 2.0 tmp15 = tmp13 * tmp14 tmp16 = 1.0 tmp17 = tmp15 - tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tmp21 = tl.full([1], 66, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = x0 tmp24 = tmp23.to(tl.float32) tmp25 = tmp24 * tmp12 tmp26 = tmp25 * tmp14 tmp27 = tmp26 - tmp16 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp20, tmp27, tmp28) tmp30 = tl.where(tmp9, tmp19, tmp29) tmp31 = tl.where(tmp4, tmp5, tmp30) tl.store(out_ptr0 + (x5 + (274432*x3)), tmp31, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/pv/cpvyw2sx2ghhwgzrgj5mrhgtmavfeblpbhljtqvckhxw6trgyifa.py # Topologically Sorted Source Nodes: [type_as, type_as_1, sub_2, pow_1, sub_3, pow_2, add, rr], Original ATen: [aten._to_copy, aten.sub, aten.pow, aten.add, aten.sqrt] # Source node to ATen node mapping: # add => add # pow_1 => pow_1 # pow_2 => pow_2 # rr => sqrt # sub_2 => sub_2 # sub_3 => sub_3 # type_as => device_put # type_as_1 => device_put_1 # Graph fragment: # %device_put : [num_users=3] = call_function[target=torch.ops.prims.device_put.default](args = (%permute_1, cuda:0), kwargs = {}) # %device_put_1 : [num_users=3] = call_function[target=torch.ops.prims.device_put.default](args = (%permute_2, cuda:0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%device_put, 0.5), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%device_put_1, 0.5), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) triton_poi_fused__to_copy_add_pow_sqrt_sub_2 = async_compile.triton('triton_poi_fused__to_copy_add_pow_sqrt_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_pow_sqrt_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_pow_sqrt_sub_2(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x2 = (xindex // 4096) x3 = xindex % 4096 tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.015873015873015872 tmp3 = tmp1 * tmp2 tmp4 = 2.0 tmp5 = tmp3 * tmp4 tmp6 = 1.0 tmp7 = tmp5 - tmp6 tmp8 = 0.5 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = tmp13 * tmp4 tmp15 = tmp14 - tmp6 tmp16 = tmp15 - tmp8 tmp17 = tmp16 * tmp16 tmp18 = tmp10 + tmp17 tmp19 = libdevice.sqrt(tmp18) tl.store(out_ptr0 + (x3 + (274432*x2)), tmp19, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fh/cfh5avtjtri2j7zhz2hokodpzpktszukihmsof225hxrdfbds7qv.py # Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # ret_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%cat, %sqrt], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 268 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 67 y1 = (yindex // 67) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (67*x2) + (274432*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7e/c7ee2mukcyt2oekdr34mndt3ebrmfuin465wysy7i3iovmn2gvqz.py # Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # ret_2 => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bo/cbop6byfkkzzjktajzua3ovnpvhy32nxb7dbv364jfeaxunlv7bo.py # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] # Source node to ATen node mapping: # instance_norm => repeat_4 # Graph fragment: # %repeat_4 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {}) triton_poi_fused_repeat_5 = async_compile.triton('triton_poi_fused_repeat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 64), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/nr/cnrivyvtsszxhilv3ybiimdz2fsvah5odr2wyk3gdu5f6bap3h5h.py # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten._native_batch_norm_legit] # Source node to ATen node mapping: # instance_norm => add_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) triton_red_fused__native_batch_norm_legit_6 = async_compile.triton('triton_red_fused__native_batch_norm_legit_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[256, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 256 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + ((64*r1) + (262144*(x0 // 64)) + (x0 % 64)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce( tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0 ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford( tmp2_mean, tmp2_m2, tmp2_weight, 1 ) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tl.store(out_ptr0 + (x0), tmp2, xmask) tmp5 = 4096.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jv/cjvjuvpasxtx3xq2ys3laoyxwdbew2ncwqceorfcutyztx67z2g2.py # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten._native_batch_norm_legit] # Source node to ATen node mapping: # instance_norm => add_2, mul_2, mul_3, sub_4 # Graph fragment: # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %getitem_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %rsqrt), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %unsqueeze_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_3), kwargs = {}) triton_poi_fused__native_batch_norm_legit_7 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__native_batch_norm_legit_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) x2 = xindex tmp0 = tl.load(in_ptr0 + ((64*x1) + (262144*(x0 // 64)) + (x0 % 64)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/hu/chuox4qq655kj3moff42c2i6oxqfruhnfvc56ezo443iyq7erwyh.py # Topologically Sorted Source Nodes: [ret_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # ret_3 => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_3, %device_put, %device_put_1], 1), kwargs = {}) triton_poi_fused_cat_8 = async_compile.triton('triton_poi_fused_cat_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1081344 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 4096) % 66 x3 = (xindex // 270336) x4 = xindex % 4096 x1 = (xindex // 64) % 64 x0 = xindex % 64 x5 = xindex % 270336 tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((64*((((64*x3) + x2) // 64) % 4)) + (256*x4) + (x2 % 64)), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 0.2 tmp9 = tmp5 * tmp8 tmp10 = tl.where(tmp7, tmp5, tmp9) tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp4, tmp10, tmp11) tmp13 = tmp0 >= tmp3 tmp14 = tl.full([1], 65, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tmp13 & tmp15 tmp17 = x1 tmp18 = tmp17.to(tl.float32) tmp19 = 0.015873015873015872 tmp20 = tmp18 * tmp19 tmp21 = 2.0 tmp22 = tmp20 * tmp21 tmp23 = 1.0 tmp24 = tmp22 - tmp23 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp16, tmp24, tmp25) tmp27 = tmp0 >= tmp14 tmp28 = tl.full([1], 66, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = x0 tmp31 = tmp30.to(tl.float32) tmp32 = tmp31 * tmp19 tmp33 = tmp32 * tmp21 tmp34 = tmp33 - tmp23 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp27, tmp34, tmp35) tmp37 = tl.where(tmp16, tmp26, tmp36) tmp38 = tl.where(tmp4, tmp12, tmp37) tl.store(out_ptr0 + (x5 + (274432*x3)), tmp38, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/oh/coh5alma3d4l32myc25amssouykmsqnt7k4tvq2v5ejk2zrx7d4w.py # Topologically Sorted Source Nodes: [output_1, output_2], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.add] # Source node to ATen node mapping: # output_1 => add_4, repeat_10, rsqrt_1, var_mean_1 # output_2 => add_6 # Graph fragment: # %repeat_10 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_6, %primals_1), kwargs = {}) triton_red_fused__native_batch_norm_legit_add_repeat_9 = async_compile.triton('triton_red_fused__native_batch_norm_legit_add_repeat_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[256, 4096], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_add_repeat_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_add_repeat_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 256 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 64), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) tmp3_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp3_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp3_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp1 = tl.load(in_ptr1 + ((64*r1) + (262144*(x0 // 64)) + (x0 % 64)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3_mean_next, tmp3_m2_next, tmp3_weight_next = triton_helpers.welford_reduce( tmp2, tmp3_mean, tmp3_m2, tmp3_weight, roffset == 0 ) tmp3_mean = tl.where(rmask & xmask, tmp3_mean_next, tmp3_mean) tmp3_m2 = tl.where(rmask & xmask, tmp3_m2_next, tmp3_m2) tmp3_weight = tl.where(rmask & xmask, tmp3_weight_next, tmp3_weight) tmp3_tmp, tmp4_tmp, tmp5_tmp = triton_helpers.welford( tmp3_mean, tmp3_m2, tmp3_weight, 1 ) tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tl.store(out_ptr1 + (x0), tmp3, xmask) tmp6 = 4096.0 tmp7 = tmp4 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tl.store(out_ptr3 + (x0), tmp10, xmask) x2 = xindex % 64 x3 = (xindex // 64) tmp15 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp11 = tl.load(in_ptr1 + (x2 + (64*r1) + (262144*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp17 = tl.load(in_ptr3 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp12 = tmp11 - tmp3 tmp13 = tmp12 * tmp10 tmp14 = tmp13 * tmp0 tmp16 = tmp14 + tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr4 + (r1 + (4096*x0)), tmp18, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 67, 3, 3), (603, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, ), (1, )) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 67, 3, 3), (603, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, ), (1, )) assert_size_stride(primals_9, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 67, 3, 3), (603, 1, 201, 67), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_2, buf0, 4288, 9, grid=grid(4288, 9), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 67, 3, 3), (603, 1, 201, 67), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_6, buf1, 4288, 9, grid=grid(4288, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((4, 67, 64, 64), (274432, 4096, 64, 1), torch.float32) buf2 = reinterpret_tensor(buf4, (4, 66, 64, 64), (274432, 4096, 64, 1), 0) # alias # Topologically Sorted Source Nodes: [ret], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, buf2, 1081344, grid=grid(1081344), stream=stream0) buf3 = reinterpret_tensor(buf4, (4, 1, 64, 64), (274432, 4096, 64, 1), 270336) # alias # Topologically Sorted Source Nodes: [type_as, type_as_1, sub_2, pow_1, sub_3, pow_2, add, rr], Original ATen: [aten._to_copy, aten.sub, aten.pow, aten.add, aten.sqrt] triton_poi_fused__to_copy_add_pow_sqrt_sub_2.run(buf3, 16384, grid=grid(16384), stream=stream0) buf5 = empty_strided_cuda((4, 67, 64, 64), (274432, 1, 4288, 67), torch.float32) # Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf4, buf5, 268, 4096, grid=grid(268, 4096), stream=stream0) del buf2 del buf3 # Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [ret_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf7, primals_3, 1048576, grid=grid(1048576), stream=stream0) del primals_3 buf8 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_4, buf8, 256, grid=grid(256), stream=stream0) del primals_4 buf9 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] triton_poi_fused_repeat_5.run(primals_5, buf9, 256, grid=grid(256), stream=stream0) del primals_5 buf10 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf11 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf13 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten._native_batch_norm_legit] triton_red_fused__native_batch_norm_legit_6.run(buf13, buf7, buf10, 256, 4096, grid=grid(256), stream=stream0) buf14 = empty_strided_cuda((1, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten._native_batch_norm_legit] triton_poi_fused__native_batch_norm_legit_7.run(buf7, buf10, buf13, buf8, buf9, buf14, 1048576, grid=grid(1048576), stream=stream0) buf17 = buf4; del buf4 # reuse buf15 = reinterpret_tensor(buf17, (4, 66, 64, 64), (274432, 4096, 64, 1), 0) # alias # Topologically Sorted Source Nodes: [ret_3], Original ATen: [aten.cat] triton_poi_fused_cat_8.run(buf14, buf15, 1081344, grid=grid(1081344), stream=stream0) buf16 = reinterpret_tensor(buf17, (4, 1, 64, 64), (274432, 4096, 64, 1), 270336) # alias # Topologically Sorted Source Nodes: [ret_4], Original ATen: [aten.cat] triton_poi_fused__to_copy_add_pow_sqrt_sub_2.run(buf16, 16384, grid=grid(16384), stream=stream0) buf18 = empty_strided_cuda((4, 67, 64, 64), (274432, 1, 4288, 67), torch.float32) # Topologically Sorted Source Nodes: [ret_4], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf17, buf18, 268, 4096, grid=grid(268, 4096), stream=stream0) del buf15 del buf16 del buf17 # Topologically Sorted Source Nodes: [ret_5], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [ret_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf20, primals_7, 1048576, grid=grid(1048576), stream=stream0) del primals_7 buf21 = empty_strided_cuda((256, ), (1, ), torch.float32) buf22 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf25 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf26 = reinterpret_tensor(buf14, (4, 64, 64, 64), (262144, 4096, 64, 1), 0); del buf14 # reuse # Topologically Sorted Source Nodes: [output_1, output_2], Original ATen: [aten.repeat, aten._native_batch_norm_legit, aten.add] triton_red_fused__native_batch_norm_legit_add_repeat_9.run(primals_8, buf20, primals_9, primals_1, buf21, buf22, buf25, buf26, 256, 4096, grid=grid(256), stream=stream0) del primals_1 del primals_8 del primals_9 return (buf26, buf0, buf1, buf5, buf7, buf8, buf9, buf10, buf13, buf18, buf20, buf21, reinterpret_tensor(buf25, (256, ), (1, ), 0), reinterpret_tensor(buf22, (1, 256, 1, 1), (256, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 67, 3, 3), (603, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 67, 3, 3), (603, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AddCoords(nn.Module): def __init__(self, with_r=False): super().__init__() self.with_r = with_r def forward(self, input_tensor): """ @param input_tensor: shape(batch, channel, x_dim, y_dim) """ batch_size, _, x_dim, y_dim = input_tensor.size() xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1) yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2) xx_channel = xx_channel.float() / (x_dim - 1) yy_channel = yy_channel.float() / (y_dim - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor), yy_channel.type_as(input_tensor)], dim=1) if self.with_r: rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2)) ret = torch.cat([ret, rr], dim=1) return ret class CoordConv(nn.Module): def __init__(self, in_channels, out_channels, with_r=False, **kwargs): super().__init__() self.addcoords = AddCoords(with_r=with_r) in_size = in_channels + 2 if with_r: in_size += 1 self.conv = nn.Conv2d(in_size, out_channels, **kwargs) def forward(self, x): ret = self.addcoords(x) ret = self.conv(ret) return ret class Residual_Block(nn.Module): def __init__(self): super(Residual_Block, self).__init__() self.conv1 = CoordConv(in_channels=64, out_channels=64, with_r=True, kernel_size=3, stride=1, padding=1, bias=True) self.in1 = nn.InstanceNorm2d(64, affine=True) self.relu = nn.LeakyReLU(0.2, inplace=True) self.conv2 = CoordConv(in_channels=64, out_channels=64, with_r=True, kernel_size=3, stride=1, padding=1, bias=True) self.in2 = nn.InstanceNorm2d(64, affine=True) def forward(self, x): identity_data = x output = self.relu(self.in1(self.conv1(x))) output = self.in2(self.conv2(output)) output = torch.add(output, identity_data) return output def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4288 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 67 y1 = yindex // 67 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 67 * x2 + 603 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 4096 % 66 x3 = xindex // 270336 x4 = xindex % 4096 x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex % 270336 tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + 4096 * x2 + 262144 * x3), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 65, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = x1 tmp11 = tmp10.to(tl.float32) tmp12 = 0.015873015873015872 tmp13 = tmp11 * tmp12 tmp14 = 2.0 tmp15 = tmp13 * tmp14 tmp16 = 1.0 tmp17 = tmp15 - tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tl.full([1], 66, tl.int64) tmp23 = x0 tmp24 = tmp23.to(tl.float32) tmp25 = tmp24 * tmp12 tmp26 = tmp25 * tmp14 tmp27 = tmp26 - tmp16 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp20, tmp27, tmp28) tmp30 = tl.where(tmp9, tmp19, tmp29) tmp31 = tl.where(tmp4, tmp5, tmp30) tl.store(out_ptr0 + (x5 + 274432 * x3), tmp31, None) @triton.jit def triton_poi_fused__to_copy_add_pow_sqrt_sub_2(out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x2 = xindex // 4096 x3 = xindex % 4096 tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.015873015873015872 tmp3 = tmp1 * tmp2 tmp4 = 2.0 tmp5 = tmp3 * tmp4 tmp6 = 1.0 tmp7 = tmp5 - tmp6 tmp8 = 0.5 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = tmp13 * tmp4 tmp15 = tmp14 - tmp6 tmp16 = tmp15 - tmp8 tmp17 = tmp16 * tmp16 tmp18 = tmp10 + tmp17 tmp19 = libdevice.sqrt(tmp18) tl.store(out_ptr0 + (x3 + 274432 * x2), tmp19, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 268 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 67 y1 = yindex // 67 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 67 * x2 + 274432 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 64, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_red_fused__native_batch_norm_legit_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 256 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (64 * r1 + 262144 * (x0 // 64) + x0 % 64), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers. welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0) ) tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean) tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2) tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight) tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean, tmp2_m2, tmp2_weight, 1) tmp2 = tmp2_tmp[:, None] tmp3 = tmp3_tmp[:, None] tmp4_tmp[:, None] tl.store(out_ptr0 + x0, tmp2, xmask) tmp5 = 4096.0 tmp6 = tmp3 / tmp5 tmp7 = 1e-05 tmp8 = tmp6 + tmp7 tmp9 = libdevice.rsqrt(tmp8) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_poi_fused__native_batch_norm_legit_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 x2 = xindex tmp0 = tl.load(in_ptr0 + (64 * x1 + 262144 * (x0 // 64) + x0 % 64), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_cat_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 4096 % 66 x3 = xindex // 270336 x4 = xindex % 4096 x1 = xindex // 64 % 64 x0 = xindex % 64 x5 = xindex % 270336 tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 * ((64 * x3 + x2) // 64 % 4) + 256 * x4 + x2 % 64), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 0.2 tmp9 = tmp5 * tmp8 tmp10 = tl.where(tmp7, tmp5, tmp9) tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp4, tmp10, tmp11) tmp13 = tmp0 >= tmp3 tmp14 = tl.full([1], 65, tl.int64) tmp15 = tmp0 < tmp14 tmp16 = tmp13 & tmp15 tmp17 = x1 tmp18 = tmp17.to(tl.float32) tmp19 = 0.015873015873015872 tmp20 = tmp18 * tmp19 tmp21 = 2.0 tmp22 = tmp20 * tmp21 tmp23 = 1.0 tmp24 = tmp22 - tmp23 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp16, tmp24, tmp25) tmp27 = tmp0 >= tmp14 tl.full([1], 66, tl.int64) tmp30 = x0 tmp31 = tmp30.to(tl.float32) tmp32 = tmp31 * tmp19 tmp33 = tmp32 * tmp21 tmp34 = tmp33 - tmp23 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp27, tmp34, tmp35) tmp37 = tl.where(tmp16, tmp26, tmp36) tmp38 = tl.where(tmp4, tmp12, tmp37) tl.store(out_ptr0 + (x5 + 274432 * x3), tmp38, None) @triton.jit def triton_red_fused__native_batch_norm_legit_add_repeat_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 256 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 64, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) tmp3_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp3_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp3_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp1 = tl.load(in_ptr1 + (64 * r1 + 262144 * (x0 // 64) + x0 % 64), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3_mean_next, tmp3_m2_next, tmp3_weight_next = (triton_helpers. welford_reduce(tmp2, tmp3_mean, tmp3_m2, tmp3_weight, roffset == 0) ) tmp3_mean = tl.where(rmask & xmask, tmp3_mean_next, tmp3_mean) tmp3_m2 = tl.where(rmask & xmask, tmp3_m2_next, tmp3_m2) tmp3_weight = tl.where(rmask & xmask, tmp3_weight_next, tmp3_weight) tmp3_tmp, tmp4_tmp, tmp5_tmp = triton_helpers.welford(tmp3_mean, tmp3_m2, tmp3_weight, 1) tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tmp5_tmp[:, None] tl.store(out_ptr1 + x0, tmp3, xmask) tmp6 = 4096.0 tmp7 = tmp4 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tl.store(out_ptr3 + x0, tmp10, xmask) x2 = xindex % 64 x3 = xindex // 64 tmp15 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp11 = tl.load(in_ptr1 + (x2 + 64 * r1 + 262144 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp17 = tl.load(in_ptr3 + (r1 + 4096 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp12 = tmp11 - tmp3 tmp13 = tmp12 * tmp10 tmp14 = tmp13 * tmp0 tmp16 = tmp14 + tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr4 + (r1 + 4096 * x0), tmp18, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 67, 3, 3), (603, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64,), (1,)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 67, 3, 3), (603, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64,), (1,)) assert_size_stride(primals_9, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 67, 3, 3), (603, 1, 201, 67), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(4288, 9)](primals_2, buf0, 4288, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 67, 3, 3), (603, 1, 201, 67), torch. float32) triton_poi_fused_0[grid(4288, 9)](primals_6, buf1, 4288, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((4, 67, 64, 64), (274432, 4096, 64, 1), torch.float32) buf2 = reinterpret_tensor(buf4, (4, 66, 64, 64), (274432, 4096, 64, 1), 0) triton_poi_fused_cat_1[grid(1081344)](primals_1, buf2, 1081344, XBLOCK=512, num_warps=8, num_stages=1) buf3 = reinterpret_tensor(buf4, (4, 1, 64, 64), (274432, 4096, 64, 1), 270336) triton_poi_fused__to_copy_add_pow_sqrt_sub_2[grid(16384)](buf3, 16384, XBLOCK=128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 67, 64, 64), (274432, 1, 4288, 67), torch.float32) triton_poi_fused_cat_3[grid(268, 4096)](buf4, buf5, 268, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf2 del buf3 buf6 = extern_kernels.convolution(buf5, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf7 = buf6 del buf6 triton_poi_fused_convolution_4[grid(1048576)](buf7, primals_3, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf8 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_4, buf8, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_4 buf9 = empty_strided_cuda((256,), (1,), torch.float32) triton_poi_fused_repeat_5[grid(256)](primals_5, buf9, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf10 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf11 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf13 = buf11 del buf11 triton_red_fused__native_batch_norm_legit_6[grid(256)](buf13, buf7, buf10, 256, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1 ) buf14 = empty_strided_cuda((1, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) triton_poi_fused__native_batch_norm_legit_7[grid(1048576)](buf7, buf10, buf13, buf8, buf9, buf14, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) buf17 = buf4 del buf4 buf15 = reinterpret_tensor(buf17, (4, 66, 64, 64), (274432, 4096, 64, 1), 0) triton_poi_fused_cat_8[grid(1081344)](buf14, buf15, 1081344, XBLOCK =512, num_warps=8, num_stages=1) buf16 = reinterpret_tensor(buf17, (4, 1, 64, 64), (274432, 4096, 64, 1), 270336) triton_poi_fused__to_copy_add_pow_sqrt_sub_2[grid(16384)](buf16, 16384, XBLOCK=128, num_warps=4, num_stages=1) buf18 = empty_strided_cuda((4, 67, 64, 64), (274432, 1, 4288, 67), torch.float32) triton_poi_fused_cat_3[grid(268, 4096)](buf17, buf18, 268, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf15 del buf16 del buf17 buf19 = extern_kernels.convolution(buf18, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf20 = buf19 del buf19 triton_poi_fused_convolution_4[grid(1048576)](buf20, primals_7, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf21 = empty_strided_cuda((256,), (1,), torch.float32) buf22 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf25 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32) buf26 = reinterpret_tensor(buf14, (4, 64, 64, 64), (262144, 4096, 64, 1), 0) del buf14 triton_red_fused__native_batch_norm_legit_add_repeat_9[grid(256)]( primals_8, buf20, primals_9, primals_1, buf21, buf22, buf25, buf26, 256, 4096, XBLOCK=8, RBLOCK=512, num_warps=16, num_stages=1) del primals_1 del primals_8 del primals_9 return (buf26, buf0, buf1, buf5, buf7, buf8, buf9, buf10, buf13, buf18, buf20, buf21, reinterpret_tensor(buf25, (256,), (1,), 0), reinterpret_tensor(buf22, (1, 256, 1, 1), (256, 1, 1, 1), 0)) class AddCoords(nn.Module): def __init__(self, with_r=False): super().__init__() self.with_r = with_r def forward(self, input_tensor): """ @param input_tensor: shape(batch, channel, x_dim, y_dim) """ batch_size, _, x_dim, y_dim = input_tensor.size() xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1) yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2) xx_channel = xx_channel.float() / (x_dim - 1) yy_channel = yy_channel.float() / (y_dim - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor), yy_channel.type_as(input_tensor)], dim=1) if self.with_r: rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2)) ret = torch.cat([ret, rr], dim=1) return ret class CoordConv(nn.Module): def __init__(self, in_channels, out_channels, with_r=False, **kwargs): super().__init__() self.addcoords = AddCoords(with_r=with_r) in_size = in_channels + 2 if with_r: in_size += 1 self.conv = nn.Conv2d(in_size, out_channels, **kwargs) def forward(self, x): ret = self.addcoords(x) ret = self.conv(ret) return ret class Residual_BlockNew(nn.Module): def __init__(self): super(Residual_BlockNew, self).__init__() self.conv1 = CoordConv(in_channels=64, out_channels=64, with_r=True, kernel_size=3, stride=1, padding=1, bias=True) self.in1 = nn.InstanceNorm2d(64, affine=True) self.relu = nn.LeakyReLU(0.2, inplace=True) self.conv2 = CoordConv(in_channels=64, out_channels=64, with_r=True, kernel_size=3, stride=1, padding=1, bias=True) self.in2 = nn.InstanceNorm2d(64, affine=True) def forward(self, input_0): primals_2 = self.conv1.conv.weight primals_3 = self.conv1.conv.bias primals_4 = self.in1.weight primals_5 = self.in1.bias primals_6 = self.conv2.conv.weight primals_7 = self.conv2.conv.bias primals_8 = self.in2.weight primals_9 = self.in2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
patrickacole/ccsrresnet
Residual_Block
false
7,506
[ "MIT" ]
1
693d6673c26860bc9f7ced187006d8ef0a8386e6
https://github.com/patrickacole/ccsrresnet/tree/693d6673c26860bc9f7ced187006d8ef0a8386e6
import torch import torch.nn as nn class AddCoords(nn.Module): def __init__(self, with_r=False): super().__init__() self.with_r = with_r def forward(self, input_tensor): """ @param input_tensor: shape(batch, channel, x_dim, y_dim) """ batch_size, _, x_dim, y_dim = input_tensor.size() xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1) yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2) xx_channel = xx_channel.float() / (x_dim - 1) yy_channel = yy_channel.float() / (y_dim - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3) ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor), yy_channel.type_as(input_tensor)], dim=1) if self.with_r: rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) - 0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2)) ret = torch.cat([ret, rr], dim=1) return ret class CoordConv(nn.Module): def __init__(self, in_channels, out_channels, with_r=False, **kwargs): super().__init__() self.addcoords = AddCoords(with_r=with_r) in_size = in_channels + 2 if with_r: in_size += 1 self.conv = nn.Conv2d(in_size, out_channels, **kwargs) def forward(self, x): ret = self.addcoords(x) ret = self.conv(ret) return ret class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = CoordConv(in_channels=64, out_channels=64, with_r=True, kernel_size=3, stride=1, padding=1, bias=True) self.in1 = nn.InstanceNorm2d(64, affine=True) self.relu = nn.LeakyReLU(0.2, inplace=True) self.conv2 = CoordConv(in_channels=64, out_channels=64, with_r=True, kernel_size=3, stride=1, padding=1, bias=True) self.in2 = nn.InstanceNorm2d(64, affine=True) def forward(self, x): identity_data = x output = self.relu(self.in1(self.conv1(x))) output = self.in2(self.conv2(output)) output = torch.add(output, identity_data) return output def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
InformedSender
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/gy/cgyfx47penjbxrnlqdpur6wznrc2npiddss2rmhvsk53kjjd4wdb.py # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # h_4 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_1, %unsqueeze_3, %unsqueeze_5, %unsqueeze_7], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2s/c2s2pec3vduo4xn2kfu53hypzbhir2ql56lmvazfmymhwv2ehhv5.py # Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # h_6 => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/3w/c3wxeqk5okayj66zgai4mx3d5w7kam547j5qjthdexbfu7754q7x.py # Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # h_9 => sigmoid_1 # Graph fragment: # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/6u/c6ultulfey36ctsvwbs642uch4qmc3elyv6cdtf3dh7jgv5ywknj.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # logits => exp, log, sub_1, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_4, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %log), kwargs = {}) triton_per_fused__log_softmax_3 = async_compile.triton('triton_per_fused__log_softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 100 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (100*x0)), rmask & xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(rmask & xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tl_math.log(tmp13) tmp15 = tmp8 - tmp14 tl.store(out_ptr2 + (r1 + (100*x0)), tmp15, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_5, (100, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i_9], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del buf1 del buf2 del buf3 # Topologically Sorted Source Nodes: [h_5], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf6, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [h_8], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf8, 16, grid=grid(16), stream=stream0) buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [h_12], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9) buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_3.run(buf9, buf12, 4, 100, grid=grid(4), stream=stream0) del buf9 return (buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), buf4, buf6, buf8, buf12, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.distributions class InformedSender(nn.Module): def __init__(self, game_size, feat_size, embedding_size, hidden_size, vocab_size=100, temp=1.0): super(InformedSender, self).__init__() self.game_size = game_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.temp = temp self.lin1 = nn.Linear(feat_size, embedding_size, bias=False) self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1), stride=(game_size, 1), bias=False) self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=( hidden_size, 1), bias=False) self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False) def forward(self, x, return_embeddings=False): emb = self.return_embeddings(x) h = self.conv2(emb) h = torch.sigmoid(h) h = h.transpose(1, 2) h = self.conv3(h) h = torch.sigmoid(h) h = h.squeeze(dim=1) h = h.squeeze(dim=1) h = self.lin4(h) h = h.mul(1.0 / self.temp) logits = F.log_softmax(h, dim=1) return logits def return_embeddings(self, x): embs = [] for i in range(self.game_size): h = x[i] if len(h.size()) == 3: h = h.squeeze(dim=-1) h_i = self.lin1(h) h_i = h_i.unsqueeze(dim=1) h_i = h_i.unsqueeze(dim=1) embs.append(h_i) h = torch.cat(embs, dim=2) return h def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'game_size': 4, 'feat_size': 4, 'embedding_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy ='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 100 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 100 * x0), rmask & xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(rmask & xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tl_math.log(tmp13) tmp15 = tmp8 - tmp14 tl.store(out_ptr2 + (r1 + 100 * x0), tmp15, rmask & xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_5, (100, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del buf3 buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1)) buf6 = buf5 del buf5 triton_poi_fused_sigmoid_1[grid(64)](buf6, 64, XBLOCK=64, num_warps =1, num_stages=1) buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1)) buf8 = buf7 del buf7 triton_poi_fused_sigmoid_2[grid(16)](buf8, 16, XBLOCK=16, num_warps =1, num_stages=1) buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9) buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32) triton_per_fused__log_softmax_3[grid(4)](buf9, buf12, 4, 100, XBLOCK=1, num_warps=2, num_stages=1) del buf9 return buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4 ), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16 ), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32 ), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48 ), buf4, buf6, buf8, buf12, primals_5 class InformedSenderNew(nn.Module): def __init__(self, game_size, feat_size, embedding_size, hidden_size, vocab_size=100, temp=1.0): super(InformedSenderNew, self).__init__() self.game_size = game_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.temp = temp self.lin1 = nn.Linear(feat_size, embedding_size, bias=False) self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1), stride=(game_size, 1), bias=False) self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=( hidden_size, 1), bias=False) self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False) def return_embeddings(self, x): embs = [] for i in range(self.game_size): h = x[i] if len(h.size()) == 3: h = h.squeeze(dim=-1) h_i = self.lin1(h) h_i = h_i.unsqueeze(dim=1) h_i = h_i.unsqueeze(dim=1) embs.append(h_i) h = torch.cat(embs, dim=2) return h def forward(self, input_0): primals_2 = self.lin1.weight primals_3 = self.conv2.weight primals_4 = self.conv3.weight primals_5 = self.lin4.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ptigas/EGG
InformedSender
false
7,507
[ "MIT" ]
1
5319cc9de2c17bc72de717737cfbb5be2285c59b
https://github.com/ptigas/EGG/tree/5319cc9de2c17bc72de717737cfbb5be2285c59b
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.distributions class Model(nn.Module): def __init__(self, game_size, feat_size, embedding_size, hidden_size, vocab_size=100, temp=1.0): super().__init__() self.game_size = game_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.temp = temp self.lin1 = nn.Linear(feat_size, embedding_size, bias=False) self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1), stride=(game_size, 1), bias=False) self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=( hidden_size, 1), bias=False) self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False) def forward(self, x, return_embeddings=False): emb = self.return_embeddings(x) h = self.conv2(emb) h = torch.sigmoid(h) h = h.transpose(1, 2) h = self.conv3(h) h = torch.sigmoid(h) h = h.squeeze(dim=1) h = h.squeeze(dim=1) h = self.lin4(h) h = h.mul(1.0 / self.temp) logits = F.log_softmax(h, dim=1) return logits def return_embeddings(self, x): embs = [] for i in range(self.game_size): h = x[i] if len(h.size()) == 3: h = h.squeeze(dim=-1) h_i = self.lin1(h) h_i = h_i.unsqueeze(dim=1) h_i = h_i.unsqueeze(dim=1) embs.append(h_i) h = torch.cat(embs, dim=2) return h def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'game_size': 4, 'feat_size': 4, 'embedding_size': 4, 'hidden_size': 4}]
ResBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gu/cgugldvgyucdxf3zyf2ckw6oxxjmxf7fgkwain6hj4sjhsdzjqaf.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] # Source node to ATen node mapping: # add => add # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %relu_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, relu_1, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_1.run(primals_3, buf2, primals_5, buf3, buf4, 256, grid=grid(256), stream=stream0) del buf2 del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super(ResBlock, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'hid_ch': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)]( primals_3, buf2, primals_5, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del primals_5 return buf3, primals_1, primals_3, primals_4, buf1, buf4 class ResBlockNew(nn.Module): def __init__(self, in_ch, hid_ch): super(ResBlockNew, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qbhan/pathembed
ResBlock
false
7,508
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_ch, hid_ch): super().__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
FeatureEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/cj/ccjszwa4dygf3g33fpjpkivork6l2h7pippqvqezycd3c7mosliw.py # Topologically Sorted Source Nodes: [conv2d_2, relu_2, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] # Source node to ATen node mapping: # add => add # conv2d_2 => convolution_2 # relu_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %relu_2), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x3), None) tmp2 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (64, 34, 3, 3), (306, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 34, 64, 64), (139264, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) buf11 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, relu_2, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf1, buf4, primals_7, buf5, buf11, 1048576, grid=grid(1048576), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_3, relu_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 1048576, grid=grid(1048576), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf9 = buf4; del buf4 # reuse buf10 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, relu_4, add_1], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf5, buf8, primals_11, buf9, buf10, 1048576, grid=grid(1048576), stream=stream0) del buf8 del primals_11 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 34, 3, 3), (306, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 34, 64, 64), (139264, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super(ResBlock, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) class FeatureEncoder(nn.Module): def __init__(self, in_channel=34, out_channel=64): super(FeatureEncoder, self).__init__() self.conv = nn.Conv2d(in_channels=in_channel, out_channels= out_channel, kernel_size=3, stride=1, padding=1) self.act = nn.ReLU(inplace=True) self.resblock1 = ResBlock(out_channel, out_channel) self.resblock2 = ResBlock(out_channel, out_channel) def forward(self, batch): return self.resblock2(self.resblock1(self.act(self.conv(batch)))) def get_inputs(): return [torch.rand([4, 34, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x3, None) tmp2 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp8, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 34, 3, 3), (306, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 34, 64, 64), (139264, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) buf11 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_1[grid( 1048576)](buf1, buf4, primals_7, buf5, buf11, 1048576, XBLOCK= 1024, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_0[grid(1048576)](buf7, primals_9, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf9 = buf4 del buf4 buf10 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_1[grid( 1048576)](buf5, buf8, primals_11, buf9, buf10, 1048576, XBLOCK= 1024, num_warps=4, num_stages=1) del buf8 del primals_11 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11) class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super(ResBlock, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) class FeatureEncoderNew(nn.Module): def __init__(self, in_channel=34, out_channel=64): super(FeatureEncoderNew, self).__init__() self.conv = nn.Conv2d(in_channels=in_channel, out_channels= out_channel, kernel_size=3, stride=1, padding=1) self.act = nn.ReLU(inplace=True) self.resblock1 = ResBlock(out_channel, out_channel) self.resblock2 = ResBlock(out_channel, out_channel) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.resblock1.conv1.weight primals_5 = self.resblock1.conv1.bias primals_6 = self.resblock1.conv2.weight primals_7 = self.resblock1.conv2.bias primals_8 = self.resblock2.conv1.weight primals_9 = self.resblock2.conv1.bias primals_10 = self.resblock2.conv2.weight primals_11 = self.resblock2.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
qbhan/pathembed
FeatureEncoder
false
7,509
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch import torch.nn as nn class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super().__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) class Model(nn.Module): def __init__(self, in_channel=34, out_channel=64): super().__init__() self.conv = nn.Conv2d(in_channels=in_channel, out_channels= out_channel, kernel_size=3, stride=1, padding=1) self.act = nn.ReLU(inplace=True) self.resblock1 = ResBlock(out_channel, out_channel) self.resblock2 = ResBlock(out_channel, out_channel) def forward(self, batch): return self.resblock2(self.resblock1(self.act(self.conv(batch)))) def get_inputs(): return [torch.rand([4, 34, 64, 64])] def get_init_inputs(): return []
PredictionHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [4, 4], [4, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + (x0), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0) del buf2 return (buf3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class PredictionHead(nn.Module): """ Simple classification prediction-head block to plug ontop of the 4D output of a CNN. Args: num_classes: the number of different classes that can be predicted. input_shape: the shape that input to this head will have. Expected to be (batch_size, channels, height, width) """ def __init__(self, num_classes, input_shape): super(PredictionHead, self).__init__() self.avgpool = nn.AvgPool2d(input_shape[2]) self.linear = nn.Linear(input_shape[1], num_classes) def forward(self, x): x = self.avgpool(x) x = torch.flatten(x, 1) x = self.linear(x) return F.log_softmax(x, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_classes': 4, 'input_shape': [4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + x0, tmp32, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](primals_1, buf0, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused__log_softmax_2[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 return buf3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3 class PredictionHeadNew(nn.Module): """ Simple classification prediction-head block to plug ontop of the 4D output of a CNN. Args: num_classes: the number of different classes that can be predicted. input_shape: the shape that input to this head will have. Expected to be (batch_size, channels, height, width) """ def __init__(self, num_classes, input_shape): super(PredictionHeadNew, self).__init__() self.avgpool = nn.AvgPool2d(input_shape[2]) self.linear = nn.Linear(input_shape[1], num_classes) def forward(self, input_0): primals_2 = self.linear.weight primals_3 = self.linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
pz-white/pykale
PredictionHead
false
7,510
[ "MIT" ]
1
de40d1e8a88aa824ffbd1e072b02fe92b57b7c69
https://github.com/pz-white/pykale/tree/de40d1e8a88aa824ffbd1e072b02fe92b57b7c69
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class Model(nn.Module): """ Simple classification prediction-head block to plug ontop of the 4D output of a CNN. Args: num_classes: the number of different classes that can be predicted. input_shape: the shape that input to this head will have. Expected to be (batch_size, channels, height, width) """ def __init__(self, num_classes, input_shape): super().__init__() self.avgpool = nn.AvgPool2d(input_shape[2]) self.linear = nn.Linear(input_shape[1], num_classes) def forward(self, x): x = self.avgpool(x) x = torch.flatten(x, 1) x = self.linear(x) return F.log_softmax(x, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LinearDiag
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/2w/c2wdecu57d6a6kpjohz37lvi6a425csunsyc44s565n66u3hny6i.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mul] # Source node to ATen node mapping: # out => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LinearDiag(nn.Module): def __init__(self, num_features, bias=False): super(LinearDiag, self).__init__() weight = torch.FloatTensor(num_features).fill_(1) self.weight = nn.Parameter(weight, requires_grad=True) if bias: bias = torch.FloatTensor(num_features).fill_(0) self.bias = nn.Parameter(bias, requires_grad=True) else: self.register_parameter('bias', None) def forward(self, X): assert X.dim() == 2 and X.size(1) == self.weight.size(0) out = X * self.weight.expand_as(X) if self.bias is not None: out = out + self.bias.expand_as(out) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_1, primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf0, primals_1 class LinearDiagNew(nn.Module): def __init__(self, num_features, bias=False): super(LinearDiagNew, self).__init__() weight = torch.FloatTensor(num_features).fill_(1) self.weight = nn.Parameter(weight, requires_grad=True) if bias: bias = torch.FloatTensor(num_features).fill_(0) self.bias = nn.Parameter(bias, requires_grad=True) else: self.register_parameter('bias', None) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
qianrusun1015/E3BM-1
LinearDiag
false
7,511
[ "Apache-2.0" ]
1
d2c957bdff66fe28a288f1518f224a1e034d543f
https://github.com/qianrusun1015/E3BM-1/tree/d2c957bdff66fe28a288f1518f224a1e034d543f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_features, bias=False): super().__init__() weight = torch.FloatTensor(num_features).fill_(1) self.weight = nn.Parameter(weight, requires_grad=True) if bias: bias = torch.FloatTensor(num_features).fill_(0) self.bias = nn.Parameter(bias, requires_grad=True) else: self.register_parameter('bias', None) def forward(self, X): assert X.dim() == 2 and X.size(1) == self.weight.size(0) out = X * self.weight.expand_as(X) if self.bias is not None: out = out + self.bias.expand_as(out) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4]
FeatExemplarAvgBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/hp/chptg55ofbvcnhmdfgvcjqku736b3xcyxeahxk2eb2jpz7f2wey2.py # Topologically Sorted Source Nodes: [weight_novel_1], Original ATen: [aten.div] # Source node to ATen node mapping: # weight_novel_1 => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 x2 = (xindex // 16) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x1 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(in_out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight_novel], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), arg1_1, out=buf0) del arg1_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [weight_novel_1], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(buf1, arg0_1, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FeatExemplarAvgBlock(nn.Module): def __init__(self, nFeat): super(FeatExemplarAvgBlock, self).__init__() def forward(self, features_train, labels_train): labels_train_transposed = labels_train.transpose(1, 2) weight_novel = torch.bmm(labels_train_transposed, features_train) weight_novel = weight_novel.div(labels_train_transposed.sum(dim=2, keepdim=True).expand_as(weight_novel)) return weight_novel def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'nFeat': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 x2 = xindex // 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x1 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(in_out_ptr0 + x3, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), arg1_1, out=buf0) del arg1_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_div_0[grid(64)](buf1, arg0_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf1, class FeatExemplarAvgBlockNew(nn.Module): def __init__(self, nFeat): super(FeatExemplarAvgBlockNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qianrusun1015/E3BM-1
FeatExemplarAvgBlock
false
7,512
[ "Apache-2.0" ]
1
d2c957bdff66fe28a288f1518f224a1e034d543f
https://github.com/qianrusun1015/E3BM-1/tree/d2c957bdff66fe28a288f1518f224a1e034d543f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, nFeat): super().__init__() def forward(self, features_train, labels_train): labels_train_transposed = labels_train.transpose(1, 2) weight_novel = torch.bmm(labels_train_transposed, features_train) weight_novel = weight_novel.div(labels_train_transposed.sum(dim=2, keepdim=True).expand_as(weight_novel)) return weight_novel def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
CONV
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/z2/cz22v3pkcrwq5gulxno3z2xarri3te72gtg47z6ttbss6jw64xkt.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 961) % 32 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qo/cqorndhtbpievq6i5m26ur7vsrkvugzm442zrg7bc5ekzdivp4oi.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_1 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 28800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 15 x1 = (xindex // 15) % 15 x2 = (xindex // 225) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (62*x1) + (961*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (62*x1) + (961*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (31 + (2*x0) + (62*x1) + (961*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (32 + (2*x0) + (62*x1) + (961*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yl/cylhzvm5azwoxpfzq6cmn4wrmtveszsjfaehpp6d3sldzewuqoy4.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 36) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/rn/crnor7cn4o43gsx7osh4pwgjrowsclmfxirhbe7qayoobmyw5syx.py # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_3 => relu_1 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, None) tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 128, 128), (65536, 16384, 128, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 31, 31), (30752, 961, 31, 1)) buf1 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 123008, grid=grid(123008), stream=stream0) del buf0 del primals_2 buf3 = empty_strided_cuda((4, 32, 15, 15), (7200, 225, 15, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(buf2, buf3, 28800, grid=grid(28800), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 6, 6), (2304, 36, 6, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 9216, grid=grid(9216), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 4, 4), (1024, 16, 4, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf7, primals_7, buf8, 4096, grid=grid(4096), stream=stream0) del primals_7 return (reinterpret_tensor(buf7, (4, 1024), (1024, 1), 0), primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 128, 128), (65536, 16384, 128, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class CONV(nn.Module): def __init__(self, input_shape, device): super(CONV, self).__init__() self.device = device self.input_shape = input_shape self.poolavg = nn.AvgPool2d(2, 2) self.conv1 = nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) def forward(self, x): x = F.leaky_relu(self.conv1(x)) x = self.poolavg(x) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(x.shape[0], -1) return x def get_last_layers(self): x = np.zeros(self.input_shape, dtype=np.float32) x = np.expand_dims(x, axis=0) x = torch.from_numpy(x).float() res = self.forward(x) res = [int(x) for x in res[0].shape] return res[0] def get_inputs(): return [torch.rand([4, 4, 128, 128])] def get_init_inputs(): return [[], {'input_shape': [4, 4], 'device': 0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 961 % 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 28800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 15 x1 = xindex // 15 % 15 x2 = xindex // 225 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 62 * x1 + 961 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 62 * x1 + 961 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (31 + 2 * x0 + 62 * x1 + 961 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (32 + 2 * x0 + 62 * x1 + 961 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 36 % 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 128, 128), (65536, 16384, 128, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 31, 31), (30752, 961, 31, 1)) buf1 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(123008)](buf0, primals_2, buf1, buf2, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = empty_strided_cuda((4, 32, 15, 15), (7200, 225, 15, 1), torch.float32) triton_poi_fused_avg_pool2d_1[grid(28800)](buf2, buf3, 28800, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 6, 6), (2304, 36, 6, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(9216)](buf5, primals_5, 9216, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 4, 4), (1024, 16, 4, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(4096)](buf7 , primals_7, buf8, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return reinterpret_tensor(buf7, (4, 1024), (1024, 1), 0 ), primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf8 class CONVNew(nn.Module): def __init__(self, input_shape, device): super(CONVNew, self).__init__() self.device = device self.input_shape = input_shape self.poolavg = nn.AvgPool2d(2, 2) self.conv1 = nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) def get_last_layers(self): x = np.zeros(self.input_shape, dtype=np.float32) x = np.expand_dims(x, axis=0) x = torch.from_numpy(x).float() res = self.forward(x) res = [int(x) for x in res[0].shape] return res[0] def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
pupupue/Deep-RL-atari
CONV
false
7,513
[ "MIT" ]
1
9b97157f87826feafcf272761d7eef9693a2b2c4
https://github.com/pupupue/Deep-RL-atari/tree/9b97157f87826feafcf272761d7eef9693a2b2c4
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_shape, device): super().__init__() self.device = device self.input_shape = input_shape self.poolavg = nn.AvgPool2d(2, 2) self.conv1 = nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4, padding=0) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) def forward(self, x): x = F.leaky_relu(self.conv1(x)) x = self.poolavg(x) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(x.shape[0], -1) return x def get_last_layers(self): x = np.zeros(self.input_shape, dtype=np.float32) x = np.expand_dims(x, axis=0) x = torch.from_numpy(x).float() res = self.forward(x) res = [int(x) for x in res[0].shape] return res[0] def get_inputs(): return [torch.rand([4, 4, 128, 128])] def get_init_inputs(): return [0]
Quantization
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/od/codpy52rvc5askcobcgimowe6roz5jcvkndhmvmghsacnld6obn2.py # Topologically Sorted Source Nodes: [input_1, mul, round_1, output], Original ATen: [aten.clamp, aten.mul, aten.round, aten.div] # Source node to ATen node mapping: # input_1 => clamp_max, clamp_min # mul => mul # output => div # round_1 => round_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 255.0), kwargs = {}) # %round_1 : [num_users=1] = call_function[target=torch.ops.aten.round.default](args = (%mul,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%round_1, 255.0), kwargs = {}) triton_poi_fused_clamp_div_mul_round_0 = async_compile.triton('triton_poi_fused_clamp_div_mul_round_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_mul_round_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = 255.0 tmp6 = tmp4 * tmp5 tmp7 = libdevice.nearbyint(tmp6) tmp8 = 0.00392156862745098 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, mul, round_1, output], Original ATen: [aten.clamp, aten.mul, aten.round, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_mul_round_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class Quant(torch.autograd.Function): @staticmethod def forward(ctx, input): input = torch.clamp(input, 0, 1) output = (input * 255.0).round() / 255.0 return output @staticmethod def backward(ctx, grad_output): return grad_output class Quantization(nn.Module): def __init__(self): super(Quantization, self).__init__() def forward(self, input): return Quant.apply(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = 255.0 tmp6 = tmp4 * tmp5 tmp7 = libdevice.nearbyint(tmp6) tmp8 = 0.00392156862745098 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_mul_round_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class Quant(torch.autograd.Function): @staticmethod def forward(ctx, input): input = torch.clamp(input, 0, 1) output = (input * 255.0).round() / 255.0 return output @staticmethod def backward(ctx, grad_output): return grad_output class QuantizationNew(nn.Module): def __init__(self): super(QuantizationNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
qwopqwop200/Fast-Invertible-Rescaling-Net
Quantization
false
7,514
[ "MIT" ]
1
871733f2eee7929d6b37c4d1d6a27347b39b67a9
https://github.com/qwopqwop200/Fast-Invertible-Rescaling-Net/tree/871733f2eee7929d6b37c4d1d6a27347b39b67a9
import torch import torch.utils.data import torch.nn as nn class Quant(torch.autograd.Function): @staticmethod def forward(ctx, input): input = torch.clamp(input, 0, 1) output = (input * 255.0).round() / 255.0 return output @staticmethod def backward(ctx, grad_output): return grad_output class Model(nn.Module): def __init__(self): super().__init__() def forward(self, input): return Quant.apply(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
kernelPredictor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/fp/cfp5jrxxyxrvhcpoq5tio3p5tkhj5ugdrpyur3x4v6meatzih7jn.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yd/cyduwg5ihmwotdaqprdh6czr2t3dnsapwk33r3kqvbbb35ulyopi.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ow/cowbs2pc3dzm4pghvjvgryu2ygaxjdplxjqn4vwgryxqtxuszuvo.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1764 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 441 y1 = (yindex // 441) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (441*x2) + (7056*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (441, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (441, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 1, 16, 4)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 441, 4, 4), (7056, 1, 1764, 441)) buf4 = empty_strided_cuda((4, 441, 4, 4), (7056, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf3, primals_5, buf4, 1764, 16, grid=grid(1764, 16), stream=stream0) del buf3 del primals_5 return (buf4, primals_1, buf0, primals_4, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((441, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((441, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class kernelPredictor(nn.Module): def __init__(self, in_ch, hid_ch, pred_kernel_size=21): super(kernelPredictor, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=1) self.conv2 = nn.Conv2d(hid_ch, pred_kernel_size ** 2, kernel_size=1) def forward(self, x): return self.conv2(self.act(self.conv1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'hid_ch': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 1764 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 441 y1 = yindex // 441 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 441 * x2 + 7056 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (441, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (441,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 1, 16, 4)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 441, 4, 4), (7056, 1, 1764, 441)) buf4 = empty_strided_cuda((4, 441, 4, 4), (7056, 16, 4, 1), torch. float32) triton_poi_fused_convolution_2[grid(1764, 16)](buf3, primals_5, buf4, 1764, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del buf3 del primals_5 return buf4, primals_1, buf0, primals_4, buf2 class kernelPredictorNew(nn.Module): def __init__(self, in_ch, hid_ch, pred_kernel_size=21): super(kernelPredictorNew, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=1) self.conv2 = nn.Conv2d(hid_ch, pred_kernel_size ** 2, kernel_size=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qbhan/pathembed
kernelPredictor
false
7,515
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_ch, hid_ch, pred_kernel_size=21): super().__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=1) self.conv2 = nn.Conv2d(hid_ch, pred_kernel_size ** 2, kernel_size=1) def forward(self, x): return self.conv2(self.act(self.conv1(x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
GatedFusion
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yv/cyv62j2py2niu5vnph52yfxmn763k4uqlnv7migp3zpg5wuyqqup.py # Topologically Sorted Source Nodes: [add, gate_alpha, mul, sub, mul_1, out], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.rsub] # Source node to ATen node mapping: # add => add # gate_alpha => sigmoid # mul => mul # mul_1 => mul_1 # out => add_1 # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_3), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp10 = tl.load(in_ptr4 + (x2), xmask) tmp14 = tl.load(in_ptr5 + (x2), xmask) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = tmp3 + tmp7 tmp9 = tl.sigmoid(tmp8) tmp11 = tmp9 * tmp10 tmp12 = 1.0 tmp13 = tmp12 - tmp9 tmp15 = tmp13 * tmp14 tmp16 = tmp11 + tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ia/ciaqp5bzkptjoo3evwfvxk5e4kbqm63y5nvysaoikuapzcz2lhiy.py # Topologically Sorted Source Nodes: [add, gate_alpha, sub], Original ATen: [aten.add, aten.sigmoid, aten.rsub, aten.sigmoid_backward] # Source node to ATen node mapping: # add => add # gate_alpha => sigmoid # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {}) triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1 = async_compile.triton('triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp5 = tl.load(in_ptr2 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = tmp3 + tmp7 tmp9 = tl.sigmoid(tmp8) tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp12 = tmp9 * tmp11 tl.store(in_out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, gate_alpha, mul, sub, mul_1, out], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_0.run(buf0, primals_2, buf1, primals_5, primals_3, primals_6, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add, gate_alpha, sub], Original ATen: [aten.add, aten.sigmoid, aten.rsub, aten.sigmoid_backward] triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1.run(buf3, primals_2, buf1, primals_5, 64, grid=grid(64), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, primals_3, primals_6, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GatedFusion(nn.Module): """ Reference: - ACL2020, Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encoding """ def __init__(self, n_in): super().__init__() self.n_in = n_in self.hidden2scalar1 = nn.Linear(self.n_in, 1) self.hidden2scalar2 = nn.Linear(self.n_in, 1) def forward(self, hidden1, hidden2): gate_alpha = torch.sigmoid(self.hidden2scalar1(hidden1) + self. hidden2scalar2(hidden2)) out = gate_alpha * hidden1 + (1 - gate_alpha) * hidden2 return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_in': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp10 = tl.load(in_ptr4 + x2, xmask) tmp14 = tl.load(in_ptr5 + x2, xmask) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = tmp3 + tmp7 tmp9 = tl.sigmoid(tmp8) tmp11 = tmp9 * tmp10 tmp12 = 1.0 tmp13 = tmp12 - tmp9 tmp15 = tmp13 * tmp14 tmp16 = tmp11 + tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp5 = tl.load(in_ptr2 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp7 = tmp4 + tmp6 tmp8 = tmp3 + tmp7 tmp9 = tl.sigmoid(tmp8) tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp12 = tmp9 * tmp11 tl.store(in_out_ptr0 + x0, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4), (4, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_0[grid(256)](buf0, primals_2, buf1, primals_5, primals_3, primals_6, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 triton_poi_fused_add_rsub_sigmoid_sigmoid_backward_1[grid(64)](buf3, primals_2, buf1, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, primals_3, primals_6, buf3 class GatedFusionNew(nn.Module): """ Reference: - ACL2020, Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encoding """ def __init__(self, n_in): super().__init__() self.n_in = n_in self.hidden2scalar1 = nn.Linear(self.n_in, 1) self.hidden2scalar2 = nn.Linear(self.n_in, 1) def forward(self, input_0, input_1): primals_1 = self.hidden2scalar1.weight primals_2 = self.hidden2scalar1.bias primals_4 = self.hidden2scalar2.weight primals_5 = self.hidden2scalar2.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
qinyan-li/DocEE
GatedFusion
false
7,516
[ "MIT" ]
1
e8d2202a44907df5f12f9a67180d849a54421ab7
https://github.com/qinyan-li/DocEE/tree/e8d2202a44907df5f12f9a67180d849a54421ab7
import torch import torch.nn as nn class Model(nn.Module): """ Reference: - ACL2020, Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encoding """ def __init__(self, n_in): super().__init__() self.n_in = n_in self.hidden2scalar1 = nn.Linear(self.n_in, 1) self.hidden2scalar2 = nn.Linear(self.n_in, 1) def forward(self, hidden1, hidden2): gate_alpha = torch.sigmoid(self.hidden2scalar1(hidden1) + self. hidden2scalar2(hidden2)) out = gate_alpha * hidden1 + (1 - gate_alpha) * hidden2 return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ip/cip3p4ibqio6uu76ccsemd7wjusq5ptlow3dt2zxzouyuz2sqywf.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %primals_1], 2), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wv/cwvmt6nnzgzdkojav65ufab2pt67hiopjj3li4lui5ebqbi6cj2e.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh, aten.tanh_backward] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {}) triton_poi_fused_tanh_tanh_backward_3 = async_compile.triton('triton_poi_fused_tanh_tanh_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_tanh_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_tanh_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp4 tl.store(in_out_ptr0 + (x2), tmp3, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.bmm] extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 128, grid=grid(128), stream=stream0) del primals_1 buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5) del primals_3 buf6 = buf5; del buf5 # reuse buf7 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh, aten.tanh_backward] triton_poi_fused_tanh_tanh_backward_3.run(buf6, primals_4, buf7, 64, grid=grid(64), stream=stream0) del primals_4 return (reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): """ Applies an attention mechanism on the output features from the decoder. 「A Structured Self-Attentive Sentence Embedding」 Paper https://arxiv.org/abs/1703.03130 .. math:: \\begin{array}{ll} x = encoder outputs*decoder output \\\\ attn score = exp(x_i) / sum_j exp(x_j) \\\\ output = \\tanh(w * (attn score * encoder outputs) + b * output) \\end{array} Args: decoder_hidden_size (int): The number of expected features in the output Inputs: decoder_output, encoder_outputs - **decoder_output** (batch, output_len, dimensions): tensor containing the output features from the decoder. - **encoder_outputs** (batch, input_len, dimensions): tensor containing features of the encoded input sequence. Returns: output - **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder. Examples:: >>> attention = Attention(hidden_size) >>> output = attention(decoder_output, encoder_outputs) """ def __init__(self, decoder_hidden_size): super(Attention, self).__init__() self.w = nn.Linear(decoder_hidden_size * 2, decoder_hidden_size) def forward(self, decoder_output, encoder_outputs): batch_size = decoder_output.size(0) input_size = encoder_outputs.size(1) hidden_size = decoder_output.size(2) attn_score = torch.bmm(decoder_output, encoder_outputs.transpose(1, 2)) attn_distribution = F.softmax(attn_score.view(-1, input_size), dim=1 ).view(batch_size, -1, input_size) context = torch.bmm(attn_distribution, encoder_outputs) combined = torch.cat((context, decoder_output), dim=2) output = torch.tanh(self.w(combined.view(-1, 2 * hidden_size))).view( batch_size, -1, hidden_size) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'decoder_hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_tanh_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp4 tl.store(in_out_ptr0 + x2, tmp3, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0) del buf3 extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5) del primals_3 buf6 = buf5 del buf5 buf7 = buf2 del buf2 triton_poi_fused_tanh_tanh_backward_3[grid(64)](buf6, primals_4, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf7 class AttentionNew(nn.Module): """ Applies an attention mechanism on the output features from the decoder. 「A Structured Self-Attentive Sentence Embedding」 Paper https://arxiv.org/abs/1703.03130 .. math:: \\begin{array}{ll} x = encoder outputs*decoder output \\\\ attn score = exp(x_i) / sum_j exp(x_j) \\\\ output = \\tanh(w * (attn score * encoder outputs) + b * output) \\end{array} Args: decoder_hidden_size (int): The number of expected features in the output Inputs: decoder_output, encoder_outputs - **decoder_output** (batch, output_len, dimensions): tensor containing the output features from the decoder. - **encoder_outputs** (batch, input_len, dimensions): tensor containing features of the encoded input sequence. Returns: output - **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder. Examples:: >>> attention = Attention(hidden_size) >>> output = attention(decoder_output, encoder_outputs) """ def __init__(self, decoder_hidden_size): super(AttentionNew, self).__init__() self.w = nn.Linear(decoder_hidden_size * 2, decoder_hidden_size) def forward(self, input_0, input_1): primals_3 = self.w.weight primals_4 = self.w.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
qute012/Korean-Speech-Recognition
Attention
false
7,517
[ "Apache-2.0" ]
1
0e037fd03df1ad6bf1084ee748781cdf4d428940
https://github.com/qute012/Korean-Speech-Recognition/tree/0e037fd03df1ad6bf1084ee748781cdf4d428940
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Applies an attention mechanism on the output features from the decoder. 「A Structured Self-Attentive Sentence Embedding」 Paper https://arxiv.org/abs/1703.03130 .. math:: \\begin{array}{ll} x = encoder outputs*decoder output \\\\ attn score = exp(x_i) / sum_j exp(x_j) \\\\ output = \\tanh(w * (attn score * encoder outputs) + b * output) \\end{array} Args: decoder_hidden_size (int): The number of expected features in the output Inputs: decoder_output, encoder_outputs - **decoder_output** (batch, output_len, dimensions): tensor containing the output features from the decoder. - **encoder_outputs** (batch, input_len, dimensions): tensor containing features of the encoded input sequence. Returns: output - **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder. Examples:: >>> attention = Attention(hidden_size) >>> output = attention(decoder_output, encoder_outputs) """ def __init__(self, decoder_hidden_size): super().__init__() self.w = nn.Linear(decoder_hidden_size * 2, decoder_hidden_size) def forward(self, decoder_output, encoder_outputs): batch_size = decoder_output.size(0) input_size = encoder_outputs.size(1) hidden_size = decoder_output.size(2) attn_score = torch.bmm(decoder_output, encoder_outputs.transpose(1, 2)) attn_distribution = F.softmax(attn_score.view(-1, input_size), dim=1 ).view(batch_size, -1, input_size) context = torch.bmm(attn_distribution, encoder_outputs) combined = torch.cat((context, decoder_output), dim=2) output = torch.tanh(self.w(combined.view(-1, 2 * hidden_size))).view( batch_size, -1, hidden_size) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
L1
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/d5/cd5omf5zzyq5tudy7lcelf72elet6afs2axrqrjdfhgacpojgwem.py # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, sum_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.sum] # Source node to ATen node mapping: # add => add # diff => sub # mul => mul # sqrt => sqrt # sum_1 => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sqrt, [1, 2, 3]), kwargs = {}) triton_per_fused_add_mul_sqrt_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_sqrt_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_sqrt_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wi/cwimdaegc4cmk3v3nydxe6mv3x37uka4feg527gj4bxdgtuasusz.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 4.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [diff, mul, add, sqrt, sum_1], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_mul_sqrt_sub_sum_0.run(arg0_1, arg1_1, buf0, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] triton_per_fused_mean_1.run(buf2, buf0, 1, 4, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class L1(nn.Module): def __init__(self, eps=1e-06): super(L1, self).__init__() self.eps = eps def forward(self, x, target): diff = x - target return torch.mean(torch.sum(torch.sqrt(diff * diff + self.eps), (1, 2, 3))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 4.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_add_mul_sqrt_sub_sum_0[grid(4)](arg0_1, arg1_1, buf0, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_1[grid(1)](buf2, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class L1New(nn.Module): def __init__(self, eps=1e-06): super(L1New, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qwopqwop200/Fast-Invertible-Rescaling-Net
L1
false
7,518
[ "MIT" ]
1
871733f2eee7929d6b37c4d1d6a27347b39b67a9
https://github.com/qwopqwop200/Fast-Invertible-Rescaling-Net/tree/871733f2eee7929d6b37c4d1d6a27347b39b67a9
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): def __init__(self, eps=1e-06): super().__init__() self.eps = eps def forward(self, x, target): diff = x - target return torch.mean(torch.sum(torch.sqrt(diff * diff + self.eps), (1, 2, 3))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FullyConnected2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/bd/cbdotac6ukup5jfyef3gol4xzuff4mzk4u5pqfhzizchbce25ivd.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FullyConnected2(nn.Module): def __init__(self, hidden_size, output_size): super(FullyConnected2, self).__init__() self.lrelu = nn.LeakyReLU(0.1) self.linear_layer = nn.Linear(hidden_size, hidden_size, bias=True) self.linear_layer_1 = nn.Linear(hidden_size, output_size, bias=False) def forward(self, input): out = self.lrelu(self.linear_layer(input)) return self.linear_layer_1(out) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4 class FullyConnected2New(nn.Module): def __init__(self, hidden_size, output_size): super(FullyConnected2New, self).__init__() self.lrelu = nn.LeakyReLU(0.1) self.linear_layer = nn.Linear(hidden_size, hidden_size, bias=True) self.linear_layer_1 = nn.Linear(hidden_size, output_size, bias=False) def forward(self, input_0): primals_1 = self.linear_layer.weight primals_2 = self.linear_layer.bias primals_4 = self.linear_layer_1.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
qweas120/Active_VLN
FullyConnected2
false
7,519
[ "MIT" ]
1
d5dabd5fe6127bcfec023b90f14a4ba5ac671f9b
https://github.com/qweas120/Active_VLN/tree/d5dabd5fe6127bcfec023b90f14a4ba5ac671f9b
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, hidden_size, output_size): super().__init__() self.lrelu = nn.LeakyReLU(0.1) self.linear_layer = nn.Linear(hidden_size, hidden_size, bias=True) self.linear_layer_1 = nn.Linear(hidden_size, output_size, bias=False) def forward(self, input): out = self.lrelu(self.linear_layer(input)) return self.linear_layer_1(out) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
FullyConnected
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jm/cjmhojat3omnsnabwrkl5yyzhhk7slkilfu2hlyfshfcwcliangi.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf0 return (buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FullyConnected(nn.Module): def __init__(self, hidden_size, output_size): super(FullyConnected, self).__init__() self.lrelu = nn.LeakyReLU(0.1) self.linear_layer = nn.Linear(hidden_size, output_size, bias=False) def forward(self, input): out = self.lrelu(self.linear_layer(input)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(256)](buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 return buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf1 class FullyConnectedNew(nn.Module): def __init__(self, hidden_size, output_size): super(FullyConnectedNew, self).__init__() self.lrelu = nn.LeakyReLU(0.1) self.linear_layer = nn.Linear(hidden_size, output_size, bias=False) def forward(self, input_0): primals_1 = self.linear_layer.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
qweas120/Active_VLN
FullyConnected
false
7,520
[ "MIT" ]
1
d5dabd5fe6127bcfec023b90f14a4ba5ac671f9b
https://github.com/qweas120/Active_VLN/tree/d5dabd5fe6127bcfec023b90f14a4ba5ac671f9b
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, hidden_size, output_size): super().__init__() self.lrelu = nn.LeakyReLU(0.1) self.linear_layer = nn.Linear(hidden_size, output_size, bias=False) def forward(self, input): out = self.lrelu(self.linear_layer(input)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
PA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/cf/ccffwnd4sq3sztv4dcw45c3j2dsqwq3jy7vc3mqe4l5j4dxdabmr.py # Topologically Sorted Source Nodes: [y, y_1, out], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # out => mul # y => convolution # y_1 => sigmoid # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y, y_1, out], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf2, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class PA(nn.Module): def __init__(self, nf): super(PA, self).__init__() self.conv = nn.Conv2d(nf, nf, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.conv(x) y = self.sigmoid(y) out = torch.mul(x, y) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nf': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(256)](buf1, primals_2, primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf2, primals_1, primals_3, buf1 class PANew(nn.Module): def __init__(self, nf): super(PANew, self).__init__() self.conv = nn.Conv2d(nf, nf, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
qwopqwop200/Fast-Invertible-Rescaling-Net
PA
false
7,521
[ "MIT" ]
1
871733f2eee7929d6b37c4d1d6a27347b39b67a9
https://github.com/qwopqwop200/Fast-Invertible-Rescaling-Net/tree/871733f2eee7929d6b37c4d1d6a27347b39b67a9
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): def __init__(self, nf): super().__init__() self.conv = nn.Conv2d(nf, nf, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.conv(x) y = self.sigmoid(y) out = torch.mul(x, y) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
TextureLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zb/czbmdrl63j26oz4oieictelq2y6r5icw6nxz3i3vjq3c4lry3dc7.py # Topologically Sorted Source Nodes: [x, x1, loss], Original ATen: [aten.div, aten.mse_loss] # Source node to ATen node mapping: # loss => mean, pow_1, sub # x => div # x1 => div_1 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 64), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm_1, 64), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) triton_per_fused_div_mse_loss_0 = async_compile.triton('triton_per_fused_div_mse_loss_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mse_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.015625 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [G], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [G_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x, x1, loss], Original ATen: [aten.div, aten.mse_loss] stream0 = get_raw_stream(0) triton_per_fused_div_mse_loss_0.run(buf3, buf0, buf1, 1, 64, grid=grid(1), stream=stream0) del buf0 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F def gram_matrix(input): a, b, c, d = input.size() features = input.view(a, b, c * d) G = torch.bmm(features, torch.transpose(features, 1, 2)) return G.div(b * c * d) class TextureLoss(nn.Module): def __init__(self): super(TextureLoss, self).__init__() def forward(self, x, x1): x = gram_matrix(x) x1 = gram_matrix(x1) loss = F.mse_loss(x, x1) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 0.015625 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 get_raw_stream(0) triton_per_fused_div_mse_loss_0[grid(1)](buf3, buf0, buf1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 return buf3, def gram_matrix(input): a, b, c, d = input.size() features = input.view(a, b, c * d) G = torch.bmm(features, torch.transpose(features, 1, 2)) return G.div(b * c * d) class TextureLossNew(nn.Module): def __init__(self): super(TextureLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qwopqwop200/Fast-Invertible-Rescaling-Net
TextureLoss
false
7,522
[ "MIT" ]
1
871733f2eee7929d6b37c4d1d6a27347b39b67a9
https://github.com/qwopqwop200/Fast-Invertible-Rescaling-Net/tree/871733f2eee7929d6b37c4d1d6a27347b39b67a9
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F def gram_matrix(input): a, b, c, d = input.size() features = input.view(a, b, c * d) G = torch.bmm(features, torch.transpose(features, 1, 2)) return G.div(b * c * d) class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, x1): x = gram_matrix(x) x1 = gram_matrix(x1) loss = F.mse_loss(x, x1) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Conv2dMtl
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/rk/crkfmuhs27dkjqsq6pxcyyrqpabpdzmjns36omhnvtv2fncvasqj.py # Topologically Sorted Source Nodes: [new_weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # new_weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %expand), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/sj/csjsifitl6m7djprg2t5r2irfxyh2adlzbqfwpzx5pvayjxrvntq.py # Topologically Sorted Source Nodes: [new_bias, conv2d], Original ATen: [aten.add, aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # new_bias => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %primals_4), kwargs = {}) # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_5, %mul, %add, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_add_convolution_1 = async_compile.triton('triton_poi_fused_add_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/md/cmdyiusa6vngiefvyygua636eoibl42y6wodrxp7oqwo6kirzhtb.py # Topologically Sorted Source Nodes: [new_bias, conv2d], Original ATen: [aten.add, aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # new_bias => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %primals_4), kwargs = {}) # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_5, %mul, %add, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [new_weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [new_bias, conv2d], Original ATen: [aten.add, aten.convolution] triton_poi_fused_add_convolution_1.run(primals_3, primals_4, buf1, 4, grid=grid(4), stream=stream0) del primals_3 del primals_4 # Topologically Sorted Source Nodes: [new_bias, conv2d], Original ATen: [aten.add, aten.convolution] buf2 = extern_kernels.convolution(primals_5, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [new_bias, conv2d], Original ATen: [aten.add, aten.convolution] triton_poi_fused_add_convolution_2.run(buf3, buf1, 16, grid=grid(16), stream=stream0) del buf1 return (buf3, primals_2, primals_5, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from torch.nn.modules.utils import _pair class _ConvNdMtl(Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias): super(_ConvNdMtl, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.transposed = transposed self.output_padding = output_padding self.groups = groups if transposed: self.weight = Parameter(torch.Tensor(in_channels, out_channels // groups, *kernel_size)) self.mtl_weight = Parameter(torch.ones(in_channels, out_channels // groups, 1, 1)) else: self.weight = Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size)) self.mtl_weight = Parameter(torch.ones(out_channels, in_channels // groups, 1, 1)) self.weight.requires_grad = False if bias: self.bias = Parameter(torch.Tensor(out_channels)) self.bias.requires_grad = False self.mtl_bias = Parameter(torch.zeros(out_channels)) else: self.register_parameter('bias', None) self.register_parameter('mtl_bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) self.mtl_weight.data.uniform_(1, 1) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) self.mtl_bias.data.uniform_(0, 0) def extra_repr(self): s = ( '{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}' ) if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self.bias is None: s += ', bias=False' return s.format(**self.__dict__) class Conv2dMtl(_ConvNdMtl): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2dMtl, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias) def forward(self, input): new_mtl_weight = self.mtl_weight.expand(self.weight.shape) new_weight = self.weight.mul(new_mtl_weight) if self.bias is not None: new_bias = self.bias + self.mtl_bias else: new_bias = None return F.conv2d(input, new_weight, new_bias, self.stride, self. padding, self.dilation, self.groups) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import math from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_add_convolution_1[grid(4)](primals_3, primals_4, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 del primals_4 buf2 = extern_kernels.convolution(primals_5, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_2[grid(16)](buf3, buf1, 16, XBLOCK =16, num_warps=1, num_stages=1) del buf1 return buf3, primals_2, primals_5, buf0 class _ConvNdMtl(Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias): super(_ConvNdMtl, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.transposed = transposed self.output_padding = output_padding self.groups = groups if transposed: self.weight = Parameter(torch.Tensor(in_channels, out_channels // groups, *kernel_size)) self.mtl_weight = Parameter(torch.ones(in_channels, out_channels // groups, 1, 1)) else: self.weight = Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size)) self.mtl_weight = Parameter(torch.ones(out_channels, in_channels // groups, 1, 1)) self.weight.requires_grad = False if bias: self.bias = Parameter(torch.Tensor(out_channels)) self.bias.requires_grad = False self.mtl_bias = Parameter(torch.zeros(out_channels)) else: self.register_parameter('bias', None) self.register_parameter('mtl_bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) self.mtl_weight.data.uniform_(1, 1) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) self.mtl_bias.data.uniform_(0, 0) def extra_repr(self): s = ( '{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}' ) if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self.bias is None: s += ', bias=False' return s.format(**self.__dict__) class Conv2dMtlNew(_ConvNdMtl): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2dMtlNew, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias) def forward(self, input_0): primals_2 = self.weight primals_1 = self.mtl_weight primals_3 = self.bias primals_4 = self.mtl_bias primals_5 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
qianrusun1015/E3BM-1
Conv2dMtl
false
7,523
[ "Apache-2.0" ]
1
d2c957bdff66fe28a288f1518f224a1e034d543f
https://github.com/qianrusun1015/E3BM-1/tree/d2c957bdff66fe28a288f1518f224a1e034d543f
from torch.nn import Module import math import torch import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from torch.nn.modules.utils import _pair class _ConvNdMtl(Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias): super().__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.transposed = transposed self.output_padding = output_padding self.groups = groups if transposed: self.weight = Parameter(torch.Tensor(in_channels, out_channels // groups, *kernel_size)) self.mtl_weight = Parameter(torch.ones(in_channels, out_channels // groups, 1, 1)) else: self.weight = Parameter(torch.Tensor(out_channels, in_channels // groups, *kernel_size)) self.mtl_weight = Parameter(torch.ones(out_channels, in_channels // groups, 1, 1)) self.weight.requires_grad = False if bias: self.bias = Parameter(torch.Tensor(out_channels)) self.bias.requires_grad = False self.mtl_bias = Parameter(torch.zeros(out_channels)) else: self.register_parameter('bias', None) self.register_parameter('mtl_bias', None) self.reset_parameters() def reset_parameters(self): n = self.in_channels for k in self.kernel_size: n *= k stdv = 1.0 / math.sqrt(n) self.weight.data.uniform_(-stdv, stdv) self.mtl_weight.data.uniform_(1, 1) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) self.mtl_bias.data.uniform_(0, 0) def extra_repr(self): s = ( '{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}' ) if self.padding != (0,) * len(self.padding): s += ', padding={padding}' if self.dilation != (1,) * len(self.dilation): s += ', dilation={dilation}' if self.output_padding != (0,) * len(self.output_padding): s += ', output_padding={output_padding}' if self.groups != 1: s += ', groups={groups}' if self.bias is None: s += ', bias=False' return s.format(**self.__dict__) class Model(_ConvNdMtl): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias) def forward(self, input): new_mtl_weight = self.mtl_weight.expand(self.weight.shape) new_weight = self.weight.mul(new_mtl_weight) if self.bias is not None: new_bias = self.bias + self.mtl_bias else: new_bias = None return F.conv2d(input, new_weight, new_bias, self.stride, self. padding, self.dilation, self.groups) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
L2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/pr/cprza6ny5ups5evtxvtvi3dvazed3ysqfvaslveuot3i452yamhv.py # Topologically Sorted Source Nodes: [sub, pow_1, sum_1], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # pow_1 => pow_1 # sub => sub # sum_1 => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2, 3]), kwargs = {}) triton_per_fused_pow_sub_sum_0 = async_compile.triton('triton_per_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wi/cwimdaegc4cmk3v3nydxe6mv3x37uka4feg527gj4bxdgtuasusz.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 4.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, sum_1], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_pow_sub_sum_0.run(arg0_1, arg1_1, buf0, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] triton_per_fused_mean_1.run(buf2, buf0, 1, 4, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class L2(nn.Module): def __init__(self): super(L2, self).__init__() def forward(self, x, target): return torch.mean(torch.sum((x - target) ** 2, (1, 2, 3))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 4.0 tmp5 = tmp3 / tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_pow_sub_sum_0[grid(4)](arg0_1, arg1_1, buf0, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_1[grid(1)](buf2, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class L2New(nn.Module): def __init__(self): super(L2New, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qwopqwop200/Fast-Invertible-Rescaling-Net
L2
false
7,524
[ "MIT" ]
1
871733f2eee7929d6b37c4d1d6a27347b39b67a9
https://github.com/qwopqwop200/Fast-Invertible-Rescaling-Net/tree/871733f2eee7929d6b37c4d1d6a27347b39b67a9
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, target): return torch.mean(torch.sum((x - target) ** 2, (1, 2, 3))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
NoiseInjection
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/hy/chy2gdvcdlpxio6r2ezu76sbqj6jaum4snkq6izi5zxkdqh3u2yj.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %randn), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [noise], Original ATen: [aten.randn] buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_1, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class NoiseInjection(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(0.01 * torch.randn(1, channel, 1, 1)) def forward(self, feat, noise=None): if noise is None: noise = torch.randn(feat.shape[0], 1, feat.shape[2], feat.shape [3], dtype=feat.dtype, device=feat.device) return feat + self.weight * noise def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf2, buf1 class NoiseInjectionNew(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(0.01 * torch.randn(1, channel, 1, 1)) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
rakshithShetty/SemanticAdversary
NoiseInjection
false
7,526
[ "MIT" ]
1
e6d50f00af6f7d847cba4210613afea4be773254
https://github.com/rakshithShetty/SemanticAdversary/tree/e6d50f00af6f7d847cba4210613afea4be773254
import torch import torch.nn as nn import torch.nn.parallel class Model(nn.Module): def __init__(self, channel): super().__init__() self.weight = nn.Parameter(0.01 * torch.randn(1, channel, 1, 1)) def forward(self, feat, noise=None): if noise is None: noise = torch.randn(feat.shape[0], 1, feat.shape[2], feat.shape [3], dtype=feat.dtype, device=feat.device) return feat + self.weight * noise def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
GaussianSmoothing
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/qq/cqq5lsnh6vt6557bounpfgnl6t7pzf7kp656kgxbydvrgd35lsd3.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [1, 1], [1, 1], False, [0, 0], 3), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/t2/ct25onnj2rrutfldwxrd2wns25gwitfsqxfoxgr5j3xsf2pxdzv5.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [1, 1], [1, 1], False, [0, 0], 3), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 3 y1 = (yindex // 3) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (12288*y1)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4096*y3)), tmp0, ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (3, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(arg1_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0) del arg1_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=3, bias=None) assert_size_stride(buf1, (4, 3, 64, 64), (12288, 1, 192, 3)) del arg0_1 buf2 = reinterpret_tensor(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf1, buf2, 12, 4096, grid=grid(12, 4096), stream=stream0) del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((3, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.parallel class GaussianSmoothing(nn.Module): """ Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. Arguments: channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ def __init__(self, channels=3, kernel_size=3, sigma=3, dim=2): super(GaussianSmoothing, self).__init__() x_coord = torch.arange(kernel_size) x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size) y_grid = x_grid.t() xy_grid = torch.stack([x_grid, y_grid], dim=-1).float() mean = (kernel_size - 1) / 2.0 variance = sigma ** 2.0 gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(- torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance)) gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1) self.gaussian_filter = nn.Conv2d(in_channels=channels, out_channels =channels, kernel_size=kernel_size, groups=channels, bias=False, padding=(kernel_size - 1) // 2) self.gaussian_filter.weight.data = gaussian_kernel self.gaussian_filter.weight.requires_grad = False def forward(self, input): """ Apply gaussian filter to input. Arguments: input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return self.gaussian_filter(input) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 3 y1 = yindex // 3 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 12288 * y1), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4096 * y3), tmp0, ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (3, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(12, 4096)](arg1_1, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del arg1_1 buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=3, bias=None) assert_size_stride(buf1, (4, 3, 64, 64), (12288, 1, 192, 3)) del arg0_1 buf2 = reinterpret_tensor(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1), 0 ) del buf0 triton_poi_fused_convolution_1[grid(12, 4096)](buf1, buf2, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del buf1 return buf2, class GaussianSmoothingNew(nn.Module): """ Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. Arguments: channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ def __init__(self, channels=3, kernel_size=3, sigma=3, dim=2): super(GaussianSmoothingNew, self).__init__() x_coord = torch.arange(kernel_size) x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size) y_grid = x_grid.t() xy_grid = torch.stack([x_grid, y_grid], dim=-1).float() mean = (kernel_size - 1) / 2.0 variance = sigma ** 2.0 gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(- torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance)) gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1) self.gaussian_filter = nn.Conv2d(in_channels=channels, out_channels =channels, kernel_size=kernel_size, groups=channels, bias=False, padding=(kernel_size - 1) // 2) self.gaussian_filter.weight.data = gaussian_kernel self.gaussian_filter.weight.requires_grad = False def forward(self, input_0): arg0_1 = self.gaussian_filter.weight arg1_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
rakshithShetty/SemanticAdversary
GaussianSmoothing
false
7,528
[ "MIT" ]
1
e6d50f00af6f7d847cba4210613afea4be773254
https://github.com/rakshithShetty/SemanticAdversary/tree/e6d50f00af6f7d847cba4210613afea4be773254
import math import torch import torch.nn as nn import torch.nn.parallel class Model(nn.Module): """ Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. Arguments: channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ def __init__(self, channels=3, kernel_size=3, sigma=3, dim=2): super().__init__() x_coord = torch.arange(kernel_size) x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size) y_grid = x_grid.t() xy_grid = torch.stack([x_grid, y_grid], dim=-1).float() mean = (kernel_size - 1) / 2.0 variance = sigma ** 2.0 gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(- torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance)) gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1) self.gaussian_filter = nn.Conv2d(in_channels=channels, out_channels =channels, kernel_size=kernel_size, groups=channels, bias=False, padding=(kernel_size - 1) // 2) self.gaussian_filter.weight.data = gaussian_kernel self.gaussian_filter.weight.requires_grad = False def forward(self, input): """ Apply gaussian filter to input. Arguments: input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return self.gaussian_filter(input) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul_2 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add_2 # x_3 => var_mean_1 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add_2 # x_3 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/qh/cqhjuvjwt67rfrtkbjxo2mmttmolmi426zzzghxnkgalqlbdvejq.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/44/c444sh6bryz652bk24ocru63kbqhe67iwwzctt3isl7imfgv5iaa.py # Topologically Sorted Source Nodes: [x_2, x_8], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_2 # x_8 => add_5 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {}) triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0) del buf8 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1; del buf1 # reuse buf14 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf16) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_8.run(buf17, primals_11, 16, grid=grid(16), stream=stream0) del primals_11 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf18) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_2, x_8], Original ATen: [aten.add] triton_poi_fused_add_9.run(buf19, primals_1, buf12, primals_13, 16, grid=grid(16), stream=stream0) del primals_13 return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.distributions class TransformerEncoderLayer(nn.Module): def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0): super().__init__() self.embed_dim = embed_dim self.self_attn = torch.nn.MultiheadAttention(embed_dim=self. embed_dim, num_heads=num_heads, dropout=attention_dropout) self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim) self.dropout = dropout self.activation_dropout = activation_dropout self.normalize_before = True self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim) self.layer_norm = torch.nn.LayerNorm(self.embed_dim) self.init_parameters() def forward(self, x, key_padding_mask=None, attn_mask=None): residual = x x = self.self_attn_layer_norm(x) x, _att = self.self_attn(query=x, key=x, value=x, key_padding_mask= key_padding_mask, attn_mask=attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm(x) x = F.relu(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x return x def init_parameters(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.constant_(self.fc1.bias, 0.0) nn.init.xavier_uniform_(self.fc2.weight) nn.init.constant_(self.fc2.bias, 0.0) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha= 1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha= 1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0) del buf3 triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf8 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0) del buf10 extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1 del buf1 buf14 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12, buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf16) buf17 = buf16 del buf16 triton_poi_fused_relu_8[grid(16)](buf17, primals_11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_11 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf18) buf19 = buf18 del buf18 triton_poi_fused_add_9[grid(16)](buf19, primals_1, buf12, primals_13, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_13 return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor( buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4 ), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0)) class TransformerEncoderLayerNew(nn.Module): def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0): super().__init__() self.embed_dim = embed_dim self.self_attn = torch.nn.MultiheadAttention(embed_dim=self. embed_dim, num_heads=num_heads, dropout=attention_dropout) self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim) self.dropout = dropout self.activation_dropout = activation_dropout self.normalize_before = True self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim) self.layer_norm = torch.nn.LayerNorm(self.embed_dim) self.init_parameters() def init_parameters(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.constant_(self.fc1.bias, 0.0) nn.init.xavier_uniform_(self.fc2.weight) nn.init.constant_(self.fc2.bias, 0.0) def forward(self, input_0): primals_4 = self.self_attn.in_proj_weight primals_5 = self.self_attn.in_proj_bias primals_1 = self.self_attn.out_proj.weight primals_2 = self.self_attn.out_proj.bias primals_3 = self.self_attn_layer_norm.weight primals_7 = self.self_attn_layer_norm.bias primals_6 = self.fc1.weight primals_8 = self.fc1.bias primals_10 = self.fc2.weight primals_9 = self.fc2.bias primals_11 = self.layer_norm.weight primals_13 = self.layer_norm.bias primals_12 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
ptigas/EGG
TransformerEncoderLayer
false
7,529
[ "MIT" ]
1
5319cc9de2c17bc72de717737cfbb5be2285c59b
https://github.com/ptigas/EGG/tree/5319cc9de2c17bc72de717737cfbb5be2285c59b
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.distributions class Model(nn.Module): def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0): super().__init__() self.embed_dim = embed_dim self.self_attn = torch.nn.MultiheadAttention(embed_dim=self. embed_dim, num_heads=num_heads, dropout=attention_dropout) self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim) self.dropout = dropout self.activation_dropout = activation_dropout self.normalize_before = True self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim) self.layer_norm = torch.nn.LayerNorm(self.embed_dim) self.init_parameters() def forward(self, x, key_padding_mask=None, attn_mask=None): residual = x x = self.self_attn_layer_norm(x) x, _att = self.self_attn(query=x, key=x, value=x, key_padding_mask= key_padding_mask, attn_mask=attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm(x) x = F.relu(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x return x def init_parameters(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.constant_(self.fc1.bias, 0.0) nn.init.xavier_uniform_(self.fc2.weight) nn.init.constant_(self.fc2.bias, 0.0) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/s5/cs5wshnrdka3xma3btqijhothwpkw4ctmtyvsdzkv6seotnt4jpf.py # Topologically Sorted Source Nodes: [cross_entropy, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mean] # Source node to ATen node mapping: # cross_entropy => exp, log, mul, neg, sub_1, sum_1, sum_2 # loss => mul_1 # mean => mean # neg => neg_1 # p => exp_1 # pow_1 => pow_1 # sub => sub_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%neg,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %neg), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {}) triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = tmp30 * tmp27 tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp36 = 64.0 tmp37 = tmp35 / tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp37, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [cross_entropy, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mean] triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1.run(buf3, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLoss(nn.Module): def __init__(self, weight=None, gamma=0.0): super(FocalLoss, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 1.0 tmp30 - tmp29 tmp32 = tmp30 * tmp27 tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp36 = 64.0 tmp37 = tmp35 / tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp37, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1[grid(1)]( buf3, buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf3, def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLossNew(nn.Module): def __init__(self, weight=None, gamma=0.0): super(FocalLossNew, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
raman32/LDAM-DRW
FocalLoss
false
7,530
[ "MIT" ]
1
7ce2251c01b94c7259108a1e188457f0b720651d
https://github.com/raman32/LDAM-DRW/tree/7ce2251c01b94c7259108a1e188457f0b720651d
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class Model(nn.Module): def __init__(self, weight=None, gamma=0.0): super().__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
F_conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/oz/cozqxlcluuaqzreyfue6z5fkzxjeuuwqcorl77txds26n7irqcna.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # out => convolution # out_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_4 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf3 del primals_5 # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf7, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import warnings import torch.nn as nn import torch.nn.functional as F class F_conv(nn.Module): """ResNet transformation, not itself reversible, just used below""" def __init__(self, in_channels, channels, channels_hidden=None, stride= None, kernel_size=3, leaky_slope=0.1, batch_norm=False): super(F_conv, self).__init__() if stride: warnings.warn( "Stride doesn't do anything, the argument should be removed", DeprecationWarning) if not channels_hidden: channels_hidden = channels pad = kernel_size // 2 self.leaky_slope = leaky_slope self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size= kernel_size, padding=pad, bias=not batch_norm) self.conv2 = nn.Conv2d(channels_hidden, channels_hidden, kernel_size=kernel_size, padding=pad, bias=not batch_norm) self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size= kernel_size, padding=pad, bias=not batch_norm) if batch_norm: self.bn1 = nn.BatchNorm2d(channels_hidden) self.bn1.weight.data.fill_(1) self.bn2 = nn.BatchNorm2d(channels_hidden) self.bn2.weight.data.fill_(1) self.bn3 = nn.BatchNorm2d(channels) self.bn3.weight.data.fill_(1) self.batch_norm = batch_norm def forward(self, x): out = self.conv1(x) if self.batch_norm: out = self.bn1(out) out = F.leaky_relu(out, self.leaky_slope) out = self.conv2(out) if self.batch_norm: out = self.bn2(out) out = F.leaky_relu(out, self.leaky_slope) out = self.conv3(out) if self.batch_norm: out = self.bn3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import warnings import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf3, primals_5, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_1[grid(256)](buf7, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf4, buf5) class F_convNew(nn.Module): """ResNet transformation, not itself reversible, just used below""" def __init__(self, in_channels, channels, channels_hidden=None, stride= None, kernel_size=3, leaky_slope=0.1, batch_norm=False): super(F_convNew, self).__init__() if stride: warnings.warn( "Stride doesn't do anything, the argument should be removed", DeprecationWarning) if not channels_hidden: channels_hidden = channels pad = kernel_size // 2 self.leaky_slope = leaky_slope self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size= kernel_size, padding=pad, bias=not batch_norm) self.conv2 = nn.Conv2d(channels_hidden, channels_hidden, kernel_size=kernel_size, padding=pad, bias=not batch_norm) self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size= kernel_size, padding=pad, bias=not batch_norm) if batch_norm: self.bn1 = nn.BatchNorm2d(channels_hidden) self.bn1.weight.data.fill_(1) self.bn2 = nn.BatchNorm2d(channels_hidden) self.bn2.weight.data.fill_(1) self.bn3 = nn.BatchNorm2d(channels) self.bn3.weight.data.fill_(1) self.batch_norm = batch_norm def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ramonpeter/LaSeR
F_conv
false
7,531
[ "MIT" ]
1
28daa6876256501ed0d3e84a4ddfedc7892bd528
https://github.com/ramonpeter/LaSeR/tree/28daa6876256501ed0d3e84a4ddfedc7892bd528
import torch import warnings import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ResNet transformation, not itself reversible, just used below""" def __init__(self, in_channels, channels, channels_hidden=None, stride= None, kernel_size=3, leaky_slope=0.1, batch_norm=False): super().__init__() if stride: warnings.warn( "Stride doesn't do anything, the argument should be removed", DeprecationWarning) if not channels_hidden: channels_hidden = channels pad = kernel_size // 2 self.leaky_slope = leaky_slope self.conv1 = nn.Conv2d(in_channels, channels_hidden, kernel_size= kernel_size, padding=pad, bias=not batch_norm) self.conv2 = nn.Conv2d(channels_hidden, channels_hidden, kernel_size=kernel_size, padding=pad, bias=not batch_norm) self.conv3 = nn.Conv2d(channels_hidden, channels, kernel_size= kernel_size, padding=pad, bias=not batch_norm) if batch_norm: self.bn1 = nn.BatchNorm2d(channels_hidden) self.bn1.weight.data.fill_(1) self.bn2 = nn.BatchNorm2d(channels_hidden) self.bn2.weight.data.fill_(1) self.bn3 = nn.BatchNorm2d(channels) self.bn3.weight.data.fill_(1) self.batch_norm = batch_norm def forward(self, x): out = self.conv1(x) if self.batch_norm: out = self.bn1(out) out = F.leaky_relu(out, self.leaky_slope) out = self.conv2(out) if self.batch_norm: out = self.bn2(out) out = F.leaky_relu(out, self.leaky_slope) out = self.conv3(out) if self.batch_norm: out = self.bn3(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/kn/cknyjwkwufnzzf4ya3scui55ownkmt5cdh3hggzwsfe3ch5fshzm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yw/cywelngc4cje5ebivdldhamyoxvyf25txstz7duqznwukobbwawy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 96 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (48*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wr/cwrbaplpfk7m6giisotqeykajo7urpubzk4y7hl6wjrhxxtwwukj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (512*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dx/cdx5ml2qpofihmmpnvabqkpaoyptwmwdx4jtjzptieewtlhrqlmf.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (1024*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/kv/ckvorupxanzrceis7ogps6qnxhad4srcb6zrfzpkwhenxdnsalg7.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (2048*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/gn/cgnnleskizx3ohn3pvhpxvsg3tck6tl4c2drwdqhjj4u3dvcubg3.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # out_1 => convolution # out_2 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/p7/cp7ewy5re5eo3gxb7smcipqvqx3btzxh5rgjq4pqcucakbzeumra.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # out_3 => convolution_1 # out_4 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/or/cornapfmmnpmsrxhsq3fikjikxxwl4vxaa5shjmoppfidyrlwcd6.py # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # out_5 => convolution_2 # out_6 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/dd/cddnfecs3m6l3ftbsjdw6yae6npdfa4lf3fsl2ynhtakutnl5qqk.py # Topologically Sorted Source Nodes: [out_7, out_8], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # out_7 => convolution_3 # out_8 => gt_3, mul_3, where_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.01), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_convolution_leaky_relu_8 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x1 + (256*y0)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x1 + (256*y0)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y2 + (4*x1) + (1024*y3)), tmp7, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ya/cyatq6qnvpv4apeabtlbkadrz3lucm2hkzo5stv7bygjrg47l6qd.py # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.tanh] # Source node to ATen node mapping: # out_11 => tanh # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_11), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_tanh_9 = async_compile.triton('triton_poi_fused_tanh_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/74/c74qy6ucckosduwep7354z3n2ijzoqa7v4bn4byfbvcpulfq5vha.py # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # out_15 => gt_4, mul_4, where_4 # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {}) # %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, 0.01), kwargs = {}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %add_tensor, %mul_4), kwargs = {}) triton_poi_fused_leaky_relu_10 = async_compile.triton('triton_poi_fused_leaky_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tl.store(out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr1 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (64, 1024), (1024, 1)) assert_size_stride(primals_11, (64, ), (1, )) assert_size_stride(primals_12, (64, 64), (64, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (1, 64), (64, 1)) assert_size_stride(primals_15, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_1 buf1 = empty_strided_cuda((32, 3, 4, 4), (48, 1, 12, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 96, 16, grid=grid(96, 16), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 2048, 16, grid=grid(2048, 16), stream=stream0) del primals_4 buf3 = empty_strided_cuda((128, 64, 4, 4), (1024, 1, 256, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 8192, 16, grid=grid(8192, 16), stream=stream0) del primals_6 buf4 = empty_strided_cuda((256, 128, 4, 4), (2048, 1, 512, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 32768, 16, grid=grid(32768, 16), stream=stream0) del primals_8 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf0, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 31, 31), (30752, 1, 992, 32)) buf6 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.bool) buf7 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.float32) # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_5.run(buf5, primals_3, buf6, buf7, 123008, grid=grid(123008), stream=stream0) del buf5 del primals_3 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 14, 14), (12544, 1, 896, 64)) buf9 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.float32) # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_6.run(buf8, primals_5, buf9, buf10, 50176, grid=grid(50176), stream=stream0) del buf8 del primals_5 # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 128, 6, 6), (4608, 1, 768, 128)) buf12 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.bool) buf13 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_7.run(buf11, primals_7, buf12, buf13, 18432, grid=grid(18432), stream=stream0) del buf11 del primals_7 # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 2, 2), (1024, 1, 512, 256)) buf15 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.bool) buf16 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_7, out_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_8.run(buf14, primals_9, buf15, buf16, 16, 256, grid=grid(16, 256), stream=stream0) del buf14 del primals_9 buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf16, (4, 1024), (1024, 1), 0), reinterpret_tensor(primals_10, (1024, 64), (1, 1024), 0), out=buf17) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.tanh] triton_poi_fused_tanh_9.run(buf18, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf18, reinterpret_tensor(primals_12, (64, 64), (1, 64), 0), out=buf19) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.tanh] triton_poi_fused_tanh_9.run(buf20, primals_13, 256, grid=grid(256), stream=stream0) del primals_13 buf21 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf20, reinterpret_tensor(primals_14, (64, 1), (1, 64), 0), out=buf21) buf22 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf23 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_10.run(buf21, primals_15, buf22, buf23, 4, grid=grid(4), stream=stream0) del buf21 del primals_15 return (buf23, buf0, buf1, buf2, buf3, buf4, buf6, buf7, buf9, buf10, buf12, buf13, buf15, reinterpret_tensor(buf16, (4, 1024), (1024, 1), 0), buf18, buf20, buf22, primals_14, primals_12, primals_10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 1024), (1024, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Critic(torch.nn.Module): def __init__(self, critic_lr, critic_epochs): super(Critic, self).__init__() self.initialize_network() self.optimizer = torch.optim.Adam(lr=critic_lr, params=self. parameters()) self.loss = torch.nn.MSELoss() self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu:0') self def initialize_network(self): self.fc1 = torch.nn.Linear(1024, 64) self.fc2 = torch.nn.Linear(64, 64) self.fc3 = torch.nn.Linear(64, 1) self.relu = torch.nn.LeakyReLU() self.sigmoid = torch.nn.Sigmoid() self.tanh = torch.nn.Tanh() self.conv1 = torch.nn.Conv2d(3, 32, kernel_size=4, stride=2) self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=4, stride=2) self.conv4 = torch.nn.Conv2d(128, 256, kernel_size=4, stride=2) def forward(self, x): out = torch.Tensor(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) out = self.relu(out) out = self.conv3(out) out = self.relu(out) out = self.conv4(out) out = self.relu(out) out = out.reshape(-1, 1024) out = self.fc1(out) out = self.tanh(out) out = self.fc2(out) out = self.tanh(out) out = self.fc3(out) out = self.relu(out) return out def optimize(self, states, rewards, epochs, batch_sz): n_samples = rewards.shape[0] num_batch = int(n_samples // batch_sz) for i in tqdm(range(epochs)): for b in range(num_batch): s = states[b * batch_sz:(b + 1) * batch_sz] r = rewards[b * batch_sz:(b + 1) * batch_sz] p = self.forward(s) loss = self.loss(p, r) self.optimizer.zero_grad() loss.backward() self.optimizer.step() s = states[num_batch * batch_sz:] r = rewards[num_batch * batch_sz:] p = self.forward(s) loss = self.loss(p, r) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {'critic_lr': 4, 'critic_epochs': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 96 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 48 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 512 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 1024 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 2048 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x1 + 256 * y0), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x1 + 256 * y0), tmp4, xmask & ymask) tl.store(out_ptr1 + (y2 + 4 * x1 + 1024 * y3), tmp7, xmask & ymask) @triton.jit def triton_poi_fused_tanh_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tl.store(out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr1 + x0, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (32, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (64, 1024), (1024, 1)) assert_size_stride(primals_11, (64,), (1,)) assert_size_stride(primals_12, (64, 64), (64, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (1, 64), (64, 1)) assert_size_stride(primals_15, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(12, 4096)](primals_1, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((32, 3, 4, 4), (48, 1, 12, 3), torch.float32) triton_poi_fused_1[grid(96, 16)](primals_2, buf1, 96, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch. float32) triton_poi_fused_2[grid(2048, 16)](primals_4, buf2, 2048, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((128, 64, 4, 4), (1024, 1, 256, 64), torch.float32) triton_poi_fused_3[grid(8192, 16)](primals_6, buf3, 8192, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((256, 128, 4, 4), (2048, 1, 512, 128), torch.float32) triton_poi_fused_4[grid(32768, 16)](primals_8, buf4, 32768, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = extern_kernels.convolution(buf0, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 31, 31), (30752, 1, 992, 32)) buf6 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.bool) buf7 = empty_strided_cuda((4, 32, 31, 31), (30752, 1, 992, 32), torch.float32) triton_poi_fused_convolution_leaky_relu_5[grid(123008)](buf5, primals_3, buf6, buf7, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del buf5 del primals_3 buf8 = extern_kernels.convolution(buf7, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 14, 14), (12544, 1, 896, 64)) buf9 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.bool) buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 1, 896, 64), torch.float32) triton_poi_fused_convolution_leaky_relu_6[grid(50176)](buf8, primals_5, buf9, buf10, 50176, XBLOCK=512, num_warps=4, num_stages=1) del buf8 del primals_5 buf11 = extern_kernels.convolution(buf10, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 128, 6, 6), (4608, 1, 768, 128)) buf12 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.bool) buf13 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) triton_poi_fused_convolution_leaky_relu_7[grid(18432)](buf11, primals_7, buf12, buf13, 18432, XBLOCK=256, num_warps=4, num_stages=1) del buf11 del primals_7 buf14 = extern_kernels.convolution(buf13, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 2, 2), (1024, 1, 512, 256)) buf15 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256), torch.bool) buf16 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_8[grid(16, 256)](buf14, primals_9, buf15, buf16, 16, 256, XBLOCK=256, YBLOCK=1, num_warps=4, num_stages=1) del buf14 del primals_9 buf17 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf16, (4, 1024), (1024, 1), 0 ), reinterpret_tensor(primals_10, (1024, 64), (1, 1024), 0), out=buf17) buf18 = buf17 del buf17 triton_poi_fused_tanh_9[grid(256)](buf18, primals_11, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_11 buf19 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf18, reinterpret_tensor(primals_12, (64, 64), ( 1, 64), 0), out=buf19) buf20 = buf19 del buf19 triton_poi_fused_tanh_9[grid(256)](buf20, primals_13, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_13 buf21 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf20, reinterpret_tensor(primals_14, (64, 1), (1, 64), 0), out=buf21) buf22 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf23 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused_leaky_relu_10[grid(4)](buf21, primals_15, buf22, buf23, 4, XBLOCK=4, num_warps=1, num_stages=1) del buf21 del primals_15 return (buf23, buf0, buf1, buf2, buf3, buf4, buf6, buf7, buf9, buf10, buf12, buf13, buf15, reinterpret_tensor(buf16, (4, 1024), (1024, 1), 0), buf18, buf20, buf22, primals_14, primals_12, primals_10) class CriticNew(torch.nn.Module): def __init__(self, critic_lr, critic_epochs): super(CriticNew, self).__init__() self.initialize_network() self.optimizer = torch.optim.Adam(lr=critic_lr, params=self. parameters()) self.loss = torch.nn.MSELoss() self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu:0') self def initialize_network(self): self.fc1 = torch.nn.Linear(1024, 64) self.fc2 = torch.nn.Linear(64, 64) self.fc3 = torch.nn.Linear(64, 1) self.relu = torch.nn.LeakyReLU() self.sigmoid = torch.nn.Sigmoid() self.tanh = torch.nn.Tanh() self.conv1 = torch.nn.Conv2d(3, 32, kernel_size=4, stride=2) self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=4, stride=2) self.conv4 = torch.nn.Conv2d(128, 256, kernel_size=4, stride=2) def optimize(self, states, rewards, epochs, batch_sz): n_samples = rewards.shape[0] num_batch = int(n_samples // batch_sz) for i in tqdm(range(epochs)): for b in range(num_batch): s = states[b * batch_sz:(b + 1) * batch_sz] r = rewards[b * batch_sz:(b + 1) * batch_sz] p = self.forward(s) loss = self.loss(p, r) self.optimizer.zero_grad() loss.backward() self.optimizer.step() s = states[num_batch * batch_sz:] r = rewards[num_batch * batch_sz:] p = self.forward(s) loss = self.loss(p, r) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def forward(self, input_0): primals_10 = self.fc1.weight primals_5 = self.fc1.bias primals_12 = self.fc2.weight primals_11 = self.fc2.bias primals_14 = self.fc3.weight primals_15 = self.fc3.bias primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_13 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
Gregory-Eales/Proximal-Policy-Optimization
Critic
false
7,532
[ "Apache-2.0" ]
1
134f930bd1436c34e79af9344fe70f75e11c8a30
https://github.com/Gregory-Eales/Proximal-Policy-Optimization/tree/134f930bd1436c34e79af9344fe70f75e11c8a30
import torch class Model(torch.nn.Module): def __init__(self, critic_lr, critic_epochs): super().__init__() self.initialize_network() self.optimizer = torch.optim.Adam(lr=critic_lr, params=self. parameters()) self.loss = torch.nn.MSELoss() self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu:0') self def initialize_network(self): self.fc1 = torch.nn.Linear(1024, 64) self.fc2 = torch.nn.Linear(64, 64) self.fc3 = torch.nn.Linear(64, 1) self.relu = torch.nn.LeakyReLU() self.sigmoid = torch.nn.Sigmoid() self.tanh = torch.nn.Tanh() self.conv1 = torch.nn.Conv2d(3, 32, kernel_size=4, stride=2) self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=4, stride=2) self.conv4 = torch.nn.Conv2d(128, 256, kernel_size=4, stride=2) def forward(self, x): out = torch.Tensor(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) out = self.relu(out) out = self.conv3(out) out = self.relu(out) out = self.conv4(out) out = self.relu(out) out = out.reshape(-1, 1024) out = self.fc1(out) out = self.tanh(out) out = self.fc2(out) out = self.tanh(out) out = self.fc3(out) out = self.relu(out) return out def optimize(self, states, rewards, epochs, batch_sz): n_samples = rewards.shape[0] num_batch = int(n_samples // batch_sz) for i in tqdm(range(epochs)): for b in range(num_batch): s = states[b * batch_sz:(b + 1) * batch_sz] r = rewards[b * batch_sz:(b + 1) * batch_sz] p = self.forward(s) loss = self.loss(p, r) self.optimizer.zero_grad() loss.backward() self.optimizer.step() s = states[num_batch * batch_sz:] r = rewards[num_batch * batch_sz:] p = self.forward(s) loss = self.loss(p, r) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [4, 4]
scaleCompositor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/xm/cxmk2kod6zgjturywionsuihaxqils4fvzrd7bziqpvptc3rgw43.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 4, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (16*((-1) + x1)) + (48*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xh/cxh7epphimsrkfn3n34ylscd7pugfybjhqg6mmlfu35avmjtkqna.py # Topologically Sorted Source Nodes: [conv2d_1, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ar/carfapzzrew277ad3p6wpasq3wjldz5xwfaofro3ascqldhdmzch.py # Topologically Sorted Source Nodes: [conv2d_2, relu_1, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] # Source node to ATen node mapping: # add => add_4 # conv2d_2 => convolution_2 # relu_1 => relu_1 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_7, %primals_8, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %relu_1), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/mn/cmnpurx3wxpxvmhqi5mqn7656woj2msriaocxydbhyiztwtl6xh3.py # Topologically Sorted Source Nodes: [scale, scale_1], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # scale => convolution_5 # scale_1 => sigmoid # Graph fragment: # %convolution_5 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_5, %primals_13, %primals_14, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_5,), kwargs = {}) triton_poi_fused_convolution_sigmoid_4 = async_compile.triton('triton_poi_fused_convolution_sigmoid_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp3, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/43/c434ifkwlxdvknpvgwp33jmur4xikpuahejdvx5d6twxzlxxhdpg.py # Topologically Sorted Source Nodes: [max_pool2d, UDf], Original ATen: [aten.max_pool2d_with_indices, aten._unsafe_index] # Source node to ATen node mapping: # UDf => _unsafe_index # max_pool2d => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%primals_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused__unsafe_index_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_max_pool2d_with_indices_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + ((2*tmp8) + (8*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (2*tmp8) + (8*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tl.load(in_ptr0 + (4 + (2*tmp8) + (8*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.load(in_ptr0 + (5 + (2*tmp8) + (8*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x4), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ck/cckskcxismwtxb7brbfy7pwihlr3hmqcoxoczm5wcib2ked6bprb.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_6 = async_compile.triton('triton_poi_fused_clone_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 48) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/bq/cbqw4ze2qs73fu3bucjda44jgmgpgmcrxwyiiqyw7iokewi46r7p.py # Topologically Sorted Source Nodes: [sub, add_2], Original ATen: [aten.sub, aten.add] # Source node to ATen node mapping: # add_2 => add_6 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %view_2), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %view_5), kwargs = {}) triton_poi_fused_add_sub_7 = async_compile.triton('triton_poi_fused_add_sub_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sub_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sub_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 48) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tmp0 - tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_14, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_6, 256, grid=grid(256), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1)) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, relu_1, add], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_3.run(buf2, buf5, primals_8, buf6, buf20, 256, grid=grid(256), stream=stream0) del primals_8 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d_3, relu_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf8, primals_10, 256, grid=grid(256), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 4, 4), (64, 16, 4, 1)) buf10 = buf5; del buf5 # reuse buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, relu_3, add_1], Original ATen: [aten.convolution, aten.relu, aten.add, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_3.run(buf6, buf9, primals_12, buf10, buf19, 256, grid=grid(256), stream=stream0) del buf9 del primals_12 # Topologically Sorted Source Nodes: [scale], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 4, 4), (16, 16, 4, 1)) buf12 = buf11; del buf11 # reuse buf14 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [scale, scale_1], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_4.run(buf12, primals_14, buf14, 64, grid=grid(64), stream=stream0) del primals_14 buf13 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d, UDf], Original ATen: [aten.max_pool2d_with_indices, aten._unsafe_index] triton_poi_fused__unsafe_index_max_pool2d_with_indices_5.run(primals_1, buf13, 64, grid=grid(64), stream=stream0) buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf14, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0), out=buf15) buf16 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_6.run(buf14, buf16, 192, grid=grid(192), stream=stream0) del buf14 buf17 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf16, (12, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (12, 4, 4), (16, 4, 1), 0), out=buf17) del buf16 buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf17 # reuse # Topologically Sorted Source Nodes: [sub, add_2], Original ATen: [aten.sub, aten.add] triton_poi_fused_add_sub_7.run(buf18, primals_1, buf15, 192, grid=grid(192), stream=stream0) del buf15 del primals_1 return (buf18, primals_3, primals_5, primals_7, primals_9, primals_11, primals_13, buf0, buf2, buf4, buf6, buf8, buf10, buf12, reinterpret_tensor(primals_2, (12, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0), buf19, buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super(ResBlock, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) class scaleCompositor(nn.Module): def __init__(self, in_ch, hid_ch): super(scaleCompositor, self).__init__() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=1) self.conv2 = nn.Conv2d(hid_ch, 1, kernel_size=1) self.resblock1 = ResBlock(hid_ch, hid_ch) self.resblock2 = ResBlock(hid_ch, hid_ch) self.act = nn.Sigmoid() self.downsample = nn.MaxPool2d(2) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') def forward(self, f, c): x = torch.cat((f, c), dim=1) UDf = self.upsample(self.downsample(f)) scale = self.conv2(self.resblock2(self.resblock1(self.conv1(x)))) scale = self.act(scale) return f - torch.matmul(scale, UDf) + torch.matmul(scale, c) def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'hid_ch': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-1 + x1) + 48 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp3, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_max_pool2d_with_indices_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (2 * tmp8 + 8 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 2 * tmp8 + 8 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tmp11 = triton_helpers.maximum(tmp10, tmp9) tmp12 = tl.load(in_ptr0 + (4 + 2 * tmp8 + 8 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tl.load(in_ptr0 + (5 + 2 * tmp8 + 8 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x4, tmp15, xmask) @triton.jit def triton_poi_fused_clone_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 48 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_sub_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 48 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tmp0 - tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_14, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_2[grid(256)](buf4, primals_6, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 4, 4), (64, 16, 4, 1)) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_3[grid(256)]( buf2, buf5, primals_8, buf6, buf20, 256, XBLOCK=128, num_warps= 4, num_stages=1) del primals_8 buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_2[grid(256)](buf8, primals_10, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_10 buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 4, 4), (64, 16, 4, 1)) buf10 = buf5 del buf5 buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_3[grid(256)]( buf6, buf9, primals_12, buf10, buf19, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf9 del primals_12 buf11 = extern_kernels.convolution(buf10, primals_13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 4, 4), (16, 16, 4, 1)) buf12 = buf11 del buf11 buf14 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32) triton_poi_fused_convolution_sigmoid_4[grid(64)](buf12, primals_14, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_14 buf13 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32) triton_poi_fused__unsafe_index_max_pool2d_with_indices_5[grid(64)]( primals_1, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf14, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0), out=buf15) buf16 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) triton_poi_fused_clone_6[grid(192)](buf14, buf16, 192, XBLOCK=256, num_warps=4, num_stages=1) del buf14 buf17 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf16, (12, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (12, 4, 4), (16, 4, 1), 0), out=buf17) del buf16 buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0) del buf17 triton_poi_fused_add_sub_7[grid(192)](buf18, primals_1, buf15, 192, XBLOCK=256, num_warps=4, num_stages=1) del buf15 del primals_1 return (buf18, primals_3, primals_5, primals_7, primals_9, primals_11, primals_13, buf0, buf2, buf4, buf6, buf8, buf10, buf12, reinterpret_tensor(primals_2, (12, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0), buf19, buf20) class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super(ResBlock, self).__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) class scaleCompositorNew(nn.Module): def __init__(self, in_ch, hid_ch): super(scaleCompositorNew, self).__init__() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=1) self.conv2 = nn.Conv2d(hid_ch, 1, kernel_size=1) self.resblock1 = ResBlock(hid_ch, hid_ch) self.resblock2 = ResBlock(hid_ch, hid_ch) self.act = nn.Sigmoid() self.downsample = nn.MaxPool2d(2) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') def forward(self, input_0, input_1): primals_3 = self.conv1.weight primals_4 = self.conv1.bias primals_13 = self.conv2.weight primals_14 = self.conv2.bias primals_5 = self.resblock1.conv1.weight primals_6 = self.resblock1.conv1.bias primals_7 = self.resblock1.conv2.weight primals_8 = self.resblock1.conv2.bias primals_9 = self.resblock2.conv1.weight primals_10 = self.resblock2.conv1.bias primals_11 = self.resblock2.conv2.weight primals_12 = self.resblock2.conv2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
qbhan/pathembed
scaleCompositor
false
7,533
[ "MIT" ]
1
c21823529840593bf606e10696f5879e5adb51b2
https://github.com/qbhan/pathembed/tree/c21823529840593bf606e10696f5879e5adb51b2
import torch import torch.nn as nn class ResBlock(nn.Module): def __init__(self, in_ch, hid_ch): super().__init__() self.act = nn.ReLU() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(hid_ch, hid_ch, kernel_size=3, padding=1) def forward(self, x): return x + self.act(self.conv2(self.act(self.conv1(x)))) class Model(nn.Module): def __init__(self, in_ch, hid_ch): super().__init__() self.conv1 = nn.Conv2d(in_ch, hid_ch, kernel_size=1) self.conv2 = nn.Conv2d(hid_ch, 1, kernel_size=1) self.resblock1 = ResBlock(hid_ch, hid_ch) self.resblock2 = ResBlock(hid_ch, hid_ch) self.act = nn.Sigmoid() self.downsample = nn.MaxPool2d(2) self.upsample = nn.Upsample(scale_factor=2, mode='nearest') def forward(self, f, c): x = torch.cat((f, c), dim=1) UDf = self.upsample(self.downsample(f)) scale = self.conv2(self.resblock2(self.resblock1(self.conv1(x)))) scale = self.act(scale) return f - torch.matmul(scale, UDf) + torch.matmul(scale, c) def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])] def get_init_inputs(): return [4, 4]
NormedLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/xe/cxewggzrfqe57dzglxrzfhfgpsywlh36utvtdulp5oi75wfs7ml3.py # Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize_1 => div_1 # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div] triton_poi_fused_div_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize_1, out], Original ATen: [aten.div, aten.mm] extern_kernels.mm(buf0, buf1, out=buf2) del buf1 return (buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F from torch.nn import Parameter class NormedLinear(nn.Module): def __init__(self, in_features, out_features): super(NormedLinear, self).__init__() self.weight = Parameter(torch.Tensor(in_features, out_features)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0) def forward(self, x): out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_1[grid(16)](primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, buf1, out=buf2) del buf1 return buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0) class NormedLinearNew(nn.Module): def __init__(self, in_features, out_features): super(NormedLinearNew, self).__init__() self.weight = Parameter(torch.Tensor(in_features, out_features)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0) def forward(self, input_0): primals_1 = self.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
raman32/LDAM-DRW
NormedLinear
false
7,534
[ "MIT" ]
1
7ce2251c01b94c7259108a1e188457f0b720651d
https://github.com/raman32/LDAM-DRW/tree/7ce2251c01b94c7259108a1e188457f0b720651d
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F from torch.nn import Parameter class Model(nn.Module): def __init__(self, in_features, out_features): super().__init__() self.weight = Parameter(torch.Tensor(in_features, out_features)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0) def forward(self, x): out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
ParagraphPlanSelectionAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/65/c65frvogjvzvcjnoj7n72ziopkhhgusygsvovz7h4ukukiilkzeo.py # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # align_vectors => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/am/cam4sww3ppo4w3jhpfve3iek2mi4cmz7fh25jvjggq52vtu6lahc.py # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # align_vectors => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [align], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) del buf1 return (reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class ParagraphPlanSelectionAttention(nn.Module): def __init__(self, dim): super(ParagraphPlanSelectionAttention, self).__init__() self.dim = dim def score(self, h_t, h_s): src_batch, _src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(src_dim, self.dim) h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) def forward(self, source, memory_bank, memory_lengths=None): """ Args :param source (FloatTensor): query vectors ``(batch, tgt_len, dim)`` :param memory_bank (FloatTensor): source vectors ``(batch, src_len, dim)`` :param memory_lengths (LongTensor): the source context lengths ``(batch,)`` :return: """ batch, source_l, dim = memory_bank.size() batch_, target_l, dim_ = source.size() aeq(batch, batch_) aeq(dim, dim_) aeq(self.dim, dim) align = self.score(source, memory_bank) if memory_lengths is not None: mask = sequence_mask(memory_lengths, max_len=align.size(-1)) mask = mask.unsqueeze(1) align.masked_fill_(~mask, -float('inf')) align_vectors = F.log_softmax(align.view(batch * target_l, source_l ), -1) align_vectors = align_vectors.view(batch, target_l, source_l) return align_vectors def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 triton_poi_fused__log_softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 return reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class ParagraphPlanSelectionAttentionNew(nn.Module): def __init__(self, dim): super(ParagraphPlanSelectionAttentionNew, self).__init__() self.dim = dim def score(self, h_t, h_s): src_batch, _src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(src_dim, self.dim) h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
ratishsp/data2text-seq-plan-py
ParagraphPlanSelectionAttention
false
7,535
[ "MIT" ]
1
16b5242903371280cae8d23ad5a2472d539ea744
https://github.com/ratishsp/data2text-seq-plan-py/tree/16b5242903371280cae8d23ad5a2472d539ea744
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class Model(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def score(self, h_t, h_s): src_batch, _src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(src_dim, self.dim) h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) def forward(self, source, memory_bank, memory_lengths=None): """ Args :param source (FloatTensor): query vectors ``(batch, tgt_len, dim)`` :param memory_bank (FloatTensor): source vectors ``(batch, src_len, dim)`` :param memory_lengths (LongTensor): the source context lengths ``(batch,)`` :return: """ batch, source_l, dim = memory_bank.size() batch_, target_l, dim_ = source.size() aeq(batch, batch_) aeq(dim, dim_) aeq(self.dim, dim) align = self.score(source, memory_bank) if memory_lengths is not None: mask = sequence_mask(memory_lengths, max_len=align.size(-1)) mask = mask.unsqueeze(1) align.masked_fill_(~mask, -float('inf')) align_vectors = F.log_softmax(align.view(batch * target_l, source_l ), -1) align_vectors = align_vectors.view(batch, target_l, source_l) return align_vectors def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
GlobalAttentionContext
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] # Source node to ATen node mapping: # align_vectors => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] # Source node to ATen node mapping: # align_vectors => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/ad/cadnqo43hyhom62micoot5pay4uzcylevnlwwpw63mxakdl22ve5.py # Topologically Sorted Source Nodes: [c_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # c_1 => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%bmm_1, [1]), kwargs = {}) triton_poi_fused_mean_2 = async_compile.triton('triton_poi_fused_mean_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 / tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [align], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_2, (4, 1, 4), (0, 0, 1), 0), reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [align_vectors], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [c], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (4, 1, 4), (4, 0, 1), 0), primals_1, out=buf3) del buf2 buf4 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [c_1], Original ATen: [aten.mean] triton_poi_fused_mean_2.run(buf4, 16, grid=grid(16), stream=stream0) return (buf4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class GlobalAttentionContext(nn.Module): """ Global attention takes a matrix and a query vector. It then computes a parameterized convex combination of the matrix based on the input query. Constructs a unit mapping a query `q` of size `dim` and a source matrix `H` of size `n x dim`, to an output of size `dim`. .. mermaid:: graph BT A[Query] subgraph RNN C[H 1] D[H 2] E[H N] end F[Attn] G[Output] A --> F C --> F D --> F E --> F C -.-> G D -.-> G E -.-> G F --> G All models compute the output as :math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where :math:`a_j` is the softmax of a score function. Then then apply a projection layer to [q, c]. However they differ on how they compute the attention score. * Luong Attention (dot, general): * dot: :math:`\\text{score}(H_j,q) = H_j^T q` * general: :math:`\\text{score}(H_j, q) = H_j^T W_a q` * Bahdanau Attention (mlp): * :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)` Args: dim (int): dimensionality of query and key coverage (bool): use coverage term attn_type (str): type of attention to use, options [dot,general,mlp] attn_func (str): attention function to use, options [softmax,sparsemax] """ def __init__(self, dim, coverage=False, attn_type='dot', attn_func= 'softmax'): super(GlobalAttentionContext, self).__init__() self.dim = dim assert attn_type in ['dot', 'general', 'mlp' ], 'Please select a valid attention type (got {:s}).'.format( attn_type) self.attn_type = attn_type assert attn_func in ['softmax', 'sparsemax' ], 'Please select a valid attention function.' self.attn_func = attn_func self.source = nn.Parameter(torch.Tensor(1, dim)) if self.attn_type == 'general': self.linear_in = nn.Linear(dim, dim, bias=False) elif self.attn_type == 'mlp': self.linear_context = nn.Linear(dim, dim, bias=False) self.linear_query = nn.Linear(dim, dim, bias=True) self.v = nn.Linear(dim, 1, bias=False) if coverage: self.linear_cover = nn.Linear(1, dim, bias=False) def score(self, h_t, h_s): """ Args: h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)`` h_s (FloatTensor): sequence of sources ``(batch, src_len, dim`` Returns: FloatTensor: raw attention scores (unnormalized) for each src index ``(batch, tgt_len, src_len)`` """ src_batch, src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(self.dim, src_dim) if self.attn_type in ['general', 'dot']: if self.attn_type == 'general': h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t_ = self.linear_in(h_t_) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) else: dim = self.dim wq = self.linear_query(h_t.view(-1, dim)) wq = wq.view(tgt_batch, tgt_len, 1, dim) wq = wq.expand(tgt_batch, tgt_len, src_len, dim) uh = self.linear_context(h_s.contiguous().view(-1, dim)) uh = uh.view(src_batch, 1, src_len, dim) uh = uh.expand(src_batch, tgt_len, src_len, dim) wquh = torch.tanh(wq + uh) return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len) def forward(self, memory_bank, memory_lengths=None, coverage=None): """ Args: source (FloatTensor): query vectors ``(batch, tgt_len, dim)`` memory_bank (FloatTensor): source vectors ``(batch, src_len, dim)`` memory_lengths (LongTensor): the source context lengths ``(batch,)`` coverage (FloatTensor): None (not supported yet) Returns: (FloatTensor, FloatTensor): * Computed vector ``(tgt_len, batch, dim)`` * Attention distribtutions for each query ``(tgt_len, batch, src_len)`` """ batch, source_l, dim = memory_bank.size() source = self.source source = source.expand(batch, -1) source = source.unsqueeze(1) batch_, target_l, dim_ = source.size() aeq(batch, batch_) aeq(dim, dim_) aeq(self.dim, dim) if coverage is not None: batch_, source_l_ = coverage.size() aeq(batch, batch_) aeq(source_l, source_l_) if coverage is not None: cover = coverage.view(-1).unsqueeze(1) memory_bank += self.linear_cover(cover).view_as(memory_bank) memory_bank = torch.tanh(memory_bank) align = self.score(source, memory_bank) if memory_lengths is not None: mask = sequence_mask(memory_lengths, max_len=align.size(-1)) mask = mask.unsqueeze(1) align.masked_fill_(~mask, -float('inf')) if self.attn_func == 'softmax': align_vectors = F.softmax(align.view(batch * target_l, source_l ), -1) else: align_vectors = sparsemax(align.view(batch * target_l, source_l ), -1) align_vectors = align_vectors.view(batch, target_l, source_l) c = torch.bmm(align_vectors, memory_bank) c = c.mean(dim=1) batch_, dim_ = c.size() aeq(batch, batch_) aeq(dim, dim_) return c def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mean_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 / tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_2, (4, 1, 4), (0, 0, 1), 0), reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (4, 1, 4), (4, 0, 1), 0 ), primals_1, out=buf3) del buf2 buf4 = reinterpret_tensor(buf3, (4, 4), (4, 1), 0) del buf3 triton_poi_fused_mean_2[grid(16)](buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf0 def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class GlobalAttentionContextNew(nn.Module): """ Global attention takes a matrix and a query vector. It then computes a parameterized convex combination of the matrix based on the input query. Constructs a unit mapping a query `q` of size `dim` and a source matrix `H` of size `n x dim`, to an output of size `dim`. .. mermaid:: graph BT A[Query] subgraph RNN C[H 1] D[H 2] E[H N] end F[Attn] G[Output] A --> F C --> F D --> F E --> F C -.-> G D -.-> G E -.-> G F --> G All models compute the output as :math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where :math:`a_j` is the softmax of a score function. Then then apply a projection layer to [q, c]. However they differ on how they compute the attention score. * Luong Attention (dot, general): * dot: :math:`\\text{score}(H_j,q) = H_j^T q` * general: :math:`\\text{score}(H_j, q) = H_j^T W_a q` * Bahdanau Attention (mlp): * :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)` Args: dim (int): dimensionality of query and key coverage (bool): use coverage term attn_type (str): type of attention to use, options [dot,general,mlp] attn_func (str): attention function to use, options [softmax,sparsemax] """ def __init__(self, dim, coverage=False, attn_type='dot', attn_func= 'softmax'): super(GlobalAttentionContextNew, self).__init__() self.dim = dim assert attn_type in ['dot', 'general', 'mlp' ], 'Please select a valid attention type (got {:s}).'.format( attn_type) self.attn_type = attn_type assert attn_func in ['softmax', 'sparsemax' ], 'Please select a valid attention function.' self.attn_func = attn_func self.source = nn.Parameter(torch.Tensor(1, dim)) if self.attn_type == 'general': self.linear_in = nn.Linear(dim, dim, bias=False) elif self.attn_type == 'mlp': self.linear_context = nn.Linear(dim, dim, bias=False) self.linear_query = nn.Linear(dim, dim, bias=True) self.v = nn.Linear(dim, 1, bias=False) if coverage: self.linear_cover = nn.Linear(1, dim, bias=False) def score(self, h_t, h_s): """ Args: h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)`` h_s (FloatTensor): sequence of sources ``(batch, src_len, dim`` Returns: FloatTensor: raw attention scores (unnormalized) for each src index ``(batch, tgt_len, src_len)`` """ src_batch, src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(self.dim, src_dim) if self.attn_type in ['general', 'dot']: if self.attn_type == 'general': h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t_ = self.linear_in(h_t_) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) else: dim = self.dim wq = self.linear_query(h_t.view(-1, dim)) wq = wq.view(tgt_batch, tgt_len, 1, dim) wq = wq.expand(tgt_batch, tgt_len, src_len, dim) uh = self.linear_context(h_s.contiguous().view(-1, dim)) uh = uh.view(src_batch, 1, src_len, dim) uh = uh.expand(src_batch, tgt_len, src_len, dim) wquh = torch.tanh(wq + uh) return self.v(wquh.view(-1, dim)).view(tgt_batch, tgt_len, src_len) def forward(self, input_0): primals_2 = self.source primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
ratishsp/data2text-seq-plan-py
GlobalAttentionContext
false
7,537
[ "MIT" ]
1
16b5242903371280cae8d23ad5a2472d539ea744
https://github.com/ratishsp/data2text-seq-plan-py/tree/16b5242903371280cae8d23ad5a2472d539ea744
import torch import torch.nn as nn import torch.nn.functional as F import torch.cuda import torch.distributed def aeq(*args): """ Assert all arguments have the same value """ arguments = (arg for arg in args) first = next(arguments) assert all(arg == first for arg in arguments ), 'Not all arguments have the same value: ' + str(args) def sequence_mask(lengths, max_len=None): """ Creates a boolean mask from sequence lengths. """ batch_size = lengths.numel() max_len = max_len or lengths.max() return torch.arange(0, max_len, device=lengths.device).type_as(lengths ).repeat(batch_size, 1).lt(lengths.unsqueeze(1)) class Model(nn.Module): """ Global attention takes a matrix and a query vector. It then computes a parameterized convex combination of the matrix based on the input query. Constructs a unit mapping a query `q` of size `dim` and a source matrix `H` of size `n x dim`, to an output of size `dim`. .. mermaid:: graph BT A[Query] subgraph RNN C[H 1] D[H 2] E[H N] end F[Attn] G[Output] A --> F C --> F D --> F E --> F C -.-> G D -.-> G E -.-> G F --> G All models compute the output as :math:`c = \\sum_{j=1}^{\\text{SeqLength}} a_j H_j` where :math:`a_j` is the softmax of a score function. Then then apply a projection layer to [q, c]. However they differ on how they compute the attention score. * Luong Attention (dot, general): * dot: :math:`\\text{score}(H_j,q) = H_j^T q` * general: :math:`\\text{score}(H_j, q) = H_j^T W_a q` * Bahdanau Attention (mlp): * :math:`\\text{score}(H_j, q) = v_a^T \\text{tanh}(W_a q + U_a h_j)` Args: dim (int): dimensionality of query and key coverage (bool): use coverage term attn_type (str): type of attention to use, options [dot,general,mlp] attn_func (str): attention function to use, options [softmax,sparsemax] """ def __init__(self, dim, coverage=False, attn_type='dot', attn_func= 'softmax'): super().__init__() self.dim = dim assert attn_type in ['dot', 'general', 'mlp' ], 'Please select a valid attention type (got {:s}).'.format( attn_type) self.attn_type = attn_type assert attn_func in ['softmax', 'sparsemax' ], 'Please select a valid attention function.' self.attn_func = attn_func self.source = nn.Parameter(torch.Tensor(1, dim)) if self.attn_type == 'general': self.linear_in = nn.Linear(dim, dim, bias=False) elif self.attn_type == 'mlp': self.linear_context = nn.Linear(dim, dim, bias=False) self.linear_query = nn.Linear(dim, dim, bias=True) self.v = nn.Linear(dim, 1, bias=False) if coverage: self.linear_cover = nn.Linear(1, dim, bias=False) def score(self, h_t, h_s): """ Args: h_t (FloatTensor): sequence of queries ``(batch, tgt_len, dim)`` h_s (FloatTensor): sequence of sources ``(batch, src_len, dim`` Returns: FloatTensor: raw attention scores (unnormalized) for each src index ``(batch, tgt_len, src_len)`` """ src_batch, src_len, src_dim = h_s.size() tgt_batch, tgt_len, tgt_dim = h_t.size() aeq(src_batch, tgt_batch) aeq(src_dim, tgt_dim) aeq(self.dim, src_dim) if self.attn_type in ['general', 'dot']: if self.attn_type == 'general': h_t_ = h_t.view(tgt_batch * tgt_len, tgt_dim) h_t_ = self.linear_in(h_t_) h_t = h_t_.view(tgt_batch, tgt_len, tgt_dim) h_s_ = h_s.transpose(1, 2) return torch.bmm(h_t, h_s_) else: dim # ... truncated (>4000 chars) for memory efficiency
CCX_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/h3/ch3l34kqqlue6keu2k5zyuitwqh5ph3eypbf57e4juzyb5tqpeva.py # Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # mean_1 => mean_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg1_1, [3]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + (x0), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/io/cio5zq6sjqh7j4lrluajmlhssl3pd7b72n7hpsagbvsonlys2yz2.py # Topologically Sorted Source Nodes: [x_centered, y_centered], Original ATen: [aten.sub] # Source node to ATen node mapping: # x_centered => sub # y_centered => sub_1 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %view), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %view), kwargs = {}) triton_poi_fused_sub_1 = async_compile.triton('triton_poi_fused_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (8 + x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (12 + x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (x3), xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp12 = tmp11 - tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) tl.store(out_ptr1 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wp/cwpinrdok6m4mv6ctokitero7thhi4yok2aezvojljzsq4bcorjl.py # Topologically Sorted Source Nodes: [norm, x_normalized], Original ATen: [aten.linalg_vector_norm, aten.div] # Source node to ATen node mapping: # norm => pow_1, pow_2, sum_1 # x_normalized => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %pow_2), kwargs = {}) triton_poi_fused_div_linalg_vector_norm_2 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_linalg_vector_norm_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/aa/caa4diuzor6pmjq2bc7jaramalhzlh667m7fywubygxx6dwkhwmy.py # Topologically Sorted Source Nodes: [d, min_1, add, d_tilde, sub_3, truediv_3, w, sum_1], Original ATen: [aten.rsub, aten.min, aten.add, aten.div, aten.exp, aten.sum] # Source node to ATen node mapping: # add => add # d => sub_2 # d_tilde => div_2 # min_1 => min_1 # sub_3 => sub_3 # sum_1 => sum_3 # truediv_3 => div_3 # w => exp # Graph fragment: # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %bmm), kwargs = {}) # %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.dim](args = (%sub_2, 2, True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %add), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_3, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_3,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) triton_per_fused_add_div_exp_min_rsub_sum_3 = async_compile.triton('triton_per_fused_add_div_exp_min_rsub_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_min_rsub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_exp_min_rsub_sum_3(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("inf")) tmp6 = triton_helpers.min2(tmp5, 1)[:, None] tmp7 = 1e-06 tmp8 = tmp6 + tmp7 tmp9 = tmp2 / tmp8 tmp10 = tmp1 - tmp9 tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/wy/cwy63dw5jst2ctkp4bnsbixykefkygtpwf7plvk2n6a6avmnj3xd.py # Topologically Sorted Source Nodes: [d, add, d_tilde, sub_3, truediv_3, w, ccx_ij, max_1], Original ATen: [aten.rsub, aten.add, aten.div, aten.exp, aten.max] # Source node to ATen node mapping: # add => add # ccx_ij => div_4 # d => sub_2 # d_tilde => div_2 # max_1 => max_1 # sub_3 => sub_3 # truediv_3 => div_3 # w => exp # Graph fragment: # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %bmm), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %add), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_3, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_3,), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_3), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%div_4, 1), kwargs = {}) triton_per_fused_add_div_exp_max_rsub_4 = async_compile.triton('triton_per_fused_add_div_exp_max_rsub_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_max_rsub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_exp_max_rsub_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (256*x1)), xmask, other=0.0) tmp3 = tl.load(in_ptr1 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr2 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = tmp2 / tmp5 tmp7 = tmp1 - tmp6 tmp8 = 2.0 tmp9 = tmp7 * tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, float("-inf")) tmp16 = triton_helpers.max2(tmp15, 1)[:, None] tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/l2/cl2mcinnmijnqtw2qnvgw2hrzt4b53lbysxzej5odu7xswsxi3x5.py # Topologically Sorted Source Nodes: [ccx], Original ATen: [aten.mean] # Source node to ATen node mapping: # ccx => mean_3 # Graph fragment: # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%getitem_2, [1]), kwargs = {}) triton_per_fused_mean_5 = async_compile.triton('triton_per_fused_mean_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_5(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/lu/clubqdtftswp4gse7bsk37pjb4g2tlplxqmvakko7rlabdmi4u7l.py # Topologically Sorted Source Nodes: [ccx, add_1, log, neg, ccx_loss], Original ATen: [aten.mean, aten.add, aten.log, aten.neg] # Source node to ATen node mapping: # add_1 => add_1 # ccx => mean_3 # ccx_loss => mean_4 # log => log # neg => neg # Graph fragment: # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%getitem_2, [1]), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_3, 1e-06), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {}) triton_per_fused_add_log_mean_neg_6 = async_compile.triton('triton_per_fused_add_log_mean_neg_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_neg_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_log_mean_neg_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 16.0 tmp2 = tmp0 / tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = -tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 4.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg1_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_centered, y_centered], Original ATen: [aten.sub] triton_poi_fused_sub_1.run(arg0_1, buf0, arg1_1, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm, x_normalized], Original ATen: [aten.linalg_vector_norm, aten.div] triton_poi_fused_div_linalg_vector_norm_2.run(buf1, buf3, 256, grid=grid(256), stream=stream0) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [norm_1, y_normalized], Original ATen: [aten.linalg_vector_norm, aten.div] triton_poi_fused_div_linalg_vector_norm_2.run(buf2, buf4, 256, grid=grid(256), stream=stream0) del buf2 buf5 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [cosine_sim], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf4, (4, 4, 16), (64, 16, 1), 0), out=buf5) del buf3 del buf4 buf6 = empty_strided_cuda((4, 16, 1), (16, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [d, min_1, add, d_tilde, sub_3, truediv_3, w, sum_1], Original ATen: [aten.rsub, aten.min, aten.add, aten.div, aten.exp, aten.sum] triton_per_fused_add_div_exp_min_rsub_sum_3.run(buf5, buf6, buf8, 64, 16, grid=grid(64), stream=stream0) buf9 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [d, add, d_tilde, sub_3, truediv_3, w, ccx_ij, max_1], Original ATen: [aten.rsub, aten.add, aten.div, aten.exp, aten.max] triton_per_fused_add_div_exp_max_rsub_4.run(buf5, buf6, buf8, buf9, 64, 16, grid=grid(64), stream=stream0) del buf5 del buf6 del buf8 buf11 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [ccx], Original ATen: [aten.mean] triton_per_fused_mean_5.run(buf9, buf11, 4, 16, grid=grid(4), stream=stream0) del buf9 buf12 = empty_strided_cuda((), (), torch.float32) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [ccx, add_1, log, neg, ccx_loss], Original ATen: [aten.mean, aten.add, aten.log, aten.neg] triton_per_fused_add_log_mean_neg_6.run(buf13, buf11, 1, 4, grid=grid(1), stream=stream0) del buf11 return (buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class CCX_loss(nn.Module): def __init__(self, eps=1e-06, h=0.5): super(CCX_loss, self).__init__() self.eps = eps self.h = h def forward(self, x, y): N, C, _H, _W = x.size() y_mu = y.mean(3).mean(2).mean(0).reshape(1, -1, 1, 1) x_centered = x - y_mu y_centered = y - y_mu x_normalized = x_centered / torch.norm(x_centered, p=2, dim=1, keepdim=True) y_normalized = y_centered / torch.norm(y_centered, p=2, dim=1, keepdim=True) x_normalized = x_normalized.reshape(N, C, -1) y_normalized = y_normalized.reshape(N, C, -1) cosine_sim = torch.bmm(x_normalized.transpose(1, 2), y_normalized) d = 1 - cosine_sim d_min, _ = torch.min(d, dim=2, keepdim=True) d_tilde = d / (d_min + self.eps) w = torch.exp((1 - d_tilde) / self.h) ccx_ij = w / torch.sum(w, dim=2, keepdim=True) ccx = torch.mean(torch.max(ccx_ij, dim=1)[0], dim=1) ccx_loss = torch.mean(-torch.log(ccx + self.eps)) return ccx_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + x0, tmp36, xmask) @triton.jit def triton_poi_fused_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (8 + x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (12 + x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + x3, xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp12 = tmp11 - tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) tl.store(out_ptr1 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_div_linalg_vector_norm_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) @triton.jit def triton_per_fused_add_div_exp_min_rsub_sum_3(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('inf')) tmp6 = triton_helpers.min2(tmp5, 1)[:, None] tmp7 = 1e-06 tmp8 = tmp6 + tmp7 tmp9 = tmp2 / tmp8 tmp10 = tmp1 - tmp9 tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.where(xmask, tmp14, 0) tmp17 = tl.sum(tmp16, 1)[:, None] tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp17, xmask) @triton.jit def triton_per_fused_add_div_exp_max_rsub_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 256 * x1), xmask, other=0.0) tmp3 = tl.load(in_ptr1 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tl.load(in_ptr2 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = tmp2 / tmp5 tmp7 = tmp1 - tmp6 tmp8 = 2.0 tmp9 = tmp7 * tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, float('-inf')) tmp16 = triton_helpers.max2(tmp15, 1)[:, None] tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_per_fused_mean_5(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_per_fused_add_log_mean_neg_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 16.0 tmp2 = tmp0 / tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = -tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 4.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(16)](arg1_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_sub_1[grid(256)](arg0_1, buf0, arg1_1, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_linalg_vector_norm_2[grid(256)](buf1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = buf1 del buf1 triton_poi_fused_div_linalg_vector_norm_2[grid(256)](buf2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 buf5 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf4, (4, 4, 16), (64, 16, 1), 0), out=buf5) del buf3 del buf4 buf6 = empty_strided_cuda((4, 16, 1), (16, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 64), torch.float32) triton_per_fused_add_div_exp_min_rsub_sum_3[grid(64)](buf5, buf6, buf8, 64, 16, XBLOCK=8, num_warps=2, num_stages=1) buf9 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_per_fused_add_div_exp_max_rsub_4[grid(64)](buf5, buf6, buf8, buf9, 64, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf5 del buf6 del buf8 buf11 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mean_5[grid(4)](buf9, buf11, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf9 buf12 = empty_strided_cuda((), (), torch.float32) buf13 = buf12 del buf12 triton_per_fused_add_log_mean_neg_6[grid(1)](buf13, buf11, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf11 return buf13, class CCX_lossNew(nn.Module): def __init__(self, eps=1e-06, h=0.5): super(CCX_lossNew, self).__init__() self.eps = eps self.h = h def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
qwopqwop200/Fast-Invertible-Rescaling-Net
CCX_loss
false
7,538
[ "MIT" ]
1
871733f2eee7929d6b37c4d1d6a27347b39b67a9
https://github.com/qwopqwop200/Fast-Invertible-Rescaling-Net/tree/871733f2eee7929d6b37c4d1d6a27347b39b67a9
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): def __init__(self, eps=1e-06, h=0.5): super().__init__() self.eps = eps self.h = h def forward(self, x, y): N, C, _H, _W = x.size() y_mu = y.mean(3).mean(2).mean(0).reshape(1, -1, 1, 1) x_centered = x - y_mu y_centered = y - y_mu x_normalized = x_centered / torch.norm(x_centered, p=2, dim=1, keepdim=True) y_normalized = y_centered / torch.norm(y_centered, p=2, dim=1, keepdim=True) x_normalized = x_normalized.reshape(N, C, -1) y_normalized = y_normalized.reshape(N, C, -1) cosine_sim = torch.bmm(x_normalized.transpose(1, 2), y_normalized) d = 1 - cosine_sim d_min, _ = torch.min(d, dim=2, keepdim=True) d_tilde = d / (d_min + self.eps) w = torch.exp((1 - d_tilde) / self.h) ccx_ij = w / torch.sum(w, dim=2, keepdim=True) ccx = torch.mean(torch.max(ccx_ij, dim=1)[0], dim=1) ccx_loss = torch.mean(-torch.log(ccx + self.eps)) return ccx_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
DepthConv2dv2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/uf/cufm2zulygopt6lu7sgnnhymbp23i2wzcm252jv4h4badnmn2ugw.py # Topologically Sorted Source Nodes: [conv2d, prelu, sum_1, mean, sub, pow_1, sum_2, truediv_1, add, std, sub_1, x, mul, output], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sum, aten.div, aten.sub, aten.pow, aten.add, aten.sqrt, aten.mul] # Source node to ATen node mapping: # add => add # conv2d => convolution # mean => div # mul => mul_1 # output => add_1 # pow_1 => pow_1 # prelu => gt, mul, where # std => sqrt # sub => sub # sub_1 => sub_1 # sum_1 => sum_1 # sum_2 => sum_2 # truediv_1 => div_1 # x => div_2 # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%where, [3], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %div), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %expand), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %expand_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %expand_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %expand_3), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp18 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp9 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp11 / tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, prelu, sum_1, mean, sub, pow_1, sum_2, truediv_1, add, std, sub_1, x, mul, output], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sum, aten.div, aten.sub, aten.pow, aten.add, aten.sqrt, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0.run(buf1, primals_2, primals_4, primals_5, primals_6, buf2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_6 return (buf2, primals_1, primals_3, primals_4, primals_5, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable class tLN(nn.Module): def __init__(self, dimension, eps=1e-08, trainable=True): super(tLN, self).__init__() self.eps = eps if trainable: self.gain = nn.Parameter(torch.ones(1, dimension, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, dimension, 1, 1)) else: self.gain = Variable(torch.ones(1, dimension, 1, 1), requires_grad=False) self.bias = Variable(torch.zeros(1, dimension, 1, 1), requires_grad=False) def forward(self, inp): inp.size(0) mean = torch.sum(inp, 3, keepdim=True) / inp.shape[3] std = torch.sqrt(torch.sum((inp - mean) ** 2, 3, keepdim=True) / inp.shape[3] + self.eps) x = (inp - mean.expand_as(inp)) / std.expand_as(inp) return x * self.gain.expand_as(x).type(x.type()) + self.bias.expand_as( x).type(x.type()) class CausalConv2d(torch.nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=(1, 1 ), dilation=(1, 1), groups=1, bias=True): _pad = int(np.log2((kernel_size[1] - 1) / 2)) padding_2 = int(2 ** (np.log2(dilation[1]) + _pad)) self.__padding = (kernel_size[0] - 1) * dilation[0], padding_2 super(CausalConv2d, self).__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=self.__padding, dilation=dilation, groups=groups, bias=bias) def forward(self, input): result = super(CausalConv2d, self).forward(input) if self.__padding[0] != 0: return result[:, :, :-self.__padding[0]] return result class DepthConv2dv2(nn.Module): def __init__(self, input_channel, hidden_channel, kernel, dilation=(1, 1), stride=(1, 1), padding=(0, 0), causal=False): super(DepthConv2dv2, self).__init__() self.padding = padding if causal: self.conv1d = CausalConv2d(input_channel, hidden_channel, kernel, stride=stride, dilation=dilation) else: self.conv1d = nn.Conv2d(input_channel, hidden_channel, kernel, stride=stride, padding=self.padding, dilation=dilation) self.nonlinearity1 = nn.PReLU() self.reg1 = tLN(hidden_channel) def forward(self, input): output = self.reg1(self.nonlinearity1(self.conv1d(input))) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channel': 4, 'hidden_channel': 4, 'kernel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn from torch.autograd import Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp18 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tmp8 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp9 tmp14 = 1e-08 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp11 / tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_add_convolution_div_mul_pow_sqrt_sub_sum_0[ grid(16)](buf1, primals_2, primals_4, primals_5, primals_6, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_6 return buf2, primals_1, primals_3, primals_4, primals_5, buf1 class tLN(nn.Module): def __init__(self, dimension, eps=1e-08, trainable=True): super(tLN, self).__init__() self.eps = eps if trainable: self.gain = nn.Parameter(torch.ones(1, dimension, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, dimension, 1, 1)) else: self.gain = Variable(torch.ones(1, dimension, 1, 1), requires_grad=False) self.bias = Variable(torch.zeros(1, dimension, 1, 1), requires_grad=False) def forward(self, inp): inp.size(0) mean = torch.sum(inp, 3, keepdim=True) / inp.shape[3] std = torch.sqrt(torch.sum((inp - mean) ** 2, 3, keepdim=True) / inp.shape[3] + self.eps) x = (inp - mean.expand_as(inp)) / std.expand_as(inp) return x * self.gain.expand_as(x).type(x.type()) + self.bias.expand_as( x).type(x.type()) class CausalConv2d(torch.nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=(1, 1 ), dilation=(1, 1), groups=1, bias=True): _pad = int(np.log2((kernel_size[1] - 1) / 2)) padding_2 = int(2 ** (np.log2(dilation[1]) + _pad)) self.__padding = (kernel_size[0] - 1) * dilation[0], padding_2 super(CausalConv2d, self).__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=self.__padding, dilation=dilation, groups=groups, bias=bias) def forward(self, input): result = super(CausalConv2d, self).forward(input) if self.__padding[0] != 0: return result[:, :, :-self.__padding[0]] return result class DepthConv2dv2New(nn.Module): def __init__(self, input_channel, hidden_channel, kernel, dilation=(1, 1), stride=(1, 1), padding=(0, 0), causal=False): super(DepthConv2dv2New, self).__init__() self.padding = padding if causal: self.conv1d = CausalConv2d(input_channel, hidden_channel, kernel, stride=stride, dilation=dilation) else: self.conv1d = nn.Conv2d(input_channel, hidden_channel, kernel, stride=stride, padding=self.padding, dilation=dilation) self.nonlinearity1 = nn.PReLU() self.reg1 = tLN(hidden_channel) def forward(self, input_0): primals_1 = self.conv1d.weight primals_2 = self.conv1d.bias primals_4 = self.nonlinearity1.weight primals_5 = self.reg1.gain primals_6 = self.reg1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
rbodo/pytorch-OpCounter
DepthConv2dv2
false
7,539
[ "MIT" ]
1
1857cbb5f9e53343fb349af84efdfde2554a2691
https://github.com/rbodo/pytorch-OpCounter/tree/1857cbb5f9e53343fb349af84efdfde2554a2691
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable class tLN(nn.Module): def __init__(self, dimension, eps=1e-08, trainable=True): super().__init__() self.eps = eps if trainable: self.gain = nn.Parameter(torch.ones(1, dimension, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, dimension, 1, 1)) else: self.gain = Variable(torch.ones(1, dimension, 1, 1), requires_grad=False) self.bias = Variable(torch.zeros(1, dimension, 1, 1), requires_grad=False) def forward(self, inp): inp.size(0) mean = torch.sum(inp, 3, keepdim=True) / inp.shape[3] std = torch.sqrt(torch.sum((inp - mean) ** 2, 3, keepdim=True) / inp.shape[3] + self.eps) x = (inp - mean.expand_as(inp)) / std.expand_as(inp) return x * self.gain.expand_as(x).type(x.type()) + self.bias.expand_as( x).type(x.type()) class CausalConv2d(torch.nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=(1, 1 ), dilation=(1, 1), groups=1, bias=True): _pad = int(np.log2((kernel_size[1] - 1) / 2)) padding_2 = int(2 ** (np.log2(dilation[1]) + _pad)) self.__padding = (kernel_size[0] - 1) * dilation[0], padding_2 super().__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=self.__padding, dilation=dilation, groups=groups, bias=bias) def forward(self, input): result = super(CausalConv2d, self).forward(input) if self.__padding[0] != 0: return result[:, :, :-self.__padding[0]] return result class Model(nn.Module): def __init__(self, input_channel, hidden_channel, kernel, dilation=(1, 1), stride=(1, 1), padding=(0, 0), causal=False): super().__init__() self.padding = padding if causal: self.conv1d = CausalConv2d(input_channel, hidden_channel, kernel, stride=stride, dilation=dilation) else: self.conv1d = nn.Conv2d(input_channel, hidden_channel, kernel, stride=stride, padding=self.padding, dilation=dilation) self.nonlinearity1 = nn.PReLU() self.reg1 = tLN(hidden_channel) def forward(self, input): output = self.reg1(self.nonlinearity1(self.conv1d(input))) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
tLN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/wp/cwpu7m56z5ktcrwfueputnmofw3ljqabmtqngfabtrd26v2nftzd.py # Topologically Sorted Source Nodes: [sub_1, x, mul, add_1], Original ATen: [aten.sub, aten.div, aten.mul, aten.add] # Source node to ATen node mapping: # add_1 => add_1 # mul => mul # sub_1 => sub_1 # x => div_2 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %expand), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %expand_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %expand_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {}) triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x5 = (xindex // 4) x2 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (4*x5), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x5)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x5)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x5)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 0.25 tmp9 = tmp7 * tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp8 tmp23 = 1e-08 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp10 / tmp25 tmp28 = tmp26 * tmp27 tmp30 = tmp28 + tmp29 tl.store(out_ptr0 + (x4), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub_1, x, mul, add_1], Original ATen: [aten.sub, aten.div, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.autograd import Variable class tLN(nn.Module): def __init__(self, dimension, eps=1e-08, trainable=True): super(tLN, self).__init__() self.eps = eps if trainable: self.gain = nn.Parameter(torch.ones(1, dimension, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, dimension, 1, 1)) else: self.gain = Variable(torch.ones(1, dimension, 1, 1), requires_grad=False) self.bias = Variable(torch.zeros(1, dimension, 1, 1), requires_grad=False) def forward(self, inp): inp.size(0) mean = torch.sum(inp, 3, keepdim=True) / inp.shape[3] std = torch.sqrt(torch.sum((inp - mean) ** 2, 3, keepdim=True) / inp.shape[3] + self.eps) x = (inp - mean.expand_as(inp)) / std.expand_as(inp) return x * self.gain.expand_as(x).type(x.type()) + self.bias.expand_as( x).type(x.type()) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dimension': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.autograd import Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x5 = xindex // 4 x2 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + 4 * x5, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x5), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x5), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x5), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 0.25 tmp9 = tmp7 * tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp8 tmp23 = 1e-08 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = tmp10 / tmp25 tmp28 = tmp26 * tmp27 tmp30 = tmp28 + tmp29 tl.store(out_ptr0 + x4, tmp30, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class tLNNew(nn.Module): def __init__(self, dimension, eps=1e-08, trainable=True): super(tLNNew, self).__init__() self.eps = eps if trainable: self.gain = nn.Parameter(torch.ones(1, dimension, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, dimension, 1, 1)) else: self.gain = Variable(torch.ones(1, dimension, 1, 1), requires_grad=False) self.bias = Variable(torch.zeros(1, dimension, 1, 1), requires_grad=False) def forward(self, input_0): primals_2 = self.gain primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
rbodo/pytorch-OpCounter
tLN
false
7,540
[ "MIT" ]
1
1857cbb5f9e53343fb349af84efdfde2554a2691
https://github.com/rbodo/pytorch-OpCounter/tree/1857cbb5f9e53343fb349af84efdfde2554a2691
import torch import torch.nn as nn from torch.autograd import Variable class Model(nn.Module): def __init__(self, dimension, eps=1e-08, trainable=True): super().__init__() self.eps = eps if trainable: self.gain = nn.Parameter(torch.ones(1, dimension, 1, 1)) self.bias = nn.Parameter(torch.zeros(1, dimension, 1, 1)) else: self.gain = Variable(torch.ones(1, dimension, 1, 1), requires_grad=False) self.bias = Variable(torch.zeros(1, dimension, 1, 1), requires_grad=False) def forward(self, inp): inp.size(0) mean = torch.sum(inp, 3, keepdim=True) / inp.shape[3] std = torch.sqrt(torch.sum((inp - mean) ** 2, 3, keepdim=True) / inp.shape[3] + self.eps) x = (inp - mean.expand_as(inp)) / std.expand_as(inp) return x * self.gain.expand_as(x).type(x.type()) + self.bias.expand_as( x).type(x.type()) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LearnedKernel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/yj/cyjqjllbc3bikte2womjnjqgo2d7wrcb5dt3tpl2sgyogireta4f.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%squeeze,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/h2/ch2cxgshazmhthvy3pttpudu75sh6pzdtcfjodzy4xxoyu2c7tqv.py # Topologically Sorted Source Nodes: [linear, mul, sum_1], Original ATen: [aten.add, aten.mul, aten.sum] # Source node to ATen node mapping: # linear => add # mul => mul # sum_1 => sum_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %squeeze_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) triton_poi_fused_add_mul_sum_1 = async_compile.triton('triton_poi_fused_add_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr2 + (4 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr2 + (8 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp17 = tl.load(in_ptr2 + (12 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 + tmp1 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 + tmp1 tmp18 = tmp16 * tmp17 tmp19 = tmp14 + tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear, mul, sum_1], Original ATen: [aten.add, aten.mul, aten.sum] triton_poi_fused_add_mul_sum_1.run(buf1, primals_3, primals_1, buf2, 16, grid=grid(16), stream=stream0) del buf1 del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4, 4), (64, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class LearnedKernel(nn.Module): def __init__(self, args: 'Namespace'): super(LearnedKernel, self).__init__() self.A = nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size) def forward(self, encodings: 'torch.Tensor'): return (self.A(encodings[:, 1, :].squeeze(1)) * encodings[:, 0, :]. squeeze(1)).sum(dim=1, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'args': _mock_config(ffn_hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr2 + (4 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr2 + (8 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp17 = tl.load(in_ptr2 + (12 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 + tmp1 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 + tmp1 tmp18 = tmp16 * tmp17 tmp19 = tmp14 + tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) triton_poi_fused_add_mul_sum_1[grid(16)](buf1, primals_3, primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (4, 4, 4), (64, 4, 1), 0) class LearnedKernelNew(nn.Module): def __init__(self, args: 'Namespace'): super(LearnedKernelNew, self).__init__() self.A = nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size) def forward(self, input_0): primals_2 = self.A.weight primals_3 = self.A.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
AayushGrover/ViscaNet
LearnedKernel
false
7,541
[ "MIT" ]
1
41786e10b84f2264b638567bdce1c189c1b66b00
https://github.com/AayushGrover/ViscaNet/tree/41786e10b84f2264b638567bdce1c189c1b66b00
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): def __init__(self, args: 'Namespace'): super().__init__() self.A = nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size) def forward(self, encodings: 'torch.Tensor'): return (self.A(encodings[:, 1, :].squeeze(1)) * encodings[:, 0, :]. squeeze(1)).sum(dim=1, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ProteinResNetPooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/rq/crq67an2qbnihu4lgijwmlkbxtlerrf4ah6jnhhssto73bmo5zvy.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 - tmp0 tmp2 = tl_math.exp(tmp1) tmp3 = tmp2 / tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/2k/c2kiox2wvshockbbzjlycxwhjeigavlrfwuvcpbcbxpipbm7d7k6.py # Topologically Sorted Source Nodes: [pooled_output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # pooled_output_1 => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights, matmul], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), buf2, out=buf3) buf4 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [pooled_output_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf5, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (buf5, primals_3, buf1, reinterpret_tensor(buf3, (4, 4), (4, 1), 0), buf5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class ProteinResNetPooler(nn.Module): def __init__(self, config): super().__init__() self.attention_weights = nn.Linear(config.hidden_size, 1) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, mask=None): attention_scores = self.attention_weights(hidden_states) if mask is not None: attention_scores += -10000.0 * (1 - mask) attention_weights = torch.softmax(attention_scores, -1) weighted_mean_embedding = torch.matmul(hidden_states.transpose(1, 2 ), attention_weights).squeeze(2) pooled_output = self.dense(weighted_mean_embedding) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 - tmp0 tmp2 = tl_math.exp(tmp1) tmp3 = tmp2 / tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), buf2, out=buf3) buf4 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0) del buf2 extern_kernels.mm(reinterpret_tensor(buf3, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_tanh_1[grid(16)](buf5, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return buf5, primals_3, buf1, reinterpret_tensor(buf3, (4, 4), (4, 1), 0 ), buf5, primals_4 class ProteinResNetPoolerNew(nn.Module): def __init__(self, config): super().__init__() self.attention_weights = nn.Linear(config.hidden_size, 1) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, input_0): primals_1 = self.attention_weights.weight primals_2 = self.attention_weights.bias primals_4 = self.dense.weight primals_5 = self.dense.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rdedhia/tape
ProteinResNetPooler
false
7,542
[ "BSD-3-Clause" ]
1
421feeb589e4469fb18e297d233d12c1e682338a
https://github.com/rdedhia/tape/tree/421feeb589e4469fb18e297d233d12c1e682338a
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): def __init__(self, config): super().__init__() self.attention_weights = nn.Linear(config.hidden_size, 1) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, mask=None): attention_scores = self.attention_weights(hidden_states) if mask is not None: attention_scores += -10000.0 * (1 - mask) attention_weights = torch.softmax(attention_scores, -1) weighted_mean_embedding = torch.matmul(hidden_states.transpose(1, 2 ), attention_weights).squeeze(2) pooled_output = self.dense(weighted_mean_embedding) pooled_output = self.activation(pooled_output) return pooled_output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return []
Scale
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/23/c23jg33pa2prp4iwyevdetkedocjv56blfdlx3hu2waow3n2qbb3.py # Topologically Sorted Source Nodes: [mean, var], Original ATen: [aten.mean, aten.var] # Source node to ATen node mapping: # mean => mean # var => var # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [0]), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0]), kwargs = {correction: 1}) triton_poi_fused_mean_var_0 = async_compile.triton('triton_poi_fused_mean_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/aw/cawsyxi6rdwxoy5upqdydzwwxpwqxergtsg5ktrimb5gxss5jxqs.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, var], Original ATen: [aten.mean, aten.var] stream0 = get_raw_stream(0) triton_poi_fused_mean_var_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_2, primals_1, buf2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf2, buf0, buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Scale(nn.Module): def __init__(self, num_features): super().__init__() self.num_features = num_features self.scale = nn.Parameter(torch.zeros(num_features)) self.register_buffer('saved_mean', torch.zeros(num_features)) self.register_buffer('saved_var', torch.ones(num_features)) def forward(self, x): with torch.no_grad(): self.saved_mean = x.mean(dim=0) self.saved_var = x.var(dim=0) return self.scale * x def extra_repr(self): return 'num_features={}'.format(self.num_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_var_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = 3.0 tmp21 = tmp19 / tmp20 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp21, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_var_0[grid(64)](primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(256)](primals_2, primals_1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf2, buf0, buf1, primals_1 class ScaleNew(nn.Module): def __init__(self, num_features): super().__init__() self.num_features = num_features self.scale = nn.Parameter(torch.zeros(num_features)) self.register_buffer('saved_mean', torch.zeros(num_features)) self.register_buffer('saved_var', torch.ones(num_features)) def extra_repr(self): return 'num_features={}'.format(self.num_features) def forward(self, input_0): primals_2 = self.scale primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
rgflowopen/rg-flow
Scale
false
7,543
[ "MIT" ]
1
f1ebb56e3e51bb26ecc2f10fe61eb34cae18398b
https://github.com/rgflowopen/rg-flow/tree/f1ebb56e3e51bb26ecc2f10fe61eb34cae18398b
import torch from torch import nn class Model(nn.Module): def __init__(self, num_features): super().__init__() self.num_features = num_features self.scale = nn.Parameter(torch.zeros(num_features)) self.register_buffer('saved_mean', torch.zeros(num_features)) self.register_buffer('saved_var', torch.ones(num_features)) def forward(self, x): with torch.no_grad(): self.saved_mean = x.mean(dim=0) self.saved_var = x.var(dim=0) return self.scale * x def extra_repr(self): return 'num_features={}'.format(self.num_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]